xref: /netbsd-src/sys/miscfs/genfs/genfs_io.c (revision fda613df024735a05ab86e243bc350e909ae3979)
1 /*	$NetBSD: genfs_io.c,v 1.104 2024/04/05 13:05:40 riastradh Exp $	*/
2 
3 /*
4  * Copyright (c) 1982, 1986, 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  */
32 
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: genfs_io.c,v 1.104 2024/04/05 13:05:40 riastradh Exp $");
35 
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/proc.h>
39 #include <sys/kernel.h>
40 #include <sys/mount.h>
41 #include <sys/vnode.h>
42 #include <sys/kmem.h>
43 #include <sys/kauth.h>
44 #include <sys/fstrans.h>
45 #include <sys/buf.h>
46 #include <sys/atomic.h>
47 
48 #include <miscfs/genfs/genfs.h>
49 #include <miscfs/genfs/genfs_node.h>
50 #include <miscfs/specfs/specdev.h>
51 
52 #include <uvm/uvm.h>
53 #include <uvm/uvm_pager.h>
54 #include <uvm/uvm_page_array.h>
55 
56 static int genfs_do_directio(struct vmspace *, vaddr_t, size_t, struct vnode *,
57     off_t, enum uio_rw);
58 static void genfs_dio_iodone(struct buf *);
59 
60 static int genfs_getpages_read(struct vnode *, struct vm_page **, int, off_t,
61     off_t, bool, bool, bool, bool);
62 static int genfs_do_io(struct vnode *, off_t, vaddr_t, size_t, int, enum uio_rw,
63     void (*)(struct buf *));
64 static void genfs_rel_pages(struct vm_page **, unsigned int);
65 
66 int genfs_maxdio = MAXPHYS;
67 
68 static void
genfs_rel_pages(struct vm_page ** pgs,unsigned int npages)69 genfs_rel_pages(struct vm_page **pgs, unsigned int npages)
70 {
71 	unsigned int i;
72 
73 	for (i = 0; i < npages; i++) {
74 		struct vm_page *pg = pgs[i];
75 
76 		if (pg == NULL || pg == PGO_DONTCARE)
77 			continue;
78 		KASSERT(uvm_page_owner_locked_p(pg, true));
79 		if (pg->flags & PG_FAKE) {
80 			pg->flags |= PG_RELEASED;
81 		}
82 	}
83 	uvm_page_unbusy(pgs, npages);
84 }
85 
86 /*
87  * generic VM getpages routine.
88  * Return PG_BUSY pages for the given range,
89  * reading from backing store if necessary.
90  */
91 
92 int
genfs_getpages(void * v)93 genfs_getpages(void *v)
94 {
95 	struct vop_getpages_args /* {
96 		struct vnode *a_vp;
97 		voff_t a_offset;
98 		struct vm_page **a_m;
99 		int *a_count;
100 		int a_centeridx;
101 		vm_prot_t a_access_type;
102 		int a_advice;
103 		int a_flags;
104 	} */ * const ap = v;
105 
106 	off_t diskeof, memeof;
107 	int i, error, npages, iflag;
108 	const int flags = ap->a_flags;
109 	struct vnode * const vp = ap->a_vp;
110 	struct uvm_object * const uobj = &vp->v_uobj;
111 	const bool async = (flags & PGO_SYNCIO) == 0;
112 	const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
113 	const bool overwrite = (flags & PGO_OVERWRITE) != 0;
114 	const bool blockalloc = memwrite && (flags & PGO_NOBLOCKALLOC) == 0;
115 	const bool need_wapbl = (vp->v_mount->mnt_wapbl &&
116 			(flags & PGO_JOURNALLOCKED) == 0);
117 	const bool glocked = (flags & PGO_GLOCKHELD) != 0;
118 	bool holds_wapbl = false;
119 	struct mount *trans_mount = NULL;
120 	UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
121 
122 	UVMHIST_LOG(ubchist, "vp %#jx off 0x%jx/%jx count %jd",
123 	    (uintptr_t)vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
124 
125 	KASSERT(memwrite >= overwrite);
126 	KASSERT(vp->v_type == VREG || vp->v_type == VDIR ||
127 	    vp->v_type == VLNK || vp->v_type == VBLK);
128 
129 	/*
130 	 * the object must be locked.  it can only be a read lock when
131 	 * processing a read fault with PGO_LOCKED.
132 	 */
133 
134 	KASSERT(rw_lock_held(uobj->vmobjlock));
135 	KASSERT(rw_write_held(uobj->vmobjlock) ||
136 	   ((flags & PGO_LOCKED) != 0 && !memwrite));
137 
138 #ifdef DIAGNOSTIC
139 	if ((flags & PGO_JOURNALLOCKED) && vp->v_mount->mnt_wapbl)
140                 WAPBL_JLOCK_ASSERT(vp->v_mount);
141 #endif
142 
143 	/*
144 	 * check for reclaimed vnode.  v_interlock is not held here, but
145 	 * VI_DEADCHECK is set with vmobjlock held.
146 	 */
147 
148 	iflag = atomic_load_relaxed(&vp->v_iflag);
149 	if (__predict_false((iflag & VI_DEADCHECK) != 0)) {
150 		mutex_enter(vp->v_interlock);
151 		error = vdead_check(vp, VDEAD_NOWAIT);
152 		mutex_exit(vp->v_interlock);
153 		if (error) {
154 			if ((flags & PGO_LOCKED) == 0)
155 				rw_exit(uobj->vmobjlock);
156 			return error;
157 		}
158 	}
159 
160 startover:
161 	error = 0;
162 	const voff_t origvsize = vp->v_size;
163 	const off_t origoffset = ap->a_offset;
164 	const int orignpages = *ap->a_count;
165 
166 	GOP_SIZE(vp, origvsize, &diskeof, 0);
167 	if (flags & PGO_PASTEOF) {
168 		off_t newsize;
169 #if defined(DIAGNOSTIC)
170 		off_t writeeof;
171 #endif /* defined(DIAGNOSTIC) */
172 
173 		newsize = MAX(origvsize,
174 		    origoffset + (orignpages << PAGE_SHIFT));
175 		GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_MEM);
176 #if defined(DIAGNOSTIC)
177 		GOP_SIZE(vp, vp->v_writesize, &writeeof, GOP_SIZE_MEM);
178 		if (newsize > round_page(writeeof)) {
179 			panic("%s: past eof: %" PRId64 " vs. %" PRId64,
180 			    __func__, newsize, round_page(writeeof));
181 		}
182 #endif /* defined(DIAGNOSTIC) */
183 	} else {
184 		GOP_SIZE(vp, origvsize, &memeof, GOP_SIZE_MEM);
185 	}
186 	KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
187 	KASSERT((origoffset & (PAGE_SIZE - 1)) == 0);
188 	KASSERT(origoffset >= 0);
189 	KASSERT(orignpages > 0);
190 
191 	/*
192 	 * Bounds-check the request.
193 	 */
194 
195 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
196 		if ((flags & PGO_LOCKED) == 0) {
197 			rw_exit(uobj->vmobjlock);
198 		}
199 		UVMHIST_LOG(ubchist, "off 0x%jx count %jd goes past EOF 0x%jx",
200 		    origoffset, *ap->a_count, memeof,0);
201 		error = EINVAL;
202 		goto out_err;
203 	}
204 
205 	/* uobj is locked */
206 
207 	if ((flags & PGO_NOTIMESTAMP) == 0 &&
208 	    (vp->v_type != VBLK ||
209 	    (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
210 		int updflags = 0;
211 
212 		if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
213 			updflags = GOP_UPDATE_ACCESSED;
214 		}
215 		if (memwrite) {
216 			updflags |= GOP_UPDATE_MODIFIED;
217 		}
218 		if (updflags != 0) {
219 			GOP_MARKUPDATE(vp, updflags);
220 		}
221 	}
222 
223 	/*
224 	 * For PGO_LOCKED requests, just return whatever's in memory.
225 	 */
226 
227 	if (flags & PGO_LOCKED) {
228 		int nfound;
229 		struct vm_page *pg;
230 
231 		KASSERT(!glocked);
232 		npages = *ap->a_count;
233 #if defined(DEBUG)
234 		for (i = 0; i < npages; i++) {
235 			pg = ap->a_m[i];
236 			KASSERT(pg == NULL || pg == PGO_DONTCARE);
237 		}
238 #endif /* defined(DEBUG) */
239  		nfound = uvn_findpages(uobj, origoffset, &npages,
240 		    ap->a_m, NULL,
241 		    UFP_NOWAIT | UFP_NOALLOC | UFP_NOBUSY |
242 		    (memwrite ? UFP_NORDONLY : 0));
243 		KASSERT(npages == *ap->a_count);
244 		if (nfound == 0) {
245 			error = EBUSY;
246 			goto out_err;
247 		}
248 		/*
249 		 * lock and unlock g_glock to ensure that no one is truncating
250 		 * the file behind us.
251 		 */
252 		if (!genfs_node_rdtrylock(vp)) {
253 			/*
254 			 * restore the array.
255 			 */
256 
257 			for (i = 0; i < npages; i++) {
258 				pg = ap->a_m[i];
259 
260 				if (pg != NULL && pg != PGO_DONTCARE) {
261 					ap->a_m[i] = NULL;
262 				}
263 				KASSERT(ap->a_m[i] == NULL ||
264 				    ap->a_m[i] == PGO_DONTCARE);
265 			}
266 		} else {
267 			genfs_node_unlock(vp);
268 		}
269 		error = (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
270 		if (error == 0 && memwrite) {
271 			for (i = 0; i < npages; i++) {
272 				pg = ap->a_m[i];
273 				if (pg == NULL || pg == PGO_DONTCARE) {
274 					continue;
275 				}
276 				if (uvm_pagegetdirty(pg) ==
277 				    UVM_PAGE_STATUS_CLEAN) {
278 					uvm_pagemarkdirty(pg,
279 					    UVM_PAGE_STATUS_UNKNOWN);
280 				}
281 			}
282 		}
283 		goto out_err;
284 	}
285 	rw_exit(uobj->vmobjlock);
286 
287 	/*
288 	 * find the requested pages and make some simple checks.
289 	 * leave space in the page array for a whole block.
290 	 */
291 
292 	const int fs_bshift = (vp->v_type != VBLK) ?
293 	    vp->v_mount->mnt_fs_bshift : DEV_BSHIFT;
294 	const int fs_bsize = 1 << fs_bshift;
295 #define	blk_mask	(fs_bsize - 1)
296 #define	trunc_blk(x)	((x) & ~blk_mask)
297 #define	round_blk(x)	(((x) + blk_mask) & ~blk_mask)
298 
299 	const int orignmempages = MIN(orignpages,
300 	    round_page(memeof - origoffset) >> PAGE_SHIFT);
301 	npages = orignmempages;
302 	const off_t startoffset = trunc_blk(origoffset);
303 	const off_t endoffset = MIN(
304 	    round_page(round_blk(origoffset + (npages << PAGE_SHIFT))),
305 	    round_page(memeof));
306 	const int ridx = (origoffset - startoffset) >> PAGE_SHIFT;
307 
308 	const int pgs_size = sizeof(struct vm_page *) *
309 	    ((endoffset - startoffset) >> PAGE_SHIFT);
310 	struct vm_page **pgs, *pgs_onstack[UBC_MAX_PAGES];
311 
312 	if (pgs_size > sizeof(pgs_onstack)) {
313 		pgs = kmem_zalloc(pgs_size, async ? KM_NOSLEEP : KM_SLEEP);
314 		if (pgs == NULL) {
315 			pgs = pgs_onstack;
316 			error = ENOMEM;
317 			goto out_err;
318 		}
319 	} else {
320 		pgs = pgs_onstack;
321 		(void)memset(pgs, 0, pgs_size);
322 	}
323 
324 	UVMHIST_LOG(ubchist, "ridx %jd npages %jd startoff %#jx endoff %#jx",
325 	    ridx, npages, startoffset, endoffset);
326 
327 	if (trans_mount == NULL) {
328 		trans_mount = vp->v_mount;
329 		fstrans_start(trans_mount);
330 		/*
331 		 * check if this vnode is still valid.
332 		 */
333 		mutex_enter(vp->v_interlock);
334 		error = vdead_check(vp, 0);
335 		mutex_exit(vp->v_interlock);
336 		if (error)
337 			goto out_err_free;
338 		/*
339 		 * XXX: This assumes that we come here only via
340 		 * the mmio path
341 		 */
342 		if (blockalloc && need_wapbl) {
343 			error = WAPBL_BEGIN(trans_mount);
344 			if (error)
345 				goto out_err_free;
346 			holds_wapbl = true;
347 		}
348 	}
349 
350 	/*
351 	 * hold g_glock to prevent a race with truncate.
352 	 *
353 	 * check if our idea of v_size is still valid.
354 	 */
355 
356 	KASSERT(!glocked || genfs_node_wrlocked(vp));
357 	if (!glocked) {
358 		if (blockalloc) {
359 			genfs_node_wrlock(vp);
360 		} else {
361 			genfs_node_rdlock(vp);
362 		}
363 	}
364 	rw_enter(uobj->vmobjlock, RW_WRITER);
365 	if (vp->v_size < origvsize) {
366 		if (!glocked) {
367 			genfs_node_unlock(vp);
368 		}
369 		if (pgs != pgs_onstack)
370 			kmem_free(pgs, pgs_size);
371 		goto startover;
372 	}
373 
374 	if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx], NULL,
375 	    async ? UFP_NOWAIT : UFP_ALL) != orignmempages) {
376 		if (!glocked) {
377 			genfs_node_unlock(vp);
378 		}
379 		KASSERT(async != 0);
380 		genfs_rel_pages(&pgs[ridx], orignmempages);
381 		rw_exit(uobj->vmobjlock);
382 		error = EBUSY;
383 		goto out_err_free;
384 	}
385 
386 	/*
387 	 * if PGO_OVERWRITE is set, don't bother reading the pages.
388 	 */
389 
390 	if (overwrite) {
391 		if (!glocked) {
392 			genfs_node_unlock(vp);
393 		}
394 		UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
395 
396 		for (i = 0; i < npages; i++) {
397 			struct vm_page *pg = pgs[ridx + i];
398 
399 			/*
400 			 * it's caller's responsibility to allocate blocks
401 			 * beforehand for the overwrite case.
402 			 */
403 
404 			KASSERT((pg->flags & PG_RDONLY) == 0 || !blockalloc);
405 			pg->flags &= ~PG_RDONLY;
406 
407 			/*
408 			 * mark the page DIRTY.
409 			 * otherwise another thread can do putpages and pull
410 			 * our vnode from syncer's queue before our caller does
411 			 * ubc_release.  note that putpages won't see CLEAN
412 			 * pages even if they are BUSY.
413 			 */
414 
415 			uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
416 		}
417 		npages += ridx;
418 		goto out;
419 	}
420 
421 	/*
422 	 * if the pages are already resident, just return them.
423 	 */
424 
425 	for (i = 0; i < npages; i++) {
426 		struct vm_page *pg = pgs[ridx + i];
427 
428 		if ((pg->flags & PG_FAKE) ||
429 		    (blockalloc && (pg->flags & PG_RDONLY) != 0)) {
430 			break;
431 		}
432 	}
433 	if (i == npages) {
434 		if (!glocked) {
435 			genfs_node_unlock(vp);
436 		}
437 		UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
438 		npages += ridx;
439 		goto out;
440 	}
441 
442 	/*
443 	 * the page wasn't resident and we're not overwriting,
444 	 * so we're going to have to do some i/o.
445 	 * find any additional pages needed to cover the expanded range.
446 	 */
447 
448 	npages = (endoffset - startoffset) >> PAGE_SHIFT;
449 	if (startoffset != origoffset || npages != orignmempages) {
450 		int npgs;
451 
452 		/*
453 		 * we need to avoid deadlocks caused by locking
454 		 * additional pages at lower offsets than pages we
455 		 * already have locked.  unlock them all and start over.
456 		 */
457 
458 		genfs_rel_pages(&pgs[ridx], orignmempages);
459 		memset(pgs, 0, pgs_size);
460 
461 		UVMHIST_LOG(ubchist, "reset npages start 0x%jx end 0x%jx",
462 		    startoffset, endoffset, 0,0);
463 		npgs = npages;
464 		if (uvn_findpages(uobj, startoffset, &npgs, pgs, NULL,
465 		    async ? UFP_NOWAIT : UFP_ALL) != npages) {
466 			if (!glocked) {
467 				genfs_node_unlock(vp);
468 			}
469 			KASSERT(async != 0);
470 			genfs_rel_pages(pgs, npages);
471 			rw_exit(uobj->vmobjlock);
472 			error = EBUSY;
473 			goto out_err_free;
474 		}
475 	}
476 
477 	rw_exit(uobj->vmobjlock);
478 	error = genfs_getpages_read(vp, pgs, npages, startoffset, diskeof,
479 	    async, memwrite, blockalloc, glocked);
480 	if (!glocked) {
481 		genfs_node_unlock(vp);
482 	}
483 	if (error == 0 && async)
484 		goto out_err_free;
485 	rw_enter(uobj->vmobjlock, RW_WRITER);
486 
487 	/*
488 	 * we're almost done!  release the pages...
489 	 * for errors, we free the pages.
490 	 * otherwise we activate them and mark them as valid and clean.
491 	 * also, unbusy pages that were not actually requested.
492 	 */
493 
494 	if (error) {
495 		genfs_rel_pages(pgs, npages);
496 		rw_exit(uobj->vmobjlock);
497 		UVMHIST_LOG(ubchist, "returning error %jd", error,0,0,0);
498 		goto out_err_free;
499 	}
500 
501 out:
502 	UVMHIST_LOG(ubchist, "succeeding, npages %jd", npages,0,0,0);
503 	error = 0;
504 	for (i = 0; i < npages; i++) {
505 		struct vm_page *pg = pgs[i];
506 		if (pg == NULL) {
507 			continue;
508 		}
509 		UVMHIST_LOG(ubchist, "examining pg %#jx flags 0x%jx",
510 		    (uintptr_t)pg, pg->flags, 0,0);
511 		if (pg->flags & PG_FAKE && !overwrite) {
512 			/*
513 			 * we've read page's contents from the backing storage.
514 			 *
515 			 * for a read fault, we keep them CLEAN;  if we
516 			 * encountered a hole while reading, the pages can
517 			 * already been dirtied with zeros.
518 			 */
519 			KASSERTMSG(blockalloc || uvm_pagegetdirty(pg) ==
520 			    UVM_PAGE_STATUS_CLEAN, "page %p not clean", pg);
521 			pg->flags &= ~PG_FAKE;
522 		}
523 		KASSERT(!memwrite || !blockalloc || (pg->flags & PG_RDONLY) == 0);
524 		if (i < ridx || i >= ridx + orignmempages || async) {
525 			UVMHIST_LOG(ubchist, "unbusy pg %#jx offset 0x%jx",
526 			    (uintptr_t)pg, pg->offset,0,0);
527 			if (pg->flags & PG_FAKE) {
528 				KASSERT(overwrite);
529 				uvm_pagezero(pg);
530 			}
531 			if (pg->flags & PG_RELEASED) {
532 				uvm_pagefree(pg);
533 				continue;
534 			}
535 			uvm_pagelock(pg);
536 			uvm_pageenqueue(pg);
537 			uvm_pagewakeup(pg);
538 			uvm_pageunlock(pg);
539 			pg->flags &= ~(PG_BUSY|PG_FAKE);
540 			UVM_PAGE_OWN(pg, NULL);
541 		} else if (memwrite && !overwrite &&
542 		    uvm_pagegetdirty(pg) == UVM_PAGE_STATUS_CLEAN) {
543 			/*
544 			 * for a write fault, start dirtiness tracking of
545 			 * requested pages.
546 			 */
547 			uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_UNKNOWN);
548 		}
549 	}
550 	rw_exit(uobj->vmobjlock);
551 	if (ap->a_m != NULL) {
552 		memcpy(ap->a_m, &pgs[ridx],
553 		    orignmempages * sizeof(struct vm_page *));
554 	}
555 
556 out_err_free:
557 	if (pgs != NULL && pgs != pgs_onstack)
558 		kmem_free(pgs, pgs_size);
559 out_err:
560 	if (trans_mount != NULL) {
561 		if (holds_wapbl)
562 			WAPBL_END(trans_mount);
563 		fstrans_done(trans_mount);
564 	}
565 	return error;
566 }
567 
568 /*
569  * genfs_getpages_read: Read the pages in with VOP_BMAP/VOP_STRATEGY.
570  *
571  * "glocked" (which is currently not actually used) tells us not whether
572  * the genfs_node is locked on entry (it always is) but whether it was
573  * locked on entry to genfs_getpages.
574  */
575 static int
genfs_getpages_read(struct vnode * vp,struct vm_page ** pgs,int npages,off_t startoffset,off_t diskeof,bool async,bool memwrite,bool blockalloc,bool glocked)576 genfs_getpages_read(struct vnode *vp, struct vm_page **pgs, int npages,
577     off_t startoffset, off_t diskeof,
578     bool async, bool memwrite, bool blockalloc, bool glocked)
579 {
580 	struct uvm_object * const uobj = &vp->v_uobj;
581 	const int fs_bshift = (vp->v_type != VBLK) ?
582 	    vp->v_mount->mnt_fs_bshift : DEV_BSHIFT;
583 	const int dev_bshift = (vp->v_type != VBLK) ?
584 	    vp->v_mount->mnt_dev_bshift : DEV_BSHIFT;
585 	kauth_cred_t const cred = curlwp->l_cred;		/* XXXUBC curlwp */
586 	size_t bytes, iobytes, tailstart, tailbytes, totalbytes, skipbytes;
587 	vaddr_t kva;
588 	struct buf *bp, *mbp;
589 	bool sawhole = false;
590 	int i;
591 	int error = 0;
592 
593 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
594 
595 	/*
596 	 * read the desired page(s).
597 	 */
598 
599 	totalbytes = npages << PAGE_SHIFT;
600 	bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
601 	tailbytes = totalbytes - bytes;
602 	skipbytes = 0;
603 
604 	kva = uvm_pagermapin(pgs, npages,
605 	    UVMPAGER_MAPIN_READ | (async ? 0 : UVMPAGER_MAPIN_WAITOK));
606 	if (kva == 0)
607 		return EBUSY;
608 
609 	mbp = getiobuf(vp, true);
610 	mbp->b_bufsize = totalbytes;
611 	mbp->b_data = (void *)kva;
612 	mbp->b_resid = mbp->b_bcount = bytes;
613 	mbp->b_cflags |= BC_BUSY;
614 	if (async) {
615 		mbp->b_flags = B_READ | B_ASYNC;
616 		mbp->b_iodone = uvm_aio_aiodone;
617 	} else {
618 		mbp->b_flags = B_READ;
619 		mbp->b_iodone = NULL;
620 	}
621 	if (async)
622 		BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
623 	else
624 		BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
625 
626 	/*
627 	 * if EOF is in the middle of the range, zero the part past EOF.
628 	 * skip over pages which are not PG_FAKE since in that case they have
629 	 * valid data that we need to preserve.
630 	 */
631 
632 	tailstart = bytes;
633 	while (tailbytes > 0) {
634 		const int len = PAGE_SIZE - (tailstart & PAGE_MASK);
635 
636 		KASSERT(len <= tailbytes);
637 		if ((pgs[tailstart >> PAGE_SHIFT]->flags & PG_FAKE) != 0) {
638 			memset((void *)(kva + tailstart), 0, len);
639 			UVMHIST_LOG(ubchist, "tailbytes %#jx 0x%jx 0x%jx",
640 			    (uintptr_t)kva, tailstart, len, 0);
641 		}
642 		tailstart += len;
643 		tailbytes -= len;
644 	}
645 
646 	/*
647 	 * now loop over the pages, reading as needed.
648 	 */
649 
650 	bp = NULL;
651 	off_t offset;
652 	for (offset = startoffset;
653 	    bytes > 0;
654 	    offset += iobytes, bytes -= iobytes) {
655 		int run;
656 		daddr_t lbn, blkno;
657 		int pidx;
658 		struct vnode *devvp;
659 
660 		/*
661 		 * skip pages which don't need to be read.
662 		 */
663 
664 		pidx = (offset - startoffset) >> PAGE_SHIFT;
665 		while ((pgs[pidx]->flags & PG_FAKE) == 0) {
666 			size_t b;
667 
668 			KASSERT((offset & (PAGE_SIZE - 1)) == 0);
669 			if ((pgs[pidx]->flags & PG_RDONLY)) {
670 				sawhole = true;
671 			}
672 			b = MIN(PAGE_SIZE, bytes);
673 			offset += b;
674 			bytes -= b;
675 			skipbytes += b;
676 			pidx++;
677 			UVMHIST_LOG(ubchist, "skipping, new offset 0x%jx",
678 			    offset, 0,0,0);
679 			if (bytes == 0) {
680 				goto loopdone;
681 			}
682 		}
683 
684 		/*
685 		 * bmap the file to find out the blkno to read from and
686 		 * how much we can read in one i/o.  if bmap returns an error,
687 		 * skip the rest of the top-level i/o.
688 		 */
689 
690 		lbn = offset >> fs_bshift;
691 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
692 		if (error) {
693 			UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%jx -> %jd",
694 			    lbn,error,0,0);
695 			skipbytes += bytes;
696 			bytes = 0;
697 			goto loopdone;
698 		}
699 
700 		/*
701 		 * see how many pages can be read with this i/o.
702 		 * reduce the i/o size if necessary to avoid
703 		 * overwriting pages with valid data.
704 		 */
705 
706 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
707 		    bytes);
708 		if (offset + iobytes > round_page(offset)) {
709 			int pcount;
710 
711 			pcount = 1;
712 			while (pidx + pcount < npages &&
713 			    pgs[pidx + pcount]->flags & PG_FAKE) {
714 				pcount++;
715 			}
716 			iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
717 			    (offset - trunc_page(offset)));
718 		}
719 
720 		/*
721 		 * if this block isn't allocated, zero it instead of
722 		 * reading it.  unless we are going to allocate blocks,
723 		 * mark the pages we zeroed PG_RDONLY.
724 		 */
725 
726 		if (blkno == (daddr_t)-1) {
727 			int holepages = (round_page(offset + iobytes) -
728 			    trunc_page(offset)) >> PAGE_SHIFT;
729 			UVMHIST_LOG(ubchist, "lbn 0x%jx -> HOLE", lbn,0,0,0);
730 
731 			sawhole = true;
732 			memset((char *)kva + (offset - startoffset), 0,
733 			    iobytes);
734 			skipbytes += iobytes;
735 
736 			if (!blockalloc) {
737 				rw_enter(uobj->vmobjlock, RW_WRITER);
738 				for (i = 0; i < holepages; i++) {
739 					pgs[pidx + i]->flags |= PG_RDONLY;
740 				}
741 				rw_exit(uobj->vmobjlock);
742 			}
743 			continue;
744 		}
745 
746 		/*
747 		 * allocate a sub-buf for this piece of the i/o
748 		 * (or just use mbp if there's only 1 piece),
749 		 * and start it going.
750 		 */
751 
752 		if (offset == startoffset && iobytes == bytes) {
753 			bp = mbp;
754 		} else {
755 			UVMHIST_LOG(ubchist, "vp %#jx bp %#jx num now %jd",
756 			    (uintptr_t)vp, (uintptr_t)bp, vp->v_numoutput, 0);
757 			bp = getiobuf(vp, true);
758 			nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
759 		}
760 		bp->b_lblkno = 0;
761 
762 		/* adjust physical blkno for partial blocks */
763 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
764 		    dev_bshift);
765 
766 		UVMHIST_LOG(ubchist,
767 		    "bp %#jx offset 0x%x bcount 0x%x blkno 0x%x",
768 		    (uintptr_t)bp, offset, bp->b_bcount, bp->b_blkno);
769 
770 		VOP_STRATEGY(devvp, bp);
771 	}
772 
773 loopdone:
774 	nestiobuf_done(mbp, skipbytes, error);
775 	if (async) {
776 		UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
777 		return 0;
778 	}
779 	if (bp != NULL) {
780 		error = biowait(mbp);
781 	}
782 
783 	/* Remove the mapping (make KVA available as soon as possible) */
784 	uvm_pagermapout(kva, npages);
785 
786 	/*
787 	 * if this we encountered a hole then we have to do a little more work.
788 	 * for read faults, we marked the page PG_RDONLY so that future
789 	 * write accesses to the page will fault again.
790 	 * for write faults, we must make sure that the backing store for
791 	 * the page is completely allocated while the pages are locked.
792 	 */
793 
794 	if (!error && sawhole && blockalloc) {
795 		error = GOP_ALLOC(vp, startoffset,
796 		    npages << PAGE_SHIFT, 0, cred);
797 		UVMHIST_LOG(ubchist, "gop_alloc off 0x%jx/0x%jx -> %jd",
798 		    startoffset, npages << PAGE_SHIFT, error,0);
799 		if (!error) {
800 			rw_enter(uobj->vmobjlock, RW_WRITER);
801 			for (i = 0; i < npages; i++) {
802 				struct vm_page *pg = pgs[i];
803 
804 				if (pg == NULL) {
805 					continue;
806 				}
807 				pg->flags &= ~PG_RDONLY;
808 				uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
809 				UVMHIST_LOG(ubchist, "mark dirty pg %#jx",
810 				    (uintptr_t)pg, 0, 0, 0);
811 			}
812 			rw_exit(uobj->vmobjlock);
813 		}
814 	}
815 
816 	putiobuf(mbp);
817 	return error;
818 }
819 
820 /*
821  * generic VM putpages routine.
822  * Write the given range of pages to backing store.
823  *
824  * => "offhi == 0" means flush all pages at or after "offlo".
825  * => object should be locked by caller.  we return with the
826  *      object unlocked.
827  * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
828  *	thus, a caller might want to unlock higher level resources
829  *	(e.g. vm_map) before calling flush.
830  * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, we will not block
831  * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
832  *
833  * note on "cleaning" object and PG_BUSY pages:
834  *	this routine is holding the lock on the object.   the only time
835  *	that it can run into a PG_BUSY page that it does not own is if
836  *	some other process has started I/O on the page (e.g. either
837  *	a pagein, or a pageout).  if the PG_BUSY page is being paged
838  *	in, then it can not be dirty (!UVM_PAGE_STATUS_CLEAN) because no
839  *	one has	had a chance to modify it yet.  if the PG_BUSY page is
840  *	being paged out then it means that someone else has already started
841  *	cleaning the page for us (how nice!).  in this case, if we
842  *	have syncio specified, then after we make our pass through the
843  *	object we need to wait for the other PG_BUSY pages to clear
844  *	off (i.e. we need to do an iosync).   also note that once a
845  *	page is PG_BUSY it must stay in its object until it is un-busyed.
846  */
847 
848 int
genfs_putpages(void * v)849 genfs_putpages(void *v)
850 {
851 	struct vop_putpages_args /* {
852 		struct vnode *a_vp;
853 		voff_t a_offlo;
854 		voff_t a_offhi;
855 		int a_flags;
856 	} */ * const ap = v;
857 
858 	return genfs_do_putpages(ap->a_vp, ap->a_offlo, ap->a_offhi,
859 	    ap->a_flags, NULL);
860 }
861 
862 int
genfs_do_putpages(struct vnode * vp,off_t startoff,off_t endoff,int origflags,struct vm_page ** busypg)863 genfs_do_putpages(struct vnode *vp, off_t startoff, off_t endoff,
864     int origflags, struct vm_page **busypg)
865 {
866 	struct uvm_object * const uobj = &vp->v_uobj;
867 	krwlock_t * const slock = uobj->vmobjlock;
868 	off_t nextoff;
869 	int i, error, npages, nback;
870 	int freeflag;
871 	/*
872 	 * This array is larger than it should so that it's size is constant.
873 	 * The right size is MAXPAGES.
874 	 */
875 	struct vm_page *pgs[MAXPHYS / MIN_PAGE_SIZE];
876 #define MAXPAGES (MAXPHYS / PAGE_SIZE)
877 	struct vm_page *pg, *tpg;
878 	struct uvm_page_array a;
879 	bool wasclean, needs_clean;
880 	bool async = (origflags & PGO_SYNCIO) == 0;
881 	bool pagedaemon = curlwp == uvm.pagedaemon_lwp;
882 	struct mount *trans_mp;
883 	int flags;
884 	bool modified;		/* if we write out any pages */
885 	bool holds_wapbl;
886 	bool cleanall;		/* try to pull off from the syncer's list */
887 	bool onworklst;
888 	bool nodirty;
889 	const bool dirtyonly = (origflags & (PGO_DEACTIVATE|PGO_FREE)) == 0;
890 
891 	UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
892 
893 	KASSERT(origflags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
894 	KASSERT((startoff & PAGE_MASK) == 0);
895 	KASSERT((endoff & PAGE_MASK) == 0);
896 	KASSERT(startoff < endoff || endoff == 0);
897 	KASSERT(rw_write_held(slock));
898 
899 	UVMHIST_LOG(ubchist, "vp %#jx pages %jd off 0x%jx len 0x%jx",
900 	    (uintptr_t)vp, uobj->uo_npages, startoff, endoff - startoff);
901 
902 #ifdef DIAGNOSTIC
903 	if ((origflags & PGO_JOURNALLOCKED) && vp->v_mount->mnt_wapbl)
904                 WAPBL_JLOCK_ASSERT(vp->v_mount);
905 #endif
906 
907 	trans_mp = NULL;
908 	holds_wapbl = false;
909 
910 retry:
911 	modified = false;
912 	flags = origflags;
913 
914 	/*
915 	 * shortcut if we have no pages to process.
916 	 */
917 
918 	nodirty = uvm_obj_clean_p(uobj);
919 #ifdef DIAGNOSTIC
920 	mutex_enter(vp->v_interlock);
921 	KASSERT((vp->v_iflag & VI_ONWORKLST) != 0 || nodirty);
922 	mutex_exit(vp->v_interlock);
923 #endif
924 	if (uobj->uo_npages == 0 || (dirtyonly && nodirty)) {
925 		mutex_enter(vp->v_interlock);
926 		if (vp->v_iflag & VI_ONWORKLST && LIST_EMPTY(&vp->v_dirtyblkhd)) {
927 			vn_syncer_remove_from_worklist(vp);
928 		}
929 		mutex_exit(vp->v_interlock);
930 		if (trans_mp) {
931 			if (holds_wapbl)
932 				WAPBL_END(trans_mp);
933 			fstrans_done(trans_mp);
934 		}
935 		rw_exit(slock);
936 		return (0);
937 	}
938 
939 	/*
940 	 * the vnode has pages, set up to process the request.
941 	 */
942 
943 	if (trans_mp == NULL && (flags & PGO_CLEANIT) != 0) {
944 		if (pagedaemon) {
945 			/* Pagedaemon must not sleep here. */
946 			trans_mp = vp->v_mount;
947 			error = fstrans_start_nowait(trans_mp);
948 			if (error) {
949 				rw_exit(slock);
950 				return error;
951 			}
952 		} else {
953 			/*
954 			 * Cannot use vdeadcheck() here as this operation
955 			 * usually gets used from VOP_RECLAIM().  Test for
956 			 * change of v_mount instead and retry on change.
957 			 */
958 			rw_exit(slock);
959 			trans_mp = vp->v_mount;
960 			fstrans_start(trans_mp);
961 			if (vp->v_mount != trans_mp) {
962 				fstrans_done(trans_mp);
963 				trans_mp = NULL;
964 			} else {
965 				holds_wapbl = (trans_mp->mnt_wapbl &&
966 				    (origflags & PGO_JOURNALLOCKED) == 0);
967 				if (holds_wapbl) {
968 					error = WAPBL_BEGIN(trans_mp);
969 					if (error) {
970 						fstrans_done(trans_mp);
971 						return error;
972 					}
973 				}
974 			}
975 			rw_enter(slock, RW_WRITER);
976 			goto retry;
977 		}
978 	}
979 
980 	error = 0;
981 	wasclean = uvm_obj_nowriteback_p(uobj);
982 	nextoff = startoff;
983 	if (endoff == 0 || flags & PGO_ALLPAGES) {
984 		endoff = trunc_page(LLONG_MAX);
985 	}
986 
987 	/*
988 	 * if this vnode is known not to have dirty pages,
989 	 * don't bother to clean it out.
990 	 */
991 
992 	if (nodirty) {
993 		/* We handled the dirtyonly && nodirty case above.  */
994 		KASSERT(!dirtyonly);
995 		flags &= ~PGO_CLEANIT;
996 	}
997 
998 	/*
999 	 * start the loop to scan pages.
1000 	 */
1001 
1002 	cleanall = true;
1003 	freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
1004 	uvm_page_array_init(&a, uobj, dirtyonly ? (UVM_PAGE_ARRAY_FILL_DIRTY |
1005 	    (!async ? UVM_PAGE_ARRAY_FILL_WRITEBACK : 0)) : 0);
1006 	for (;;) {
1007 		bool pgprotected;
1008 
1009 		/*
1010 		 * if !dirtyonly, iterate over all resident pages in the range.
1011 		 *
1012 		 * if dirtyonly, only possibly dirty pages are interesting.
1013 		 * however, if we are asked to sync for integrity, we should
1014 		 * wait on pages being written back by other threads as well.
1015 		 */
1016 
1017 		pg = uvm_page_array_fill_and_peek(&a, nextoff, 0);
1018 		if (pg == NULL) {
1019 			break;
1020 		}
1021 
1022 		KASSERT(pg->uobject == uobj);
1023 		KASSERT((pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
1024 		    (pg->flags & (PG_BUSY)) != 0);
1025 		KASSERT(pg->offset >= startoff);
1026 		KASSERT(pg->offset >= nextoff);
1027 		KASSERT(!dirtyonly ||
1028 		    uvm_pagegetdirty(pg) != UVM_PAGE_STATUS_CLEAN ||
1029 		    uvm_obj_page_writeback_p(pg));
1030 
1031 		if (pg->offset >= endoff) {
1032 			break;
1033 		}
1034 
1035 		/*
1036 		 * a preempt point.
1037 		 */
1038 
1039 		if (preempt_needed()) {
1040 			nextoff = pg->offset; /* visit this page again */
1041 			rw_exit(slock);
1042 			preempt();
1043 			/*
1044 			 * as we dropped the object lock, our cached pages can
1045 			 * be stale.
1046 			 */
1047 			uvm_page_array_clear(&a);
1048 			rw_enter(slock, RW_WRITER);
1049 			continue;
1050 		}
1051 
1052 		/*
1053 		 * if the current page is busy, wait for it to become unbusy.
1054 		 */
1055 
1056 		if ((pg->flags & PG_BUSY) != 0) {
1057 			UVMHIST_LOG(ubchist, "busy %#jx", (uintptr_t)pg,
1058 			   0, 0, 0);
1059 			if ((pg->flags & (PG_RELEASED|PG_PAGEOUT)) != 0
1060 			    && (flags & PGO_BUSYFAIL) != 0) {
1061 				UVMHIST_LOG(ubchist, "busyfail %#jx",
1062 				    (uintptr_t)pg, 0, 0, 0);
1063 				error = EDEADLK;
1064 				if (busypg != NULL)
1065 					*busypg = pg;
1066 				break;
1067 			}
1068 			if (pagedaemon) {
1069 				/*
1070 				 * someone has taken the page while we
1071 				 * dropped the lock for fstrans_start.
1072 				 */
1073 				break;
1074 			}
1075 			/*
1076 			 * don't bother to wait on other's activities
1077 			 * unless we are asked to sync for integrity.
1078 			 */
1079 			if (!async && (flags & PGO_RECLAIM) == 0) {
1080 				wasclean = false;
1081 				nextoff = pg->offset + PAGE_SIZE;
1082 				uvm_page_array_advance(&a);
1083 				continue;
1084 			}
1085 			nextoff = pg->offset; /* visit this page again */
1086 			uvm_pagewait(pg, slock, "genput");
1087 			/*
1088 			 * as we dropped the object lock, our cached pages can
1089 			 * be stale.
1090 			 */
1091 			uvm_page_array_clear(&a);
1092 			rw_enter(slock, RW_WRITER);
1093 			continue;
1094 		}
1095 
1096 		nextoff = pg->offset + PAGE_SIZE;
1097 		uvm_page_array_advance(&a);
1098 
1099 		/*
1100 		 * if we're freeing, remove all mappings of the page now.
1101 		 * if we're cleaning, check if the page is needs to be cleaned.
1102 		 */
1103 
1104 		pgprotected = false;
1105 		if (flags & PGO_FREE) {
1106 			pmap_page_protect(pg, VM_PROT_NONE);
1107 			pgprotected = true;
1108 		} else if (flags & PGO_CLEANIT) {
1109 
1110 			/*
1111 			 * if we still have some hope to pull this vnode off
1112 			 * from the syncer queue, write-protect the page.
1113 			 */
1114 
1115 			if (cleanall && wasclean) {
1116 
1117 				/*
1118 				 * uobj pages get wired only by uvm_fault
1119 				 * where uobj is locked.
1120 				 */
1121 
1122 				if (pg->wire_count == 0) {
1123 					pmap_page_protect(pg,
1124 					    VM_PROT_READ|VM_PROT_EXECUTE);
1125 					pgprotected = true;
1126 				} else {
1127 					cleanall = false;
1128 				}
1129 			}
1130 		}
1131 
1132 		if (flags & PGO_CLEANIT) {
1133 			needs_clean = uvm_pagecheckdirty(pg, pgprotected);
1134 		} else {
1135 			needs_clean = false;
1136 		}
1137 
1138 		/*
1139 		 * if we're cleaning, build a cluster.
1140 		 * the cluster will consist of pages which are currently dirty.
1141 		 * if not cleaning, just operate on the one page.
1142 		 */
1143 
1144 		if (needs_clean) {
1145 			wasclean = false;
1146 			memset(pgs, 0, sizeof(pgs));
1147 			pg->flags |= PG_BUSY;
1148 			UVM_PAGE_OWN(pg, "genfs_putpages");
1149 
1150 			/*
1151 			 * let the fs constrain the offset range of the cluster.
1152 			 * we additionally constrain the range here such that
1153 			 * it fits in the "pgs" pages array.
1154 			 */
1155 
1156 			off_t fslo, fshi, genlo, lo, off = pg->offset;
1157 			GOP_PUTRANGE(vp, off, &fslo, &fshi);
1158 			KASSERT(fslo == trunc_page(fslo));
1159 			KASSERT(fslo <= off);
1160 			KASSERT(fshi == trunc_page(fshi));
1161 			KASSERT(fshi == 0 || off < fshi);
1162 
1163 			if (off > MAXPHYS / 2)
1164 				genlo = trunc_page(off - (MAXPHYS / 2));
1165 			else
1166 				genlo = 0;
1167 			lo = MAX(fslo, genlo);
1168 
1169 			/*
1170 			 * first look backward.
1171 			 */
1172 
1173 			npages = (off - lo) >> PAGE_SHIFT;
1174 			nback = npages;
1175 			uvn_findpages(uobj, off - PAGE_SIZE, &nback,
1176 			    &pgs[0], NULL,
1177 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
1178 			if (nback) {
1179 				memmove(&pgs[0], &pgs[npages - nback],
1180 				    nback * sizeof(pgs[0]));
1181 				if (npages - nback < nback)
1182 					memset(&pgs[nback], 0,
1183 					    (npages - nback) * sizeof(pgs[0]));
1184 				else
1185 					memset(&pgs[npages - nback], 0,
1186 					    nback * sizeof(pgs[0]));
1187 			}
1188 
1189 			/*
1190 			 * then plug in our page of interest.
1191 			 */
1192 
1193 			pgs[nback] = pg;
1194 
1195 			/*
1196 			 * then look forward to fill in the remaining space in
1197 			 * the array of pages.
1198 			 *
1199 			 * pass our cached array of pages so that hopefully
1200 			 * uvn_findpages can find some good pages in it.
1201 			 * the array a was filled above with the one of
1202 			 * following sets of flags:
1203 			 *	0
1204 			 *	UVM_PAGE_ARRAY_FILL_DIRTY
1205 			 *	UVM_PAGE_ARRAY_FILL_DIRTY|WRITEBACK
1206 			 *
1207 			 * XXX this is fragile but it'll work: the array
1208 			 * was earlier filled sparsely, but UFP_DIRTYONLY
1209 			 * implies dense.  see corresponding comment in
1210 			 * uvn_findpages().
1211 			 */
1212 
1213 			npages = MAXPAGES - nback - 1;
1214 			if (fshi)
1215 				npages = MIN(npages,
1216 					     (fshi - off - 1) >> PAGE_SHIFT);
1217 			uvn_findpages(uobj, off + PAGE_SIZE, &npages,
1218 			    &pgs[nback + 1], &a,
1219 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
1220 			npages += nback + 1;
1221 		} else {
1222 			pgs[0] = pg;
1223 			npages = 1;
1224 			nback = 0;
1225 		}
1226 
1227 		/*
1228 		 * apply FREE or DEACTIVATE options if requested.
1229 		 */
1230 
1231 		for (i = 0; i < npages; i++) {
1232 			tpg = pgs[i];
1233 			KASSERT(tpg->uobject == uobj);
1234 			KASSERT(i == 0 ||
1235 			    pgs[i-1]->offset + PAGE_SIZE == tpg->offset);
1236 			KASSERT(!needs_clean || uvm_pagegetdirty(pgs[i]) !=
1237 			    UVM_PAGE_STATUS_DIRTY);
1238 			if (needs_clean) {
1239 				/*
1240 				 * mark pages as WRITEBACK so that concurrent
1241 				 * fsync can find and wait for our activities.
1242 				 */
1243 				uvm_obj_page_set_writeback(pgs[i]);
1244 			}
1245 			if (tpg->offset < startoff || tpg->offset >= endoff)
1246 				continue;
1247 			if (flags & PGO_DEACTIVATE && tpg->wire_count == 0) {
1248 				uvm_pagelock(tpg);
1249 				uvm_pagedeactivate(tpg);
1250 				uvm_pageunlock(tpg);
1251 			} else if (flags & PGO_FREE) {
1252 				pmap_page_protect(tpg, VM_PROT_NONE);
1253 				if (tpg->flags & PG_BUSY) {
1254 					tpg->flags |= freeflag;
1255 					if (pagedaemon) {
1256 						uvm_pageout_start(1);
1257 						uvm_pagelock(tpg);
1258 						uvm_pagedequeue(tpg);
1259 						uvm_pageunlock(tpg);
1260 					}
1261 				} else {
1262 
1263 					/*
1264 					 * ``page is not busy''
1265 					 * implies that npages is 1
1266 					 * and needs_clean is false.
1267 					 */
1268 
1269 					KASSERT(npages == 1);
1270 					KASSERT(!needs_clean);
1271 					KASSERT(pg == tpg);
1272 					KASSERT(nextoff ==
1273 					    tpg->offset + PAGE_SIZE);
1274 					uvm_pagefree(tpg);
1275 					if (pagedaemon)
1276 						uvmexp.pdfreed++;
1277 				}
1278 			}
1279 		}
1280 		if (needs_clean) {
1281 			modified = true;
1282 			KASSERT(nextoff == pg->offset + PAGE_SIZE);
1283 			KASSERT(nback < npages);
1284 			nextoff = pg->offset + ((npages - nback) << PAGE_SHIFT);
1285 			KASSERT(pgs[nback] == pg);
1286 			KASSERT(nextoff == pgs[npages - 1]->offset + PAGE_SIZE);
1287 
1288 			/*
1289 			 * start the i/o.
1290 			 */
1291 			rw_exit(slock);
1292 			error = GOP_WRITE(vp, pgs, npages, flags);
1293 			/*
1294 			 * as we dropped the object lock, our cached pages can
1295 			 * be stale.
1296 			 */
1297 			uvm_page_array_clear(&a);
1298 			rw_enter(slock, RW_WRITER);
1299 			if (error) {
1300 				break;
1301 			}
1302 		}
1303 	}
1304 	uvm_page_array_fini(&a);
1305 
1306 	/*
1307 	 * update ctime/mtime if the modification we started writing out might
1308 	 * be from mmap'ed write.
1309 	 *
1310 	 * this is necessary when an application keeps a file mmaped and
1311 	 * repeatedly modifies it via the window.  note that, because we
1312 	 * don't always write-protect pages when cleaning, such modifications
1313 	 * might not involve any page faults.
1314 	 */
1315 
1316 	mutex_enter(vp->v_interlock);
1317 	if (modified && (vp->v_iflag & VI_WRMAP) != 0 &&
1318 	    (vp->v_type != VBLK ||
1319 	    (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
1320 		GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED);
1321 	}
1322 
1323 	/*
1324 	 * if we no longer have any possibly dirty pages, take us off the
1325 	 * syncer list.
1326 	 */
1327 
1328 	if ((vp->v_iflag & VI_ONWORKLST) != 0 && uvm_obj_clean_p(uobj) &&
1329 	    LIST_EMPTY(&vp->v_dirtyblkhd)) {
1330 		vn_syncer_remove_from_worklist(vp);
1331 	}
1332 
1333 	/* Wait for output to complete. */
1334 	rw_exit(slock);
1335 	if (!wasclean && !async && vp->v_numoutput != 0) {
1336 		while (vp->v_numoutput != 0)
1337 			cv_wait(&vp->v_cv, vp->v_interlock);
1338 	}
1339 	onworklst = (vp->v_iflag & VI_ONWORKLST) != 0;
1340 	mutex_exit(vp->v_interlock);
1341 
1342 	if ((flags & PGO_RECLAIM) != 0 && onworklst) {
1343 		/*
1344 		 * in the case of PGO_RECLAIM, ensure to make the vnode clean.
1345 		 * retrying is not a big deal because, in many cases,
1346 		 * uobj->uo_npages is already 0 here.
1347 		 */
1348 		rw_enter(slock, RW_WRITER);
1349 		goto retry;
1350 	}
1351 
1352 	if (trans_mp) {
1353 		if (holds_wapbl)
1354 			WAPBL_END(trans_mp);
1355 		fstrans_done(trans_mp);
1356 	}
1357 
1358 	return (error);
1359 }
1360 
1361 /*
1362  * Default putrange method for file systems that do not care
1363  * how many pages are given to one GOP_WRITE() call.
1364  */
1365 void
genfs_gop_putrange(struct vnode * vp,off_t off,off_t * lop,off_t * hip)1366 genfs_gop_putrange(struct vnode *vp, off_t off, off_t *lop, off_t *hip)
1367 {
1368 
1369 	*lop = 0;
1370 	*hip = 0;
1371 }
1372 
1373 int
genfs_gop_write(struct vnode * vp,struct vm_page ** pgs,int npages,int flags)1374 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1375 {
1376 	off_t off;
1377 	vaddr_t kva;
1378 	size_t len;
1379 	int error;
1380 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1381 
1382 	UVMHIST_LOG(ubchist, "vp %#jx pgs %#jx npages %jd flags 0x%jx",
1383 	    (uintptr_t)vp, (uintptr_t)pgs, npages, flags);
1384 
1385 	off = pgs[0]->offset;
1386 	kva = uvm_pagermapin(pgs, npages,
1387 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1388 	len = npages << PAGE_SHIFT;
1389 
1390 	error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1391 			    uvm_aio_aiodone);
1392 
1393 	return error;
1394 }
1395 
1396 /*
1397  * genfs_gop_write_rwmap:
1398  *
1399  * a variant of genfs_gop_write.  it's used by UDF for its directory buffers.
1400  * this maps pages with PROT_WRITE so that VOP_STRATEGY can modifies
1401  * the contents before writing it out to the underlying storage.
1402  */
1403 
1404 int
genfs_gop_write_rwmap(struct vnode * vp,struct vm_page ** pgs,int npages,int flags)1405 genfs_gop_write_rwmap(struct vnode *vp, struct vm_page **pgs, int npages,
1406     int flags)
1407 {
1408 	off_t off;
1409 	vaddr_t kva;
1410 	size_t len;
1411 	int error;
1412 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1413 
1414 	UVMHIST_LOG(ubchist, "vp %#jx pgs %#jx npages %jd flags 0x%jx",
1415 	    (uintptr_t)vp, (uintptr_t)pgs, npages, flags);
1416 
1417 	off = pgs[0]->offset;
1418 	kva = uvm_pagermapin(pgs, npages,
1419 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1420 	len = npages << PAGE_SHIFT;
1421 
1422 	error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1423 			    uvm_aio_aiodone);
1424 
1425 	return error;
1426 }
1427 
1428 /*
1429  * Backend routine for doing I/O to vnode pages.  Pages are already locked
1430  * and mapped into kernel memory.  Here we just look up the underlying
1431  * device block addresses and call the strategy routine.
1432  */
1433 
1434 static int
genfs_do_io(struct vnode * vp,off_t off,vaddr_t kva,size_t len,int flags,enum uio_rw rw,void (* iodone)(struct buf *))1435 genfs_do_io(struct vnode *vp, off_t off, vaddr_t kva, size_t len, int flags,
1436     enum uio_rw rw, void (*iodone)(struct buf *))
1437 {
1438 	int s, error;
1439 	int fs_bshift, dev_bshift;
1440 	off_t eof, offset, startoffset;
1441 	size_t bytes, iobytes, skipbytes;
1442 	struct buf *mbp, *bp;
1443 	const bool async = (flags & PGO_SYNCIO) == 0;
1444 	const bool lazy = (flags & PGO_LAZY) == 0;
1445 	const bool iowrite = rw == UIO_WRITE;
1446 	const int brw = iowrite ? B_WRITE : B_READ;
1447 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1448 
1449 	UVMHIST_LOG(ubchist, "vp %#jx kva %#jx len 0x%jx flags 0x%jx",
1450 	    (uintptr_t)vp, (uintptr_t)kva, len, flags);
1451 
1452 	KASSERT(vp->v_size != VSIZENOTSET);
1453 	KASSERT(vp->v_writesize != VSIZENOTSET);
1454 	KASSERTMSG(vp->v_size <= vp->v_writesize, "vp=%p"
1455 	    " v_size=0x%llx v_writesize=0x%llx", vp,
1456 	    (unsigned long long)vp->v_size,
1457 	    (unsigned long long)vp->v_writesize);
1458 	GOP_SIZE(vp, vp->v_writesize, &eof, 0);
1459 	if (vp->v_type != VBLK) {
1460 		fs_bshift = vp->v_mount->mnt_fs_bshift;
1461 		dev_bshift = vp->v_mount->mnt_dev_bshift;
1462 	} else {
1463 		fs_bshift = DEV_BSHIFT;
1464 		dev_bshift = DEV_BSHIFT;
1465 	}
1466 	error = 0;
1467 	startoffset = off;
1468 	bytes = MIN(len, eof - startoffset);
1469 	skipbytes = 0;
1470 	KASSERT(bytes != 0);
1471 
1472 	if (iowrite) {
1473 		/*
1474 		 * why += 2?
1475 		 * 1 for biodone, 1 for uvm_aio_aiodone.
1476 		 */
1477 		mutex_enter(vp->v_interlock);
1478 		vp->v_numoutput += 2;
1479 		mutex_exit(vp->v_interlock);
1480 	}
1481 	mbp = getiobuf(vp, true);
1482 	UVMHIST_LOG(ubchist, "vp %#jx mbp %#jx num now %jd bytes 0x%jx",
1483 	    (uintptr_t)vp, (uintptr_t)mbp, vp->v_numoutput, bytes);
1484 	mbp->b_bufsize = len;
1485 	mbp->b_data = (void *)kva;
1486 	mbp->b_resid = mbp->b_bcount = bytes;
1487 	mbp->b_cflags |= BC_BUSY | BC_AGE;
1488 	if (async) {
1489 		mbp->b_flags = brw | B_ASYNC;
1490 		mbp->b_iodone = iodone;
1491 	} else {
1492 		mbp->b_flags = brw;
1493 		mbp->b_iodone = NULL;
1494 	}
1495 	if (curlwp == uvm.pagedaemon_lwp)
1496 		BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
1497 	else if (async || lazy)
1498 		BIO_SETPRIO(mbp, BPRIO_TIMENONCRITICAL);
1499 	else
1500 		BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
1501 
1502 	bp = NULL;
1503 	for (offset = startoffset;
1504 	    bytes > 0;
1505 	    offset += iobytes, bytes -= iobytes) {
1506 		int run;
1507 		daddr_t lbn, blkno;
1508 		struct vnode *devvp;
1509 
1510 		/*
1511 		 * bmap the file to find out the blkno to read from and
1512 		 * how much we can read in one i/o.  if bmap returns an error,
1513 		 * skip the rest of the top-level i/o.
1514 		 */
1515 
1516 		lbn = offset >> fs_bshift;
1517 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
1518 		if (error) {
1519 			UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%jx -> %jd",
1520 			    lbn, error, 0, 0);
1521 			skipbytes += bytes;
1522 			bytes = 0;
1523 			goto loopdone;
1524 		}
1525 
1526 		/*
1527 		 * see how many pages can be read with this i/o.
1528 		 * reduce the i/o size if necessary to avoid
1529 		 * overwriting pages with valid data.
1530 		 */
1531 
1532 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
1533 		    bytes);
1534 
1535 		/*
1536 		 * if this block isn't allocated, zero it instead of
1537 		 * reading it.  unless we are going to allocate blocks,
1538 		 * mark the pages we zeroed PG_RDONLY.
1539 		 */
1540 
1541 		if (blkno == (daddr_t)-1) {
1542 			if (!iowrite) {
1543 				memset((char *)kva + (offset - startoffset), 0,
1544 				    iobytes);
1545 			}
1546 			skipbytes += iobytes;
1547 			continue;
1548 		}
1549 
1550 		/*
1551 		 * allocate a sub-buf for this piece of the i/o
1552 		 * (or just use mbp if there's only 1 piece),
1553 		 * and start it going.
1554 		 */
1555 
1556 		if (offset == startoffset && iobytes == bytes) {
1557 			bp = mbp;
1558 		} else {
1559 			UVMHIST_LOG(ubchist, "vp %#jx bp %#jx num now %jd",
1560 			    (uintptr_t)vp, (uintptr_t)bp, vp->v_numoutput, 0);
1561 			bp = getiobuf(vp, true);
1562 			nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
1563 		}
1564 		bp->b_lblkno = 0;
1565 
1566 		/* adjust physical blkno for partial blocks */
1567 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
1568 		    dev_bshift);
1569 
1570 		UVMHIST_LOG(ubchist,
1571 		    "bp %#jx offset 0x%jx bcount 0x%jx blkno 0x%jx",
1572 		    (uintptr_t)bp, offset, bp->b_bcount, bp->b_blkno);
1573 
1574 		VOP_STRATEGY(devvp, bp);
1575 	}
1576 
1577 loopdone:
1578 	if (skipbytes) {
1579 		UVMHIST_LOG(ubchist, "skipbytes %jd", skipbytes, 0,0,0);
1580 	}
1581 	nestiobuf_done(mbp, skipbytes, error);
1582 	if (async) {
1583 		UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
1584 		return (0);
1585 	}
1586 	UVMHIST_LOG(ubchist, "waiting for mbp %#jx", (uintptr_t)mbp, 0, 0, 0);
1587 	error = biowait(mbp);
1588 	s = splbio();
1589 	(*iodone)(mbp);
1590 	splx(s);
1591 	UVMHIST_LOG(ubchist, "returning, error %jd", error, 0, 0, 0);
1592 	return (error);
1593 }
1594 
1595 int
genfs_compat_getpages(void * v)1596 genfs_compat_getpages(void *v)
1597 {
1598 	struct vop_getpages_args /* {
1599 		struct vnode *a_vp;
1600 		voff_t a_offset;
1601 		struct vm_page **a_m;
1602 		int *a_count;
1603 		int a_centeridx;
1604 		vm_prot_t a_access_type;
1605 		int a_advice;
1606 		int a_flags;
1607 	} */ *ap = v;
1608 
1609 	off_t origoffset;
1610 	struct vnode *vp = ap->a_vp;
1611 	struct uvm_object *uobj = &vp->v_uobj;
1612 	struct vm_page *pg, **pgs;
1613 	vaddr_t kva;
1614 	int i, error, orignpages, npages;
1615 	struct iovec iov;
1616 	struct uio uio;
1617 	kauth_cred_t cred = curlwp->l_cred;
1618 	const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
1619 
1620 	error = 0;
1621 	origoffset = ap->a_offset;
1622 	orignpages = *ap->a_count;
1623 	pgs = ap->a_m;
1624 
1625 	if (ap->a_flags & PGO_LOCKED) {
1626 		uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m, NULL,
1627 		    UFP_NOWAIT|UFP_NOALLOC| (memwrite ? UFP_NORDONLY : 0));
1628 
1629 		error = ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0;
1630 		return error;
1631 	}
1632 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
1633 		rw_exit(uobj->vmobjlock);
1634 		return EINVAL;
1635 	}
1636 	if ((ap->a_flags & PGO_SYNCIO) == 0) {
1637 		rw_exit(uobj->vmobjlock);
1638 		return 0;
1639 	}
1640 	npages = orignpages;
1641 	uvn_findpages(uobj, origoffset, &npages, pgs, NULL, UFP_ALL);
1642 	rw_exit(uobj->vmobjlock);
1643 	kva = uvm_pagermapin(pgs, npages,
1644 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1645 	for (i = 0; i < npages; i++) {
1646 		pg = pgs[i];
1647 		if ((pg->flags & PG_FAKE) == 0) {
1648 			continue;
1649 		}
1650 		iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
1651 		iov.iov_len = PAGE_SIZE;
1652 		uio.uio_iov = &iov;
1653 		uio.uio_iovcnt = 1;
1654 		uio.uio_offset = origoffset + (i << PAGE_SHIFT);
1655 		uio.uio_rw = UIO_READ;
1656 		uio.uio_resid = PAGE_SIZE;
1657 		UIO_SETUP_SYSSPACE(&uio);
1658 		/* XXX vn_lock */
1659 		error = VOP_READ(vp, &uio, 0, cred);
1660 		if (error) {
1661 			break;
1662 		}
1663 		if (uio.uio_resid) {
1664 			memset(iov.iov_base, 0, uio.uio_resid);
1665 		}
1666 	}
1667 	uvm_pagermapout(kva, npages);
1668 	rw_enter(uobj->vmobjlock, RW_WRITER);
1669 	for (i = 0; i < npages; i++) {
1670 		pg = pgs[i];
1671 		if (error && (pg->flags & PG_FAKE) != 0) {
1672 			pg->flags |= PG_RELEASED;
1673 		} else {
1674 			uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_UNKNOWN);
1675 			uvm_pagelock(pg);
1676 			uvm_pageactivate(pg);
1677 			uvm_pageunlock(pg);
1678 		}
1679 	}
1680 	if (error) {
1681 		uvm_page_unbusy(pgs, npages);
1682 	}
1683 	rw_exit(uobj->vmobjlock);
1684 	return error;
1685 }
1686 
1687 int
genfs_compat_gop_write(struct vnode * vp,struct vm_page ** pgs,int npages,int flags)1688 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
1689     int flags)
1690 {
1691 	off_t offset;
1692 	struct iovec iov;
1693 	struct uio uio;
1694 	kauth_cred_t cred = curlwp->l_cred;
1695 	struct buf *bp;
1696 	vaddr_t kva;
1697 	int error;
1698 
1699 	offset = pgs[0]->offset;
1700 	kva = uvm_pagermapin(pgs, npages,
1701 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1702 
1703 	iov.iov_base = (void *)kva;
1704 	iov.iov_len = npages << PAGE_SHIFT;
1705 	uio.uio_iov = &iov;
1706 	uio.uio_iovcnt = 1;
1707 	uio.uio_offset = offset;
1708 	uio.uio_rw = UIO_WRITE;
1709 	uio.uio_resid = npages << PAGE_SHIFT;
1710 	UIO_SETUP_SYSSPACE(&uio);
1711 	/* XXX vn_lock */
1712 	error = VOP_WRITE(vp, &uio, 0, cred);
1713 
1714 	mutex_enter(vp->v_interlock);
1715 	vp->v_numoutput++;
1716 	mutex_exit(vp->v_interlock);
1717 
1718 	bp = getiobuf(vp, true);
1719 	bp->b_cflags |= BC_BUSY | BC_AGE;
1720 	bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
1721 	bp->b_data = (char *)kva;
1722 	bp->b_bcount = npages << PAGE_SHIFT;
1723 	bp->b_bufsize = npages << PAGE_SHIFT;
1724 	bp->b_resid = 0;
1725 	bp->b_error = error;
1726 	uvm_aio_aiodone(bp);
1727 	return (error);
1728 }
1729 
1730 /*
1731  * Process a uio using direct I/O.  If we reach a part of the request
1732  * which cannot be processed in this fashion for some reason, just return.
1733  * The caller must handle some additional part of the request using
1734  * buffered I/O before trying direct I/O again.
1735  */
1736 
1737 void
genfs_directio(struct vnode * vp,struct uio * uio,int ioflag)1738 genfs_directio(struct vnode *vp, struct uio *uio, int ioflag)
1739 {
1740 	struct vmspace *vs;
1741 	struct iovec *iov;
1742 	vaddr_t va;
1743 	size_t len;
1744 	const int mask = DEV_BSIZE - 1;
1745 	int error;
1746 	bool need_wapbl = (vp->v_mount && vp->v_mount->mnt_wapbl &&
1747 	    (ioflag & IO_JOURNALLOCKED) == 0);
1748 
1749 #ifdef DIAGNOSTIC
1750 	if ((ioflag & IO_JOURNALLOCKED) && vp->v_mount->mnt_wapbl)
1751                 WAPBL_JLOCK_ASSERT(vp->v_mount);
1752 #endif
1753 
1754 	/*
1755 	 * We only support direct I/O to user space for now.
1756 	 */
1757 
1758 	if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
1759 		return;
1760 	}
1761 
1762 	/*
1763 	 * If the vnode is mapped, we would need to get the getpages lock
1764 	 * to stabilize the bmap, but then we would get into trouble while
1765 	 * locking the pages if the pages belong to this same vnode (or a
1766 	 * multi-vnode cascade to the same effect).  Just fall back to
1767 	 * buffered I/O if the vnode is mapped to avoid this mess.
1768 	 */
1769 
1770 	if (vp->v_vflag & VV_MAPPED) {
1771 		return;
1772 	}
1773 
1774 	if (need_wapbl) {
1775 		error = WAPBL_BEGIN(vp->v_mount);
1776 		if (error)
1777 			return;
1778 	}
1779 
1780 	/*
1781 	 * Do as much of the uio as possible with direct I/O.
1782 	 */
1783 
1784 	vs = uio->uio_vmspace;
1785 	while (uio->uio_resid) {
1786 		iov = uio->uio_iov;
1787 		if (iov->iov_len == 0) {
1788 			uio->uio_iov++;
1789 			uio->uio_iovcnt--;
1790 			continue;
1791 		}
1792 		va = (vaddr_t)iov->iov_base;
1793 		len = MIN(iov->iov_len, genfs_maxdio);
1794 		len &= ~mask;
1795 
1796 		/*
1797 		 * If the next chunk is smaller than DEV_BSIZE or extends past
1798 		 * the current EOF, then fall back to buffered I/O.
1799 		 */
1800 
1801 		if (len == 0 || uio->uio_offset + len > vp->v_size) {
1802 			break;
1803 		}
1804 
1805 		/*
1806 		 * Check alignment.  The file offset must be at least
1807 		 * sector-aligned.  The exact constraint on memory alignment
1808 		 * is very hardware-dependent, but requiring sector-aligned
1809 		 * addresses there too is safe.
1810 		 */
1811 
1812 		if (uio->uio_offset & mask || va & mask) {
1813 			break;
1814 		}
1815 		error = genfs_do_directio(vs, va, len, vp, uio->uio_offset,
1816 					  uio->uio_rw);
1817 		if (error) {
1818 			break;
1819 		}
1820 		iov->iov_base = (char *)iov->iov_base + len;
1821 		iov->iov_len -= len;
1822 		uio->uio_offset += len;
1823 		uio->uio_resid -= len;
1824 	}
1825 
1826 	if (need_wapbl)
1827 		WAPBL_END(vp->v_mount);
1828 }
1829 
1830 /*
1831  * Iodone routine for direct I/O.  We don't do much here since the request is
1832  * always synchronous, so the caller will do most of the work after biowait().
1833  */
1834 
1835 static void
genfs_dio_iodone(struct buf * bp)1836 genfs_dio_iodone(struct buf *bp)
1837 {
1838 
1839 	KASSERT((bp->b_flags & B_ASYNC) == 0);
1840 	if ((bp->b_flags & B_READ) == 0 && (bp->b_cflags & BC_AGE) != 0) {
1841 		mutex_enter(bp->b_objlock);
1842 		vwakeup(bp);
1843 		mutex_exit(bp->b_objlock);
1844 	}
1845 	putiobuf(bp);
1846 }
1847 
1848 /*
1849  * Process one chunk of a direct I/O request.
1850  */
1851 
1852 static int
genfs_do_directio(struct vmspace * vs,vaddr_t uva,size_t len,struct vnode * vp,off_t off,enum uio_rw rw)1853 genfs_do_directio(struct vmspace *vs, vaddr_t uva, size_t len, struct vnode *vp,
1854     off_t off, enum uio_rw rw)
1855 {
1856 	struct vm_map *map;
1857 	struct pmap *upm, *kpm __unused;
1858 	size_t klen = round_page(uva + len) - trunc_page(uva);
1859 	off_t spoff, epoff;
1860 	vaddr_t kva, puva;
1861 	paddr_t pa;
1862 	vm_prot_t prot;
1863 	int error, rv __diagused, poff, koff;
1864 	const int pgoflags = PGO_CLEANIT | PGO_SYNCIO | PGO_JOURNALLOCKED |
1865 		(rw == UIO_WRITE ? PGO_FREE : 0);
1866 
1867 	/*
1868 	 * For writes, verify that this range of the file already has fully
1869 	 * allocated backing store.  If there are any holes, just punt and
1870 	 * make the caller take the buffered write path.
1871 	 */
1872 
1873 	if (rw == UIO_WRITE) {
1874 		daddr_t lbn, elbn, blkno;
1875 		int bsize, bshift, run;
1876 
1877 		bshift = vp->v_mount->mnt_fs_bshift;
1878 		bsize = 1 << bshift;
1879 		lbn = off >> bshift;
1880 		elbn = (off + len + bsize - 1) >> bshift;
1881 		while (lbn < elbn) {
1882 			error = VOP_BMAP(vp, lbn, NULL, &blkno, &run);
1883 			if (error) {
1884 				return error;
1885 			}
1886 			if (blkno == (daddr_t)-1) {
1887 				return ENOSPC;
1888 			}
1889 			lbn += 1 + run;
1890 		}
1891 	}
1892 
1893 	/*
1894 	 * Flush any cached pages for parts of the file that we're about to
1895 	 * access.  If we're writing, invalidate pages as well.
1896 	 */
1897 
1898 	spoff = trunc_page(off);
1899 	epoff = round_page(off + len);
1900 	rw_enter(vp->v_uobj.vmobjlock, RW_WRITER);
1901 	error = VOP_PUTPAGES(vp, spoff, epoff, pgoflags);
1902 	if (error) {
1903 		return error;
1904 	}
1905 
1906 	/*
1907 	 * Wire the user pages and remap them into kernel memory.
1908 	 */
1909 
1910 	prot = rw == UIO_READ ? VM_PROT_READ | VM_PROT_WRITE : VM_PROT_READ;
1911 	error = uvm_vslock(vs, (void *)uva, len, prot);
1912 	if (error) {
1913 		return error;
1914 	}
1915 
1916 	map = &vs->vm_map;
1917 	upm = vm_map_pmap(map);
1918 	kpm = vm_map_pmap(kernel_map);
1919 	puva = trunc_page(uva);
1920 	kva = uvm_km_alloc(kernel_map, klen, atop(puva) & uvmexp.colormask,
1921 	    UVM_KMF_VAONLY | UVM_KMF_WAITVA | UVM_KMF_COLORMATCH);
1922 	for (poff = 0; poff < klen; poff += PAGE_SIZE) {
1923 		rv = pmap_extract(upm, puva + poff, &pa);
1924 		KASSERT(rv);
1925 		pmap_kenter_pa(kva + poff, pa, prot, PMAP_WIRED);
1926 	}
1927 	pmap_update(kpm);
1928 
1929 	/*
1930 	 * Do the I/O.
1931 	 */
1932 
1933 	koff = uva - trunc_page(uva);
1934 	error = genfs_do_io(vp, off, kva + koff, len, PGO_SYNCIO, rw,
1935 			    genfs_dio_iodone);
1936 
1937 	/*
1938 	 * Tear down the kernel mapping.
1939 	 */
1940 
1941 	pmap_kremove(kva, klen);
1942 	pmap_update(kpm);
1943 	uvm_km_free(kernel_map, kva, klen, UVM_KMF_VAONLY);
1944 
1945 	/*
1946 	 * Unwire the user pages.
1947 	 */
1948 
1949 	uvm_vsunlock(vs, (void *)uva, len);
1950 	return error;
1951 }
1952