xref: /netbsd-src/sys/external/bsd/ipf/netinet/radix_ipf.c (revision e392e965d77c55e1450ebfe8cd63006e349fcabb)
1 /*	$NetBSD: radix_ipf.c,v 1.6 2015/12/15 12:30:34 christos Exp $	*/
2 
3 /*
4  * Copyright (C) 2012 by Darren Reed.
5  *
6  * See the IPFILTER.LICENCE file for details on licencing.
7  */
8 #include <sys/types.h>
9 #include <sys/time.h>
10 #include <sys/socket.h>
11 #include <sys/param.h>
12 #include <netinet/in.h>
13 #include <net/if.h>
14 #if !defined(_KERNEL)
15 # include <stddef.h>
16 # include <stdlib.h>
17 # include <strings.h>
18 # include <string.h>
19 #endif
20 #include "netinet/ip_compat.h"
21 #include "netinet/ip_fil.h"
22 #ifdef RDX_DEBUG
23 # include <arpa/inet.h>
24 # include <stdlib.h>
25 # include <stdio.h>
26 #endif
27 #include "netinet/radix_ipf.h"
28 
29 #define	ADF_OFF	offsetof(addrfamily_t, adf_addr)
30 #define	ADF_OFF_BITS	((ADF_OFF << 3) & 0xffff)
31 
32 static ipf_rdx_node_t *ipf_rx_insert(ipf_rdx_head_t *,
33 					  ipf_rdx_node_t nodes[2], int *);
34 static void ipf_rx_attach_mask(ipf_rdx_node_t *, ipf_rdx_mask_t *);
35 static int count_mask_bits(addrfamily_t *, u_32_t **);
36 static void buildnodes(addrfamily_t *, addrfamily_t *,
37 			    ipf_rdx_node_t n[2]);
38 static ipf_rdx_node_t *ipf_rx_find_addr(ipf_rdx_node_t *, u_32_t *);
39 static ipf_rdx_node_t *ipf_rx_lookup(ipf_rdx_head_t *, addrfamily_t *,
40 					  addrfamily_t *);
41 static ipf_rdx_node_t *ipf_rx_match(ipf_rdx_head_t *, addrfamily_t *);
42 
43 /*
44  * Foreword.
45  * ---------
46  * The code in this file has been written to target using the addrfamily_t
47  * data structure to house the address information and no other. Thus there
48  * are certain aspects of thise code (such as offsets to the address itself)
49  * that are hard coded here whilst they might be more variable elsewhere.
50  * Similarly, this code enforces no maximum key length as that's implied by
51  * all keys needing to be stored in addrfamily_t.
52  */
53 
54 /* ------------------------------------------------------------------------ */
55 /* Function:    count_mask_bits                                             */
56 /* Returns:     number of consecutive bits starting at "mask".              */
57 /*                                                                          */
58 /* Count the number of bits set in the address section of addrfamily_t and  */
59 /* return both that number and a pointer to the last word with a bit set if */
60 /* lastp is not NULL. The bit count is performed using network byte order   */
61 /* as the guide for which bit is the most significant bit.                  */
62 /* ------------------------------------------------------------------------ */
63 static int
count_mask_bits(addrfamily_t * mask,u_32_t ** lastp)64 count_mask_bits(addrfamily_t *mask, u_32_t **lastp)
65 {
66 	u_32_t *mp = (u_32_t *)&mask->adf_addr;
67 	u_32_t m;
68 	int count = 0;
69 	int mlen;
70 
71 	mlen = mask->adf_len - offsetof(addrfamily_t, adf_addr);
72 	for (; mlen > 0; mlen -= 4, mp++) {
73 		if ((m = ntohl(*mp)) == 0)
74 			break;
75 		if (lastp != NULL)
76 			*lastp = mp;
77 		for (; m & 0x80000000; m <<= 1)
78 			count++;
79 	}
80 
81 	return count;
82 }
83 
84 
85 /* ------------------------------------------------------------------------ */
86 /* Function:    buildnodes                                                  */
87 /* Returns:     Nil                                                         */
88 /* Parameters:  addr(I)  - network address for this radix node              */
89 /*              mask(I)  - netmask associated with the above address        */
90 /*              nodes(O) - pair of ipf_rdx_node_t's to initialise with data */
91 /*                         associated with addr and mask.                   */
92 /*                                                                          */
93 /* Initialise the fields in a pair of radix tree nodes according to the     */
94 /* data supplied in the paramters "addr" and "mask". It is expected that    */
95 /* "mask" will contain a consecutive string of bits set. Masks with gaps in */
96 /* the middle are not handled by this implementation.                       */
97 /* ------------------------------------------------------------------------ */
98 static void
buildnodes(addrfamily_t * addr,addrfamily_t * mask,ipf_rdx_node_t nodes[2])99 buildnodes(addrfamily_t *addr, addrfamily_t *mask, ipf_rdx_node_t nodes[2])
100 {
101 	u_32_t maskbits;
102 	u_32_t lastmask;
103 	u_32_t *last;
104 	int masklen;
105 
106 	last = NULL;
107 	maskbits = count_mask_bits(mask, &last);
108 	if (last == NULL) {
109 		masklen = 0;
110 		lastmask = 0;
111 	} else {
112 		masklen = last - (u_32_t *)mask;
113 		lastmask = *last;
114 	}
115 
116 	bzero(&nodes[0], sizeof(ipf_rdx_node_t) * 2);
117 	nodes[0].maskbitcount = maskbits;
118 	nodes[0].index = -1 - (ADF_OFF_BITS + maskbits);
119 	nodes[0].addrkey = (u_32_t *)addr;
120 	nodes[0].maskkey = (u_32_t *)mask;
121 	nodes[0].addroff = nodes[0].addrkey + masklen;
122 	nodes[0].maskoff = nodes[0].maskkey + masklen;
123 	nodes[0].parent = &nodes[1];
124 	nodes[0].offset = masklen;
125 	nodes[0].lastmask = lastmask;
126 	nodes[1].offset = masklen;
127 	nodes[1].left = &nodes[0];
128 	nodes[1].maskbitcount = maskbits;
129 #ifdef RDX_DEBUG
130 	(void) strcpy(nodes[0].name, "_BUILD.0");
131 	(void) strcpy(nodes[1].name, "_BUILD.1");
132 #endif
133 }
134 
135 
136 /* ------------------------------------------------------------------------ */
137 /* Function:    ipf_rx_find_addr                                            */
138 /* Returns:     ipf_rdx_node_t * - pointer to a node in the radix tree.     */
139 /* Parameters:  tree(I)  - pointer to first right node in tree to search    */
140 /*              addr(I)  - pointer to address to match                      */
141 /*                                                                          */
142 /* Walk the radix tree given by "tree", looking for a leaf node that is a   */
143 /* match for the address given by "addr".                                   */
144 /* ------------------------------------------------------------------------ */
145 static ipf_rdx_node_t *
ipf_rx_find_addr(ipf_rdx_node_t * tree,u_32_t * addr)146 ipf_rx_find_addr(ipf_rdx_node_t *tree, u_32_t *addr)
147 {
148 	ipf_rdx_node_t *cur;
149 
150 	for (cur = tree; cur->index >= 0;) {
151 		if (cur->bitmask & addr[cur->offset]) {
152 			cur = cur->right;
153 		} else {
154 			cur = cur->left;
155 		}
156 	}
157 
158 	return (cur);
159 }
160 
161 
162 /* ------------------------------------------------------------------------ */
163 /* Function:    ipf_rx_match                                                */
164 /* Returns:     ipf_rdx_node_t * - NULL on error, else pointer to the node  */
165 /*                                 added to the tree.                       */
166 /* Paramters:   head(I)  - pointer to tree head to search                   */
167 /*              addr(I)  - pointer to address to find                       */
168 /*                                                                          */
169 /* Search the radix tree for the best match to the address pointed to by    */
170 /* "addr" and return a pointer to that node. This search will not match the */
171 /* address information stored in either of the root leaves as neither of    */
172 /* them are considered to be part of the tree of data being stored.         */
173 /* ------------------------------------------------------------------------ */
174 static ipf_rdx_node_t *
ipf_rx_match(ipf_rdx_head_t * head,addrfamily_t * addr)175 ipf_rx_match(ipf_rdx_head_t *head, addrfamily_t *addr)
176 {
177 	ipf_rdx_mask_t *masknode;
178 	ipf_rdx_node_t *prev;
179 	ipf_rdx_node_t *node;
180 	ipf_rdx_node_t *cur;
181 	u_32_t *data;
182 	u_32_t *mask;
183 	u_32_t *key;
184 	u_32_t *end;
185 	int len;
186 	int i;
187 
188 	len = addr->adf_len;
189 	end = (u_32_t *)((u_char *)addr + len);
190 	node = ipf_rx_find_addr(head->root, (u_32_t *)addr);
191 
192 	/*
193 	 * Search the dupkey list for a potential match.
194 	 */
195 	for (cur = node; (cur != NULL) && (cur->root == 0); cur = cur->dupkey) {
196 		i = cur[0].addroff - cur[0].addrkey;
197 		data = cur[0].addrkey + i;
198 		mask = cur[0].maskkey + i;
199 		key = (u_32_t *)addr + i;
200 		for (; key < end; data++, key++, mask++)
201 			if ((*key & *mask) != *data)
202 				break;
203 		if ((end == key) && (cur->root == 0))
204 			return (cur);	/* Equal keys */
205 	}
206 	prev = node->parent;
207 	key = (u_32_t *)addr;
208 
209 	for (node = prev; node->root == 0; node = node->parent) {
210 		/*
211 		 * We know that the node hasn't matched so therefore only
212 		 * the entries in the mask list are searched, not the top
213 		 * node nor the dupkey list.
214 		 */
215 		masknode = node->masks;
216 		for (; masknode != NULL; masknode = masknode->next) {
217 			if (masknode->maskbitcount > node->maskbitcount)
218 				continue;
219 			cur = masknode->node;
220 			for (i = ADF_OFF >> 2; i <= node->offset; i++) {
221 				if ((key[i] & masknode->mask[i]) ==
222 				    cur->addrkey[i])
223 					return (cur);
224 			}
225 		}
226 	}
227 
228 	return NULL;
229 }
230 
231 
232 /* ------------------------------------------------------------------------ */
233 /* Function:    ipf_rx_lookup                                               */
234 /* Returns:     ipf_rdx_node_t * - NULL on error, else pointer to the node  */
235 /*                                 added to the tree.                       */
236 /* Paramters:   head(I)  - pointer to tree head to search                   */
237 /*              addr(I)  - address part of the key to match                 */
238 /*              mask(I)  - netmask part of the key to match                 */
239 /*                                                                          */
240 /* ipf_rx_lookup searches for an exact match on (addr,mask). The intention  */
241 /* is to see if a given key is in the tree, not to see if a route exists.   */
242 /* ------------------------------------------------------------------------ */
243 ipf_rdx_node_t *
ipf_rx_lookup(ipf_rdx_head_t * head,addrfamily_t * addr,addrfamily_t * mask)244 ipf_rx_lookup(ipf_rdx_head_t *head, addrfamily_t *addr, addrfamily_t *mask)
245 {
246 	ipf_rdx_node_t *found;
247 	ipf_rdx_node_t *node;
248 	u_32_t *akey;
249 	int count;
250 
251 	found = ipf_rx_find_addr(head->root, (u_32_t *)addr);
252 	if (found->root == 1)
253 		return NULL;
254 
255 	/*
256 	 * It is possible to find a matching address in the tree but for the
257 	 * netmask to not match. If the netmask does not match and there is
258 	 * no list of alternatives present at dupkey, return a failure.
259 	 */
260 	count = count_mask_bits(mask, NULL);
261 	if (count != found->maskbitcount && found->dupkey == NULL)
262 		return (NULL);
263 
264 	akey = (u_32_t *)addr;
265 	if ((found->addrkey[found->offset] & found->maskkey[found->offset]) !=
266 	    akey[found->offset])
267 		return NULL;
268 
269 	if (found->dupkey != NULL) {
270 		node = found;
271 		while (node != NULL && node->maskbitcount != count)
272 			node = node->dupkey;
273 		if (node == NULL)
274 			return (NULL);
275 		found = node;
276 	}
277 	return found;
278 }
279 
280 
281 /* ------------------------------------------------------------------------ */
282 /* Function:    ipf_rx_attach_mask                                          */
283 /* Returns:     Nil                                                         */
284 /* Parameters:  node(I)  - pointer to a radix tree node                     */
285 /*              mask(I)  - pointer to mask structure to add                 */
286 /*                                                                          */
287 /* Add the netmask to the given node in an ordering where the most specific */
288 /* netmask is at the top of the list.                                       */
289 /* ------------------------------------------------------------------------ */
290 static void
ipf_rx_attach_mask(ipf_rdx_node_t * node,ipf_rdx_mask_t * mask)291 ipf_rx_attach_mask(ipf_rdx_node_t *node, ipf_rdx_mask_t *mask)
292 {
293 	ipf_rdx_mask_t **pm;
294 	ipf_rdx_mask_t *m;
295 
296 	for (pm = &node->masks; (m = *pm) != NULL; pm = &m->next)
297 		if (m->maskbitcount < mask->maskbitcount)
298 			break;
299 	mask->next = *pm;
300 	*pm = mask;
301 }
302 
303 
304 /* ------------------------------------------------------------------------ */
305 /* Function:    ipf_rx_insert                                               */
306 /* Returns:     ipf_rdx_node_t * - NULL on error, else pointer to the node  */
307 /*                                 added to the tree.                       */
308 /* Paramters:   head(I)  - pointer to tree head to add nodes to             */
309 /*              nodes(I) - pointer to radix nodes to be added               */
310 /*              dup(O)   - set to 1 if node is a duplicate, else 0.         */
311 /*                                                                          */
312 /* Add the new radix tree entry that owns nodes[] to the tree given by head.*/
313 /* If there is already a matching key in the table, "dup" will be set to 1  */
314 /* and the existing node pointer returned if there is a complete key match. */
315 /* A complete key match is a matching of all key data that is presented by  */
316 /* by the netmask.                                                          */
317 /* ------------------------------------------------------------------------ */
318 static ipf_rdx_node_t *
ipf_rx_insert(ipf_rdx_head_t * head,ipf_rdx_node_t nodes[2],int * dup)319 ipf_rx_insert(ipf_rdx_head_t *head, ipf_rdx_node_t nodes[2], int *dup)
320 {
321 	ipf_rdx_mask_t **pmask;
322 	ipf_rdx_node_t *node;
323 	ipf_rdx_node_t *prev;
324 	ipf_rdx_mask_t *mask;
325 	ipf_rdx_node_t *cur;
326 	u_32_t nodemask;
327 	u_32_t *addr;
328 	u_32_t *data;
329 	int nodebits;
330 	u_32_t *key;
331 	u_32_t *end;
332 	u_32_t bits;
333 	int nodekey;
334 	int nodeoff;
335 	int nlen;
336 	int len;
337 
338 	addr = nodes[0].addrkey;
339 
340 	node = ipf_rx_find_addr(head->root, addr);
341 	len = ((addrfamily_t *)addr)->adf_len;
342 	key = (u_32_t *)&((addrfamily_t *)addr)->adf_addr;
343 	data= (u_32_t *)&((addrfamily_t *)node->addrkey)->adf_addr;
344 	end = (u_32_t *)((u_char *)addr + len);
345 	for (nlen = 0; key < end; data++, key++, nlen += 32)
346 		if (*key != *data)
347 			break;
348 	if (end == data) {
349 		*dup = 1;
350 		return (node);	/* Equal keys */
351 	}
352 	*dup = 0;
353 
354 	bits = (ntohl(*data) ^ ntohl(*key));
355 	for (; bits != 0; nlen++) {
356 		if ((bits & 0x80000000) != 0)
357 			break;
358 		bits <<= 1;
359 	}
360 	nlen += ADF_OFF_BITS;
361 	nodes[1].index = nlen;
362 	nodes[1].bitmask = htonl(0x80000000 >> (nlen & 0x1f));
363 	nodes[0].offset = nlen / 32;
364 	nodes[1].offset = nlen / 32;
365 
366 	/*
367 	 * Walk through the tree and look for the correct place to attach
368 	 * this node. ipf_rx_fin_addr is not used here because the place
369 	 * to attach this node may be an internal node (same key, different
370 	 * netmask.) Additionally, the depth of the search is forcibly limited
371 	 * here to not exceed the netmask, so that a short netmask will be
372 	 * added higher up the tree even if there are lower branches.
373 	 */
374 	cur = head->root;
375 	key = nodes[0].addrkey;
376 	do {
377 		prev = cur;
378 		if (key[cur->offset] & cur->bitmask) {
379 			cur = cur->right;
380 		} else {
381 			cur = cur->left;
382 		}
383 	} while (nlen > (unsigned)cur->index);
384 
385 	if ((key[prev->offset] & prev->bitmask) == 0) {
386 		prev->left = &nodes[1];
387 	} else {
388 		prev->right = &nodes[1];
389 	}
390 	cur->parent = &nodes[1];
391 	nodes[1].parent = prev;
392 	if ((key[nodes[1].offset] & nodes[1].bitmask) == 0) {
393 		nodes[1].right = cur;
394 	} else {
395 		nodes[1].right = &nodes[0];
396 		nodes[1].left = cur;
397 	}
398 
399 	nodeoff = nodes[0].offset;
400 	nodekey = nodes[0].addrkey[nodeoff];
401 	nodemask = nodes[0].lastmask;
402 	nodebits = nodes[0].maskbitcount;
403 	prev = NULL;
404 	/*
405 	 * Find the node up the tree with the largest pattern that still
406 	 * matches the node being inserted to see if this mask can be
407 	 * moved there.
408 	 */
409 	for (cur = nodes[1].parent; cur->root == 0; cur = cur->parent) {
410 		if (cur->maskbitcount <= nodebits)
411 			break;
412 		if (((cur - 1)->addrkey[nodeoff] & nodemask) != nodekey)
413 			break;
414 		prev = cur;
415 	}
416 
417 	KMALLOC(mask, ipf_rdx_mask_t *);
418 	if (mask == NULL)
419 		return NULL;
420 	bzero(mask, sizeof(*mask));
421 	mask->next = NULL;
422 	mask->node = &nodes[0];
423 	mask->maskbitcount = nodebits;
424 	mask->mask = nodes[0].maskkey;
425 	nodes[0].mymask = mask;
426 
427 	if (prev != NULL) {
428 		ipf_rdx_mask_t *m;
429 
430 		for (pmask = &prev->masks; (m = *pmask) != NULL;
431 		     pmask = &m->next) {
432 			if (m->maskbitcount < nodebits)
433 				break;
434 		}
435 	} else {
436 		/*
437 		 * No higher up nodes qualify, so attach mask locally.
438 		 */
439 		pmask = &nodes[0].masks;
440 	}
441 	mask->next = *pmask;
442 	*pmask = mask;
443 
444 	/*
445 	 * Search the mask list on each child to see if there are any masks
446 	 * there that can be moved up to this newly inserted node.
447 	 */
448 	cur = nodes[1].right;
449 	if (cur->root == 0) {
450 		for (pmask = &cur->masks; (mask = *pmask) != NULL; ) {
451 			if (mask->maskbitcount < nodebits) {
452 				*pmask = mask->next;
453 				ipf_rx_attach_mask(&nodes[0], mask);
454 			} else {
455 				pmask = &mask->next;
456 			}
457 		}
458 	}
459 	cur = nodes[1].left;
460 	if (cur->root == 0 && cur != &nodes[0]) {
461 		for (pmask = &cur->masks; (mask = *pmask) != NULL; ) {
462 			if (mask->maskbitcount < nodebits) {
463 				*pmask = mask->next;
464 				ipf_rx_attach_mask(&nodes[0], mask);
465 			} else {
466 				pmask = &mask->next;
467 			}
468 		}
469 	}
470 	return (&nodes[0]);
471 }
472 
473 /* ------------------------------------------------------------------------ */
474 /* Function:    ipf_rx_addroute                                             */
475 /* Returns:     ipf_rdx_node_t * - NULL on error, else pointer to the node  */
476 /*                                 added to the tree.                       */
477 /* Paramters:   head(I)  - pointer to tree head to search                   */
478 /*              addr(I)  - address portion of "route" to add                */
479 /*              mask(I)  - netmask portion of "route" to add                */
480 /*              nodes(I) - radix tree data nodes inside allocate structure  */
481 /*                                                                          */
482 /* Attempt to add a node to the radix tree. The key for the node is the     */
483 /* (addr,mask). No memory allocation for the radix nodes themselves is      */
484 /* performed here, the data structure that this radix node is being used to */
485 /* find is expected to house the node data itself however the call to       */
486 /* ipf_rx_insert() will attempt to allocate memory in order for netmask to  */
487 /* be promoted further up the tree.                                         */
488 /* In this case, the ip_pool_node_t structure from ip_pool.h contains both  */
489 /* the key material (addr,mask) and the radix tree nodes[].                 */
490 /*                                                                          */
491 /* The mechanics of inserting the node into the tree is handled by the      */
492 /* function ipf_rx_insert() above. Here, the code deals with the case       */
493 /* where the data to be inserted is a duplicate.                            */
494 /* ------------------------------------------------------------------------ */
495 ipf_rdx_node_t *
ipf_rx_addroute(ipf_rdx_head_t * head,addrfamily_t * addr,addrfamily_t * mask,ipf_rdx_node_t * nodes)496 ipf_rx_addroute(ipf_rdx_head_t *head, addrfamily_t *addr, addrfamily_t *mask,
497     ipf_rdx_node_t *nodes)
498 {
499 	ipf_rdx_node_t *node;
500 	ipf_rdx_node_t *prev;
501 	ipf_rdx_node_t *x;
502 	int dup;
503 
504 	buildnodes(addr, mask, nodes);
505 	x = ipf_rx_insert(head, nodes, &dup);
506 	if (x == NULL)
507 		return NULL;
508 
509 	if (dup == 1) {
510 		node = &nodes[0];
511 		prev = NULL;
512 		/*
513 		 * The duplicate list is kept sorted with the longest
514 		 * mask at the top, meaning that the most specific entry
515 		 * in the listis found first. This list thus allows for
516 		 * duplicates such as 128.128.0.0/32 and 128.128.0.0/16.
517 		 */
518 		while ((x != NULL) && (x->maskbitcount > node->maskbitcount)) {
519 			prev = x;
520 			x = x->dupkey;
521 		}
522 
523 		/*
524 		 * Is it a complete duplicate? If so, return NULL and
525 		 * fail the insert. Otherwise, insert it into the list
526 		 * of netmasks active for this key.
527 		 */
528 		if ((x != NULL) && (x->maskbitcount == node->maskbitcount))
529 			return (NULL);
530 
531 		if (prev != NULL) {
532 			nodes[0].dupkey = x;
533 			prev->dupkey = &nodes[0];
534 			nodes[0].parent = prev;
535 			if (x != NULL)
536 				x->parent = &nodes[0];
537 		} else {
538 			nodes[0].dupkey = x->dupkey;
539 			prev = x->parent;
540 			nodes[0].parent = prev;
541 			x->parent = &nodes[0];
542 			if (prev->left == x)
543 				prev->left = &nodes[0];
544 			else
545 				prev->right = &nodes[0];
546 		}
547 	}
548 
549 	return &nodes[0];
550 }
551 
552 
553 /* ------------------------------------------------------------------------ */
554 /* Function:    ipf_rx_delete                                               */
555 /* Returns:     ipf_rdx_node_t * - NULL on error, else node removed from    */
556 /*                                 the tree.                                */
557 /* Paramters:   head(I)  - pointer to tree head to search                   */
558 /*              addr(I)  - pointer to the address part of the key           */
559 /*              mask(I)  - pointer to the netmask part of the key           */
560 /*                                                                          */
561 /* Search for an entry in the radix tree that is an exact match for (addr,  */
562 /* mask) and remove it if it exists. In the case where (addr,mask) is a not */
563 /* a unique key, the tree structure itself is not changed - only the list   */
564 /* of duplicate keys.                                                       */
565 /* ------------------------------------------------------------------------ */
566 ipf_rdx_node_t *
ipf_rx_delete(ipf_rdx_head_t * head,addrfamily_t * addr,addrfamily_t * mask)567 ipf_rx_delete(ipf_rdx_head_t *head, addrfamily_t *addr, addrfamily_t *mask)
568 {
569 	ipf_rdx_mask_t **pmask;
570 	ipf_rdx_node_t *parent;
571 	ipf_rdx_node_t *found;
572 	ipf_rdx_node_t *prev;
573 	ipf_rdx_node_t *node;
574 	ipf_rdx_node_t *cur;
575 	ipf_rdx_mask_t *m;
576 	int count;
577 
578 	found = ipf_rx_find_addr(head->root, (u_32_t *)addr);
579 	if (found == NULL)
580 		return NULL;
581 	if (found->root == 1)
582 		return NULL;
583 	count = count_mask_bits(mask, NULL);
584 	parent = found->parent;
585 	if (found->dupkey != NULL) {
586 		node = found;
587 		while (node != NULL && node->maskbitcount != count)
588 			node = node->dupkey;
589 		if (node == NULL)
590 			return (NULL);
591 		if (node != found) {
592 			/*
593 			 * Remove from the dupkey list. Here, "parent" is
594 			 * the previous node on the list (rather than tree)
595 			 * and "dupkey" is the next node on the list.
596 			 */
597 			parent = node->parent;
598 			parent->dupkey = node->dupkey;
599 			node->dupkey->parent = parent;
600 		} else {
601 			/*
602 			 *
603 			 * When removing the top node of the dupkey list,
604 			 * the pointers at the top of the list that point
605 			 * to other tree nodes need to be preserved and
606 			 * any children must have their parent updated.
607 			 */
608 			node = node->dupkey;
609 			node->parent = found->parent;
610 			node->right = found->right;
611 			node->left = found->left;
612 			found->right->parent = node;
613 			found->left->parent = node;
614 			if (parent->left == found)
615 				parent->left = node;
616 			else
617 				parent->right= node;
618 		}
619 	} else {
620 		if (count != found->maskbitcount)
621 			return (NULL);
622 		/*
623 		 * Remove the node from the tree and reconnect the subtree
624 		 * below.
625 		 */
626 		/*
627 		 * If there is a tree to the left, look for something to
628 		 * attach in place of "found".
629 		 */
630 		prev = found + 1;
631 		cur = parent->parent;
632 		if (parent != found + 1) {
633 			if ((found + 1)->parent->right == found + 1)
634 				(found + 1)->parent->right = parent;
635 			else
636 				(found + 1)->parent->left = parent;
637 			if (cur->right == parent) {
638 				if (parent->left == found) {
639 					cur->right = parent->right;
640 				} else if (parent->left != parent - 1) {
641 					cur->right = parent->left;
642 				} else {
643 					cur->right = parent - 1;
644 				}
645 				cur->right->parent = cur;
646 			} else {
647 				if (parent->right == found) {
648 					cur->left = parent->left;
649 				} else if (parent->right != parent - 1) {
650 					cur->left = parent->right;
651 				} else {
652 					cur->left = parent - 1;
653 				}
654 				cur->left->parent = cur;
655 			}
656 			parent->left = (found + 1)->left;
657 			if ((found + 1)->right != parent)
658 				parent->right = (found + 1)->right;
659 			parent->left->parent = parent;
660 			parent->right->parent = parent;
661 			parent->parent = (found + 1)->parent;
662 
663 			parent->bitmask = prev->bitmask;
664 			parent->offset = prev->offset;
665 			parent->index = prev->index;
666 		} else {
667 			/*
668 			 * We found an edge node.
669 			 */
670 			cur = parent->parent;
671 			if (cur->left == parent) {
672 				if (parent->left == found) {
673 					cur->left = parent->right;
674 					parent->right->parent = cur;
675 				} else {
676 					cur->left = parent->left;
677 					parent->left->parent = cur;
678 				}
679 			} else {
680 				if (parent->right != found) {
681 					cur->right = parent->right;
682 					parent->right->parent = cur;
683 				} else {
684 					cur->right = parent->left;
685 					prev->left->parent = cur;
686 				}
687 			}
688 		}
689 	}
690 
691 	/*
692 	 * Remove mask associated with this node.
693 	 */
694 	for (cur = parent; cur->root == 0; cur = cur->parent) {
695 		ipf_rdx_mask_t **pm;
696 
697 		if (cur->maskbitcount <= found->maskbitcount)
698 			break;
699 		if (((cur - 1)->addrkey[found->offset] & found->bitmask) !=
700 		    found->addrkey[found->offset])
701 			break;
702 		for (pm = &cur->masks; (m = *pm) != NULL; )
703 			if (m->node == cur) {
704 				*pm = m->next;
705 				break;
706 			} else {
707 				pm = &m->next;
708 			}
709 	}
710 	KFREE(found->mymask);
711 
712 	/*
713 	 * Masks that have been brought up to this node from below need to
714 	 * be sent back down.
715 	 */
716 	for (pmask = &parent->masks; (m = *pmask) != NULL; ) {
717 		*pmask = m->next;
718 		cur = m->node;
719 		if (cur == found)
720 			continue;
721 		if (found->addrkey[cur->offset] & cur->lastmask) {
722 			ipf_rx_attach_mask(parent->right, m);
723 		} else if (parent->left != found) {
724 			ipf_rx_attach_mask(parent->left, m);
725 		}
726 	}
727 
728 	return (found);
729 }
730 
731 
732 /* ------------------------------------------------------------------------ */
733 /* Function:    ipf_rx_walktree                                             */
734 /* Returns:     Nil                                                         */
735 /* Paramters:   head(I)   - pointer to tree head to search                  */
736 /*              walker(I) - function to call for each node in the tree      */
737 /*              arg(I)    - parameter to pass to walker, in addition to the */
738 /*                          node pointer                                    */
739 /*                                                                          */
740 /* A standard tree walking function except that it is iterative, rather     */
741 /* than recursive and tracks the next node in case the "walker" function    */
742 /* should happen to delete and free the current node. It thus goes without  */
743 /* saying that the "walker" function is not permitted to cause any change   */
744 /* in the validity of the data found at either the left or right child.     */
745 /* ------------------------------------------------------------------------ */
746 void
ipf_rx_walktree(ipf_rdx_head_t * head,radix_walk_func_t walker,void * arg)747 ipf_rx_walktree(ipf_rdx_head_t *head, radix_walk_func_t walker, void *arg)
748 {
749 	ipf_rdx_node_t *next;
750 	ipf_rdx_node_t *node = head->root;
751 	ipf_rdx_node_t *base;
752 
753 	while (node->index >= 0)
754 		node = node->left;
755 
756 	for (;;) {
757 		base = node;
758 		while ((node->parent->right == node) && (node->root == 0))
759 			node = node->parent;
760 
761 		for (node = node->parent->right; node->index >= 0; )
762 			node = node->left;
763 		next = node;
764 
765 		for (node = base; node != NULL; node = base) {
766 			base = node->dupkey;
767 			if (node->root == 0)
768 				walker(node, arg);
769 		}
770 		node = next;
771 		if (node->root)
772 			return;
773 	}
774 }
775 
776 
777 /* ------------------------------------------------------------------------ */
778 /* Function:    ipf_rx_inithead                                             */
779 /* Returns:     int       - 0 = success, else failure                       */
780 /* Paramters:   softr(I)  - pointer to radix context                        */
781 /*              headp(O)  - location for where to store allocated tree head */
782 /*                                                                          */
783 /* This function allocates and initialises a radix tree head structure.     */
784 /* As a traditional radix tree, node 0 is used as the "0" sentinel and node */
785 /* "2" is used as the all ones sentinel, leaving node "1" as the root from  */
786 /* which the tree is hung with node "0" on its left and node "2" to the     */
787 /* right. The context, "softr", is used here to provide a common source of  */
788 /* the zeroes and ones data rather than have one per head.                  */
789 /* ------------------------------------------------------------------------ */
790 int
ipf_rx_inithead(radix_softc_t * softr,ipf_rdx_head_t ** headp)791 ipf_rx_inithead(radix_softc_t *softr, ipf_rdx_head_t **headp)
792 {
793 	ipf_rdx_head_t *ptr;
794 	ipf_rdx_node_t *node;
795 
796 	KMALLOC(ptr, ipf_rdx_head_t *);
797 	*headp = ptr;
798 	if (ptr == NULL)
799 		return -1;
800 	bzero(ptr, sizeof(*ptr));
801 	node = ptr->nodes;
802 	ptr->root = node + 1;
803 	node[0].index = ADF_OFF_BITS;
804 	node[0].index = -1 - node[0].index;
805 	node[1].index = ADF_OFF_BITS;
806 	node[2].index = node[0].index;
807 	node[0].parent = node + 1;
808 	node[1].parent = node + 1;
809 	node[2].parent = node + 1;
810 	node[1].bitmask = htonl(0x80000000);
811 	node[0].root = 1;
812 	node[1].root = 1;
813 	node[2].root = 1;
814 	node[0].offset = ADF_OFF_BITS >> 5;
815 	node[1].offset = ADF_OFF_BITS >> 5;
816 	node[2].offset = ADF_OFF_BITS >> 5;
817 	node[1].left = &node[0];
818 	node[1].right = &node[2];
819 	node[0].addrkey = (u_32_t *)softr->zeros;
820 	node[2].addrkey = (u_32_t *)softr->ones;
821 #ifdef RDX_DEBUG
822 	(void) strcpy(node[0].name, "0_ROOT");
823 	(void) strcpy(node[1].name, "1_ROOT");
824 	(void) strcpy(node[2].name, "2_ROOT");
825 #endif
826 
827 	ptr->addaddr = ipf_rx_addroute;
828 	ptr->deladdr = ipf_rx_delete;
829 	ptr->lookup = ipf_rx_lookup;
830 	ptr->matchaddr = ipf_rx_match;
831 	ptr->walktree = ipf_rx_walktree;
832 	return 0;
833 }
834 
835 
836 /* ------------------------------------------------------------------------ */
837 /* Function:    ipf_rx_freehead                                             */
838 /* Returns:     Nil                                                         */
839 /* Paramters:   head(I)  - pointer to tree head to free                     */
840 /*                                                                          */
841 /* This function simply free's up the radix tree head. Prior to calling     */
842 /* this function, it is expected that the tree will have been emptied.      */
843 /* ------------------------------------------------------------------------ */
844 void
ipf_rx_freehead(ipf_rdx_head_t * head)845 ipf_rx_freehead(ipf_rdx_head_t *head)
846 {
847 	KFREE(head);
848 }
849 
850 
851 /* ------------------------------------------------------------------------ */
852 /* Function:    ipf_rx_create                                               */
853 /* Parameters:  Nil                                                         */
854 /*                                                                          */
855 /* ------------------------------------------------------------------------ */
856 void *
ipf_rx_create(void)857 ipf_rx_create(void)
858 {
859 	radix_softc_t *softr;
860 
861 	KMALLOC(softr, radix_softc_t *);
862 	if (softr == NULL)
863 		return NULL;
864 	bzero((char *)softr, sizeof(*softr));
865 
866 	KMALLOCS(softr->zeros, u_char *, 3 * sizeof(addrfamily_t));
867 	if (softr->zeros == NULL) {
868 		KFREE(softr);
869 		return (NULL);
870 	}
871 	softr->ones = softr->zeros + sizeof(addrfamily_t);
872 
873 	return softr;
874 }
875 
876 
877 /* ------------------------------------------------------------------------ */
878 /* Function:    ipf_rx_init                                                 */
879 /* Returns:     int       - 0 = success (always)                            */
880 /*                                                                          */
881 /* ------------------------------------------------------------------------ */
882 int
ipf_rx_init(void * ctx)883 ipf_rx_init(void *ctx)
884 {
885 	radix_softc_t *softr = ctx;
886 
887 	memset(softr->zeros, 0, 3 * sizeof(addrfamily_t));
888 	memset(softr->ones, 0xff, sizeof(addrfamily_t));
889 
890 	return (0);
891 }
892 
893 
894 /* ------------------------------------------------------------------------ */
895 /* Function:    ipf_rx_destroy                                              */
896 /* Returns:     Nil                                                         */
897 /*                                                                          */
898 /* ------------------------------------------------------------------------ */
899 void
ipf_rx_destroy(void * ctx)900 ipf_rx_destroy(void *ctx)
901 {
902 	radix_softc_t *softr = ctx;
903 
904 	if (softr->zeros != NULL)
905 		KFREES(softr->zeros, 3 * sizeof(addrfamily_t));
906 	KFREE(softr);
907 }
908 
909 /* ====================================================================== */
910 
911 #ifdef RDX_DEBUG
912 /*
913  * To compile this file as a standalone test unit, use -DRDX_DEBUG=1
914  */
915 #define	NAME(x)	((x)->index < 0 ? (x)->name : (x)->name)
916 #define	GNAME(y)	((y) == NULL ? "NULL" : NAME(y))
917 
918 typedef struct myst {
919 	struct ipf_rdx_node nodes[2];
920 	addrfamily_t	dst;
921 	addrfamily_t	mask;
922 	struct myst	*next;
923 	int		printed;
924 } myst_t;
925 
926 typedef struct tabe_s {
927 	char	*host;
928 	char	*mask;
929 	char	*what;
930 } tabe_t;
931 
932 tabe_t builtin[] = {
933 #if 1
934 	{ "192:168:100::0",	"48",			"d" },
935 	{ "192:168:100::2",	"128",			"d" },
936 #else
937 	{ "127.192.0.0",	"255.255.255.0",	"d" },
938 	{ "127.128.0.0",	"255.255.255.0",	"d" },
939 	{ "127.96.0.0",		"255.255.255.0",	"d" },
940 	{ "127.80.0.0",		"255.255.255.0",	"d" },
941 	{ "127.72.0.0",		"255.255.255.0",	"d" },
942 	{ "127.64.0.0",		"255.255.255.0",	"d" },
943 	{ "127.56.0.0",		"255.255.255.0",	"d" },
944 	{ "127.48.0.0",		"255.255.255.0",	"d" },
945 	{ "127.40.0.0",		"255.255.255.0",	"d" },
946 	{ "127.32.0.0",		"255.255.255.0",	"d" },
947 	{ "127.24.0.0",		"255.255.255.0",	"d" },
948 	{ "127.16.0.0",		"255.255.255.0",	"d" },
949 	{ "127.8.0.0",		"255.255.255.0",	"d" },
950 	{ "124.0.0.0",		"255.0.0.0",		"d" },
951 	{ "125.0.0.0",		"255.0.0.0",		"d" },
952 	{ "126.0.0.0",		"255.0.0.0",		"d" },
953 	{ "127.0.0.0",		"255.0.0.0",		"d" },
954 	{ "10.0.0.0",		"255.0.0.0",		"d" },
955 	{ "128.250.0.0",	"255.255.0.0",		"d" },
956 	{ "192.168.0.0",	"255.255.0.0",		"d" },
957 	{ "192.168.1.0",	"255.255.255.0",	"d" },
958 #endif
959 	{ NULL, NULL, NULL }
960 };
961 
962 char *mtable[][1] = {
963 #if 1
964 	{ "192:168:100::2" },
965 	{ "192:168:101::2" },
966 #else
967 	{ "9.0.0.0" },
968 	{ "9.0.0.1" },
969 	{ "11.0.0.0" },
970 	{ "11.0.0.1" },
971 	{ "127.0.0.1" },
972 	{ "127.0.1.0" },
973 	{ "255.255.255.0" },
974 	{ "126.0.0.1" },
975 	{ "128.251.0.0" },
976 	{ "128.251.0.1" },
977 	{ "128.251.255.255" },
978 	{ "129.250.0.0" },
979 	{ "129.250.0.1" },
980 	{ "192.168.255.255" },
981 #endif
982 	{ NULL }
983 };
984 
985 
986 int forder[22] = {
987 	14, 13, 12,  5, 10,  3, 19,  7,  4, 20,  8,
988 	 2, 17,  9, 16, 11, 15,  1,  6, 18,  0, 21
989 };
990 
991 static int nodecount = 0;
992 myst_t *myst_top = NULL;
993 tabe_t *ttable = NULL;
994 
995 void add_addr(ipf_rdx_head_t *, int , int);
996 void checktree(ipf_rdx_head_t *);
997 void delete_addr(ipf_rdx_head_t *rnh, int item);
998 void dumptree(ipf_rdx_head_t *rnh);
999 void nodeprinter(ipf_rdx_node_t *, void *);
1000 void printroots(ipf_rdx_head_t *);
1001 void random_add(ipf_rdx_head_t *);
1002 void random_delete(ipf_rdx_head_t *);
1003 void test_addr(ipf_rdx_head_t *rnh, int pref, addrfamily_t *, int);
1004 
1005 
1006 static void
ipf_rx_freenode(node,arg)1007 ipf_rx_freenode(node, arg)
1008 	ipf_rdx_node_t *node;
1009 	void *arg;
1010 {
1011 	ipf_rdx_head_t *head = arg;
1012 	ipf_rdx_node_t *rv;
1013 	myst_t *stp;
1014 
1015 	stp = (myst_t *)node;
1016 	rv = ipf_rx_delete(head, &stp->dst, &stp->mask);
1017 	if (rv != NULL) {
1018 		free(rv);
1019 	}
1020 }
1021 
1022 
1023 const char *
addrname(ap)1024 addrname(ap)
1025 	addrfamily_t *ap;
1026 {
1027 	static char name[80];
1028 	const char *txt;
1029 
1030 	bzero((char *)name, sizeof(name));
1031 	txt =  inet_ntop(ap->adf_family, &ap->adf_addr, name,
1032 			 sizeof(name));
1033 	return txt;
1034 }
1035 
1036 
1037 void
fill6bits(bits,msk)1038 fill6bits(bits, msk)
1039 	int bits;
1040 	u_int *msk;
1041 {
1042 	if (bits == 0) {
1043 		msk[0] = 0;
1044 		msk[1] = 0;
1045 		msk[2] = 0;
1046 		msk[3] = 0;
1047 		return;
1048 	}
1049 
1050 	msk[0] = 0xffffffff;
1051 	msk[1] = 0xffffffff;
1052 	msk[2] = 0xffffffff;
1053 	msk[3] = 0xffffffff;
1054 
1055 	if (bits == 128)
1056 		return;
1057 	if (bits > 96) {
1058 		msk[3] = htonl(msk[3] << (128 - bits));
1059 	} else if (bits > 64) {
1060 		msk[3] = 0;
1061 		msk[2] = htonl(msk[2] << (96 - bits));
1062 	} else if (bits > 32) {
1063 		msk[3] = 0;
1064 		msk[2] = 0;
1065 		msk[1] = htonl(msk[1] << (64 - bits));
1066 	} else {
1067 		msk[3] = 0;
1068 		msk[2] = 0;
1069 		msk[1] = 0;
1070 		msk[0] = htonl(msk[0] << (32 - bits));
1071 	}
1072 }
1073 
1074 
1075 void
setaddr(afp,str)1076 setaddr(afp, str)
1077 	addrfamily_t *afp;
1078 	char *str;
1079 {
1080 
1081 	bzero((char *)afp, sizeof(*afp));
1082 
1083 	if (strchr(str, ':') == NULL) {
1084 		afp->adf_family = AF_INET;
1085 		afp->adf_len = offsetof(addrfamily_t, adf_addr) + 4;
1086 	} else {
1087 		afp->adf_family = AF_INET6;
1088 		afp->adf_len = offsetof(addrfamily_t, adf_addr) + 16;
1089 	}
1090 	inet_pton(afp->adf_family, str, &afp->adf_addr);
1091 }
1092 
1093 
1094 void
setmask(afp,str)1095 setmask(afp, str)
1096 	addrfamily_t *afp;
1097 	char *str;
1098 {
1099 	if (strchr(str, '.') != NULL) {
1100 		afp->adf_addr.in4.s_addr = inet_addr(str);
1101 		afp->adf_len = offsetof(addrfamily_t, adf_addr) + 4;
1102 	} else if (afp->adf_family == AF_INET) {
1103 		afp->adf_addr.i6[0] = htonl(0xffffffff << (32 - atoi(str)));
1104 		afp->adf_len = offsetof(addrfamily_t, adf_addr) + 4;
1105 	} else if (afp->adf_family == AF_INET6) {
1106 		fill6bits(atoi(str), afp->adf_addr.i6);
1107 		afp->adf_len = offsetof(addrfamily_t, adf_addr) + 16;
1108 	}
1109 }
1110 
1111 
1112 void
nodeprinter(node,arg)1113 nodeprinter(node, arg)
1114 	ipf_rdx_node_t *node;
1115 	void *arg;
1116 {
1117 	myst_t *stp = (myst_t *)node;
1118 
1119 	printf("Node %-9.9s L %-9.9s R %-9.9s P %9.9s/%-9.9s %s/%d\n",
1120 		node[0].name,
1121 		GNAME(node[1].left), GNAME(node[1].right),
1122 		GNAME(node[0].parent), GNAME(node[1].parent),
1123 		addrname(&stp->dst), node[0].maskbitcount);
1124 	if (stp->printed == -1)
1125 		printf("!!! %d\n", stp->printed);
1126 	else
1127 		stp->printed = 1;
1128 }
1129 
1130 
1131 void
printnode(stp)1132 printnode(stp)
1133 	myst_t *stp;
1134 {
1135 	ipf_rdx_node_t *node = &stp->nodes[0];
1136 
1137 	if (stp->nodes[0].index > 0)
1138 		stp = (myst_t *)&stp->nodes[-1];
1139 
1140 	printf("Node %-9.9s ", node[0].name);
1141 	printf("L %-9.9s ", GNAME(node[1].left));
1142 	printf("R %-9.9s ", GNAME(node[1].right));
1143 	printf("P %9.9s", GNAME(node[0].parent));
1144 	printf("/%-9.9s ", GNAME(node[1].parent));
1145 	printf("%s P%d\n", addrname(&stp->dst), stp->printed);
1146 }
1147 
1148 
1149 void
buildtab(void)1150 buildtab(void)
1151 {
1152 	char line[80], *s;
1153 	tabe_t *tab;
1154 	int lines;
1155 	FILE *fp;
1156 
1157 	lines = 0;
1158 	fp = fopen("hosts", "r");
1159 
1160 	while (fgets(line, sizeof(line), fp) != NULL) {
1161 		s = strchr(line, '\n');
1162 		if (s != NULL)
1163 			*s = '\0';
1164 		lines++;
1165 		if (lines == 1)
1166 			tab = malloc(sizeof(*tab) * 2);
1167 		else
1168 			tab = realloc(tab, (lines + 1) * sizeof(*tab));
1169 		tab[lines - 1].host = strdup(line);
1170 		s = strchr(tab[lines - 1].host, '/');
1171 		*s++ = '\0';
1172 		tab[lines - 1].mask = s;
1173 		tab[lines - 1].what = "d";
1174 	}
1175 	fclose(fp);
1176 
1177 	tab[lines].host = NULL;
1178 	tab[lines].mask = NULL;
1179 	tab[lines].what = NULL;
1180 	ttable = tab;
1181 }
1182 
1183 
1184 void
printroots(rnh)1185 printroots(rnh)
1186 	ipf_rdx_head_t *rnh;
1187 {
1188 	printf("Root.0.%s b %3d p %-9.9s l %-9.9s r %-9.9s\n",
1189 		GNAME(&rnh->nodes[0]),
1190 		rnh->nodes[0].index, GNAME(rnh->nodes[0].parent),
1191 		GNAME(rnh->nodes[0].left), GNAME(rnh->nodes[0].right));
1192 	printf("Root.1.%s b %3d p %-9.9s l %-9.9s r %-9.9s\n",
1193 		GNAME(&rnh->nodes[1]),
1194 		rnh->nodes[1].index, GNAME(rnh->nodes[1].parent),
1195 		GNAME(rnh->nodes[1].left), GNAME(rnh->nodes[1].right));
1196 	printf("Root.2.%s b %3d p %-9.9s l %-9.9s r %-9.9s\n",
1197 		GNAME(&rnh->nodes[2]),
1198 		rnh->nodes[2].index, GNAME(rnh->nodes[2].parent),
1199 		GNAME(rnh->nodes[2].left), GNAME(rnh->nodes[2].right));
1200 }
1201 
1202 
1203 int
main(int argc,char * argv[])1204 main(int argc, char *argv[])
1205 {
1206 	addrfamily_t af;
1207 	ipf_rdx_head_t *rnh;
1208 	radix_softc_t *ctx;
1209 	int j;
1210 	int i;
1211 
1212 	rnh = NULL;
1213 
1214 	buildtab();
1215 	ctx = ipf_rx_create();
1216 	ipf_rx_init(ctx);
1217 	ipf_rx_inithead(ctx, &rnh);
1218 
1219 	printf("=== ADD-0 ===\n");
1220 	for (i = 0; ttable[i].host != NULL; i++) {
1221 		add_addr(rnh, i, i);
1222 		checktree(rnh);
1223 	}
1224 	printroots(rnh);
1225 	ipf_rx_walktree(rnh, nodeprinter, NULL);
1226 	printf("=== DELETE-0 ===\n");
1227 	for (i = 0; ttable[i].host != NULL; i++) {
1228 		delete_addr(rnh, i);
1229 		printroots(rnh);
1230 		ipf_rx_walktree(rnh, nodeprinter, NULL);
1231 	}
1232 	printf("=== ADD-1 ===\n");
1233 	for (i = 0; ttable[i].host != NULL; i++) {
1234 		setaddr(&af, ttable[i].host);
1235 		add_addr(rnh, i, i); /*forder[i]); */
1236 		checktree(rnh);
1237 	}
1238 	dumptree(rnh);
1239 	ipf_rx_walktree(rnh, nodeprinter, NULL);
1240 	printf("=== TEST-1 ===\n");
1241 	for (i = 0; ttable[i].host != NULL; i++) {
1242 		setaddr(&af, ttable[i].host);
1243 		test_addr(rnh, i, &af, -1);
1244 	}
1245 
1246 	printf("=== TEST-2 ===\n");
1247 	for (i = 0; mtable[i][0] != NULL; i++) {
1248 		setaddr(&af, mtable[i][0]);
1249 		test_addr(rnh, i, &af, -1);
1250 	}
1251 	printf("=== DELETE-1 ===\n");
1252 	for (i = 0; ttable[i].host != NULL; i++) {
1253 		if (ttable[i].what[0] != 'd')
1254 			continue;
1255 		delete_addr(rnh, i);
1256 		for (j = 0; ttable[j].host != NULL; j++) {
1257 			setaddr(&af, ttable[j].host);
1258 			test_addr(rnh, i, &af, 3);
1259 		}
1260 		printroots(rnh);
1261 		ipf_rx_walktree(rnh, nodeprinter, NULL);
1262 	}
1263 
1264 	dumptree(rnh);
1265 
1266 	printf("=== ADD-2 ===\n");
1267 	random_add(rnh);
1268 	checktree(rnh);
1269 	dumptree(rnh);
1270 	ipf_rx_walktree(rnh, nodeprinter, NULL);
1271 	printf("=== DELETE-2 ===\n");
1272 	random_delete(rnh);
1273 	checktree(rnh);
1274 	dumptree(rnh);
1275 
1276 	ipf_rx_walktree(rnh, ipf_rx_freenode, rnh);
1277 
1278 	return 0;
1279 }
1280 
1281 
1282 void
dumptree(rnh)1283 dumptree(rnh)
1284 	ipf_rdx_head_t *rnh;
1285 {
1286 	myst_t *stp;
1287 
1288 	printf("VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV\n");
1289 	printroots(rnh);
1290 	for (stp = myst_top; stp; stp = stp->next)
1291 		printnode(stp);
1292 	printf("^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n");
1293 }
1294 
1295 
1296 void
test_addr(rnh,pref,addr,limit)1297 test_addr(rnh, pref, addr, limit)
1298 	ipf_rdx_head_t *rnh;
1299 	int pref;
1300 	addrfamily_t *addr;
1301 {
1302 	static int extras[14] = { 0, -1, 1, 3, 5, 8, 9,
1303 				  15, 16, 19, 255, 256, 65535, 65536
1304 	};
1305 	ipf_rdx_node_t *rn;
1306 	addrfamily_t af;
1307 	char name[80];
1308 	myst_t *stp;
1309 	int i;
1310 
1311 	memset(&af, 0, sizeof(af));
1312 #if 0
1313 	if (limit < 0 || limit > 14)
1314 		limit = 14;
1315 
1316 	for (i = 0; i < limit; i++) {
1317 		if (ttable[i].host == NULL)
1318 			break;
1319 		setaddr(&af, ttable[i].host);
1320 		printf("%d.%d.LOOKUP(%s)", pref, i, addrname(&af));
1321 		rn = ipf_rx_match(rnh, &af);
1322 		stp = (myst_t *)rn;
1323 		printf(" = %s (%s/%d)\n", GNAME(rn),
1324 			rn ? addrname(&stp->dst) : "NULL",
1325 			rn ? rn->maskbitcount : 0);
1326 	}
1327 #else
1328 	printf("%d.%d.LOOKUP(%s)", pref, -1, addrname(addr));
1329 	rn = ipf_rx_match(rnh, addr);
1330 	stp = (myst_t *)rn;
1331 	printf(" = %s (%s/%d)\n", GNAME(rn),
1332 		rn ? addrname(&stp->dst) : "NULL", rn ? rn->maskbitcount : 0);
1333 #endif
1334 }
1335 
1336 
1337 void
delete_addr(rnh,item)1338 delete_addr(rnh, item)
1339 	ipf_rdx_head_t *rnh;
1340 	int item;
1341 {
1342 	ipf_rdx_node_t *rn;
1343 	addrfamily_t mask;
1344 	addrfamily_t af;
1345 	myst_t **pstp;
1346 	myst_t *stp;
1347 
1348 	memset(&af, 0, sizeof(af));
1349 	memset(&mask, 0, sizeof(mask));
1350 	setaddr(&af, ttable[item].host);
1351 	mask.adf_family = af.adf_family;
1352 	setmask(&mask, ttable[item].mask);
1353 
1354 	printf("DELETE(%s)\n", addrname(&af));
1355 	rn = ipf_rx_delete(rnh, &af, &mask);
1356 	if (rn == NULL) {
1357 		printf("FAIL LOOKUP DELETE\n");
1358 		checktree(rnh);
1359 		for (stp = myst_top; stp != NULL; stp = stp->next)
1360 			if (stp->printed != -1)
1361 				stp->printed = -2;
1362 		ipf_rx_walktree(rnh, nodeprinter, NULL);
1363 		dumptree(rnh);
1364 		abort();
1365 	}
1366 	printf("%d.delete(%s) = %s\n", item, addrname(&af), GNAME(rn));
1367 
1368 	for (pstp = &myst_top; (stp = *pstp) != NULL; pstp = &stp->next)
1369 		if (stp == (myst_t *)rn)
1370 			break;
1371 	stp->printed = -1;
1372 	stp->nodes[0].parent = &stp->nodes[0];
1373 	stp->nodes[1].parent = &stp->nodes[1];
1374 	*pstp = stp->next;
1375 	free(stp);
1376 	nodecount--;
1377 	checktree(rnh);
1378 }
1379 
1380 
1381 void
add_addr(rnh,n,item)1382 add_addr(rnh, n, item)
1383 	ipf_rdx_head_t *rnh;
1384 	int n, item;
1385 {
1386 	ipf_rdx_node_t *rn;
1387 	myst_t *stp;
1388 
1389 	stp = calloc(1, sizeof(*stp));
1390 	rn = (ipf_rdx_node_t *)stp;
1391 	setaddr(&stp->dst, ttable[item].host);
1392 	stp->mask.adf_family = stp->dst.adf_family;
1393 	setmask(&stp->mask, ttable[item].mask);
1394 	stp->next = myst_top;
1395 	myst_top = stp;
1396 	(void) snprintf(rn[0].name, sizeof(rn[0].name), "_BORN.0");
1397 	(void) snprintf(rn[1].name, sizeof(rn[1].name), "_BORN.1");
1398 	rn = ipf_rx_addroute(rnh, &stp->dst, &stp->mask, stp->nodes);
1399 	(void) snprintf(rn[0].name, sizeof(rn[0].name), "%d_NODE.0", item);
1400 	(void) snprintf(rn[1].name, sizeof(rn[1].name), "%d_NODE.1", item);
1401 	printf("ADD %d/%d %s/%s\n", n, item, rn[0].name, rn[1].name);
1402 	nodecount++;
1403 	checktree(rnh);
1404 }
1405 
1406 
1407 void
checktree(ipf_rdx_head_t * head)1408 checktree(ipf_rdx_head_t *head)
1409 {
1410 	myst_t *s1;
1411 	ipf_rdx_node_t *rn;
1412 
1413 	if (nodecount <= 1)
1414 		return;
1415 
1416 	for (s1 = myst_top; s1 != NULL; s1 = s1->next) {
1417 		int fault = 0;
1418 		if (s1->printed == -1)
1419 			continue;
1420 		rn = &s1->nodes[1];
1421 		if (rn->right->parent != rn)
1422 			fault |= 1;
1423 		if (rn->left->parent != rn)
1424 			fault |= 2;
1425 		if (rn->parent->left != rn && rn->parent->right != rn)
1426 			fault |= 4;
1427 		if (fault != 0) {
1428 			printf("FAULT %#x %s\n", fault, rn->name);
1429 			dumptree(head);
1430 			ipf_rx_walktree(head, nodeprinter, NULL);
1431 			fflush(stdout);
1432 			fflush(stderr);
1433 			printf("--\n");
1434 			abort();
1435 		}
1436 	}
1437 }
1438 
1439 
1440 int *
randomize(int * pnitems)1441 randomize(int *pnitems)
1442 {
1443 	int *order;
1444 	int nitems;
1445 	int choice;
1446 	int j;
1447 	int i;
1448 
1449 	nitems = sizeof(ttable) / sizeof(ttable[0]);
1450 	*pnitems = nitems;
1451 	order = calloc(nitems, sizeof(*order));
1452 	srandom(getpid() * time(NULL));
1453 	memset(order, 0xff, nitems * sizeof(*order));
1454 	order[21] = 21;
1455 	for (i = 0; i < nitems - 1; i++) {
1456 		do {
1457 			choice = rand() % (nitems - 1);
1458 			for (j = 0; j < nitems; j++)
1459 				if (order[j] == choice)
1460 					break;
1461 		} while (j != nitems);
1462 		order[i] = choice;
1463 	}
1464 
1465 	return order;
1466 }
1467 
1468 
1469 void
random_add(rnh)1470 random_add(rnh)
1471 	ipf_rdx_head_t *rnh;
1472 {
1473 	int *order;
1474 	int nitems;
1475 	int i;
1476 
1477 	order = randomize(&nitems);
1478 
1479 	for (i = 0; i < nitems - 1; i++) {
1480 		add_addr(rnh, i, order[i]);
1481 		checktree(rnh);
1482 	}
1483 
1484 	free(order);
1485 }
1486 
1487 
1488 void
random_delete(rnh)1489 random_delete(rnh)
1490 	ipf_rdx_head_t *rnh;
1491 {
1492 	int *order;
1493 	int nitems;
1494 	int i;
1495 
1496 	order = randomize(&nitems);
1497 
1498 	for (i = 0; i < nitems - 1; i++) {
1499 		delete_addr(rnh, i);
1500 		checktree(rnh);
1501 	}
1502 
1503 	free(order);
1504 }
1505 #endif /* RDX_DEBUG */
1506