1 /*
2 * libmad - MPEG audio decoder library
3 * Copyright (C) 2000-2004 Underbit Technologies, Inc.
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 *
19 * $Id: fixed.h,v 1.38 2004/02/17 02:02:03 rob Exp $
20 */
21
22 # ifndef LIBMAD_FIXED_H
23 # define LIBMAD_FIXED_H
24
25 typedef int mad_fixed_t; // must be 32 bits
26 typedef int mad_fixed64hi_t; // must be 32 bits
27 typedef u32int mad_fixed64lo_t; // must be 32 bits
28 typedef vlong mad_fixed64_t;
29
30 # if defined(FPM_FLOAT)
31 typedef double mad_sample_t;
32 # else
33 typedef mad_fixed_t mad_sample_t;
34 # endif
35
36 /*
37 * Fixed-point format: 0xABBBBBBB
38 * A == whole part (sign + 3 bits)
39 * B == fractional part (28 bits)
40 *
41 * Values are signed two's complement, so the effective range is:
42 * 0x80000000 to 0x7fffffff
43 * -8.0 to +7.9999999962747097015380859375
44 *
45 * The smallest representable value is:
46 * 0x00000001 == 0.0000000037252902984619140625 (i.e. about 3.725e-9)
47 *
48 * 28 bits of fractional accuracy represent about
49 * 8.6 digits of decimal accuracy.
50 *
51 * Fixed-point numbers can be added or subtracted as normal
52 * integers, but multiplication requires shifting the 64-bit result
53 * from 56 fractional bits back to 28 (and rounding.)
54 *
55 * Changing the definition of MAD_F_FRACBITS is only partially
56 * supported, and must be done with care.
57 */
58
59 # define MAD_F_FRACBITS 28
60
61 # define MAD_F(x) ((mad_fixed_t) (x))
62
63 # define MAD_F_MIN ((mad_fixed_t) -0x80000000L)
64 # define MAD_F_MAX ((mad_fixed_t) +0x7fffffffL)
65
66 # define MAD_F_ONE MAD_F(0x10000000)
67
68 # define mad_f_tofixed(x) ((mad_fixed_t) \
69 ((x) * (double) (1L << MAD_F_FRACBITS) + 0.5))
70 # define mad_f_todouble(x) ((double) \
71 ((x) / (double) (1L << MAD_F_FRACBITS)))
72
73 # define mad_f_intpart(x) ((x) >> MAD_F_FRACBITS)
74 # define mad_f_fracpart(x) ((x) & ((1L << MAD_F_FRACBITS) - 1))
75 /* (x should be positive) */
76
77 # define mad_f_fromint(x) ((x) << MAD_F_FRACBITS)
78
79 # define mad_f_add(x, y) ((x) + (y))
80 # define mad_f_sub(x, y) ((x) - (y))
81
82 # if defined(FPM_FLOAT)
83 # error "FPM_FLOAT not yet supported"
84
85 # undef MAD_F
86 # define MAD_F(x) mad_f_todouble(x)
87
88 # define mad_f_mul(x, y) ((x) * (y))
89 # define mad_f_scale64
90
91 # undef ASO_ZEROCHECK
92
93 # elif defined(FPM_64BIT)
94
95 /*
96 * This version should be the most accurate if 64-bit types are supported by
97 * the compiler, although it may not be the most efficient.
98 */
99 # if defined(OPT_ACCURACY)
100 # define mad_f_mul(x, y) \
101 ((mad_fixed_t) \
102 ((((mad_fixed64_t) (x) * (y)) + \
103 (1L << (MAD_F_SCALEBITS - 1))) >> MAD_F_SCALEBITS))
104 # else
105 # define mad_f_mul(x, y) \
106 ((mad_fixed_t) (((mad_fixed64_t) (x) * (y)) >> MAD_F_SCALEBITS))
107 # endif
108
109 # define MAD_F_SCALEBITS MAD_F_FRACBITS
110
111 /* --- Intel --------------------------------------------------------------- */
112
113 # elif defined(FPM_INTEL)
114
115 # if defined(_MSC_VER)
116 # pragma warning(push)
117 # pragma warning(disable: 4035) /* no return value */
118 static __forceinline
mad_f_mul_inline(mad_fixed_t x,mad_fixed_t y)119 mad_fixed_t mad_f_mul_inline(mad_fixed_t x, mad_fixed_t y)
120 {
121 enum {
122 fracbits = MAD_F_FRACBITS
123 };
124
125 __asm {
126 mov eax, x
127 imul y
128 shrd eax, edx, fracbits
129 }
130
131 /* implicit return of eax */
132 }
133 # pragma warning(pop)
134
135 # define mad_f_mul mad_f_mul_inline
136 # define mad_f_scale64
137 # else
138 /*
139 * This Intel version is fast and accurate; the disposition of the least
140 * significant bit depends on OPT_ACCURACY via mad_f_scale64().
141 */
142 # define MAD_F_MLX(hi, lo, x, y) \
143 asm ("imull %3" \
144 : "=a" (lo), "=d" (hi) \
145 : "%a" (x), "rm" (y) \
146 : "cc")
147
148 # if defined(OPT_ACCURACY)
149 /*
150 * This gives best accuracy but is not very fast.
151 */
152 # define MAD_F_MLA(hi, lo, x, y) \
153 ({ mad_fixed64hi_t __hi; \
154 mad_fixed64lo_t __lo; \
155 MAD_F_MLX(__hi, __lo, (x), (y)); \
156 asm ("addl %2,%0\n\t" \
157 "adcl %3,%1" \
158 : "=rm" (lo), "=rm" (hi) \
159 : "r" (__lo), "r" (__hi), "0" (lo), "1" (hi) \
160 : "cc"); \
161 })
162 # endif /* OPT_ACCURACY */
163
164 # if defined(OPT_ACCURACY)
165 /*
166 * Surprisingly, this is faster than SHRD followed by ADC.
167 */
168 # define mad_f_scale64(hi, lo) \
169 ({ mad_fixed64hi_t __hi_; \
170 mad_fixed64lo_t __lo_; \
171 mad_fixed_t __result; \
172 asm ("addl %4,%2\n\t" \
173 "adcl %5,%3" \
174 : "=rm" (__lo_), "=rm" (__hi_) \
175 : "0" (lo), "1" (hi), \
176 "ir" (1L << (MAD_F_SCALEBITS - 1)), "ir" (0) \
177 : "cc"); \
178 asm ("shrdl %3,%2,%1" \
179 : "=rm" (__result) \
180 : "0" (__lo_), "r" (__hi_), "I" (MAD_F_SCALEBITS) \
181 : "cc"); \
182 __result; \
183 })
184 # elif defined(OPT_INTEL)
185 /*
186 * Alternate Intel scaling that may or may not perform better.
187 */
188 # define mad_f_scale64(hi, lo) \
189 ({ mad_fixed_t __result; \
190 asm ("shrl %3,%1\n\t" \
191 "shll %4,%2\n\t" \
192 "orl %2,%1" \
193 : "=rm" (__result) \
194 : "0" (lo), "r" (hi), \
195 "I" (MAD_F_SCALEBITS), "I" (32 - MAD_F_SCALEBITS) \
196 : "cc"); \
197 __result; \
198 })
199 # else
200 # define mad_f_scale64(hi, lo) \
201 ({ mad_fixed_t __result; \
202 asm ("shrdl %3,%2,%1" \
203 : "=rm" (__result) \
204 : "0" (lo), "r" (hi), "I" (MAD_F_SCALEBITS) \
205 : "cc"); \
206 __result; \
207 })
208 # endif /* OPT_ACCURACY */
209
210 # define MAD_F_SCALEBITS MAD_F_FRACBITS
211 # endif
212
213 /* --- ARM ----------------------------------------------------------------- */
214
215 # elif defined(FPM_ARM)
216
217 /*
218 * This ARM V4 version is as accurate as FPM_64BIT but much faster. The
219 * least significant bit is properly rounded at no CPU cycle cost!
220 */
221 # if 1
222 /*
223 * This is faster than the default implementation via MAD_F_MLX() and
224 * mad_f_scale64().
225 */
226 # define mad_f_mul(x, y) \
227 ({ mad_fixed64hi_t __hi; \
228 mad_fixed64lo_t __lo; \
229 mad_fixed_t __result; \
230 asm ("smull %0, %1, %3, %4\n\t" \
231 "movs %0, %0, lsr %5\n\t" \
232 "adc %2, %0, %1, lsl %6" \
233 : "=&r" (__lo), "=&r" (__hi), "=r" (__result) \
234 : "%r" (x), "r" (y), \
235 "M" (MAD_F_SCALEBITS), "M" (32 - MAD_F_SCALEBITS) \
236 : "cc"); \
237 __result; \
238 })
239 # endif
240
241 # define MAD_F_MLX(hi, lo, x, y) \
242 asm ("smull %0, %1, %2, %3" \
243 : "=&r" (lo), "=&r" (hi) \
244 : "%r" (x), "r" (y))
245
246 # define MAD_F_MLA(hi, lo, x, y) \
247 asm ("smlal %0, %1, %2, %3" \
248 : "+r" (lo), "+r" (hi) \
249 : "%r" (x), "r" (y))
250
251 # define MAD_F_MLN(hi, lo) \
252 asm ("rsbs %0, %2, #0\n\t" \
253 "rsc %1, %3, #0" \
254 : "=r" (lo), "=r" (hi) \
255 : "0" (lo), "1" (hi) \
256 : "cc")
257
258 # define mad_f_scale64(hi, lo) \
259 ({ mad_fixed_t __result; \
260 asm ("movs %0, %1, lsr %3\n\t" \
261 "adc %0, %0, %2, lsl %4" \
262 : "=&r" (__result) \
263 : "r" (lo), "r" (hi), \
264 "M" (MAD_F_SCALEBITS), "M" (32 - MAD_F_SCALEBITS) \
265 : "cc"); \
266 __result; \
267 })
268
269 # define MAD_F_SCALEBITS MAD_F_FRACBITS
270
271 /* --- MIPS ---------------------------------------------------------------- */
272
273 # elif defined(FPM_MIPS)
274
275 /*
276 * This MIPS version is fast and accurate; the disposition of the least
277 * significant bit depends on OPT_ACCURACY via mad_f_scale64().
278 */
279 # define MAD_F_MLX(hi, lo, x, y) \
280 asm ("mult %2,%3" \
281 : "=l" (lo), "=h" (hi) \
282 : "%r" (x), "r" (y))
283
284 # if defined(HAVE_MADD_ASM)
285 # define MAD_F_MLA(hi, lo, x, y) \
286 asm ("madd %2,%3" \
287 : "+l" (lo), "+h" (hi) \
288 : "%r" (x), "r" (y))
289 # elif defined(HAVE_MADD16_ASM)
290 /*
291 * This loses significant accuracy due to the 16-bit integer limit in the
292 * multiply/accumulate instruction.
293 */
294 # define MAD_F_ML0(hi, lo, x, y) \
295 asm ("mult %2,%3" \
296 : "=l" (lo), "=h" (hi) \
297 : "%r" ((x) >> 12), "r" ((y) >> 16))
298 # define MAD_F_MLA(hi, lo, x, y) \
299 asm ("madd16 %2,%3" \
300 : "+l" (lo), "+h" (hi) \
301 : "%r" ((x) >> 12), "r" ((y) >> 16))
302 # define MAD_F_MLZ(hi, lo) ((mad_fixed_t) (lo))
303 # endif
304
305 # if defined(OPT_SPEED)
306 # define mad_f_scale64(hi, lo) \
307 ((mad_fixed_t) ((hi) << (32 - MAD_F_SCALEBITS)))
308 # define MAD_F_SCALEBITS MAD_F_FRACBITS
309 # endif
310
311 /* --- SPARC --------------------------------------------------------------- */
312
313 # elif defined(FPM_SPARC)
314
315 /*
316 * This SPARC V8 version is fast and accurate; the disposition of the least
317 * significant bit depends on OPT_ACCURACY via mad_f_scale64().
318 */
319 # define MAD_F_MLX(hi, lo, x, y) \
320 asm ("smul %2, %3, %0\n\t" \
321 "rd %%y, %1" \
322 : "=r" (lo), "=r" (hi) \
323 : "%r" (x), "rI" (y))
324
325 /* --- PowerPC ------------------------------------------------------------- */
326
327 # elif defined(FPM_PPC)
328
329 /*
330 * This PowerPC version is fast and accurate; the disposition of the least
331 * significant bit depends on OPT_ACCURACY via mad_f_scale64().
332 */
333 # define MAD_F_MLX(hi, lo, x, y) \
334 do { \
335 asm ("mullw %0,%1,%2" \
336 : "=r" (lo) \
337 : "%r" (x), "r" (y)); \
338 asm ("mulhw %0,%1,%2" \
339 : "=r" (hi) \
340 : "%r" (x), "r" (y)); \
341 } \
342 while (0)
343
344 # if defined(OPT_ACCURACY)
345 /*
346 * This gives best accuracy but is not very fast.
347 */
348 # define MAD_F_MLA(hi, lo, x, y) \
349 ({ mad_fixed64hi_t __hi; \
350 mad_fixed64lo_t __lo; \
351 MAD_F_MLX(__hi, __lo, (x), (y)); \
352 asm ("addc %0,%2,%3\n\t" \
353 "adde %1,%4,%5" \
354 : "=r" (lo), "=r" (hi) \
355 : "%r" (lo), "r" (__lo), \
356 "%r" (hi), "r" (__hi) \
357 : "xer"); \
358 })
359 # endif
360
361 # if defined(OPT_ACCURACY)
362 /*
363 * This is slower than the truncating version below it.
364 */
365 # define mad_f_scale64(hi, lo) \
366 ({ mad_fixed_t __result, __round; \
367 asm ("rotrwi %0,%1,%2" \
368 : "=r" (__result) \
369 : "r" (lo), "i" (MAD_F_SCALEBITS)); \
370 asm ("extrwi %0,%1,1,0" \
371 : "=r" (__round) \
372 : "r" (__result)); \
373 asm ("insrwi %0,%1,%2,0" \
374 : "+r" (__result) \
375 : "r" (hi), "i" (MAD_F_SCALEBITS)); \
376 asm ("add %0,%1,%2" \
377 : "=r" (__result) \
378 : "%r" (__result), "r" (__round)); \
379 __result; \
380 })
381 # else
382 # define mad_f_scale64(hi, lo) \
383 ({ mad_fixed_t __result; \
384 asm ("rotrwi %0,%1,%2" \
385 : "=r" (__result) \
386 : "r" (lo), "i" (MAD_F_SCALEBITS)); \
387 asm ("insrwi %0,%1,%2,0" \
388 : "+r" (__result) \
389 : "r" (hi), "i" (MAD_F_SCALEBITS)); \
390 __result; \
391 })
392 # endif
393
394 # define MAD_F_SCALEBITS MAD_F_FRACBITS
395
396 /* --- Default ------------------------------------------------------------- */
397
398 # elif defined(FPM_DEFAULT)
399
400 /*
401 * This version is the most portable but it loses significant accuracy.
402 * Furthermore, accuracy is biased against the second argument, so care
403 * should be taken when ordering operands.
404 *
405 * The scale factors are constant as this is not used with SSO.
406 *
407 * Pre-rounding is required to stay within the limits of compliance.
408 */
409 # if defined(OPT_SPEED)
410 # define mad_f_mul(x, y) (((x) >> 12) * ((y) >> 16))
411 # else
412 # define mad_f_mul(x, y) ((((x) + (1L << 11)) >> 12) * \
413 (((y) + (1L << 15)) >> 16))
414 # endif
415
416 /* ------------------------------------------------------------------------- */
417
418 # else
419 # error "no FPM selected"
420 # endif
421
422 /* default implementations */
423
424 # if !defined(mad_f_mul)
425 # define mad_f_mul(x, y) \
426 ({ register mad_fixed64hi_t __hi; \
427 register mad_fixed64lo_t __lo; \
428 MAD_F_MLX(__hi, __lo, (x), (y)); \
429 mad_f_scale64(__hi, __lo); \
430 })
431 # endif
432
433 # if !defined(MAD_F_MLA)
434 # define MAD_F_ML0(hi, lo, x, y) ((lo) = mad_f_mul((x), (y)))
435 # define MAD_F_MLA(hi, lo, x, y) ((lo) += mad_f_mul((x), (y)))
436 # define MAD_F_MLN(hi, lo) ((lo) = -(lo))
437 # define MAD_F_MLZ(hi, lo) ((void) (hi), (mad_fixed_t) (lo))
438 # endif
439
440 # if !defined(MAD_F_ML0)
441 # define MAD_F_ML0(hi, lo, x, y) MAD_F_MLX((hi), (lo), (x), (y))
442 # endif
443
444 # if !defined(MAD_F_MLN)
445 # define MAD_F_MLN(hi, lo) ((hi) = ((lo) = -(lo)) ? ~(hi) : -(hi))
446 # endif
447
448 # if !defined(MAD_F_MLZ)
449 # define MAD_F_MLZ(hi, lo) mad_f_scale64((hi), (lo))
450 # endif
451
452 # if !defined(mad_f_scale64)
453 # if defined(OPT_ACCURACY)
454 # define mad_f_scale64(hi, lo) \
455 ((((mad_fixed_t) \
456 (((hi) << (32 - (MAD_F_SCALEBITS - 1))) | \
457 ((lo) >> (MAD_F_SCALEBITS - 1)))) + 1) >> 1)
458 # else
459 # define mad_f_scale64(hi, lo) \
460 ((mad_fixed_t) \
461 (((hi) << (32 - MAD_F_SCALEBITS)) | \
462 ((lo) >> MAD_F_SCALEBITS)))
463 # endif
464 # define MAD_F_SCALEBITS MAD_F_FRACBITS
465 # endif
466
467 /* C routines */
468
469 mad_fixed_t mad_f_abs(mad_fixed_t);
470 mad_fixed_t mad_f_div(mad_fixed_t, mad_fixed_t);
471
472 # endif
473