1 /*
2 * Copyright (C) 1993-2003 by Darren Reed.
3 *
4 * See the IPFILTER.LICENCE file for details on licencing.
5 *
6 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
7 */
8
9 #if defined(KERNEL) || defined(_KERNEL)
10 # undef KERNEL
11 # undef _KERNEL
12 # define KERNEL 1
13 # define _KERNEL 1
14 #endif
15 #include <sys/errno.h>
16 #include <sys/types.h>
17 #include <sys/param.h>
18 #include <sys/time.h>
19 #if defined(__NetBSD__)
20 # if (NetBSD >= 199905) && !defined(IPFILTER_LKM) && defined(_KERNEL)
21 # include "opt_ipfilter_log.h"
22 # endif
23 #endif
24 #if defined(_KERNEL) && defined(__FreeBSD_version) && \
25 (__FreeBSD_version >= 220000)
26 # if (__FreeBSD_version >= 400000)
27 # if !defined(IPFILTER_LKM)
28 # include "opt_inet6.h"
29 # endif
30 # if (__FreeBSD_version == 400019)
31 # define CSUM_DELAY_DATA
32 # endif
33 # endif
34 # include <sys/filio.h>
35 #else
36 # include <sys/ioctl.h>
37 #endif
38 #if !defined(_AIX51)
39 # include <sys/fcntl.h>
40 #endif
41 #if defined(_KERNEL)
42 # include <sys/systm.h>
43 # include <sys/file.h>
44 #else
45 # include <stdio.h>
46 # include <string.h>
47 # include <stdlib.h>
48 # include <stddef.h>
49 # include <sys/file.h>
50 # define _KERNEL
51 # ifdef __OpenBSD__
52 struct file;
53 # endif
54 # include <sys/uio.h>
55 # undef _KERNEL
56 #endif
57 #if !defined(__SVR4) && !defined(__svr4__) && !defined(__hpux) && \
58 !defined(linux)
59 # include <sys/mbuf.h>
60 #else
61 # if !defined(linux)
62 # include <sys/byteorder.h>
63 # endif
64 # if (SOLARIS2 < 5) && defined(sun)
65 # include <sys/dditypes.h>
66 # endif
67 #endif
68 #ifdef __hpux
69 # define _NET_ROUTE_INCLUDED
70 #endif
71 #if !defined(linux)
72 # include <sys/protosw.h>
73 #endif
74 #include <sys/socket.h>
75 #include <net/if.h>
76 #ifdef sun
77 # include <net/af.h>
78 #endif
79 #if !defined(_KERNEL) && defined(__FreeBSD__)
80 # include "radix_ipf.h"
81 #endif
82 #include <net/route.h>
83 #include <netinet/in.h>
84 #include <netinet/in_systm.h>
85 #include <netinet/ip.h>
86 #if !defined(linux)
87 # include <netinet/ip_var.h>
88 #endif
89 #if defined(__sgi) && defined(IFF_DRVRLOCK) /* IRIX 6 */
90 # include <sys/hashing.h>
91 # include <netinet/in_var.h>
92 #endif
93 #include <netinet/tcp.h>
94 #if (!defined(__sgi) && !defined(AIX)) || defined(_KERNEL)
95 # include <netinet/udp.h>
96 # include <netinet/ip_icmp.h>
97 #endif
98 #ifdef __hpux
99 # undef _NET_ROUTE_INCLUDED
100 #endif
101 #include "netinet/ip_compat.h"
102 #ifdef USE_INET6
103 # include <netinet/icmp6.h>
104 # if !SOLARIS && defined(_KERNEL) && !defined(__osf__) && !defined(__hpux)
105 # include <netinet6/in6_var.h>
106 # endif
107 #endif
108 #include <netinet/tcpip.h>
109 #include "netinet/ip_fil.h"
110 #include "netinet/ip_nat.h"
111 #include "netinet/ip_frag.h"
112 #include "netinet/ip_state.h"
113 #include "netinet/ip_proxy.h"
114 #include "netinet/ip_auth.h"
115 #include "netinet/ipf_stack.h"
116 #ifdef IPFILTER_SCAN
117 # include "netinet/ip_scan.h"
118 #endif
119 #ifdef IPFILTER_SYNC
120 # include "netinet/ip_sync.h"
121 #endif
122 #include "netinet/ip_pool.h"
123 #include "netinet/ip_htable.h"
124 #ifdef IPFILTER_COMPILED
125 # include "netinet/ip_rules.h"
126 #endif
127 #if defined(IPFILTER_BPF) && defined(_KERNEL)
128 # include <net/bpf.h>
129 #endif
130 #if defined(__FreeBSD_version) && (__FreeBSD_version >= 300000)
131 # include <sys/malloc.h>
132 # if defined(_KERNEL) && !defined(IPFILTER_LKM)
133 # include "opt_ipfilter.h"
134 # endif
135 #endif
136 #include "netinet/ipl.h"
137 /* END OF INCLUDES */
138
139 #if !defined(lint)
140 static const char sccsid[] = "@(#)fil.c 1.36 6/5/96 (C) 1993-2000 Darren Reed";
141 static const char rcsid[] = "@(#)$Id: fil.c,v 2.243.2.64 2005/08/13 05:19:59 darrenr Exp $";
142 #endif
143
144 #ifndef _KERNEL
145 # include "ipf.h"
146 # include "ipt.h"
147 # include "bpf-ipf.h"
148 extern int opts;
149
150 # define FR_VERBOSE(verb_pr) verbose verb_pr
151 # define FR_DEBUG(verb_pr) debug verb_pr
152 #else /* #ifndef _KERNEL */
153 # define FR_VERBOSE(verb_pr)
154 # define FR_DEBUG(verb_pr)
155 #endif /* _KERNEL */
156
157
158 char ipfilter_version[] = IPL_VERSION;
159 int fr_features = 0
160 #ifdef IPFILTER_LKM
161 | IPF_FEAT_LKM
162 #endif
163 #ifdef IPFILTER_LOG
164 | IPF_FEAT_LOG
165 #endif
166 #ifdef IPFILTER_LOOKUP
167 | IPF_FEAT_LOOKUP
168 #endif
169 #ifdef IPFILTER_BPF
170 | IPF_FEAT_BPF
171 #endif
172 #ifdef IPFILTER_COMPILED
173 | IPF_FEAT_COMPILED
174 #endif
175 #ifdef IPFILTER_CKSUM
176 | IPF_FEAT_CKSUM
177 #endif
178 #ifdef IPFILTER_SYNC
179 | IPF_FEAT_SYNC
180 #endif
181 #ifdef IPFILTER_SCAN
182 | IPF_FEAT_SCAN
183 #endif
184 #ifdef USE_INET6
185 | IPF_FEAT_IPV6
186 #endif
187 ;
188
189 #define IPF_BUMP(x) (x)++
190
191 static INLINE int fr_ipfcheck __P((fr_info_t *, frentry_t *, int));
192 static INLINE int fr_ipfcheck __P((fr_info_t *, frentry_t *, int));
193 static int fr_portcheck __P((frpcmp_t *, u_short *));
194 static int frflushlist __P((int, minor_t, int *, frentry_t **,
195 ipf_stack_t *));
196 static ipfunc_t fr_findfunc __P((ipfunc_t));
197 static frentry_t *fr_firewall __P((fr_info_t *, u_32_t *));
198 static int fr_funcinit __P((frentry_t *fr, ipf_stack_t *));
199 static INLINE void frpr_ah __P((fr_info_t *));
200 static INLINE void frpr_esp __P((fr_info_t *));
201 static INLINE void frpr_gre __P((fr_info_t *));
202 static INLINE void frpr_udp __P((fr_info_t *));
203 static INLINE void frpr_tcp __P((fr_info_t *));
204 static INLINE void frpr_icmp __P((fr_info_t *));
205 static INLINE void frpr_ipv4hdr __P((fr_info_t *));
206 static INLINE int frpr_pullup __P((fr_info_t *, int));
207 static INLINE void frpr_short __P((fr_info_t *, int));
208 static INLINE void frpr_tcpcommon __P((fr_info_t *));
209 static INLINE void frpr_udpcommon __P((fr_info_t *));
210 static INLINE int fr_updateipid __P((fr_info_t *));
211 #ifdef IPFILTER_LOOKUP
212 static int fr_grpmapinit __P((frentry_t *fr, ipf_stack_t *));
213 static INLINE void *fr_resolvelookup __P((u_int, u_int, lookupfunc_t *,
214 ipf_stack_t *));
215 #endif
216 static void frsynclist __P((int, int, void *, char *, frentry_t *,
217 ipf_stack_t *));
218 static void *fr_ifsync __P((int, int, char *, char *,
219 void *, void *, ipf_stack_t *));
220 static ipftuneable_t *fr_findtunebyname __P((const char *, ipf_stack_t *));
221 static ipftuneable_t *fr_findtunebycookie __P((void *, void **, ipf_stack_t *));
222
223 /*
224 * bit values for identifying presence of individual IP options
225 * All of these tables should be ordered by increasing key value on the left
226 * hand side to allow for binary searching of the array and include a trailer
227 * with a 0 for the bitmask for linear searches to easily find the end with.
228 */
229 const struct optlist ipopts[20] = {
230 { IPOPT_NOP, 0x000001 },
231 { IPOPT_RR, 0x000002 },
232 { IPOPT_ZSU, 0x000004 },
233 { IPOPT_MTUP, 0x000008 },
234 { IPOPT_MTUR, 0x000010 },
235 { IPOPT_ENCODE, 0x000020 },
236 { IPOPT_TS, 0x000040 },
237 { IPOPT_TR, 0x000080 },
238 { IPOPT_SECURITY, 0x000100 },
239 { IPOPT_LSRR, 0x000200 },
240 { IPOPT_E_SEC, 0x000400 },
241 { IPOPT_CIPSO, 0x000800 },
242 { IPOPT_SATID, 0x001000 },
243 { IPOPT_SSRR, 0x002000 },
244 { IPOPT_ADDEXT, 0x004000 },
245 { IPOPT_VISA, 0x008000 },
246 { IPOPT_IMITD, 0x010000 },
247 { IPOPT_EIP, 0x020000 },
248 { IPOPT_FINN, 0x040000 },
249 { 0, 0x000000 }
250 };
251
252 #ifdef USE_INET6
253 struct optlist ip6exthdr[] = {
254 { IPPROTO_HOPOPTS, 0x000001 },
255 { IPPROTO_IPV6, 0x000002 },
256 { IPPROTO_ROUTING, 0x000004 },
257 { IPPROTO_FRAGMENT, 0x000008 },
258 { IPPROTO_ESP, 0x000010 },
259 { IPPROTO_AH, 0x000020 },
260 { IPPROTO_NONE, 0x000040 },
261 { IPPROTO_DSTOPTS, 0x000080 },
262 { 0, 0 }
263 };
264 #endif
265
266 struct optlist tcpopts[] = {
267 { TCPOPT_NOP, 0x000001 },
268 { TCPOPT_MAXSEG, 0x000002 },
269 { TCPOPT_WINDOW, 0x000004 },
270 { TCPOPT_SACK_PERMITTED, 0x000008 },
271 { TCPOPT_SACK, 0x000010 },
272 { TCPOPT_TIMESTAMP, 0x000020 },
273 { 0, 0x000000 }
274 };
275
276 /*
277 * bit values for identifying presence of individual IP security options
278 */
279 const struct optlist secopt[8] = {
280 { IPSO_CLASS_RES4, 0x01 },
281 { IPSO_CLASS_TOPS, 0x02 },
282 { IPSO_CLASS_SECR, 0x04 },
283 { IPSO_CLASS_RES3, 0x08 },
284 { IPSO_CLASS_CONF, 0x10 },
285 { IPSO_CLASS_UNCL, 0x20 },
286 { IPSO_CLASS_RES2, 0x40 },
287 { IPSO_CLASS_RES1, 0x80 }
288 };
289
290
291 /*
292 * Table of functions available for use with call rules.
293 */
294 static ipfunc_resolve_t fr_availfuncs[] = {
295 #ifdef IPFILTER_LOOKUP
296 { "fr_srcgrpmap", fr_srcgrpmap, fr_grpmapinit },
297 { "fr_dstgrpmap", fr_dstgrpmap, fr_grpmapinit },
298 #endif
299 { "", NULL }
300 };
301
302
303 /*
304 * Below we declare a list of constants used only by the ipf_extraflush()
305 * routine. We are placing it here, instead of in ipf_extraflush() itself,
306 * because we want to make it visible to tools such as mdb, nm etc., so the
307 * values can easily be altered during debugging.
308 */
309 static const int idletime_tab[] = {
310 IPF_TTLVAL(30), /* 30 seconds */
311 IPF_TTLVAL(1800), /* 30 minutes */
312 IPF_TTLVAL(43200), /* 12 hours */
313 IPF_TTLVAL(345600), /* 4 days */
314 };
315
316
317 /*
318 * The next section of code is a a collection of small routines that set
319 * fields in the fr_info_t structure passed based on properties of the
320 * current packet. There are different routines for the same protocol
321 * for each of IPv4 and IPv6. Adding a new protocol, for which there
322 * will "special" inspection for setup, is now more easily done by adding
323 * a new routine and expanding the frpr_ipinit*() function rather than by
324 * adding more code to a growing switch statement.
325 */
326 #ifdef USE_INET6
327 static INLINE int frpr_ah6 __P((fr_info_t *));
328 static INLINE void frpr_esp6 __P((fr_info_t *));
329 static INLINE void frpr_gre6 __P((fr_info_t *));
330 static INLINE void frpr_udp6 __P((fr_info_t *));
331 static INLINE void frpr_tcp6 __P((fr_info_t *));
332 static INLINE void frpr_icmp6 __P((fr_info_t *));
333 static INLINE void frpr_ipv6hdr __P((fr_info_t *));
334 static INLINE void frpr_short6 __P((fr_info_t *, int));
335 static INLINE int frpr_hopopts6 __P((fr_info_t *));
336 static INLINE int frpr_routing6 __P((fr_info_t *));
337 static INLINE int frpr_dstopts6 __P((fr_info_t *));
338 static INLINE int frpr_fragment6 __P((fr_info_t *));
339 static INLINE int frpr_ipv6exthdr __P((fr_info_t *, int, int));
340
341
342 /* ------------------------------------------------------------------------ */
343 /* Function: frpr_short6 */
344 /* Returns: void */
345 /* Parameters: fin(I) - pointer to packet information */
346 /* */
347 /* IPv6 Only */
348 /* This is function enforces the 'is a packet too short to be legit' rule */
349 /* for IPv6 and marks the packet with FI_SHORT if so. See function comment */
350 /* for frpr_short() for more details. */
351 /* ------------------------------------------------------------------------ */
frpr_short6(fin,xmin)352 static INLINE void frpr_short6(fin, xmin)
353 fr_info_t *fin;
354 int xmin;
355 {
356
357 if (fin->fin_dlen < xmin)
358 fin->fin_flx |= FI_SHORT;
359 }
360
361
362 /* ------------------------------------------------------------------------ */
363 /* Function: frpr_ipv6hdr */
364 /* Returns: Nil */
365 /* Parameters: fin(I) - pointer to packet information */
366 /* */
367 /* IPv6 Only */
368 /* Copy values from the IPv6 header into the fr_info_t struct and call the */
369 /* per-protocol analyzer if it exists. */
370 /* ------------------------------------------------------------------------ */
frpr_ipv6hdr(fin)371 static INLINE void frpr_ipv6hdr(fin)
372 fr_info_t *fin;
373 {
374 ip6_t *ip6 = (ip6_t *)fin->fin_ip;
375 int p, go = 1, i, hdrcount;
376 fr_ip_t *fi = &fin->fin_fi;
377
378 fin->fin_off = 0;
379
380 fi->fi_tos = 0;
381 fi->fi_optmsk = 0;
382 fi->fi_secmsk = 0;
383 fi->fi_auth = 0;
384
385 p = ip6->ip6_nxt;
386 fi->fi_ttl = ip6->ip6_hlim;
387 fi->fi_src.in6 = ip6->ip6_src;
388 fi->fi_dst.in6 = ip6->ip6_dst;
389 fin->fin_id = 0;
390
391 hdrcount = 0;
392 while (go && !(fin->fin_flx & (FI_BAD|FI_SHORT))) {
393 switch (p)
394 {
395 case IPPROTO_UDP :
396 frpr_udp6(fin);
397 go = 0;
398 break;
399
400 case IPPROTO_TCP :
401 frpr_tcp6(fin);
402 go = 0;
403 break;
404
405 case IPPROTO_ICMPV6 :
406 frpr_icmp6(fin);
407 go = 0;
408 break;
409
410 case IPPROTO_GRE :
411 frpr_gre6(fin);
412 go = 0;
413 break;
414
415 case IPPROTO_HOPOPTS :
416 /*
417 * hop by hop ext header is only allowed
418 * right after IPv6 header.
419 */
420 if (hdrcount != 0) {
421 fin->fin_flx |= FI_BAD;
422 p = IPPROTO_NONE;
423 } else {
424 p = frpr_hopopts6(fin);
425 }
426 break;
427
428 case IPPROTO_DSTOPTS :
429 p = frpr_dstopts6(fin);
430 break;
431
432 case IPPROTO_ROUTING :
433 p = frpr_routing6(fin);
434 break;
435
436 case IPPROTO_AH :
437 p = frpr_ah6(fin);
438 break;
439
440 case IPPROTO_ESP :
441 frpr_esp6(fin);
442 go = 0;
443 break;
444
445 case IPPROTO_IPV6 :
446 for (i = 0; ip6exthdr[i].ol_bit != 0; i++)
447 if (ip6exthdr[i].ol_val == p) {
448 fin->fin_flx |= ip6exthdr[i].ol_bit;
449 break;
450 }
451 go = 0;
452 break;
453
454 case IPPROTO_NONE :
455 go = 0;
456 break;
457
458 case IPPROTO_FRAGMENT :
459 p = frpr_fragment6(fin);
460 if (fin->fin_off != 0) /* Not the first frag */
461 go = 0;
462 break;
463
464 default :
465 go = 0;
466 break;
467 }
468 hdrcount++;
469
470 /*
471 * It is important to note that at this point, for the
472 * extension headers (go != 0), the entire header may not have
473 * been pulled up when the code gets to this point. This is
474 * only done for "go != 0" because the other header handlers
475 * will all pullup their complete header. The other indicator
476 * of an incomplete packet is that this was just an extension
477 * header.
478 */
479 if ((go != 0) && (p != IPPROTO_NONE) &&
480 (frpr_pullup(fin, 0) == -1)) {
481 p = IPPROTO_NONE;
482 go = 0;
483 }
484 }
485 fi->fi_p = p;
486 }
487
488
489 /* ------------------------------------------------------------------------ */
490 /* Function: frpr_ipv6exthdr */
491 /* Returns: int - value of the next header or IPPROTO_NONE if error */
492 /* Parameters: fin(I) - pointer to packet information */
493 /* multiple(I) - flag indicating yes/no if multiple occurances */
494 /* of this extension header are allowed. */
495 /* proto(I) - protocol number for this extension header */
496 /* */
497 /* IPv6 Only */
498 /* This function expects to find an IPv6 extension header at fin_dp. */
499 /* There must be at least 8 bytes of data at fin_dp for there to be a valid */
500 /* extension header present. If a good one is found, fin_dp is advanced to */
501 /* point at the first piece of data after the extension header, fin_exthdr */
502 /* points to the start of the extension header and the "protocol" of the */
503 /* *NEXT* header is returned. */
504 /* ------------------------------------------------------------------------ */
frpr_ipv6exthdr(fin,multiple,proto)505 static INLINE int frpr_ipv6exthdr(fin, multiple, proto)
506 fr_info_t *fin;
507 int multiple, proto;
508 {
509 struct ip6_ext *hdr;
510 u_short shift;
511 int i;
512
513 fin->fin_flx |= FI_V6EXTHDR;
514
515 /* 8 is default length of extension hdr */
516 if ((fin->fin_dlen - 8) < 0) {
517 fin->fin_flx |= FI_SHORT;
518 return IPPROTO_NONE;
519 }
520
521 if (frpr_pullup(fin, 8) == -1)
522 return IPPROTO_NONE;
523
524 hdr = fin->fin_dp;
525 shift = 8 + (hdr->ip6e_len << 3);
526 if (shift > fin->fin_dlen) { /* Nasty extension header length? */
527 fin->fin_flx |= FI_BAD;
528 return IPPROTO_NONE;
529 }
530
531 for (i = 0; ip6exthdr[i].ol_bit != 0; i++)
532 if (ip6exthdr[i].ol_val == proto) {
533 /*
534 * Most IPv6 extension headers are only allowed once.
535 */
536 if ((multiple == 0) &&
537 ((fin->fin_optmsk & ip6exthdr[i].ol_bit) != 0))
538 fin->fin_flx |= FI_BAD;
539 else
540 fin->fin_optmsk |= ip6exthdr[i].ol_bit;
541 break;
542 }
543
544 fin->fin_dp = (char *)fin->fin_dp + shift;
545 fin->fin_dlen -= shift;
546
547 return hdr->ip6e_nxt;
548 }
549
550
551 /* ------------------------------------------------------------------------ */
552 /* Function: frpr_hopopts6 */
553 /* Returns: int - value of the next header or IPPROTO_NONE if error */
554 /* Parameters: fin(I) - pointer to packet information */
555 /* */
556 /* IPv6 Only */
557 /* This is function checks pending hop by hop options extension header */
558 /* ------------------------------------------------------------------------ */
frpr_hopopts6(fin)559 static INLINE int frpr_hopopts6(fin)
560 fr_info_t *fin;
561 {
562 return frpr_ipv6exthdr(fin, 0, IPPROTO_HOPOPTS);
563 }
564
565
566 /* ------------------------------------------------------------------------ */
567 /* Function: frpr_routing6 */
568 /* Returns: int - value of the next header or IPPROTO_NONE if error */
569 /* Parameters: fin(I) - pointer to packet information */
570 /* */
571 /* IPv6 Only */
572 /* This is function checks pending routing extension header */
573 /* ------------------------------------------------------------------------ */
frpr_routing6(fin)574 static INLINE int frpr_routing6(fin)
575 fr_info_t *fin;
576 {
577 struct ip6_ext *hdr;
578 int shift;
579
580 hdr = fin->fin_dp;
581 if (frpr_ipv6exthdr(fin, 0, IPPROTO_ROUTING) == IPPROTO_NONE)
582 return IPPROTO_NONE;
583
584 shift = 8 + (hdr->ip6e_len << 3);
585 /*
586 * Nasty extension header length?
587 */
588 if ((hdr->ip6e_len << 3) & 15) {
589 fin->fin_flx |= FI_BAD;
590 /*
591 * Compensate for the changes made in frpr_ipv6exthdr()
592 */
593 fin->fin_dlen += shift;
594 fin->fin_dp = (char *)fin->fin_dp - shift;
595 return IPPROTO_NONE;
596 }
597
598 return hdr->ip6e_nxt;
599 }
600
601
602 /* ------------------------------------------------------------------------ */
603 /* Function: frpr_fragment6 */
604 /* Returns: int - value of the next header or IPPROTO_NONE if error */
605 /* Parameters: fin(I) - pointer to packet information */
606 /* */
607 /* IPv6 Only */
608 /* Examine the IPv6 fragment header and extract fragment offset information.*/
609 /* */
610 /* We don't know where the transport layer header (or whatever is next is), */
611 /* as it could be behind destination options (amongst others). Because */
612 /* there is no fragment cache, there is no knowledge about whether or not an*/
613 /* upper layer header has been seen (or where it ends) and thus we are not */
614 /* able to continue processing beyond this header with any confidence. */
615 /* ------------------------------------------------------------------------ */
frpr_fragment6(fin)616 static INLINE int frpr_fragment6(fin)
617 fr_info_t *fin;
618 {
619 struct ip6_frag *frag;
620
621 fin->fin_flx |= FI_FRAG;
622
623 /*
624 * A fragmented IPv6 packet implies that there must be something
625 * else after the fragment.
626 */
627 if (frpr_ipv6exthdr(fin, 0, IPPROTO_FRAGMENT) == IPPROTO_NONE)
628 return IPPROTO_NONE;
629
630 frag = (struct ip6_frag *)((char *)fin->fin_dp - sizeof(*frag));
631
632 /*
633 * If this fragment isn't the last then the packet length must
634 * be a multiple of 8.
635 */
636 if ((frag->ip6f_offlg & IP6F_MORE_FRAG) != 0) {
637 fin->fin_flx |= FI_MOREFRAG;
638
639 if ((fin->fin_plen & 0x7) != 0)
640 fin->fin_flx |= FI_BAD;
641 }
642
643 fin->fin_id = frag->ip6f_ident;
644 fin->fin_off = ntohs(frag->ip6f_offlg & IP6F_OFF_MASK);
645 if (fin->fin_off != 0)
646 fin->fin_flx |= FI_FRAGBODY;
647
648 return frag->ip6f_nxt;
649 }
650
651
652 /* ------------------------------------------------------------------------ */
653 /* Function: frpr_dstopts6 */
654 /* Returns: int - value of the next header or IPPROTO_NONE if error */
655 /* Parameters: fin(I) - pointer to packet information */
656 /* nextheader(I) - stores next header value */
657 /* */
658 /* IPv6 Only */
659 /* This is function checks pending destination options extension header */
660 /* ------------------------------------------------------------------------ */
frpr_dstopts6(fin)661 static INLINE int frpr_dstopts6(fin)
662 fr_info_t *fin;
663 {
664 return frpr_ipv6exthdr(fin, 1, IPPROTO_DSTOPTS);
665 }
666
667
668 /* ------------------------------------------------------------------------ */
669 /* Function: frpr_icmp6 */
670 /* Returns: void */
671 /* Parameters: fin(I) - pointer to packet information */
672 /* */
673 /* IPv6 Only */
674 /* This routine is mainly concerned with determining the minimum valid size */
675 /* for an ICMPv6 packet. */
676 /* ------------------------------------------------------------------------ */
frpr_icmp6(fin)677 static INLINE void frpr_icmp6(fin)
678 fr_info_t *fin;
679 {
680 int minicmpsz = sizeof(struct icmp6_hdr);
681 struct icmp6_hdr *icmp6;
682
683 if (frpr_pullup(fin, ICMP6ERR_MINPKTLEN - sizeof(ip6_t)) == -1)
684 return;
685
686 if (fin->fin_dlen > 1) {
687 icmp6 = fin->fin_dp;
688
689 fin->fin_data[0] = *(u_short *)icmp6;
690
691 if ((icmp6->icmp6_type & ICMP6_INFOMSG_MASK) != 0)
692 fin->fin_flx |= FI_ICMPQUERY;
693
694 switch (icmp6->icmp6_type)
695 {
696 case ICMP6_ECHO_REPLY :
697 case ICMP6_ECHO_REQUEST :
698 if (fin->fin_dlen >= 6)
699 fin->fin_data[1] = icmp6->icmp6_id;
700 minicmpsz = ICMP6ERR_MINPKTLEN - sizeof(ip6_t);
701 break;
702 case ICMP6_DST_UNREACH :
703 case ICMP6_PACKET_TOO_BIG :
704 case ICMP6_TIME_EXCEEDED :
705 case ICMP6_PARAM_PROB :
706 if ((fin->fin_m != NULL) &&
707 (M_LEN(fin->fin_m) < fin->fin_plen)) {
708 if (fr_coalesce(fin) != 1)
709 return;
710 }
711 fin->fin_flx |= FI_ICMPERR;
712 minicmpsz = ICMP6ERR_IPICMPHLEN - sizeof(ip6_t);
713 break;
714 default :
715 break;
716 }
717 }
718
719 frpr_short6(fin, minicmpsz);
720 }
721
722
723 /* ------------------------------------------------------------------------ */
724 /* Function: frpr_udp6 */
725 /* Returns: void */
726 /* Parameters: fin(I) - pointer to packet information */
727 /* */
728 /* IPv6 Only */
729 /* Analyse the packet for IPv6/UDP properties. */
730 /* Is not expected to be called for fragmented packets. */
731 /* ------------------------------------------------------------------------ */
frpr_udp6(fin)732 static INLINE void frpr_udp6(fin)
733 fr_info_t *fin;
734 {
735
736 fr_checkv6sum(fin);
737
738 frpr_short6(fin, sizeof(struct udphdr));
739 if (frpr_pullup(fin, sizeof(struct udphdr)) == -1)
740 return;
741
742 frpr_udpcommon(fin);
743 }
744
745
746 /* ------------------------------------------------------------------------ */
747 /* Function: frpr_tcp6 */
748 /* Returns: void */
749 /* Parameters: fin(I) - pointer to packet information */
750 /* */
751 /* IPv6 Only */
752 /* Analyse the packet for IPv6/TCP properties. */
753 /* Is not expected to be called for fragmented packets. */
754 /* ------------------------------------------------------------------------ */
frpr_tcp6(fin)755 static INLINE void frpr_tcp6(fin)
756 fr_info_t *fin;
757 {
758
759 fr_checkv6sum(fin);
760
761 frpr_short6(fin, sizeof(struct tcphdr));
762 if (frpr_pullup(fin, sizeof(struct tcphdr)) == -1)
763 return;
764
765 frpr_tcpcommon(fin);
766 }
767
768
769 /* ------------------------------------------------------------------------ */
770 /* Function: frpr_esp6 */
771 /* Returns: void */
772 /* Parameters: fin(I) - pointer to packet information */
773 /* */
774 /* IPv6 Only */
775 /* Analyse the packet for ESP properties. */
776 /* The minimum length is taken to be the SPI (32bits) plus a tail (32bits) */
777 /* even though the newer ESP packets must also have a sequence number that */
778 /* is 32bits as well, it is not possible(?) to determine the version from a */
779 /* simple packet header. */
780 /* ------------------------------------------------------------------------ */
frpr_esp6(fin)781 static INLINE void frpr_esp6(fin)
782 fr_info_t *fin;
783 {
784 int i;
785 frpr_short6(fin, sizeof(grehdr_t));
786
787 (void) frpr_pullup(fin, 8);
788
789 for (i = 0; ip6exthdr[i].ol_bit != 0; i++)
790 if (ip6exthdr[i].ol_val == IPPROTO_ESP) {
791 fin->fin_optmsk |= ip6exthdr[i].ol_bit;
792 break;
793 }
794 }
795
796
797 /* ------------------------------------------------------------------------ */
798 /* Function: frpr_ah6 */
799 /* Returns: void */
800 /* Parameters: fin(I) - pointer to packet information */
801 /* */
802 /* IPv6 Only */
803 /* Analyse the packet for AH properties. */
804 /* The minimum length is taken to be the combination of all fields in the */
805 /* header being present and no authentication data (null algorithm used.) */
806 /* ------------------------------------------------------------------------ */
frpr_ah6(fin)807 static INLINE int frpr_ah6(fin)
808 fr_info_t *fin;
809 {
810 authhdr_t *ah;
811 int i, shift;
812
813 frpr_short6(fin, 12);
814
815 if (frpr_pullup(fin, sizeof(*ah)) == -1)
816 return IPPROTO_NONE;
817
818 for (i = 0; ip6exthdr[i].ol_bit != 0; i++)
819 if (ip6exthdr[i].ol_val == IPPROTO_AH) {
820 fin->fin_optmsk |= ip6exthdr[i].ol_bit;
821 break;
822 }
823
824 ah = (authhdr_t *)fin->fin_dp;
825
826 shift = (ah->ah_plen + 2) * 4;
827 fin->fin_dlen -= shift;
828 fin->fin_dp = (char*)fin->fin_dp + shift;
829
830 return ah->ah_next;
831 }
832
833
834 /* ------------------------------------------------------------------------ */
835 /* Function: frpr_gre6 */
836 /* Returns: void */
837 /* Parameters: fin(I) - pointer to packet information */
838 /* */
839 /* Analyse the packet for GRE properties. */
840 /* ------------------------------------------------------------------------ */
frpr_gre6(fin)841 static INLINE void frpr_gre6(fin)
842 fr_info_t *fin;
843 {
844 grehdr_t *gre;
845
846 frpr_short6(fin, sizeof(grehdr_t));
847
848 if (frpr_pullup(fin, sizeof(grehdr_t)) == -1)
849 return;
850
851 gre = fin->fin_dp;
852 if (GRE_REV(gre->gr_flags) == 1)
853 fin->fin_data[0] = gre->gr_call;
854 }
855 #endif /* USE_INET6 */
856
857
858 /* ------------------------------------------------------------------------ */
859 /* Function: frpr_pullup */
860 /* Returns: int - 0 == pullup succeeded, -1 == failure */
861 /* Parameters: fin(I) - pointer to packet information */
862 /* plen(I) - length (excluding L3 header) to pullup */
863 /* */
864 /* Short inline function to cut down on code duplication to perform a call */
865 /* to fr_pullup to ensure there is the required amount of data, */
866 /* consecutively in the packet buffer. */
867 /* ------------------------------------------------------------------------ */
frpr_pullup(fin,plen)868 static INLINE int frpr_pullup(fin, plen)
869 fr_info_t *fin;
870 int plen;
871 {
872 #if defined(_KERNEL)
873 if (fin->fin_m != NULL) {
874 int ipoff;
875
876 ipoff = (char *)fin->fin_ip - MTOD(fin->fin_m, char *);
877
878 if (fin->fin_dp != NULL)
879 plen += (char *)fin->fin_dp -
880 ((char *)fin->fin_ip + fin->fin_hlen);
881 plen += fin->fin_hlen;
882 /*
883 * We don't do 'plen += ipoff;' here. The fr_pullup() will
884 * do it for us.
885 */
886 if (M_LEN(fin->fin_m) < plen + ipoff) {
887 if (fr_pullup(fin->fin_m, fin, plen) == NULL)
888 return -1;
889 }
890 }
891 #endif
892 return 0;
893 }
894
895
896 /* ------------------------------------------------------------------------ */
897 /* Function: frpr_short */
898 /* Returns: void */
899 /* Parameters: fin(I) - pointer to packet information */
900 /* xmin(I) - minimum header size */
901 /* */
902 /* Check if a packet is "short" as defined by xmin. The rule we are */
903 /* applying here is that the packet must not be fragmented within the layer */
904 /* 4 header. That is, it must not be a fragment that has its offset set to */
905 /* start within the layer 4 header (hdrmin) or if it is at offset 0, the */
906 /* entire layer 4 header must be present (min). */
907 /* ------------------------------------------------------------------------ */
frpr_short(fin,xmin)908 static INLINE void frpr_short(fin, xmin)
909 fr_info_t *fin;
910 int xmin;
911 {
912
913 if (fin->fin_off == 0) {
914 if (fin->fin_dlen < xmin)
915 fin->fin_flx |= FI_SHORT;
916 } else if (fin->fin_off < xmin) {
917 fin->fin_flx |= FI_SHORT;
918 }
919 }
920
921
922 /* ------------------------------------------------------------------------ */
923 /* Function: frpr_icmp */
924 /* Returns: void */
925 /* Parameters: fin(I) - pointer to packet information */
926 /* */
927 /* IPv4 Only */
928 /* Do a sanity check on the packet for ICMP (v4). In nearly all cases, */
929 /* except extrememly bad packets, both type and code will be present. */
930 /* The expected minimum size of an ICMP packet is very much dependent on */
931 /* the type of it. */
932 /* */
933 /* XXX - other ICMP sanity checks? */
934 /* ------------------------------------------------------------------------ */
frpr_icmp(fin)935 static INLINE void frpr_icmp(fin)
936 fr_info_t *fin;
937 {
938 int minicmpsz = sizeof(struct icmp);
939 icmphdr_t *icmp;
940 ip_t *oip;
941 ipf_stack_t *ifs = fin->fin_ifs;
942
943 if (fin->fin_off != 0) {
944 frpr_short(fin, ICMPERR_ICMPHLEN);
945 return;
946 }
947
948 if (frpr_pullup(fin, ICMPERR_ICMPHLEN) == -1)
949 return;
950
951 fr_checkv4sum(fin);
952
953 /*
954 * This is a right place to set icmp pointer, since the memory
955 * referenced by fin_dp could get reallocated. The code down below can
956 * rely on fact icmp variable always points to ICMP header.
957 */
958 icmp = fin->fin_dp;
959 fin->fin_data[0] = *(u_short *)icmp;
960 fin->fin_data[1] = icmp->icmp_id;
961
962 switch (icmp->icmp_type)
963 {
964 case ICMP_ECHOREPLY :
965 case ICMP_ECHO :
966 /* Router discovery messaes - RFC 1256 */
967 case ICMP_ROUTERADVERT :
968 case ICMP_ROUTERSOLICIT :
969 minicmpsz = ICMP_MINLEN;
970 break;
971 /*
972 * type(1) + code(1) + cksum(2) + id(2) seq(2) +
973 * 3 * timestamp(3 * 4)
974 */
975 case ICMP_TSTAMP :
976 case ICMP_TSTAMPREPLY :
977 minicmpsz = 20;
978 break;
979 /*
980 * type(1) + code(1) + cksum(2) + id(2) seq(2) +
981 * mask(4)
982 */
983 case ICMP_MASKREQ :
984 case ICMP_MASKREPLY :
985 minicmpsz = 12;
986 break;
987 /*
988 * type(1) + code(1) + cksum(2) + id(2) seq(2) + ip(20+)
989 */
990 case ICMP_UNREACH :
991 if (icmp->icmp_code == ICMP_UNREACH_NEEDFRAG) {
992 if (icmp->icmp_nextmtu < ifs->ifs_fr_icmpminfragmtu)
993 fin->fin_flx |= FI_BAD;
994 }
995 /* FALLTHRU */
996 case ICMP_SOURCEQUENCH :
997 case ICMP_REDIRECT :
998 case ICMP_TIMXCEED :
999 case ICMP_PARAMPROB :
1000 fin->fin_flx |= FI_ICMPERR;
1001 if (fr_coalesce(fin) != 1)
1002 return;
1003 /*
1004 * ICMP error packets should not be generated for IP
1005 * packets that are a fragment that isn't the first
1006 * fragment.
1007 */
1008 oip = (ip_t *)((char *)fin->fin_dp + ICMPERR_ICMPHLEN);
1009 if ((ntohs(oip->ip_off) & IP_OFFMASK) != 0)
1010 fin->fin_flx |= FI_BAD;
1011 break;
1012 default :
1013 break;
1014 }
1015
1016 frpr_short(fin, minicmpsz);
1017 }
1018
1019
1020 /* ------------------------------------------------------------------------ */
1021 /* Function: frpr_tcpcommon */
1022 /* Returns: void */
1023 /* Parameters: fin(I) - pointer to packet information */
1024 /* */
1025 /* TCP header sanity checking. Look for bad combinations of TCP flags, */
1026 /* and make some checks with how they interact with other fields. */
1027 /* If compiled with IPFILTER_CKSUM, check to see if the TCP checksum is */
1028 /* valid and mark the packet as bad if not. */
1029 /* ------------------------------------------------------------------------ */
frpr_tcpcommon(fin)1030 static INLINE void frpr_tcpcommon(fin)
1031 fr_info_t *fin;
1032 {
1033 int flags, tlen;
1034 tcphdr_t *tcp;
1035
1036 fin->fin_flx |= FI_TCPUDP;
1037 if (fin->fin_off != 0)
1038 return;
1039
1040 if (frpr_pullup(fin, sizeof(*tcp)) == -1)
1041 return;
1042 tcp = fin->fin_dp;
1043
1044 if (fin->fin_dlen > 3) {
1045 fin->fin_sport = ntohs(tcp->th_sport);
1046 fin->fin_dport = ntohs(tcp->th_dport);
1047 }
1048
1049 if ((fin->fin_flx & FI_SHORT) != 0)
1050 return;
1051
1052 /*
1053 * Use of the TCP data offset *must* result in a value that is at
1054 * least the same size as the TCP header.
1055 */
1056 tlen = TCP_OFF(tcp) << 2;
1057 if (tlen < sizeof(tcphdr_t)) {
1058 fin->fin_flx |= FI_BAD;
1059 return;
1060 }
1061
1062 flags = tcp->th_flags;
1063 fin->fin_tcpf = tcp->th_flags;
1064
1065 /*
1066 * If the urgent flag is set, then the urgent pointer must
1067 * also be set and vice versa. Good TCP packets do not have
1068 * just one of these set.
1069 */
1070 if ((flags & TH_URG) != 0 && (tcp->th_urp == 0)) {
1071 fin->fin_flx |= FI_BAD;
1072 } else if ((flags & TH_URG) == 0 && (tcp->th_urp != 0)) {
1073 /* Ignore this case, it shows up in "real" traffic with */
1074 /* bogus values in the urgent pointer field. */
1075 flags = flags; /* LINT */
1076 } else if (((flags & (TH_SYN|TH_FIN)) != 0) &&
1077 ((flags & (TH_RST|TH_ACK)) == TH_RST)) {
1078 /* TH_FIN|TH_RST|TH_ACK seems to appear "naturally" */
1079 fin->fin_flx |= FI_BAD;
1080 } else if (!(flags & TH_ACK)) {
1081 /*
1082 * If the ack bit isn't set, then either the SYN or
1083 * RST bit must be set. If the SYN bit is set, then
1084 * we expect the ACK field to be 0. If the ACK is
1085 * not set and if URG, PSH or FIN are set, consdier
1086 * that to indicate a bad TCP packet.
1087 */
1088 if ((flags == TH_SYN) && (tcp->th_ack != 0)) {
1089 /*
1090 * Cisco PIX sets the ACK field to a random value.
1091 * In light of this, do not set FI_BAD until a patch
1092 * is available from Cisco to ensure that
1093 * interoperability between existing systems is
1094 * achieved.
1095 */
1096 /*fin->fin_flx |= FI_BAD*/;
1097 flags = flags; /* LINT */
1098 } else if (!(flags & (TH_RST|TH_SYN))) {
1099 fin->fin_flx |= FI_BAD;
1100 } else if ((flags & (TH_URG|TH_PUSH|TH_FIN)) != 0) {
1101 fin->fin_flx |= FI_BAD;
1102 }
1103 }
1104
1105 /*
1106 * At this point, it's not exactly clear what is to be gained by
1107 * marking up which TCP options are and are not present. The one we
1108 * are most interested in is the TCP window scale. This is only in
1109 * a SYN packet [RFC1323] so we don't need this here...?
1110 * Now if we were to analyse the header for passive fingerprinting,
1111 * then that might add some weight to adding this...
1112 */
1113 if (tlen == sizeof(tcphdr_t))
1114 return;
1115
1116 if (frpr_pullup(fin, tlen) == -1)
1117 return;
1118
1119 #if 0
1120 ip = fin->fin_ip;
1121 s = (u_char *)(tcp + 1);
1122 off = IP_HL(ip) << 2;
1123 # ifdef _KERNEL
1124 if (fin->fin_mp != NULL) {
1125 mb_t *m = *fin->fin_mp;
1126
1127 if (off + tlen > M_LEN(m))
1128 return;
1129 }
1130 # endif
1131 for (tlen -= (int)sizeof(*tcp); tlen > 0; ) {
1132 opt = *s;
1133 if (opt == '\0')
1134 break;
1135 else if (opt == TCPOPT_NOP)
1136 ol = 1;
1137 else {
1138 if (tlen < 2)
1139 break;
1140 ol = (int)*(s + 1);
1141 if (ol < 2 || ol > tlen)
1142 break;
1143 }
1144
1145 for (i = 9, mv = 4; mv >= 0; ) {
1146 op = ipopts + i;
1147 if (opt == (u_char)op->ol_val) {
1148 optmsk |= op->ol_bit;
1149 break;
1150 }
1151 }
1152 tlen -= ol;
1153 s += ol;
1154 }
1155 #endif /* 0 */
1156 }
1157
1158
1159
1160 /* ------------------------------------------------------------------------ */
1161 /* Function: frpr_udpcommon */
1162 /* Returns: void */
1163 /* Parameters: fin(I) - pointer to packet information */
1164 /* */
1165 /* Extract the UDP source and destination ports, if present. If compiled */
1166 /* with IPFILTER_CKSUM, check to see if the UDP checksum is valid. */
1167 /* ------------------------------------------------------------------------ */
frpr_udpcommon(fin)1168 static INLINE void frpr_udpcommon(fin)
1169 fr_info_t *fin;
1170 {
1171 udphdr_t *udp;
1172
1173 fin->fin_flx |= FI_TCPUDP;
1174
1175 if (!fin->fin_off && (fin->fin_dlen > 3)) {
1176 if (frpr_pullup(fin, sizeof(*udp)) == -1) {
1177 fin->fin_flx |= FI_SHORT;
1178 return;
1179 }
1180
1181 udp = fin->fin_dp;
1182
1183 fin->fin_sport = ntohs(udp->uh_sport);
1184 fin->fin_dport = ntohs(udp->uh_dport);
1185 }
1186 }
1187
1188
1189 /* ------------------------------------------------------------------------ */
1190 /* Function: frpr_tcp */
1191 /* Returns: void */
1192 /* Parameters: fin(I) - pointer to packet information */
1193 /* */
1194 /* IPv4 Only */
1195 /* Analyse the packet for IPv4/TCP properties. */
1196 /* ------------------------------------------------------------------------ */
frpr_tcp(fin)1197 static INLINE void frpr_tcp(fin)
1198 fr_info_t *fin;
1199 {
1200
1201 fr_checkv4sum(fin);
1202
1203 frpr_short(fin, sizeof(tcphdr_t));
1204
1205 frpr_tcpcommon(fin);
1206 }
1207
1208
1209 /* ------------------------------------------------------------------------ */
1210 /* Function: frpr_udp */
1211 /* Returns: void */
1212 /* Parameters: fin(I) - pointer to packet information */
1213 /* */
1214 /* IPv4 Only */
1215 /* Analyse the packet for IPv4/UDP properties. */
1216 /* ------------------------------------------------------------------------ */
frpr_udp(fin)1217 static INLINE void frpr_udp(fin)
1218 fr_info_t *fin;
1219 {
1220
1221 fr_checkv4sum(fin);
1222
1223 frpr_short(fin, sizeof(udphdr_t));
1224
1225 frpr_udpcommon(fin);
1226 }
1227
1228
1229 /* ------------------------------------------------------------------------ */
1230 /* Function: frpr_esp */
1231 /* Returns: void */
1232 /* Parameters: fin(I) - pointer to packet information */
1233 /* */
1234 /* Analyse the packet for ESP properties. */
1235 /* The minimum length is taken to be the SPI (32bits) plus a tail (32bits) */
1236 /* even though the newer ESP packets must also have a sequence number that */
1237 /* is 32bits as well, it is not possible(?) to determine the version from a */
1238 /* simple packet header. */
1239 /* ------------------------------------------------------------------------ */
frpr_esp(fin)1240 static INLINE void frpr_esp(fin)
1241 fr_info_t *fin;
1242 {
1243 if ((fin->fin_off == 0) && (frpr_pullup(fin, 8) == -1))
1244 return;
1245
1246 frpr_short(fin, 8);
1247 }
1248
1249
1250 /* ------------------------------------------------------------------------ */
1251 /* Function: frpr_ah */
1252 /* Returns: void */
1253 /* Parameters: fin(I) - pointer to packet information */
1254 /* */
1255 /* Analyse the packet for AH properties. */
1256 /* The minimum length is taken to be the combination of all fields in the */
1257 /* header being present and no authentication data (null algorithm used.) */
1258 /* ------------------------------------------------------------------------ */
frpr_ah(fin)1259 static INLINE void frpr_ah(fin)
1260 fr_info_t *fin;
1261 {
1262 authhdr_t *ah;
1263 int len;
1264
1265 if ((fin->fin_off == 0) && (frpr_pullup(fin, sizeof(*ah)) == -1))
1266 return;
1267
1268 ah = (authhdr_t *)fin->fin_dp;
1269
1270 len = (ah->ah_plen + 2) << 2;
1271 frpr_short(fin, len);
1272 }
1273
1274
1275 /* ------------------------------------------------------------------------ */
1276 /* Function: frpr_gre */
1277 /* Returns: void */
1278 /* Parameters: fin(I) - pointer to packet information */
1279 /* */
1280 /* Analyse the packet for GRE properties. */
1281 /* ------------------------------------------------------------------------ */
frpr_gre(fin)1282 static INLINE void frpr_gre(fin)
1283 fr_info_t *fin;
1284 {
1285 grehdr_t *gre;
1286
1287 if ((fin->fin_off == 0) && (frpr_pullup(fin, sizeof(grehdr_t)) == -1))
1288 return;
1289
1290 frpr_short(fin, sizeof(grehdr_t));
1291
1292 if (fin->fin_off == 0) {
1293 gre = fin->fin_dp;
1294 if (GRE_REV(gre->gr_flags) == 1)
1295 fin->fin_data[0] = gre->gr_call;
1296 }
1297 }
1298
1299
1300 /* ------------------------------------------------------------------------ */
1301 /* Function: frpr_ipv4hdr */
1302 /* Returns: void */
1303 /* Parameters: fin(I) - pointer to packet information */
1304 /* */
1305 /* IPv4 Only */
1306 /* Analyze the IPv4 header and set fields in the fr_info_t structure. */
1307 /* Check all options present and flag their presence if any exist. */
1308 /* ------------------------------------------------------------------------ */
frpr_ipv4hdr(fin)1309 static INLINE void frpr_ipv4hdr(fin)
1310 fr_info_t *fin;
1311 {
1312 u_short optmsk = 0, secmsk = 0, auth = 0;
1313 int hlen, ol, mv, p, i;
1314 const struct optlist *op;
1315 u_char *s, opt;
1316 u_short off;
1317 fr_ip_t *fi;
1318 ip_t *ip;
1319
1320 fi = &fin->fin_fi;
1321 hlen = fin->fin_hlen;
1322
1323 ip = fin->fin_ip;
1324 p = ip->ip_p;
1325 fi->fi_p = p;
1326 fi->fi_tos = ip->ip_tos;
1327 fin->fin_id = ip->ip_id;
1328 off = ip->ip_off;
1329
1330 /* Get both TTL and protocol */
1331 fi->fi_p = ip->ip_p;
1332 fi->fi_ttl = ip->ip_ttl;
1333 #if 0
1334 (*(((u_short *)fi) + 1)) = (*(((u_short *)ip) + 4));
1335 #endif
1336
1337 /* Zero out bits not used in IPv6 address */
1338 fi->fi_src.i6[1] = 0;
1339 fi->fi_src.i6[2] = 0;
1340 fi->fi_src.i6[3] = 0;
1341 fi->fi_dst.i6[1] = 0;
1342 fi->fi_dst.i6[2] = 0;
1343 fi->fi_dst.i6[3] = 0;
1344
1345 fi->fi_saddr = ip->ip_src.s_addr;
1346 fi->fi_daddr = ip->ip_dst.s_addr;
1347
1348 /*
1349 * set packet attribute flags based on the offset and
1350 * calculate the byte offset that it represents.
1351 */
1352 off &= IP_MF|IP_OFFMASK;
1353 if (off != 0) {
1354 int morefrag = off & IP_MF;
1355
1356 fi->fi_flx |= FI_FRAG;
1357 if (morefrag)
1358 fi->fi_flx |= FI_MOREFRAG;
1359 off &= IP_OFFMASK;
1360 if (off != 0) {
1361 fin->fin_flx |= FI_FRAGBODY;
1362 off <<= 3;
1363 if ((off + fin->fin_dlen > 65535) ||
1364 (fin->fin_dlen == 0) ||
1365 ((morefrag != 0) && ((fin->fin_dlen & 7) != 0))) {
1366 /*
1367 * The length of the packet, starting at its
1368 * offset cannot exceed 65535 (0xffff) as the
1369 * length of an IP packet is only 16 bits.
1370 *
1371 * Any fragment that isn't the last fragment
1372 * must have a length greater than 0 and it
1373 * must be an even multiple of 8.
1374 */
1375 fi->fi_flx |= FI_BAD;
1376 }
1377 }
1378 }
1379 fin->fin_off = off;
1380
1381 /*
1382 * Call per-protocol setup and checking
1383 */
1384 switch (p)
1385 {
1386 case IPPROTO_UDP :
1387 frpr_udp(fin);
1388 break;
1389 case IPPROTO_TCP :
1390 frpr_tcp(fin);
1391 break;
1392 case IPPROTO_ICMP :
1393 frpr_icmp(fin);
1394 break;
1395 case IPPROTO_AH :
1396 frpr_ah(fin);
1397 break;
1398 case IPPROTO_ESP :
1399 frpr_esp(fin);
1400 break;
1401 case IPPROTO_GRE :
1402 frpr_gre(fin);
1403 break;
1404 }
1405
1406 ip = fin->fin_ip;
1407 if (ip == NULL)
1408 return;
1409
1410 /*
1411 * If it is a standard IP header (no options), set the flag fields
1412 * which relate to options to 0.
1413 */
1414 if (hlen == sizeof(*ip)) {
1415 fi->fi_optmsk = 0;
1416 fi->fi_secmsk = 0;
1417 fi->fi_auth = 0;
1418 return;
1419 }
1420
1421 /*
1422 * So the IP header has some IP options attached. Walk the entire
1423 * list of options present with this packet and set flags to indicate
1424 * which ones are here and which ones are not. For the somewhat out
1425 * of date and obscure security classification options, set a flag to
1426 * represent which classification is present.
1427 */
1428 fi->fi_flx |= FI_OPTIONS;
1429
1430 for (s = (u_char *)(ip + 1), hlen -= (int)sizeof(*ip); hlen > 0; ) {
1431 opt = *s;
1432 if (opt == '\0')
1433 break;
1434 else if (opt == IPOPT_NOP)
1435 ol = 1;
1436 else {
1437 if (hlen < 2)
1438 break;
1439 ol = (int)*(s + 1);
1440 if (ol < 2 || ol > hlen)
1441 break;
1442 }
1443 for (i = 9, mv = 4; mv >= 0; ) {
1444 op = ipopts + i;
1445 if ((opt == (u_char)op->ol_val) && (ol > 4)) {
1446 optmsk |= op->ol_bit;
1447 if (opt == IPOPT_SECURITY) {
1448 const struct optlist *sp;
1449 u_char sec;
1450 int j, m;
1451
1452 sec = *(s + 2); /* classification */
1453 for (j = 3, m = 2; m >= 0; ) {
1454 sp = secopt + j;
1455 if (sec == sp->ol_val) {
1456 secmsk |= sp->ol_bit;
1457 auth = *(s + 3);
1458 auth *= 256;
1459 auth += *(s + 4);
1460 break;
1461 }
1462 if (sec < sp->ol_val)
1463 j -= m;
1464 else
1465 j += m;
1466 m--;
1467 }
1468 }
1469 break;
1470 }
1471 if (opt < op->ol_val)
1472 i -= mv;
1473 else
1474 i += mv;
1475 mv--;
1476 }
1477 hlen -= ol;
1478 s += ol;
1479 }
1480
1481 /*
1482 *
1483 */
1484 if (auth && !(auth & 0x0100))
1485 auth &= 0xff00;
1486 fi->fi_optmsk = optmsk;
1487 fi->fi_secmsk = secmsk;
1488 fi->fi_auth = auth;
1489 }
1490
1491
1492 /* ------------------------------------------------------------------------ */
1493 /* Function: fr_makefrip */
1494 /* Returns: int - 1 == hdr checking error, 0 == OK */
1495 /* Parameters: hlen(I) - length of IP packet header */
1496 /* ip(I) - pointer to the IP header */
1497 /* fin(IO) - pointer to packet information */
1498 /* */
1499 /* Compact the IP header into a structure which contains just the info. */
1500 /* which is useful for comparing IP headers with and store this information */
1501 /* in the fr_info_t structure pointer to by fin. At present, it is assumed */
1502 /* this function will be called with either an IPv4 or IPv6 packet. */
1503 /* ------------------------------------------------------------------------ */
fr_makefrip(hlen,ip,fin)1504 int fr_makefrip(hlen, ip, fin)
1505 int hlen;
1506 ip_t *ip;
1507 fr_info_t *fin;
1508 {
1509 int v;
1510
1511 fin->fin_depth = 0;
1512 fin->fin_hlen = (u_short)hlen;
1513 fin->fin_ip = ip;
1514 fin->fin_rule = 0xffffffff;
1515 fin->fin_group[0] = -1;
1516 fin->fin_group[1] = '\0';
1517 fin->fin_dlen = fin->fin_plen - hlen;
1518 fin->fin_dp = (char *)ip + hlen;
1519
1520 v = fin->fin_v;
1521 if (v == 4)
1522 frpr_ipv4hdr(fin);
1523 #ifdef USE_INET6
1524 else if (v == 6)
1525 frpr_ipv6hdr(fin);
1526 #endif
1527 if (fin->fin_ip == NULL)
1528 return -1;
1529 return 0;
1530 }
1531
1532
1533 /* ------------------------------------------------------------------------ */
1534 /* Function: fr_portcheck */
1535 /* Returns: int - 1 == port matched, 0 == port match failed */
1536 /* Parameters: frp(I) - pointer to port check `expression' */
1537 /* pop(I) - pointer to port number to evaluate */
1538 /* */
1539 /* Perform a comparison of a port number against some other(s), using a */
1540 /* structure with compare information stored in it. */
1541 /* ------------------------------------------------------------------------ */
fr_portcheck(frp,pop)1542 static INLINE int fr_portcheck(frp, pop)
1543 frpcmp_t *frp;
1544 u_short *pop;
1545 {
1546 u_short tup, po;
1547 int err = 1;
1548
1549 tup = *pop;
1550 po = frp->frp_port;
1551
1552 /*
1553 * Do opposite test to that required and continue if that succeeds.
1554 */
1555 switch (frp->frp_cmp)
1556 {
1557 case FR_EQUAL :
1558 if (tup != po) /* EQUAL */
1559 err = 0;
1560 break;
1561 case FR_NEQUAL :
1562 if (tup == po) /* NOTEQUAL */
1563 err = 0;
1564 break;
1565 case FR_LESST :
1566 if (tup >= po) /* LESSTHAN */
1567 err = 0;
1568 break;
1569 case FR_GREATERT :
1570 if (tup <= po) /* GREATERTHAN */
1571 err = 0;
1572 break;
1573 case FR_LESSTE :
1574 if (tup > po) /* LT or EQ */
1575 err = 0;
1576 break;
1577 case FR_GREATERTE :
1578 if (tup < po) /* GT or EQ */
1579 err = 0;
1580 break;
1581 case FR_OUTRANGE :
1582 if (tup >= po && tup <= frp->frp_top) /* Out of range */
1583 err = 0;
1584 break;
1585 case FR_INRANGE :
1586 if (tup <= po || tup >= frp->frp_top) /* In range */
1587 err = 0;
1588 break;
1589 case FR_INCRANGE :
1590 if (tup < po || tup > frp->frp_top) /* Inclusive range */
1591 err = 0;
1592 break;
1593 default :
1594 break;
1595 }
1596 return err;
1597 }
1598
1599
1600 /* ------------------------------------------------------------------------ */
1601 /* Function: fr_tcpudpchk */
1602 /* Returns: int - 1 == protocol matched, 0 == check failed */
1603 /* Parameters: fin(I) - pointer to packet information */
1604 /* ft(I) - pointer to structure with comparison data */
1605 /* */
1606 /* Compares the current pcket (assuming it is TCP/UDP) information with a */
1607 /* structure containing information that we want to match against. */
1608 /* ------------------------------------------------------------------------ */
fr_tcpudpchk(fin,ft)1609 int fr_tcpudpchk(fin, ft)
1610 fr_info_t *fin;
1611 frtuc_t *ft;
1612 {
1613 int err = 1;
1614
1615 /*
1616 * Both ports should *always* be in the first fragment.
1617 * So far, I cannot find any cases where they can not be.
1618 *
1619 * compare destination ports
1620 */
1621 if (ft->ftu_dcmp)
1622 err = fr_portcheck(&ft->ftu_dst, &fin->fin_dport);
1623
1624 /*
1625 * compare source ports
1626 */
1627 if (err && ft->ftu_scmp)
1628 err = fr_portcheck(&ft->ftu_src, &fin->fin_sport);
1629
1630 /*
1631 * If we don't have all the TCP/UDP header, then how can we
1632 * expect to do any sort of match on it ? If we were looking for
1633 * TCP flags, then NO match. If not, then match (which should
1634 * satisfy the "short" class too).
1635 */
1636 if (err && (fin->fin_p == IPPROTO_TCP)) {
1637 if (fin->fin_flx & FI_SHORT)
1638 return !(ft->ftu_tcpf | ft->ftu_tcpfm);
1639 /*
1640 * Match the flags ? If not, abort this match.
1641 */
1642 if (ft->ftu_tcpfm &&
1643 ft->ftu_tcpf != (fin->fin_tcpf & ft->ftu_tcpfm)) {
1644 FR_DEBUG(("f. %#x & %#x != %#x\n", fin->fin_tcpf,
1645 ft->ftu_tcpfm, ft->ftu_tcpf));
1646 err = 0;
1647 }
1648 }
1649 return err;
1650 }
1651
1652
1653 /* ------------------------------------------------------------------------ */
1654 /* Function: fr_ipfcheck */
1655 /* Returns: int - 0 == match, 1 == no match */
1656 /* Parameters: fin(I) - pointer to packet information */
1657 /* fr(I) - pointer to filter rule */
1658 /* portcmp(I) - flag indicating whether to attempt matching on */
1659 /* TCP/UDP port data. */
1660 /* */
1661 /* Check to see if a packet matches an IPFilter rule. Checks of addresses, */
1662 /* port numbers, etc, for "standard" IPFilter rules are all orchestrated in */
1663 /* this function. */
1664 /* ------------------------------------------------------------------------ */
fr_ipfcheck(fin,fr,portcmp)1665 static INLINE int fr_ipfcheck(fin, fr, portcmp)
1666 fr_info_t *fin;
1667 frentry_t *fr;
1668 int portcmp;
1669 {
1670 u_32_t *ld, *lm, *lip;
1671 fripf_t *fri;
1672 fr_ip_t *fi;
1673 int i;
1674 ipf_stack_t *ifs = fin->fin_ifs;
1675
1676 fi = &fin->fin_fi;
1677 fri = fr->fr_ipf;
1678 lip = (u_32_t *)fi;
1679 lm = (u_32_t *)&fri->fri_mip;
1680 ld = (u_32_t *)&fri->fri_ip;
1681
1682 /*
1683 * first 32 bits to check coversion:
1684 * IP version, TOS, TTL, protocol
1685 */
1686 i = ((*lip & *lm) != *ld);
1687 FR_DEBUG(("0. %#08x & %#08x != %#08x\n",
1688 *lip, *lm, *ld));
1689 if (i)
1690 return 1;
1691
1692 /*
1693 * Next 32 bits is a constructed bitmask indicating which IP options
1694 * are present (if any) in this packet.
1695 */
1696 lip++, lm++, ld++;
1697 i |= ((*lip & *lm) != *ld);
1698 FR_DEBUG(("1. %#08x & %#08x != %#08x\n",
1699 *lip, *lm, *ld));
1700 if (i)
1701 return 1;
1702
1703 lip++, lm++, ld++;
1704 /*
1705 * Unrolled loops (4 each, for 32 bits) for address checks.
1706 */
1707 /*
1708 * Check the source address.
1709 */
1710 #ifdef IPFILTER_LOOKUP
1711 if (fr->fr_satype == FRI_LOOKUP) {
1712 fin->fin_flx |= FI_DONTCACHE;
1713 i = (*fr->fr_srcfunc)(fr->fr_srcptr, fi->fi_v, lip, fin, ifs);
1714 if (i == -1)
1715 return 1;
1716 lip += 3;
1717 lm += 3;
1718 ld += 3;
1719 } else {
1720 #endif
1721 i = ((*lip & *lm) != *ld);
1722 FR_DEBUG(("2a. %#08x & %#08x != %#08x\n",
1723 *lip, *lm, *ld));
1724 if (fi->fi_v == 6) {
1725 lip++, lm++, ld++;
1726 i |= ((*lip & *lm) != *ld);
1727 FR_DEBUG(("2b. %#08x & %#08x != %#08x\n",
1728 *lip, *lm, *ld));
1729 lip++, lm++, ld++;
1730 i |= ((*lip & *lm) != *ld);
1731 FR_DEBUG(("2c. %#08x & %#08x != %#08x\n",
1732 *lip, *lm, *ld));
1733 lip++, lm++, ld++;
1734 i |= ((*lip & *lm) != *ld);
1735 FR_DEBUG(("2d. %#08x & %#08x != %#08x\n",
1736 *lip, *lm, *ld));
1737 } else {
1738 lip += 3;
1739 lm += 3;
1740 ld += 3;
1741 }
1742 #ifdef IPFILTER_LOOKUP
1743 }
1744 #endif
1745 i ^= (fr->fr_flags & FR_NOTSRCIP) >> 6;
1746 if (i)
1747 return 1;
1748
1749 /*
1750 * Check the destination address.
1751 */
1752 lip++, lm++, ld++;
1753 #ifdef IPFILTER_LOOKUP
1754 if (fr->fr_datype == FRI_LOOKUP) {
1755 fin->fin_flx |= FI_DONTCACHE;
1756 i = (*fr->fr_dstfunc)(fr->fr_dstptr, fi->fi_v, lip, fin, ifs);
1757 if (i == -1)
1758 return 1;
1759 lip += 3;
1760 lm += 3;
1761 ld += 3;
1762 } else {
1763 #endif
1764 i = ((*lip & *lm) != *ld);
1765 FR_DEBUG(("3a. %#08x & %#08x != %#08x\n",
1766 *lip, *lm, *ld));
1767 if (fi->fi_v == 6) {
1768 lip++, lm++, ld++;
1769 i |= ((*lip & *lm) != *ld);
1770 FR_DEBUG(("3b. %#08x & %#08x != %#08x\n",
1771 *lip, *lm, *ld));
1772 lip++, lm++, ld++;
1773 i |= ((*lip & *lm) != *ld);
1774 FR_DEBUG(("3c. %#08x & %#08x != %#08x\n",
1775 *lip, *lm, *ld));
1776 lip++, lm++, ld++;
1777 i |= ((*lip & *lm) != *ld);
1778 FR_DEBUG(("3d. %#08x & %#08x != %#08x\n",
1779 *lip, *lm, *ld));
1780 } else {
1781 lip += 3;
1782 lm += 3;
1783 ld += 3;
1784 }
1785 #ifdef IPFILTER_LOOKUP
1786 }
1787 #endif
1788 i ^= (fr->fr_flags & FR_NOTDSTIP) >> 7;
1789 if (i)
1790 return 1;
1791 /*
1792 * IP addresses matched. The next 32bits contains:
1793 * mast of old IP header security & authentication bits.
1794 */
1795 lip++, lm++, ld++;
1796 i |= ((*lip & *lm) != *ld);
1797 FR_DEBUG(("4. %#08x & %#08x != %#08x\n",
1798 *lip, *lm, *ld));
1799
1800 /*
1801 * Next we have 32 bits of packet flags.
1802 */
1803 lip++, lm++, ld++;
1804 i |= ((*lip & *lm) != *ld);
1805 FR_DEBUG(("5. %#08x & %#08x != %#08x\n",
1806 *lip, *lm, *ld));
1807
1808 if (i == 0) {
1809 /*
1810 * If a fragment, then only the first has what we're
1811 * looking for here...
1812 */
1813 if (portcmp) {
1814 if (!fr_tcpudpchk(fin, &fr->fr_tuc))
1815 i = 1;
1816 } else {
1817 if (fr->fr_dcmp || fr->fr_scmp ||
1818 fr->fr_tcpf || fr->fr_tcpfm)
1819 i = 1;
1820 if (fr->fr_icmpm || fr->fr_icmp) {
1821 if (((fi->fi_p != IPPROTO_ICMP) &&
1822 (fi->fi_p != IPPROTO_ICMPV6)) ||
1823 fin->fin_off || (fin->fin_dlen < 2))
1824 i = 1;
1825 else if ((fin->fin_data[0] & fr->fr_icmpm) !=
1826 fr->fr_icmp) {
1827 FR_DEBUG(("i. %#x & %#x != %#x\n",
1828 fin->fin_data[0],
1829 fr->fr_icmpm, fr->fr_icmp));
1830 i = 1;
1831 }
1832 }
1833 }
1834 }
1835 return i;
1836 }
1837
1838
1839 /* ------------------------------------------------------------------------ */
1840 /* Function: fr_scanlist */
1841 /* Returns: int - result flags of scanning filter list */
1842 /* Parameters: fin(I) - pointer to packet information */
1843 /* pass(I) - default result to return for filtering */
1844 /* */
1845 /* Check the input/output list of rules for a match to the current packet. */
1846 /* If a match is found, the value of fr_flags from the rule becomes the */
1847 /* return value and fin->fin_fr points to the matched rule. */
1848 /* */
1849 /* This function may be called recusively upto 16 times (limit inbuilt.) */
1850 /* When unwinding, it should finish up with fin_depth as 0. */
1851 /* */
1852 /* Could be per interface, but this gets real nasty when you don't have, */
1853 /* or can't easily change, the kernel source code to . */
1854 /* ------------------------------------------------------------------------ */
fr_scanlist(fin,pass)1855 int fr_scanlist(fin, pass)
1856 fr_info_t *fin;
1857 u_32_t pass;
1858 {
1859 int rulen, portcmp, off, logged, skip;
1860 struct frentry *fr, *fnext;
1861 u_32_t passt, passo;
1862 ipf_stack_t *ifs = fin->fin_ifs;
1863
1864 /*
1865 * Do not allow nesting deeper than 16 levels.
1866 */
1867 if (fin->fin_depth >= 16)
1868 return pass;
1869
1870 fr = fin->fin_fr;
1871
1872 /*
1873 * If there are no rules in this list, return now.
1874 */
1875 if (fr == NULL)
1876 return pass;
1877
1878 skip = 0;
1879 logged = 0;
1880 portcmp = 0;
1881 fin->fin_depth++;
1882 fin->fin_fr = NULL;
1883 off = fin->fin_off;
1884
1885 if ((fin->fin_flx & FI_TCPUDP) && (fin->fin_dlen > 3) && !off)
1886 portcmp = 1;
1887
1888 for (rulen = 0; fr; fr = fnext, rulen++) {
1889 fnext = fr->fr_next;
1890 if (skip != 0) {
1891 FR_VERBOSE(("%d (%#x)\n", skip, fr->fr_flags));
1892 skip--;
1893 continue;
1894 }
1895
1896 /*
1897 * In all checks below, a null (zero) value in the
1898 * filter struture is taken to mean a wildcard.
1899 *
1900 * check that we are working for the right interface
1901 */
1902 #ifdef _KERNEL
1903 if (fr->fr_ifa && fr->fr_ifa != fin->fin_ifp)
1904 continue;
1905 #else
1906 if (opts & (OPT_VERBOSE|OPT_DEBUG))
1907 printf("\n");
1908 FR_VERBOSE(("%c", FR_ISSKIP(pass) ? 's' :
1909 FR_ISPASS(pass) ? 'p' :
1910 FR_ISACCOUNT(pass) ? 'A' :
1911 FR_ISAUTH(pass) ? 'a' :
1912 (pass & FR_NOMATCH) ? 'n' :'b'));
1913 if (fr->fr_ifa && fr->fr_ifa != fin->fin_ifp)
1914 continue;
1915 FR_VERBOSE((":i"));
1916 #endif
1917
1918 switch (fr->fr_type)
1919 {
1920 case FR_T_IPF :
1921 case FR_T_IPF|FR_T_BUILTIN :
1922 if (fr_ipfcheck(fin, fr, portcmp))
1923 continue;
1924 break;
1925 #if defined(IPFILTER_BPF)
1926 case FR_T_BPFOPC :
1927 case FR_T_BPFOPC|FR_T_BUILTIN :
1928 {
1929 u_char *mc;
1930
1931 if (*fin->fin_mp == NULL)
1932 continue;
1933 if (fin->fin_v != fr->fr_v)
1934 continue;
1935 mc = (u_char *)fin->fin_m;
1936 if (!bpf_filter(fr->fr_data, mc, fin->fin_plen, 0))
1937 continue;
1938 break;
1939 }
1940 #endif
1941 case FR_T_CALLFUNC|FR_T_BUILTIN :
1942 {
1943 frentry_t *f;
1944
1945 f = (*fr->fr_func)(fin, &pass);
1946 if (f != NULL)
1947 fr = f;
1948 else
1949 continue;
1950 break;
1951 }
1952 default :
1953 break;
1954 }
1955
1956 if ((fin->fin_out == 0) && (fr->fr_nattag.ipt_num[0] != 0)) {
1957 if (fin->fin_nattag == NULL)
1958 continue;
1959 if (fr_matchtag(&fr->fr_nattag, fin->fin_nattag) == 0)
1960 continue;
1961 }
1962 FR_VERBOSE(("=%s.%d *", fr->fr_group, rulen));
1963
1964 passt = fr->fr_flags;
1965
1966 /*
1967 * Allowing a rule with the "keep state" flag set to match
1968 * packets that have been tagged "out of window" by the TCP
1969 * state tracking is foolish as the attempt to add a new
1970 * state entry to the table will fail.
1971 */
1972 if ((passt & FR_KEEPSTATE) && (fin->fin_flx & FI_OOW))
1973 continue;
1974
1975 /*
1976 * If the rule is a "call now" rule, then call the function
1977 * in the rule, if it exists and use the results from that.
1978 * If the function pointer is bad, just make like we ignore
1979 * it, except for increasing the hit counter.
1980 */
1981 IPF_BUMP(fr->fr_hits);
1982 fr->fr_bytes += (U_QUAD_T)fin->fin_plen;
1983 if ((passt & FR_CALLNOW) != 0) {
1984 if ((fr->fr_func != NULL) &&
1985 (fr->fr_func != (ipfunc_t)-1)) {
1986 frentry_t *frs;
1987
1988 frs = fin->fin_fr;
1989 fin->fin_fr = fr;
1990 fr = (*fr->fr_func)(fin, &passt);
1991 if (fr == NULL) {
1992 fin->fin_fr = frs;
1993 continue;
1994 }
1995 passt = fr->fr_flags;
1996 fin->fin_fr = fr;
1997 }
1998 } else {
1999 fin->fin_fr = fr;
2000 }
2001
2002 #ifdef IPFILTER_LOG
2003 /*
2004 * Just log this packet...
2005 */
2006 if ((passt & FR_LOGMASK) == FR_LOG) {
2007 if (ipflog(fin, passt) == -1) {
2008 if (passt & FR_LOGORBLOCK) {
2009 passt &= ~FR_CMDMASK;
2010 passt |= FR_BLOCK|FR_QUICK;
2011 }
2012 IPF_BUMP(ifs->ifs_frstats[fin->fin_out].fr_skip);
2013 }
2014 IPF_BUMP(ifs->ifs_frstats[fin->fin_out].fr_pkl);
2015 logged = 1;
2016 }
2017 #endif /* IPFILTER_LOG */
2018 passo = pass;
2019 if (FR_ISSKIP(passt))
2020 skip = fr->fr_arg;
2021 else if ((passt & FR_LOGMASK) != FR_LOG)
2022 pass = passt;
2023 if (passt & (FR_RETICMP|FR_FAKEICMP))
2024 fin->fin_icode = fr->fr_icode;
2025 FR_DEBUG(("pass %#x\n", pass));
2026 fin->fin_rule = rulen;
2027 (void) strncpy(fin->fin_group, fr->fr_group, FR_GROUPLEN);
2028 if (fr->fr_grp != NULL) {
2029 fin->fin_fr = *fr->fr_grp;
2030 pass = fr_scanlist(fin, pass);
2031 if (fin->fin_fr == NULL) {
2032 fin->fin_rule = rulen;
2033 (void) strncpy(fin->fin_group, fr->fr_group,
2034 FR_GROUPLEN);
2035 fin->fin_fr = fr;
2036 }
2037 if (fin->fin_flx & FI_DONTCACHE)
2038 logged = 1;
2039 }
2040
2041 if (pass & FR_QUICK) {
2042 /*
2043 * Finally, if we've asked to track state for this
2044 * packet, set it up. Add state for "quick" rules
2045 * here so that if the action fails we can consider
2046 * the rule to "not match" and keep on processing
2047 * filter rules.
2048 */
2049 if ((pass & FR_KEEPSTATE) &&
2050 !(fin->fin_flx & FI_STATE)) {
2051 int out = fin->fin_out;
2052
2053 if (fr_addstate(fin, NULL, 0) != NULL) {
2054 IPF_BUMP(ifs->ifs_frstats[out].fr_ads);
2055 } else {
2056 IPF_BUMP(ifs->ifs_frstats[out].fr_bads);
2057 pass = passo;
2058 continue;
2059 }
2060 }
2061 break;
2062 }
2063 }
2064 if (logged)
2065 fin->fin_flx |= FI_DONTCACHE;
2066 fin->fin_depth--;
2067 return pass;
2068 }
2069
2070
2071 /* ------------------------------------------------------------------------ */
2072 /* Function: fr_acctpkt */
2073 /* Returns: frentry_t* - always returns NULL */
2074 /* Parameters: fin(I) - pointer to packet information */
2075 /* passp(IO) - pointer to current/new filter decision (unused) */
2076 /* */
2077 /* Checks a packet against accounting rules, if there are any for the given */
2078 /* IP protocol version. */
2079 /* */
2080 /* N.B.: this function returns NULL to match the prototype used by other */
2081 /* functions called from the IPFilter "mainline" in fr_check(). */
2082 /* ------------------------------------------------------------------------ */
fr_acctpkt(fin,passp)2083 frentry_t *fr_acctpkt(fin, passp)
2084 fr_info_t *fin;
2085 u_32_t *passp;
2086 {
2087 char group[FR_GROUPLEN];
2088 frentry_t *fr, *frsave;
2089 u_32_t pass, rulen;
2090 ipf_stack_t *ifs = fin->fin_ifs;
2091
2092 passp = passp;
2093 #ifdef USE_INET6
2094 if (fin->fin_v == 6)
2095 fr = ifs->ifs_ipacct6[fin->fin_out][ifs->ifs_fr_active];
2096 else
2097 #endif
2098 fr = ifs->ifs_ipacct[fin->fin_out][ifs->ifs_fr_active];
2099
2100 if (fr != NULL) {
2101 frsave = fin->fin_fr;
2102 bcopy(fin->fin_group, group, FR_GROUPLEN);
2103 rulen = fin->fin_rule;
2104 fin->fin_fr = fr;
2105 pass = fr_scanlist(fin, FR_NOMATCH);
2106 if (FR_ISACCOUNT(pass)) {
2107 IPF_BUMP(ifs->ifs_frstats[0].fr_acct);
2108 }
2109 fin->fin_fr = frsave;
2110 bcopy(group, fin->fin_group, FR_GROUPLEN);
2111 fin->fin_rule = rulen;
2112 }
2113 return NULL;
2114 }
2115
2116
2117 /* ------------------------------------------------------------------------ */
2118 /* Function: fr_firewall */
2119 /* Returns: frentry_t* - returns pointer to matched rule, if no matches */
2120 /* were found, returns NULL. */
2121 /* Parameters: fin(I) - pointer to packet information */
2122 /* passp(IO) - pointer to current/new filter decision (unused) */
2123 /* */
2124 /* Applies an appropriate set of firewall rules to the packet, to see if */
2125 /* there are any matches. The first check is to see if a match can be seen */
2126 /* in the cache. If not, then search an appropriate list of rules. Once a */
2127 /* matching rule is found, take any appropriate actions as defined by the */
2128 /* rule - except logging. */
2129 /* ------------------------------------------------------------------------ */
fr_firewall(fin,passp)2130 static frentry_t *fr_firewall(fin, passp)
2131 fr_info_t *fin;
2132 u_32_t *passp;
2133 {
2134 frentry_t *fr;
2135 fr_info_t *fc;
2136 u_32_t pass;
2137 int out;
2138 ipf_stack_t *ifs = fin->fin_ifs;
2139
2140 out = fin->fin_out;
2141 pass = *passp;
2142
2143 #ifdef USE_INET6
2144 if (fin->fin_v == 6)
2145 fin->fin_fr = ifs->ifs_ipfilter6[out][ifs->ifs_fr_active];
2146 else
2147 #endif
2148 fin->fin_fr = ifs->ifs_ipfilter[out][ifs->ifs_fr_active];
2149
2150 /*
2151 * If there are no rules loaded skip all checks and return.
2152 */
2153 if (fin->fin_fr == NULL) {
2154
2155 if ((pass & FR_NOMATCH)) {
2156 IPF_BUMP(ifs->ifs_frstats[out].fr_nom);
2157 }
2158
2159 return (NULL);
2160 }
2161
2162 fc = &ifs->ifs_frcache[out][CACHE_HASH(fin)];
2163 READ_ENTER(&ifs->ifs_ipf_frcache);
2164 if (!bcmp((char *)fin, (char *)fc, FI_CSIZE)) {
2165 /*
2166 * copy cached data so we can unlock the mutexes earlier.
2167 */
2168 bcopy((char *)fc, (char *)fin, FI_COPYSIZE);
2169 RWLOCK_EXIT(&ifs->ifs_ipf_frcache);
2170 IPF_BUMP(ifs->ifs_frstats[out].fr_chit);
2171
2172 if ((fr = fin->fin_fr) != NULL) {
2173 IPF_BUMP(fr->fr_hits);
2174 fr->fr_bytes += (U_QUAD_T)fin->fin_plen;
2175 pass = fr->fr_flags;
2176 }
2177 } else {
2178 RWLOCK_EXIT(&ifs->ifs_ipf_frcache);
2179
2180 pass = fr_scanlist(fin, ifs->ifs_fr_pass);
2181
2182 if (((pass & FR_KEEPSTATE) == 0) &&
2183 ((fin->fin_flx & FI_DONTCACHE) == 0)) {
2184 WRITE_ENTER(&ifs->ifs_ipf_frcache);
2185 bcopy((char *)fin, (char *)fc, FI_COPYSIZE);
2186 RWLOCK_EXIT(&ifs->ifs_ipf_frcache);
2187 }
2188
2189 fr = fin->fin_fr;
2190 }
2191
2192 if ((pass & FR_NOMATCH)) {
2193 IPF_BUMP(ifs->ifs_frstats[out].fr_nom);
2194 }
2195
2196 /*
2197 * Apply packets per second rate-limiting to a rule as required.
2198 */
2199 if ((fr != NULL) && (fr->fr_pps != 0) &&
2200 !ppsratecheck(&fr->fr_lastpkt, &fr->fr_curpps, fr->fr_pps)) {
2201 pass &= ~(FR_CMDMASK|FR_DUP|FR_RETICMP|FR_RETRST);
2202 pass |= FR_BLOCK;
2203 IPF_BUMP(ifs->ifs_frstats[out].fr_ppshit);
2204 }
2205
2206 /*
2207 * If we fail to add a packet to the authorization queue, then we
2208 * drop the packet later. However, if it was added then pretend
2209 * we've dropped it already.
2210 */
2211 if (FR_ISAUTH(pass)) {
2212 if (fr_newauth(fin->fin_m, fin) != 0) {
2213 #ifdef _KERNEL
2214 fin->fin_m = *fin->fin_mp = NULL;
2215 #else
2216 ;
2217 #endif
2218 fin->fin_error = 0;
2219 } else
2220 fin->fin_error = ENOSPC;
2221 }
2222
2223 if ((fr != NULL) && (fr->fr_func != NULL) &&
2224 (fr->fr_func != (ipfunc_t)-1) && !(pass & FR_CALLNOW))
2225 (void) (*fr->fr_func)(fin, &pass);
2226
2227 /*
2228 * If a rule is a pre-auth rule, check again in the list of rules
2229 * loaded for authenticated use. It does not particulary matter
2230 * if this search fails because a "preauth" result, from a rule,
2231 * is treated as "not a pass", hence the packet is blocked.
2232 */
2233 if (FR_ISPREAUTH(pass)) {
2234 if ((fin->fin_fr = ifs->ifs_ipauth) != NULL)
2235 pass = fr_scanlist(fin, ifs->ifs_fr_pass);
2236 }
2237
2238 /*
2239 * If the rule has "keep frag" and the packet is actually a fragment,
2240 * then create a fragment state entry.
2241 */
2242 if ((pass & (FR_KEEPFRAG|FR_KEEPSTATE)) == FR_KEEPFRAG) {
2243 if (fin->fin_flx & FI_FRAG) {
2244 if (fr_newfrag(fin, pass) == -1) {
2245 IPF_BUMP(ifs->ifs_frstats[out].fr_bnfr);
2246 } else {
2247 IPF_BUMP(ifs->ifs_frstats[out].fr_nfr);
2248 }
2249 } else {
2250 IPF_BUMP(ifs->ifs_frstats[out].fr_cfr);
2251 }
2252 }
2253
2254 /*
2255 * Finally, if we've asked to track state for this packet, set it up.
2256 */
2257 if ((pass & FR_KEEPSTATE) && !(fin->fin_flx & FI_STATE)) {
2258 if (fr_addstate(fin, NULL, 0) != NULL) {
2259 IPF_BUMP(ifs->ifs_frstats[out].fr_ads);
2260 } else {
2261 IPF_BUMP(ifs->ifs_frstats[out].fr_bads);
2262 if (FR_ISPASS(pass)) {
2263 pass &= ~FR_CMDMASK;
2264 pass |= FR_BLOCK;
2265 }
2266 }
2267 }
2268
2269 fr = fin->fin_fr;
2270
2271 if (passp != NULL)
2272 *passp = pass;
2273
2274 return fr;
2275 }
2276
2277 /* ------------------------------------------------------------------------ */
2278 /* Function: fr_check */
2279 /* Returns: int - 0 == packet allowed through, */
2280 /* User space: */
2281 /* -1 == packet blocked */
2282 /* 1 == packet not matched */
2283 /* -2 == requires authentication */
2284 /* Kernel: */
2285 /* > 0 == filter error # for packet */
2286 /* Parameters: ip(I) - pointer to start of IPv4/6 packet */
2287 /* hlen(I) - length of header */
2288 /* ifp(I) - pointer to interface this packet is on */
2289 /* out(I) - 0 == packet going in, 1 == packet going out */
2290 /* mp(IO) - pointer to caller's buffer pointer that holds this */
2291 /* IP packet. */
2292 /* Solaris & HP-UX ONLY : */
2293 /* qpi(I) - pointer to STREAMS queue information for this */
2294 /* interface & direction. */
2295 /* */
2296 /* fr_check() is the master function for all IPFilter packet processing. */
2297 /* It orchestrates: Network Address Translation (NAT), checking for packet */
2298 /* authorisation (or pre-authorisation), presence of related state info., */
2299 /* generating log entries, IP packet accounting, routing of packets as */
2300 /* directed by firewall rules and of course whether or not to allow the */
2301 /* packet to be further processed by the kernel. */
2302 /* */
2303 /* For packets blocked, the contents of "mp" will be NULL'd and the buffer */
2304 /* freed. Packets passed may be returned with the pointer pointed to by */
2305 /* by "mp" changed to a new buffer. */
2306 /* ------------------------------------------------------------------------ */
fr_check(ip,hlen,ifp,out,qif,mp,ifs)2307 int fr_check(ip, hlen, ifp, out
2308 #if defined(_KERNEL) && defined(MENTAT)
2309 , qif, mp, ifs)
2310 void *qif;
2311 #else
2312 , mp, ifs)
2313 #endif
2314 mb_t **mp;
2315 ip_t *ip;
2316 int hlen;
2317 void *ifp;
2318 int out;
2319 ipf_stack_t *ifs;
2320 {
2321 /*
2322 * The above really sucks, but short of writing a diff
2323 */
2324 fr_info_t frinfo;
2325 fr_info_t *fin = &frinfo;
2326 u_32_t pass;
2327 frentry_t *fr = NULL;
2328 int v = IP_V(ip);
2329 mb_t *mc = NULL;
2330 mb_t *m;
2331 #ifdef USE_INET6
2332 ip6_t *ip6;
2333 #endif
2334 #ifdef _KERNEL
2335 # ifdef MENTAT
2336 qpktinfo_t *qpi = qif;
2337 #endif
2338 #endif
2339
2340 SPL_INT(s);
2341 pass = ifs->ifs_fr_pass;
2342
2343 /*
2344 * The first part of fr_check() deals with making sure that what goes
2345 * into the filtering engine makes some sense. Information about the
2346 * the packet is distilled, collected into a fr_info_t structure and
2347 * the an attempt to ensure the buffer the packet is in is big enough
2348 * to hold all the required packet headers.
2349 */
2350 #ifdef _KERNEL
2351 # ifdef MENTAT
2352 if (!OK_32PTR(ip))
2353 return 2;
2354 # endif
2355
2356
2357 if (ifs->ifs_fr_running <= 0) {
2358 return 0;
2359 }
2360
2361 bzero((char *)fin, sizeof(*fin));
2362
2363 # ifdef MENTAT
2364 fin->fin_flx = qpi->qpi_flags & (FI_NOCKSUM|FI_MBCAST|FI_MULTICAST|
2365 FI_BROADCAST);
2366 m = qpi->qpi_m;
2367 fin->fin_qfm = m;
2368 fin->fin_qpi = qpi;
2369 # else /* MENTAT */
2370
2371 m = *mp;
2372
2373 # if defined(M_MCAST)
2374 if ((m->m_flags & M_MCAST) != 0)
2375 fin->fin_flx |= FI_MBCAST|FI_MULTICAST;
2376 # endif
2377 # if defined(M_MLOOP)
2378 if ((m->m_flags & M_MLOOP) != 0)
2379 fin->fin_flx |= FI_MBCAST|FI_MULTICAST;
2380 # endif
2381 # if defined(M_BCAST)
2382 if ((m->m_flags & M_BCAST) != 0)
2383 fin->fin_flx |= FI_MBCAST|FI_BROADCAST;
2384 # endif
2385 # ifdef M_CANFASTFWD
2386 /*
2387 * XXX For now, IP Filter and fast-forwarding of cached flows
2388 * XXX are mutually exclusive. Eventually, IP Filter should
2389 * XXX get a "can-fast-forward" filter rule.
2390 */
2391 m->m_flags &= ~M_CANFASTFWD;
2392 # endif /* M_CANFASTFWD */
2393 # ifdef CSUM_DELAY_DATA
2394 /*
2395 * disable delayed checksums.
2396 */
2397 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
2398 in_delayed_cksum(m);
2399 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
2400 }
2401 # endif /* CSUM_DELAY_DATA */
2402 # endif /* MENTAT */
2403 #else
2404
2405 bzero((char *)fin, sizeof(*fin));
2406 m = *mp;
2407 #endif /* _KERNEL */
2408
2409 fin->fin_v = v;
2410 fin->fin_m = m;
2411 fin->fin_ip = ip;
2412 fin->fin_mp = mp;
2413 fin->fin_out = out;
2414 fin->fin_ifp = ifp;
2415 fin->fin_error = ENETUNREACH;
2416 fin->fin_hlen = (u_short)hlen;
2417 fin->fin_dp = (char *)ip + hlen;
2418 fin->fin_ipoff = (char *)ip - MTOD(m, char *);
2419 fin->fin_ifs = ifs;
2420
2421 SPL_NET(s);
2422
2423 #ifdef USE_INET6
2424 if (v == 6) {
2425 IPF_BUMP(ifs->ifs_frstats[out].fr_ipv6);
2426 /*
2427 * Jumbo grams are quite likely too big for internal buffer
2428 * structures to handle comfortably, for now, so just drop
2429 * them.
2430 */
2431 ip6 = (ip6_t *)ip;
2432 fin->fin_plen = ntohs(ip6->ip6_plen);
2433 if (fin->fin_plen == 0) {
2434 READ_ENTER(&ifs->ifs_ipf_mutex);
2435 pass = FR_BLOCK|FR_NOMATCH;
2436 goto filtered;
2437 }
2438 fin->fin_plen += sizeof(ip6_t);
2439 } else
2440 #endif
2441 {
2442 #if (OpenBSD >= 200311) && defined(_KERNEL)
2443 ip->ip_len = ntohs(ip->ip_len);
2444 ip->ip_off = ntohs(ip->ip_off);
2445 #endif
2446 fin->fin_plen = ip->ip_len;
2447 }
2448
2449 if (fr_makefrip(hlen, ip, fin) == -1) {
2450 READ_ENTER(&ifs->ifs_ipf_mutex);
2451 pass = FR_BLOCK;
2452 goto filtered;
2453 }
2454
2455 /*
2456 * For at least IPv6 packets, if a m_pullup() fails then this pointer
2457 * becomes NULL and so we have no packet to free.
2458 */
2459 if (*fin->fin_mp == NULL)
2460 goto finished;
2461
2462 if (!out) {
2463 if (v == 4) {
2464 #ifdef _KERNEL
2465 if (ifs->ifs_fr_chksrc && !fr_verifysrc(fin)) {
2466 IPF_BUMP(ifs->ifs_frstats[0].fr_badsrc);
2467 fin->fin_flx |= FI_BADSRC;
2468 }
2469 #endif
2470 if (fin->fin_ip->ip_ttl < ifs->ifs_fr_minttl) {
2471 IPF_BUMP(ifs->ifs_frstats[0].fr_badttl);
2472 fin->fin_flx |= FI_LOWTTL;
2473 }
2474 }
2475 #ifdef USE_INET6
2476 else if (v == 6) {
2477 ip6 = (ip6_t *)ip;
2478 #ifdef _KERNEL
2479 if (ifs->ifs_fr_chksrc && !fr_verifysrc(fin)) {
2480 IPF_BUMP(ifs->ifs_frstats[0].fr_badsrc);
2481 fin->fin_flx |= FI_BADSRC;
2482 }
2483 #endif
2484 if (ip6->ip6_hlim < ifs->ifs_fr_minttl) {
2485 IPF_BUMP(ifs->ifs_frstats[0].fr_badttl);
2486 fin->fin_flx |= FI_LOWTTL;
2487 }
2488 }
2489 #endif
2490 }
2491
2492 if (fin->fin_flx & FI_SHORT) {
2493 IPF_BUMP(ifs->ifs_frstats[out].fr_short);
2494 }
2495
2496 READ_ENTER(&ifs->ifs_ipf_mutex);
2497
2498 /*
2499 * Check auth now. This, combined with the check below to see if apass
2500 * is 0 is to ensure that we don't count the packet twice, which can
2501 * otherwise occur when we reprocess it. As it is, we only count it
2502 * after it has no auth. table matchup. This also stops NAT from
2503 * occuring until after the packet has been auth'd.
2504 */
2505 fr = fr_checkauth(fin, &pass);
2506 if (!out) {
2507 switch (fin->fin_v)
2508 {
2509 case 4 :
2510 if (fr_checknatin(fin, &pass) == -1) {
2511 RWLOCK_EXIT(&ifs->ifs_ipf_mutex);
2512 goto finished;
2513 }
2514 break;
2515 #ifdef USE_INET6
2516 case 6 :
2517 if (fr_checknat6in(fin, &pass) == -1) {
2518 RWLOCK_EXIT(&ifs->ifs_ipf_mutex);
2519 goto finished;
2520 }
2521 break;
2522 #endif
2523 default :
2524 break;
2525 }
2526 }
2527 if (!out)
2528 (void) fr_acctpkt(fin, NULL);
2529
2530 if (fr == NULL)
2531 if ((fin->fin_flx & (FI_FRAG|FI_BAD)) == FI_FRAG)
2532 fr = fr_knownfrag(fin, &pass);
2533 if (fr == NULL)
2534 fr = fr_checkstate(fin, &pass);
2535
2536 if ((pass & FR_NOMATCH) || (fr == NULL))
2537 fr = fr_firewall(fin, &pass);
2538
2539 fin->fin_fr = fr;
2540
2541 /*
2542 * Only count/translate packets which will be passed on, out the
2543 * interface.
2544 */
2545 if (out && FR_ISPASS(pass)) {
2546 (void) fr_acctpkt(fin, NULL);
2547
2548 switch (fin->fin_v)
2549 {
2550 case 4 :
2551 if (fr_checknatout(fin, &pass) == -1) {
2552 RWLOCK_EXIT(&ifs->ifs_ipf_mutex);
2553 goto finished;
2554 }
2555 break;
2556 #ifdef USE_INET6
2557 case 6 :
2558 if (fr_checknat6out(fin, &pass) == -1) {
2559 RWLOCK_EXIT(&ifs->ifs_ipf_mutex);
2560 goto finished;
2561 }
2562 break;
2563 #endif
2564 default :
2565 break;
2566 }
2567
2568 if ((ifs->ifs_fr_update_ipid != 0) && (v == 4)) {
2569 if (fr_updateipid(fin) == -1) {
2570 IPF_BUMP(ifs->ifs_frstats[1].fr_ipud);
2571 pass &= ~FR_CMDMASK;
2572 pass |= FR_BLOCK;
2573 } else {
2574 IPF_BUMP(ifs->ifs_frstats[0].fr_ipud);
2575 }
2576 }
2577 }
2578
2579 #ifdef IPFILTER_LOG
2580 if ((ifs->ifs_fr_flags & FF_LOGGING) || (pass & FR_LOGMASK)) {
2581 (void) fr_dolog(fin, &pass);
2582 }
2583 #endif
2584
2585 /*
2586 * The FI_STATE flag is cleared here so that calling fr_checkstate
2587 * will work when called from inside of fr_fastroute. Although
2588 * there is a similar flag, FI_NATED, for NAT, it does have the same
2589 * impact on code execution.
2590 */
2591 fin->fin_flx &= ~FI_STATE;
2592
2593 /*
2594 * Only allow FR_DUP to work if a rule matched - it makes no sense to
2595 * set FR_DUP as a "default" as there are no instructions about where
2596 * to send the packet. Use fin_m here because it may have changed
2597 * (without an update of 'm') in prior processing.
2598 */
2599 if ((fr != NULL) && (pass & FR_DUP)) {
2600 mc = M_DUPLICATE(fin->fin_m);
2601 #ifdef _KERNEL
2602 mc->b_rptr += fin->fin_ipoff;
2603 #endif
2604 }
2605
2606 /*
2607 * We don't want to send RST for packets, which are going to be
2608 * dropped, just because they don't fit into TCP window. Those packets
2609 * will be dropped silently. In other words, we want to drop packet,
2610 * while keeping session alive.
2611 */
2612 if ((pass & (FR_RETRST|FR_RETICMP)) && ((fin->fin_flx & FI_OOW) == 0)) {
2613 /*
2614 * Should we return an ICMP packet to indicate error
2615 * status passing through the packet filter ?
2616 * WARNING: ICMP error packets AND TCP RST packets should
2617 * ONLY be sent in repsonse to incoming packets. Sending them
2618 * in response to outbound packets can result in a panic on
2619 * some operating systems.
2620 */
2621 if (!out) {
2622 if (pass & FR_RETICMP) {
2623 int dst;
2624
2625 if ((pass & FR_RETMASK) == FR_FAKEICMP)
2626 dst = 1;
2627 else
2628 dst = 0;
2629 #if defined(_KERNEL) && (SOLARIS2 >= 10)
2630 /*
2631 * Assume it's possible to enter insane rule:
2632 * pass return-icmp in proto udp ...
2633 * then we have no other option than to forward
2634 * packet on loopback and give up any attempt
2635 * to create a fake response.
2636 */
2637 if (IPF_IS_LOOPBACK(qpi->qpi_flags) &&
2638 FR_ISBLOCK(pass)) {
2639
2640 if (fr_make_icmp(fin) == 0) {
2641 IPF_BUMP(
2642 ifs->ifs_frstats[out].fr_ret);
2643 }
2644 /*
2645 * we drop packet silently in case we
2646 * failed assemble fake response for it
2647 */
2648 else if (*mp != NULL) {
2649 FREE_MB_T(*mp);
2650 m = *mp = NULL;
2651 }
2652
2653 IPF_BUMP(
2654 ifs->ifs_frstats[out].fr_block);
2655 RWLOCK_EXIT(&ifs->ifs_ipf_mutex);
2656
2657 return (0);
2658 }
2659 #endif /* _KERNEL && SOLARIS2 >= 10 */
2660
2661 (void) fr_send_icmp_err(ICMP_UNREACH, fin, dst);
2662 IPF_BUMP(ifs->ifs_frstats[out].fr_ret);
2663
2664 } else if (((pass & FR_RETMASK) == FR_RETRST) &&
2665 !(fin->fin_flx & FI_SHORT)) {
2666
2667 #if defined(_KERNEL) && (SOLARIS2 >= 10)
2668 /*
2669 * Assume it's possible to enter insane rule:
2670 * pass return-rst in proto tcp ...
2671 * then we have no other option than to forward
2672 * packet on loopback and give up any attempt
2673 * to create a fake response.
2674 */
2675 if (IPF_IS_LOOPBACK(qpi->qpi_flags) &&
2676 FR_ISBLOCK(pass)) {
2677 if (fr_make_rst(fin) == 0) {
2678 IPF_BUMP(
2679 ifs->ifs_frstats[out].fr_ret);
2680 }
2681 else if (mp != NULL) {
2682 /*
2683 * we drop packet silently in case we
2684 * failed assemble fake response for it
2685 */
2686 FREE_MB_T(*mp);
2687 m = *mp = NULL;
2688 }
2689
2690 IPF_BUMP(
2691 ifs->ifs_frstats[out].fr_block);
2692 RWLOCK_EXIT(&ifs->ifs_ipf_mutex);
2693
2694 return (0);
2695 }
2696 #endif /* _KERNEL && _SOLARIS2 >= 10 */
2697 if (fr_send_reset(fin) == 0) {
2698 IPF_BUMP(ifs->ifs_frstats[1].fr_ret);
2699 }
2700 }
2701 } else {
2702 if (pass & FR_RETRST)
2703 fin->fin_error = ECONNRESET;
2704 }
2705 }
2706
2707 /*
2708 * If we didn't drop off the bottom of the list of rules (and thus
2709 * the 'current' rule fr is not NULL), then we may have some extra
2710 * instructions about what to do with a packet.
2711 * Once we're finished return to our caller, freeing the packet if
2712 * we are dropping it (* BSD ONLY *).
2713 * Reassign m from fin_m as we may have a new buffer, now.
2714 */
2715 filtered:
2716 m = fin->fin_m;
2717
2718 if (fr != NULL) {
2719 frdest_t *fdp;
2720
2721 fdp = &fr->fr_tifs[fin->fin_rev];
2722
2723 if (!out && (pass & FR_FASTROUTE)) {
2724 /*
2725 * For fastroute rule, no destioation interface defined
2726 * so pass NULL as the frdest_t parameter
2727 */
2728 (void) fr_fastroute(m, mp, fin, NULL);
2729 m = *mp = NULL;
2730 } else if ((fdp->fd_ifp != NULL) &&
2731 (fdp->fd_ifp != (struct ifnet *)-1)) {
2732 /* this is for to rules: */
2733 (void) fr_fastroute(m, mp, fin, fdp);
2734 m = *mp = NULL;
2735 }
2736
2737 /*
2738 * Send a duplicated packet.
2739 */
2740 if (mc != NULL) {
2741 #if defined(_KERNEL) && (SOLARIS2 >= 10)
2742 /*
2743 * We are going to compute chksum for copies of loopback packets
2744 * only. IP stack does not compute chksums at all for loopback
2745 * packets. We want to get it fixed in their copies, since those
2746 * are going to be sent to network.
2747 */
2748 if (IPF_IS_LOOPBACK(qpi->qpi_flags))
2749 fr_calc_chksum(fin, mc);
2750 #endif
2751 (void) fr_fastroute(mc, &mc, fin, &fr->fr_dif);
2752 }
2753 }
2754
2755 if (FR_ISBLOCK(pass) && (fin->fin_flx & FI_NEWNAT))
2756 nat_uncreate(fin);
2757
2758 /*
2759 * This late because the likes of fr_fastroute() use fin_fr.
2760 */
2761 RWLOCK_EXIT(&ifs->ifs_ipf_mutex);
2762
2763 finished:
2764 if (!FR_ISPASS(pass)) {
2765 IPF_BUMP(ifs->ifs_frstats[out].fr_block);
2766 if (*mp != NULL) {
2767 FREE_MB_T(*mp);
2768 m = *mp = NULL;
2769 }
2770 } else {
2771 IPF_BUMP(ifs->ifs_frstats[out].fr_pass);
2772 #if defined(_KERNEL) && defined(__sgi)
2773 if ((fin->fin_hbuf != NULL) &&
2774 (mtod(fin->fin_m, struct ip *) != fin->fin_ip)) {
2775 COPYBACK(m, 0, fin->fin_plen, fin->fin_hbuf);
2776 }
2777 #endif
2778 }
2779
2780 SPL_X(s);
2781
2782 #ifdef _KERNEL
2783 # if OpenBSD >= 200311
2784 if (FR_ISPASS(pass) && (v == 4)) {
2785 ip = fin->fin_ip;
2786 ip->ip_len = ntohs(ip->ip_len);
2787 ip->ip_off = ntohs(ip->ip_off);
2788 }
2789 # endif
2790 return (FR_ISPASS(pass)) ? 0 : fin->fin_error;
2791 #else /* _KERNEL */
2792 FR_VERBOSE(("fin_flx %#x pass %#x ", fin->fin_flx, pass));
2793 if ((pass & FR_NOMATCH) != 0)
2794 return 1;
2795
2796 if ((pass & FR_RETMASK) != 0)
2797 switch (pass & FR_RETMASK)
2798 {
2799 case FR_RETRST :
2800 return 3;
2801 case FR_RETICMP :
2802 return 4;
2803 case FR_FAKEICMP :
2804 return 5;
2805 }
2806
2807 switch (pass & FR_CMDMASK)
2808 {
2809 case FR_PASS :
2810 return 0;
2811 case FR_BLOCK :
2812 return -1;
2813 case FR_AUTH :
2814 return -2;
2815 case FR_ACCOUNT :
2816 return -3;
2817 case FR_PREAUTH :
2818 return -4;
2819 }
2820 return 2;
2821 #endif /* _KERNEL */
2822 }
2823
2824
2825 #ifdef IPFILTER_LOG
2826 /* ------------------------------------------------------------------------ */
2827 /* Function: fr_dolog */
2828 /* Returns: frentry_t* - returns contents of fin_fr (no change made) */
2829 /* Parameters: fin(I) - pointer to packet information */
2830 /* passp(IO) - pointer to current/new filter decision (unused) */
2831 /* */
2832 /* Checks flags set to see how a packet should be logged, if it is to be */
2833 /* logged. Adjust statistics based on its success or not. */
2834 /* ------------------------------------------------------------------------ */
fr_dolog(fin,passp)2835 frentry_t *fr_dolog(fin, passp)
2836 fr_info_t *fin;
2837 u_32_t *passp;
2838 {
2839 u_32_t pass;
2840 int out;
2841 ipf_stack_t *ifs = fin->fin_ifs;
2842
2843 out = fin->fin_out;
2844 pass = *passp;
2845
2846 if ((ifs->ifs_fr_flags & FF_LOGNOMATCH) && (pass & FR_NOMATCH)) {
2847 pass |= FF_LOGNOMATCH;
2848 IPF_BUMP(ifs->ifs_frstats[out].fr_npkl);
2849 goto logit;
2850 } else if (((pass & FR_LOGMASK) == FR_LOGP) ||
2851 (FR_ISPASS(pass) && (ifs->ifs_fr_flags & FF_LOGPASS))) {
2852 if ((pass & FR_LOGMASK) != FR_LOGP)
2853 pass |= FF_LOGPASS;
2854 IPF_BUMP(ifs->ifs_frstats[out].fr_ppkl);
2855 goto logit;
2856 } else if (((pass & FR_LOGMASK) == FR_LOGB) ||
2857 (FR_ISBLOCK(pass) && (ifs->ifs_fr_flags & FF_LOGBLOCK))) {
2858 if ((pass & FR_LOGMASK) != FR_LOGB)
2859 pass |= FF_LOGBLOCK;
2860 IPF_BUMP(ifs->ifs_frstats[out].fr_bpkl);
2861 logit:
2862 if (ipflog(fin, pass) == -1) {
2863 IPF_BUMP(ifs->ifs_frstats[out].fr_skip);
2864
2865 /*
2866 * If the "or-block" option has been used then
2867 * block the packet if we failed to log it.
2868 */
2869 if ((pass & FR_LOGORBLOCK) &&
2870 FR_ISPASS(pass)) {
2871 pass &= ~FR_CMDMASK;
2872 pass |= FR_BLOCK;
2873 }
2874 }
2875 *passp = pass;
2876 }
2877
2878 return fin->fin_fr;
2879 }
2880 #endif /* IPFILTER_LOG */
2881
2882
2883 /* ------------------------------------------------------------------------ */
2884 /* Function: ipf_cksum */
2885 /* Returns: u_short - IP header checksum */
2886 /* Parameters: addr(I) - pointer to start of buffer to checksum */
2887 /* len(I) - length of buffer in bytes */
2888 /* */
2889 /* Calculate the two's complement 16 bit checksum of the buffer passed. */
2890 /* */
2891 /* N.B.: addr should be 16bit aligned. */
2892 /* ------------------------------------------------------------------------ */
ipf_cksum(addr,len)2893 u_short ipf_cksum(addr, len)
2894 u_short *addr;
2895 int len;
2896 {
2897 u_32_t sum = 0;
2898
2899 for (sum = 0; len > 1; len -= 2)
2900 sum += *addr++;
2901
2902 /* mop up an odd byte, if necessary */
2903 if (len == 1)
2904 sum += *(u_char *)addr;
2905
2906 /*
2907 * add back carry outs from top 16 bits to low 16 bits
2908 */
2909 sum = (sum >> 16) + (sum & 0xffff); /* add hi 16 to low 16 */
2910 sum += (sum >> 16); /* add carry */
2911 return (u_short)(~sum);
2912 }
2913
2914
2915 /* ------------------------------------------------------------------------ */
2916 /* Function: fr_cksum */
2917 /* Returns: u_short - layer 4 checksum */
2918 /* Parameters: m(I ) - pointer to buffer holding packet */
2919 /* ip(I) - pointer to IP header */
2920 /* l4proto(I) - protocol to caclulate checksum for */
2921 /* l4hdr(I) - pointer to layer 4 header */
2922 /* */
2923 /* Calculates the TCP checksum for the packet held in "m", using the data */
2924 /* in the IP header "ip" to seed it. */
2925 /* */
2926 /* NB: This function assumes we've pullup'd enough for all of the IP header */
2927 /* and the TCP header. We also assume that data blocks aren't allocated in */
2928 /* odd sizes. */
2929 /* */
2930 /* Expects ip_len to be in host byte order when called. */
2931 /* ------------------------------------------------------------------------ */
fr_cksum(m,ip,l4proto,l4hdr)2932 u_short fr_cksum(m, ip, l4proto, l4hdr)
2933 mb_t *m;
2934 ip_t *ip;
2935 int l4proto;
2936 void *l4hdr;
2937 {
2938 u_short *sp, slen, sumsave, l4hlen, *csump;
2939 u_int sum, sum2;
2940 int hlen;
2941 #ifdef USE_INET6
2942 ip6_t *ip6;
2943 #endif
2944
2945 csump = NULL;
2946 sumsave = 0;
2947 l4hlen = 0;
2948 sp = NULL;
2949 slen = 0;
2950 hlen = 0;
2951 sum = 0;
2952
2953 /*
2954 * Add up IP Header portion
2955 */
2956 #ifdef USE_INET6
2957 if (IP_V(ip) == 4) {
2958 #endif
2959 hlen = IP_HL(ip) << 2;
2960 slen = ip->ip_len - hlen;
2961 sum = htons((u_short)l4proto);
2962 sum += htons(slen);
2963 sp = (u_short *)&ip->ip_src;
2964 sum += *sp++; /* ip_src */
2965 sum += *sp++;
2966 sum += *sp++; /* ip_dst */
2967 sum += *sp++;
2968 #ifdef USE_INET6
2969 } else if (IP_V(ip) == 6) {
2970 ip6 = (ip6_t *)ip;
2971 hlen = sizeof(*ip6);
2972 slen = ntohs(ip6->ip6_plen);
2973 sum = htons((u_short)l4proto);
2974 sum += htons(slen);
2975 sp = (u_short *)&ip6->ip6_src;
2976 sum += *sp++; /* ip6_src */
2977 sum += *sp++;
2978 sum += *sp++;
2979 sum += *sp++;
2980 sum += *sp++;
2981 sum += *sp++;
2982 sum += *sp++;
2983 sum += *sp++;
2984 sum += *sp++; /* ip6_dst */
2985 sum += *sp++;
2986 sum += *sp++;
2987 sum += *sp++;
2988 sum += *sp++;
2989 sum += *sp++;
2990 sum += *sp++;
2991 sum += *sp++;
2992 }
2993 #endif
2994
2995 switch (l4proto)
2996 {
2997 case IPPROTO_UDP :
2998 csump = &((udphdr_t *)l4hdr)->uh_sum;
2999 l4hlen = sizeof(udphdr_t);
3000 break;
3001
3002 case IPPROTO_TCP :
3003 csump = &((tcphdr_t *)l4hdr)->th_sum;
3004 l4hlen = sizeof(tcphdr_t);
3005 break;
3006 case IPPROTO_ICMP :
3007 csump = &((icmphdr_t *)l4hdr)->icmp_cksum;
3008 l4hlen = 4;
3009 sum = 0;
3010 break;
3011 default :
3012 break;
3013 }
3014
3015 if (csump != NULL) {
3016 sumsave = *csump;
3017 *csump = 0;
3018 }
3019
3020 l4hlen = l4hlen; /* LINT */
3021
3022 #ifdef _KERNEL
3023 # ifdef MENTAT
3024 {
3025 void *rp = m->b_rptr;
3026
3027 if ((unsigned char *)ip > m->b_rptr && (unsigned char *)ip < m->b_wptr)
3028 m->b_rptr = (u_char *)ip;
3029 sum2 = ip_cksum(m, hlen, sum); /* hlen == offset */
3030 m->b_rptr = rp;
3031 sum2 = (sum2 & 0xffff) + (sum2 >> 16);
3032 sum2 = ~sum2 & 0xffff;
3033 }
3034 # else /* MENTAT */
3035 # if defined(BSD) || defined(sun)
3036 # if BSD >= 199103
3037 m->m_data += hlen;
3038 # else
3039 m->m_off += hlen;
3040 # endif
3041 m->m_len -= hlen;
3042 sum2 = in_cksum(m, slen);
3043 m->m_len += hlen;
3044 # if BSD >= 199103
3045 m->m_data -= hlen;
3046 # else
3047 m->m_off -= hlen;
3048 # endif
3049 /*
3050 * Both sum and sum2 are partial sums, so combine them together.
3051 */
3052 sum += ~sum2 & 0xffff;
3053 while (sum > 0xffff)
3054 sum = (sum & 0xffff) + (sum >> 16);
3055 sum2 = ~sum & 0xffff;
3056 # else /* defined(BSD) || defined(sun) */
3057 {
3058 union {
3059 u_char c[2];
3060 u_short s;
3061 } bytes;
3062 u_short len = ip->ip_len;
3063 # if defined(__sgi)
3064 int add;
3065 # endif
3066
3067 /*
3068 * Add up IP Header portion
3069 */
3070 if (sp != (u_short *)l4hdr)
3071 sp = (u_short *)l4hdr;
3072
3073 switch (l4proto)
3074 {
3075 case IPPROTO_UDP :
3076 sum += *sp++; /* sport */
3077 sum += *sp++; /* dport */
3078 sum += *sp++; /* udp length */
3079 sum += *sp++; /* checksum */
3080 break;
3081
3082 case IPPROTO_TCP :
3083 sum += *sp++; /* sport */
3084 sum += *sp++; /* dport */
3085 sum += *sp++; /* seq */
3086 sum += *sp++;
3087 sum += *sp++; /* ack */
3088 sum += *sp++;
3089 sum += *sp++; /* off */
3090 sum += *sp++; /* win */
3091 sum += *sp++; /* checksum */
3092 sum += *sp++; /* urp */
3093 break;
3094 case IPPROTO_ICMP :
3095 sum = *sp++; /* type/code */
3096 sum += *sp++; /* checksum */
3097 break;
3098 }
3099
3100 # ifdef __sgi
3101 /*
3102 * In case we had to copy the IP & TCP header out of mbufs,
3103 * skip over the mbuf bits which are the header
3104 */
3105 if ((caddr_t)ip != mtod(m, caddr_t)) {
3106 hlen = (caddr_t)sp - (caddr_t)ip;
3107 while (hlen) {
3108 add = MIN(hlen, m->m_len);
3109 sp = (u_short *)(mtod(m, caddr_t) + add);
3110 hlen -= add;
3111 if (add == m->m_len) {
3112 m = m->m_next;
3113 if (!hlen) {
3114 if (!m)
3115 break;
3116 sp = mtod(m, u_short *);
3117 }
3118 PANIC((!m),("fr_cksum(1): not enough data"));
3119 }
3120 }
3121 }
3122 # endif
3123
3124 len -= (l4hlen + hlen);
3125 if (len <= 0)
3126 goto nodata;
3127
3128 while (len > 1) {
3129 if (((caddr_t)sp - mtod(m, caddr_t)) >= m->m_len) {
3130 m = m->m_next;
3131 PANIC((!m),("fr_cksum(2): not enough data"));
3132 sp = mtod(m, u_short *);
3133 }
3134 if (((caddr_t)(sp + 1) - mtod(m, caddr_t)) > m->m_len) {
3135 bytes.c[0] = *(u_char *)sp;
3136 m = m->m_next;
3137 PANIC((!m),("fr_cksum(3): not enough data"));
3138 sp = mtod(m, u_short *);
3139 bytes.c[1] = *(u_char *)sp;
3140 sum += bytes.s;
3141 sp = (u_short *)((u_char *)sp + 1);
3142 }
3143 if ((u_long)sp & 1) {
3144 bcopy((char *)sp++, (char *)&bytes.s, sizeof(bytes.s));
3145 sum += bytes.s;
3146 } else
3147 sum += *sp++;
3148 len -= 2;
3149 }
3150
3151 if (len != 0)
3152 sum += ntohs(*(u_char *)sp << 8);
3153 nodata:
3154 while (sum > 0xffff)
3155 sum = (sum & 0xffff) + (sum >> 16);
3156 sum2 = (u_short)(~sum & 0xffff);
3157 }
3158 # endif /* defined(BSD) || defined(sun) */
3159 # endif /* MENTAT */
3160 #else /* _KERNEL */
3161 for (; slen > 1; slen -= 2)
3162 sum += *sp++;
3163 if (slen)
3164 sum += ntohs(*(u_char *)sp << 8);
3165 while (sum > 0xffff)
3166 sum = (sum & 0xffff) + (sum >> 16);
3167 sum2 = (u_short)(~sum & 0xffff);
3168 #endif /* _KERNEL */
3169 if (csump != NULL)
3170 *csump = sumsave;
3171 return sum2;
3172 }
3173
3174
3175 #if defined(_KERNEL) && ( ((BSD < 199103) && !defined(MENTAT)) || \
3176 defined(__sgi) ) && !defined(linux) && !defined(_AIX51)
3177 /*
3178 * Copyright (c) 1982, 1986, 1988, 1991, 1993
3179 * The Regents of the University of California. All rights reserved.
3180 *
3181 * Redistribution and use in source and binary forms, with or without
3182 * modification, are permitted provided that the following conditions
3183 * are met:
3184 * 1. Redistributions of source code must retain the above copyright
3185 * notice, this list of conditions and the following disclaimer.
3186 * 2. Redistributions in binary form must reproduce the above copyright
3187 * notice, this list of conditions and the following disclaimer in the
3188 * documentation and/or other materials provided with the distribution.
3189 * 3. Neither the name of the University nor the names of its contributors
3190 * may be used to endorse or promote products derived from this software
3191 * without specific prior written permission.
3192 *
3193 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
3194 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
3195 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
3196 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
3197 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
3198 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
3199 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
3200 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
3201 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
3202 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
3203 * SUCH DAMAGE.
3204 *
3205 * @(#)uipc_mbuf.c 8.2 (Berkeley) 1/4/94
3206 * $Id: fil.c,v 2.243.2.64 2005/08/13 05:19:59 darrenr Exp $
3207 */
3208 /*
3209 * Copy data from an mbuf chain starting "off" bytes from the beginning,
3210 * continuing for "len" bytes, into the indicated buffer.
3211 */
3212 void
m_copydata(m,off,len,cp)3213 m_copydata(m, off, len, cp)
3214 mb_t *m;
3215 int off;
3216 int len;
3217 caddr_t cp;
3218 {
3219 unsigned count;
3220
3221 if (off < 0 || len < 0)
3222 panic("m_copydata");
3223 while (off > 0) {
3224 if (m == 0)
3225 panic("m_copydata");
3226 if (off < m->m_len)
3227 break;
3228 off -= m->m_len;
3229 m = m->m_next;
3230 }
3231 while (len > 0) {
3232 if (m == 0)
3233 panic("m_copydata");
3234 count = MIN(m->m_len - off, len);
3235 bcopy(mtod(m, caddr_t) + off, cp, count);
3236 len -= count;
3237 cp += count;
3238 off = 0;
3239 m = m->m_next;
3240 }
3241 }
3242
3243
3244 /*
3245 * Copy data from a buffer back into the indicated mbuf chain,
3246 * starting "off" bytes from the beginning, extending the mbuf
3247 * chain if necessary.
3248 */
3249 void
m_copyback(m0,off,len,cp)3250 m_copyback(m0, off, len, cp)
3251 struct mbuf *m0;
3252 int off;
3253 int len;
3254 caddr_t cp;
3255 {
3256 int mlen;
3257 struct mbuf *m = m0, *n;
3258 int totlen = 0;
3259
3260 if (m0 == 0)
3261 return;
3262 while (off > (mlen = m->m_len)) {
3263 off -= mlen;
3264 totlen += mlen;
3265 if (m->m_next == 0) {
3266 n = m_getclr(M_DONTWAIT, m->m_type);
3267 if (n == 0)
3268 goto out;
3269 n->m_len = min(MLEN, len + off);
3270 m->m_next = n;
3271 }
3272 m = m->m_next;
3273 }
3274 while (len > 0) {
3275 mlen = min(m->m_len - off, len);
3276 bcopy(cp, off + mtod(m, caddr_t), (unsigned)mlen);
3277 cp += mlen;
3278 len -= mlen;
3279 mlen += off;
3280 off = 0;
3281 totlen += mlen;
3282 if (len == 0)
3283 break;
3284 if (m->m_next == 0) {
3285 n = m_get(M_DONTWAIT, m->m_type);
3286 if (n == 0)
3287 break;
3288 n->m_len = min(MLEN, len);
3289 m->m_next = n;
3290 }
3291 m = m->m_next;
3292 }
3293 out:
3294 #if 0
3295 if (((m = m0)->m_flags & M_PKTHDR) && (m->m_pkthdr.len < totlen))
3296 m->m_pkthdr.len = totlen;
3297 #endif
3298 return;
3299 }
3300 #endif /* (_KERNEL) && ( ((BSD < 199103) && !MENTAT) || __sgi) */
3301
3302
3303 /* ------------------------------------------------------------------------ */
3304 /* Function: fr_findgroup */
3305 /* Returns: frgroup_t * - NULL = group not found, else pointer to group */
3306 /* Parameters: group(I) - group name to search for */
3307 /* unit(I) - device to which this group belongs */
3308 /* set(I) - which set of rules (inactive/inactive) this is */
3309 /* fgpp(O) - pointer to place to store pointer to the pointer */
3310 /* to where to add the next (last) group or where */
3311 /* to delete group from. */
3312 /* */
3313 /* Search amongst the defined groups for a particular group number. */
3314 /* ------------------------------------------------------------------------ */
fr_findgroup(group,unit,set,fgpp,ifs)3315 frgroup_t *fr_findgroup(group, unit, set, fgpp, ifs)
3316 char *group;
3317 minor_t unit;
3318 int set;
3319 frgroup_t ***fgpp;
3320 ipf_stack_t *ifs;
3321 {
3322 frgroup_t *fg, **fgp;
3323
3324 /*
3325 * Which list of groups to search in is dependent on which list of
3326 * rules are being operated on.
3327 */
3328 fgp = &ifs->ifs_ipfgroups[unit][set];
3329
3330 while ((fg = *fgp) != NULL) {
3331 if (strncmp(group, fg->fg_name, FR_GROUPLEN) == 0)
3332 break;
3333 else
3334 fgp = &fg->fg_next;
3335 }
3336 if (fgpp != NULL)
3337 *fgpp = fgp;
3338 return fg;
3339 }
3340
3341
3342 /* ------------------------------------------------------------------------ */
3343 /* Function: fr_addgroup */
3344 /* Returns: frgroup_t * - NULL == did not create group, */
3345 /* != NULL == pointer to the group */
3346 /* Parameters: num(I) - group number to add */
3347 /* head(I) - rule pointer that is using this as the head */
3348 /* flags(I) - rule flags which describe the type of rule it is */
3349 /* unit(I) - device to which this group will belong to */
3350 /* set(I) - which set of rules (inactive/inactive) this is */
3351 /* Write Locks: ipf_mutex */
3352 /* */
3353 /* Add a new group head, or if it already exists, increase the reference */
3354 /* count to it. */
3355 /* ------------------------------------------------------------------------ */
fr_addgroup(group,head,flags,unit,set,ifs)3356 frgroup_t *fr_addgroup(group, head, flags, unit, set, ifs)
3357 char *group;
3358 void *head;
3359 u_32_t flags;
3360 minor_t unit;
3361 int set;
3362 ipf_stack_t *ifs;
3363 {
3364 frgroup_t *fg, **fgp;
3365 u_32_t gflags;
3366
3367 if (group == NULL)
3368 return NULL;
3369
3370 if (unit == IPL_LOGIPF && *group == '\0')
3371 return NULL;
3372
3373 fgp = NULL;
3374 gflags = flags & FR_INOUT;
3375
3376 fg = fr_findgroup(group, unit, set, &fgp, ifs);
3377 if (fg != NULL) {
3378 if (fg->fg_flags == 0)
3379 fg->fg_flags = gflags;
3380 else if (gflags != fg->fg_flags)
3381 return NULL;
3382 fg->fg_ref++;
3383 return fg;
3384 }
3385 KMALLOC(fg, frgroup_t *);
3386 if (fg != NULL) {
3387 fg->fg_head = head;
3388 fg->fg_start = NULL;
3389 fg->fg_next = *fgp;
3390 bcopy(group, fg->fg_name, FR_GROUPLEN);
3391 fg->fg_flags = gflags;
3392 fg->fg_ref = 1;
3393 *fgp = fg;
3394 }
3395 return fg;
3396 }
3397
3398
3399 /* ------------------------------------------------------------------------ */
3400 /* Function: fr_delgroup */
3401 /* Returns: Nil */
3402 /* Parameters: group(I) - group name to delete */
3403 /* unit(I) - device to which this group belongs */
3404 /* set(I) - which set of rules (inactive/inactive) this is */
3405 /* Write Locks: ipf_mutex */
3406 /* */
3407 /* Attempt to delete a group head. */
3408 /* Only do this when its reference count reaches 0. */
3409 /* ------------------------------------------------------------------------ */
fr_delgroup(group,unit,set,ifs)3410 void fr_delgroup(group, unit, set, ifs)
3411 char *group;
3412 minor_t unit;
3413 int set;
3414 ipf_stack_t *ifs;
3415 {
3416 frgroup_t *fg, **fgp;
3417
3418 fg = fr_findgroup(group, unit, set, &fgp, ifs);
3419 if (fg == NULL)
3420 return;
3421
3422 fg->fg_ref--;
3423 if (fg->fg_ref == 0) {
3424 *fgp = fg->fg_next;
3425 KFREE(fg);
3426 }
3427 }
3428
3429
3430 /* ------------------------------------------------------------------------ */
3431 /* Function: fr_getrulen */
3432 /* Returns: frentry_t * - NULL == not found, else pointer to rule n */
3433 /* Parameters: unit(I) - device for which to count the rule's number */
3434 /* flags(I) - which set of rules to find the rule in */
3435 /* group(I) - group name */
3436 /* n(I) - rule number to find */
3437 /* */
3438 /* Find rule # n in group # g and return a pointer to it. Return NULl if */
3439 /* group # g doesn't exist or there are less than n rules in the group. */
3440 /* ------------------------------------------------------------------------ */
fr_getrulen(unit,group,n,ifs)3441 frentry_t *fr_getrulen(unit, group, n, ifs)
3442 int unit;
3443 char *group;
3444 u_32_t n;
3445 ipf_stack_t *ifs;
3446 {
3447 frentry_t *fr;
3448 frgroup_t *fg;
3449
3450 fg = fr_findgroup(group, unit, ifs->ifs_fr_active, NULL, ifs);
3451 if (fg == NULL)
3452 return NULL;
3453 for (fr = fg->fg_head; fr && n; fr = fr->fr_next, n--)
3454 ;
3455 if (n != 0)
3456 return NULL;
3457 return fr;
3458 }
3459
3460
3461 /* ------------------------------------------------------------------------ */
3462 /* Function: fr_rulen */
3463 /* Returns: int - >= 0 - rule number, -1 == search failed */
3464 /* Parameters: unit(I) - device for which to count the rule's number */
3465 /* fr(I) - pointer to rule to match */
3466 /* */
3467 /* Return the number for a rule on a specific filtering device. */
3468 /* ------------------------------------------------------------------------ */
fr_rulen(unit,fr,ifs)3469 int fr_rulen(unit, fr, ifs)
3470 int unit;
3471 frentry_t *fr;
3472 ipf_stack_t *ifs;
3473 {
3474 frentry_t *fh;
3475 frgroup_t *fg;
3476 u_32_t n = 0;
3477
3478 if (fr == NULL)
3479 return -1;
3480 fg = fr_findgroup(fr->fr_group, unit, ifs->ifs_fr_active, NULL, ifs);
3481 if (fg == NULL)
3482 return -1;
3483 for (fh = fg->fg_head; fh; n++, fh = fh->fr_next)
3484 if (fh == fr)
3485 break;
3486 if (fh == NULL)
3487 return -1;
3488 return n;
3489 }
3490
3491
3492 /* ------------------------------------------------------------------------ */
3493 /* Function: frflushlist */
3494 /* Returns: int - >= 0 - number of flushed rules */
3495 /* Parameters: set(I) - which set of rules (inactive/inactive) this is */
3496 /* unit(I) - device for which to flush rules */
3497 /* flags(I) - which set of rules to flush */
3498 /* nfreedp(O) - pointer to int where flush count is stored */
3499 /* listp(I) - pointer to list to flush pointer */
3500 /* Write Locks: ipf_mutex */
3501 /* */
3502 /* Recursively flush rules from the list, descending groups as they are */
3503 /* encountered. if a rule is the head of a group and it has lost all its */
3504 /* group members, then also delete the group reference. nfreedp is needed */
3505 /* to store the accumulating count of rules removed, whereas the returned */
3506 /* value is just the number removed from the current list. The latter is */
3507 /* needed to correctly adjust reference counts on rules that define groups. */
3508 /* */
3509 /* NOTE: Rules not loaded from user space cannot be flushed. */
3510 /* ------------------------------------------------------------------------ */
frflushlist(set,unit,nfreedp,listp,ifs)3511 static int frflushlist(set, unit, nfreedp, listp, ifs)
3512 int set;
3513 minor_t unit;
3514 int *nfreedp;
3515 frentry_t **listp;
3516 ipf_stack_t *ifs;
3517 {
3518 int freed = 0;
3519 frentry_t *fp;
3520
3521 while ((fp = *listp) != NULL) {
3522 if ((fp->fr_type & FR_T_BUILTIN) ||
3523 !(fp->fr_flags & FR_COPIED)) {
3524 listp = &fp->fr_next;
3525 continue;
3526 }
3527 *listp = fp->fr_next;
3528 if (fp->fr_grp != NULL) {
3529 (void) frflushlist(set, unit, nfreedp, fp->fr_grp, ifs);
3530 }
3531
3532 if (fp->fr_grhead != NULL) {
3533 fr_delgroup(fp->fr_grhead, unit, set, ifs);
3534 *fp->fr_grhead = '\0';
3535 }
3536
3537 ASSERT(fp->fr_ref > 0);
3538 fp->fr_next = NULL;
3539 if (fr_derefrule(&fp, ifs) == 0)
3540 freed++;
3541 }
3542 *nfreedp += freed;
3543 return freed;
3544 }
3545
3546
3547 /* ------------------------------------------------------------------------ */
3548 /* Function: frflush */
3549 /* Returns: int - >= 0 - number of flushed rules */
3550 /* Parameters: unit(I) - device for which to flush rules */
3551 /* flags(I) - which set of rules to flush */
3552 /* */
3553 /* Calls flushlist() for all filter rules (accounting, firewall - both IPv4 */
3554 /* and IPv6) as defined by the value of flags. */
3555 /* ------------------------------------------------------------------------ */
frflush(unit,proto,flags,ifs)3556 int frflush(unit, proto, flags, ifs)
3557 minor_t unit;
3558 int proto, flags;
3559 ipf_stack_t *ifs;
3560 {
3561 int flushed = 0, set;
3562
3563 WRITE_ENTER(&ifs->ifs_ipf_mutex);
3564 bzero((char *)ifs->ifs_frcache, sizeof (ifs->ifs_frcache));
3565
3566 set = ifs->ifs_fr_active;
3567 if ((flags & FR_INACTIVE) == FR_INACTIVE)
3568 set = 1 - set;
3569
3570 if (flags & FR_OUTQUE) {
3571 if (proto == 0 || proto == 6) {
3572 (void) frflushlist(set, unit,
3573 &flushed, &ifs->ifs_ipfilter6[1][set], ifs);
3574 (void) frflushlist(set, unit,
3575 &flushed, &ifs->ifs_ipacct6[1][set], ifs);
3576 }
3577 if (proto == 0 || proto == 4) {
3578 (void) frflushlist(set, unit,
3579 &flushed, &ifs->ifs_ipfilter[1][set], ifs);
3580 (void) frflushlist(set, unit,
3581 &flushed, &ifs->ifs_ipacct[1][set], ifs);
3582 }
3583 }
3584 if (flags & FR_INQUE) {
3585 if (proto == 0 || proto == 6) {
3586 (void) frflushlist(set, unit,
3587 &flushed, &ifs->ifs_ipfilter6[0][set], ifs);
3588 (void) frflushlist(set, unit,
3589 &flushed, &ifs->ifs_ipacct6[0][set], ifs);
3590 }
3591 if (proto == 0 || proto == 4) {
3592 (void) frflushlist(set, unit,
3593 &flushed, &ifs->ifs_ipfilter[0][set], ifs);
3594 (void) frflushlist(set, unit,
3595 &flushed, &ifs->ifs_ipacct[0][set], ifs);
3596 }
3597 }
3598 RWLOCK_EXIT(&ifs->ifs_ipf_mutex);
3599
3600 if (unit == IPL_LOGIPF) {
3601 int tmp;
3602
3603 tmp = frflush(IPL_LOGCOUNT, proto, flags, ifs);
3604 if (tmp >= 0)
3605 flushed += tmp;
3606 }
3607 return flushed;
3608 }
3609
3610
3611 /* ------------------------------------------------------------------------ */
3612 /* Function: memstr */
3613 /* Returns: char * - NULL if failed, != NULL pointer to matching bytes */
3614 /* Parameters: src(I) - pointer to byte sequence to match */
3615 /* dst(I) - pointer to byte sequence to search */
3616 /* slen(I) - match length */
3617 /* dlen(I) - length available to search in */
3618 /* */
3619 /* Search dst for a sequence of bytes matching those at src and extend for */
3620 /* slen bytes. */
3621 /* ------------------------------------------------------------------------ */
memstr(src,dst,slen,dlen)3622 char *memstr(src, dst, slen, dlen)
3623 char *src, *dst;
3624 int slen, dlen;
3625 {
3626 char *s = NULL;
3627
3628 while (dlen >= slen) {
3629 if (bcmp(src, dst, slen) == 0) {
3630 s = dst;
3631 break;
3632 }
3633 dst++;
3634 dlen--;
3635 }
3636 return s;
3637 }
3638 /* ------------------------------------------------------------------------ */
3639 /* Function: fr_fixskip */
3640 /* Returns: Nil */
3641 /* Parameters: listp(IO) - pointer to start of list with skip rule */
3642 /* rp(I) - rule added/removed with skip in it. */
3643 /* addremove(I) - adjustment (-1/+1) to make to skip count, */
3644 /* depending on whether a rule was just added */
3645 /* or removed. */
3646 /* */
3647 /* Adjust all the rules in a list which would have skip'd past the position */
3648 /* where we are inserting to skip to the right place given the change. */
3649 /* ------------------------------------------------------------------------ */
fr_fixskip(listp,rp,addremove)3650 void fr_fixskip(listp, rp, addremove)
3651 frentry_t **listp, *rp;
3652 int addremove;
3653 {
3654 int rules, rn;
3655 frentry_t *fp;
3656
3657 rules = 0;
3658 for (fp = *listp; (fp != NULL) && (fp != rp); fp = fp->fr_next)
3659 rules++;
3660
3661 if (!fp)
3662 return;
3663
3664 for (rn = 0, fp = *listp; fp && (fp != rp); fp = fp->fr_next, rn++)
3665 if (FR_ISSKIP(fp->fr_flags) && (rn + fp->fr_arg >= rules))
3666 fp->fr_arg += addremove;
3667 }
3668
3669
3670 #ifdef _KERNEL
3671 /* ------------------------------------------------------------------------ */
3672 /* Function: count4bits */
3673 /* Returns: int - >= 0 - number of consecutive bits in input */
3674 /* Parameters: ip(I) - 32bit IP address */
3675 /* */
3676 /* IPv4 ONLY */
3677 /* count consecutive 1's in bit mask. If the mask generated by counting */
3678 /* consecutive 1's is different to that passed, return -1, else return # */
3679 /* of bits. */
3680 /* ------------------------------------------------------------------------ */
count4bits(ip)3681 int count4bits(ip)
3682 u_32_t ip;
3683 {
3684 u_32_t ipn;
3685 int cnt = 0, i, j;
3686
3687 ip = ipn = ntohl(ip);
3688 for (i = 32; i; i--, ipn *= 2)
3689 if (ipn & 0x80000000)
3690 cnt++;
3691 else
3692 break;
3693 ipn = 0;
3694 for (i = 32, j = cnt; i; i--, j--) {
3695 ipn *= 2;
3696 if (j > 0)
3697 ipn++;
3698 }
3699 if (ipn == ip)
3700 return cnt;
3701 return -1;
3702 }
3703
3704
3705 #ifdef USE_INET6
3706 /* ------------------------------------------------------------------------ */
3707 /* Function: count6bits */
3708 /* Returns: int - >= 0 - number of consecutive bits in input */
3709 /* Parameters: msk(I) - pointer to start of IPv6 bitmask */
3710 /* */
3711 /* IPv6 ONLY */
3712 /* count consecutive 1's in bit mask. */
3713 /* ------------------------------------------------------------------------ */
count6bits(msk)3714 int count6bits(msk)
3715 u_32_t *msk;
3716 {
3717 int i = 0, k;
3718 u_32_t j;
3719
3720 for (k = 3; k >= 0; k--)
3721 if (msk[k] == 0xffffffff)
3722 i += 32;
3723 else {
3724 for (j = msk[k]; j; j <<= 1)
3725 if (j & 0x80000000)
3726 i++;
3727 }
3728 return i;
3729 }
3730 # endif
3731 #endif /* _KERNEL */
3732
3733
3734 /* ------------------------------------------------------------------------ */
3735 /* Function: fr_ifsync */
3736 /* Returns: void * - new interface identifier */
3737 /* Parameters: action(I) - type of synchronisation to do */
3738 /* v(I) - IP version being sync'd (v4 or v6) */
3739 /* newifp(I) - interface identifier being introduced/removed */
3740 /* oldifp(I) - interface identifier in a filter rule */
3741 /* newname(I) - name associated with newifp interface */
3742 /* oldname(I) - name associated with oldifp interface */
3743 /* ifs - pointer to IPF stack instance */
3744 /* */
3745 /* This function returns what the new value for "oldifp" should be for its */
3746 /* caller. In some cases it will not change, in some it will. */
3747 /* action == IPFSYNC_RESYNC */
3748 /* a new value for oldifp will always be looked up, according to oldname, */
3749 /* the values of newname and newifp are ignored. */
3750 /* action == IPFSYNC_NEWIFP */
3751 /* if oldname matches newname then we are doing a sync for the matching */
3752 /* interface, so we return newifp to be used in place of oldifp. If the */
3753 /* the names don't match, just return oldifp. */
3754 /* action == IPFSYNC_OLDIFP */
3755 /* if oldifp matches newifp then we are are doing a sync to remove any */
3756 /* references to oldifp, so we return "-1". */
3757 /* ----- */
3758 /* NOTE: */
3759 /* This function processes NIC event from PF_HOOKS. The action parameter */
3760 /* is set in ipf_nic_event_v4()/ipf_nic_event_v6() function. There is */
3761 /* one single switch statement() in ipf_nic_event_vx() function, which */
3762 /* translates the HOOK event type to action parameter passed to fr_ifsync. */
3763 /* The translation table looks as follows: */
3764 /* event | action */
3765 /* ----------------+------------- */
3766 /* NE_PLUMB | IPFSYNC_NEWIFP */
3767 /* NE_UNPLUMB | IPFSYNC_OLDIFP */
3768 /* NE_ADDRESS_CHANGE | IPFSYNC_RESYNC */
3769 /* */
3770 /* The oldname and oldifp parameters are taken from IPF entry (rule, state */
3771 /* table entry, NAT table entry, fragment ...). The newname and newifp */
3772 /* parameters come from hook event data, parameters are taken from event */
3773 /* in ipf_nic_event_vx() functions. Any time NIC changes, the IPF is */
3774 /* notified by hook function. */
3775 /* */
3776 /* We get NE_UNPLUMB event from PF_HOOKS even if someone coincidently tries */
3777 /* to plumb the interface, which is already plumbed. In such case we always */
3778 /* get the event from PF_HOOKS as follows: */
3779 /* event: NE_PLUMB */
3780 /* NIC: 0x0 */
3781 /* ------------------------------------------------------------------------ */
fr_ifsync(action,v,newname,oldname,newifp,oldifp,ifs)3782 static void *fr_ifsync(action, v, newname, oldname, newifp, oldifp, ifs)
3783 int action, v;
3784 char *newname, *oldname;
3785 void *newifp, *oldifp;
3786 ipf_stack_t *ifs;
3787 {
3788 void *rval = oldifp;
3789
3790 switch (action)
3791 {
3792 case IPFSYNC_RESYNC :
3793 if (oldname[0] != '\0') {
3794 rval = fr_resolvenic(oldname, v, ifs);
3795 }
3796 break;
3797 case IPFSYNC_NEWIFP :
3798 if (!strncmp(newname, oldname, LIFNAMSIZ))
3799 rval = newifp;
3800 break;
3801 case IPFSYNC_OLDIFP :
3802 /*
3803 * If interface gets unplumbed it must be invalidated, which
3804 * means set all existing references to the interface to -1.
3805 * We don't want to invalidate references for wildcard
3806 * (unbound) rules (entries).
3807 */
3808 if (newifp == oldifp)
3809 rval = (oldifp) ? (void *)-1 : NULL;
3810 break;
3811 }
3812
3813 return rval;
3814 }
3815
3816
3817 /* ------------------------------------------------------------------------ */
3818 /* Function: frsynclist */
3819 /* Returns: void */
3820 /* Parameters: action(I) - type of synchronisation to do */
3821 /* v(I) - IP version being sync'd (v4 or v6) */
3822 /* ifp(I) - interface identifier associated with action */
3823 /* ifname(I) - name associated with ifp parameter */
3824 /* fr(I) - pointer to filter rule */
3825 /* ifs - pointer to IPF stack instance */
3826 /* Write Locks: ipf_mutex */
3827 /* */
3828 /* Walk through a list of filter rules and resolve any interface names into */
3829 /* pointers. Where dynamic addresses are used, also update the IP address */
3830 /* used in the rule. The interface pointer is used to limit the lookups to */
3831 /* a specific set of matching names if it is non-NULL. */
3832 /* ------------------------------------------------------------------------ */
frsynclist(action,v,ifp,ifname,fr,ifs)3833 static void frsynclist(action, v, ifp, ifname, fr, ifs)
3834 int action, v;
3835 void *ifp;
3836 char *ifname;
3837 frentry_t *fr;
3838 ipf_stack_t *ifs;
3839 {
3840 frdest_t *fdp;
3841 int rv, i;
3842
3843 for (; fr; fr = fr->fr_next) {
3844 rv = fr->fr_v;
3845 if (v != 0 && v != rv)
3846 continue;
3847
3848 /*
3849 * Lookup all the interface names that are part of the rule.
3850 */
3851 for (i = 0; i < 4; i++) {
3852 fr->fr_ifas[i] = fr_ifsync(action, rv, ifname,
3853 fr->fr_ifnames[i],
3854 ifp, fr->fr_ifas[i],
3855 ifs);
3856 }
3857
3858 fdp = &fr->fr_tifs[0];
3859 fdp->fd_ifp = fr_ifsync(action, rv, ifname, fdp->fd_ifname,
3860 ifp, fdp->fd_ifp, ifs);
3861
3862 fdp = &fr->fr_tifs[1];
3863 fdp->fd_ifp = fr_ifsync(action, rv, ifname, fdp->fd_ifname,
3864 ifp, fdp->fd_ifp, ifs);
3865
3866 fdp = &fr->fr_dif;
3867 fdp->fd_ifp = fr_ifsync(action, rv, ifname, fdp->fd_ifname,
3868 ifp, fdp->fd_ifp, ifs);
3869
3870 if (action != IPFSYNC_RESYNC)
3871 continue;
3872
3873 if (fr->fr_type == FR_T_IPF) {
3874 if (fr->fr_satype != FRI_NORMAL &&
3875 fr->fr_satype != FRI_LOOKUP) {
3876 (void)fr_ifpaddr(rv, fr->fr_satype,
3877 fr->fr_ifas[fr->fr_sifpidx],
3878 &fr->fr_src, &fr->fr_smsk,
3879 ifs);
3880 }
3881 if (fr->fr_datype != FRI_NORMAL &&
3882 fr->fr_datype != FRI_LOOKUP) {
3883 (void)fr_ifpaddr(rv, fr->fr_datype,
3884 fr->fr_ifas[fr->fr_difpidx],
3885 &fr->fr_dst, &fr->fr_dmsk,
3886 ifs);
3887 }
3888 }
3889
3890 #ifdef IPFILTER_LOOKUP
3891 if (fr->fr_type == FR_T_IPF && fr->fr_satype == FRI_LOOKUP &&
3892 fr->fr_srcptr == NULL) {
3893 fr->fr_srcptr = fr_resolvelookup(fr->fr_srctype,
3894 fr->fr_srcnum,
3895 &fr->fr_srcfunc, ifs);
3896 }
3897 if (fr->fr_type == FR_T_IPF && fr->fr_datype == FRI_LOOKUP &&
3898 fr->fr_dstptr == NULL) {
3899 fr->fr_dstptr = fr_resolvelookup(fr->fr_dsttype,
3900 fr->fr_dstnum,
3901 &fr->fr_dstfunc, ifs);
3902 }
3903 #endif
3904 }
3905 }
3906
3907
3908 #ifdef _KERNEL
3909 /* ------------------------------------------------------------------------ */
3910 /* Function: frsync */
3911 /* Returns: void */
3912 /* Parameters: action(I) - type of synchronisation to do */
3913 /* v(I) - IP version being sync'd (v4 or v6) */
3914 /* ifp(I) - interface identifier associated with action */
3915 /* name(I) - name associated with ifp parameter */
3916 /* */
3917 /* frsync() is called when we suspect that the interface list or */
3918 /* information about interfaces (like IP#) has changed. Go through all */
3919 /* filter rules, NAT entries and the state table and check if anything */
3920 /* needs to be changed/updated. */
3921 /* With the filtering hooks added to Solaris, we needed to change the manner*/
3922 /* in which this was done to support three different types of sync: */
3923 /* - complete resync of all interface name/identifiers */
3924 /* - new interface being announced with its name and identifier */
3925 /* - interface removal being announced by only its identifier */
3926 /* ------------------------------------------------------------------------ */
frsync(action,v,ifp,name,ifs)3927 void frsync(action, v, ifp, name, ifs)
3928 int action, v;
3929 void *ifp;
3930 char *name;
3931 ipf_stack_t *ifs;
3932 {
3933 int i;
3934
3935 WRITE_ENTER(&ifs->ifs_ipf_mutex);
3936 frsynclist(action, v, ifp, name, ifs->ifs_ipacct[0][ifs->ifs_fr_active], ifs);
3937 frsynclist(action, v, ifp, name, ifs->ifs_ipacct[1][ifs->ifs_fr_active], ifs);
3938 frsynclist(action, v, ifp, name, ifs->ifs_ipfilter[0][ifs->ifs_fr_active], ifs);
3939 frsynclist(action, v, ifp, name, ifs->ifs_ipfilter[1][ifs->ifs_fr_active], ifs);
3940 frsynclist(action, v, ifp, name, ifs->ifs_ipacct6[0][ifs->ifs_fr_active], ifs);
3941 frsynclist(action, v, ifp, name, ifs->ifs_ipacct6[1][ifs->ifs_fr_active], ifs);
3942 frsynclist(action, v, ifp, name, ifs->ifs_ipfilter6[0][ifs->ifs_fr_active], ifs);
3943 frsynclist(action, v, ifp, name, ifs->ifs_ipfilter6[1][ifs->ifs_fr_active], ifs);
3944
3945 for (i = 0; i < IPL_LOGSIZE; i++) {
3946 frgroup_t *g;
3947
3948 for (g = ifs->ifs_ipfgroups[i][0]; g != NULL; g = g->fg_next)
3949 frsynclist(action, v, ifp, name, g->fg_start, ifs);
3950 for (g = ifs->ifs_ipfgroups[i][1]; g != NULL; g = g->fg_next)
3951 frsynclist(action, v, ifp, name, g->fg_start, ifs);
3952 }
3953 RWLOCK_EXIT(&ifs->ifs_ipf_mutex);
3954 }
3955
3956 #if SOLARIS2 >= 10
3957 /* ------------------------------------------------------------------------ */
3958 /* Function: fr_syncindex */
3959 /* Returns: void */
3960 /* Parameters: rules - list of rules to be sync'd */
3961 /* ifp - interface, which is being sync'd */
3962 /* newifp - new ifindex value for interface */
3963 /* */
3964 /* Function updates all NIC indecis, which match ifp, in every rule. Every */
3965 /* NIC index matching ifp, will be updated to newifp. */
3966 /* ------------------------------------------------------------------------ */
fr_syncindex(rules,ifp,newifp)3967 static void fr_syncindex(rules, ifp, newifp)
3968 frentry_t *rules;
3969 void *ifp;
3970 void *newifp;
3971 {
3972 int i;
3973 frentry_t *fr;
3974
3975 for (fr = rules; fr != NULL; fr = fr->fr_next) {
3976 /*
3977 * Lookup all the interface names that are part of the rule.
3978 */
3979 for (i = 0; i < 4; i++)
3980 if (fr->fr_ifas[i] == ifp)
3981 fr->fr_ifas[i] = newifp;
3982
3983 for (i = 0; i < 2; i++) {
3984 if (fr->fr_tifs[i].fd_ifp == ifp)
3985 fr->fr_tifs[i].fd_ifp = newifp;
3986 }
3987
3988 if (fr->fr_dif.fd_ifp == ifp)
3989 fr->fr_dif.fd_ifp = newifp;
3990 }
3991 }
3992
3993 /* ------------------------------------------------------------------------ */
3994 /* Function: fr_ifindexsync */
3995 /* Returns: void */
3996 /* Parameters: ifp - interface, which is being sync'd */
3997 /* newifp - new ifindex value for interface */
3998 /* ifs - IPF's stack */
3999 /* */
4000 /* Function assumes ipf_mutex is locked exclusively. */
4001 /* */
4002 /* Function updates the NIC references in rules with new interfaces index */
4003 /* (newifp). Function must process active lists: */
4004 /* with accounting rules (IPv6 and IPv4) */
4005 /* with inbound rules (IPv6 and IPv4) */
4006 /* with outbound rules (IPv6 and IPv4) */
4007 /* Function also has to take care of rule groups. */
4008 /* */
4009 /* NOTE: The ipf_mutex is grabbed exclusively by caller (which is always */
4010 /* nic_event_hook). The hook function also updates state entries, NAT rules */
4011 /* and NAT entries. We want to do all these update atomically to keep the */
4012 /* NIC references consistent. The ipf_mutex will synchronize event with */
4013 /* fr_check(), which processes packets, so no packet will enter fr_check(), */
4014 /* while NIC references will be synchronized. */
4015 /* ------------------------------------------------------------------------ */
fr_ifindexsync(ifp,newifp,ifs)4016 void fr_ifindexsync(ifp, newifp, ifs)
4017 void *ifp;
4018 void *newifp;
4019 ipf_stack_t *ifs;
4020 {
4021 unsigned int i;
4022 frentry_t *rule_lists[8];
4023 unsigned int rules = sizeof (rule_lists) / sizeof (frentry_t *);
4024
4025 rule_lists[0] = ifs->ifs_ipacct[0][ifs->ifs_fr_active];
4026 rule_lists[1] = ifs->ifs_ipacct[1][ifs->ifs_fr_active];
4027 rule_lists[2] = ifs->ifs_ipfilter[0][ifs->ifs_fr_active];
4028 rule_lists[3] = ifs->ifs_ipfilter[1][ifs->ifs_fr_active];
4029 rule_lists[4] = ifs->ifs_ipacct6[0][ifs->ifs_fr_active];
4030 rule_lists[5] = ifs->ifs_ipacct6[1][ifs->ifs_fr_active];
4031 rule_lists[6] = ifs->ifs_ipfilter6[0][ifs->ifs_fr_active];
4032 rule_lists[7] = ifs->ifs_ipfilter6[1][ifs->ifs_fr_active];
4033
4034 for (i = 0; i < rules; i++) {
4035 fr_syncindex(rule_lists[i], ifp, newifp);
4036 }
4037
4038 /*
4039 * Update rule groups.
4040 */
4041 for (i = 0; i < IPL_LOGSIZE; i++) {
4042 frgroup_t *g;
4043
4044 for (g = ifs->ifs_ipfgroups[i][0]; g != NULL; g = g->fg_next)
4045 fr_syncindex(g->fg_start, ifp, newifp);
4046 for (g = ifs->ifs_ipfgroups[i][1]; g != NULL; g = g->fg_next)
4047 fr_syncindex(g->fg_start, ifp, newifp);
4048 }
4049 }
4050 #endif
4051
4052 /*
4053 * In the functions below, bcopy() is called because the pointer being
4054 * copied _from_ in this instance is a pointer to a char buf (which could
4055 * end up being unaligned) and on the kernel's local stack.
4056 */
4057 /* ------------------------------------------------------------------------ */
4058 /* Function: copyinptr */
4059 /* Returns: int - 0 = success, else failure */
4060 /* Parameters: src(I) - pointer to the source address */
4061 /* dst(I) - destination address */
4062 /* size(I) - number of bytes to copy */
4063 /* */
4064 /* Copy a block of data in from user space, given a pointer to the pointer */
4065 /* to start copying from (src) and a pointer to where to store it (dst). */
4066 /* NB: src - pointer to user space pointer, dst - kernel space pointer */
4067 /* ------------------------------------------------------------------------ */
copyinptr(src,dst,size)4068 int copyinptr(src, dst, size)
4069 void *src, *dst;
4070 size_t size;
4071 {
4072 caddr_t ca;
4073 int err;
4074
4075 # if SOLARIS
4076 err = COPYIN(src, (caddr_t)&ca, sizeof(ca));
4077 if (err != 0)
4078 return err;
4079 # else
4080 bcopy(src, (caddr_t)&ca, sizeof(ca));
4081 # endif
4082 err = COPYIN(ca, dst, size);
4083 return err;
4084 }
4085
4086
4087 /* ------------------------------------------------------------------------ */
4088 /* Function: copyoutptr */
4089 /* Returns: int - 0 = success, else failure */
4090 /* Parameters: src(I) - pointer to the source address */
4091 /* dst(I) - destination address */
4092 /* size(I) - number of bytes to copy */
4093 /* */
4094 /* Copy a block of data out to user space, given a pointer to the pointer */
4095 /* to start copying from (src) and a pointer to where to store it (dst). */
4096 /* NB: src - kernel space pointer, dst - pointer to user space pointer. */
4097 /* ------------------------------------------------------------------------ */
copyoutptr(src,dst,size)4098 int copyoutptr(src, dst, size)
4099 void *src, *dst;
4100 size_t size;
4101 {
4102 caddr_t ca;
4103 int err;
4104
4105 # if SOLARIS
4106 err = COPYIN(dst, (caddr_t)&ca, sizeof(ca));
4107 if (err != 0)
4108 return err;
4109 # else
4110 bcopy(dst, (caddr_t)&ca, sizeof(ca));
4111 # endif
4112 err = COPYOUT(src, ca, size);
4113 return err;
4114 }
4115 #endif
4116
4117
4118 /* ------------------------------------------------------------------------ */
4119 /* Function: fr_lock */
4120 /* Returns: int - 0 = success, else error */
4121 /* Parameters: data(I) - pointer to lock value to set */
4122 /* lockp(O) - pointer to location to store old lock value */
4123 /* */
4124 /* Get the new value for the lock integer, set it and return the old value */
4125 /* in *lockp. */
4126 /* ------------------------------------------------------------------------ */
fr_lock(data,lockp)4127 int fr_lock(data, lockp)
4128 caddr_t data;
4129 int *lockp;
4130 {
4131 int arg, err;
4132
4133 err = BCOPYIN(data, (caddr_t)&arg, sizeof(arg));
4134 if (err != 0)
4135 return (EFAULT);
4136 err = BCOPYOUT((caddr_t)lockp, data, sizeof(*lockp));
4137 if (err != 0)
4138 return (EFAULT);
4139 *lockp = arg;
4140 return (0);
4141 }
4142
4143
4144 /* ------------------------------------------------------------------------ */
4145 /* Function: fr_getstat */
4146 /* Returns: Nil */
4147 /* Parameters: fiop(I) - pointer to ipfilter stats structure */
4148 /* */
4149 /* Stores a copy of current pointers, counters, etc, in the friostat */
4150 /* structure. */
4151 /* ------------------------------------------------------------------------ */
fr_getstat(fiop,ifs)4152 void fr_getstat(fiop, ifs)
4153 friostat_t *fiop;
4154 ipf_stack_t *ifs;
4155 {
4156 int i, j;
4157
4158 bcopy((char *)&ifs->ifs_frstats, (char *)fiop->f_st,
4159 sizeof(filterstats_t) * 2);
4160 fiop->f_locks[IPL_LOGSTATE] = ifs->ifs_fr_state_lock;
4161 fiop->f_locks[IPL_LOGNAT] = ifs->ifs_fr_nat_lock;
4162 fiop->f_locks[IPL_LOGIPF] = ifs->ifs_fr_frag_lock;
4163 fiop->f_locks[IPL_LOGAUTH] = ifs->ifs_fr_auth_lock;
4164
4165 for (i = 0; i < 2; i++)
4166 for (j = 0; j < 2; j++) {
4167 fiop->f_ipf[i][j] = ifs->ifs_ipfilter[i][j];
4168 fiop->f_acct[i][j] = ifs->ifs_ipacct[i][j];
4169 fiop->f_ipf6[i][j] = ifs->ifs_ipfilter6[i][j];
4170 fiop->f_acct6[i][j] = ifs->ifs_ipacct6[i][j];
4171 }
4172
4173 fiop->f_ticks = ifs->ifs_fr_ticks;
4174 fiop->f_active = ifs->ifs_fr_active;
4175 fiop->f_froute[0] = ifs->ifs_fr_frouteok[0];
4176 fiop->f_froute[1] = ifs->ifs_fr_frouteok[1];
4177
4178 fiop->f_running = ifs->ifs_fr_running;
4179 for (i = 0; i < IPL_LOGSIZE; i++) {
4180 fiop->f_groups[i][0] = ifs->ifs_ipfgroups[i][0];
4181 fiop->f_groups[i][1] = ifs->ifs_ipfgroups[i][1];
4182 }
4183 #ifdef IPFILTER_LOG
4184 fiop->f_logging = 1;
4185 #else
4186 fiop->f_logging = 0;
4187 #endif
4188 fiop->f_defpass = ifs->ifs_fr_pass;
4189 fiop->f_features = fr_features;
4190 (void) strncpy(fiop->f_version, ipfilter_version,
4191 sizeof(fiop->f_version));
4192 }
4193
4194
4195 #ifdef USE_INET6
4196 int icmptoicmp6types[ICMP_MAXTYPE+1] = {
4197 ICMP6_ECHO_REPLY, /* 0: ICMP_ECHOREPLY */
4198 -1, /* 1: UNUSED */
4199 -1, /* 2: UNUSED */
4200 ICMP6_DST_UNREACH, /* 3: ICMP_UNREACH */
4201 -1, /* 4: ICMP_SOURCEQUENCH */
4202 ND_REDIRECT, /* 5: ICMP_REDIRECT */
4203 -1, /* 6: UNUSED */
4204 -1, /* 7: UNUSED */
4205 ICMP6_ECHO_REQUEST, /* 8: ICMP_ECHO */
4206 -1, /* 9: UNUSED */
4207 -1, /* 10: UNUSED */
4208 ICMP6_TIME_EXCEEDED, /* 11: ICMP_TIMXCEED */
4209 ICMP6_PARAM_PROB, /* 12: ICMP_PARAMPROB */
4210 -1, /* 13: ICMP_TSTAMP */
4211 -1, /* 14: ICMP_TSTAMPREPLY */
4212 -1, /* 15: ICMP_IREQ */
4213 -1, /* 16: ICMP_IREQREPLY */
4214 -1, /* 17: ICMP_MASKREQ */
4215 -1, /* 18: ICMP_MASKREPLY */
4216 };
4217
4218
4219 int icmptoicmp6unreach[ICMP_MAX_UNREACH] = {
4220 ICMP6_DST_UNREACH_ADDR, /* 0: ICMP_UNREACH_NET */
4221 ICMP6_DST_UNREACH_ADDR, /* 1: ICMP_UNREACH_HOST */
4222 -1, /* 2: ICMP_UNREACH_PROTOCOL */
4223 ICMP6_DST_UNREACH_NOPORT, /* 3: ICMP_UNREACH_PORT */
4224 -1, /* 4: ICMP_UNREACH_NEEDFRAG */
4225 ICMP6_DST_UNREACH_NOTNEIGHBOR, /* 5: ICMP_UNREACH_SRCFAIL */
4226 ICMP6_DST_UNREACH_ADDR, /* 6: ICMP_UNREACH_NET_UNKNOWN */
4227 ICMP6_DST_UNREACH_ADDR, /* 7: ICMP_UNREACH_HOST_UNKNOWN */
4228 -1, /* 8: ICMP_UNREACH_ISOLATED */
4229 ICMP6_DST_UNREACH_ADMIN, /* 9: ICMP_UNREACH_NET_PROHIB */
4230 ICMP6_DST_UNREACH_ADMIN, /* 10: ICMP_UNREACH_HOST_PROHIB */
4231 -1, /* 11: ICMP_UNREACH_TOSNET */
4232 -1, /* 12: ICMP_UNREACH_TOSHOST */
4233 ICMP6_DST_UNREACH_ADMIN, /* 13: ICMP_UNREACH_ADMIN_PROHIBIT */
4234 };
4235 int icmpreplytype6[ICMP6_MAXTYPE + 1];
4236 #endif
4237
4238 int icmpreplytype4[ICMP_MAXTYPE + 1];
4239
4240
4241 /* ------------------------------------------------------------------------ */
4242 /* Function: fr_matchicmpqueryreply */
4243 /* Returns: int - 1 if "icmp" is a valid reply to "ic" else 0. */
4244 /* Parameters: v(I) - IP protocol version (4 or 6) */
4245 /* ic(I) - ICMP information */
4246 /* icmp(I) - ICMP packet header */
4247 /* rev(I) - direction (0 = forward/1 = reverse) of packet */
4248 /* */
4249 /* Check if the ICMP packet defined by the header pointed to by icmp is a */
4250 /* reply to one as described by what's in ic. If it is a match, return 1, */
4251 /* else return 0 for no match. */
4252 /* ------------------------------------------------------------------------ */
fr_matchicmpqueryreply(v,ic,icmp,rev)4253 int fr_matchicmpqueryreply(v, ic, icmp, rev)
4254 int v;
4255 icmpinfo_t *ic;
4256 icmphdr_t *icmp;
4257 int rev;
4258 {
4259 int ictype;
4260
4261 ictype = ic->ici_type;
4262
4263 if (v == 4) {
4264 /*
4265 * If we matched its type on the way in, then when going out
4266 * it will still be the same type.
4267 */
4268 if ((!rev && (icmp->icmp_type == ictype)) ||
4269 (rev && (icmpreplytype4[ictype] == icmp->icmp_type))) {
4270 if (icmp->icmp_type != ICMP_ECHOREPLY)
4271 return 1;
4272 if (icmp->icmp_id == ic->ici_id)
4273 return 1;
4274 }
4275 }
4276 #ifdef USE_INET6
4277 else if (v == 6) {
4278 if ((!rev && (icmp->icmp_type == ictype)) ||
4279 (rev && (icmpreplytype6[ictype] == icmp->icmp_type))) {
4280 if (icmp->icmp_type != ICMP6_ECHO_REPLY)
4281 return 1;
4282 if (icmp->icmp_id == ic->ici_id)
4283 return 1;
4284 }
4285 }
4286 #endif
4287 return 0;
4288 }
4289
4290
4291 #ifdef IPFILTER_LOOKUP
4292 /* ------------------------------------------------------------------------ */
4293 /* Function: fr_resolvelookup */
4294 /* Returns: void * - NULL = failure, else success. */
4295 /* Parameters: type(I) - type of lookup these parameters are for. */
4296 /* number(I) - table number to use when searching */
4297 /* funcptr(IO) - pointer to pointer for storing IP address */
4298 /* searching function. */
4299 /* ifs - ipf stack instance */
4300 /* */
4301 /* Search for the "table" number passed in amongst those configured for */
4302 /* that particular type. If the type is recognised then the function to */
4303 /* call to do the IP address search will be change, regardless of whether */
4304 /* or not the "table" number exists. */
4305 /* ------------------------------------------------------------------------ */
fr_resolvelookup(type,number,funcptr,ifs)4306 static void *fr_resolvelookup(type, number, funcptr, ifs)
4307 u_int type, number;
4308 lookupfunc_t *funcptr;
4309 ipf_stack_t *ifs;
4310 {
4311 char name[FR_GROUPLEN];
4312 iphtable_t *iph;
4313 ip_pool_t *ipo;
4314 void *ptr;
4315
4316 #if defined(SNPRINTF) && defined(_KERNEL)
4317 (void) SNPRINTF(name, sizeof(name), "%u", number);
4318 #else
4319 (void) sprintf(name, "%u", number);
4320 #endif
4321
4322 READ_ENTER(&ifs->ifs_ip_poolrw);
4323
4324 switch (type)
4325 {
4326 case IPLT_POOL :
4327 # if (defined(__osf__) && defined(_KERNEL))
4328 ptr = NULL;
4329 *funcptr = NULL;
4330 # else
4331 ipo = ip_pool_find(IPL_LOGIPF, name, ifs);
4332 ptr = ipo;
4333 if (ipo != NULL) {
4334 ATOMIC_INC32(ipo->ipo_ref);
4335 }
4336 *funcptr = ip_pool_search;
4337 # endif
4338 break;
4339 case IPLT_HASH :
4340 iph = fr_findhtable(IPL_LOGIPF, name, ifs);
4341 ptr = iph;
4342 if (iph != NULL) {
4343 ATOMIC_INC32(iph->iph_ref);
4344 }
4345 *funcptr = fr_iphmfindip;
4346 break;
4347 default:
4348 ptr = NULL;
4349 *funcptr = NULL;
4350 break;
4351 }
4352 RWLOCK_EXIT(&ifs->ifs_ip_poolrw);
4353
4354 return ptr;
4355 }
4356 #endif
4357
4358
4359 /* ------------------------------------------------------------------------ */
4360 /* Function: frrequest */
4361 /* Returns: int - 0 == success, > 0 == errno value */
4362 /* Parameters: unit(I) - device for which this is for */
4363 /* req(I) - ioctl command (SIOC*) */
4364 /* data(I) - pointr to ioctl data */
4365 /* set(I) - 1 or 0 (filter set) */
4366 /* makecopy(I) - flag indicating whether data points to a rule */
4367 /* in kernel space & hence doesn't need copying. */
4368 /* */
4369 /* This function handles all the requests which operate on the list of */
4370 /* filter rules. This includes adding, deleting, insertion. It is also */
4371 /* responsible for creating groups when a "head" rule is loaded. Interface */
4372 /* names are resolved here and other sanity checks are made on the content */
4373 /* of the rule structure being loaded. If a rule has user defined timeouts */
4374 /* then make sure they are created and initialised before exiting. */
4375 /* ------------------------------------------------------------------------ */
frrequest(unit,req,data,set,makecopy,ifs)4376 int frrequest(unit, req, data, set, makecopy, ifs)
4377 int unit;
4378 ioctlcmd_t req;
4379 int set, makecopy;
4380 caddr_t data;
4381 ipf_stack_t *ifs;
4382 {
4383 frentry_t frd, *fp, *f, **fprev, **ftail;
4384 int error = 0, in, v;
4385 void *ptr, *uptr;
4386 u_int *p, *pp;
4387 frgroup_t *fg;
4388 char *group;
4389
4390 fg = NULL;
4391 fp = &frd;
4392 if (makecopy != 0) {
4393 error = fr_inobj(data, fp, IPFOBJ_FRENTRY);
4394 if (error)
4395 return EFAULT;
4396 if ((fp->fr_flags & FR_T_BUILTIN) != 0)
4397 return EINVAL;
4398 fp->fr_ref = 0;
4399 fp->fr_flags |= FR_COPIED;
4400 } else {
4401 fp = (frentry_t *)data;
4402 if ((fp->fr_type & FR_T_BUILTIN) == 0)
4403 return EINVAL;
4404 fp->fr_flags &= ~FR_COPIED;
4405 }
4406
4407 if (((fp->fr_dsize == 0) && (fp->fr_data != NULL)) ||
4408 ((fp->fr_dsize != 0) && (fp->fr_data == NULL)))
4409 return EINVAL;
4410
4411 v = fp->fr_v;
4412 uptr = fp->fr_data;
4413
4414 /*
4415 * Only filter rules for IPv4 or IPv6 are accepted.
4416 */
4417 if (v == 4)
4418 /*EMPTY*/;
4419 #ifdef USE_INET6
4420 else if (v == 6)
4421 /*EMPTY*/;
4422 #endif
4423 else {
4424 return EINVAL;
4425 }
4426
4427 /*
4428 * If the rule is being loaded from user space, i.e. we had to copy it
4429 * into kernel space, then do not trust the function pointer in the
4430 * rule.
4431 */
4432 if ((makecopy == 1) && (fp->fr_func != NULL)) {
4433 if (fr_findfunc(fp->fr_func) == NULL)
4434 return ESRCH;
4435 error = fr_funcinit(fp, ifs);
4436 if (error != 0)
4437 return error;
4438 }
4439
4440 ptr = NULL;
4441 /*
4442 * Check that the group number does exist and that its use (in/out)
4443 * matches what the rule is.
4444 */
4445 if (!strncmp(fp->fr_grhead, "0", FR_GROUPLEN))
4446 *fp->fr_grhead = '\0';
4447 group = fp->fr_group;
4448 if (!strncmp(group, "0", FR_GROUPLEN))
4449 *group = '\0';
4450
4451 if (FR_ISACCOUNT(fp->fr_flags))
4452 unit = IPL_LOGCOUNT;
4453
4454 if ((req != (int)SIOCZRLST) && (*group != '\0')) {
4455 fg = fr_findgroup(group, unit, set, NULL, ifs);
4456 if (fg == NULL)
4457 return ESRCH;
4458 if (fg->fg_flags == 0)
4459 fg->fg_flags = fp->fr_flags & FR_INOUT;
4460 else if (fg->fg_flags != (fp->fr_flags & FR_INOUT))
4461 return ESRCH;
4462 }
4463
4464 in = (fp->fr_flags & FR_INQUE) ? 0 : 1;
4465
4466 /*
4467 * Work out which rule list this change is being applied to.
4468 */
4469 ftail = NULL;
4470 fprev = NULL;
4471 if (unit == IPL_LOGAUTH)
4472 fprev = &ifs->ifs_ipauth;
4473 else if (v == 4) {
4474 if (FR_ISACCOUNT(fp->fr_flags))
4475 fprev = &ifs->ifs_ipacct[in][set];
4476 else if ((fp->fr_flags & (FR_OUTQUE|FR_INQUE)) != 0)
4477 fprev = &ifs->ifs_ipfilter[in][set];
4478 } else if (v == 6) {
4479 if (FR_ISACCOUNT(fp->fr_flags))
4480 fprev = &ifs->ifs_ipacct6[in][set];
4481 else if ((fp->fr_flags & (FR_OUTQUE|FR_INQUE)) != 0)
4482 fprev = &ifs->ifs_ipfilter6[in][set];
4483 }
4484 if (fprev == NULL)
4485 return ESRCH;
4486
4487 if (*group != '\0') {
4488 if (!fg && !(fg = fr_findgroup(group, unit, set, NULL, ifs)))
4489 return ESRCH;
4490 fprev = &fg->fg_start;
4491 }
4492
4493 ftail = fprev;
4494 for (f = *ftail; (f = *ftail) != NULL; ftail = &f->fr_next) {
4495 if (fp->fr_collect <= f->fr_collect) {
4496 ftail = fprev;
4497 f = NULL;
4498 break;
4499 }
4500 fprev = ftail;
4501 }
4502
4503 /*
4504 * Copy in extra data for the rule.
4505 */
4506 if (fp->fr_dsize != 0) {
4507 if (makecopy != 0) {
4508 KMALLOCS(ptr, void *, fp->fr_dsize);
4509 if (!ptr)
4510 return ENOMEM;
4511 error = COPYIN(uptr, ptr, fp->fr_dsize);
4512 } else {
4513 ptr = uptr;
4514 error = 0;
4515 }
4516 if (error != 0) {
4517 KFREES(ptr, fp->fr_dsize);
4518 return EFAULT;
4519 }
4520 fp->fr_data = ptr;
4521 } else
4522 fp->fr_data = NULL;
4523
4524 /*
4525 * Perform per-rule type sanity checks of their members.
4526 */
4527 switch (fp->fr_type & ~FR_T_BUILTIN)
4528 {
4529 #if defined(IPFILTER_BPF)
4530 case FR_T_BPFOPC :
4531 if (fp->fr_dsize == 0)
4532 return EINVAL;
4533 if (!bpf_validate(ptr, fp->fr_dsize/sizeof(struct bpf_insn))) {
4534 if (makecopy && fp->fr_data != NULL) {
4535 KFREES(fp->fr_data, fp->fr_dsize);
4536 }
4537 return EINVAL;
4538 }
4539 break;
4540 #endif
4541 case FR_T_IPF :
4542 if (fp->fr_dsize != sizeof(fripf_t)) {
4543 if (makecopy && fp->fr_data != NULL) {
4544 KFREES(fp->fr_data, fp->fr_dsize);
4545 }
4546 return EINVAL;
4547 }
4548
4549 /*
4550 * Allowing a rule with both "keep state" and "with oow" is
4551 * pointless because adding a state entry to the table will
4552 * fail with the out of window (oow) flag set.
4553 */
4554 if ((fp->fr_flags & FR_KEEPSTATE) && (fp->fr_flx & FI_OOW)) {
4555 if (makecopy && fp->fr_data != NULL) {
4556 KFREES(fp->fr_data, fp->fr_dsize);
4557 }
4558 return EINVAL;
4559 }
4560
4561 switch (fp->fr_satype)
4562 {
4563 case FRI_BROADCAST :
4564 case FRI_DYNAMIC :
4565 case FRI_NETWORK :
4566 case FRI_NETMASKED :
4567 case FRI_PEERADDR :
4568 if (fp->fr_sifpidx < 0 || fp->fr_sifpidx > 3) {
4569 if (makecopy && fp->fr_data != NULL) {
4570 KFREES(fp->fr_data, fp->fr_dsize);
4571 }
4572 return EINVAL;
4573 }
4574 break;
4575 #ifdef IPFILTER_LOOKUP
4576 case FRI_LOOKUP :
4577 fp->fr_srcptr = fr_resolvelookup(fp->fr_srctype,
4578 fp->fr_srcnum,
4579 &fp->fr_srcfunc, ifs);
4580 break;
4581 #endif
4582 default :
4583 break;
4584 }
4585
4586 switch (fp->fr_datype)
4587 {
4588 case FRI_BROADCAST :
4589 case FRI_DYNAMIC :
4590 case FRI_NETWORK :
4591 case FRI_NETMASKED :
4592 case FRI_PEERADDR :
4593 if (fp->fr_difpidx < 0 || fp->fr_difpidx > 3) {
4594 if (makecopy && fp->fr_data != NULL) {
4595 KFREES(fp->fr_data, fp->fr_dsize);
4596 }
4597 return EINVAL;
4598 }
4599 break;
4600 #ifdef IPFILTER_LOOKUP
4601 case FRI_LOOKUP :
4602 fp->fr_dstptr = fr_resolvelookup(fp->fr_dsttype,
4603 fp->fr_dstnum,
4604 &fp->fr_dstfunc, ifs);
4605 break;
4606 #endif
4607 default :
4608 break;
4609 }
4610 break;
4611 case FR_T_NONE :
4612 break;
4613 case FR_T_CALLFUNC :
4614 break;
4615 case FR_T_COMPIPF :
4616 break;
4617 default :
4618 if (makecopy && fp->fr_data != NULL) {
4619 KFREES(fp->fr_data, fp->fr_dsize);
4620 }
4621 return EINVAL;
4622 }
4623
4624 /*
4625 * Lookup all the interface names that are part of the rule.
4626 */
4627 frsynclist(0, 0, NULL, NULL, fp, ifs);
4628 fp->fr_statecnt = 0;
4629
4630 /*
4631 * Look for an existing matching filter rule, but don't include the
4632 * next or interface pointer in the comparison (fr_next, fr_ifa).
4633 * This elminates rules which are indentical being loaded. Checksum
4634 * the constant part of the filter rule to make comparisons quicker
4635 * (this meaning no pointers are included).
4636 */
4637 for (fp->fr_cksum = 0, p = (u_int *)&fp->fr_func, pp = &fp->fr_cksum;
4638 p < pp; p++)
4639 fp->fr_cksum += *p;
4640 pp = (u_int *)(fp->fr_caddr + fp->fr_dsize);
4641 for (p = (u_int *)fp->fr_data; p < pp; p++)
4642 fp->fr_cksum += *p;
4643
4644 WRITE_ENTER(&ifs->ifs_ipf_mutex);
4645 bzero((char *)ifs->ifs_frcache, sizeof (ifs->ifs_frcache));
4646
4647 for (; (f = *ftail) != NULL; ftail = &f->fr_next) {
4648 if ((fp->fr_cksum != f->fr_cksum) ||
4649 (f->fr_dsize != fp->fr_dsize))
4650 continue;
4651 if (bcmp((char *)&f->fr_func, (char *)&fp->fr_func, FR_CMPSIZ))
4652 continue;
4653 if ((!ptr && !f->fr_data) ||
4654 (ptr && f->fr_data &&
4655 !bcmp((char *)ptr, (char *)f->fr_data, f->fr_dsize)))
4656 break;
4657 }
4658
4659 /*
4660 * If zero'ing statistics, copy current to caller and zero.
4661 */
4662 if (req == (ioctlcmd_t)SIOCZRLST) {
4663 if (f == NULL)
4664 error = ESRCH;
4665 else {
4666 /*
4667 * Copy and reduce lock because of impending copyout.
4668 * Well we should, but if we do then the atomicity of
4669 * this call and the correctness of fr_hits and
4670 * fr_bytes cannot be guaranteed. As it is, this code
4671 * only resets them to 0 if they are successfully
4672 * copied out into user space.
4673 */
4674 bcopy((char *)f, (char *)fp, sizeof(*f));
4675
4676 /*
4677 * When we copy this rule back out, set the data
4678 * pointer to be what it was in user space.
4679 */
4680 fp->fr_data = uptr;
4681 error = fr_outobj(data, fp, IPFOBJ_FRENTRY);
4682
4683 if (error == 0) {
4684 if ((f->fr_dsize != 0) && (uptr != NULL))
4685 error = COPYOUT(f->fr_data, uptr,
4686 f->fr_dsize);
4687 if (error == 0) {
4688 f->fr_hits = 0;
4689 f->fr_bytes = 0;
4690 }
4691 }
4692 }
4693
4694 if ((ptr != NULL) && (makecopy != 0)) {
4695 KFREES(ptr, fp->fr_dsize);
4696 }
4697 RWLOCK_EXIT(&ifs->ifs_ipf_mutex);
4698 return error;
4699 }
4700
4701 if (!f) {
4702 /*
4703 * At the end of this, ftail must point to the place where the
4704 * new rule is to be saved/inserted/added.
4705 * For SIOCAD*FR, this should be the last rule in the group of
4706 * rules that have equal fr_collect fields.
4707 * For SIOCIN*FR, ...
4708 */
4709 if (req == (ioctlcmd_t)SIOCADAFR ||
4710 req == (ioctlcmd_t)SIOCADIFR) {
4711
4712 for (ftail = fprev; (f = *ftail) != NULL; ) {
4713 if (f->fr_collect > fp->fr_collect)
4714 break;
4715 ftail = &f->fr_next;
4716 }
4717 f = NULL;
4718 ptr = NULL;
4719 error = 0;
4720 } else if (req == (ioctlcmd_t)SIOCINAFR ||
4721 req == (ioctlcmd_t)SIOCINIFR) {
4722 while ((f = *fprev) != NULL) {
4723 if (f->fr_collect >= fp->fr_collect)
4724 break;
4725 fprev = &f->fr_next;
4726 }
4727 ftail = fprev;
4728 if (fp->fr_hits != 0) {
4729 while (fp->fr_hits && (f = *ftail)) {
4730 if (f->fr_collect != fp->fr_collect)
4731 break;
4732 fprev = ftail;
4733 ftail = &f->fr_next;
4734 fp->fr_hits--;
4735 }
4736 }
4737 f = NULL;
4738 ptr = NULL;
4739 error = 0;
4740 }
4741 }
4742
4743 /*
4744 * Request to remove a rule.
4745 */
4746 if (req == (ioctlcmd_t)SIOCRMAFR || req == (ioctlcmd_t)SIOCRMIFR) {
4747 if (!f)
4748 error = ESRCH;
4749 else {
4750 /*
4751 * Do not allow activity from user space to interfere
4752 * with rules not loaded that way.
4753 */
4754 if ((makecopy == 1) && !(f->fr_flags & FR_COPIED)) {
4755 error = EPERM;
4756 goto done;
4757 }
4758
4759 /*
4760 * Return EBUSY if the rule is being reference by
4761 * something else (eg state information.
4762 */
4763 if (f->fr_ref > 1) {
4764 error = EBUSY;
4765 goto done;
4766 }
4767 #ifdef IPFILTER_SCAN
4768 if (f->fr_isctag[0] != '\0' &&
4769 (f->fr_isc != (struct ipscan *)-1))
4770 ipsc_detachfr(f);
4771 #endif
4772 if (unit == IPL_LOGAUTH) {
4773 error = fr_preauthcmd(req, f, ftail, ifs);
4774 goto done;
4775 }
4776 if (*f->fr_grhead != '\0')
4777 fr_delgroup(f->fr_grhead, unit, set, ifs);
4778 fr_fixskip(ftail, f, -1);
4779 *ftail = f->fr_next;
4780 f->fr_next = NULL;
4781 (void)fr_derefrule(&f, ifs);
4782 }
4783 } else {
4784 /*
4785 * Not removing, so we must be adding/inserting a rule.
4786 */
4787 if (f)
4788 error = EEXIST;
4789 else {
4790 if (unit == IPL_LOGAUTH) {
4791 error = fr_preauthcmd(req, fp, ftail, ifs);
4792 goto done;
4793 }
4794 if (makecopy) {
4795 KMALLOC(f, frentry_t *);
4796 } else
4797 f = fp;
4798 if (f != NULL) {
4799 if (fp != f)
4800 bcopy((char *)fp, (char *)f,
4801 sizeof(*f));
4802 MUTEX_NUKE(&f->fr_lock);
4803 MUTEX_INIT(&f->fr_lock, "filter rule lock");
4804 #ifdef IPFILTER_SCAN
4805 if (f->fr_isctag[0] != '\0' &&
4806 ipsc_attachfr(f))
4807 f->fr_isc = (struct ipscan *)-1;
4808 #endif
4809 f->fr_hits = 0;
4810 if (makecopy != 0)
4811 f->fr_ref = 1;
4812 f->fr_next = *ftail;
4813 *ftail = f;
4814 if (req == (ioctlcmd_t)SIOCINIFR ||
4815 req == (ioctlcmd_t)SIOCINAFR)
4816 fr_fixskip(ftail, f, 1);
4817 f->fr_grp = NULL;
4818 group = f->fr_grhead;
4819 if (*group != '\0') {
4820 fg = fr_addgroup(group, f, f->fr_flags,
4821 unit, set, ifs);
4822 if (fg != NULL)
4823 f->fr_grp = &fg->fg_start;
4824 }
4825 } else
4826 error = ENOMEM;
4827 }
4828 }
4829 done:
4830 RWLOCK_EXIT(&ifs->ifs_ipf_mutex);
4831 if ((ptr != NULL) && (error != 0) && (makecopy != 0)) {
4832 KFREES(ptr, fp->fr_dsize);
4833 }
4834 return (error);
4835 }
4836
4837
4838 /* ------------------------------------------------------------------------ */
4839 /* Function: fr_funcinit */
4840 /* Returns: int - 0 == success, else ESRCH: cannot resolve rule details */
4841 /* Parameters: fr(I) - pointer to filter rule */
4842 /* */
4843 /* If a rule is a call rule, then check if the function it points to needs */
4844 /* an init function to be called now the rule has been loaded. */
4845 /* ------------------------------------------------------------------------ */
fr_funcinit(fr,ifs)4846 static int fr_funcinit(fr, ifs)
4847 frentry_t *fr;
4848 ipf_stack_t *ifs;
4849 {
4850 ipfunc_resolve_t *ft;
4851 int err;
4852
4853 err = ESRCH;
4854
4855 for (ft = fr_availfuncs; ft->ipfu_addr != NULL; ft++)
4856 if (ft->ipfu_addr == fr->fr_func) {
4857 err = 0;
4858 if (ft->ipfu_init != NULL)
4859 err = (*ft->ipfu_init)(fr, ifs);
4860 break;
4861 }
4862 return err;
4863 }
4864
4865
4866 /* ------------------------------------------------------------------------ */
4867 /* Function: fr_findfunc */
4868 /* Returns: ipfunc_t - pointer to function if found, else NULL */
4869 /* Parameters: funcptr(I) - function pointer to lookup */
4870 /* */
4871 /* Look for a function in the table of known functions. */
4872 /* ------------------------------------------------------------------------ */
fr_findfunc(funcptr)4873 static ipfunc_t fr_findfunc(funcptr)
4874 ipfunc_t funcptr;
4875 {
4876 ipfunc_resolve_t *ft;
4877
4878 for (ft = fr_availfuncs; ft->ipfu_addr != NULL; ft++)
4879 if (ft->ipfu_addr == funcptr)
4880 return funcptr;
4881 return NULL;
4882 }
4883
4884
4885 /* ------------------------------------------------------------------------ */
4886 /* Function: fr_resolvefunc */
4887 /* Returns: int - 0 == success, else error */
4888 /* Parameters: data(IO) - ioctl data pointer to ipfunc_resolve_t struct */
4889 /* */
4890 /* Copy in a ipfunc_resolve_t structure and then fill in the missing field. */
4891 /* This will either be the function name (if the pointer is set) or the */
4892 /* function pointer if the name is set. When found, fill in the other one */
4893 /* so that the entire, complete, structure can be copied back to user space.*/
4894 /* ------------------------------------------------------------------------ */
fr_resolvefunc(data)4895 int fr_resolvefunc(data)
4896 void *data;
4897 {
4898 ipfunc_resolve_t res, *ft;
4899 int err;
4900
4901 err = BCOPYIN(data, &res, sizeof(res));
4902 if (err != 0)
4903 return EFAULT;
4904
4905 if (res.ipfu_addr == NULL && res.ipfu_name[0] != '\0') {
4906 for (ft = fr_availfuncs; ft->ipfu_addr != NULL; ft++)
4907 if (strncmp(res.ipfu_name, ft->ipfu_name,
4908 sizeof(res.ipfu_name)) == 0) {
4909 res.ipfu_addr = ft->ipfu_addr;
4910 res.ipfu_init = ft->ipfu_init;
4911 if (COPYOUT(&res, data, sizeof(res)) != 0)
4912 return EFAULT;
4913 return 0;
4914 }
4915 }
4916 if (res.ipfu_addr != NULL && res.ipfu_name[0] == '\0') {
4917 for (ft = fr_availfuncs; ft->ipfu_addr != NULL; ft++)
4918 if (ft->ipfu_addr == res.ipfu_addr) {
4919 (void) strncpy(res.ipfu_name, ft->ipfu_name,
4920 sizeof(res.ipfu_name));
4921 res.ipfu_init = ft->ipfu_init;
4922 if (COPYOUT(&res, data, sizeof(res)) != 0)
4923 return EFAULT;
4924 return 0;
4925 }
4926 }
4927 return ESRCH;
4928 }
4929
4930
4931 #if !defined(_KERNEL) || (!defined(__NetBSD__) && !defined(__OpenBSD__) && !defined(__FreeBSD__)) || \
4932 (defined(__FreeBSD__) && (__FreeBSD_version < 490000)) || \
4933 (defined(__NetBSD__) && (__NetBSD_Version__ < 105000000)) || \
4934 (defined(__OpenBSD__) && (OpenBSD < 200006))
4935 /*
4936 * From: NetBSD
4937 * ppsratecheck(): packets (or events) per second limitation.
4938 */
4939 int
ppsratecheck(lasttime,curpps,maxpps)4940 ppsratecheck(lasttime, curpps, maxpps)
4941 struct timeval *lasttime;
4942 int *curpps;
4943 int maxpps; /* maximum pps allowed */
4944 {
4945 struct timeval tv, delta;
4946 int rv;
4947
4948 GETKTIME(&tv);
4949
4950 delta.tv_sec = tv.tv_sec - lasttime->tv_sec;
4951 delta.tv_usec = tv.tv_usec - lasttime->tv_usec;
4952 if (delta.tv_usec < 0) {
4953 delta.tv_sec--;
4954 delta.tv_usec += 1000000;
4955 }
4956
4957 /*
4958 * check for 0,0 is so that the message will be seen at least once.
4959 * if more than one second have passed since the last update of
4960 * lasttime, reset the counter.
4961 *
4962 * we do increment *curpps even in *curpps < maxpps case, as some may
4963 * try to use *curpps for stat purposes as well.
4964 */
4965 if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
4966 delta.tv_sec >= 1) {
4967 *lasttime = tv;
4968 *curpps = 0;
4969 rv = 1;
4970 } else if (maxpps < 0)
4971 rv = 1;
4972 else if (*curpps < maxpps)
4973 rv = 1;
4974 else
4975 rv = 0;
4976 *curpps = *curpps + 1;
4977
4978 return (rv);
4979 }
4980 #endif
4981
4982
4983 /* ------------------------------------------------------------------------ */
4984 /* Function: fr_derefrule */
4985 /* Returns: int - 0 == rule freed up, else rule not freed */
4986 /* Parameters: fr(I) - pointer to filter rule */
4987 /* */
4988 /* Decrement the reference counter to a rule by one. If it reaches zero, */
4989 /* free it and any associated storage space being used by it. */
4990 /* ------------------------------------------------------------------------ */
fr_derefrule(frp,ifs)4991 int fr_derefrule(frp, ifs)
4992 frentry_t **frp;
4993 ipf_stack_t *ifs;
4994 {
4995 frentry_t *fr;
4996
4997 fr = *frp;
4998
4999 MUTEX_ENTER(&fr->fr_lock);
5000 fr->fr_ref--;
5001 if (fr->fr_ref == 0) {
5002 MUTEX_EXIT(&fr->fr_lock);
5003 MUTEX_DESTROY(&fr->fr_lock);
5004
5005 #ifdef IPFILTER_LOOKUP
5006 if (fr->fr_type == FR_T_IPF && fr->fr_satype == FRI_LOOKUP)
5007 ip_lookup_deref(fr->fr_srctype, fr->fr_srcptr, ifs);
5008 if (fr->fr_type == FR_T_IPF && fr->fr_datype == FRI_LOOKUP)
5009 ip_lookup_deref(fr->fr_dsttype, fr->fr_dstptr, ifs);
5010 #endif
5011
5012 if (fr->fr_dsize) {
5013 KFREES(fr->fr_data, fr->fr_dsize);
5014 }
5015 if ((fr->fr_flags & FR_COPIED) != 0) {
5016 KFREE(fr);
5017 return 0;
5018 }
5019 return 1;
5020 } else {
5021 MUTEX_EXIT(&fr->fr_lock);
5022 }
5023 *frp = NULL;
5024 return -1;
5025 }
5026
5027
5028 #ifdef IPFILTER_LOOKUP
5029 /* ------------------------------------------------------------------------ */
5030 /* Function: fr_grpmapinit */
5031 /* Returns: int - 0 == success, else ESRCH because table entry not found*/
5032 /* Parameters: fr(I) - pointer to rule to find hash table for */
5033 /* */
5034 /* Looks for group hash table fr_arg and stores a pointer to it in fr_ptr. */
5035 /* fr_ptr is later used by fr_srcgrpmap and fr_dstgrpmap. */
5036 /* ------------------------------------------------------------------------ */
fr_grpmapinit(fr,ifs)5037 static int fr_grpmapinit(fr, ifs)
5038 frentry_t *fr;
5039 ipf_stack_t *ifs;
5040 {
5041 char name[FR_GROUPLEN];
5042 iphtable_t *iph;
5043
5044 #if defined(SNPRINTF) && defined(_KERNEL)
5045 (void) SNPRINTF(name, sizeof(name), "%d", fr->fr_arg);
5046 #else
5047 (void) sprintf(name, "%d", fr->fr_arg);
5048 #endif
5049 iph = fr_findhtable(IPL_LOGIPF, name, ifs);
5050 if (iph == NULL)
5051 return ESRCH;
5052 if ((iph->iph_flags & FR_INOUT) != (fr->fr_flags & FR_INOUT))
5053 return ESRCH;
5054 fr->fr_ptr = iph;
5055 return 0;
5056 }
5057
5058
5059 /* ------------------------------------------------------------------------ */
5060 /* Function: fr_srcgrpmap */
5061 /* Returns: frentry_t * - pointer to "new last matching" rule or NULL */
5062 /* Parameters: fin(I) - pointer to packet information */
5063 /* passp(IO) - pointer to current/new filter decision (unused) */
5064 /* */
5065 /* Look for a rule group head in a hash table, using the source address as */
5066 /* the key, and descend into that group and continue matching rules against */
5067 /* the packet. */
5068 /* ------------------------------------------------------------------------ */
fr_srcgrpmap(fin,passp)5069 frentry_t *fr_srcgrpmap(fin, passp)
5070 fr_info_t *fin;
5071 u_32_t *passp;
5072 {
5073 frgroup_t *fg;
5074 void *rval;
5075 ipf_stack_t *ifs = fin->fin_ifs;
5076
5077 rval = fr_iphmfindgroup(fin->fin_fr->fr_ptr, fin->fin_v, &fin->fin_src, ifs);
5078 if (rval == NULL)
5079 return NULL;
5080
5081 fg = rval;
5082 fin->fin_fr = fg->fg_start;
5083 (void) fr_scanlist(fin, *passp);
5084 return fin->fin_fr;
5085 }
5086
5087
5088 /* ------------------------------------------------------------------------ */
5089 /* Function: fr_dstgrpmap */
5090 /* Returns: frentry_t * - pointer to "new last matching" rule or NULL */
5091 /* Parameters: fin(I) - pointer to packet information */
5092 /* passp(IO) - pointer to current/new filter decision (unused) */
5093 /* */
5094 /* Look for a rule group head in a hash table, using the destination */
5095 /* address as the key, and descend into that group and continue matching */
5096 /* rules against the packet. */
5097 /* ------------------------------------------------------------------------ */
fr_dstgrpmap(fin,passp)5098 frentry_t *fr_dstgrpmap(fin, passp)
5099 fr_info_t *fin;
5100 u_32_t *passp;
5101 {
5102 frgroup_t *fg;
5103 void *rval;
5104 ipf_stack_t *ifs = fin->fin_ifs;
5105
5106 rval = fr_iphmfindgroup(fin->fin_fr->fr_ptr, fin->fin_v, &fin->fin_dst, ifs);
5107 if (rval == NULL)
5108 return NULL;
5109
5110 fg = rval;
5111 fin->fin_fr = fg->fg_start;
5112 (void) fr_scanlist(fin, *passp);
5113 return fin->fin_fr;
5114 }
5115 #endif /* IPFILTER_LOOKUP */
5116
5117 /*
5118 * Queue functions
5119 * ===============
5120 * These functions manage objects on queues for efficient timeouts. There are
5121 * a number of system defined queues as well as user defined timeouts. It is
5122 * expected that a lock is held in the domain in which the queue belongs
5123 * (i.e. either state or NAT) when calling any of these functions that prevents
5124 * fr_freetimeoutqueue() from being called at the same time as any other.
5125 */
5126
5127
5128 /* ------------------------------------------------------------------------ */
5129 /* Function: fr_addtimeoutqueue */
5130 /* Returns: struct ifqtq * - NULL if malloc fails, else pointer to */
5131 /* timeout queue with given interval. */
5132 /* Parameters: parent(I) - pointer to pointer to parent node of this list */
5133 /* of interface queues. */
5134 /* seconds(I) - timeout value in seconds for this queue. */
5135 /* */
5136 /* This routine first looks for a timeout queue that matches the interval */
5137 /* being requested. If it finds one, increments the reference counter and */
5138 /* returns a pointer to it. If none are found, it allocates a new one and */
5139 /* inserts it at the top of the list. */
5140 /* */
5141 /* Locking. */
5142 /* It is assumed that the caller of this function has an appropriate lock */
5143 /* held (exclusively) in the domain that encompases 'parent'. */
5144 /* ------------------------------------------------------------------------ */
fr_addtimeoutqueue(parent,seconds,ifs)5145 ipftq_t *fr_addtimeoutqueue(parent, seconds, ifs)
5146 ipftq_t **parent;
5147 u_int seconds;
5148 ipf_stack_t *ifs;
5149 {
5150 ipftq_t *ifq;
5151 u_int period;
5152
5153 period = seconds * IPF_HZ_DIVIDE;
5154
5155 MUTEX_ENTER(&ifs->ifs_ipf_timeoutlock);
5156 for (ifq = *parent; ifq != NULL; ifq = ifq->ifq_next) {
5157 if (ifq->ifq_ttl == period) {
5158 /*
5159 * Reset the delete flag, if set, so the structure
5160 * gets reused rather than freed and reallocated.
5161 */
5162 MUTEX_ENTER(&ifq->ifq_lock);
5163 ifq->ifq_flags &= ~IFQF_DELETE;
5164 ifq->ifq_ref++;
5165 MUTEX_EXIT(&ifq->ifq_lock);
5166 MUTEX_EXIT(&ifs->ifs_ipf_timeoutlock);
5167
5168 return ifq;
5169 }
5170 }
5171
5172 KMALLOC(ifq, ipftq_t *);
5173 if (ifq != NULL) {
5174 ifq->ifq_ttl = period;
5175 ifq->ifq_head = NULL;
5176 ifq->ifq_tail = &ifq->ifq_head;
5177 ifq->ifq_next = *parent;
5178 ifq->ifq_pnext = parent;
5179 ifq->ifq_ref = 1;
5180 ifq->ifq_flags = IFQF_USER;
5181 *parent = ifq;
5182 ifs->ifs_fr_userifqs++;
5183 MUTEX_NUKE(&ifq->ifq_lock);
5184 MUTEX_INIT(&ifq->ifq_lock, "ipftq mutex");
5185 }
5186 MUTEX_EXIT(&ifs->ifs_ipf_timeoutlock);
5187 return ifq;
5188 }
5189
5190
5191 /* ------------------------------------------------------------------------ */
5192 /* Function: fr_deletetimeoutqueue */
5193 /* Returns: int - new reference count value of the timeout queue */
5194 /* Parameters: ifq(I) - timeout queue which is losing a reference. */
5195 /* Locks: ifq->ifq_lock */
5196 /* */
5197 /* This routine must be called when we're discarding a pointer to a timeout */
5198 /* queue object, taking care of the reference counter. */
5199 /* */
5200 /* Now that this just sets a DELETE flag, it requires the expire code to */
5201 /* check the list of user defined timeout queues and call the free function */
5202 /* below (currently commented out) to stop memory leaking. It is done this */
5203 /* way because the locking may not be sufficient to safely do a free when */
5204 /* this function is called. */
5205 /* ------------------------------------------------------------------------ */
fr_deletetimeoutqueue(ifq)5206 int fr_deletetimeoutqueue(ifq)
5207 ipftq_t *ifq;
5208 {
5209
5210 ifq->ifq_ref--;
5211 if ((ifq->ifq_ref == 0) && ((ifq->ifq_flags & IFQF_USER) != 0)) {
5212 ifq->ifq_flags |= IFQF_DELETE;
5213 }
5214
5215 return ifq->ifq_ref;
5216 }
5217
5218
5219 /* ------------------------------------------------------------------------ */
5220 /* Function: fr_freetimeoutqueue */
5221 /* Parameters: ifq(I) - timeout queue which is losing a reference. */
5222 /* Returns: Nil */
5223 /* */
5224 /* Locking: */
5225 /* It is assumed that the caller of this function has an appropriate lock */
5226 /* held (exclusively) in the domain that encompases the callers "domain". */
5227 /* The ifq_lock for this structure should not be held. */
5228 /* */
5229 /* Remove a user definde timeout queue from the list of queues it is in and */
5230 /* tidy up after this is done. */
5231 /* ------------------------------------------------------------------------ */
fr_freetimeoutqueue(ifq,ifs)5232 void fr_freetimeoutqueue(ifq, ifs)
5233 ipftq_t *ifq;
5234 ipf_stack_t *ifs;
5235 {
5236
5237
5238 if (((ifq->ifq_flags & IFQF_DELETE) == 0) || (ifq->ifq_ref != 0) ||
5239 ((ifq->ifq_flags & IFQF_USER) == 0)) {
5240 printf("fr_freetimeoutqueue(%lx) flags 0x%x ttl %d ref %d\n",
5241 (u_long)ifq, ifq->ifq_flags, ifq->ifq_ttl,
5242 ifq->ifq_ref);
5243 return;
5244 }
5245
5246 /*
5247 * Remove from its position in the list.
5248 */
5249 *ifq->ifq_pnext = ifq->ifq_next;
5250 if (ifq->ifq_next != NULL)
5251 ifq->ifq_next->ifq_pnext = ifq->ifq_pnext;
5252
5253 MUTEX_DESTROY(&ifq->ifq_lock);
5254 ifs->ifs_fr_userifqs--;
5255 KFREE(ifq);
5256 }
5257
5258
5259 /* ------------------------------------------------------------------------ */
5260 /* Function: fr_deletequeueentry */
5261 /* Returns: Nil */
5262 /* Parameters: tqe(I) - timeout queue entry to delete */
5263 /* ifq(I) - timeout queue to remove entry from */
5264 /* */
5265 /* Remove a tail queue entry from its queue and make it an orphan. */
5266 /* fr_deletetimeoutqueue is called to make sure the reference count on the */
5267 /* queue is correct. We can't, however, call fr_freetimeoutqueue because */
5268 /* the correct lock(s) may not be held that would make it safe to do so. */
5269 /* ------------------------------------------------------------------------ */
fr_deletequeueentry(tqe)5270 void fr_deletequeueentry(tqe)
5271 ipftqent_t *tqe;
5272 {
5273 ipftq_t *ifq;
5274
5275 ifq = tqe->tqe_ifq;
5276 if (ifq == NULL)
5277 return;
5278
5279 MUTEX_ENTER(&ifq->ifq_lock);
5280
5281 if (tqe->tqe_pnext != NULL) {
5282 *tqe->tqe_pnext = tqe->tqe_next;
5283 if (tqe->tqe_next != NULL)
5284 tqe->tqe_next->tqe_pnext = tqe->tqe_pnext;
5285 else /* we must be the tail anyway */
5286 ifq->ifq_tail = tqe->tqe_pnext;
5287
5288 tqe->tqe_pnext = NULL;
5289 tqe->tqe_ifq = NULL;
5290 }
5291
5292 (void) fr_deletetimeoutqueue(ifq);
5293
5294 MUTEX_EXIT(&ifq->ifq_lock);
5295 }
5296
5297
5298 /* ------------------------------------------------------------------------ */
5299 /* Function: fr_queuefront */
5300 /* Returns: Nil */
5301 /* Parameters: tqe(I) - pointer to timeout queue entry */
5302 /* */
5303 /* Move a queue entry to the front of the queue, if it isn't already there. */
5304 /* ------------------------------------------------------------------------ */
fr_queuefront(tqe)5305 void fr_queuefront(tqe)
5306 ipftqent_t *tqe;
5307 {
5308 ipftq_t *ifq;
5309
5310 ifq = tqe->tqe_ifq;
5311 if (ifq == NULL)
5312 return;
5313
5314 MUTEX_ENTER(&ifq->ifq_lock);
5315 if (ifq->ifq_head != tqe) {
5316 *tqe->tqe_pnext = tqe->tqe_next;
5317 if (tqe->tqe_next)
5318 tqe->tqe_next->tqe_pnext = tqe->tqe_pnext;
5319 else
5320 ifq->ifq_tail = tqe->tqe_pnext;
5321
5322 tqe->tqe_next = ifq->ifq_head;
5323 ifq->ifq_head->tqe_pnext = &tqe->tqe_next;
5324 ifq->ifq_head = tqe;
5325 tqe->tqe_pnext = &ifq->ifq_head;
5326 }
5327 MUTEX_EXIT(&ifq->ifq_lock);
5328 }
5329
5330
5331 /* ------------------------------------------------------------------------ */
5332 /* Function: fr_queueback */
5333 /* Returns: Nil */
5334 /* Parameters: tqe(I) - pointer to timeout queue entry */
5335 /* */
5336 /* Move a queue entry to the back of the queue, if it isn't already there. */
5337 /* ------------------------------------------------------------------------ */
fr_queueback(tqe,ifs)5338 void fr_queueback(tqe, ifs)
5339 ipftqent_t *tqe;
5340 ipf_stack_t *ifs;
5341 {
5342 ipftq_t *ifq;
5343
5344 ifq = tqe->tqe_ifq;
5345 if (ifq == NULL)
5346 return;
5347 tqe->tqe_die = ifs->ifs_fr_ticks + ifq->ifq_ttl;
5348
5349 MUTEX_ENTER(&ifq->ifq_lock);
5350 if (tqe->tqe_next == NULL) { /* at the end already ? */
5351 MUTEX_EXIT(&ifq->ifq_lock);
5352 return;
5353 }
5354
5355 /*
5356 * Remove from list
5357 */
5358 *tqe->tqe_pnext = tqe->tqe_next;
5359 tqe->tqe_next->tqe_pnext = tqe->tqe_pnext;
5360
5361 /*
5362 * Make it the last entry.
5363 */
5364 tqe->tqe_next = NULL;
5365 tqe->tqe_pnext = ifq->ifq_tail;
5366 *ifq->ifq_tail = tqe;
5367 ifq->ifq_tail = &tqe->tqe_next;
5368 MUTEX_EXIT(&ifq->ifq_lock);
5369 }
5370
5371
5372 /* ------------------------------------------------------------------------ */
5373 /* Function: fr_queueappend */
5374 /* Returns: Nil */
5375 /* Parameters: tqe(I) - pointer to timeout queue entry */
5376 /* ifq(I) - pointer to timeout queue */
5377 /* parent(I) - owing object pointer */
5378 /* */
5379 /* Add a new item to this queue and put it on the very end. */
5380 /* ------------------------------------------------------------------------ */
fr_queueappend(tqe,ifq,parent,ifs)5381 void fr_queueappend(tqe, ifq, parent, ifs)
5382 ipftqent_t *tqe;
5383 ipftq_t *ifq;
5384 void *parent;
5385 ipf_stack_t *ifs;
5386 {
5387
5388 MUTEX_ENTER(&ifq->ifq_lock);
5389 tqe->tqe_parent = parent;
5390 tqe->tqe_pnext = ifq->ifq_tail;
5391 *ifq->ifq_tail = tqe;
5392 ifq->ifq_tail = &tqe->tqe_next;
5393 tqe->tqe_next = NULL;
5394 tqe->tqe_ifq = ifq;
5395 tqe->tqe_die = ifs->ifs_fr_ticks + ifq->ifq_ttl;
5396 ifq->ifq_ref++;
5397 MUTEX_EXIT(&ifq->ifq_lock);
5398 }
5399
5400
5401 /* ------------------------------------------------------------------------ */
5402 /* Function: fr_movequeue */
5403 /* Returns: Nil */
5404 /* Parameters: tq(I) - pointer to timeout queue information */
5405 /* oifp(I) - old timeout queue entry was on */
5406 /* nifp(I) - new timeout queue to put entry on */
5407 /* ifs - ipf stack instance */
5408 /* */
5409 /* Move a queue entry from one timeout queue to another timeout queue. */
5410 /* If it notices that the current entry is already last and does not need */
5411 /* to move queue, the return. */
5412 /* ------------------------------------------------------------------------ */
fr_movequeue(tqe,oifq,nifq,ifs)5413 void fr_movequeue(tqe, oifq, nifq, ifs)
5414 ipftqent_t *tqe;
5415 ipftq_t *oifq, *nifq;
5416 ipf_stack_t *ifs;
5417 {
5418 /*
5419 * If the queue isn't changing, and the clock hasn't ticked
5420 * since the last update, the operation will be a no-op.
5421 */
5422 if (oifq == nifq && tqe->tqe_touched == ifs->ifs_fr_ticks)
5423 return;
5424
5425 /*
5426 * Grab the lock and update the timers.
5427 */
5428 MUTEX_ENTER(&oifq->ifq_lock);
5429 tqe->tqe_touched = ifs->ifs_fr_ticks;
5430 tqe->tqe_die = ifs->ifs_fr_ticks + nifq->ifq_ttl;
5431
5432 /*
5433 * The remainder of the operation can still be a no-op.
5434 *
5435 * If the queue isn't changing, check to see if
5436 * an update would be meaningless.
5437 */
5438 if (oifq == nifq) {
5439 if ((tqe->tqe_next == NULL) ||
5440 (tqe->tqe_next->tqe_die == tqe->tqe_die)) {
5441 MUTEX_EXIT(&oifq->ifq_lock);
5442 return;
5443 }
5444 }
5445
5446 /*
5447 * Remove from the old queue
5448 */
5449 *tqe->tqe_pnext = tqe->tqe_next;
5450 if (tqe->tqe_next)
5451 tqe->tqe_next->tqe_pnext = tqe->tqe_pnext;
5452 else
5453 oifq->ifq_tail = tqe->tqe_pnext;
5454 tqe->tqe_next = NULL;
5455
5456 /*
5457 * If we're moving from one queue to another, release the lock on the
5458 * old queue and get a lock on the new queue. For user defined queues,
5459 * if we're moving off it, call delete in case it can now be freed.
5460 */
5461 if (oifq != nifq) {
5462 tqe->tqe_ifq = NULL;
5463
5464 (void) fr_deletetimeoutqueue(oifq);
5465
5466 MUTEX_EXIT(&oifq->ifq_lock);
5467
5468 MUTEX_ENTER(&nifq->ifq_lock);
5469
5470 tqe->tqe_ifq = nifq;
5471 nifq->ifq_ref++;
5472 }
5473
5474 /*
5475 * Add to the bottom of the new queue
5476 */
5477 tqe->tqe_pnext = nifq->ifq_tail;
5478 *nifq->ifq_tail = tqe;
5479 nifq->ifq_tail = &tqe->tqe_next;
5480 MUTEX_EXIT(&nifq->ifq_lock);
5481 }
5482
5483
5484 /* ------------------------------------------------------------------------ */
5485 /* Function: fr_updateipid */
5486 /* Returns: int - 0 == success, -1 == error (packet should be droppped) */
5487 /* Parameters: fin(I) - pointer to packet information */
5488 /* */
5489 /* When we are doing NAT, change the IP of every packet to represent a */
5490 /* single sequence of packets coming from the host, hiding any host */
5491 /* specific sequencing that might otherwise be revealed. If the packet is */
5492 /* a fragment, then store the 'new' IPid in the fragment cache and look up */
5493 /* the fragment cache for non-leading fragments. If a non-leading fragment */
5494 /* has no match in the cache, return an error. */
5495 /* ------------------------------------------------------------------------ */
fr_updateipid(fin)5496 static INLINE int fr_updateipid(fin)
5497 fr_info_t *fin;
5498 {
5499 u_short id, ido, sums;
5500 u_32_t sumd, sum;
5501 ip_t *ip;
5502
5503 if (fin->fin_off != 0) {
5504 sum = fr_ipid_knownfrag(fin);
5505 if (sum == 0xffffffff)
5506 return -1;
5507 sum &= 0xffff;
5508 id = (u_short)sum;
5509 } else {
5510 id = fr_nextipid(fin);
5511 if (fin->fin_off == 0 && (fin->fin_flx & FI_FRAG) != 0)
5512 (void) fr_ipid_newfrag(fin, (u_32_t)id);
5513 }
5514
5515 ip = fin->fin_ip;
5516 ido = ntohs(ip->ip_id);
5517 if (id == ido)
5518 return 0;
5519 ip->ip_id = htons(id);
5520 CALC_SUMD(ido, id, sumd); /* DESTRUCTIVE MACRO! id,ido change */
5521 sum = (~ntohs(ip->ip_sum)) & 0xffff;
5522 sum += sumd;
5523 sum = (sum >> 16) + (sum & 0xffff);
5524 sum = (sum >> 16) + (sum & 0xffff);
5525 sums = ~(u_short)sum;
5526 ip->ip_sum = htons(sums);
5527 return 0;
5528 }
5529
5530
5531 #ifdef NEED_FRGETIFNAME
5532 /* ------------------------------------------------------------------------ */
5533 /* Function: fr_getifname */
5534 /* Returns: char * - pointer to interface name */
5535 /* Parameters: ifp(I) - pointer to network interface */
5536 /* buffer(O) - pointer to where to store interface name */
5537 /* */
5538 /* Constructs an interface name in the buffer passed. The buffer passed is */
5539 /* expected to be at least LIFNAMSIZ in bytes big. If buffer is passed in */
5540 /* as a NULL pointer then return a pointer to a static array. */
5541 /* ------------------------------------------------------------------------ */
fr_getifname(ifp,buffer)5542 char *fr_getifname(ifp, buffer)
5543 struct ifnet *ifp;
5544 char *buffer;
5545 {
5546 static char namebuf[LIFNAMSIZ];
5547 # if defined(MENTAT) || defined(__FreeBSD__) || defined(__osf__) || \
5548 defined(__sgi) || defined(linux) || defined(_AIX51) || \
5549 (defined(sun) && !defined(__SVR4) && !defined(__svr4__))
5550 int unit, space;
5551 char temp[20];
5552 char *s;
5553 # endif
5554
5555 ASSERT(buffer != NULL);
5556 #ifdef notdef
5557 if (buffer == NULL)
5558 buffer = namebuf;
5559 #endif
5560 (void) strncpy(buffer, ifp->if_name, LIFNAMSIZ);
5561 buffer[LIFNAMSIZ - 1] = '\0';
5562 # if defined(MENTAT) || defined(__FreeBSD__) || defined(__osf__) || \
5563 defined(__sgi) || defined(_AIX51) || \
5564 (defined(sun) && !defined(__SVR4) && !defined(__svr4__))
5565 for (s = buffer; *s; s++)
5566 ;
5567 unit = ifp->if_unit;
5568 space = LIFNAMSIZ - (s - buffer);
5569 if (space > 0) {
5570 # if defined(SNPRINTF) && defined(_KERNEL)
5571 (void) SNPRINTF(temp, sizeof(temp), "%d", unit);
5572 # else
5573 (void) sprintf(temp, "%d", unit);
5574 # endif
5575 (void) strncpy(s, temp, space);
5576 }
5577 # endif
5578 return buffer;
5579 }
5580 #endif
5581
5582
5583 /* ------------------------------------------------------------------------ */
5584 /* Function: fr_ioctlswitch */
5585 /* Returns: int - -1 continue processing, else ioctl return value */
5586 /* Parameters: unit(I) - device unit opened */
5587 /* data(I) - pointer to ioctl data */
5588 /* cmd(I) - ioctl command */
5589 /* mode(I) - mode value */
5590 /* */
5591 /* Based on the value of unit, call the appropriate ioctl handler or return */
5592 /* EIO if ipfilter is not running. Also checks if write perms are req'd */
5593 /* for the device in order to execute the ioctl. */
5594 /* ------------------------------------------------------------------------ */
fr_ioctlswitch(unit,data,cmd,mode,uid,ctx,ifs)5595 INLINE int fr_ioctlswitch(unit, data, cmd, mode, uid, ctx, ifs)
5596 int unit, mode, uid;
5597 ioctlcmd_t cmd;
5598 void *data, *ctx;
5599 ipf_stack_t *ifs;
5600 {
5601 int error = 0;
5602
5603 switch (unit)
5604 {
5605 case IPL_LOGIPF :
5606 error = -1;
5607 break;
5608 case IPL_LOGNAT :
5609 if (ifs->ifs_fr_running > 0)
5610 error = fr_nat_ioctl(data, cmd, mode, uid, ctx, ifs);
5611 else
5612 error = EIO;
5613 break;
5614 case IPL_LOGSTATE :
5615 if (ifs->ifs_fr_running > 0)
5616 error = fr_state_ioctl(data, cmd, mode, uid, ctx, ifs);
5617 else
5618 error = EIO;
5619 break;
5620 case IPL_LOGAUTH :
5621 if (ifs->ifs_fr_running > 0) {
5622 if ((cmd == (ioctlcmd_t)SIOCADAFR) ||
5623 (cmd == (ioctlcmd_t)SIOCRMAFR)) {
5624 if (!(mode & FWRITE)) {
5625 error = EPERM;
5626 } else {
5627 error = frrequest(unit, cmd, data,
5628 ifs->ifs_fr_active, 1, ifs);
5629 }
5630 } else {
5631 error = fr_auth_ioctl(data, cmd, mode, uid, ctx, ifs);
5632 }
5633 } else
5634 error = EIO;
5635 break;
5636 case IPL_LOGSYNC :
5637 #ifdef IPFILTER_SYNC
5638 if (ifs->ifs_fr_running > 0)
5639 error = fr_sync_ioctl(data, cmd, mode, ifs);
5640 else
5641 #endif
5642 error = EIO;
5643 break;
5644 case IPL_LOGSCAN :
5645 #ifdef IPFILTER_SCAN
5646 if (ifs->ifs_fr_running > 0)
5647 error = fr_scan_ioctl(data, cmd, mode, ifs);
5648 else
5649 #endif
5650 error = EIO;
5651 break;
5652 case IPL_LOGLOOKUP :
5653 #ifdef IPFILTER_LOOKUP
5654 if (ifs->ifs_fr_running > 0)
5655 error = ip_lookup_ioctl(data, cmd, mode, uid, ctx, ifs);
5656 else
5657 #endif
5658 error = EIO;
5659 break;
5660 default :
5661 error = EIO;
5662 break;
5663 }
5664
5665 return error;
5666 }
5667
5668
5669 /*
5670 * This array defines the expected size of objects coming into the kernel
5671 * for the various recognised object types.
5672 */
5673 #define NUM_OBJ_TYPES 19
5674
5675 static int fr_objbytes[NUM_OBJ_TYPES][2] = {
5676 { 1, sizeof(struct frentry) }, /* frentry */
5677 { 0, sizeof(struct friostat) },
5678 { 0, sizeof(struct fr_info) },
5679 { 0, sizeof(struct fr_authstat) },
5680 { 0, sizeof(struct ipfrstat) },
5681 { 0, sizeof(struct ipnat) },
5682 { 0, sizeof(struct natstat) },
5683 { 0, sizeof(struct ipstate_save) },
5684 { 1, sizeof(struct nat_save) }, /* nat_save */
5685 { 0, sizeof(struct natlookup) },
5686 { 1, sizeof(struct ipstate) }, /* ipstate */
5687 { 0, sizeof(struct ips_stat) },
5688 { 0, sizeof(struct frauth) },
5689 { 0, sizeof(struct ipftune) },
5690 { 0, sizeof(struct nat) }, /* nat_t */
5691 { 0, sizeof(struct ipfruleiter) },
5692 { 0, sizeof(struct ipfgeniter) },
5693 { 0, sizeof(struct ipftable) },
5694 { 0, sizeof(struct ipflookupiter) }
5695 };
5696
5697
5698 /* ------------------------------------------------------------------------ */
5699 /* Function: fr_inobj */
5700 /* Returns: int - 0 = success, else failure */
5701 /* Parameters: data(I) - pointer to ioctl data */
5702 /* ptr(I) - pointer to store real data in */
5703 /* type(I) - type of structure being moved */
5704 /* */
5705 /* Copy in the contents of what the ipfobj_t points to. In future, we */
5706 /* add things to check for version numbers, sizes, etc, to make it backward */
5707 /* compatible at the ABI for user land. */
5708 /* ------------------------------------------------------------------------ */
fr_inobj(data,ptr,type)5709 int fr_inobj(data, ptr, type)
5710 void *data;
5711 void *ptr;
5712 int type;
5713 {
5714 ipfobj_t obj;
5715 int error = 0;
5716
5717 if ((type < 0) || (type > NUM_OBJ_TYPES-1))
5718 return EINVAL;
5719
5720 error = BCOPYIN((caddr_t)data, (caddr_t)&obj, sizeof(obj));
5721 if (error != 0)
5722 return EFAULT;
5723
5724 if (obj.ipfo_type != type)
5725 return EINVAL;
5726
5727 #ifndef IPFILTER_COMPAT
5728 if ((fr_objbytes[type][0] & 1) != 0) {
5729 if (obj.ipfo_size < fr_objbytes[type][1])
5730 return EINVAL;
5731 } else if (obj.ipfo_size != fr_objbytes[type][1])
5732 return EINVAL;
5733 #else
5734 if (obj.ipfo_rev != IPFILTER_VERSION) {
5735 error = fr_incomptrans(&obj, ptr);
5736 return error;
5737 }
5738
5739 if ((fr_objbytes[type][0] & 1) != 0 &&
5740 obj.ipfo_size < fr_objbytes[type][1] ||
5741 obj.ipfo_size != fr_objbytes[type][1])
5742 return EINVAL;
5743 #endif
5744
5745 if ((fr_objbytes[type][0] & 1) != 0) {
5746 error = COPYIN((caddr_t)obj.ipfo_ptr, (caddr_t)ptr,
5747 fr_objbytes[type][1]);
5748 } else {
5749 error = COPYIN((caddr_t)obj.ipfo_ptr, (caddr_t)ptr,
5750 obj.ipfo_size);
5751 }
5752 return error;
5753 }
5754
5755
5756 /* ------------------------------------------------------------------------ */
5757 /* Function: fr_inobjsz */
5758 /* Returns: int - 0 = success, else failure */
5759 /* Parameters: data(I) - pointer to ioctl data */
5760 /* ptr(I) - pointer to store real data in */
5761 /* type(I) - type of structure being moved */
5762 /* sz(I) - size of data to copy */
5763 /* */
5764 /* As per fr_inobj, except the size of the object to copy in is passed in */
5765 /* but it must not be smaller than the size defined for the type and the */
5766 /* type must allow for varied sized objects. The extra requirement here is */
5767 /* that sz must match the size of the object being passed in - this is not */
5768 /* not possible nor required in fr_inobj(). */
5769 /* ------------------------------------------------------------------------ */
fr_inobjsz(data,ptr,type,sz)5770 int fr_inobjsz(data, ptr, type, sz)
5771 void *data;
5772 void *ptr;
5773 int type, sz;
5774 {
5775 ipfobj_t obj;
5776 int error;
5777
5778 if ((type < 0) || (type > NUM_OBJ_TYPES-1))
5779 return EINVAL;
5780 if (((fr_objbytes[type][0] & 1) == 0) || (sz < fr_objbytes[type][1]))
5781 return EINVAL;
5782
5783 error = BCOPYIN((caddr_t)data, (caddr_t)&obj, sizeof(obj));
5784 if (error != 0)
5785 return EFAULT;
5786
5787 if (obj.ipfo_type != type)
5788 return EINVAL;
5789
5790 #ifndef IPFILTER_COMPAT
5791 if (obj.ipfo_size != sz)
5792 return EINVAL;
5793 #else
5794 if (obj.ipfo_rev != IPFILTER_VERSION)
5795 /*XXX compatibility hook here */
5796 /*EMPTY*/;
5797 if (obj.ipfo_size != sz)
5798 /* XXX compatibility hook here */
5799 return EINVAL;
5800 #endif
5801
5802 error = COPYIN((caddr_t)obj.ipfo_ptr, (caddr_t)ptr, sz);
5803 return error;
5804 }
5805
5806
5807 /* ------------------------------------------------------------------------ */
5808 /* Function: fr_outobjsz */
5809 /* Returns: int - 0 = success, else failure */
5810 /* Parameters: data(I) - pointer to ioctl data */
5811 /* ptr(I) - pointer to store real data in */
5812 /* type(I) - type of structure being moved */
5813 /* sz(I) - size of data to copy */
5814 /* */
5815 /* As per fr_outobj, except the size of the object to copy out is passed in */
5816 /* but it must not be smaller than the size defined for the type and the */
5817 /* type must allow for varied sized objects. The extra requirement here is */
5818 /* that sz must match the size of the object being passed in - this is not */
5819 /* not possible nor required in fr_outobj(). */
5820 /* ------------------------------------------------------------------------ */
fr_outobjsz(data,ptr,type,sz)5821 int fr_outobjsz(data, ptr, type, sz)
5822 void *data;
5823 void *ptr;
5824 int type, sz;
5825 {
5826 ipfobj_t obj;
5827 int error;
5828
5829 if ((type < 0) || (type > NUM_OBJ_TYPES-1) ||
5830 ((fr_objbytes[type][0] & 1) == 0) ||
5831 (sz < fr_objbytes[type][1]))
5832 return EINVAL;
5833
5834 error = BCOPYIN((caddr_t)data, (caddr_t)&obj, sizeof(obj));
5835 if (error != 0)
5836 return EFAULT;
5837
5838 if (obj.ipfo_type != type)
5839 return EINVAL;
5840
5841 #ifndef IPFILTER_COMPAT
5842 if (obj.ipfo_size != sz)
5843 return EINVAL;
5844 #else
5845 if (obj.ipfo_rev != IPFILTER_VERSION)
5846 /* XXX compatibility hook here */
5847 /*EMPTY*/;
5848 if (obj.ipfo_size != sz)
5849 /* XXX compatibility hook here */
5850 return EINVAL;
5851 #endif
5852
5853 error = COPYOUT((caddr_t)ptr, (caddr_t)obj.ipfo_ptr, sz);
5854 return error;
5855 }
5856
5857
5858 /* ------------------------------------------------------------------------ */
5859 /* Function: fr_outobj */
5860 /* Returns: int - 0 = success, else failure */
5861 /* Parameters: data(I) - pointer to ioctl data */
5862 /* ptr(I) - pointer to store real data in */
5863 /* type(I) - type of structure being moved */
5864 /* */
5865 /* Copy out the contents of what ptr is to where ipfobj points to. In */
5866 /* future, we add things to check for version numbers, sizes, etc, to make */
5867 /* it backward compatible at the ABI for user land. */
5868 /* ------------------------------------------------------------------------ */
fr_outobj(data,ptr,type)5869 int fr_outobj(data, ptr, type)
5870 void *data;
5871 void *ptr;
5872 int type;
5873 {
5874 ipfobj_t obj;
5875 int error;
5876
5877 if ((type < 0) || (type > NUM_OBJ_TYPES-1))
5878 return EINVAL;
5879
5880 error = BCOPYIN((caddr_t)data, (caddr_t)&obj, sizeof(obj));
5881 if (error != 0)
5882 return EFAULT;
5883
5884 if (obj.ipfo_type != type)
5885 return EINVAL;
5886
5887 #ifndef IPFILTER_COMPAT
5888 if ((fr_objbytes[type][0] & 1) != 0) {
5889 if (obj.ipfo_size < fr_objbytes[type][1])
5890 return EINVAL;
5891 } else if (obj.ipfo_size != fr_objbytes[type][1])
5892 return EINVAL;
5893 #else
5894 if (obj.ipfo_rev != IPFILTER_VERSION) {
5895 error = fr_outcomptrans(&obj, ptr);
5896 return error;
5897 }
5898
5899 if ((fr_objbytes[type][0] & 1) != 0 &&
5900 obj.ipfo_size < fr_objbytes[type][1] ||
5901 obj.ipfo_size != fr_objbytes[type][1])
5902 return EINVAL;
5903 #endif
5904
5905 error = COPYOUT((caddr_t)ptr, (caddr_t)obj.ipfo_ptr, obj.ipfo_size);
5906 return error;
5907 }
5908
5909
5910 /* ------------------------------------------------------------------------ */
5911 /* Function: fr_checkl4sum */
5912 /* Returns: int - 0 = good, -1 = bad, 1 = cannot check */
5913 /* Parameters: fin(I) - pointer to packet information */
5914 /* */
5915 /* If possible, calculate the layer 4 checksum for the packet. If this is */
5916 /* not possible, return without indicating a failure or success but in a */
5917 /* way that is ditinguishable. */
5918 /* ------------------------------------------------------------------------ */
fr_checkl4sum(fin)5919 int fr_checkl4sum(fin)
5920 fr_info_t *fin;
5921 {
5922 u_short sum, hdrsum, *csump;
5923 udphdr_t *udp;
5924 int dosum;
5925 ipf_stack_t *ifs = fin->fin_ifs;
5926
5927 #if SOLARIS && defined(_KERNEL) && (SOLARIS2 >= 6)
5928 net_handle_t net_data_p;
5929 if (fin->fin_v == 4)
5930 net_data_p = ifs->ifs_ipf_ipv4;
5931 else
5932 net_data_p = ifs->ifs_ipf_ipv6;
5933 #endif
5934
5935 if ((fin->fin_flx & FI_NOCKSUM) != 0)
5936 return 0;
5937
5938 /*
5939 * If the TCP packet isn't a fragment, isn't too short and otherwise
5940 * isn't already considered "bad", then validate the checksum. If
5941 * this check fails then considered the packet to be "bad".
5942 */
5943 if ((fin->fin_flx & (FI_FRAG|FI_SHORT|FI_BAD)) != 0)
5944 return 1;
5945
5946 csump = NULL;
5947 hdrsum = 0;
5948 dosum = 0;
5949 sum = 0;
5950
5951 #if SOLARIS && defined(_KERNEL) && (SOLARIS2 >= 6)
5952 ASSERT(fin->fin_m != NULL);
5953 if (NET_IS_HCK_L4_FULL(net_data_p, fin->fin_m) ||
5954 NET_IS_HCK_L4_PART(net_data_p, fin->fin_m)) {
5955 hdrsum = 0;
5956 sum = 0;
5957 } else {
5958 #endif
5959 switch (fin->fin_p)
5960 {
5961 case IPPROTO_TCP :
5962 csump = &((tcphdr_t *)fin->fin_dp)->th_sum;
5963 dosum = 1;
5964 break;
5965
5966 case IPPROTO_UDP :
5967 udp = fin->fin_dp;
5968 if (udp->uh_sum != 0) {
5969 csump = &udp->uh_sum;
5970 dosum = 1;
5971 }
5972 break;
5973
5974 case IPPROTO_ICMP :
5975 csump = &((struct icmp *)fin->fin_dp)->icmp_cksum;
5976 dosum = 1;
5977 break;
5978
5979 default :
5980 return 1;
5981 /*NOTREACHED*/
5982 }
5983
5984 if (csump != NULL)
5985 hdrsum = *csump;
5986
5987 if (dosum)
5988 sum = fr_cksum(fin->fin_m, fin->fin_ip,
5989 fin->fin_p, fin->fin_dp);
5990 #if SOLARIS && defined(_KERNEL) && (SOLARIS2 >= 6)
5991 }
5992 #endif
5993 #if !defined(_KERNEL)
5994 if (sum == hdrsum) {
5995 FR_DEBUG(("checkl4sum: %hx == %hx\n", sum, hdrsum));
5996 } else {
5997 FR_DEBUG(("checkl4sum: %hx != %hx\n", sum, hdrsum));
5998 }
5999 #endif
6000 if (hdrsum == sum)
6001 return 0;
6002 return -1;
6003 }
6004
6005
6006 /* ------------------------------------------------------------------------ */
6007 /* Function: fr_ifpfillv4addr */
6008 /* Returns: int - 0 = address update, -1 = address not updated */
6009 /* Parameters: atype(I) - type of network address update to perform */
6010 /* sin(I) - pointer to source of address information */
6011 /* mask(I) - pointer to source of netmask information */
6012 /* inp(I) - pointer to destination address store */
6013 /* inpmask(I) - pointer to destination netmask store */
6014 /* */
6015 /* Given a type of network address update (atype) to perform, copy */
6016 /* information from sin/mask into inp/inpmask. If ipnmask is NULL then no */
6017 /* netmask update is performed unless FRI_NETMASKED is passed as atype, in */
6018 /* which case the operation fails. For all values of atype other than */
6019 /* FRI_NETMASKED, if inpmask is non-NULL then the mask is set to an all 1s */
6020 /* value. */
6021 /* ------------------------------------------------------------------------ */
fr_ifpfillv4addr(atype,sin,mask,inp,inpmask)6022 int fr_ifpfillv4addr(atype, sin, mask, inp, inpmask)
6023 int atype;
6024 struct sockaddr_in *sin, *mask;
6025 struct in_addr *inp, *inpmask;
6026 {
6027 if (inpmask != NULL && atype != FRI_NETMASKED)
6028 inpmask->s_addr = 0xffffffff;
6029
6030 if (atype == FRI_NETWORK || atype == FRI_NETMASKED) {
6031 if (atype == FRI_NETMASKED) {
6032 if (inpmask == NULL)
6033 return -1;
6034 inpmask->s_addr = mask->sin_addr.s_addr;
6035 }
6036 inp->s_addr = sin->sin_addr.s_addr & mask->sin_addr.s_addr;
6037 } else {
6038 inp->s_addr = sin->sin_addr.s_addr;
6039 }
6040 return 0;
6041 }
6042
6043
6044 #ifdef USE_INET6
6045 /* ------------------------------------------------------------------------ */
6046 /* Function: fr_ifpfillv6addr */
6047 /* Returns: int - 0 = address update, -1 = address not updated */
6048 /* Parameters: atype(I) - type of network address update to perform */
6049 /* sin(I) - pointer to source of address information */
6050 /* mask(I) - pointer to source of netmask information */
6051 /* inp(I) - pointer to destination address store */
6052 /* inpmask(I) - pointer to destination netmask store */
6053 /* */
6054 /* Given a type of network address update (atype) to perform, copy */
6055 /* information from sin/mask into inp/inpmask. If ipnmask is NULL then no */
6056 /* netmask update is performed unless FRI_NETMASKED is passed as atype, in */
6057 /* which case the operation fails. For all values of atype other than */
6058 /* FRI_NETMASKED, if inpmask is non-NULL then the mask is set to an all 1s */
6059 /* value. */
6060 /* ------------------------------------------------------------------------ */
fr_ifpfillv6addr(atype,sin,mask,inp,inpmask)6061 int fr_ifpfillv6addr(atype, sin, mask, inp, inpmask)
6062 int atype;
6063 struct sockaddr_in6 *sin, *mask;
6064 struct in_addr *inp, *inpmask;
6065 {
6066 i6addr_t *src, *dst, *and, *dmask;
6067
6068 src = (i6addr_t *)&sin->sin6_addr;
6069 and = (i6addr_t *)&mask->sin6_addr;
6070 dst = (i6addr_t *)inp;
6071 dmask = (i6addr_t *)inpmask;
6072
6073 if (inpmask != NULL && atype != FRI_NETMASKED) {
6074 dmask->i6[0] = 0xffffffff;
6075 dmask->i6[1] = 0xffffffff;
6076 dmask->i6[2] = 0xffffffff;
6077 dmask->i6[3] = 0xffffffff;
6078 }
6079
6080 if (atype == FRI_NETWORK || atype == FRI_NETMASKED) {
6081 if (atype == FRI_NETMASKED) {
6082 if (inpmask == NULL)
6083 return -1;
6084 dmask->i6[0] = and->i6[0];
6085 dmask->i6[1] = and->i6[1];
6086 dmask->i6[2] = and->i6[2];
6087 dmask->i6[3] = and->i6[3];
6088 }
6089
6090 dst->i6[0] = src->i6[0] & and->i6[0];
6091 dst->i6[1] = src->i6[1] & and->i6[1];
6092 dst->i6[2] = src->i6[2] & and->i6[2];
6093 dst->i6[3] = src->i6[3] & and->i6[3];
6094 } else {
6095 dst->i6[0] = src->i6[0];
6096 dst->i6[1] = src->i6[1];
6097 dst->i6[2] = src->i6[2];
6098 dst->i6[3] = src->i6[3];
6099 }
6100 return 0;
6101 }
6102 #endif
6103
6104
6105 /* ------------------------------------------------------------------------ */
6106 /* Function: fr_matchtag */
6107 /* Returns: 0 == mismatch, 1 == match. */
6108 /* Parameters: tag1(I) - pointer to first tag to compare */
6109 /* tag2(I) - pointer to second tag to compare */
6110 /* */
6111 /* Returns true (non-zero) or false(0) if the two tag structures can be */
6112 /* considered to be a match or not match, respectively. The tag is 16 */
6113 /* bytes long (16 characters) but that is overlayed with 4 32bit ints so */
6114 /* compare the ints instead, for speed. tag1 is the master of the */
6115 /* comparison. This function should only be called with both tag1 and tag2 */
6116 /* as non-NULL pointers. */
6117 /* ------------------------------------------------------------------------ */
fr_matchtag(tag1,tag2)6118 int fr_matchtag(tag1, tag2)
6119 ipftag_t *tag1, *tag2;
6120 {
6121 if (tag1 == tag2)
6122 return 1;
6123
6124 if ((tag1->ipt_num[0] == 0) && (tag2->ipt_num[0] == 0))
6125 return 1;
6126
6127 if ((tag1->ipt_num[0] == tag2->ipt_num[0]) &&
6128 (tag1->ipt_num[1] == tag2->ipt_num[1]) &&
6129 (tag1->ipt_num[2] == tag2->ipt_num[2]) &&
6130 (tag1->ipt_num[3] == tag2->ipt_num[3]))
6131 return 1;
6132 return 0;
6133 }
6134
6135
6136 /* ------------------------------------------------------------------------ */
6137 /* Function: fr_coalesce */
6138 /* Returns: 1 == success, -1 == failure, 0 == no change */
6139 /* Parameters: fin(I) - pointer to packet information */
6140 /* */
6141 /* Attempt to get all of the packet data into a single, contiguous buffer. */
6142 /* If this call returns a failure then the buffers have also been freed. */
6143 /* ------------------------------------------------------------------------ */
fr_coalesce(fin)6144 int fr_coalesce(fin)
6145 fr_info_t *fin;
6146 {
6147 ipf_stack_t *ifs = fin->fin_ifs;
6148 if ((fin->fin_flx & FI_COALESCE) != 0)
6149 return 1;
6150
6151 /*
6152 * If the mbuf pointers indicate that there is no mbuf to work with,
6153 * return but do not indicate success or failure.
6154 */
6155 if (fin->fin_m == NULL || fin->fin_mp == NULL)
6156 return 0;
6157
6158 #if defined(_KERNEL)
6159 if (fr_pullup(fin->fin_m, fin, fin->fin_plen) == NULL) {
6160 IPF_BUMP(ifs->ifs_fr_badcoalesces[fin->fin_out]);
6161 # ifdef MENTAT
6162 FREE_MB_T(*fin->fin_mp);
6163 # endif
6164 *fin->fin_mp = NULL;
6165 fin->fin_m = NULL;
6166 return -1;
6167 }
6168 #else
6169 fin = fin; /* LINT */
6170 #endif
6171 return 1;
6172 }
6173
6174
6175 /*
6176 * The following table lists all of the tunable variables that can be
6177 * accessed via SIOCIPFGET/SIOCIPFSET/SIOCIPFGETNEXT. The format of each row
6178 * in the table below is as follows:
6179 *
6180 * pointer to value, name of value, minimum, maximum, size of the value's
6181 * container, value attribute flags
6182 *
6183 * For convienience, IPFT_RDONLY means the value is read-only, IPFT_WRDISABLED
6184 * means the value can only be written to when IPFilter is loaded but disabled.
6185 * The obvious implication is if neither of these are set then the value can be
6186 * changed at any time without harm.
6187 */
6188 ipftuneable_t lcl_ipf_tuneables[] = {
6189 /* filtering */
6190 { { NULL }, "fr_flags", 0, 0xffffffff,
6191 0, 0 },
6192 { { NULL }, "fr_active", 0, 0,
6193 0, IPFT_RDONLY },
6194 { { NULL }, "fr_control_forwarding", 0, 1,
6195 0, 0 },
6196 { { NULL }, "fr_update_ipid", 0, 1,
6197 0, 0 },
6198 { { NULL }, "fr_chksrc", 0, 1,
6199 0, 0 },
6200 { { NULL }, "fr_minttl", 0, 1,
6201 0, 0 },
6202 { { NULL }, "fr_icmpminfragmtu", 0, 1,
6203 0, 0 },
6204 { { NULL }, "fr_pass", 0, 0xffffffff,
6205 0, 0 },
6206 #if SOLARIS2 >= 10
6207 { { NULL }, "ipf_loopback", 0, 1,
6208 0, IPFT_WRDISABLED },
6209 #endif
6210 /* state */
6211 { { NULL }, "fr_tcpidletimeout", 1, 0x7fffffff,
6212 0, IPFT_WRDISABLED },
6213 { { NULL }, "fr_tcpclosewait", 1, 0x7fffffff,
6214 0, IPFT_WRDISABLED },
6215 { { NULL }, "fr_tcplastack", 1, 0x7fffffff,
6216 0, IPFT_WRDISABLED },
6217 { { NULL }, "fr_tcptimeout", 1, 0x7fffffff,
6218 0, IPFT_WRDISABLED },
6219 { { NULL }, "fr_tcpclosed", 1, 0x7fffffff,
6220 0, IPFT_WRDISABLED },
6221 { { NULL }, "fr_tcphalfclosed", 1, 0x7fffffff,
6222 0, IPFT_WRDISABLED },
6223 { { NULL }, "fr_udptimeout", 1, 0x7fffffff,
6224 0, IPFT_WRDISABLED },
6225 { { NULL }, "fr_udpacktimeout", 1, 0x7fffffff,
6226 0, IPFT_WRDISABLED },
6227 { { NULL }, "fr_icmptimeout", 1, 0x7fffffff,
6228 0, IPFT_WRDISABLED },
6229 { { NULL }, "fr_icmpacktimeout", 1, 0x7fffffff,
6230 0, IPFT_WRDISABLED },
6231 { { NULL }, "fr_iptimeout", 1, 0x7fffffff,
6232 0, IPFT_WRDISABLED },
6233 { { NULL }, "fr_statemax", 1, 0x7fffffff,
6234 0, 0 },
6235 { { NULL }, "fr_statesize", 1, 0x7fffffff,
6236 0, IPFT_WRDISABLED },
6237 { { NULL }, "fr_state_lock", 0, 1,
6238 0, IPFT_RDONLY },
6239 { { NULL }, "fr_state_maxbucket", 1, 0x7fffffff,
6240 0, IPFT_WRDISABLED },
6241 { { NULL }, "fr_state_maxbucket_reset", 0, 1,
6242 0, IPFT_WRDISABLED },
6243 { { NULL }, "ipstate_logging", 0, 1,
6244 0, 0 },
6245 { { NULL }, "state_flush_level_hi", 1, 100,
6246 0, 0 },
6247 { { NULL }, "state_flush_level_lo", 1, 100,
6248 0, 0 },
6249 /* nat */
6250 { { NULL }, "fr_nat_lock", 0, 1,
6251 0, IPFT_RDONLY },
6252 { { NULL }, "ipf_nattable_sz", 1, 0x7fffffff,
6253 0, IPFT_WRDISABLED },
6254 { { NULL }, "ipf_nattable_max", 1, 0x7fffffff,
6255 0, 0 },
6256 { { NULL }, "ipf_natrules_sz", 1, 0x7fffffff,
6257 0, IPFT_WRDISABLED },
6258 { { NULL }, "ipf_rdrrules_sz", 1, 0x7fffffff,
6259 0, IPFT_WRDISABLED },
6260 { { NULL }, "ipf_hostmap_sz", 1, 0x7fffffff,
6261 0, IPFT_WRDISABLED },
6262 { { NULL }, "fr_nat_maxbucket", 1, 0x7fffffff,
6263 0, IPFT_WRDISABLED },
6264 { { NULL }, "fr_nat_maxbucket_reset", 0, 1,
6265 0, IPFT_WRDISABLED },
6266 { { NULL }, "nat_logging", 0, 1,
6267 0, 0 },
6268 { { NULL }, "fr_defnatage", 1, 0x7fffffff,
6269 0, IPFT_WRDISABLED },
6270 { { NULL }, "fr_defnatipage", 1, 0x7fffffff,
6271 0, IPFT_WRDISABLED },
6272 { { NULL }, "fr_defnaticmpage", 1, 0x7fffffff,
6273 0, IPFT_WRDISABLED },
6274 { { NULL }, "nat_flush_level_hi", 1, 100,
6275 0, 0 },
6276 { { NULL }, "nat_flush_level_lo", 1, 100,
6277 0, 0 },
6278 /* frag */
6279 { { NULL }, "ipfr_size", 1, 0x7fffffff,
6280 0, IPFT_WRDISABLED },
6281 { { NULL }, "fr_ipfrttl", 1, 0x7fffffff,
6282 0, IPFT_WRDISABLED },
6283 #ifdef IPFILTER_LOG
6284 /* log */
6285 { { NULL }, "ipl_suppress", 0, 1,
6286 0, 0 },
6287 { { NULL }, "ipl_buffer_sz", 0, 0,
6288 0, IPFT_RDONLY },
6289 { { NULL }, "ipl_logmax", 0, 0x7fffffff,
6290 0, IPFT_WRDISABLED },
6291 { { NULL }, "ipl_logall", 0, 1,
6292 0, 0 },
6293 { { NULL }, "ipl_logsize", 0, 0x80000,
6294 0, 0 },
6295 #endif
6296 { { NULL }, NULL, 0, 0 }
6297 };
6298
6299 static ipftuneable_t *
tune_lookup(ipf_stack_t * ifs,char * name)6300 tune_lookup(ipf_stack_t *ifs, char *name)
6301 {
6302 int i;
6303
6304 for (i = 0; ifs->ifs_ipf_tuneables[i].ipft_name != NULL; i++) {
6305 if (strcmp(ifs->ifs_ipf_tuneables[i].ipft_name, name) == 0)
6306 return (&ifs->ifs_ipf_tuneables[i]);
6307 }
6308 return (NULL);
6309 }
6310
6311 #ifdef _KERNEL
6312 extern dev_info_t *ipf_dev_info;
6313 extern int ipf_property_update __P((dev_info_t *, ipf_stack_t *));
6314 #endif
6315
6316 /* -------------------------------------------------------------------- */
6317 /* Function: ipftuneable_setdefs() */
6318 /* Returns: void */
6319 /* Parameters: ifs - pointer to newly allocated IPF instance */
6320 /* assigned to IP instance */
6321 /* */
6322 /* Function initializes IPF instance variables. Function is invoked */
6323 /* from ipftuneable_alloc(). ipftuneable_alloc() is called only one */
6324 /* time during IP instance lifetime - at the time of IP instance */
6325 /* creation. Anytime IP instance is being created new private IPF */
6326 /* instance is allocated and assigned to it. The moment of IP */
6327 /* instance creation is the right time to initialize those IPF */
6328 /* variables. */
6329 /* */
6330 /* -------------------------------------------------------------------- */
ipftuneable_setdefs(ipf_stack_t * ifs)6331 static void ipftuneable_setdefs(ipf_stack_t *ifs)
6332 {
6333 ifs->ifs_ipfr_size = IPFT_SIZE;
6334 ifs->ifs_fr_ipfrttl = 120; /* 60 seconds */
6335
6336 /* it comes from fr_authinit() in IPF auth */
6337 ifs->ifs_fr_authsize = FR_NUMAUTH;
6338 ifs->ifs_fr_defaultauthage = 600;
6339
6340 /* it comes from fr_stateinit() in IPF state */
6341 ifs->ifs_fr_tcpidletimeout = IPF_TTLVAL(3600 * 24 * 5); /* five days */
6342 ifs->ifs_fr_tcpclosewait = IPF_TTLVAL(TCP_MSL);
6343 ifs->ifs_fr_tcplastack = IPF_TTLVAL(TCP_MSL);
6344 ifs->ifs_fr_tcptimeout = IPF_TTLVAL(TCP_MSL);
6345 ifs->ifs_fr_tcpclosed = IPF_TTLVAL(60);
6346 ifs->ifs_fr_tcphalfclosed = IPF_TTLVAL(2 * 3600); /* 2 hours */
6347 ifs->ifs_fr_udptimeout = IPF_TTLVAL(120);
6348 ifs->ifs_fr_udpacktimeout = IPF_TTLVAL(12);
6349 ifs->ifs_fr_icmptimeout = IPF_TTLVAL(60);
6350 ifs->ifs_fr_icmpacktimeout = IPF_TTLVAL(6);
6351 ifs->ifs_fr_iptimeout = IPF_TTLVAL(60);
6352 ifs->ifs_fr_statemax = IPSTATE_MAX;
6353 ifs->ifs_fr_statesize = IPSTATE_SIZE;
6354 ifs->ifs_fr_state_maxbucket_reset = 1;
6355 ifs->ifs_state_flush_level_hi = ST_FLUSH_HI;
6356 ifs->ifs_state_flush_level_lo = ST_FLUSH_LO;
6357
6358 /* it comes from fr_natinit() in ipnat */
6359 ifs->ifs_ipf_nattable_sz = NAT_TABLE_SZ;
6360 ifs->ifs_ipf_nattable_max = NAT_TABLE_MAX;
6361 ifs->ifs_ipf_natrules_sz = NAT_SIZE;
6362 ifs->ifs_ipf_rdrrules_sz = RDR_SIZE;
6363 ifs->ifs_ipf_hostmap_sz = HOSTMAP_SIZE;
6364 ifs->ifs_fr_nat_maxbucket_reset = 1;
6365 ifs->ifs_fr_defnatage = DEF_NAT_AGE;
6366 ifs->ifs_fr_defnatipage = 120; /* 60 seconds */
6367 ifs->ifs_fr_defnaticmpage = 6; /* 3 seconds */
6368 ifs->ifs_nat_flush_level_hi = NAT_FLUSH_HI;
6369 ifs->ifs_nat_flush_level_lo = NAT_FLUSH_LO;
6370
6371 #ifdef IPFILTER_LOG
6372 /* it comes from fr_loginit() in IPF log */
6373 ifs->ifs_ipl_suppress = 1;
6374 ifs->ifs_ipl_logmax = IPL_LOGMAX;
6375 ifs->ifs_ipl_logsize = IPFILTER_LOGSIZE;
6376
6377 /* from fr_natinit() */
6378 ifs->ifs_nat_logging = 1;
6379
6380 /* from fr_stateinit() */
6381 ifs->ifs_ipstate_logging = 1;
6382 #else
6383 /* from fr_natinit() */
6384 ifs->ifs_nat_logging = 0;
6385
6386 /* from fr_stateinit() */
6387 ifs->ifs_ipstate_logging = 0;
6388 #endif
6389 ifs->ifs_ipf_loopback = 0;
6390
6391 }
6392 /*
6393 * Allocate a per-stack tuneable and copy in the names. Then
6394 * set it to point to each of the per-stack tunables.
6395 */
6396 void
ipftuneable_alloc(ipf_stack_t * ifs)6397 ipftuneable_alloc(ipf_stack_t *ifs)
6398 {
6399 ipftuneable_t *item;
6400
6401 KMALLOCS(ifs->ifs_ipf_tuneables, ipftuneable_t *,
6402 sizeof (lcl_ipf_tuneables));
6403 bcopy(lcl_ipf_tuneables, ifs->ifs_ipf_tuneables,
6404 sizeof (lcl_ipf_tuneables));
6405
6406 #define TUNE_SET(_ifs, _name, _field) \
6407 item = tune_lookup((_ifs), (_name)); \
6408 if (item != NULL) { \
6409 item->ipft_una.ipftp_int = (unsigned int *)&((_ifs)->_field); \
6410 item->ipft_sz = sizeof ((_ifs)->_field); \
6411 }
6412
6413 TUNE_SET(ifs, "fr_flags", ifs_fr_flags);
6414 TUNE_SET(ifs, "fr_active", ifs_fr_active);
6415 TUNE_SET(ifs, "fr_control_forwarding", ifs_fr_control_forwarding);
6416 TUNE_SET(ifs, "fr_update_ipid", ifs_fr_update_ipid);
6417 TUNE_SET(ifs, "fr_chksrc", ifs_fr_chksrc);
6418 TUNE_SET(ifs, "fr_minttl", ifs_fr_minttl);
6419 TUNE_SET(ifs, "fr_icmpminfragmtu", ifs_fr_icmpminfragmtu);
6420 TUNE_SET(ifs, "fr_pass", ifs_fr_pass);
6421 TUNE_SET(ifs, "fr_tcpidletimeout", ifs_fr_tcpidletimeout);
6422 TUNE_SET(ifs, "fr_tcpclosewait", ifs_fr_tcpclosewait);
6423 TUNE_SET(ifs, "fr_tcplastack", ifs_fr_tcplastack);
6424 TUNE_SET(ifs, "fr_tcptimeout", ifs_fr_tcptimeout);
6425 TUNE_SET(ifs, "fr_tcpclosed", ifs_fr_tcpclosed);
6426 TUNE_SET(ifs, "fr_tcphalfclosed", ifs_fr_tcphalfclosed);
6427 TUNE_SET(ifs, "fr_udptimeout", ifs_fr_udptimeout);
6428 TUNE_SET(ifs, "fr_udpacktimeout", ifs_fr_udpacktimeout);
6429 TUNE_SET(ifs, "fr_icmptimeout", ifs_fr_icmptimeout);
6430 TUNE_SET(ifs, "fr_icmpacktimeout", ifs_fr_icmpacktimeout);
6431 TUNE_SET(ifs, "fr_iptimeout", ifs_fr_iptimeout);
6432 TUNE_SET(ifs, "fr_statemax", ifs_fr_statemax);
6433 TUNE_SET(ifs, "fr_statesize", ifs_fr_statesize);
6434 TUNE_SET(ifs, "fr_state_lock", ifs_fr_state_lock);
6435 TUNE_SET(ifs, "fr_state_maxbucket", ifs_fr_state_maxbucket);
6436 TUNE_SET(ifs, "fr_state_maxbucket_reset", ifs_fr_state_maxbucket_reset);
6437 TUNE_SET(ifs, "ipstate_logging", ifs_ipstate_logging);
6438 TUNE_SET(ifs, "fr_nat_lock", ifs_fr_nat_lock);
6439 TUNE_SET(ifs, "ipf_nattable_sz", ifs_ipf_nattable_sz);
6440 TUNE_SET(ifs, "ipf_nattable_max", ifs_ipf_nattable_max);
6441 TUNE_SET(ifs, "ipf_natrules_sz", ifs_ipf_natrules_sz);
6442 TUNE_SET(ifs, "ipf_rdrrules_sz", ifs_ipf_rdrrules_sz);
6443 TUNE_SET(ifs, "ipf_hostmap_sz", ifs_ipf_hostmap_sz);
6444 TUNE_SET(ifs, "fr_nat_maxbucket", ifs_fr_nat_maxbucket);
6445 TUNE_SET(ifs, "fr_nat_maxbucket_reset", ifs_fr_nat_maxbucket_reset);
6446 TUNE_SET(ifs, "nat_logging", ifs_nat_logging);
6447 TUNE_SET(ifs, "fr_defnatage", ifs_fr_defnatage);
6448 TUNE_SET(ifs, "fr_defnatipage", ifs_fr_defnatipage);
6449 TUNE_SET(ifs, "fr_defnaticmpage", ifs_fr_defnaticmpage);
6450 TUNE_SET(ifs, "nat_flush_level_hi", ifs_nat_flush_level_hi);
6451 TUNE_SET(ifs, "nat_flush_level_lo", ifs_nat_flush_level_lo);
6452 TUNE_SET(ifs, "state_flush_level_hi", ifs_state_flush_level_hi);
6453 TUNE_SET(ifs, "state_flush_level_lo", ifs_state_flush_level_lo);
6454 TUNE_SET(ifs, "ipfr_size", ifs_ipfr_size);
6455 TUNE_SET(ifs, "fr_ipfrttl", ifs_fr_ipfrttl);
6456 TUNE_SET(ifs, "ipf_loopback", ifs_ipf_loopback);
6457 #ifdef IPFILTER_LOG
6458 TUNE_SET(ifs, "ipl_suppress", ifs_ipl_suppress);
6459 TUNE_SET(ifs, "ipl_buffer_sz", ifs_ipl_buffer_sz);
6460 TUNE_SET(ifs, "ipl_logmax", ifs_ipl_logmax);
6461 TUNE_SET(ifs, "ipl_logall", ifs_ipl_logall);
6462 TUNE_SET(ifs, "ipl_logsize", ifs_ipl_logsize);
6463 #endif
6464 #undef TUNE_SET
6465
6466 ipftuneable_setdefs(ifs);
6467
6468 #ifdef _KERNEL
6469 (void) ipf_property_update(ipf_dev_info, ifs);
6470 #endif
6471 }
6472
6473 void
ipftuneable_free(ipf_stack_t * ifs)6474 ipftuneable_free(ipf_stack_t *ifs)
6475 {
6476 KFREES(ifs->ifs_ipf_tuneables, sizeof (lcl_ipf_tuneables));
6477 ifs->ifs_ipf_tuneables = NULL;
6478 }
6479
6480 /* ------------------------------------------------------------------------ */
6481 /* Function: fr_findtunebycookie */
6482 /* Returns: NULL = search failed, else pointer to tune struct */
6483 /* Parameters: cookie(I) - cookie value to search for amongst tuneables */
6484 /* next(O) - pointer to place to store the cookie for the */
6485 /* "next" tuneable, if it is desired. */
6486 /* */
6487 /* This function is used to walk through all of the existing tunables with */
6488 /* successive calls. It searches the known tunables for the one which has */
6489 /* a matching value for "cookie" - ie its address. When returning a match, */
6490 /* the next one to be found may be returned inside next. */
6491 /* ------------------------------------------------------------------------ */
fr_findtunebycookie(cookie,next,ifs)6492 static ipftuneable_t *fr_findtunebycookie(cookie, next, ifs)
6493 void *cookie, **next;
6494 ipf_stack_t * ifs;
6495 {
6496 ipftuneable_t *ta, **tap;
6497
6498 for (ta = ifs->ifs_ipf_tuneables; ta->ipft_name != NULL; ta++)
6499 if (ta == cookie) {
6500 if (next != NULL) {
6501 /*
6502 * If the next entry in the array has a name
6503 * present, then return a pointer to it for
6504 * where to go next, else return a pointer to
6505 * the dynaminc list as a key to search there
6506 * next. This facilitates a weak linking of
6507 * the two "lists" together.
6508 */
6509 if ((ta + 1)->ipft_name != NULL)
6510 *next = ta + 1;
6511 else
6512 *next = &ifs->ifs_ipf_tunelist;
6513 }
6514 return ta;
6515 }
6516
6517 for (tap = &ifs->ifs_ipf_tunelist; (ta = *tap) != NULL; tap = &ta->ipft_next)
6518 if (tap == cookie) {
6519 if (next != NULL)
6520 *next = &ta->ipft_next;
6521 return ta;
6522 }
6523
6524 if (next != NULL)
6525 *next = NULL;
6526 return NULL;
6527 }
6528
6529
6530 /* ------------------------------------------------------------------------ */
6531 /* Function: fr_findtunebyname */
6532 /* Returns: NULL = search failed, else pointer to tune struct */
6533 /* Parameters: name(I) - name of the tuneable entry to find. */
6534 /* */
6535 /* Search the static array of tuneables and the list of dynamic tuneables */
6536 /* for an entry with a matching name. If we can find one, return a pointer */
6537 /* to the matching structure. */
6538 /* ------------------------------------------------------------------------ */
fr_findtunebyname(name,ifs)6539 static ipftuneable_t *fr_findtunebyname(name, ifs)
6540 const char *name;
6541 ipf_stack_t *ifs;
6542 {
6543 ipftuneable_t *ta;
6544
6545 for (ta = ifs->ifs_ipf_tuneables; ta->ipft_name != NULL; ta++)
6546 if (!strcmp(ta->ipft_name, name)) {
6547 return ta;
6548 }
6549
6550 for (ta = ifs->ifs_ipf_tunelist; ta != NULL; ta = ta->ipft_next)
6551 if (!strcmp(ta->ipft_name, name)) {
6552 return ta;
6553 }
6554
6555 return NULL;
6556 }
6557
6558
6559 /* ------------------------------------------------------------------------ */
6560 /* Function: fr_addipftune */
6561 /* Returns: int - 0 == success, else failure */
6562 /* Parameters: newtune - pointer to new tune struct to add to tuneables */
6563 /* */
6564 /* Appends the tune structure pointer to by "newtune" to the end of the */
6565 /* current list of "dynamic" tuneable parameters. Once added, the owner */
6566 /* of the object is not expected to ever change "ipft_next". */
6567 /* ------------------------------------------------------------------------ */
fr_addipftune(newtune,ifs)6568 int fr_addipftune(newtune, ifs)
6569 ipftuneable_t *newtune;
6570 ipf_stack_t *ifs;
6571 {
6572 ipftuneable_t *ta, **tap;
6573
6574 ta = fr_findtunebyname(newtune->ipft_name, ifs);
6575 if (ta != NULL)
6576 return EEXIST;
6577
6578 for (tap = &ifs->ifs_ipf_tunelist; *tap != NULL; tap = &(*tap)->ipft_next)
6579 ;
6580
6581 newtune->ipft_next = NULL;
6582 *tap = newtune;
6583 return 0;
6584 }
6585
6586
6587 /* ------------------------------------------------------------------------ */
6588 /* Function: fr_delipftune */
6589 /* Returns: int - 0 == success, else failure */
6590 /* Parameters: oldtune - pointer to tune struct to remove from the list of */
6591 /* current dynamic tuneables */
6592 /* */
6593 /* Search for the tune structure, by pointer, in the list of those that are */
6594 /* dynamically added at run time. If found, adjust the list so that this */
6595 /* structure is no longer part of it. */
6596 /* ------------------------------------------------------------------------ */
fr_delipftune(oldtune,ifs)6597 int fr_delipftune(oldtune, ifs)
6598 ipftuneable_t *oldtune;
6599 ipf_stack_t *ifs;
6600 {
6601 ipftuneable_t *ta, **tap;
6602
6603 for (tap = &ifs->ifs_ipf_tunelist; (ta = *tap) != NULL; tap = &ta->ipft_next)
6604 if (ta == oldtune) {
6605 *tap = oldtune->ipft_next;
6606 oldtune->ipft_next = NULL;
6607 return 0;
6608 }
6609
6610 return ESRCH;
6611 }
6612
6613
6614 /* ------------------------------------------------------------------------ */
6615 /* Function: fr_ipftune */
6616 /* Returns: int - 0 == success, else failure */
6617 /* Parameters: cmd(I) - ioctl command number */
6618 /* data(I) - pointer to ioctl data structure */
6619 /* */
6620 /* Implement handling of SIOCIPFGETNEXT, SIOCIPFGET and SIOCIPFSET. These */
6621 /* three ioctls provide the means to access and control global variables */
6622 /* within IPFilter, allowing (for example) timeouts and table sizes to be */
6623 /* changed without rebooting, reloading or recompiling. The initialisation */
6624 /* and 'destruction' routines of the various components of ipfilter are all */
6625 /* each responsible for handling their own values being too big. */
6626 /* ------------------------------------------------------------------------ */
fr_ipftune(cmd,data,ifs)6627 int fr_ipftune(cmd, data, ifs)
6628 ioctlcmd_t cmd;
6629 void *data;
6630 ipf_stack_t *ifs;
6631 {
6632 ipftuneable_t *ta;
6633 ipftune_t tu;
6634 void *cookie;
6635 int error;
6636
6637 error = fr_inobj(data, &tu, IPFOBJ_TUNEABLE);
6638 if (error != 0)
6639 return error;
6640
6641 tu.ipft_name[sizeof(tu.ipft_name) - 1] = '\0';
6642 cookie = tu.ipft_cookie;
6643 ta = NULL;
6644
6645 switch (cmd)
6646 {
6647 case SIOCIPFGETNEXT :
6648 /*
6649 * If cookie is non-NULL, assume it to be a pointer to the last
6650 * entry we looked at, so find it (if possible) and return a
6651 * pointer to the next one after it. The last entry in the
6652 * the table is a NULL entry, so when we get to it, set cookie
6653 * to NULL and return that, indicating end of list, erstwhile
6654 * if we come in with cookie set to NULL, we are starting anew
6655 * at the front of the list.
6656 */
6657 if (cookie != NULL) {
6658 ta = fr_findtunebycookie(cookie, &tu.ipft_cookie, ifs);
6659 } else {
6660 ta = ifs->ifs_ipf_tuneables;
6661 tu.ipft_cookie = ta + 1;
6662 }
6663 if (ta != NULL) {
6664 /*
6665 * Entry found, but does the data pointed to by that
6666 * row fit in what we can return?
6667 */
6668 if (ta->ipft_sz > sizeof(tu.ipft_un))
6669 return EINVAL;
6670
6671 tu.ipft_vlong = 0;
6672 if (ta->ipft_sz == sizeof(u_long))
6673 tu.ipft_vlong = *ta->ipft_plong;
6674 else if (ta->ipft_sz == sizeof(u_int))
6675 tu.ipft_vint = *ta->ipft_pint;
6676 else if (ta->ipft_sz == sizeof(u_short))
6677 tu.ipft_vshort = *ta->ipft_pshort;
6678 else if (ta->ipft_sz == sizeof(u_char))
6679 tu.ipft_vchar = *ta->ipft_pchar;
6680
6681 tu.ipft_sz = ta->ipft_sz;
6682 tu.ipft_min = ta->ipft_min;
6683 tu.ipft_max = ta->ipft_max;
6684 tu.ipft_flags = ta->ipft_flags;
6685 bcopy(ta->ipft_name, tu.ipft_name,
6686 MIN(sizeof(tu.ipft_name),
6687 strlen(ta->ipft_name) + 1));
6688 }
6689 error = fr_outobj(data, &tu, IPFOBJ_TUNEABLE);
6690 break;
6691
6692 case SIOCIPFGET :
6693 case SIOCIPFSET :
6694 /*
6695 * Search by name or by cookie value for a particular entry
6696 * in the tuning paramter table.
6697 */
6698 error = ESRCH;
6699 if (cookie != NULL) {
6700 ta = fr_findtunebycookie(cookie, NULL, ifs);
6701 if (ta != NULL)
6702 error = 0;
6703 } else if (tu.ipft_name[0] != '\0') {
6704 ta = fr_findtunebyname(tu.ipft_name, ifs);
6705 if (ta != NULL)
6706 error = 0;
6707 }
6708 if (error != 0)
6709 break;
6710
6711 if (cmd == (ioctlcmd_t)SIOCIPFGET) {
6712 /*
6713 * Fetch the tuning parameters for a particular value
6714 */
6715 tu.ipft_vlong = 0;
6716 if (ta->ipft_sz == sizeof(u_long))
6717 tu.ipft_vlong = *ta->ipft_plong;
6718 else if (ta->ipft_sz == sizeof(u_int))
6719 tu.ipft_vint = *ta->ipft_pint;
6720 else if (ta->ipft_sz == sizeof(u_short))
6721 tu.ipft_vshort = *ta->ipft_pshort;
6722 else if (ta->ipft_sz == sizeof(u_char))
6723 tu.ipft_vchar = *ta->ipft_pchar;
6724 tu.ipft_cookie = ta;
6725 tu.ipft_sz = ta->ipft_sz;
6726 tu.ipft_min = ta->ipft_min;
6727 tu.ipft_max = ta->ipft_max;
6728 tu.ipft_flags = ta->ipft_flags;
6729 error = fr_outobj(data, &tu, IPFOBJ_TUNEABLE);
6730
6731 } else if (cmd == (ioctlcmd_t)SIOCIPFSET) {
6732 /*
6733 * Set an internal parameter. The hard part here is
6734 * getting the new value safely and correctly out of
6735 * the kernel (given we only know its size, not type.)
6736 */
6737 u_long in;
6738
6739 if (((ta->ipft_flags & IPFT_WRDISABLED) != 0) &&
6740 (ifs->ifs_fr_running > 0)) {
6741 error = EBUSY;
6742 break;
6743 }
6744
6745 in = tu.ipft_vlong;
6746 if (in < ta->ipft_min || in > ta->ipft_max) {
6747 error = EINVAL;
6748 break;
6749 }
6750
6751 if (ta->ipft_sz == sizeof(u_long)) {
6752 tu.ipft_vlong = *ta->ipft_plong;
6753 *ta->ipft_plong = in;
6754 } else if (ta->ipft_sz == sizeof(u_int)) {
6755 tu.ipft_vint = *ta->ipft_pint;
6756 *ta->ipft_pint = (u_int)(in & 0xffffffff);
6757 } else if (ta->ipft_sz == sizeof(u_short)) {
6758 tu.ipft_vshort = *ta->ipft_pshort;
6759 *ta->ipft_pshort = (u_short)(in & 0xffff);
6760 } else if (ta->ipft_sz == sizeof(u_char)) {
6761 tu.ipft_vchar = *ta->ipft_pchar;
6762 *ta->ipft_pchar = (u_char)(in & 0xff);
6763 }
6764 error = fr_outobj(data, &tu, IPFOBJ_TUNEABLE);
6765 }
6766 break;
6767
6768 default :
6769 error = EINVAL;
6770 break;
6771 }
6772
6773 return error;
6774 }
6775
6776
6777 /* ------------------------------------------------------------------------ */
6778 /* Function: fr_initialise */
6779 /* Returns: int - 0 == success, < 0 == failure */
6780 /* Parameters: None. */
6781 /* */
6782 /* Call of the initialise functions for all the various subsystems inside */
6783 /* of IPFilter. If any of them should fail, return immeadiately a failure */
6784 /* BUT do not try to recover from the error here. */
6785 /* ------------------------------------------------------------------------ */
fr_initialise(ifs)6786 int fr_initialise(ifs)
6787 ipf_stack_t *ifs;
6788 {
6789 int i;
6790
6791 #ifdef IPFILTER_LOG
6792 i = fr_loginit(ifs);
6793 if (i < 0)
6794 return -10 + i;
6795 #endif
6796 i = fr_natinit(ifs);
6797 if (i < 0)
6798 return -20 + i;
6799
6800 i = fr_stateinit(ifs);
6801 if (i < 0)
6802 return -30 + i;
6803
6804 i = fr_authinit(ifs);
6805 if (i < 0)
6806 return -40 + i;
6807
6808 i = fr_fraginit(ifs);
6809 if (i < 0)
6810 return -50 + i;
6811
6812 i = appr_init(ifs);
6813 if (i < 0)
6814 return -60 + i;
6815
6816 #ifdef IPFILTER_SYNC
6817 i = ipfsync_init(ifs);
6818 if (i < 0)
6819 return -70 + i;
6820 #endif
6821 #ifdef IPFILTER_SCAN
6822 i = ipsc_init(ifs);
6823 if (i < 0)
6824 return -80 + i;
6825 #endif
6826 #ifdef IPFILTER_LOOKUP
6827 i = ip_lookup_init(ifs);
6828 if (i < 0)
6829 return -90 + i;
6830 #endif
6831 #ifdef IPFILTER_COMPILED
6832 ipfrule_add(ifs);
6833 #endif
6834 return 0;
6835 }
6836
6837
6838 /* ------------------------------------------------------------------------ */
6839 /* Function: fr_deinitialise */
6840 /* Returns: None. */
6841 /* Parameters: None. */
6842 /* */
6843 /* Call all the various subsystem cleanup routines to deallocate memory or */
6844 /* destroy locks or whatever they've done that they need to now undo. */
6845 /* The order here IS important as there are some cross references of */
6846 /* internal data structures. */
6847 /* ------------------------------------------------------------------------ */
fr_deinitialise(ifs)6848 void fr_deinitialise(ifs)
6849 ipf_stack_t *ifs;
6850 {
6851 fr_fragunload(ifs);
6852 fr_authunload(ifs);
6853 fr_natunload(ifs);
6854 fr_stateunload(ifs);
6855 #ifdef IPFILTER_SCAN
6856 fr_scanunload(ifs);
6857 #endif
6858 appr_unload(ifs);
6859
6860 #ifdef IPFILTER_COMPILED
6861 ipfrule_remove(ifs);
6862 #endif
6863
6864 (void) frflush(IPL_LOGIPF, 0, FR_INQUE|FR_OUTQUE|FR_INACTIVE, ifs);
6865 (void) frflush(IPL_LOGIPF, 0, FR_INQUE|FR_OUTQUE, ifs);
6866 (void) frflush(IPL_LOGCOUNT, 0, FR_INQUE|FR_OUTQUE|FR_INACTIVE, ifs);
6867 (void) frflush(IPL_LOGCOUNT, 0, FR_INQUE|FR_OUTQUE, ifs);
6868
6869 #ifdef IPFILTER_LOOKUP
6870 ip_lookup_unload(ifs);
6871 #endif
6872
6873 #ifdef IPFILTER_LOG
6874 fr_logunload(ifs);
6875 #endif
6876 }
6877
6878
6879 /* ------------------------------------------------------------------------ */
6880 /* Function: fr_zerostats */
6881 /* Returns: int - 0 = success, else failure */
6882 /* Parameters: data(O) - pointer to pointer for copying data back to */
6883 /* */
6884 /* Copies the current statistics out to userspace and then zero's the */
6885 /* current ones in the kernel. The lock is only held across the bzero() as */
6886 /* the copyout may result in paging (ie network activity.) */
6887 /* ------------------------------------------------------------------------ */
fr_zerostats(data,ifs)6888 int fr_zerostats(data, ifs)
6889 caddr_t data;
6890 ipf_stack_t *ifs;
6891 {
6892 friostat_t fio;
6893 int error;
6894
6895 fr_getstat(&fio, ifs);
6896 error = copyoutptr(&fio, data, sizeof(fio));
6897 if (error)
6898 return EFAULT;
6899
6900 WRITE_ENTER(&ifs->ifs_ipf_mutex);
6901 bzero((char *)ifs->ifs_frstats, sizeof(*ifs->ifs_frstats) * 2);
6902 RWLOCK_EXIT(&ifs->ifs_ipf_mutex);
6903
6904 return 0;
6905 }
6906
6907
6908 #ifdef _KERNEL
6909 /* ------------------------------------------------------------------------ */
6910 /* Function: fr_resolvedest */
6911 /* Returns: Nil */
6912 /* Parameters: fdp(IO) - pointer to destination information to resolve */
6913 /* v(I) - IP protocol version to match */
6914 /* */
6915 /* Looks up an interface name in the frdest structure pointed to by fdp and */
6916 /* if a matching name can be found for the particular IP protocol version */
6917 /* then store the interface pointer in the frdest struct. If no match is */
6918 /* found, then set the interface pointer to be -1 as NULL is considered to */
6919 /* indicate there is no information at all in the structure. */
6920 /* ------------------------------------------------------------------------ */
fr_resolvedest(fdp,v,ifs)6921 void fr_resolvedest(fdp, v, ifs)
6922 frdest_t *fdp;
6923 int v;
6924 ipf_stack_t *ifs;
6925 {
6926 fdp->fd_ifp = NULL;
6927
6928 if (*fdp->fd_ifname != '\0') {
6929 fdp->fd_ifp = GETIFP(fdp->fd_ifname, v, ifs);
6930 if (fdp->fd_ifp == NULL)
6931 fdp->fd_ifp = (void *)-1;
6932 }
6933 }
6934 #endif /* _KERNEL */
6935
6936
6937 /* ------------------------------------------------------------------------ */
6938 /* Function: fr_resolvenic */
6939 /* Returns: void* - NULL = wildcard name, -1 = failed to find NIC, else */
6940 /* pointer to interface structure for NIC */
6941 /* Parameters: name(I) - complete interface name */
6942 /* v(I) - IP protocol version */
6943 /* */
6944 /* Look for a network interface structure that firstly has a matching name */
6945 /* to that passed in and that is also being used for that IP protocol */
6946 /* version (necessary on some platforms where there are separate listings */
6947 /* for both IPv4 and IPv6 on the same physical NIC. */
6948 /* */
6949 /* One might wonder why name gets terminated with a \0 byte in here. The */
6950 /* reason is an interface name could get into the kernel structures of ipf */
6951 /* in any number of ways and so long as they all use the same sized array */
6952 /* to put the name in, it makes sense to ensure it gets null terminated */
6953 /* before it is used for its intended purpose - finding its match in the */
6954 /* kernel's list of configured interfaces. */
6955 /* */
6956 /* NOTE: This SHOULD ONLY be used with IPFilter structures that have an */
6957 /* array for the name that is LIFNAMSIZ bytes (at least) in length. */
6958 /* ------------------------------------------------------------------------ */
fr_resolvenic(name,v,ifs)6959 void *fr_resolvenic(name, v, ifs)
6960 char *name;
6961 int v;
6962 ipf_stack_t *ifs;
6963 {
6964 void *nic;
6965
6966 if (name[0] == '\0')
6967 return NULL;
6968
6969 if ((name[1] == '\0') && ((name[0] == '-') || (name[0] == '*'))) {
6970 return NULL;
6971 }
6972
6973 name[LIFNAMSIZ - 1] = '\0';
6974
6975 nic = GETIFP(name, v, ifs);
6976 if (nic == NULL)
6977 nic = (void *)-1;
6978 return nic;
6979 }
6980
6981
6982 /* ------------------------------------------------------------------------ */
6983 /* Function: ipf_expiretokens */
6984 /* Returns: None. */
6985 /* Parameters: ifs - ipf stack instance */
6986 /* */
6987 /* This function is run every ipf tick to see if there are any tokens that */
6988 /* have been held for too long and need to be freed up. */
6989 /* ------------------------------------------------------------------------ */
ipf_expiretokens(ifs)6990 void ipf_expiretokens(ifs)
6991 ipf_stack_t *ifs;
6992 {
6993 ipftoken_t *it;
6994
6995 WRITE_ENTER(&ifs->ifs_ipf_tokens);
6996 while ((it = ifs->ifs_ipftokenhead) != NULL) {
6997 if (it->ipt_die > ifs->ifs_fr_ticks)
6998 break;
6999
7000 ipf_freetoken(it, ifs);
7001 }
7002 RWLOCK_EXIT(&ifs->ifs_ipf_tokens);
7003 }
7004
7005
7006 /* ------------------------------------------------------------------------ */
7007 /* Function: ipf_deltoken */
7008 /* Returns: int - 0 = success, else error */
7009 /* Parameters: type(I) - the token type to match */
7010 /* uid(I) - uid owning the token */
7011 /* ptr(I) - context pointer for the token */
7012 /* ifs - ipf stack instance */
7013 /* */
7014 /* This function looks for a a token in the current list that matches up */
7015 /* the fields (type, uid, ptr). If none is found, ESRCH is returned, else */
7016 /* call ipf_freetoken() to remove it from the list. */
7017 /* ------------------------------------------------------------------------ */
ipf_deltoken(type,uid,ptr,ifs)7018 int ipf_deltoken(type, uid, ptr, ifs)
7019 int type, uid;
7020 void *ptr;
7021 ipf_stack_t *ifs;
7022 {
7023 ipftoken_t *it;
7024 int error = ESRCH;
7025
7026 WRITE_ENTER(&ifs->ifs_ipf_tokens);
7027 for (it = ifs->ifs_ipftokenhead; it != NULL; it = it->ipt_next)
7028 if (ptr == it->ipt_ctx && type == it->ipt_type &&
7029 uid == it->ipt_uid) {
7030 ipf_freetoken(it, ifs);
7031 error = 0;
7032 break;
7033 }
7034 RWLOCK_EXIT(&ifs->ifs_ipf_tokens);
7035
7036 return error;
7037 }
7038
7039
7040 /* ------------------------------------------------------------------------ */
7041 /* Function: ipf_unlinktoken */
7042 /* Returns: None. */
7043 /* Parameters: token(I) - pointer to token structure */
7044 /* ifs - ipf stack instance */
7045 /* */
7046 /* This function unlinks a token structure from the linked list of tokens */
7047 /* that it belongs to. The head pointer never needs to be explicitly */
7048 /* adjusted, but the tail does due to the linked list implementation. */
7049 /* ------------------------------------------------------------------------ */
ipf_unlinktoken(token,ifs)7050 static void ipf_unlinktoken(token, ifs)
7051 ipftoken_t *token;
7052 ipf_stack_t *ifs;
7053 {
7054
7055 if (ifs->ifs_ipftokentail == &token->ipt_next)
7056 ifs->ifs_ipftokentail = token->ipt_pnext;
7057
7058 *token->ipt_pnext = token->ipt_next;
7059 if (token->ipt_next != NULL)
7060 token->ipt_next->ipt_pnext = token->ipt_pnext;
7061 }
7062
7063
7064 /* ------------------------------------------------------------------------ */
7065 /* Function: ipf_findtoken */
7066 /* Returns: ipftoken_t * - NULL if no memory, else pointer to token */
7067 /* Parameters: type(I) - the token type to match */
7068 /* uid(I) - uid owning the token */
7069 /* ptr(I) - context pointer for the token */
7070 /* ifs - ipf stack instance */
7071 /* */
7072 /* This function looks for a live token in the list of current tokens that */
7073 /* matches the tuple (type, uid, ptr). If one cannot be found then one is */
7074 /* allocated. If one is found then it is moved to the top of the list of */
7075 /* currently active tokens. */
7076 /* */
7077 /* NOTE: It is by design that this function returns holding a read lock on */
7078 /* ipf_tokens. Callers must make sure they release it! */
7079 /* ------------------------------------------------------------------------ */
ipf_findtoken(type,uid,ptr,ifs)7080 ipftoken_t *ipf_findtoken(type, uid, ptr, ifs)
7081 int type, uid;
7082 void *ptr;
7083 ipf_stack_t *ifs;
7084 {
7085 ipftoken_t *it, *new;
7086
7087 KMALLOC(new, ipftoken_t *);
7088
7089 WRITE_ENTER(&ifs->ifs_ipf_tokens);
7090 for (it = ifs->ifs_ipftokenhead; it != NULL; it = it->ipt_next) {
7091 if (it->ipt_alive == 0)
7092 continue;
7093 if (ptr == it->ipt_ctx && type == it->ipt_type &&
7094 uid == it->ipt_uid)
7095 break;
7096 }
7097
7098 if (it == NULL) {
7099 it = new;
7100 new = NULL;
7101 if (it == NULL)
7102 return NULL;
7103 it->ipt_data = NULL;
7104 it->ipt_ctx = ptr;
7105 it->ipt_uid = uid;
7106 it->ipt_type = type;
7107 it->ipt_next = NULL;
7108 it->ipt_alive = 1;
7109 } else {
7110 if (new != NULL) {
7111 KFREE(new);
7112 new = NULL;
7113 }
7114
7115 ipf_unlinktoken(it, ifs);
7116 }
7117 it->ipt_pnext = ifs->ifs_ipftokentail;
7118 *ifs->ifs_ipftokentail = it;
7119 ifs->ifs_ipftokentail = &it->ipt_next;
7120 it->ipt_next = NULL;
7121
7122 it->ipt_die = ifs->ifs_fr_ticks + 2;
7123
7124 MUTEX_DOWNGRADE(&ifs->ifs_ipf_tokens);
7125
7126 return it;
7127 }
7128
7129
7130 /* ------------------------------------------------------------------------ */
7131 /* Function: ipf_freetoken */
7132 /* Returns: None. */
7133 /* Parameters: token(I) - pointer to token structure */
7134 /* ifs - ipf stack instance */
7135 /* */
7136 /* This function unlinks a token from the linked list and on the path to */
7137 /* free'ing the data, it calls the dereference function that is associated */
7138 /* with the type of data pointed to by the token as it is considered to */
7139 /* hold a reference to it. */
7140 /* ------------------------------------------------------------------------ */
ipf_freetoken(token,ifs)7141 void ipf_freetoken(token, ifs)
7142 ipftoken_t *token;
7143 ipf_stack_t *ifs;
7144 {
7145 void *data, **datap;
7146
7147 ipf_unlinktoken(token, ifs);
7148
7149 data = token->ipt_data;
7150 datap = &data;
7151
7152 if ((data != NULL) && (data != (void *)-1)) {
7153 switch (token->ipt_type)
7154 {
7155 case IPFGENITER_IPF :
7156 (void)fr_derefrule((frentry_t **)datap, ifs);
7157 break;
7158 case IPFGENITER_IPNAT :
7159 WRITE_ENTER(&ifs->ifs_ipf_nat);
7160 fr_ipnatderef((ipnat_t **)datap, ifs);
7161 RWLOCK_EXIT(&ifs->ifs_ipf_nat);
7162 break;
7163 case IPFGENITER_NAT :
7164 fr_natderef((nat_t **)datap, ifs);
7165 break;
7166 case IPFGENITER_STATE :
7167 fr_statederef((ipstate_t **)datap, ifs);
7168 break;
7169 case IPFGENITER_FRAG :
7170 fr_fragderef((ipfr_t **)datap, &ifs->ifs_ipf_frag, ifs);
7171 break;
7172 case IPFGENITER_NATFRAG :
7173 fr_fragderef((ipfr_t **)datap,
7174 &ifs->ifs_ipf_natfrag, ifs);
7175 break;
7176 case IPFGENITER_HOSTMAP :
7177 WRITE_ENTER(&ifs->ifs_ipf_nat);
7178 fr_hostmapdel((hostmap_t **)datap);
7179 RWLOCK_EXIT(&ifs->ifs_ipf_nat);
7180 break;
7181 default :
7182 (void) ip_lookup_iterderef(token->ipt_type, data, ifs);
7183 break;
7184 }
7185 }
7186
7187 KFREE(token);
7188 }
7189
7190
7191 /* ------------------------------------------------------------------------ */
7192 /* Function: ipf_getnextrule */
7193 /* Returns: int - 0 = success, else error */
7194 /* Parameters: t(I) - pointer to destination information to resolve */
7195 /* ptr(I) - pointer to ipfobj_t to copyin from user space */
7196 /* ifs - ipf stack instance */
7197 /* */
7198 /* This function's first job is to bring in the ipfruleiter_t structure via */
7199 /* the ipfobj_t structure to determine what should be the next rule to */
7200 /* return. Once the ipfruleiter_t has been brought in, it then tries to */
7201 /* find the 'next rule'. This may include searching rule group lists or */
7202 /* just be as simple as looking at the 'next' field in the rule structure. */
7203 /* When we have found the rule to return, increase its reference count and */
7204 /* if we used an existing rule to get here, decrease its reference count. */
7205 /* ------------------------------------------------------------------------ */
ipf_getnextrule(t,ptr,ifs)7206 int ipf_getnextrule(t, ptr, ifs)
7207 ipftoken_t *t;
7208 void *ptr;
7209 ipf_stack_t *ifs;
7210 {
7211 frentry_t *fr, *next, zero;
7212 int error, out, count;
7213 ipfruleiter_t it;
7214 frgroup_t *fg;
7215 char *dst;
7216
7217 if (t == NULL || ptr == NULL)
7218 return EFAULT;
7219 error = fr_inobj(ptr, &it, IPFOBJ_IPFITER);
7220 if (error != 0)
7221 return error;
7222 if ((it.iri_ver != AF_INET) && (it.iri_ver != AF_INET6))
7223 return EINVAL;
7224 if ((it.iri_inout < 0) || (it.iri_inout > 3))
7225 return EINVAL;
7226 if (it.iri_nrules == 0)
7227 return EINVAL;
7228 if ((it.iri_active != 0) && (it.iri_active != 1))
7229 return EINVAL;
7230 if (it.iri_rule == NULL)
7231 return EFAULT;
7232
7233 /*
7234 * Use bitmask on it.iri_inout to determine direction.
7235 * F_OUT (1) and F_ACOUT (3) mask to out = 1, while
7236 * F_IN (0) and F_ACIN (2) mask to out = 0.
7237 */
7238 out = it.iri_inout & F_OUT;
7239 READ_ENTER(&ifs->ifs_ipf_mutex);
7240
7241 /*
7242 * Retrieve "previous" entry from token and find the next entry.
7243 */
7244 fr = t->ipt_data;
7245 if (fr == NULL) {
7246 if (*it.iri_group == '\0') {
7247 /*
7248 * Use bitmask again to determine accounting or not.
7249 * F_ACIN will mask to accounting cases F_ACIN (2)
7250 * or F_ACOUT (3), but not F_IN or F_OUT.
7251 */
7252 if ((it.iri_inout & F_ACIN) != 0) {
7253 if (it.iri_ver == AF_INET)
7254 next = ifs->ifs_ipacct
7255 [out][it.iri_active];
7256 else
7257 next = ifs->ifs_ipacct6
7258 [out][it.iri_active];
7259 } else {
7260 if (it.iri_ver == AF_INET)
7261 next = ifs->ifs_ipfilter
7262 [out][it.iri_active];
7263 else
7264 next = ifs->ifs_ipfilter6
7265 [out][it.iri_active];
7266 }
7267 } else {
7268 fg = fr_findgroup(it.iri_group, IPL_LOGIPF,
7269 it.iri_active, NULL, ifs);
7270 if (fg != NULL)
7271 next = fg->fg_start;
7272 else
7273 next = NULL;
7274 }
7275 } else {
7276 next = fr->fr_next;
7277 }
7278
7279 dst = (char *)it.iri_rule;
7280 /*
7281 * The ipfruleiter may ask for more than 1 rule at a time to be
7282 * copied out, so long as that many exist in the list to start with!
7283 */
7284 for (count = it.iri_nrules; count > 0; count--) {
7285 /*
7286 * If we found an entry, add reference to it and update token.
7287 * Otherwise, zero out data to be returned and NULL out token.
7288 */
7289 if (next != NULL) {
7290 MUTEX_ENTER(&next->fr_lock);
7291 next->fr_ref++;
7292 MUTEX_EXIT(&next->fr_lock);
7293 t->ipt_data = next;
7294 } else {
7295 bzero(&zero, sizeof(zero));
7296 next = &zero;
7297 t->ipt_data = NULL;
7298 }
7299
7300 /*
7301 * Now that we have ref, it's save to give up lock.
7302 */
7303 RWLOCK_EXIT(&ifs->ifs_ipf_mutex);
7304
7305 /*
7306 * Copy out data and clean up references and token as needed.
7307 */
7308 error = COPYOUT(next, dst, sizeof(*next));
7309 if (error != 0)
7310 error = EFAULT;
7311 if (t->ipt_data == NULL) {
7312 ipf_freetoken(t, ifs);
7313 break;
7314 } else {
7315 if (fr != NULL)
7316 (void) fr_derefrule(&fr, ifs);
7317 if (next->fr_data != NULL) {
7318 dst += sizeof(*next);
7319 error = COPYOUT(next->fr_data, dst,
7320 next->fr_dsize);
7321 if (error != 0)
7322 error = EFAULT;
7323 else
7324 dst += next->fr_dsize;
7325 }
7326 if (next->fr_next == NULL) {
7327 ipf_freetoken(t, ifs);
7328 break;
7329 }
7330 }
7331
7332 if ((count == 1) || (error != 0))
7333 break;
7334
7335 READ_ENTER(&ifs->ifs_ipf_mutex);
7336 fr = next;
7337 next = fr->fr_next;
7338 }
7339
7340 return error;
7341 }
7342
7343
7344 /* ------------------------------------------------------------------------ */
7345 /* Function: fr_frruleiter */
7346 /* Returns: int - 0 = success, else error */
7347 /* Parameters: data(I) - the token type to match */
7348 /* uid(I) - uid owning the token */
7349 /* ptr(I) - context pointer for the token */
7350 /* ifs - ipf stack instance */
7351 /* */
7352 /* This function serves as a stepping stone between fr_ipf_ioctl and */
7353 /* ipf_getnextrule. It's role is to find the right token in the kernel for */
7354 /* the process doing the ioctl and use that to ask for the next rule. */
7355 /* ------------------------------------------------------------------------ */
ipf_frruleiter(data,uid,ctx,ifs)7356 int ipf_frruleiter(data, uid, ctx, ifs)
7357 void *data, *ctx;
7358 int uid;
7359 ipf_stack_t *ifs;
7360 {
7361 ipftoken_t *token;
7362 int error;
7363
7364 token = ipf_findtoken(IPFGENITER_IPF, uid, ctx, ifs);
7365 if (token != NULL)
7366 error = ipf_getnextrule(token, data, ifs);
7367 else
7368 error = EFAULT;
7369 RWLOCK_EXIT(&ifs->ifs_ipf_tokens);
7370
7371 return error;
7372 }
7373
7374
7375 /* ------------------------------------------------------------------------ */
7376 /* Function: ipf_geniter */
7377 /* Returns: int - 0 = success, else error */
7378 /* Parameters: token(I) - pointer to ipftoken structure */
7379 /* itp(I) - pointer to ipfgeniter structure */
7380 /* ifs - ipf stack instance */
7381 /* */
7382 /* Generic iterator called from ipf_genericiter. Currently only used for */
7383 /* walking through list of fragments. */
7384 /* ------------------------------------------------------------------------ */
ipf_geniter(token,itp,ifs)7385 int ipf_geniter(token, itp, ifs)
7386 ipftoken_t *token;
7387 ipfgeniter_t *itp;
7388 ipf_stack_t *ifs;
7389 {
7390 int error;
7391
7392 switch (itp->igi_type)
7393 {
7394 case IPFGENITER_FRAG :
7395 error = fr_nextfrag(token, itp, &ifs->ifs_ipfr_list,
7396 &ifs->ifs_ipfr_tail, &ifs->ifs_ipf_frag,
7397 ifs);
7398 break;
7399 default :
7400 error = EINVAL;
7401 break;
7402 }
7403
7404 return error;
7405 }
7406
7407
7408 /* ------------------------------------------------------------------------ */
7409 /* Function: ipf_genericiter */
7410 /* Returns: int - 0 = success, else error */
7411 /* Parameters: data(I) - the token type to match */
7412 /* uid(I) - uid owning the token */
7413 /* ptr(I) - context pointer for the token */
7414 /* ifs - ipf stack instance */
7415 /* */
7416 /* This function serves as a stepping stone between fr_ipf_ioctl and */
7417 /* ipf_geniter when handling SIOCGENITER. It's role is to find the right */
7418 /* token in the kernel for the process using the ioctl, and to use that */
7419 /* token when calling ipf_geniter. */
7420 /* ------------------------------------------------------------------------ */
ipf_genericiter(data,uid,ctx,ifs)7421 int ipf_genericiter(data, uid, ctx, ifs)
7422 void *data, *ctx;
7423 int uid;
7424 ipf_stack_t *ifs;
7425 {
7426 ipftoken_t *token;
7427 ipfgeniter_t iter;
7428 int error;
7429
7430 error = fr_inobj(data, &iter, IPFOBJ_GENITER);
7431 if (error != 0)
7432 return error;
7433
7434 token = ipf_findtoken(iter.igi_type, uid, ctx, ifs);
7435 if (token != NULL) {
7436 token->ipt_subtype = iter.igi_type;
7437 error = ipf_geniter(token, &iter, ifs);
7438 } else
7439 error = EFAULT;
7440 RWLOCK_EXIT(&ifs->ifs_ipf_tokens);
7441
7442 return error;
7443 }
7444
7445
7446 /* --------------------------------------------------------------------- */
7447 /* Function: ipf_earlydrop */
7448 /* Returns: number of dropped/removed entries from the queue */
7449 /* Parameters: flushtype - which table we're cleaning (NAT or State) */
7450 /* ifq - pointer to queue with entries to be deleted */
7451 /* idletime - entry must be idle this long to be deleted */
7452 /* ifs - ipf stack instance */
7453 /* */
7454 /* Function is invoked from state/NAT flush routines to remove entries */
7455 /* from specified timeout queue, based on how long they've sat idle, */
7456 /* without waiting for it to happen on its own. */
7457 /* --------------------------------------------------------------------- */
ipf_earlydrop(flushtype,ifq,idletime,ifs)7458 int ipf_earlydrop(flushtype, ifq, idletime, ifs)
7459 int flushtype;
7460 ipftq_t *ifq;
7461 int idletime;
7462 ipf_stack_t *ifs;
7463 {
7464 ipftqent_t *tqe, *tqn;
7465 unsigned int dropped;
7466 int droptick;
7467 void *ent;
7468
7469 if (ifq == NULL)
7470 return (0);
7471
7472 dropped = 0;
7473
7474 /*
7475 * Determine the tick representing the idle time we're interested
7476 * in. If an entry exists in the queue, and it was touched before
7477 * that tick, then it's been idle longer than idletime, so it should
7478 * be deleted.
7479 */
7480 droptick = ifs->ifs_fr_ticks - idletime;
7481 tqn = ifq->ifq_head;
7482 while ((tqe = tqn) != NULL && tqe->tqe_touched < droptick) {
7483 tqn = tqe->tqe_next;
7484 ent = tqe->tqe_parent;
7485 switch (flushtype)
7486 {
7487 case NAT_FLUSH:
7488 if (nat_delete((nat_t *)ent, NL_FLUSH, ifs) == 0)
7489 dropped++;
7490 break;
7491 case STATE_FLUSH:
7492 if (fr_delstate((ipstate_t *)ent, ISL_FLUSH, ifs) == 0)
7493 dropped++;
7494 break;
7495 default:
7496 return (0);
7497 }
7498 }
7499 return (dropped);
7500 }
7501
7502
7503 /* --------------------------------------------------------------------- */
7504 /* Function: ipf_flushclosing */
7505 /* Returns: int - number of entries deleted */
7506 /* Parameters: flushtype - which table we're cleaning (NAT or State) */
7507 /* stateval - TCP state at which to start removing entries */
7508 /* ipfqs - pointer to timeout queues */
7509 /* userqs - pointer to user defined queues */
7510 /* ifs - ipf stack instance */
7511 /* */
7512 /* Remove state/NAT table entries for TCP connections which are in the */
7513 /* process of closing, and have at least reached the state specified by */
7514 /* the 'stateval' parameter. */
7515 /* --------------------------------------------------------------------- */
ipf_flushclosing(flushtype,stateval,ipfqs,userqs,ifs)7516 int ipf_flushclosing(flushtype, stateval, ipfqs, userqs, ifs)
7517 int flushtype, stateval;
7518 ipftq_t *ipfqs, *userqs;
7519 ipf_stack_t *ifs;
7520 {
7521 ipftq_t *ifq, *ifqn;
7522 ipftqent_t *tqe, *tqn;
7523 int dropped;
7524 void *ent;
7525 nat_t *nat;
7526 ipstate_t *is;
7527
7528 dropped = 0;
7529
7530 /*
7531 * Start by deleting any entries in specific timeout queues.
7532 */
7533 ifqn = &ipfqs[stateval];
7534 while ((ifq = ifqn) != NULL) {
7535 ifqn = ifq->ifq_next;
7536 dropped += ipf_earlydrop(flushtype, ifq, (int)0, ifs);
7537 }
7538
7539 /*
7540 * Next, look through user defined queues for closing entries.
7541 */
7542 ifqn = userqs;
7543 while ((ifq = ifqn) != NULL) {
7544 ifqn = ifq->ifq_next;
7545 tqn = ifq->ifq_head;
7546 while ((tqe = tqn) != NULL) {
7547 tqn = tqe->tqe_next;
7548 ent = tqe->tqe_parent;
7549 switch (flushtype)
7550 {
7551 case NAT_FLUSH:
7552 nat = (nat_t *)ent;
7553 if ((nat->nat_p == IPPROTO_TCP) &&
7554 (nat->nat_tcpstate[0] >= stateval) &&
7555 (nat->nat_tcpstate[1] >= stateval) &&
7556 (nat_delete(nat, NL_EXPIRE, ifs) == 0))
7557 dropped++;
7558 break;
7559 case STATE_FLUSH:
7560 is = (ipstate_t *)ent;
7561 if ((is->is_p == IPPROTO_TCP) &&
7562 (is->is_state[0] >= stateval) &&
7563 (is->is_state[1] >= stateval) &&
7564 (fr_delstate(is, ISL_EXPIRE, ifs) == 0))
7565 dropped++;
7566 break;
7567 default:
7568 return (0);
7569 }
7570 }
7571 }
7572 return (dropped);
7573 }
7574
7575
7576 /* --------------------------------------------------------------------- */
7577 /* Function: ipf_extraflush */
7578 /* Returns: int - number of entries flushed (0 = none) */
7579 /* Parameters: flushtype - which table we're cleaning (NAT or State) */
7580 /* ipfqs - pointer to 'established' timeout queue */
7581 /* userqs - pointer to user defined queues */
7582 /* ifs - ipf stack instance */
7583 /* */
7584 /* This function gets called when either NAT or state tables fill up. */
7585 /* We need to try a bit harder to free up some space. The function will */
7586 /* flush entries for TCP connections which have been idle a long time. */
7587 /* */
7588 /* Currently, the idle time is checked using values from ideltime_tab[] */
7589 /* --------------------------------------------------------------------- */
ipf_extraflush(flushtype,ipfqs,userqs,ifs)7590 int ipf_extraflush(flushtype, ipfqs, userqs, ifs)
7591 int flushtype;
7592 ipftq_t *ipfqs, *userqs;
7593 ipf_stack_t *ifs;
7594 {
7595 ipftq_t *ifq, *ifqn;
7596 int idletime, removed, idle_idx;
7597
7598 removed = 0;
7599
7600 /*
7601 * Determine initial threshold for minimum idle time based on
7602 * how long ipfilter has been running. Ipfilter needs to have
7603 * been up as long as the smallest interval to continue on.
7604 *
7605 * Minimum idle times stored in idletime_tab and indexed by
7606 * idle_idx. Start at upper end of array and work backwards.
7607 *
7608 * Once the index is found, set the initial idle time to the
7609 * first interval before the current ipfilter run time.
7610 */
7611 if (ifs->ifs_fr_ticks < idletime_tab[0])
7612 return (0);
7613 idle_idx = (sizeof (idletime_tab) / sizeof (int)) - 1;
7614 if (ifs->ifs_fr_ticks > idletime_tab[idle_idx]) {
7615 idletime = idletime_tab[idle_idx];
7616 } else {
7617 while ((idle_idx > 0) &&
7618 (ifs->ifs_fr_ticks < idletime_tab[idle_idx]))
7619 idle_idx--;
7620
7621 idletime = (ifs->ifs_fr_ticks /
7622 idletime_tab[idle_idx]) *
7623 idletime_tab[idle_idx];
7624 }
7625
7626 while (idle_idx >= 0) {
7627 /*
7628 * Check to see if we need to delete more entries.
7629 * If we do, start with appropriate timeout queue.
7630 */
7631 if (flushtype == NAT_FLUSH) {
7632 if (NAT_TAB_WATER_LEVEL(ifs) <=
7633 ifs->ifs_nat_flush_level_lo)
7634 break;
7635 } else if (flushtype == STATE_FLUSH) {
7636 if (ST_TAB_WATER_LEVEL(ifs) <=
7637 ifs->ifs_state_flush_level_lo)
7638 break;
7639 } else {
7640 break;
7641 }
7642
7643 removed += ipf_earlydrop(flushtype, ipfqs, idletime, ifs);
7644
7645 /*
7646 * Next, check the user defined queues. But first, make
7647 * certain that timeout queue deletions didn't do enough.
7648 */
7649 if (flushtype == NAT_FLUSH) {
7650 if (NAT_TAB_WATER_LEVEL(ifs) <=
7651 ifs->ifs_nat_flush_level_lo)
7652 break;
7653 } else {
7654 if (ST_TAB_WATER_LEVEL(ifs) <=
7655 ifs->ifs_state_flush_level_lo)
7656 break;
7657 }
7658 ifqn = userqs;
7659 while ((ifq = ifqn) != NULL) {
7660 ifqn = ifq->ifq_next;
7661 removed += ipf_earlydrop(flushtype, ifq, idletime, ifs);
7662 }
7663
7664 /*
7665 * Adjust the granularity of idle time.
7666 *
7667 * If we reach an interval boundary, we need to
7668 * either adjust the idle time accordingly or exit
7669 * the loop altogether (if this is very last check).
7670 */
7671 idletime -= idletime_tab[idle_idx];
7672 if (idletime < idletime_tab[idle_idx]) {
7673 if (idle_idx != 0) {
7674 idletime = idletime_tab[idle_idx] -
7675 idletime_tab[idle_idx - 1];
7676 idle_idx--;
7677 } else {
7678 break;
7679 }
7680 }
7681 }
7682
7683 return (removed);
7684 }
7685