xref: /netbsd-src/sys/net/if_ethersubr.c (revision ee8324d891aef341bfe38faa7df4dc56e9fe38fc)
1 /*	$NetBSD: if_ethersubr.c,v 1.329 2024/09/28 09:03:13 mlelstv Exp $	*/
2 
3 /*
4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the project nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 /*
33  * Copyright (c) 1982, 1989, 1993
34  *	The Regents of the University of California.  All rights reserved.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  * 3. Neither the name of the University nor the names of its contributors
45  *    may be used to endorse or promote products derived from this software
46  *    without specific prior written permission.
47  *
48  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58  * SUCH DAMAGE.
59  *
60  *	@(#)if_ethersubr.c	8.2 (Berkeley) 4/4/96
61  */
62 
63 #include <sys/cdefs.h>
64 __KERNEL_RCSID(0, "$NetBSD: if_ethersubr.c,v 1.329 2024/09/28 09:03:13 mlelstv Exp $");
65 
66 #ifdef _KERNEL_OPT
67 #include "opt_inet.h"
68 #include "opt_atalk.h"
69 #include "opt_mbuftrace.h"
70 #include "opt_mpls.h"
71 #include "opt_gateway.h"
72 #include "opt_pppoe.h"
73 #include "opt_net_mpsafe.h"
74 #endif
75 
76 #include "vlan.h"
77 #include "pppoe.h"
78 #include "bridge.h"
79 #include "arp.h"
80 #include "agr.h"
81 
82 #include <sys/sysctl.h>
83 #include <sys/mbuf.h>
84 #include <sys/mutex.h>
85 #include <sys/ioctl.h>
86 #include <sys/errno.h>
87 #include <sys/device.h>
88 #include <sys/entropy.h>
89 #include <sys/rndsource.h>
90 #include <sys/cpu.h>
91 #include <sys/kmem.h>
92 #include <sys/hook.h>
93 
94 #include <net/if.h>
95 #include <net/route.h>
96 #include <net/if_llc.h>
97 #include <net/if_dl.h>
98 #include <net/if_types.h>
99 #include <net/pktqueue.h>
100 
101 #include <net/if_media.h>
102 #include <dev/mii/mii.h>
103 #include <dev/mii/miivar.h>
104 
105 #if NARP == 0
106 /*
107  * XXX there should really be a way to issue this warning from within config(8)
108  */
109 #error You have included NETATALK or a pseudo-device in your configuration that depends on the presence of ethernet interfaces, but have no such interfaces configured. Check if you really need pseudo-device bridge, pppoe, vlan or options NETATALK.
110 #endif
111 
112 #include <net/bpf.h>
113 
114 #include <net/if_ether.h>
115 #include <net/if_vlanvar.h>
116 
117 #if NPPPOE > 0
118 #include <net/if_pppoe.h>
119 #endif
120 
121 #if NAGR > 0
122 #include <net/ether_slowprotocols.h>
123 #include <net/agr/ieee8023ad.h>
124 #include <net/agr/if_agrvar.h>
125 #endif
126 
127 #if NBRIDGE > 0
128 #include <net/if_bridgevar.h>
129 #endif
130 
131 #include <netinet/in.h>
132 #ifdef INET
133 #include <netinet/in_var.h>
134 #endif
135 #include <netinet/if_inarp.h>
136 
137 #ifdef INET6
138 #ifndef INET
139 #include <netinet/in.h>
140 #endif
141 #include <netinet6/in6_var.h>
142 #include <netinet6/nd6.h>
143 #endif
144 
145 #include "carp.h"
146 #if NCARP > 0
147 #include <netinet/ip_carp.h>
148 #endif
149 
150 #ifdef NETATALK
151 #include <netatalk/at.h>
152 #include <netatalk/at_var.h>
153 #include <netatalk/at_extern.h>
154 
155 #define llc_snap_org_code llc_un.type_snap.org_code
156 #define llc_snap_ether_type llc_un.type_snap.ether_type
157 
158 extern u_char	at_org_code[3];
159 extern u_char	aarp_org_code[3];
160 #endif /* NETATALK */
161 
162 #ifdef MPLS
163 #include <netmpls/mpls.h>
164 #include <netmpls/mpls_var.h>
165 #endif
166 
167 CTASSERT(sizeof(struct ether_addr) == 6);
168 CTASSERT(sizeof(struct ether_header) == 14);
169 
170 #ifdef DIAGNOSTIC
171 static struct timeval bigpktppslim_last;
172 static int bigpktppslim = 2;	/* XXX */
173 static int bigpktpps_count;
174 static kmutex_t bigpktpps_lock __cacheline_aligned;
175 #endif
176 
177 const uint8_t etherbroadcastaddr[ETHER_ADDR_LEN] =
178     { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
179 const uint8_t ethermulticastaddr_slowprotocols[ETHER_ADDR_LEN] =
180     { 0x01, 0x80, 0xc2, 0x00, 0x00, 0x02 };
181 #define senderr(e) { error = (e); goto bad;}
182 
183 static pktq_rps_hash_func_t ether_pktq_rps_hash_p;
184 
185 static int ether_output(struct ifnet *, struct mbuf *,
186     const struct sockaddr *, const struct rtentry *);
187 
188 /*
189  * Ethernet output routine.
190  * Encapsulate a packet of type family for the local net.
191  * Assumes that ifp is actually pointer to ethercom structure.
192  */
193 static int
194 ether_output(struct ifnet * const ifp0, struct mbuf * const m0,
195     const struct sockaddr * const dst, const struct rtentry *rt)
196 {
197 	uint8_t esrc[ETHER_ADDR_LEN], edst[ETHER_ADDR_LEN];
198 	uint16_t etype = 0;
199 	int error = 0, hdrcmplt = 0;
200 	struct mbuf *m = m0;
201 	struct mbuf *mcopy = NULL;
202 	struct ether_header *eh;
203 	struct ifnet *ifp = ifp0;
204 #ifdef INET
205 	struct arphdr *ah;
206 #endif
207 #ifdef NETATALK
208 	struct at_ifaddr *aa;
209 #endif
210 
211 #ifdef MBUFTRACE
212 	m_claimm(m, ifp->if_mowner);
213 #endif
214 
215 #if NCARP > 0
216 	if (ifp->if_type == IFT_CARP) {
217 		struct ifaddr *ifa;
218 		int s = pserialize_read_enter();
219 
220 		/* loop back if this is going to the carp interface */
221 		if (dst != NULL && ifp0->if_link_state == LINK_STATE_UP &&
222 		    (ifa = ifa_ifwithaddr(dst)) != NULL) {
223 			if (ifa->ifa_ifp == ifp0) {
224 				pserialize_read_exit(s);
225 				return looutput(ifp0, m, dst, rt);
226 			}
227 		}
228 		pserialize_read_exit(s);
229 
230 		ifp = ifp->if_carpdev;
231 		/* ac = (struct arpcom *)ifp; */
232 
233 		if ((ifp0->if_flags & (IFF_UP | IFF_RUNNING)) !=
234 		    (IFF_UP | IFF_RUNNING))
235 			senderr(ENETDOWN);
236 	}
237 #endif
238 
239 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) != (IFF_UP | IFF_RUNNING))
240 		senderr(ENETDOWN);
241 
242 	switch (dst->sa_family) {
243 
244 #ifdef INET
245 	case AF_INET:
246 		if (m->m_flags & M_BCAST) {
247 			memcpy(edst, etherbroadcastaddr, sizeof(edst));
248 		} else if (m->m_flags & M_MCAST) {
249 			ETHER_MAP_IP_MULTICAST(&satocsin(dst)->sin_addr, edst);
250 		} else {
251 			error = arpresolve(ifp0, rt, m, dst, edst, sizeof(edst));
252 			if (error)
253 				return (error == EWOULDBLOCK) ? 0 : error;
254 		}
255 		/* If broadcasting on a simplex interface, loopback a copy */
256 		if ((m->m_flags & M_BCAST) && (ifp->if_flags & IFF_SIMPLEX))
257 			mcopy = m_copypacket(m, M_DONTWAIT);
258 		etype = htons(ETHERTYPE_IP);
259 		break;
260 
261 	case AF_ARP:
262 		ah = mtod(m, struct arphdr *);
263 		if (m->m_flags & M_BCAST) {
264 			memcpy(edst, etherbroadcastaddr, sizeof(edst));
265 		} else {
266 			void *tha = ar_tha(ah);
267 
268 			if (tha == NULL) {
269 				/* fake with ARPHRD_IEEE1394 */
270 				m_freem(m);
271 				return 0;
272 			}
273 			memcpy(edst, tha, sizeof(edst));
274 		}
275 
276 		ah->ar_hrd = htons(ARPHRD_ETHER);
277 
278 		switch (ntohs(ah->ar_op)) {
279 		case ARPOP_REVREQUEST:
280 		case ARPOP_REVREPLY:
281 			etype = htons(ETHERTYPE_REVARP);
282 			break;
283 
284 		case ARPOP_REQUEST:
285 		case ARPOP_REPLY:
286 		default:
287 			etype = htons(ETHERTYPE_ARP);
288 		}
289 		break;
290 #endif
291 
292 #ifdef INET6
293 	case AF_INET6:
294 		if (m->m_flags & M_BCAST) {
295 			memcpy(edst, etherbroadcastaddr, sizeof(edst));
296 		} else if (m->m_flags & M_MCAST) {
297 			ETHER_MAP_IPV6_MULTICAST(&satocsin6(dst)->sin6_addr,
298 			    edst);
299 		} else {
300 			error = nd6_resolve(ifp0, rt, m, dst, edst,
301 			    sizeof(edst));
302 			if (error)
303 				return (error == EWOULDBLOCK) ? 0 : error;
304 		}
305 		etype = htons(ETHERTYPE_IPV6);
306 		break;
307 #endif
308 
309 #ifdef NETATALK
310 	case AF_APPLETALK: {
311 		struct ifaddr *ifa;
312 		int s;
313 
314 		KERNEL_LOCK(1, NULL);
315 
316 		if (!aarpresolve(ifp, m, (const struct sockaddr_at *)dst, edst)) {
317 			KERNEL_UNLOCK_ONE(NULL);
318 			return 0;
319 		}
320 
321 		/*
322 		 * ifaddr is the first thing in at_ifaddr
323 		 */
324 		s = pserialize_read_enter();
325 		ifa = at_ifawithnet((const struct sockaddr_at *)dst, ifp);
326 		if (ifa == NULL) {
327 			pserialize_read_exit(s);
328 			KERNEL_UNLOCK_ONE(NULL);
329 			senderr(EADDRNOTAVAIL);
330 		}
331 		aa = (struct at_ifaddr *)ifa;
332 
333 		/*
334 		 * In the phase 2 case, we need to prepend an mbuf for the
335 		 * llc header.
336 		 */
337 		if (aa->aa_flags & AFA_PHASE2) {
338 			struct llc llc;
339 
340 			M_PREPEND(m, sizeof(struct llc), M_DONTWAIT);
341 			if (m == NULL) {
342 				pserialize_read_exit(s);
343 				KERNEL_UNLOCK_ONE(NULL);
344 				senderr(ENOBUFS);
345 			}
346 
347 			llc.llc_dsap = llc.llc_ssap = LLC_SNAP_LSAP;
348 			llc.llc_control = LLC_UI;
349 			memcpy(llc.llc_snap_org_code, at_org_code,
350 			    sizeof(llc.llc_snap_org_code));
351 			llc.llc_snap_ether_type = htons(ETHERTYPE_ATALK);
352 			memcpy(mtod(m, void *), &llc, sizeof(struct llc));
353 		} else {
354 			etype = htons(ETHERTYPE_ATALK);
355 		}
356 		pserialize_read_exit(s);
357 		KERNEL_UNLOCK_ONE(NULL);
358 		break;
359 	}
360 #endif /* NETATALK */
361 
362 	case pseudo_AF_HDRCMPLT:
363 		hdrcmplt = 1;
364 		memcpy(esrc,
365 		    ((const struct ether_header *)dst->sa_data)->ether_shost,
366 		    sizeof(esrc));
367 		/* FALLTHROUGH */
368 
369 	case AF_UNSPEC:
370 		memcpy(edst,
371 		    ((const struct ether_header *)dst->sa_data)->ether_dhost,
372 		    sizeof(edst));
373 		/* AF_UNSPEC doesn't swap the byte order of the ether_type. */
374 		etype = ((const struct ether_header *)dst->sa_data)->ether_type;
375 		break;
376 
377 	default:
378 		printf("%s: can't handle af%d\n", ifp->if_xname,
379 		    dst->sa_family);
380 		senderr(EAFNOSUPPORT);
381 	}
382 
383 #ifdef MPLS
384 	{
385 		struct m_tag *mtag;
386 		mtag = m_tag_find(m, PACKET_TAG_MPLS);
387 		if (mtag != NULL) {
388 			/* Having the tag itself indicates it's MPLS */
389 			etype = htons(ETHERTYPE_MPLS);
390 			m_tag_delete(m, mtag);
391 		}
392 	}
393 #endif
394 
395 	if (mcopy)
396 		(void)looutput(ifp, mcopy, dst, rt);
397 
398 	KASSERT((m->m_flags & M_PKTHDR) != 0);
399 
400 	/*
401 	 * If no ether type is set, this must be a 802.2 formatted packet.
402 	 */
403 	if (etype == 0)
404 		etype = htons(m->m_pkthdr.len);
405 
406 	/*
407 	 * Add local net header. If no space in first mbuf, allocate another.
408 	 */
409 	M_PREPEND(m, sizeof(struct ether_header), M_DONTWAIT);
410 	if (m == NULL)
411 		senderr(ENOBUFS);
412 
413 	eh = mtod(m, struct ether_header *);
414 	/* Note: etype is already in network byte order. */
415 	memcpy(&eh->ether_type, &etype, sizeof(eh->ether_type));
416 	memcpy(eh->ether_dhost, edst, sizeof(edst));
417 	if (hdrcmplt) {
418 		memcpy(eh->ether_shost, esrc, sizeof(eh->ether_shost));
419 	} else {
420 	 	memcpy(eh->ether_shost, CLLADDR(ifp->if_sadl),
421 		    sizeof(eh->ether_shost));
422 	}
423 
424 #if NCARP > 0
425 	if (ifp0 != ifp && ifp0->if_type == IFT_CARP) {
426 		/* update with virtual MAC */
427 		memcpy(eh->ether_shost, CLLADDR(ifp0->if_sadl),
428 		    sizeof(eh->ether_shost));
429 	}
430 #endif
431 
432 	if ((error = pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_OUT)) != 0)
433 		return error;
434 	if (m == NULL)
435 		return 0;
436 
437 #if NBRIDGE > 0
438 	/*
439 	 * Bridges require special output handling.
440 	 */
441 	if (ifp->if_bridge)
442 		return bridge_output(ifp, m, NULL, NULL);
443 #endif
444 
445 #if NCARP > 0
446 	if (ifp != ifp0)
447 		if_statadd(ifp0, if_obytes, m->m_pkthdr.len + ETHER_HDR_LEN);
448 #endif
449 
450 #ifdef ALTQ
451 	KERNEL_LOCK(1, NULL);
452 	/*
453 	 * If ALTQ is enabled on the parent interface, do
454 	 * classification; the queueing discipline might not
455 	 * require classification, but might require the
456 	 * address family/header pointer in the pktattr.
457 	 */
458 	if (ALTQ_IS_ENABLED(&ifp->if_snd))
459 		altq_etherclassify(&ifp->if_snd, m);
460 	KERNEL_UNLOCK_ONE(NULL);
461 #endif
462 	return ifq_enqueue(ifp, m);
463 
464 bad:
465 	if_statinc(ifp, if_oerrors);
466 	m_freem(m);
467 	return error;
468 }
469 
470 #ifdef ALTQ
471 /*
472  * This routine is a slight hack to allow a packet to be classified
473  * if the Ethernet headers are present.  It will go away when ALTQ's
474  * classification engine understands link headers.
475  *
476  * XXX: We may need to do m_pullups here. First to ensure struct ether_header
477  * is indeed contiguous, then to read the LLC and so on.
478  */
479 void
480 altq_etherclassify(struct ifaltq *ifq, struct mbuf *m)
481 {
482 	struct ether_header *eh;
483 	struct mbuf *mtop = m;
484 	uint16_t ether_type;
485 	int hlen, af, hdrsize;
486 	void *hdr;
487 
488 	KASSERT((mtop->m_flags & M_PKTHDR) != 0);
489 
490 	hlen = ETHER_HDR_LEN;
491 	eh = mtod(m, struct ether_header *);
492 
493 	ether_type = htons(eh->ether_type);
494 
495 	if (ether_type < ETHERMTU) {
496 		/* LLC/SNAP */
497 		struct llc *llc = (struct llc *)(eh + 1);
498 		hlen += 8;
499 
500 		if (m->m_len < hlen ||
501 		    llc->llc_dsap != LLC_SNAP_LSAP ||
502 		    llc->llc_ssap != LLC_SNAP_LSAP ||
503 		    llc->llc_control != LLC_UI) {
504 			/* Not SNAP. */
505 			goto bad;
506 		}
507 
508 		ether_type = htons(llc->llc_un.type_snap.ether_type);
509 	}
510 
511 	switch (ether_type) {
512 	case ETHERTYPE_IP:
513 		af = AF_INET;
514 		hdrsize = 20;		/* sizeof(struct ip) */
515 		break;
516 
517 	case ETHERTYPE_IPV6:
518 		af = AF_INET6;
519 		hdrsize = 40;		/* sizeof(struct ip6_hdr) */
520 		break;
521 
522 	default:
523 		af = AF_UNSPEC;
524 		hdrsize = 0;
525 		break;
526 	}
527 
528 	while (m->m_len <= hlen) {
529 		hlen -= m->m_len;
530 		m = m->m_next;
531 		if (m == NULL)
532 			goto bad;
533 	}
534 
535 	if (m->m_len < (hlen + hdrsize)) {
536 		/*
537 		 * protocol header not in a single mbuf.
538 		 * We can't cope with this situation right
539 		 * now (but it shouldn't ever happen, really, anyhow).
540 		 */
541 #ifdef DEBUG
542 		printf("altq_etherclassify: headers span multiple mbufs: "
543 		    "%d < %d\n", m->m_len, (hlen + hdrsize));
544 #endif
545 		goto bad;
546 	}
547 
548 	m->m_data += hlen;
549 	m->m_len -= hlen;
550 
551 	hdr = mtod(m, void *);
552 
553 	if (ALTQ_NEEDS_CLASSIFY(ifq)) {
554 		mtop->m_pkthdr.pattr_class =
555 		    (*ifq->altq_classify)(ifq->altq_clfier, m, af);
556 	}
557 	mtop->m_pkthdr.pattr_af = af;
558 	mtop->m_pkthdr.pattr_hdr = hdr;
559 
560 	m->m_data -= hlen;
561 	m->m_len += hlen;
562 
563 	return;
564 
565 bad:
566 	mtop->m_pkthdr.pattr_class = NULL;
567 	mtop->m_pkthdr.pattr_hdr = NULL;
568 	mtop->m_pkthdr.pattr_af = AF_UNSPEC;
569 }
570 #endif /* ALTQ */
571 
572 #if defined (LLC) || defined (NETATALK)
573 static void
574 ether_input_llc(struct ifnet *ifp, struct mbuf *m, struct ether_header *eh)
575 {
576 	pktqueue_t *pktq = NULL;
577 	struct llc *l;
578 
579 	if (m->m_len < sizeof(*eh) + sizeof(struct llc))
580 		goto error;
581 
582 	l = (struct llc *)(eh+1);
583 	switch (l->llc_dsap) {
584 #ifdef NETATALK
585 	case LLC_SNAP_LSAP:
586 		switch (l->llc_control) {
587 		case LLC_UI:
588 			if (l->llc_ssap != LLC_SNAP_LSAP)
589 				goto error;
590 
591 			if (memcmp(&(l->llc_snap_org_code)[0],
592 			    at_org_code, sizeof(at_org_code)) == 0 &&
593 			    ntohs(l->llc_snap_ether_type) ==
594 			    ETHERTYPE_ATALK) {
595 				pktq = at_pktq2;
596 				m_adj(m, sizeof(struct ether_header)
597 				    + sizeof(struct llc));
598 				break;
599 			}
600 
601 			if (memcmp(&(l->llc_snap_org_code)[0],
602 			    aarp_org_code,
603 			    sizeof(aarp_org_code)) == 0 &&
604 			    ntohs(l->llc_snap_ether_type) ==
605 			    ETHERTYPE_AARP) {
606 				m_adj(m, sizeof(struct ether_header)
607 				    + sizeof(struct llc));
608 				aarpinput(ifp, m); /* XXX queue? */
609 				return;
610 			}
611 
612 		default:
613 			goto error;
614 		}
615 		break;
616 #endif
617 	default:
618 		goto noproto;
619 	}
620 
621 	KASSERT(pktq != NULL);
622 	if (__predict_false(!pktq_enqueue(pktq, m, 0))) {
623 		m_freem(m);
624 	}
625 	return;
626 
627 noproto:
628 	m_freem(m);
629 	if_statinc(ifp, if_noproto);
630 	return;
631 error:
632 	m_freem(m);
633 	if_statinc(ifp, if_ierrors);
634 	return;
635 }
636 #endif /* defined (LLC) || defined (NETATALK) */
637 
638 /*
639  * Process a received Ethernet packet;
640  * the packet is in the mbuf chain m with
641  * the ether header.
642  */
643 void
644 ether_input(struct ifnet *ifp, struct mbuf *m)
645 {
646 #if NVLAN > 0 || defined(MBUFTRACE)
647 	struct ethercom *ec = (struct ethercom *) ifp;
648 #endif
649 	pktqueue_t *pktq = NULL;
650 	uint16_t etype;
651 	struct ether_header *eh;
652 	size_t ehlen;
653 	static int earlypkts;
654 
655 	/* No RPS for not-IP. */
656 	pktq_rps_hash_func_t rps_hash = NULL;
657 
658 	KASSERT(!cpu_intr_p());
659 	KASSERT((m->m_flags & M_PKTHDR) != 0);
660 
661 	if ((ifp->if_flags & IFF_UP) == 0)
662 		goto drop;
663 
664 #ifdef MBUFTRACE
665 	m_claimm(m, &ec->ec_rx_mowner);
666 #endif
667 
668 	if (__predict_false(m->m_len < sizeof(*eh))) {
669 		if ((m = m_pullup(m, sizeof(*eh))) == NULL) {
670 			if_statinc(ifp, if_ierrors);
671 			return;
672 		}
673 	}
674 
675 	eh = mtod(m, struct ether_header *);
676 	etype = ntohs(eh->ether_type);
677 	ehlen = sizeof(*eh);
678 
679 	if (__predict_false(earlypkts < 100 ||
680 		entropy_epoch() == (unsigned)-1)) {
681 		rnd_add_data(NULL, eh, ehlen, 0);
682 		earlypkts++;
683 	}
684 
685 	/*
686 	 * Determine if the packet is within its size limits. For MPLS the
687 	 * header length is variable, so we skip the check.
688 	 */
689 	if (etype != ETHERTYPE_MPLS && m->m_pkthdr.len >
690 	    ETHER_MAX_FRAME(ifp, etype, m->m_flags & M_HASFCS)) {
691 #ifdef DIAGNOSTIC
692 		mutex_enter(&bigpktpps_lock);
693 		if (ppsratecheck(&bigpktppslim_last, &bigpktpps_count,
694 		    bigpktppslim)) {
695 			printf("%s: discarding oversize frame (len=%d)\n",
696 			    ifp->if_xname, m->m_pkthdr.len);
697 		}
698 		mutex_exit(&bigpktpps_lock);
699 #endif
700 		goto error;
701 	}
702 
703 	if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
704 		/*
705 		 * If this is not a simplex interface, drop the packet
706 		 * if it came from us.
707 		 */
708 		if ((ifp->if_flags & IFF_SIMPLEX) == 0 &&
709 		    memcmp(CLLADDR(ifp->if_sadl), eh->ether_shost,
710 		    ETHER_ADDR_LEN) == 0) {
711 			goto drop;
712 		}
713 
714 		if (memcmp(etherbroadcastaddr,
715 		    eh->ether_dhost, ETHER_ADDR_LEN) == 0)
716 			m->m_flags |= M_BCAST;
717 		else
718 			m->m_flags |= M_MCAST;
719 		if_statinc(ifp, if_imcasts);
720 	}
721 
722 	/* If the CRC is still on the packet, trim it off. */
723 	if (m->m_flags & M_HASFCS) {
724 		m_adj(m, -ETHER_CRC_LEN);
725 		m->m_flags &= ~M_HASFCS;
726 	}
727 
728 	if_statadd(ifp, if_ibytes, m->m_pkthdr.len);
729 
730 	if (!vlan_has_tag(m) && etype == ETHERTYPE_VLAN) {
731 		m = ether_strip_vlantag(m);
732 		if (m == NULL) {
733 			if_statinc(ifp, if_ierrors);
734 			return;
735 		}
736 
737 		eh = mtod(m, struct ether_header *);
738 		etype = ntohs(eh->ether_type);
739 		ehlen = sizeof(*eh);
740 	}
741 
742 	if ((m->m_flags & (M_BCAST | M_MCAST | M_PROMISC)) == 0 &&
743 	    (ifp->if_flags & IFF_PROMISC) != 0 &&
744 	    memcmp(CLLADDR(ifp->if_sadl), eh->ether_dhost,
745 	     ETHER_ADDR_LEN) != 0) {
746 		m->m_flags |= M_PROMISC;
747 	}
748 
749 	if ((m->m_flags & M_PROMISC) == 0) {
750 		if (pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_IN) != 0)
751 			return;
752 		if (m == NULL)
753 			return;
754 
755 		eh = mtod(m, struct ether_header *);
756 		etype = ntohs(eh->ether_type);
757 	}
758 
759 	/*
760 	 * Processing a logical interfaces that are able
761 	 * to configure vlan(4).
762 	*/
763 #if NAGR > 0
764 	if (ifp->if_lagg != NULL &&
765 	    __predict_true(etype != ETHERTYPE_SLOWPROTOCOLS)) {
766 		m->m_flags &= ~M_PROMISC;
767 		agr_input(ifp, m);
768 		return;
769 	}
770 #endif
771 
772 	/*
773 	 * VLAN processing.
774 	 *
775 	 * VLAN provides service delimiting so the frames are
776 	 * processed before other handlings. If a VLAN interface
777 	 * does not exist to take those frames, they're returned
778 	 * to ether_input().
779 	 */
780 
781 	if (vlan_has_tag(m)) {
782 		if (EVL_VLANOFTAG(vlan_get_tag(m)) == 0) {
783 			if (etype == ETHERTYPE_VLAN ||
784 			     etype == ETHERTYPE_QINQ)
785 				goto drop;
786 
787 			/* XXX we should actually use the prio value? */
788 			m->m_flags &= ~M_VLANTAG;
789 		} else {
790 #if NVLAN > 0
791 			if (ec->ec_nvlans > 0) {
792 				m = vlan_input(ifp, m);
793 
794 				/* vlan_input() called ether_input() recursively */
795 				if (m == NULL)
796 					return;
797 			}
798 #endif
799 			/* drop VLAN frames not for this port. */
800 			goto noproto;
801 		}
802 	}
803 
804 #if NCARP > 0
805 	if (__predict_false(ifp->if_carp && ifp->if_type != IFT_CARP)) {
806 		/*
807 		 * Clear M_PROMISC, in case the packet comes from a
808 		 * vlan.
809 		 */
810 		m->m_flags &= ~M_PROMISC;
811 		if (carp_input(m, (uint8_t *)&eh->ether_shost,
812 		    (uint8_t *)&eh->ether_dhost, eh->ether_type) == 0)
813 			return;
814 	}
815 #endif
816 
817 	/*
818 	 * Handle protocols that expect to have the Ethernet header
819 	 * (and possibly FCS) intact.
820 	 */
821 	switch (etype) {
822 #if NPPPOE > 0
823 	case ETHERTYPE_PPPOEDISC:
824 		pppoedisc_input(ifp, m);
825 		return;
826 
827 	case ETHERTYPE_PPPOE:
828 		pppoe_input(ifp, m);
829 		return;
830 #endif
831 
832 	case ETHERTYPE_SLOWPROTOCOLS: {
833 		uint8_t subtype;
834 
835 		if (m->m_pkthdr.len < sizeof(*eh) + sizeof(subtype))
836 			goto error;
837 
838 		m_copydata(m, sizeof(*eh), sizeof(subtype), &subtype);
839 		switch (subtype) {
840 #if NAGR > 0
841 		case SLOWPROTOCOLS_SUBTYPE_LACP:
842 			if (ifp->if_lagg != NULL) {
843 				ieee8023ad_lacp_input(ifp, m);
844 				return;
845 			}
846 			break;
847 
848 		case SLOWPROTOCOLS_SUBTYPE_MARKER:
849 			if (ifp->if_lagg != NULL) {
850 				ieee8023ad_marker_input(ifp, m);
851 				return;
852 			}
853 			break;
854 #endif
855 
856 		default:
857 			if (subtype == 0 || subtype > 10) {
858 				/* illegal value */
859 				goto noproto;
860 			}
861 			/* unknown subtype */
862 			break;
863 		}
864 	}
865 	/* FALLTHROUGH */
866 	default:
867 		if (m->m_flags & M_PROMISC)
868 			goto drop;
869 	}
870 
871 	/* If the CRC is still on the packet, trim it off. */
872 	if (m->m_flags & M_HASFCS) {
873 		m_adj(m, -ETHER_CRC_LEN);
874 		m->m_flags &= ~M_HASFCS;
875 	}
876 
877 	/* etype represents the size of the payload in this case */
878 	if (etype <= ETHERMTU + sizeof(struct ether_header)) {
879 		KASSERT(ehlen == sizeof(*eh));
880 #if defined (LLC) || defined (NETATALK)
881 		ether_input_llc(ifp, m, eh);
882 		return;
883 #else
884 		/* ethertype of 0-1500 is regarded as noproto */
885 		goto noproto;
886 #endif
887 	}
888 
889 	/* For ARP packets, store the source address so that
890 	 * ARP DAD probes can be validated. */
891 	if (etype == ETHERTYPE_ARP) {
892 		struct m_tag *mtag;
893 
894 		mtag = m_tag_get(PACKET_TAG_ETHERNET_SRC, ETHER_ADDR_LEN,
895 		    M_NOWAIT);
896 		if (mtag != NULL) {
897 			memcpy(mtag + 1, &eh->ether_shost, ETHER_ADDR_LEN);
898 			m_tag_prepend(m, mtag);
899 		}
900 	}
901 
902 	/* Strip off the Ethernet header. */
903 	m_adj(m, ehlen);
904 
905 	switch (etype) {
906 #ifdef INET
907 	case ETHERTYPE_IP:
908 #ifdef GATEWAY
909 		if (ipflow_fastforward(m))
910 			return;
911 #endif
912 		pktq = ip_pktq;
913 		rps_hash = atomic_load_relaxed(&ether_pktq_rps_hash_p);
914 		break;
915 
916 	case ETHERTYPE_ARP:
917 		pktq = arp_pktq;
918 		break;
919 
920 	case ETHERTYPE_REVARP:
921 		revarpinput(m);	/* XXX queue? */
922 		return;
923 #endif
924 
925 #ifdef INET6
926 	case ETHERTYPE_IPV6:
927 		if (__predict_false(!in6_present))
928 			goto noproto;
929 #ifdef GATEWAY
930 		if (ip6flow_fastforward(&m))
931 			return;
932 #endif
933 		pktq = ip6_pktq;
934 		rps_hash = atomic_load_relaxed(&ether_pktq_rps_hash_p);
935 		break;
936 #endif
937 
938 #ifdef NETATALK
939 	case ETHERTYPE_ATALK:
940 		pktq = at_pktq1;
941 		break;
942 
943 	case ETHERTYPE_AARP:
944 		aarpinput(ifp, m); /* XXX queue? */
945 		return;
946 #endif
947 
948 #ifdef MPLS
949 	case ETHERTYPE_MPLS:
950 		pktq = mpls_pktq;
951 		break;
952 #endif
953 
954 	default:
955 		goto noproto;
956 	}
957 
958 	KASSERT(pktq != NULL);
959 	const uint32_t h = rps_hash ? pktq_rps_hash(&rps_hash, m) : 0;
960 	if (__predict_false(!pktq_enqueue(pktq, m, h))) {
961 		m_freem(m);
962 	}
963 	return;
964 
965 drop:
966 	m_freem(m);
967 	if_statinc(ifp, if_iqdrops);
968 	return;
969 noproto:
970 	m_freem(m);
971 	if_statinc(ifp, if_noproto);
972 	return;
973 error:
974 	m_freem(m);
975 	if_statinc(ifp, if_ierrors);
976 	return;
977 }
978 
979 static void
980 ether_bpf_mtap(struct bpf_if *bp, struct mbuf *m, u_int direction)
981 {
982 	struct ether_vlan_header evl;
983 	struct m_hdr mh, md;
984 
985 	KASSERT(bp != NULL);
986 
987 	if (!vlan_has_tag(m)) {
988 		bpf_mtap3(bp, m, direction);
989 		return;
990 	}
991 
992 	memcpy(&evl, mtod(m, char *), ETHER_HDR_LEN);
993 	evl.evl_proto = evl.evl_encap_proto;
994 	evl.evl_encap_proto = htons(ETHERTYPE_VLAN);
995 	evl.evl_tag = htons(vlan_get_tag(m));
996 
997 	md.mh_flags = 0;
998 	md.mh_data = m->m_data + ETHER_HDR_LEN;
999 	md.mh_len = m->m_len - ETHER_HDR_LEN;
1000 	md.mh_next = m->m_next;
1001 
1002 	mh.mh_flags = 0;
1003 	mh.mh_data = (char *)&evl;
1004 	mh.mh_len = sizeof(evl);
1005 	mh.mh_next = (struct mbuf *)&md;
1006 
1007 	bpf_mtap3(bp, (struct mbuf *)&mh, direction);
1008 }
1009 
1010 /*
1011  * Convert Ethernet address to printable (loggable) representation.
1012  */
1013 char *
1014 ether_sprintf(const u_char *ap)
1015 {
1016 	static char etherbuf[3 * ETHER_ADDR_LEN];
1017 	return ether_snprintf(etherbuf, sizeof(etherbuf), ap);
1018 }
1019 
1020 char *
1021 ether_snprintf(char *buf, size_t len, const u_char *ap)
1022 {
1023 	char *cp = buf;
1024 	size_t i;
1025 
1026 	for (i = 0; i < len / 3; i++) {
1027 		*cp++ = hexdigits[*ap >> 4];
1028 		*cp++ = hexdigits[*ap++ & 0xf];
1029 		*cp++ = ':';
1030 	}
1031 	*--cp = '\0';
1032 	return buf;
1033 }
1034 
1035 /*
1036  * Perform common duties while attaching to interface list
1037  */
1038 void
1039 ether_ifattach(struct ifnet *ifp, const uint8_t *lla)
1040 {
1041 	struct ethercom *ec = (struct ethercom *)ifp;
1042 	char xnamebuf[HOOKNAMSIZ];
1043 
1044 	if (lla != NULL && ETHER_IS_MULTICAST(lla))
1045 		aprint_error("The multicast bit is set in the MAC address. "
1046 			"It's wrong.\n");
1047 
1048 	ifp->if_type = IFT_ETHER;
1049 	ifp->if_hdrlen = ETHER_HDR_LEN;
1050 	ifp->if_dlt = DLT_EN10MB;
1051 	ifp->if_mtu = ETHERMTU;
1052 	ifp->if_output = ether_output;
1053 	ifp->_if_input = ether_input;
1054 	if (ec->ec_capabilities & ETHERCAP_VLAN_HWTAGGING)
1055 		ifp->if_bpf_mtap = ether_bpf_mtap;
1056 	if (ifp->if_baudrate == 0)
1057 		ifp->if_baudrate = IF_Mbps(10);		/* just a default */
1058 
1059 	if (lla != NULL)
1060 		if_set_sadl(ifp, lla, ETHER_ADDR_LEN, !ETHER_IS_LOCAL(lla));
1061 
1062 	LIST_INIT(&ec->ec_multiaddrs);
1063 	SIMPLEQ_INIT(&ec->ec_vids);
1064 	ec->ec_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET);
1065 	ec->ec_flags = 0;
1066 	ifp->if_broadcastaddr = etherbroadcastaddr;
1067 	bpf_attach(ifp, DLT_EN10MB, sizeof(struct ether_header));
1068 	snprintf(xnamebuf, sizeof(xnamebuf),
1069 	    "%s-ether_ifdetachhooks", ifp->if_xname);
1070 	ec->ec_ifdetach_hooks = simplehook_create(IPL_NET, xnamebuf);
1071 #ifdef MBUFTRACE
1072 	mowner_init_owner(&ec->ec_tx_mowner, ifp->if_xname, "tx");
1073 	mowner_init_owner(&ec->ec_rx_mowner, ifp->if_xname, "rx");
1074 	MOWNER_ATTACH(&ec->ec_tx_mowner);
1075 	MOWNER_ATTACH(&ec->ec_rx_mowner);
1076 	ifp->if_mowner = &ec->ec_tx_mowner;
1077 #endif
1078 }
1079 
1080 void
1081 ether_ifdetach(struct ifnet *ifp)
1082 {
1083 	struct ethercom *ec = (void *) ifp;
1084 	struct ether_multi *enm;
1085 
1086 	IFNET_ASSERT_UNLOCKED(ifp);
1087 	/*
1088 	 * Prevent further calls to ioctl (for example turning off
1089 	 * promiscuous mode from the bridge code), which eventually can
1090 	 * call if_init() which can cause panics because the interface
1091 	 * is in the process of being detached. Return device not configured
1092 	 * instead.
1093 	 */
1094 	ifp->if_ioctl = __FPTRCAST(int (*)(struct ifnet *, u_long, void *),
1095 	    enxio);
1096 
1097 	simplehook_dohooks(ec->ec_ifdetach_hooks);
1098 	KASSERT(!simplehook_has_hooks(ec->ec_ifdetach_hooks));
1099 	simplehook_destroy(ec->ec_ifdetach_hooks);
1100 
1101 	bpf_detach(ifp);
1102 
1103 	ETHER_LOCK(ec);
1104 	KASSERT(ec->ec_nvlans == 0);
1105 	while ((enm = LIST_FIRST(&ec->ec_multiaddrs)) != NULL) {
1106 		LIST_REMOVE(enm, enm_list);
1107 		kmem_free(enm, sizeof(*enm));
1108 		ec->ec_multicnt--;
1109 	}
1110 	ETHER_UNLOCK(ec);
1111 
1112 	mutex_obj_free(ec->ec_lock);
1113 	ec->ec_lock = NULL;
1114 
1115 	ifp->if_mowner = NULL;
1116 	MOWNER_DETACH(&ec->ec_rx_mowner);
1117 	MOWNER_DETACH(&ec->ec_tx_mowner);
1118 }
1119 
1120 void *
1121 ether_ifdetachhook_establish(struct ifnet *ifp,
1122     void (*fn)(void *), void *arg)
1123 {
1124 	struct ethercom *ec;
1125 	khook_t *hk;
1126 
1127 	if (ifp->if_type != IFT_ETHER)
1128 		return NULL;
1129 
1130 	ec = (struct ethercom *)ifp;
1131 	hk = simplehook_establish(ec->ec_ifdetach_hooks,
1132 	    fn, arg);
1133 
1134 	return (void *)hk;
1135 }
1136 
1137 void
1138 ether_ifdetachhook_disestablish(struct ifnet *ifp,
1139     void *vhook, kmutex_t *lock)
1140 {
1141 	struct ethercom *ec;
1142 
1143 	if (vhook == NULL)
1144 		return;
1145 
1146 	ec = (struct ethercom *)ifp;
1147 	simplehook_disestablish(ec->ec_ifdetach_hooks, vhook, lock);
1148 }
1149 
1150 #if 0
1151 /*
1152  * This is for reference.  We have a table-driven version
1153  * of the little-endian crc32 generator, which is faster
1154  * than the double-loop.
1155  */
1156 uint32_t
1157 ether_crc32_le(const uint8_t *buf, size_t len)
1158 {
1159 	uint32_t c, crc, carry;
1160 	size_t i, j;
1161 
1162 	crc = 0xffffffffU;	/* initial value */
1163 
1164 	for (i = 0; i < len; i++) {
1165 		c = buf[i];
1166 		for (j = 0; j < 8; j++) {
1167 			carry = ((crc & 0x01) ? 1 : 0) ^ (c & 0x01);
1168 			crc >>= 1;
1169 			c >>= 1;
1170 			if (carry)
1171 				crc = (crc ^ ETHER_CRC_POLY_LE);
1172 		}
1173 	}
1174 
1175 	return (crc);
1176 }
1177 #else
1178 uint32_t
1179 ether_crc32_le(const uint8_t *buf, size_t len)
1180 {
1181 	static const uint32_t crctab[] = {
1182 		0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac,
1183 		0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c,
1184 		0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c,
1185 		0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c
1186 	};
1187 	uint32_t crc;
1188 	size_t i;
1189 
1190 	crc = 0xffffffffU;	/* initial value */
1191 
1192 	for (i = 0; i < len; i++) {
1193 		crc ^= buf[i];
1194 		crc = (crc >> 4) ^ crctab[crc & 0xf];
1195 		crc = (crc >> 4) ^ crctab[crc & 0xf];
1196 	}
1197 
1198 	return (crc);
1199 }
1200 #endif
1201 
1202 uint32_t
1203 ether_crc32_be(const uint8_t *buf, size_t len)
1204 {
1205 	uint32_t c, crc, carry;
1206 	size_t i, j;
1207 
1208 	crc = 0xffffffffU;	/* initial value */
1209 
1210 	for (i = 0; i < len; i++) {
1211 		c = buf[i];
1212 		for (j = 0; j < 8; j++) {
1213 			carry = ((crc & 0x80000000U) ? 1 : 0) ^ (c & 0x01);
1214 			crc <<= 1;
1215 			c >>= 1;
1216 			if (carry)
1217 				crc = (crc ^ ETHER_CRC_POLY_BE) | carry;
1218 		}
1219 	}
1220 
1221 	return (crc);
1222 }
1223 
1224 #ifdef INET
1225 const uint8_t ether_ipmulticast_min[ETHER_ADDR_LEN] =
1226     { 0x01, 0x00, 0x5e, 0x00, 0x00, 0x00 };
1227 const uint8_t ether_ipmulticast_max[ETHER_ADDR_LEN] =
1228     { 0x01, 0x00, 0x5e, 0x7f, 0xff, 0xff };
1229 #endif
1230 #ifdef INET6
1231 const uint8_t ether_ip6multicast_min[ETHER_ADDR_LEN] =
1232     { 0x33, 0x33, 0x00, 0x00, 0x00, 0x00 };
1233 const uint8_t ether_ip6multicast_max[ETHER_ADDR_LEN] =
1234     { 0x33, 0x33, 0xff, 0xff, 0xff, 0xff };
1235 #endif
1236 
1237 /*
1238  * ether_aton implementation, not using a static buffer.
1239  */
1240 int
1241 ether_aton_r(u_char *dest, size_t len, const char *str)
1242 {
1243 	const u_char *cp = (const void *)str;
1244 	u_char *ep;
1245 
1246 #define atox(c)	(((c) <= '9') ? ((c) - '0') : ((toupper(c) - 'A') + 10))
1247 
1248 	if (len < ETHER_ADDR_LEN)
1249 		return ENOSPC;
1250 
1251 	ep = dest + ETHER_ADDR_LEN;
1252 
1253 	while (*cp) {
1254 		if (!isxdigit(*cp))
1255 			return EINVAL;
1256 
1257 		*dest = atox(*cp);
1258 		cp++;
1259 		if (isxdigit(*cp)) {
1260 			*dest = (*dest << 4) | atox(*cp);
1261 			cp++;
1262 		}
1263 		dest++;
1264 
1265 		if (dest == ep)
1266 			return (*cp == '\0') ? 0 : ENAMETOOLONG;
1267 
1268 		switch (*cp) {
1269 		case ':':
1270 		case '-':
1271 		case '.':
1272 			cp++;
1273 			break;
1274 		}
1275 	}
1276 	return ENOBUFS;
1277 }
1278 
1279 /*
1280  * Convert a sockaddr into an Ethernet address or range of Ethernet
1281  * addresses.
1282  */
1283 int
1284 ether_multiaddr(const struct sockaddr *sa, uint8_t addrlo[ETHER_ADDR_LEN],
1285     uint8_t addrhi[ETHER_ADDR_LEN])
1286 {
1287 #ifdef INET
1288 	const struct sockaddr_in *sin;
1289 #endif
1290 #ifdef INET6
1291 	const struct sockaddr_in6 *sin6;
1292 #endif
1293 
1294 	switch (sa->sa_family) {
1295 
1296 	case AF_UNSPEC:
1297 		memcpy(addrlo, sa->sa_data, ETHER_ADDR_LEN);
1298 		memcpy(addrhi, addrlo, ETHER_ADDR_LEN);
1299 		break;
1300 
1301 #ifdef INET
1302 	case AF_INET:
1303 		sin = satocsin(sa);
1304 		if (sin->sin_addr.s_addr == INADDR_ANY) {
1305 			/*
1306 			 * An IP address of INADDR_ANY means listen to
1307 			 * or stop listening to all of the Ethernet
1308 			 * multicast addresses used for IP.
1309 			 * (This is for the sake of IP multicast routers.)
1310 			 */
1311 			memcpy(addrlo, ether_ipmulticast_min, ETHER_ADDR_LEN);
1312 			memcpy(addrhi, ether_ipmulticast_max, ETHER_ADDR_LEN);
1313 		} else {
1314 			ETHER_MAP_IP_MULTICAST(&sin->sin_addr, addrlo);
1315 			memcpy(addrhi, addrlo, ETHER_ADDR_LEN);
1316 		}
1317 		break;
1318 #endif
1319 #ifdef INET6
1320 	case AF_INET6:
1321 		sin6 = satocsin6(sa);
1322 		if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) {
1323 			/*
1324 			 * An IP6 address of 0 means listen to or stop
1325 			 * listening to all of the Ethernet multicast
1326 			 * address used for IP6.
1327 			 * (This is used for multicast routers.)
1328 			 */
1329 			memcpy(addrlo, ether_ip6multicast_min, ETHER_ADDR_LEN);
1330 			memcpy(addrhi, ether_ip6multicast_max, ETHER_ADDR_LEN);
1331 		} else {
1332 			ETHER_MAP_IPV6_MULTICAST(&sin6->sin6_addr, addrlo);
1333 			memcpy(addrhi, addrlo, ETHER_ADDR_LEN);
1334 		}
1335 		break;
1336 #endif
1337 
1338 	default:
1339 		return EAFNOSUPPORT;
1340 	}
1341 	return 0;
1342 }
1343 
1344 /*
1345  * Add an Ethernet multicast address or range of addresses to the list for a
1346  * given interface.
1347  */
1348 int
1349 ether_addmulti(const struct sockaddr *sa, struct ethercom *ec)
1350 {
1351 	struct ether_multi *enm, *_enm;
1352 	u_char addrlo[ETHER_ADDR_LEN];
1353 	u_char addrhi[ETHER_ADDR_LEN];
1354 	int error = 0;
1355 
1356 	/* Allocate out of lock */
1357 	enm = kmem_alloc(sizeof(*enm), KM_SLEEP);
1358 
1359 	ETHER_LOCK(ec);
1360 	error = ether_multiaddr(sa, addrlo, addrhi);
1361 	if (error != 0)
1362 		goto out;
1363 
1364 	/*
1365 	 * Verify that we have valid Ethernet multicast addresses.
1366 	 */
1367 	if (!ETHER_IS_MULTICAST(addrlo) || !ETHER_IS_MULTICAST(addrhi)) {
1368 		error = EINVAL;
1369 		goto out;
1370 	}
1371 
1372 	/*
1373 	 * See if the address range is already in the list.
1374 	 */
1375 	_enm = ether_lookup_multi(addrlo, addrhi, ec);
1376 	if (_enm != NULL) {
1377 		/*
1378 		 * Found it; just increment the reference count.
1379 		 */
1380 		++_enm->enm_refcount;
1381 		error = 0;
1382 		goto out;
1383 	}
1384 
1385 	/*
1386 	 * Link a new multicast record into the interface's multicast list.
1387 	 */
1388 	memcpy(enm->enm_addrlo, addrlo, ETHER_ADDR_LEN);
1389 	memcpy(enm->enm_addrhi, addrhi, ETHER_ADDR_LEN);
1390 	enm->enm_refcount = 1;
1391 	LIST_INSERT_HEAD(&ec->ec_multiaddrs, enm, enm_list);
1392 	ec->ec_multicnt++;
1393 
1394 	/*
1395 	 * Return ENETRESET to inform the driver that the list has changed
1396 	 * and its reception filter should be adjusted accordingly.
1397 	 */
1398 	error = ENETRESET;
1399 	enm = NULL;
1400 
1401 out:
1402 	ETHER_UNLOCK(ec);
1403 	if (enm != NULL)
1404 		kmem_free(enm, sizeof(*enm));
1405 	return error;
1406 }
1407 
1408 /*
1409  * Delete a multicast address record.
1410  */
1411 int
1412 ether_delmulti(const struct sockaddr *sa, struct ethercom *ec)
1413 {
1414 	struct ether_multi *enm;
1415 	u_char addrlo[ETHER_ADDR_LEN];
1416 	u_char addrhi[ETHER_ADDR_LEN];
1417 	int error;
1418 
1419 	ETHER_LOCK(ec);
1420 	error = ether_multiaddr(sa, addrlo, addrhi);
1421 	if (error != 0)
1422 		goto error;
1423 
1424 	/*
1425 	 * Look up the address in our list.
1426 	 */
1427 	enm = ether_lookup_multi(addrlo, addrhi, ec);
1428 	if (enm == NULL) {
1429 		error = ENXIO;
1430 		goto error;
1431 	}
1432 	if (--enm->enm_refcount != 0) {
1433 		/*
1434 		 * Still some claims to this record.
1435 		 */
1436 		error = 0;
1437 		goto error;
1438 	}
1439 
1440 	/*
1441 	 * No remaining claims to this record; unlink and free it.
1442 	 */
1443 	LIST_REMOVE(enm, enm_list);
1444 	ec->ec_multicnt--;
1445 	ETHER_UNLOCK(ec);
1446 	kmem_free(enm, sizeof(*enm));
1447 
1448 	/*
1449 	 * Return ENETRESET to inform the driver that the list has changed
1450 	 * and its reception filter should be adjusted accordingly.
1451 	 */
1452 	return ENETRESET;
1453 
1454 error:
1455 	ETHER_UNLOCK(ec);
1456 	return error;
1457 }
1458 
1459 void
1460 ether_set_ifflags_cb(struct ethercom *ec, ether_cb_t cb)
1461 {
1462 	ec->ec_ifflags_cb = cb;
1463 }
1464 
1465 void
1466 ether_set_vlan_cb(struct ethercom *ec, ether_vlancb_t cb)
1467 {
1468 
1469 	ec->ec_vlan_cb = cb;
1470 }
1471 
1472 static int
1473 ether_ioctl_reinit(struct ethercom *ec)
1474 {
1475 	struct ifnet *ifp = &ec->ec_if;
1476 	int error;
1477 
1478 	KASSERTMSG(IFNET_LOCKED(ifp), "%s", ifp->if_xname);
1479 
1480 	switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
1481 	case IFF_RUNNING:
1482 		/*
1483 		 * If interface is marked down and it is running,
1484 		 * then stop and disable it.
1485 		 */
1486 		if_stop(ifp, 1);
1487 		break;
1488 	case IFF_UP:
1489 		/*
1490 		 * If interface is marked up and it is stopped, then
1491 		 * start it.
1492 		 */
1493 		return if_init(ifp);
1494 	case IFF_UP | IFF_RUNNING:
1495 		error = 0;
1496 		if (ec->ec_ifflags_cb != NULL) {
1497 			error = (*ec->ec_ifflags_cb)(ec);
1498 			if (error == ENETRESET) {
1499 				/*
1500 				 * Reset the interface to pick up
1501 				 * changes in any other flags that
1502 				 * affect the hardware state.
1503 				 */
1504 				return if_init(ifp);
1505 			}
1506 		} else
1507 			error = if_init(ifp);
1508 		return error;
1509 	case 0:
1510 		break;
1511 	}
1512 
1513 	return 0;
1514 }
1515 
1516 /*
1517  * Common ioctls for Ethernet interfaces.  Note, we must be
1518  * called at splnet().
1519  */
1520 int
1521 ether_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1522 {
1523 	struct ethercom *ec = (void *)ifp;
1524 	struct eccapreq *eccr;
1525 	struct ifreq *ifr = (struct ifreq *)data;
1526 	struct if_laddrreq *iflr = data;
1527 	const struct sockaddr_dl *sdl;
1528 	static const uint8_t zero[ETHER_ADDR_LEN];
1529 	int error;
1530 
1531 	switch (cmd) {
1532 	case SIOCINITIFADDR:
1533 	    {
1534 		struct ifaddr *ifa = (struct ifaddr *)data;
1535 		if (ifa->ifa_addr->sa_family != AF_LINK
1536 		    && (ifp->if_flags & (IFF_UP | IFF_RUNNING)) !=
1537 		       (IFF_UP | IFF_RUNNING)) {
1538 			ifp->if_flags |= IFF_UP;
1539 			if ((error = if_init(ifp)) != 0)
1540 				return error;
1541 		}
1542 #ifdef INET
1543 		if (ifa->ifa_addr->sa_family == AF_INET)
1544 			arp_ifinit(ifp, ifa);
1545 #endif
1546 		return 0;
1547 	    }
1548 
1549 	case SIOCSIFMTU:
1550 	    {
1551 		int maxmtu;
1552 
1553 		if (ec->ec_capabilities & ETHERCAP_JUMBO_MTU)
1554 			maxmtu = ETHERMTU_JUMBO;
1555 		else
1556 			maxmtu = ETHERMTU;
1557 
1558 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > maxmtu)
1559 			return EINVAL;
1560 		else if ((error = ifioctl_common(ifp, cmd, data)) != ENETRESET)
1561 			return error;
1562 		else if (ifp->if_flags & IFF_UP) {
1563 			/* Make sure the device notices the MTU change. */
1564 			return if_init(ifp);
1565 		} else
1566 			return 0;
1567 	    }
1568 
1569 	case SIOCSIFFLAGS:
1570 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1571 			return error;
1572 		return ether_ioctl_reinit(ec);
1573 	case SIOCGIFFLAGS:
1574 		error = ifioctl_common(ifp, cmd, data);
1575 		if (error == 0) {
1576 			/* Set IFF_ALLMULTI for backcompat */
1577 			ifr->ifr_flags |= (ec->ec_flags & ETHER_F_ALLMULTI) ?
1578 			    IFF_ALLMULTI : 0;
1579 		}
1580 		return error;
1581 	case SIOCGETHERCAP:
1582 		eccr = (struct eccapreq *)data;
1583 		eccr->eccr_capabilities = ec->ec_capabilities;
1584 		eccr->eccr_capenable = ec->ec_capenable;
1585 		return 0;
1586 	case SIOCSETHERCAP:
1587 		eccr = (struct eccapreq *)data;
1588 		if ((eccr->eccr_capenable & ~ec->ec_capabilities) != 0)
1589 			return EINVAL;
1590 		if (eccr->eccr_capenable == ec->ec_capenable)
1591 			return 0;
1592 #if 0 /* notyet */
1593 		ec->ec_capenable = (ec->ec_capenable & ETHERCAP_CANTCHANGE)
1594 		    | (eccr->eccr_capenable & ~ETHERCAP_CANTCHANGE);
1595 #else
1596 		ec->ec_capenable = eccr->eccr_capenable;
1597 #endif
1598 		return ether_ioctl_reinit(ec);
1599 	case SIOCADDMULTI:
1600 		return ether_addmulti(ifreq_getaddr(cmd, ifr), ec);
1601 	case SIOCDELMULTI:
1602 		return ether_delmulti(ifreq_getaddr(cmd, ifr), ec);
1603 	case SIOCSIFMEDIA:
1604 	case SIOCGIFMEDIA:
1605 		if (ec->ec_mii != NULL)
1606 			return ifmedia_ioctl(ifp, ifr, &ec->ec_mii->mii_media,
1607 			    cmd);
1608 		else if (ec->ec_ifmedia != NULL)
1609 			return ifmedia_ioctl(ifp, ifr, ec->ec_ifmedia, cmd);
1610 		else
1611 			return ENOTTY;
1612 		break;
1613 	case SIOCALIFADDR:
1614 		sdl = satocsdl(sstocsa(&iflr->addr));
1615 		if (sdl->sdl_family != AF_LINK)
1616 			;
1617 		else if (ETHER_IS_MULTICAST(CLLADDR(sdl)))
1618 			return EINVAL;
1619 		else if (memcmp(zero, CLLADDR(sdl), sizeof(zero)) == 0)
1620 			return EINVAL;
1621 		/*FALLTHROUGH*/
1622 	default:
1623 		return ifioctl_common(ifp, cmd, data);
1624 	}
1625 	return 0;
1626 }
1627 
1628 /*
1629  * Enable/disable passing VLAN packets if the parent interface supports it.
1630  * Return:
1631  * 	 0: Ok
1632  *	-1: Parent interface does not support vlans
1633  *	>0: Error
1634  */
1635 int
1636 ether_enable_vlan_mtu(struct ifnet *ifp)
1637 {
1638 	int error;
1639 	struct ethercom *ec = (void *)ifp;
1640 
1641 	/* Parent does not support VLAN's */
1642 	if ((ec->ec_capabilities & ETHERCAP_VLAN_MTU) == 0)
1643 		return -1;
1644 
1645 	/*
1646 	 * Parent supports the VLAN_MTU capability,
1647 	 * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames;
1648 	 * enable it.
1649 	 */
1650 	ec->ec_capenable |= ETHERCAP_VLAN_MTU;
1651 
1652 	/* Interface is down, defer for later */
1653 	if ((ifp->if_flags & IFF_UP) == 0)
1654 		return 0;
1655 
1656 	if ((error = if_flags_set(ifp, ifp->if_flags)) == 0)
1657 		return 0;
1658 
1659 	ec->ec_capenable &= ~ETHERCAP_VLAN_MTU;
1660 	return error;
1661 }
1662 
1663 int
1664 ether_disable_vlan_mtu(struct ifnet *ifp)
1665 {
1666 	int error;
1667 	struct ethercom *ec = (void *)ifp;
1668 
1669 	/* We still have VLAN's, defer for later */
1670 	if (ec->ec_nvlans != 0)
1671 		return 0;
1672 
1673 	/* Parent does not support VLAB's, nothing to do. */
1674 	if ((ec->ec_capenable & ETHERCAP_VLAN_MTU) == 0)
1675 		return -1;
1676 
1677 	/*
1678 	 * Disable Tx/Rx of VLAN-sized frames.
1679 	 */
1680 	ec->ec_capenable &= ~ETHERCAP_VLAN_MTU;
1681 
1682 	/* Interface is down, defer for later */
1683 	if ((ifp->if_flags & IFF_UP) == 0)
1684 		return 0;
1685 
1686 	if ((error = if_flags_set(ifp, ifp->if_flags)) == 0)
1687 		return 0;
1688 
1689 	ec->ec_capenable |= ETHERCAP_VLAN_MTU;
1690 	return error;
1691 }
1692 
1693 /*
1694  * Add and delete VLAN TAG
1695  */
1696 int
1697 ether_add_vlantag(struct ifnet *ifp, uint16_t vtag, bool *vlanmtu_status)
1698 {
1699 	struct ethercom *ec = (void *)ifp;
1700 	struct vlanid_list *vidp;
1701 	bool vlanmtu_enabled;
1702 	uint16_t vid = EVL_VLANOFTAG(vtag);
1703 	int error;
1704 
1705 	vlanmtu_enabled = false;
1706 
1707 	/* Add a vid to the list */
1708 	vidp = kmem_alloc(sizeof(*vidp), KM_SLEEP);
1709 	vidp->vid = vid;
1710 
1711 	ETHER_LOCK(ec);
1712 	ec->ec_nvlans++;
1713 	SIMPLEQ_INSERT_TAIL(&ec->ec_vids, vidp, vid_list);
1714 	ETHER_UNLOCK(ec);
1715 
1716 	if (ec->ec_nvlans == 1) {
1717 		IFNET_LOCK(ifp);
1718 		error = ether_enable_vlan_mtu(ifp);
1719 		IFNET_UNLOCK(ifp);
1720 
1721 		if (error == 0) {
1722 			vlanmtu_enabled = true;
1723 		} else if (error != -1) {
1724 			goto fail;
1725 		}
1726 	}
1727 
1728 	if (ec->ec_vlan_cb != NULL) {
1729 		error = (*ec->ec_vlan_cb)(ec, vid, true);
1730 		if (error != 0)
1731 			goto fail;
1732 	}
1733 
1734 	if (vlanmtu_status != NULL)
1735 		*vlanmtu_status = vlanmtu_enabled;
1736 
1737 	return 0;
1738 fail:
1739 	ETHER_LOCK(ec);
1740 	ec->ec_nvlans--;
1741 	SIMPLEQ_REMOVE(&ec->ec_vids, vidp, vlanid_list, vid_list);
1742 	ETHER_UNLOCK(ec);
1743 
1744 	if (vlanmtu_enabled) {
1745 		IFNET_LOCK(ifp);
1746 		(void)ether_disable_vlan_mtu(ifp);
1747 		IFNET_UNLOCK(ifp);
1748 	}
1749 
1750 	kmem_free(vidp, sizeof(*vidp));
1751 
1752 	return error;
1753 }
1754 
1755 int
1756 ether_del_vlantag(struct ifnet *ifp, uint16_t vtag)
1757 {
1758 	struct ethercom *ec = (void *)ifp;
1759 	struct vlanid_list *vidp;
1760 	uint16_t vid = EVL_VLANOFTAG(vtag);
1761 
1762 	ETHER_LOCK(ec);
1763 	SIMPLEQ_FOREACH(vidp, &ec->ec_vids, vid_list) {
1764 		if (vidp->vid == vid) {
1765 			SIMPLEQ_REMOVE(&ec->ec_vids, vidp,
1766 			    vlanid_list, vid_list);
1767 			ec->ec_nvlans--;
1768 			break;
1769 		}
1770 	}
1771 	ETHER_UNLOCK(ec);
1772 
1773 	if (vidp == NULL)
1774 		return ENOENT;
1775 
1776 	if (ec->ec_vlan_cb != NULL) {
1777 		(void)(*ec->ec_vlan_cb)(ec, vidp->vid, false);
1778 	}
1779 
1780 	if (ec->ec_nvlans == 0) {
1781 		IFNET_LOCK(ifp);
1782 		(void)ether_disable_vlan_mtu(ifp);
1783 		IFNET_UNLOCK(ifp);
1784 	}
1785 
1786 	kmem_free(vidp, sizeof(*vidp));
1787 
1788 	return 0;
1789 }
1790 
1791 int
1792 ether_inject_vlantag(struct mbuf **mp, uint16_t etype, uint16_t tag)
1793 {
1794 	static const size_t min_data_len =
1795 	    ETHER_MIN_LEN - ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN;
1796 	/* Used to pad ethernet frames with < ETHER_MIN_LEN bytes */
1797 	static const char vlan_zero_pad_buff[ETHER_MIN_LEN] = { 0 };
1798 
1799 	struct ether_vlan_header *evl;
1800 	struct mbuf *m = *mp;
1801 	int error;
1802 
1803 	error = 0;
1804 
1805 	M_PREPEND(m, ETHER_VLAN_ENCAP_LEN, M_DONTWAIT);
1806 	if (m == NULL) {
1807 		error = ENOBUFS;
1808 		goto out;
1809 	}
1810 
1811 	if (m->m_len < sizeof(*evl)) {
1812 		m = m_pullup(m, sizeof(*evl));
1813 		if (m == NULL) {
1814 			error = ENOBUFS;
1815 			goto out;
1816 		}
1817 	}
1818 
1819 	/*
1820 	 * Transform the Ethernet header into an
1821 	 * Ethernet header with 802.1Q encapsulation.
1822 	 */
1823 	memmove(mtod(m, void *),
1824 	    mtod(m, char *) + ETHER_VLAN_ENCAP_LEN,
1825 	    sizeof(struct ether_header));
1826 	evl = mtod(m, struct ether_vlan_header *);
1827 	evl->evl_proto = evl->evl_encap_proto;
1828 	evl->evl_encap_proto = htons(etype);
1829 	evl->evl_tag = htons(tag);
1830 
1831 	/*
1832 	 * To cater for VLAN-aware layer 2 ethernet
1833 	 * switches which may need to strip the tag
1834 	 * before forwarding the packet, make sure
1835 	 * the packet+tag is at least 68 bytes long.
1836 	 * This is necessary because our parent will
1837 	 * only pad to 64 bytes (ETHER_MIN_LEN) and
1838 	 * some switches will not pad by themselves
1839 	 * after deleting a tag.
1840 	 */
1841 	if (m->m_pkthdr.len < min_data_len) {
1842 		m_copyback(m, m->m_pkthdr.len,
1843 		    min_data_len - m->m_pkthdr.len,
1844 		    vlan_zero_pad_buff);
1845 	}
1846 
1847 	m->m_flags &= ~M_VLANTAG;
1848 
1849 out:
1850 	*mp = m;
1851 	return error;
1852 }
1853 
1854 struct mbuf *
1855 ether_strip_vlantag(struct mbuf *m)
1856 {
1857 	struct ether_vlan_header *evl;
1858 
1859 	if (m->m_len < sizeof(*evl) &&
1860 	    (m = m_pullup(m, sizeof(*evl))) == NULL) {
1861 		return NULL;
1862 	}
1863 
1864 	if (m_makewritable(&m, 0, sizeof(*evl), M_DONTWAIT)) {
1865 		m_freem(m);
1866 		return NULL;
1867 	}
1868 
1869 	evl = mtod(m, struct ether_vlan_header *);
1870 	KASSERT(ntohs(evl->evl_encap_proto) == ETHERTYPE_VLAN);
1871 
1872 	vlan_set_tag(m, ntohs(evl->evl_tag));
1873 
1874 	/*
1875 	 * Restore the original ethertype.  We'll remove
1876 	 * the encapsulation after we've found the vlan
1877 	 * interface corresponding to the tag.
1878 	 */
1879 	evl->evl_encap_proto = evl->evl_proto;
1880 
1881 	/*
1882 	 * Remove the encapsulation header and append tag.
1883 	 * The original header has already been fixed up above.
1884 	 */
1885 	vlan_set_tag(m, ntohs(evl->evl_tag));
1886 	memmove((char *)evl + ETHER_VLAN_ENCAP_LEN, evl,
1887 	    offsetof(struct ether_vlan_header, evl_encap_proto));
1888 	m_adj(m, ETHER_VLAN_ENCAP_LEN);
1889 
1890 	return m;
1891 }
1892 
1893 static int
1894 ether_multicast_sysctl(SYSCTLFN_ARGS)
1895 {
1896 	struct ether_multi *enm;
1897 	struct ifnet *ifp;
1898 	struct ethercom *ec;
1899 	int error = 0;
1900 	size_t written;
1901 	struct psref psref;
1902 	int bound;
1903 	unsigned int multicnt;
1904 	struct ether_multi_sysctl *addrs;
1905 	int i;
1906 
1907 	if (namelen != 1)
1908 		return EINVAL;
1909 
1910 	bound = curlwp_bind();
1911 	ifp = if_get_byindex(name[0], &psref);
1912 	if (ifp == NULL) {
1913 		error = ENODEV;
1914 		goto out;
1915 	}
1916 	if (ifp->if_type != IFT_ETHER) {
1917 		if_put(ifp, &psref);
1918 		*oldlenp = 0;
1919 		goto out;
1920 	}
1921 	ec = (struct ethercom *)ifp;
1922 
1923 	if (oldp == NULL) {
1924 		if_put(ifp, &psref);
1925 		*oldlenp = ec->ec_multicnt * sizeof(*addrs);
1926 		goto out;
1927 	}
1928 
1929 	/*
1930 	 * ec->ec_lock is a spin mutex so we cannot call sysctl_copyout, which
1931 	 * is sleepable, while holding it. Copy data to a local buffer first
1932 	 * with the lock taken and then call sysctl_copyout without holding it.
1933 	 */
1934 retry:
1935 	multicnt = ec->ec_multicnt;
1936 
1937 	if (multicnt == 0) {
1938 		if_put(ifp, &psref);
1939 		*oldlenp = 0;
1940 		goto out;
1941 	}
1942 
1943 	addrs = kmem_zalloc(sizeof(*addrs) * multicnt, KM_SLEEP);
1944 
1945 	ETHER_LOCK(ec);
1946 	if (multicnt != ec->ec_multicnt) {
1947 		/* The number of multicast addresses has changed */
1948 		ETHER_UNLOCK(ec);
1949 		kmem_free(addrs, sizeof(*addrs) * multicnt);
1950 		goto retry;
1951 	}
1952 
1953 	i = 0;
1954 	LIST_FOREACH(enm, &ec->ec_multiaddrs, enm_list) {
1955 		struct ether_multi_sysctl *addr = &addrs[i];
1956 		addr->enm_refcount = enm->enm_refcount;
1957 		memcpy(addr->enm_addrlo, enm->enm_addrlo, ETHER_ADDR_LEN);
1958 		memcpy(addr->enm_addrhi, enm->enm_addrhi, ETHER_ADDR_LEN);
1959 		i++;
1960 	}
1961 	ETHER_UNLOCK(ec);
1962 
1963 	error = 0;
1964 	written = 0;
1965 	for (i = 0; i < multicnt; i++) {
1966 		struct ether_multi_sysctl *addr = &addrs[i];
1967 
1968 		if (written + sizeof(*addr) > *oldlenp)
1969 			break;
1970 		error = sysctl_copyout(l, addr, oldp, sizeof(*addr));
1971 		if (error)
1972 			break;
1973 		written += sizeof(*addr);
1974 		oldp = (char *)oldp + sizeof(*addr);
1975 	}
1976 	kmem_free(addrs, sizeof(*addrs) * multicnt);
1977 
1978 	if_put(ifp, &psref);
1979 
1980 	*oldlenp = written;
1981 out:
1982 	curlwp_bindx(bound);
1983 	return error;
1984 }
1985 
1986 static void
1987 ether_sysctl_setup(struct sysctllog **clog)
1988 {
1989 	const struct sysctlnode *rnode = NULL;
1990 
1991 	sysctl_createv(clog, 0, NULL, &rnode,
1992 		       CTLFLAG_PERMANENT,
1993 		       CTLTYPE_NODE, "ether",
1994 		       SYSCTL_DESCR("Ethernet-specific information"),
1995 		       NULL, 0, NULL, 0,
1996 		       CTL_NET, CTL_CREATE, CTL_EOL);
1997 
1998 	sysctl_createv(clog, 0, &rnode, NULL,
1999 		       CTLFLAG_PERMANENT,
2000 		       CTLTYPE_NODE, "multicast",
2001 		       SYSCTL_DESCR("multicast addresses"),
2002 		       ether_multicast_sysctl, 0, NULL, 0,
2003 		       CTL_CREATE, CTL_EOL);
2004 
2005 	sysctl_createv(clog, 0, &rnode, NULL,
2006 		       CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
2007 		       CTLTYPE_STRING, "rps_hash",
2008 		       SYSCTL_DESCR("Interface rps hash function control"),
2009 		       sysctl_pktq_rps_hash_handler, 0, (void *)&ether_pktq_rps_hash_p,
2010 		       PKTQ_RPS_HASH_NAME_LEN,
2011 		       CTL_CREATE, CTL_EOL);
2012 }
2013 
2014 void
2015 etherinit(void)
2016 {
2017 
2018 #ifdef DIAGNOSTIC
2019 	mutex_init(&bigpktpps_lock, MUTEX_DEFAULT, IPL_NET);
2020 #endif
2021 	ether_pktq_rps_hash_p = pktq_rps_hash_default;
2022 	ether_sysctl_setup(NULL);
2023 }
2024