xref: /netbsd-src/sys/external/bsd/drm2/dist/drm/nouveau/nvkm/subdev/clk/nouveau_nvkm_subdev_clk_gf100.c (revision 41ec02673d281bbb3d38e6c78504ce6e30c228c1)
1 /*	$NetBSD: nouveau_nvkm_subdev_clk_gf100.c,v 1.3 2021/12/18 23:45:39 riastradh Exp $	*/
2 
3 /*
4  * Copyright 2012 Red Hat Inc.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  *
24  * Authors: Ben Skeggs
25  */
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: nouveau_nvkm_subdev_clk_gf100.c,v 1.3 2021/12/18 23:45:39 riastradh Exp $");
28 
29 #define gf100_clk(p) container_of((p), struct gf100_clk, base)
30 #include "priv.h"
31 #include "pll.h"
32 
33 #include <subdev/bios.h>
34 #include <subdev/bios/pll.h>
35 #include <subdev/timer.h>
36 
37 struct gf100_clk_info {
38 	u32 freq;
39 	u32 ssel;
40 	u32 mdiv;
41 	u32 dsrc;
42 	u32 ddiv;
43 	u32 coef;
44 };
45 
46 struct gf100_clk {
47 	struct nvkm_clk base;
48 	struct gf100_clk_info eng[16];
49 };
50 
51 static u32 read_div(struct gf100_clk *, int, u32, u32);
52 
53 static u32
read_vco(struct gf100_clk * clk,u32 dsrc)54 read_vco(struct gf100_clk *clk, u32 dsrc)
55 {
56 	struct nvkm_device *device = clk->base.subdev.device;
57 	u32 ssrc = nvkm_rd32(device, dsrc);
58 	if (!(ssrc & 0x00000100))
59 		return nvkm_clk_read(&clk->base, nv_clk_src_sppll0);
60 	return nvkm_clk_read(&clk->base, nv_clk_src_sppll1);
61 }
62 
63 static u32
read_pll(struct gf100_clk * clk,u32 pll)64 read_pll(struct gf100_clk *clk, u32 pll)
65 {
66 	struct nvkm_device *device = clk->base.subdev.device;
67 	u32 ctrl = nvkm_rd32(device, pll + 0x00);
68 	u32 coef = nvkm_rd32(device, pll + 0x04);
69 	u32 P = (coef & 0x003f0000) >> 16;
70 	u32 N = (coef & 0x0000ff00) >> 8;
71 	u32 M = (coef & 0x000000ff) >> 0;
72 	u32 sclk;
73 
74 	if (!(ctrl & 0x00000001))
75 		return 0;
76 
77 	switch (pll) {
78 	case 0x00e800:
79 	case 0x00e820:
80 		sclk = device->crystal;
81 		P = 1;
82 		break;
83 	case 0x132000:
84 		sclk = nvkm_clk_read(&clk->base, nv_clk_src_mpllsrc);
85 		break;
86 	case 0x132020:
87 		sclk = nvkm_clk_read(&clk->base, nv_clk_src_mpllsrcref);
88 		break;
89 	case 0x137000:
90 	case 0x137020:
91 	case 0x137040:
92 	case 0x1370e0:
93 		sclk = read_div(clk, (pll & 0xff) / 0x20, 0x137120, 0x137140);
94 		break;
95 	default:
96 		return 0;
97 	}
98 
99 	return sclk * N / M / P;
100 }
101 
102 static u32
read_div(struct gf100_clk * clk,int doff,u32 dsrc,u32 dctl)103 read_div(struct gf100_clk *clk, int doff, u32 dsrc, u32 dctl)
104 {
105 	struct nvkm_device *device = clk->base.subdev.device;
106 	u32 ssrc = nvkm_rd32(device, dsrc + (doff * 4));
107 	u32 sclk, sctl, sdiv = 2;
108 
109 	switch (ssrc & 0x00000003) {
110 	case 0:
111 		if ((ssrc & 0x00030000) != 0x00030000)
112 			return device->crystal;
113 		return 108000;
114 	case 2:
115 		return 100000;
116 	case 3:
117 		sclk = read_vco(clk, dsrc + (doff * 4));
118 
119 		/* Memclk has doff of 0 despite its alt. location */
120 		if (doff <= 2) {
121 			sctl = nvkm_rd32(device, dctl + (doff * 4));
122 
123 			if (sctl & 0x80000000) {
124 				if (ssrc & 0x100)
125 					sctl >>= 8;
126 
127 				sdiv = (sctl & 0x3f) + 2;
128 			}
129 		}
130 
131 		return (sclk * 2) / sdiv;
132 	default:
133 		return 0;
134 	}
135 }
136 
137 static u32
read_clk(struct gf100_clk * clk,int idx)138 read_clk(struct gf100_clk *clk, int idx)
139 {
140 	struct nvkm_device *device = clk->base.subdev.device;
141 	u32 sctl = nvkm_rd32(device, 0x137250 + (idx * 4));
142 	u32 ssel = nvkm_rd32(device, 0x137100);
143 	u32 sclk, sdiv;
144 
145 	if (ssel & (1 << idx)) {
146 		if (idx < 7)
147 			sclk = read_pll(clk, 0x137000 + (idx * 0x20));
148 		else
149 			sclk = read_pll(clk, 0x1370e0);
150 		sdiv = ((sctl & 0x00003f00) >> 8) + 2;
151 	} else {
152 		sclk = read_div(clk, idx, 0x137160, 0x1371d0);
153 		sdiv = ((sctl & 0x0000003f) >> 0) + 2;
154 	}
155 
156 	if (sctl & 0x80000000)
157 		return (sclk * 2) / sdiv;
158 
159 	return sclk;
160 }
161 
162 static int
gf100_clk_read(struct nvkm_clk * base,enum nv_clk_src src)163 gf100_clk_read(struct nvkm_clk *base, enum nv_clk_src src)
164 {
165 	struct gf100_clk *clk = gf100_clk(base);
166 	struct nvkm_subdev *subdev = &clk->base.subdev;
167 	struct nvkm_device *device = subdev->device;
168 
169 	switch (src) {
170 	case nv_clk_src_crystal:
171 		return device->crystal;
172 	case nv_clk_src_href:
173 		return 100000;
174 	case nv_clk_src_sppll0:
175 		return read_pll(clk, 0x00e800);
176 	case nv_clk_src_sppll1:
177 		return read_pll(clk, 0x00e820);
178 
179 	case nv_clk_src_mpllsrcref:
180 		return read_div(clk, 0, 0x137320, 0x137330);
181 	case nv_clk_src_mpllsrc:
182 		return read_pll(clk, 0x132020);
183 	case nv_clk_src_mpll:
184 		return read_pll(clk, 0x132000);
185 	case nv_clk_src_mdiv:
186 		return read_div(clk, 0, 0x137300, 0x137310);
187 	case nv_clk_src_mem:
188 		if (nvkm_rd32(device, 0x1373f0) & 0x00000002)
189 			return nvkm_clk_read(&clk->base, nv_clk_src_mpll);
190 		return nvkm_clk_read(&clk->base, nv_clk_src_mdiv);
191 
192 	case nv_clk_src_gpc:
193 		return read_clk(clk, 0x00);
194 	case nv_clk_src_rop:
195 		return read_clk(clk, 0x01);
196 	case nv_clk_src_hubk07:
197 		return read_clk(clk, 0x02);
198 	case nv_clk_src_hubk06:
199 		return read_clk(clk, 0x07);
200 	case nv_clk_src_hubk01:
201 		return read_clk(clk, 0x08);
202 	case nv_clk_src_copy:
203 		return read_clk(clk, 0x09);
204 	case nv_clk_src_pmu:
205 		return read_clk(clk, 0x0c);
206 	case nv_clk_src_vdec:
207 		return read_clk(clk, 0x0e);
208 	default:
209 		nvkm_error(subdev, "invalid clock source %d\n", src);
210 		return -EINVAL;
211 	}
212 }
213 
214 static u32
calc_div(struct gf100_clk * clk,int idx,u32 ref,u32 freq,u32 * ddiv)215 calc_div(struct gf100_clk *clk, int idx, u32 ref, u32 freq, u32 *ddiv)
216 {
217 	u32 div = min((ref * 2) / freq, (u32)65);
218 	if (div < 2)
219 		div = 2;
220 
221 	*ddiv = div - 2;
222 	return (ref * 2) / div;
223 }
224 
225 static u32
calc_src(struct gf100_clk * clk,int idx,u32 freq,u32 * dsrc,u32 * ddiv)226 calc_src(struct gf100_clk *clk, int idx, u32 freq, u32 *dsrc, u32 *ddiv)
227 {
228 	u32 sclk;
229 
230 	/* use one of the fixed frequencies if possible */
231 	*ddiv = 0x00000000;
232 	switch (freq) {
233 	case  27000:
234 	case 108000:
235 		*dsrc = 0x00000000;
236 		if (freq == 108000)
237 			*dsrc |= 0x00030000;
238 		return freq;
239 	case 100000:
240 		*dsrc = 0x00000002;
241 		return freq;
242 	default:
243 		*dsrc = 0x00000003;
244 		break;
245 	}
246 
247 	/* otherwise, calculate the closest divider */
248 	sclk = read_vco(clk, 0x137160 + (idx * 4));
249 	if (idx < 7)
250 		sclk = calc_div(clk, idx, sclk, freq, ddiv);
251 	return sclk;
252 }
253 
254 static u32
calc_pll(struct gf100_clk * clk,int idx,u32 freq,u32 * coef)255 calc_pll(struct gf100_clk *clk, int idx, u32 freq, u32 *coef)
256 {
257 	struct nvkm_subdev *subdev = &clk->base.subdev;
258 	struct nvkm_bios *bios = subdev->device->bios;
259 	struct nvbios_pll limits;
260 	int N, M, P, ret;
261 
262 	ret = nvbios_pll_parse(bios, 0x137000 + (idx * 0x20), &limits);
263 	if (ret)
264 		return 0;
265 
266 	limits.refclk = read_div(clk, idx, 0x137120, 0x137140);
267 	if (!limits.refclk)
268 		return 0;
269 
270 	ret = gt215_pll_calc(subdev, &limits, freq, &N, NULL, &M, &P);
271 	if (ret <= 0)
272 		return 0;
273 
274 	*coef = (P << 16) | (N << 8) | M;
275 	return ret;
276 }
277 
278 static int
calc_clk(struct gf100_clk * clk,struct nvkm_cstate * cstate,int idx,int dom)279 calc_clk(struct gf100_clk *clk, struct nvkm_cstate *cstate, int idx, int dom)
280 {
281 	struct gf100_clk_info *info = &clk->eng[idx];
282 	u32 freq = cstate->domain[dom];
283 	u32 src0, div0, div1D, div1P = 0;
284 	u32 clk0, clk1 = 0;
285 
286 	/* invalid clock domain */
287 	if (!freq)
288 		return 0;
289 
290 	/* first possible path, using only dividers */
291 	clk0 = calc_src(clk, idx, freq, &src0, &div0);
292 	clk0 = calc_div(clk, idx, clk0, freq, &div1D);
293 
294 	/* see if we can get any closer using PLLs */
295 	if (clk0 != freq && (0x00004387 & (1 << idx))) {
296 		if (idx <= 7)
297 			clk1 = calc_pll(clk, idx, freq, &info->coef);
298 		else
299 			clk1 = cstate->domain[nv_clk_src_hubk06];
300 		clk1 = calc_div(clk, idx, clk1, freq, &div1P);
301 	}
302 
303 	/* select the method which gets closest to target freq */
304 	if (abs((int)freq - clk0) <= abs((int)freq - clk1)) {
305 		info->dsrc = src0;
306 		if (div0) {
307 			info->ddiv |= 0x80000000;
308 			info->ddiv |= div0 << 8;
309 			info->ddiv |= div0;
310 		}
311 		if (div1D) {
312 			info->mdiv |= 0x80000000;
313 			info->mdiv |= div1D;
314 		}
315 		info->ssel = info->coef = 0;
316 		info->freq = clk0;
317 	} else {
318 		if (div1P) {
319 			info->mdiv |= 0x80000000;
320 			info->mdiv |= div1P << 8;
321 		}
322 		info->ssel = (1 << idx);
323 		info->freq = clk1;
324 	}
325 
326 	return 0;
327 }
328 
329 static int
gf100_clk_calc(struct nvkm_clk * base,struct nvkm_cstate * cstate)330 gf100_clk_calc(struct nvkm_clk *base, struct nvkm_cstate *cstate)
331 {
332 	struct gf100_clk *clk = gf100_clk(base);
333 	int ret;
334 
335 	if ((ret = calc_clk(clk, cstate, 0x00, nv_clk_src_gpc)) ||
336 	    (ret = calc_clk(clk, cstate, 0x01, nv_clk_src_rop)) ||
337 	    (ret = calc_clk(clk, cstate, 0x02, nv_clk_src_hubk07)) ||
338 	    (ret = calc_clk(clk, cstate, 0x07, nv_clk_src_hubk06)) ||
339 	    (ret = calc_clk(clk, cstate, 0x08, nv_clk_src_hubk01)) ||
340 	    (ret = calc_clk(clk, cstate, 0x09, nv_clk_src_copy)) ||
341 	    (ret = calc_clk(clk, cstate, 0x0c, nv_clk_src_pmu)) ||
342 	    (ret = calc_clk(clk, cstate, 0x0e, nv_clk_src_vdec)))
343 		return ret;
344 
345 	return 0;
346 }
347 
348 static void
gf100_clk_prog_0(struct gf100_clk * clk,int idx)349 gf100_clk_prog_0(struct gf100_clk *clk, int idx)
350 {
351 	struct gf100_clk_info *info = &clk->eng[idx];
352 	struct nvkm_device *device = clk->base.subdev.device;
353 	if (idx < 7 && !info->ssel) {
354 		nvkm_mask(device, 0x1371d0 + (idx * 0x04), 0x80003f3f, info->ddiv);
355 		nvkm_wr32(device, 0x137160 + (idx * 0x04), info->dsrc);
356 	}
357 }
358 
359 static void
gf100_clk_prog_1(struct gf100_clk * clk,int idx)360 gf100_clk_prog_1(struct gf100_clk *clk, int idx)
361 {
362 	struct nvkm_device *device = clk->base.subdev.device;
363 	nvkm_mask(device, 0x137100, (1 << idx), 0x00000000);
364 	nvkm_msec(device, 2000,
365 		if (!(nvkm_rd32(device, 0x137100) & (1 << idx)))
366 			break;
367 	);
368 }
369 
370 static void
gf100_clk_prog_2(struct gf100_clk * clk,int idx)371 gf100_clk_prog_2(struct gf100_clk *clk, int idx)
372 {
373 	struct gf100_clk_info *info = &clk->eng[idx];
374 	struct nvkm_device *device = clk->base.subdev.device;
375 	const u32 addr = 0x137000 + (idx * 0x20);
376 	if (idx <= 7) {
377 		nvkm_mask(device, addr + 0x00, 0x00000004, 0x00000000);
378 		nvkm_mask(device, addr + 0x00, 0x00000001, 0x00000000);
379 		if (info->coef) {
380 			nvkm_wr32(device, addr + 0x04, info->coef);
381 			nvkm_mask(device, addr + 0x00, 0x00000001, 0x00000001);
382 
383 			/* Test PLL lock */
384 			nvkm_mask(device, addr + 0x00, 0x00000010, 0x00000000);
385 			nvkm_msec(device, 2000,
386 				if (nvkm_rd32(device, addr + 0x00) & 0x00020000)
387 					break;
388 			);
389 			nvkm_mask(device, addr + 0x00, 0x00000010, 0x00000010);
390 
391 			/* Enable sync mode */
392 			nvkm_mask(device, addr + 0x00, 0x00000004, 0x00000004);
393 		}
394 	}
395 }
396 
397 static void
gf100_clk_prog_3(struct gf100_clk * clk,int idx)398 gf100_clk_prog_3(struct gf100_clk *clk, int idx)
399 {
400 	struct gf100_clk_info *info = &clk->eng[idx];
401 	struct nvkm_device *device = clk->base.subdev.device;
402 	if (info->ssel) {
403 		nvkm_mask(device, 0x137100, (1 << idx), info->ssel);
404 		nvkm_msec(device, 2000,
405 			u32 tmp = nvkm_rd32(device, 0x137100) & (1 << idx);
406 			if (tmp == info->ssel)
407 				break;
408 		);
409 	}
410 }
411 
412 static void
gf100_clk_prog_4(struct gf100_clk * clk,int idx)413 gf100_clk_prog_4(struct gf100_clk *clk, int idx)
414 {
415 	struct gf100_clk_info *info = &clk->eng[idx];
416 	struct nvkm_device *device = clk->base.subdev.device;
417 	nvkm_mask(device, 0x137250 + (idx * 0x04), 0x00003f3f, info->mdiv);
418 }
419 
420 static int
gf100_clk_prog(struct nvkm_clk * base)421 gf100_clk_prog(struct nvkm_clk *base)
422 {
423 	struct gf100_clk *clk = gf100_clk(base);
424 	struct {
425 		void (*exec)(struct gf100_clk *, int);
426 	} stage[] = {
427 		{ gf100_clk_prog_0 }, /* div programming */
428 		{ gf100_clk_prog_1 }, /* select div mode */
429 		{ gf100_clk_prog_2 }, /* (maybe) program pll */
430 		{ gf100_clk_prog_3 }, /* (maybe) select pll mode */
431 		{ gf100_clk_prog_4 }, /* final divider */
432 	};
433 	int i, j;
434 
435 	for (i = 0; i < ARRAY_SIZE(stage); i++) {
436 		for (j = 0; j < ARRAY_SIZE(clk->eng); j++) {
437 			if (!clk->eng[j].freq)
438 				continue;
439 			stage[i].exec(clk, j);
440 		}
441 	}
442 
443 	return 0;
444 }
445 
446 static void
gf100_clk_tidy(struct nvkm_clk * base)447 gf100_clk_tidy(struct nvkm_clk *base)
448 {
449 	struct gf100_clk *clk = gf100_clk(base);
450 	memset(clk->eng, 0x00, sizeof(clk->eng));
451 }
452 
453 static const struct nvkm_clk_func
454 gf100_clk = {
455 	.read = gf100_clk_read,
456 	.calc = gf100_clk_calc,
457 	.prog = gf100_clk_prog,
458 	.tidy = gf100_clk_tidy,
459 	.domains = {
460 		{ nv_clk_src_crystal, 0xff },
461 		{ nv_clk_src_href   , 0xff },
462 		{ nv_clk_src_hubk06 , 0x00 },
463 		{ nv_clk_src_hubk01 , 0x01 },
464 		{ nv_clk_src_copy   , 0x02 },
465 		{ nv_clk_src_gpc    , 0x03, NVKM_CLK_DOM_FLAG_VPSTATE, "core", 2000 },
466 		{ nv_clk_src_rop    , 0x04 },
467 		{ nv_clk_src_mem    , 0x05, 0, "memory", 1000 },
468 		{ nv_clk_src_vdec   , 0x06 },
469 		{ nv_clk_src_pmu    , 0x0a },
470 		{ nv_clk_src_hubk07 , 0x0b },
471 		{ nv_clk_src_max }
472 	}
473 };
474 
475 int
gf100_clk_new(struct nvkm_device * device,int index,struct nvkm_clk ** pclk)476 gf100_clk_new(struct nvkm_device *device, int index, struct nvkm_clk **pclk)
477 {
478 	struct gf100_clk *clk;
479 
480 	if (!(clk = kzalloc(sizeof(*clk), GFP_KERNEL)))
481 		return -ENOMEM;
482 	*pclk = &clk->base;
483 
484 	return nvkm_clk_ctor(&gf100_clk, device, index, false, &clk->base);
485 }
486