xref: /netbsd-src/external/apache2/llvm/dist/llvm/utils/unittest/googlemock/include/gmock/gmock-actions.h (revision 82d56013d7b633d116a93943de88e08335357a7c)
1 // Copyright 2007, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 //     * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 //     * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 //     * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 
30 
31 // Google Mock - a framework for writing C++ mock classes.
32 //
33 // This file implements some commonly used actions.
34 
35 // GOOGLETEST_CM0002 DO NOT DELETE
36 
37 // IWYU pragma: private, include "gmock/gmock.h"
38 
39 #ifndef GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
40 #define GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
41 
42 #ifndef _WIN32_WCE
43 # include <errno.h>
44 #endif
45 
46 #include <algorithm>
47 #include <functional>
48 #include <memory>
49 #include <string>
50 #include <type_traits>
51 #include <utility>
52 
53 #include "gmock/internal/gmock-internal-utils.h"
54 #include "gmock/internal/gmock-port.h"
55 
56 #ifdef _MSC_VER
57 # pragma warning(push)
58 # pragma warning(disable:4100)
59 #endif
60 
61 #ifdef __clang__
62 #if __has_warning("-Wdeprecated-copy")
63 #pragma clang diagnostic push
64 #pragma clang diagnostic ignored "-Wdeprecated-copy"
65 #endif
66 #endif
67 
68 namespace testing {
69 
70 // To implement an action Foo, define:
71 //   1. a class FooAction that implements the ActionInterface interface, and
72 //   2. a factory function that creates an Action object from a
73 //      const FooAction*.
74 //
75 // The two-level delegation design follows that of Matcher, providing
76 // consistency for extension developers.  It also eases ownership
77 // management as Action objects can now be copied like plain values.
78 
79 namespace internal {
80 
81 // BuiltInDefaultValueGetter<T, true>::Get() returns a
82 // default-constructed T value.  BuiltInDefaultValueGetter<T,
83 // false>::Get() crashes with an error.
84 //
85 // This primary template is used when kDefaultConstructible is true.
86 template <typename T, bool kDefaultConstructible>
87 struct BuiltInDefaultValueGetter {
GetBuiltInDefaultValueGetter88   static T Get() { return T(); }
89 };
90 template <typename T>
91 struct BuiltInDefaultValueGetter<T, false> {
92   static T Get() {
93     Assert(false, __FILE__, __LINE__,
94            "Default action undefined for the function return type.");
95     return internal::Invalid<T>();
96     // The above statement will never be reached, but is required in
97     // order for this function to compile.
98   }
99 };
100 
101 // BuiltInDefaultValue<T>::Get() returns the "built-in" default value
102 // for type T, which is NULL when T is a raw pointer type, 0 when T is
103 // a numeric type, false when T is bool, or "" when T is string or
104 // std::string.  In addition, in C++11 and above, it turns a
105 // default-constructed T value if T is default constructible.  For any
106 // other type T, the built-in default T value is undefined, and the
107 // function will abort the process.
108 template <typename T>
109 class BuiltInDefaultValue {
110  public:
111   // This function returns true if and only if type T has a built-in default
112   // value.
113   static bool Exists() {
114     return ::std::is_default_constructible<T>::value;
115   }
116 
117   static T Get() {
118     return BuiltInDefaultValueGetter<
119         T, ::std::is_default_constructible<T>::value>::Get();
120   }
121 };
122 
123 // This partial specialization says that we use the same built-in
124 // default value for T and const T.
125 template <typename T>
126 class BuiltInDefaultValue<const T> {
127  public:
128   static bool Exists() { return BuiltInDefaultValue<T>::Exists(); }
129   static T Get() { return BuiltInDefaultValue<T>::Get(); }
130 };
131 
132 // This partial specialization defines the default values for pointer
133 // types.
134 template <typename T>
135 class BuiltInDefaultValue<T*> {
136  public:
137   static bool Exists() { return true; }
138   static T* Get() { return nullptr; }
139 };
140 
141 // The following specializations define the default values for
142 // specific types we care about.
143 #define GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(type, value) \
144   template <> \
145   class BuiltInDefaultValue<type> { \
146    public: \
147     static bool Exists() { return true; } \
148     static type Get() { return value; } \
149   }
150 
151 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(void, );  // NOLINT
152 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::std::string, "");
153 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(bool, false);
154 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned char, '\0');
155 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed char, '\0');
156 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(char, '\0');
157 
158 // There's no need for a default action for signed wchar_t, as that
159 // type is the same as wchar_t for gcc, and invalid for MSVC.
160 //
161 // There's also no need for a default action for unsigned wchar_t, as
162 // that type is the same as unsigned int for gcc, and invalid for
163 // MSVC.
164 #if GMOCK_WCHAR_T_IS_NATIVE_
165 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(wchar_t, 0U);  // NOLINT
166 #endif
167 
168 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned short, 0U);  // NOLINT
169 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed short, 0);     // NOLINT
170 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned int, 0U);
171 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed int, 0);
172 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long, 0UL);  // NOLINT
173 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long, 0L);     // NOLINT
174 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(UInt64, 0);
175 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(Int64, 0);
176 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(float, 0);
177 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(double, 0);
178 
179 #undef GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_
180 
181 }  // namespace internal
182 
183 // When an unexpected function call is encountered, Google Mock will
184 // let it return a default value if the user has specified one for its
185 // return type, or if the return type has a built-in default value;
186 // otherwise Google Mock won't know what value to return and will have
187 // to abort the process.
188 //
189 // The DefaultValue<T> class allows a user to specify the
190 // default value for a type T that is both copyable and publicly
191 // destructible (i.e. anything that can be used as a function return
192 // type).  The usage is:
193 //
194 //   // Sets the default value for type T to be foo.
195 //   DefaultValue<T>::Set(foo);
196 template <typename T>
197 class DefaultValue {
198  public:
199   // Sets the default value for type T; requires T to be
200   // copy-constructable and have a public destructor.
201   static void Set(T x) {
202     delete producer_;
203     producer_ = new FixedValueProducer(x);
204   }
205 
206   // Provides a factory function to be called to generate the default value.
207   // This method can be used even if T is only move-constructible, but it is not
208   // limited to that case.
209   typedef T (*FactoryFunction)();
210   static void SetFactory(FactoryFunction factory) {
211     delete producer_;
212     producer_ = new FactoryValueProducer(factory);
213   }
214 
215   // Unsets the default value for type T.
216   static void Clear() {
217     delete producer_;
218     producer_ = nullptr;
219   }
220 
221   // Returns true if and only if the user has set the default value for type T.
222   static bool IsSet() { return producer_ != nullptr; }
223 
224   // Returns true if T has a default return value set by the user or there
225   // exists a built-in default value.
226   static bool Exists() {
227     return IsSet() || internal::BuiltInDefaultValue<T>::Exists();
228   }
229 
230   // Returns the default value for type T if the user has set one;
231   // otherwise returns the built-in default value. Requires that Exists()
232   // is true, which ensures that the return value is well-defined.
233   static T Get() {
234     return producer_ == nullptr ? internal::BuiltInDefaultValue<T>::Get()
235                                 : producer_->Produce();
236   }
237 
238  private:
239   class ValueProducer {
240    public:
241     virtual ~ValueProducer() {}
242     virtual T Produce() = 0;
243   };
244 
245   class FixedValueProducer : public ValueProducer {
246    public:
247     explicit FixedValueProducer(T value) : value_(value) {}
248     T Produce() override { return value_; }
249 
250    private:
251     const T value_;
252     GTEST_DISALLOW_COPY_AND_ASSIGN_(FixedValueProducer);
253   };
254 
255   class FactoryValueProducer : public ValueProducer {
256    public:
257     explicit FactoryValueProducer(FactoryFunction factory)
258         : factory_(factory) {}
259     T Produce() override { return factory_(); }
260 
261    private:
262     const FactoryFunction factory_;
263     GTEST_DISALLOW_COPY_AND_ASSIGN_(FactoryValueProducer);
264   };
265 
266   static ValueProducer* producer_;
267 };
268 
269 // This partial specialization allows a user to set default values for
270 // reference types.
271 template <typename T>
272 class DefaultValue<T&> {
273  public:
274   // Sets the default value for type T&.
275   static void Set(T& x) {  // NOLINT
276     address_ = &x;
277   }
278 
279   // Unsets the default value for type T&.
280   static void Clear() { address_ = nullptr; }
281 
282   // Returns true if and only if the user has set the default value for type T&.
283   static bool IsSet() { return address_ != nullptr; }
284 
285   // Returns true if T has a default return value set by the user or there
286   // exists a built-in default value.
287   static bool Exists() {
288     return IsSet() || internal::BuiltInDefaultValue<T&>::Exists();
289   }
290 
291   // Returns the default value for type T& if the user has set one;
292   // otherwise returns the built-in default value if there is one;
293   // otherwise aborts the process.
294   static T& Get() {
295     return address_ == nullptr ? internal::BuiltInDefaultValue<T&>::Get()
296                                : *address_;
297   }
298 
299  private:
300   static T* address_;
301 };
302 
303 // This specialization allows DefaultValue<void>::Get() to
304 // compile.
305 template <>
306 class DefaultValue<void> {
307  public:
308   static bool Exists() { return true; }
309   static void Get() {}
310 };
311 
312 // Points to the user-set default value for type T.
313 template <typename T>
314 typename DefaultValue<T>::ValueProducer* DefaultValue<T>::producer_ = nullptr;
315 
316 // Points to the user-set default value for type T&.
317 template <typename T>
318 T* DefaultValue<T&>::address_ = nullptr;
319 
320 // Implement this interface to define an action for function type F.
321 template <typename F>
322 class ActionInterface {
323  public:
324   typedef typename internal::Function<F>::Result Result;
325   typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
326 
327   ActionInterface() {}
328   virtual ~ActionInterface() {}
329 
330   // Performs the action.  This method is not const, as in general an
331   // action can have side effects and be stateful.  For example, a
332   // get-the-next-element-from-the-collection action will need to
333   // remember the current element.
334   virtual Result Perform(const ArgumentTuple& args) = 0;
335 
336  private:
337   GTEST_DISALLOW_COPY_AND_ASSIGN_(ActionInterface);
338 };
339 
340 // An Action<F> is a copyable and IMMUTABLE (except by assignment)
341 // object that represents an action to be taken when a mock function
342 // of type F is called.  The implementation of Action<T> is just a
343 // std::shared_ptr to const ActionInterface<T>. Don't inherit from Action!
344 // You can view an object implementing ActionInterface<F> as a
345 // concrete action (including its current state), and an Action<F>
346 // object as a handle to it.
347 template <typename F>
348 class Action {
349   // Adapter class to allow constructing Action from a legacy ActionInterface.
350   // New code should create Actions from functors instead.
351   struct ActionAdapter {
352     // Adapter must be copyable to satisfy std::function requirements.
353     ::std::shared_ptr<ActionInterface<F>> impl_;
354 
355     template <typename... Args>
356     typename internal::Function<F>::Result operator()(Args&&... args) {
357       return impl_->Perform(
358           ::std::forward_as_tuple(::std::forward<Args>(args)...));
359     }
360   };
361 
362  public:
363   typedef typename internal::Function<F>::Result Result;
364   typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
365 
366   // Constructs a null Action.  Needed for storing Action objects in
367   // STL containers.
368   Action() {}
369 
370   // Construct an Action from a specified callable.
371   // This cannot take std::function directly, because then Action would not be
372   // directly constructible from lambda (it would require two conversions).
373   template <typename G,
374             typename = typename ::std::enable_if<
375                 ::std::is_constructible<::std::function<F>, G>::value>::type>
376   Action(G&& fun) : fun_(::std::forward<G>(fun)) {}  // NOLINT
377 
378   // Constructs an Action from its implementation.
379   explicit Action(ActionInterface<F>* impl)
380       : fun_(ActionAdapter{::std::shared_ptr<ActionInterface<F>>(impl)}) {}
381 
382   // This constructor allows us to turn an Action<Func> object into an
383   // Action<F>, as long as F's arguments can be implicitly converted
384   // to Func's and Func's return type can be implicitly converted to F's.
385   template <typename Func>
386   explicit Action(const Action<Func>& action) : fun_(action.fun_) {}
387 
388   // Returns true if and only if this is the DoDefault() action.
389   bool IsDoDefault() const { return fun_ == nullptr; }
390 
391   // Performs the action.  Note that this method is const even though
392   // the corresponding method in ActionInterface is not.  The reason
393   // is that a const Action<F> means that it cannot be re-bound to
394   // another concrete action, not that the concrete action it binds to
395   // cannot change state.  (Think of the difference between a const
396   // pointer and a pointer to const.)
397   Result Perform(ArgumentTuple args) const {
398     if (IsDoDefault()) {
399       internal::IllegalDoDefault(__FILE__, __LINE__);
400     }
401     return internal::Apply(fun_, ::std::move(args));
402   }
403 
404  private:
405   template <typename G>
406   friend class Action;
407 
408   // fun_ is an empty function if and only if this is the DoDefault() action.
409   ::std::function<F> fun_;
410 };
411 
412 // The PolymorphicAction class template makes it easy to implement a
413 // polymorphic action (i.e. an action that can be used in mock
414 // functions of than one type, e.g. Return()).
415 //
416 // To define a polymorphic action, a user first provides a COPYABLE
417 // implementation class that has a Perform() method template:
418 //
419 //   class FooAction {
420 //    public:
421 //     template <typename Result, typename ArgumentTuple>
422 //     Result Perform(const ArgumentTuple& args) const {
423 //       // Processes the arguments and returns a result, using
424 //       // std::get<N>(args) to get the N-th (0-based) argument in the tuple.
425 //     }
426 //     ...
427 //   };
428 //
429 // Then the user creates the polymorphic action using
430 // MakePolymorphicAction(object) where object has type FooAction.  See
431 // the definition of Return(void) and SetArgumentPointee<N>(value) for
432 // complete examples.
433 template <typename Impl>
434 class PolymorphicAction {
435  public:
436   explicit PolymorphicAction(const Impl& impl) : impl_(impl) {}
437 
438   template <typename F>
439   operator Action<F>() const {
440     return Action<F>(new MonomorphicImpl<F>(impl_));
441   }
442 
443  private:
444   template <typename F>
445   class MonomorphicImpl : public ActionInterface<F> {
446    public:
447     typedef typename internal::Function<F>::Result Result;
448     typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
449 
450     explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {}
451 
452     Result Perform(const ArgumentTuple& args) override {
453       return impl_.template Perform<Result>(args);
454     }
455 
456    private:
457     Impl impl_;
458 
459     GTEST_DISALLOW_ASSIGN_(MonomorphicImpl);
460   };
461 
462   Impl impl_;
463 
464   GTEST_DISALLOW_ASSIGN_(PolymorphicAction);
465 };
466 
467 // Creates an Action from its implementation and returns it.  The
468 // created Action object owns the implementation.
469 template <typename F>
470 Action<F> MakeAction(ActionInterface<F>* impl) {
471   return Action<F>(impl);
472 }
473 
474 // Creates a polymorphic action from its implementation.  This is
475 // easier to use than the PolymorphicAction<Impl> constructor as it
476 // doesn't require you to explicitly write the template argument, e.g.
477 //
478 //   MakePolymorphicAction(foo);
479 // vs
480 //   PolymorphicAction<TypeOfFoo>(foo);
481 template <typename Impl>
482 inline PolymorphicAction<Impl> MakePolymorphicAction(const Impl& impl) {
483   return PolymorphicAction<Impl>(impl);
484 }
485 
486 namespace internal {
487 
488 // Helper struct to specialize ReturnAction to execute a move instead of a copy
489 // on return. Useful for move-only types, but could be used on any type.
490 template <typename T>
491 struct ByMoveWrapper {
492   explicit ByMoveWrapper(T value) : payload(std::move(value)) {}
493   T payload;
494 };
495 
496 // Implements the polymorphic Return(x) action, which can be used in
497 // any function that returns the type of x, regardless of the argument
498 // types.
499 //
500 // Note: The value passed into Return must be converted into
501 // Function<F>::Result when this action is cast to Action<F> rather than
502 // when that action is performed. This is important in scenarios like
503 //
504 // MOCK_METHOD1(Method, T(U));
505 // ...
506 // {
507 //   Foo foo;
508 //   X x(&foo);
509 //   EXPECT_CALL(mock, Method(_)).WillOnce(Return(x));
510 // }
511 //
512 // In the example above the variable x holds reference to foo which leaves
513 // scope and gets destroyed.  If copying X just copies a reference to foo,
514 // that copy will be left with a hanging reference.  If conversion to T
515 // makes a copy of foo, the above code is safe. To support that scenario, we
516 // need to make sure that the type conversion happens inside the EXPECT_CALL
517 // statement, and conversion of the result of Return to Action<T(U)> is a
518 // good place for that.
519 //
520 // The real life example of the above scenario happens when an invocation
521 // of gtl::Container() is passed into Return.
522 //
523 template <typename R>
524 class ReturnAction {
525  public:
526   // Constructs a ReturnAction object from the value to be returned.
527   // 'value' is passed by value instead of by const reference in order
528   // to allow Return("string literal") to compile.
529   explicit ReturnAction(R value) : value_(new R(std::move(value))) {}
530 
531   // This template type conversion operator allows Return(x) to be
532   // used in ANY function that returns x's type.
533   template <typename F>
534   operator Action<F>() const {  // NOLINT
535     // Assert statement belongs here because this is the best place to verify
536     // conditions on F. It produces the clearest error messages
537     // in most compilers.
538     // Impl really belongs in this scope as a local class but can't
539     // because MSVC produces duplicate symbols in different translation units
540     // in this case. Until MS fixes that bug we put Impl into the class scope
541     // and put the typedef both here (for use in assert statement) and
542     // in the Impl class. But both definitions must be the same.
543     typedef typename Function<F>::Result Result;
544     GTEST_COMPILE_ASSERT_(
545         !std::is_reference<Result>::value,
546         use_ReturnRef_instead_of_Return_to_return_a_reference);
547     static_assert(!std::is_void<Result>::value,
548                   "Can't use Return() on an action expected to return `void`.");
549     return Action<F>(new Impl<R, F>(value_));
550   }
551 
552  private:
553   // Implements the Return(x) action for a particular function type F.
554   template <typename R_, typename F>
555   class Impl : public ActionInterface<F> {
556    public:
557     typedef typename Function<F>::Result Result;
558     typedef typename Function<F>::ArgumentTuple ArgumentTuple;
559 
560     // The implicit cast is necessary when Result has more than one
561     // single-argument constructor (e.g. Result is std::vector<int>) and R
562     // has a type conversion operator template.  In that case, value_(value)
563     // won't compile as the compiler doesn't known which constructor of
564     // Result to call.  ImplicitCast_ forces the compiler to convert R to
565     // Result without considering explicit constructors, thus resolving the
566     // ambiguity. value_ is then initialized using its copy constructor.
567     explicit Impl(const std::shared_ptr<R>& value)
568         : value_before_cast_(*value),
569           value_(ImplicitCast_<Result>(value_before_cast_)) {}
570 
571     Result Perform(const ArgumentTuple&) override { return value_; }
572 
573    private:
574     GTEST_COMPILE_ASSERT_(!std::is_reference<Result>::value,
575                           Result_cannot_be_a_reference_type);
576     // We save the value before casting just in case it is being cast to a
577     // wrapper type.
578     R value_before_cast_;
579     Result value_;
580 
581     GTEST_DISALLOW_COPY_AND_ASSIGN_(Impl);
582   };
583 
584   // Partially specialize for ByMoveWrapper. This version of ReturnAction will
585   // move its contents instead.
586   template <typename R_, typename F>
587   class Impl<ByMoveWrapper<R_>, F> : public ActionInterface<F> {
588    public:
589     typedef typename Function<F>::Result Result;
590     typedef typename Function<F>::ArgumentTuple ArgumentTuple;
591 
592     explicit Impl(const std::shared_ptr<R>& wrapper)
593         : performed_(false), wrapper_(wrapper) {}
594 
595     Result Perform(const ArgumentTuple&) override {
596       GTEST_CHECK_(!performed_)
597           << "A ByMove() action should only be performed once.";
598       performed_ = true;
599       return std::move(wrapper_->payload);
600     }
601 
602    private:
603     bool performed_;
604     const std::shared_ptr<R> wrapper_;
605 
606     GTEST_DISALLOW_ASSIGN_(Impl);
607   };
608 
609   const std::shared_ptr<R> value_;
610 
611   GTEST_DISALLOW_ASSIGN_(ReturnAction);
612 };
613 
614 // Implements the ReturnNull() action.
615 class ReturnNullAction {
616  public:
617   // Allows ReturnNull() to be used in any pointer-returning function. In C++11
618   // this is enforced by returning nullptr, and in non-C++11 by asserting a
619   // pointer type on compile time.
620   template <typename Result, typename ArgumentTuple>
621   static Result Perform(const ArgumentTuple&) {
622     return nullptr;
623   }
624 };
625 
626 // Implements the Return() action.
627 class ReturnVoidAction {
628  public:
629   // Allows Return() to be used in any void-returning function.
630   template <typename Result, typename ArgumentTuple>
631   static void Perform(const ArgumentTuple&) {
632     static_assert(std::is_void<Result>::value, "Result should be void.");
633   }
634 };
635 
636 // Implements the polymorphic ReturnRef(x) action, which can be used
637 // in any function that returns a reference to the type of x,
638 // regardless of the argument types.
639 template <typename T>
640 class ReturnRefAction {
641  public:
642   // Constructs a ReturnRefAction object from the reference to be returned.
643   explicit ReturnRefAction(T& ref) : ref_(ref) {}  // NOLINT
644 
645   // This template type conversion operator allows ReturnRef(x) to be
646   // used in ANY function that returns a reference to x's type.
647   template <typename F>
648   operator Action<F>() const {
649     typedef typename Function<F>::Result Result;
650     // Asserts that the function return type is a reference.  This
651     // catches the user error of using ReturnRef(x) when Return(x)
652     // should be used, and generates some helpful error message.
653     GTEST_COMPILE_ASSERT_(std::is_reference<Result>::value,
654                           use_Return_instead_of_ReturnRef_to_return_a_value);
655     return Action<F>(new Impl<F>(ref_));
656   }
657 
658  private:
659   // Implements the ReturnRef(x) action for a particular function type F.
660   template <typename F>
661   class Impl : public ActionInterface<F> {
662    public:
663     typedef typename Function<F>::Result Result;
664     typedef typename Function<F>::ArgumentTuple ArgumentTuple;
665 
666     explicit Impl(T& ref) : ref_(ref) {}  // NOLINT
667 
668     Result Perform(const ArgumentTuple&) override { return ref_; }
669 
670    private:
671     T& ref_;
672 
673     GTEST_DISALLOW_ASSIGN_(Impl);
674   };
675 
676   T& ref_;
677 
678   GTEST_DISALLOW_ASSIGN_(ReturnRefAction);
679 };
680 
681 // Implements the polymorphic ReturnRefOfCopy(x) action, which can be
682 // used in any function that returns a reference to the type of x,
683 // regardless of the argument types.
684 template <typename T>
685 class ReturnRefOfCopyAction {
686  public:
687   // Constructs a ReturnRefOfCopyAction object from the reference to
688   // be returned.
689   explicit ReturnRefOfCopyAction(const T& value) : value_(value) {}  // NOLINT
690 
691   // This template type conversion operator allows ReturnRefOfCopy(x) to be
692   // used in ANY function that returns a reference to x's type.
693   template <typename F>
694   operator Action<F>() const {
695     typedef typename Function<F>::Result Result;
696     // Asserts that the function return type is a reference.  This
697     // catches the user error of using ReturnRefOfCopy(x) when Return(x)
698     // should be used, and generates some helpful error message.
699     GTEST_COMPILE_ASSERT_(
700         std::is_reference<Result>::value,
701         use_Return_instead_of_ReturnRefOfCopy_to_return_a_value);
702     return Action<F>(new Impl<F>(value_));
703   }
704 
705  private:
706   // Implements the ReturnRefOfCopy(x) action for a particular function type F.
707   template <typename F>
708   class Impl : public ActionInterface<F> {
709    public:
710     typedef typename Function<F>::Result Result;
711     typedef typename Function<F>::ArgumentTuple ArgumentTuple;
712 
713     explicit Impl(const T& value) : value_(value) {}  // NOLINT
714 
715     Result Perform(const ArgumentTuple&) override { return value_; }
716 
717    private:
718     T value_;
719 
720     GTEST_DISALLOW_ASSIGN_(Impl);
721   };
722 
723   const T value_;
724 
725   GTEST_DISALLOW_ASSIGN_(ReturnRefOfCopyAction);
726 };
727 
728 // Implements the polymorphic DoDefault() action.
729 class DoDefaultAction {
730  public:
731   // This template type conversion operator allows DoDefault() to be
732   // used in any function.
733   template <typename F>
734   operator Action<F>() const { return Action<F>(); }  // NOLINT
735 };
736 
737 // Implements the Assign action to set a given pointer referent to a
738 // particular value.
739 template <typename T1, typename T2>
740 class AssignAction {
741  public:
742   AssignAction(T1* ptr, T2 value) : ptr_(ptr), value_(value) {}
743 
744   template <typename Result, typename ArgumentTuple>
745   void Perform(const ArgumentTuple& /* args */) const {
746     *ptr_ = value_;
747   }
748 
749  private:
750   T1* const ptr_;
751   const T2 value_;
752 
753   GTEST_DISALLOW_ASSIGN_(AssignAction);
754 };
755 
756 #if !GTEST_OS_WINDOWS_MOBILE
757 
758 // Implements the SetErrnoAndReturn action to simulate return from
759 // various system calls and libc functions.
760 template <typename T>
761 class SetErrnoAndReturnAction {
762  public:
763   SetErrnoAndReturnAction(int errno_value, T result)
764       : errno_(errno_value),
765         result_(result) {}
766   template <typename Result, typename ArgumentTuple>
767   Result Perform(const ArgumentTuple& /* args */) const {
768     errno = errno_;
769     return result_;
770   }
771 
772  private:
773   const int errno_;
774   const T result_;
775 
776   GTEST_DISALLOW_ASSIGN_(SetErrnoAndReturnAction);
777 };
778 
779 #endif  // !GTEST_OS_WINDOWS_MOBILE
780 
781 // Implements the SetArgumentPointee<N>(x) action for any function
782 // whose N-th argument (0-based) is a pointer to x's type.
783 template <size_t N, typename A, typename = void>
784 struct SetArgumentPointeeAction {
785   A value;
786 
787   template <typename... Args>
788   void operator()(const Args&... args) const {
789     *::std::get<N>(std::tie(args...)) = value;
790   }
791 };
792 
793 // Implements the Invoke(object_ptr, &Class::Method) action.
794 template <class Class, typename MethodPtr>
795 struct InvokeMethodAction {
796   Class* const obj_ptr;
797   const MethodPtr method_ptr;
798 
799   template <typename... Args>
800   auto operator()(Args&&... args) const
801       -> decltype((obj_ptr->*method_ptr)(std::forward<Args>(args)...)) {
802     return (obj_ptr->*method_ptr)(std::forward<Args>(args)...);
803   }
804 };
805 
806 // Implements the InvokeWithoutArgs(f) action.  The template argument
807 // FunctionImpl is the implementation type of f, which can be either a
808 // function pointer or a functor.  InvokeWithoutArgs(f) can be used as an
809 // Action<F> as long as f's type is compatible with F.
810 template <typename FunctionImpl>
811 struct InvokeWithoutArgsAction {
812   FunctionImpl function_impl;
813 
814   // Allows InvokeWithoutArgs(f) to be used as any action whose type is
815   // compatible with f.
816   template <typename... Args>
817   auto operator()(const Args&...) -> decltype(function_impl()) {
818     return function_impl();
819   }
820 };
821 
822 // Implements the InvokeWithoutArgs(object_ptr, &Class::Method) action.
823 template <class Class, typename MethodPtr>
824 struct InvokeMethodWithoutArgsAction {
825   Class* const obj_ptr;
826   const MethodPtr method_ptr;
827 
828   using ReturnType = typename std::result_of<MethodPtr(Class*)>::type;
829 
830   template <typename... Args>
831   ReturnType operator()(const Args&...) const {
832     return (obj_ptr->*method_ptr)();
833   }
834 };
835 
836 // Implements the IgnoreResult(action) action.
837 template <typename A>
838 class IgnoreResultAction {
839  public:
840   explicit IgnoreResultAction(const A& action) : action_(action) {}
841 
842   template <typename F>
843   operator Action<F>() const {
844     // Assert statement belongs here because this is the best place to verify
845     // conditions on F. It produces the clearest error messages
846     // in most compilers.
847     // Impl really belongs in this scope as a local class but can't
848     // because MSVC produces duplicate symbols in different translation units
849     // in this case. Until MS fixes that bug we put Impl into the class scope
850     // and put the typedef both here (for use in assert statement) and
851     // in the Impl class. But both definitions must be the same.
852     typedef typename internal::Function<F>::Result Result;
853 
854     // Asserts at compile time that F returns void.
855     static_assert(std::is_void<Result>::value, "Result type should be void.");
856 
857     return Action<F>(new Impl<F>(action_));
858   }
859 
860  private:
861   template <typename F>
862   class Impl : public ActionInterface<F> {
863    public:
864     typedef typename internal::Function<F>::Result Result;
865     typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
866 
867     explicit Impl(const A& action) : action_(action) {}
868 
869     void Perform(const ArgumentTuple& args) override {
870       // Performs the action and ignores its result.
871       action_.Perform(args);
872     }
873 
874    private:
875     // Type OriginalFunction is the same as F except that its return
876     // type is IgnoredValue.
877     typedef typename internal::Function<F>::MakeResultIgnoredValue
878         OriginalFunction;
879 
880     const Action<OriginalFunction> action_;
881 
882     GTEST_DISALLOW_ASSIGN_(Impl);
883   };
884 
885   const A action_;
886 
887   GTEST_DISALLOW_ASSIGN_(IgnoreResultAction);
888 };
889 
890 template <typename InnerAction, size_t... I>
891 struct WithArgsAction {
892   InnerAction action;
893 
894   // The inner action could be anything convertible to Action<X>.
895   // We use the conversion operator to detect the signature of the inner Action.
896   template <typename R, typename... Args>
897   operator Action<R(Args...)>() const {  // NOLINT
898     Action<R(typename std::tuple_element<I, std::tuple<Args...>>::type...)>
899         converted(action);
900 
901     return [converted](Args... args) -> R {
902       return converted.Perform(std::forward_as_tuple(
903         std::get<I>(std::forward_as_tuple(std::forward<Args>(args)...))...));
904     };
905   }
906 };
907 
908 template <typename... Actions>
909 struct DoAllAction {
910  private:
911   template <typename... Args, size_t... I>
912   std::vector<Action<void(Args...)>> Convert(IndexSequence<I...>) const {
913     return {std::get<I>(actions)...};
914   }
915 
916  public:
917   std::tuple<Actions...> actions;
918 
919   template <typename R, typename... Args>
920   operator Action<R(Args...)>() const {  // NOLINT
921     struct Op {
922       std::vector<Action<void(Args...)>> converted;
923       Action<R(Args...)> last;
924       R operator()(Args... args) const {
925         auto tuple_args = std::forward_as_tuple(std::forward<Args>(args)...);
926         for (auto& a : converted) {
927           a.Perform(tuple_args);
928         }
929         return last.Perform(tuple_args);
930       }
931     };
932     return Op{Convert<Args...>(MakeIndexSequence<sizeof...(Actions) - 1>()),
933               std::get<sizeof...(Actions) - 1>(actions)};
934   }
935 };
936 
937 }  // namespace internal
938 
939 // An Unused object can be implicitly constructed from ANY value.
940 // This is handy when defining actions that ignore some or all of the
941 // mock function arguments.  For example, given
942 //
943 //   MOCK_METHOD3(Foo, double(const string& label, double x, double y));
944 //   MOCK_METHOD3(Bar, double(int index, double x, double y));
945 //
946 // instead of
947 //
948 //   double DistanceToOriginWithLabel(const string& label, double x, double y) {
949 //     return sqrt(x*x + y*y);
950 //   }
951 //   double DistanceToOriginWithIndex(int index, double x, double y) {
952 //     return sqrt(x*x + y*y);
953 //   }
954 //   ...
955 //   EXPECT_CALL(mock, Foo("abc", _, _))
956 //       .WillOnce(Invoke(DistanceToOriginWithLabel));
957 //   EXPECT_CALL(mock, Bar(5, _, _))
958 //       .WillOnce(Invoke(DistanceToOriginWithIndex));
959 //
960 // you could write
961 //
962 //   // We can declare any uninteresting argument as Unused.
963 //   double DistanceToOrigin(Unused, double x, double y) {
964 //     return sqrt(x*x + y*y);
965 //   }
966 //   ...
967 //   EXPECT_CALL(mock, Foo("abc", _, _)).WillOnce(Invoke(DistanceToOrigin));
968 //   EXPECT_CALL(mock, Bar(5, _, _)).WillOnce(Invoke(DistanceToOrigin));
969 typedef internal::IgnoredValue Unused;
970 
971 // Creates an action that does actions a1, a2, ..., sequentially in
972 // each invocation.
973 template <typename... Action>
974 internal::DoAllAction<typename std::decay<Action>::type...> DoAll(
975     Action&&... action) {
976   return {std::forward_as_tuple(std::forward<Action>(action)...)};
977 }
978 
979 // WithArg<k>(an_action) creates an action that passes the k-th
980 // (0-based) argument of the mock function to an_action and performs
981 // it.  It adapts an action accepting one argument to one that accepts
982 // multiple arguments.  For convenience, we also provide
983 // WithArgs<k>(an_action) (defined below) as a synonym.
984 template <size_t k, typename InnerAction>
985 internal::WithArgsAction<typename std::decay<InnerAction>::type, k>
986 WithArg(InnerAction&& action) {
987   return {std::forward<InnerAction>(action)};
988 }
989 
990 // WithArgs<N1, N2, ..., Nk>(an_action) creates an action that passes
991 // the selected arguments of the mock function to an_action and
992 // performs it.  It serves as an adaptor between actions with
993 // different argument lists.
994 template <size_t k, size_t... ks, typename InnerAction>
995 internal::WithArgsAction<typename std::decay<InnerAction>::type, k, ks...>
996 WithArgs(InnerAction&& action) {
997   return {std::forward<InnerAction>(action)};
998 }
999 
1000 // WithoutArgs(inner_action) can be used in a mock function with a
1001 // non-empty argument list to perform inner_action, which takes no
1002 // argument.  In other words, it adapts an action accepting no
1003 // argument to one that accepts (and ignores) arguments.
1004 template <typename InnerAction>
1005 internal::WithArgsAction<typename std::decay<InnerAction>::type>
1006 WithoutArgs(InnerAction&& action) {
1007   return {std::forward<InnerAction>(action)};
1008 }
1009 
1010 // Creates an action that returns 'value'.  'value' is passed by value
1011 // instead of const reference - otherwise Return("string literal")
1012 // will trigger a compiler error about using array as initializer.
1013 template <typename R>
1014 internal::ReturnAction<R> Return(R value) {
1015   return internal::ReturnAction<R>(std::move(value));
1016 }
1017 
1018 // Creates an action that returns NULL.
1019 inline PolymorphicAction<internal::ReturnNullAction> ReturnNull() {
1020   return MakePolymorphicAction(internal::ReturnNullAction());
1021 }
1022 
1023 // Creates an action that returns from a void function.
1024 inline PolymorphicAction<internal::ReturnVoidAction> Return() {
1025   return MakePolymorphicAction(internal::ReturnVoidAction());
1026 }
1027 
1028 // Creates an action that returns the reference to a variable.
1029 template <typename R>
1030 inline internal::ReturnRefAction<R> ReturnRef(R& x) {  // NOLINT
1031   return internal::ReturnRefAction<R>(x);
1032 }
1033 
1034 // Creates an action that returns the reference to a copy of the
1035 // argument.  The copy is created when the action is constructed and
1036 // lives as long as the action.
1037 template <typename R>
1038 inline internal::ReturnRefOfCopyAction<R> ReturnRefOfCopy(const R& x) {
1039   return internal::ReturnRefOfCopyAction<R>(x);
1040 }
1041 
1042 // Modifies the parent action (a Return() action) to perform a move of the
1043 // argument instead of a copy.
1044 // Return(ByMove()) actions can only be executed once and will assert this
1045 // invariant.
1046 template <typename R>
1047 internal::ByMoveWrapper<R> ByMove(R x) {
1048   return internal::ByMoveWrapper<R>(std::move(x));
1049 }
1050 
1051 // Creates an action that does the default action for the give mock function.
1052 inline internal::DoDefaultAction DoDefault() {
1053   return internal::DoDefaultAction();
1054 }
1055 
1056 // Creates an action that sets the variable pointed by the N-th
1057 // (0-based) function argument to 'value'.
1058 template <size_t N, typename T>
1059 internal::SetArgumentPointeeAction<N, T> SetArgPointee(T x) {
1060   return {std::move(x)};
1061 }
1062 
1063 // The following version is DEPRECATED.
1064 template <size_t N, typename T>
1065 internal::SetArgumentPointeeAction<N, T> SetArgumentPointee(T x) {
1066   return {std::move(x)};
1067 }
1068 
1069 // Creates an action that sets a pointer referent to a given value.
1070 template <typename T1, typename T2>
1071 PolymorphicAction<internal::AssignAction<T1, T2> > Assign(T1* ptr, T2 val) {
1072   return MakePolymorphicAction(internal::AssignAction<T1, T2>(ptr, val));
1073 }
1074 
1075 #if !GTEST_OS_WINDOWS_MOBILE
1076 
1077 // Creates an action that sets errno and returns the appropriate error.
1078 template <typename T>
1079 PolymorphicAction<internal::SetErrnoAndReturnAction<T> >
1080 SetErrnoAndReturn(int errval, T result) {
1081   return MakePolymorphicAction(
1082       internal::SetErrnoAndReturnAction<T>(errval, result));
1083 }
1084 
1085 #endif  // !GTEST_OS_WINDOWS_MOBILE
1086 
1087 // Various overloads for Invoke().
1088 
1089 // Legacy function.
1090 // Actions can now be implicitly constructed from callables. No need to create
1091 // wrapper objects.
1092 // This function exists for backwards compatibility.
1093 template <typename FunctionImpl>
1094 typename std::decay<FunctionImpl>::type Invoke(FunctionImpl&& function_impl) {
1095   return std::forward<FunctionImpl>(function_impl);
1096 }
1097 
1098 // Creates an action that invokes the given method on the given object
1099 // with the mock function's arguments.
1100 template <class Class, typename MethodPtr>
1101 internal::InvokeMethodAction<Class, MethodPtr> Invoke(Class* obj_ptr,
1102                                                       MethodPtr method_ptr) {
1103   return {obj_ptr, method_ptr};
1104 }
1105 
1106 // Creates an action that invokes 'function_impl' with no argument.
1107 template <typename FunctionImpl>
1108 internal::InvokeWithoutArgsAction<typename std::decay<FunctionImpl>::type>
1109 InvokeWithoutArgs(FunctionImpl function_impl) {
1110   return {std::move(function_impl)};
1111 }
1112 
1113 // Creates an action that invokes the given method on the given object
1114 // with no argument.
1115 template <class Class, typename MethodPtr>
1116 internal::InvokeMethodWithoutArgsAction<Class, MethodPtr> InvokeWithoutArgs(
1117     Class* obj_ptr, MethodPtr method_ptr) {
1118   return {obj_ptr, method_ptr};
1119 }
1120 
1121 // Creates an action that performs an_action and throws away its
1122 // result.  In other words, it changes the return type of an_action to
1123 // void.  an_action MUST NOT return void, or the code won't compile.
1124 template <typename A>
1125 inline internal::IgnoreResultAction<A> IgnoreResult(const A& an_action) {
1126   return internal::IgnoreResultAction<A>(an_action);
1127 }
1128 
1129 // Creates a reference wrapper for the given L-value.  If necessary,
1130 // you can explicitly specify the type of the reference.  For example,
1131 // suppose 'derived' is an object of type Derived, ByRef(derived)
1132 // would wrap a Derived&.  If you want to wrap a const Base& instead,
1133 // where Base is a base class of Derived, just write:
1134 //
1135 //   ByRef<const Base>(derived)
1136 //
1137 // N.B. ByRef is redundant with std::ref, std::cref and std::reference_wrapper.
1138 // However, it may still be used for consistency with ByMove().
1139 template <typename T>
1140 inline ::std::reference_wrapper<T> ByRef(T& l_value) {  // NOLINT
1141   return ::std::reference_wrapper<T>(l_value);
1142 }
1143 
1144 }  // namespace testing
1145 
1146 #ifdef __clang__
1147 #if __has_warning("-Wdeprecated-copy")
1148 #pragma clang diagnostic pop
1149 #endif
1150 #endif
1151 
1152 #ifdef _MSC_VER
1153 # pragma warning(pop)
1154 #endif
1155 
1156 
1157 #endif  // GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
1158