1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987-2020 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20
21 /* Middle-to-low level generation of rtx code and insns.
22
23 This file contains support functions for creating rtl expressions
24 and manipulating them in the doubly-linked chain of insns.
25
26 The patterns of the insns are created by machine-dependent
27 routines in insn-emit.c, which is generated automatically from
28 the machine description. These routines make the individual rtx's
29 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
30 which are automatically generated from rtl.def; what is machine
31 dependent is the kind of rtx's they make and what arguments they
32 use. */
33
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "memmodel.h"
38 #include "backend.h"
39 #include "target.h"
40 #include "rtl.h"
41 #include "tree.h"
42 #include "df.h"
43 #include "tm_p.h"
44 #include "stringpool.h"
45 #include "insn-config.h"
46 #include "regs.h"
47 #include "emit-rtl.h"
48 #include "recog.h"
49 #include "diagnostic-core.h"
50 #include "alias.h"
51 #include "fold-const.h"
52 #include "varasm.h"
53 #include "cfgrtl.h"
54 #include "tree-eh.h"
55 #include "explow.h"
56 #include "expr.h"
57 #include "builtins.h"
58 #include "rtl-iter.h"
59 #include "stor-layout.h"
60 #include "opts.h"
61 #include "predict.h"
62 #include "rtx-vector-builder.h"
63 #include "gimple.h"
64 #include "gimple-ssa.h"
65 #include "gimplify.h"
66
67 struct target_rtl default_target_rtl;
68 #if SWITCHABLE_TARGET
69 struct target_rtl *this_target_rtl = &default_target_rtl;
70 #endif
71
72 #define initial_regno_reg_rtx (this_target_rtl->x_initial_regno_reg_rtx)
73
74 /* Commonly used modes. */
75
76 scalar_int_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
77 scalar_int_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
78 scalar_int_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
79
80 /* Datastructures maintained for currently processed function in RTL form. */
81
82 struct rtl_data x_rtl;
83
84 /* Indexed by pseudo register number, gives the rtx for that pseudo.
85 Allocated in parallel with regno_pointer_align.
86 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
87 with length attribute nested in top level structures. */
88
89 rtx * regno_reg_rtx;
90
91 /* This is *not* reset after each function. It gives each CODE_LABEL
92 in the entire compilation a unique label number. */
93
94 static GTY(()) int label_num = 1;
95
96 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
97 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
98 record a copy of const[012]_rtx and constm1_rtx. CONSTM1_RTX
99 is set only for MODE_INT and MODE_VECTOR_INT modes. */
100
101 rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE];
102
103 rtx const_true_rtx;
104
105 REAL_VALUE_TYPE dconst0;
106 REAL_VALUE_TYPE dconst1;
107 REAL_VALUE_TYPE dconst2;
108 REAL_VALUE_TYPE dconstm1;
109 REAL_VALUE_TYPE dconsthalf;
110
111 /* Record fixed-point constant 0 and 1. */
112 FIXED_VALUE_TYPE fconst0[MAX_FCONST0];
113 FIXED_VALUE_TYPE fconst1[MAX_FCONST1];
114
115 /* We make one copy of (const_int C) where C is in
116 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
117 to save space during the compilation and simplify comparisons of
118 integers. */
119
120 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
121
122 /* Standard pieces of rtx, to be substituted directly into things. */
123 rtx pc_rtx;
124 rtx ret_rtx;
125 rtx simple_return_rtx;
126 rtx cc0_rtx;
127
128 /* Marker used for denoting an INSN, which should never be accessed (i.e.,
129 this pointer should normally never be dereferenced), but is required to be
130 distinct from NULL_RTX. Currently used by peephole2 pass. */
131 rtx_insn *invalid_insn_rtx;
132
133 /* A hash table storing CONST_INTs whose absolute value is greater
134 than MAX_SAVED_CONST_INT. */
135
136 struct const_int_hasher : ggc_cache_ptr_hash<rtx_def>
137 {
138 typedef HOST_WIDE_INT compare_type;
139
140 static hashval_t hash (rtx i);
141 static bool equal (rtx i, HOST_WIDE_INT h);
142 };
143
144 static GTY ((cache)) hash_table<const_int_hasher> *const_int_htab;
145
146 struct const_wide_int_hasher : ggc_cache_ptr_hash<rtx_def>
147 {
148 static hashval_t hash (rtx x);
149 static bool equal (rtx x, rtx y);
150 };
151
152 static GTY ((cache)) hash_table<const_wide_int_hasher> *const_wide_int_htab;
153
154 struct const_poly_int_hasher : ggc_cache_ptr_hash<rtx_def>
155 {
156 typedef std::pair<machine_mode, poly_wide_int_ref> compare_type;
157
158 static hashval_t hash (rtx x);
159 static bool equal (rtx x, const compare_type &y);
160 };
161
162 static GTY ((cache)) hash_table<const_poly_int_hasher> *const_poly_int_htab;
163
164 /* A hash table storing register attribute structures. */
165 struct reg_attr_hasher : ggc_cache_ptr_hash<reg_attrs>
166 {
167 static hashval_t hash (reg_attrs *x);
168 static bool equal (reg_attrs *a, reg_attrs *b);
169 };
170
171 static GTY ((cache)) hash_table<reg_attr_hasher> *reg_attrs_htab;
172
173 /* A hash table storing all CONST_DOUBLEs. */
174 struct const_double_hasher : ggc_cache_ptr_hash<rtx_def>
175 {
176 static hashval_t hash (rtx x);
177 static bool equal (rtx x, rtx y);
178 };
179
180 static GTY ((cache)) hash_table<const_double_hasher> *const_double_htab;
181
182 /* A hash table storing all CONST_FIXEDs. */
183 struct const_fixed_hasher : ggc_cache_ptr_hash<rtx_def>
184 {
185 static hashval_t hash (rtx x);
186 static bool equal (rtx x, rtx y);
187 };
188
189 static GTY ((cache)) hash_table<const_fixed_hasher> *const_fixed_htab;
190
191 #define cur_insn_uid (crtl->emit.x_cur_insn_uid)
192 #define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid)
193 #define first_label_num (crtl->emit.x_first_label_num)
194
195 static void set_used_decls (tree);
196 static void mark_label_nuses (rtx);
197 #if TARGET_SUPPORTS_WIDE_INT
198 static rtx lookup_const_wide_int (rtx);
199 #endif
200 static rtx lookup_const_double (rtx);
201 static rtx lookup_const_fixed (rtx);
202 static rtx gen_const_vector (machine_mode, int);
203 static void copy_rtx_if_shared_1 (rtx *orig);
204
205 /* Probability of the conditional branch currently proceeded by try_split. */
206 profile_probability split_branch_probability;
207
208 /* Returns a hash code for X (which is a really a CONST_INT). */
209
210 hashval_t
hash(rtx x)211 const_int_hasher::hash (rtx x)
212 {
213 return (hashval_t) INTVAL (x);
214 }
215
216 /* Returns nonzero if the value represented by X (which is really a
217 CONST_INT) is the same as that given by Y (which is really a
218 HOST_WIDE_INT *). */
219
220 bool
equal(rtx x,HOST_WIDE_INT y)221 const_int_hasher::equal (rtx x, HOST_WIDE_INT y)
222 {
223 return (INTVAL (x) == y);
224 }
225
226 #if TARGET_SUPPORTS_WIDE_INT
227 /* Returns a hash code for X (which is a really a CONST_WIDE_INT). */
228
229 hashval_t
hash(rtx x)230 const_wide_int_hasher::hash (rtx x)
231 {
232 int i;
233 unsigned HOST_WIDE_INT hash = 0;
234 const_rtx xr = x;
235
236 for (i = 0; i < CONST_WIDE_INT_NUNITS (xr); i++)
237 hash += CONST_WIDE_INT_ELT (xr, i);
238
239 return (hashval_t) hash;
240 }
241
242 /* Returns nonzero if the value represented by X (which is really a
243 CONST_WIDE_INT) is the same as that given by Y (which is really a
244 CONST_WIDE_INT). */
245
246 bool
equal(rtx x,rtx y)247 const_wide_int_hasher::equal (rtx x, rtx y)
248 {
249 int i;
250 const_rtx xr = x;
251 const_rtx yr = y;
252 if (CONST_WIDE_INT_NUNITS (xr) != CONST_WIDE_INT_NUNITS (yr))
253 return false;
254
255 for (i = 0; i < CONST_WIDE_INT_NUNITS (xr); i++)
256 if (CONST_WIDE_INT_ELT (xr, i) != CONST_WIDE_INT_ELT (yr, i))
257 return false;
258
259 return true;
260 }
261 #endif
262
263 /* Returns a hash code for CONST_POLY_INT X. */
264
265 hashval_t
hash(rtx x)266 const_poly_int_hasher::hash (rtx x)
267 {
268 inchash::hash h;
269 h.add_int (GET_MODE (x));
270 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
271 h.add_wide_int (CONST_POLY_INT_COEFFS (x)[i]);
272 return h.end ();
273 }
274
275 /* Returns nonzero if CONST_POLY_INT X is an rtx representation of Y. */
276
277 bool
equal(rtx x,const compare_type & y)278 const_poly_int_hasher::equal (rtx x, const compare_type &y)
279 {
280 if (GET_MODE (x) != y.first)
281 return false;
282 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
283 if (CONST_POLY_INT_COEFFS (x)[i] != y.second.coeffs[i])
284 return false;
285 return true;
286 }
287
288 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
289 hashval_t
hash(rtx x)290 const_double_hasher::hash (rtx x)
291 {
292 const_rtx const value = x;
293 hashval_t h;
294
295 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (value) == VOIDmode)
296 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
297 else
298 {
299 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
300 /* MODE is used in the comparison, so it should be in the hash. */
301 h ^= GET_MODE (value);
302 }
303 return h;
304 }
305
306 /* Returns nonzero if the value represented by X (really a ...)
307 is the same as that represented by Y (really a ...) */
308 bool
equal(rtx x,rtx y)309 const_double_hasher::equal (rtx x, rtx y)
310 {
311 const_rtx const a = x, b = y;
312
313 if (GET_MODE (a) != GET_MODE (b))
314 return 0;
315 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (a) == VOIDmode)
316 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
317 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
318 else
319 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
320 CONST_DOUBLE_REAL_VALUE (b));
321 }
322
323 /* Returns a hash code for X (which is really a CONST_FIXED). */
324
325 hashval_t
hash(rtx x)326 const_fixed_hasher::hash (rtx x)
327 {
328 const_rtx const value = x;
329 hashval_t h;
330
331 h = fixed_hash (CONST_FIXED_VALUE (value));
332 /* MODE is used in the comparison, so it should be in the hash. */
333 h ^= GET_MODE (value);
334 return h;
335 }
336
337 /* Returns nonzero if the value represented by X is the same as that
338 represented by Y. */
339
340 bool
equal(rtx x,rtx y)341 const_fixed_hasher::equal (rtx x, rtx y)
342 {
343 const_rtx const a = x, b = y;
344
345 if (GET_MODE (a) != GET_MODE (b))
346 return 0;
347 return fixed_identical (CONST_FIXED_VALUE (a), CONST_FIXED_VALUE (b));
348 }
349
350 /* Return true if the given memory attributes are equal. */
351
352 bool
mem_attrs_eq_p(const class mem_attrs * p,const class mem_attrs * q)353 mem_attrs_eq_p (const class mem_attrs *p, const class mem_attrs *q)
354 {
355 if (p == q)
356 return true;
357 if (!p || !q)
358 return false;
359 return (p->alias == q->alias
360 && p->offset_known_p == q->offset_known_p
361 && (!p->offset_known_p || known_eq (p->offset, q->offset))
362 && p->size_known_p == q->size_known_p
363 && (!p->size_known_p || known_eq (p->size, q->size))
364 && p->align == q->align
365 && p->addrspace == q->addrspace
366 && (p->expr == q->expr
367 || (p->expr != NULL_TREE && q->expr != NULL_TREE
368 && operand_equal_p (p->expr, q->expr, 0))));
369 }
370
371 /* Set MEM's memory attributes so that they are the same as ATTRS. */
372
373 static void
set_mem_attrs(rtx mem,mem_attrs * attrs)374 set_mem_attrs (rtx mem, mem_attrs *attrs)
375 {
376 /* If everything is the default, we can just clear the attributes. */
377 if (mem_attrs_eq_p (attrs, mode_mem_attrs[(int) GET_MODE (mem)]))
378 {
379 MEM_ATTRS (mem) = 0;
380 return;
381 }
382
383 if (!MEM_ATTRS (mem)
384 || !mem_attrs_eq_p (attrs, MEM_ATTRS (mem)))
385 {
386 MEM_ATTRS (mem) = ggc_alloc<mem_attrs> ();
387 memcpy (MEM_ATTRS (mem), attrs, sizeof (mem_attrs));
388 }
389 }
390
391 /* Returns a hash code for X (which is a really a reg_attrs *). */
392
393 hashval_t
hash(reg_attrs * x)394 reg_attr_hasher::hash (reg_attrs *x)
395 {
396 const reg_attrs *const p = x;
397
398 inchash::hash h;
399 h.add_ptr (p->decl);
400 h.add_poly_hwi (p->offset);
401 return h.end ();
402 }
403
404 /* Returns nonzero if the value represented by X is the same as that given by
405 Y. */
406
407 bool
equal(reg_attrs * x,reg_attrs * y)408 reg_attr_hasher::equal (reg_attrs *x, reg_attrs *y)
409 {
410 const reg_attrs *const p = x;
411 const reg_attrs *const q = y;
412
413 return (p->decl == q->decl && known_eq (p->offset, q->offset));
414 }
415 /* Allocate a new reg_attrs structure and insert it into the hash table if
416 one identical to it is not already in the table. We are doing this for
417 MEM of mode MODE. */
418
419 static reg_attrs *
get_reg_attrs(tree decl,poly_int64 offset)420 get_reg_attrs (tree decl, poly_int64 offset)
421 {
422 reg_attrs attrs;
423
424 /* If everything is the default, we can just return zero. */
425 if (decl == 0 && known_eq (offset, 0))
426 return 0;
427
428 attrs.decl = decl;
429 attrs.offset = offset;
430
431 reg_attrs **slot = reg_attrs_htab->find_slot (&attrs, INSERT);
432 if (*slot == 0)
433 {
434 *slot = ggc_alloc<reg_attrs> ();
435 memcpy (*slot, &attrs, sizeof (reg_attrs));
436 }
437
438 return *slot;
439 }
440
441
442 #if !HAVE_blockage
443 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule,
444 and to block register equivalences to be seen across this insn. */
445
446 rtx
gen_blockage(void)447 gen_blockage (void)
448 {
449 rtx x = gen_rtx_ASM_INPUT (VOIDmode, "");
450 MEM_VOLATILE_P (x) = true;
451 return x;
452 }
453 #endif
454
455
456 /* Set the mode and register number of X to MODE and REGNO. */
457
458 void
set_mode_and_regno(rtx x,machine_mode mode,unsigned int regno)459 set_mode_and_regno (rtx x, machine_mode mode, unsigned int regno)
460 {
461 unsigned int nregs = (HARD_REGISTER_NUM_P (regno)
462 ? hard_regno_nregs (regno, mode)
463 : 1);
464 PUT_MODE_RAW (x, mode);
465 set_regno_raw (x, regno, nregs);
466 }
467
468 /* Initialize a fresh REG rtx with mode MODE and register REGNO. */
469
470 rtx
init_raw_REG(rtx x,machine_mode mode,unsigned int regno)471 init_raw_REG (rtx x, machine_mode mode, unsigned int regno)
472 {
473 set_mode_and_regno (x, mode, regno);
474 REG_ATTRS (x) = NULL;
475 ORIGINAL_REGNO (x) = regno;
476 return x;
477 }
478
479 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
480 don't attempt to share with the various global pieces of rtl (such as
481 frame_pointer_rtx). */
482
483 rtx
gen_raw_REG(machine_mode mode,unsigned int regno)484 gen_raw_REG (machine_mode mode, unsigned int regno)
485 {
486 rtx x = rtx_alloc (REG MEM_STAT_INFO);
487 init_raw_REG (x, mode, regno);
488 return x;
489 }
490
491 /* There are some RTL codes that require special attention; the generation
492 functions do the raw handling. If you add to this list, modify
493 special_rtx in gengenrtl.c as well. */
494
495 rtx_expr_list *
gen_rtx_EXPR_LIST(machine_mode mode,rtx expr,rtx expr_list)496 gen_rtx_EXPR_LIST (machine_mode mode, rtx expr, rtx expr_list)
497 {
498 return as_a <rtx_expr_list *> (gen_rtx_fmt_ee (EXPR_LIST, mode, expr,
499 expr_list));
500 }
501
502 rtx_insn_list *
gen_rtx_INSN_LIST(machine_mode mode,rtx insn,rtx insn_list)503 gen_rtx_INSN_LIST (machine_mode mode, rtx insn, rtx insn_list)
504 {
505 return as_a <rtx_insn_list *> (gen_rtx_fmt_ue (INSN_LIST, mode, insn,
506 insn_list));
507 }
508
509 rtx_insn *
gen_rtx_INSN(machine_mode mode,rtx_insn * prev_insn,rtx_insn * next_insn,basic_block bb,rtx pattern,int location,int code,rtx reg_notes)510 gen_rtx_INSN (machine_mode mode, rtx_insn *prev_insn, rtx_insn *next_insn,
511 basic_block bb, rtx pattern, int location, int code,
512 rtx reg_notes)
513 {
514 return as_a <rtx_insn *> (gen_rtx_fmt_uuBeiie (INSN, mode,
515 prev_insn, next_insn,
516 bb, pattern, location, code,
517 reg_notes));
518 }
519
520 rtx
gen_rtx_CONST_INT(machine_mode mode ATTRIBUTE_UNUSED,HOST_WIDE_INT arg)521 gen_rtx_CONST_INT (machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
522 {
523 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
524 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
525
526 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
527 if (const_true_rtx && arg == STORE_FLAG_VALUE)
528 return const_true_rtx;
529 #endif
530
531 /* Look up the CONST_INT in the hash table. */
532 rtx *slot = const_int_htab->find_slot_with_hash (arg, (hashval_t) arg,
533 INSERT);
534 if (*slot == 0)
535 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
536
537 return *slot;
538 }
539
540 rtx
gen_int_mode(poly_int64 c,machine_mode mode)541 gen_int_mode (poly_int64 c, machine_mode mode)
542 {
543 c = trunc_int_for_mode (c, mode);
544 if (c.is_constant ())
545 return GEN_INT (c.coeffs[0]);
546 unsigned int prec = GET_MODE_PRECISION (as_a <scalar_mode> (mode));
547 return immed_wide_int_const (poly_wide_int::from (c, prec, SIGNED), mode);
548 }
549
550 /* CONST_DOUBLEs might be created from pairs of integers, or from
551 REAL_VALUE_TYPEs. Also, their length is known only at run time,
552 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
553
554 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
555 hash table. If so, return its counterpart; otherwise add it
556 to the hash table and return it. */
557 static rtx
lookup_const_double(rtx real)558 lookup_const_double (rtx real)
559 {
560 rtx *slot = const_double_htab->find_slot (real, INSERT);
561 if (*slot == 0)
562 *slot = real;
563
564 return *slot;
565 }
566
567 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
568 VALUE in mode MODE. */
569 rtx
const_double_from_real_value(REAL_VALUE_TYPE value,machine_mode mode)570 const_double_from_real_value (REAL_VALUE_TYPE value, machine_mode mode)
571 {
572 rtx real = rtx_alloc (CONST_DOUBLE);
573 PUT_MODE (real, mode);
574
575 real->u.rv = value;
576
577 return lookup_const_double (real);
578 }
579
580 /* Determine whether FIXED, a CONST_FIXED, already exists in the
581 hash table. If so, return its counterpart; otherwise add it
582 to the hash table and return it. */
583
584 static rtx
lookup_const_fixed(rtx fixed)585 lookup_const_fixed (rtx fixed)
586 {
587 rtx *slot = const_fixed_htab->find_slot (fixed, INSERT);
588 if (*slot == 0)
589 *slot = fixed;
590
591 return *slot;
592 }
593
594 /* Return a CONST_FIXED rtx for a fixed-point value specified by
595 VALUE in mode MODE. */
596
597 rtx
const_fixed_from_fixed_value(FIXED_VALUE_TYPE value,machine_mode mode)598 const_fixed_from_fixed_value (FIXED_VALUE_TYPE value, machine_mode mode)
599 {
600 rtx fixed = rtx_alloc (CONST_FIXED);
601 PUT_MODE (fixed, mode);
602
603 fixed->u.fv = value;
604
605 return lookup_const_fixed (fixed);
606 }
607
608 #if TARGET_SUPPORTS_WIDE_INT == 0
609 /* Constructs double_int from rtx CST. */
610
611 double_int
rtx_to_double_int(const_rtx cst)612 rtx_to_double_int (const_rtx cst)
613 {
614 double_int r;
615
616 if (CONST_INT_P (cst))
617 r = double_int::from_shwi (INTVAL (cst));
618 else if (CONST_DOUBLE_AS_INT_P (cst))
619 {
620 r.low = CONST_DOUBLE_LOW (cst);
621 r.high = CONST_DOUBLE_HIGH (cst);
622 }
623 else
624 gcc_unreachable ();
625
626 return r;
627 }
628 #endif
629
630 #if TARGET_SUPPORTS_WIDE_INT
631 /* Determine whether CONST_WIDE_INT WINT already exists in the hash table.
632 If so, return its counterpart; otherwise add it to the hash table and
633 return it. */
634
635 static rtx
lookup_const_wide_int(rtx wint)636 lookup_const_wide_int (rtx wint)
637 {
638 rtx *slot = const_wide_int_htab->find_slot (wint, INSERT);
639 if (*slot == 0)
640 *slot = wint;
641
642 return *slot;
643 }
644 #endif
645
646 /* Return an rtx constant for V, given that the constant has mode MODE.
647 The returned rtx will be a CONST_INT if V fits, otherwise it will be
648 a CONST_DOUBLE (if !TARGET_SUPPORTS_WIDE_INT) or a CONST_WIDE_INT
649 (if TARGET_SUPPORTS_WIDE_INT). */
650
651 static rtx
immed_wide_int_const_1(const wide_int_ref & v,machine_mode mode)652 immed_wide_int_const_1 (const wide_int_ref &v, machine_mode mode)
653 {
654 unsigned int len = v.get_len ();
655 /* Not scalar_int_mode because we also allow pointer bound modes. */
656 unsigned int prec = GET_MODE_PRECISION (as_a <scalar_mode> (mode));
657
658 /* Allow truncation but not extension since we do not know if the
659 number is signed or unsigned. */
660 gcc_assert (prec <= v.get_precision ());
661
662 if (len < 2 || prec <= HOST_BITS_PER_WIDE_INT)
663 return gen_int_mode (v.elt (0), mode);
664
665 #if TARGET_SUPPORTS_WIDE_INT
666 {
667 unsigned int i;
668 rtx value;
669 unsigned int blocks_needed
670 = (prec + HOST_BITS_PER_WIDE_INT - 1) / HOST_BITS_PER_WIDE_INT;
671
672 if (len > blocks_needed)
673 len = blocks_needed;
674
675 value = const_wide_int_alloc (len);
676
677 /* It is so tempting to just put the mode in here. Must control
678 myself ... */
679 PUT_MODE (value, VOIDmode);
680 CWI_PUT_NUM_ELEM (value, len);
681
682 for (i = 0; i < len; i++)
683 CONST_WIDE_INT_ELT (value, i) = v.elt (i);
684
685 return lookup_const_wide_int (value);
686 }
687 #else
688 return immed_double_const (v.elt (0), v.elt (1), mode);
689 #endif
690 }
691
692 #if TARGET_SUPPORTS_WIDE_INT == 0
693 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
694 of ints: I0 is the low-order word and I1 is the high-order word.
695 For values that are larger than HOST_BITS_PER_DOUBLE_INT, the
696 implied upper bits are copies of the high bit of i1. The value
697 itself is neither signed nor unsigned. Do not use this routine for
698 non-integer modes; convert to REAL_VALUE_TYPE and use
699 const_double_from_real_value. */
700
701 rtx
immed_double_const(HOST_WIDE_INT i0,HOST_WIDE_INT i1,machine_mode mode)702 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, machine_mode mode)
703 {
704 rtx value;
705 unsigned int i;
706
707 /* There are the following cases (note that there are no modes with
708 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < HOST_BITS_PER_DOUBLE_INT):
709
710 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
711 gen_int_mode.
712 2) If the value of the integer fits into HOST_WIDE_INT anyway
713 (i.e., i1 consists only from copies of the sign bit, and sign
714 of i0 and i1 are the same), then we return a CONST_INT for i0.
715 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
716 scalar_mode smode;
717 if (is_a <scalar_mode> (mode, &smode)
718 && GET_MODE_BITSIZE (smode) <= HOST_BITS_PER_WIDE_INT)
719 return gen_int_mode (i0, mode);
720
721 /* If this integer fits in one word, return a CONST_INT. */
722 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
723 return GEN_INT (i0);
724
725 /* We use VOIDmode for integers. */
726 value = rtx_alloc (CONST_DOUBLE);
727 PUT_MODE (value, VOIDmode);
728
729 CONST_DOUBLE_LOW (value) = i0;
730 CONST_DOUBLE_HIGH (value) = i1;
731
732 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
733 XWINT (value, i) = 0;
734
735 return lookup_const_double (value);
736 }
737 #endif
738
739 /* Return an rtx representation of C in mode MODE. */
740
741 rtx
immed_wide_int_const(const poly_wide_int_ref & c,machine_mode mode)742 immed_wide_int_const (const poly_wide_int_ref &c, machine_mode mode)
743 {
744 if (c.is_constant ())
745 return immed_wide_int_const_1 (c.coeffs[0], mode);
746
747 /* Not scalar_int_mode because we also allow pointer bound modes. */
748 unsigned int prec = GET_MODE_PRECISION (as_a <scalar_mode> (mode));
749
750 /* Allow truncation but not extension since we do not know if the
751 number is signed or unsigned. */
752 gcc_assert (prec <= c.coeffs[0].get_precision ());
753 poly_wide_int newc = poly_wide_int::from (c, prec, SIGNED);
754
755 /* See whether we already have an rtx for this constant. */
756 inchash::hash h;
757 h.add_int (mode);
758 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
759 h.add_wide_int (newc.coeffs[i]);
760 const_poly_int_hasher::compare_type typed_value (mode, newc);
761 rtx *slot = const_poly_int_htab->find_slot_with_hash (typed_value,
762 h.end (), INSERT);
763 rtx x = *slot;
764 if (x)
765 return x;
766
767 /* Create a new rtx. There's a choice to be made here between installing
768 the actual mode of the rtx or leaving it as VOIDmode (for consistency
769 with CONST_INT). In practice the handling of the codes is different
770 enough that we get no benefit from using VOIDmode, and various places
771 assume that VOIDmode implies CONST_INT. Using the real mode seems like
772 the right long-term direction anyway. */
773 typedef trailing_wide_ints<NUM_POLY_INT_COEFFS> twi;
774 size_t extra_size = twi::extra_size (prec);
775 x = rtx_alloc_v (CONST_POLY_INT,
776 sizeof (struct const_poly_int_def) + extra_size);
777 PUT_MODE (x, mode);
778 CONST_POLY_INT_COEFFS (x).set_precision (prec);
779 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
780 CONST_POLY_INT_COEFFS (x)[i] = newc.coeffs[i];
781
782 *slot = x;
783 return x;
784 }
785
786 rtx
gen_rtx_REG(machine_mode mode,unsigned int regno)787 gen_rtx_REG (machine_mode mode, unsigned int regno)
788 {
789 /* In case the MD file explicitly references the frame pointer, have
790 all such references point to the same frame pointer. This is
791 used during frame pointer elimination to distinguish the explicit
792 references to these registers from pseudos that happened to be
793 assigned to them.
794
795 If we have eliminated the frame pointer or arg pointer, we will
796 be using it as a normal register, for example as a spill
797 register. In such cases, we might be accessing it in a mode that
798 is not Pmode and therefore cannot use the pre-allocated rtx.
799
800 Also don't do this when we are making new REGs in reload, since
801 we don't want to get confused with the real pointers. */
802
803 if (mode == Pmode && !reload_in_progress && !lra_in_progress)
804 {
805 if (regno == FRAME_POINTER_REGNUM
806 && (!reload_completed || frame_pointer_needed))
807 return frame_pointer_rtx;
808
809 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER
810 && regno == HARD_FRAME_POINTER_REGNUM
811 && (!reload_completed || frame_pointer_needed))
812 return hard_frame_pointer_rtx;
813 #if !HARD_FRAME_POINTER_IS_ARG_POINTER
814 if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
815 && regno == ARG_POINTER_REGNUM)
816 return arg_pointer_rtx;
817 #endif
818 #ifdef RETURN_ADDRESS_POINTER_REGNUM
819 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
820 return return_address_pointer_rtx;
821 #endif
822 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
823 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
824 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
825 return pic_offset_table_rtx;
826 if (regno == STACK_POINTER_REGNUM)
827 return stack_pointer_rtx;
828 }
829
830 #if 0
831 /* If the per-function register table has been set up, try to re-use
832 an existing entry in that table to avoid useless generation of RTL.
833
834 This code is disabled for now until we can fix the various backends
835 which depend on having non-shared hard registers in some cases. Long
836 term we want to re-enable this code as it can significantly cut down
837 on the amount of useless RTL that gets generated.
838
839 We'll also need to fix some code that runs after reload that wants to
840 set ORIGINAL_REGNO. */
841
842 if (cfun
843 && cfun->emit
844 && regno_reg_rtx
845 && regno < FIRST_PSEUDO_REGISTER
846 && reg_raw_mode[regno] == mode)
847 return regno_reg_rtx[regno];
848 #endif
849
850 return gen_raw_REG (mode, regno);
851 }
852
853 rtx
gen_rtx_MEM(machine_mode mode,rtx addr)854 gen_rtx_MEM (machine_mode mode, rtx addr)
855 {
856 rtx rt = gen_rtx_raw_MEM (mode, addr);
857
858 /* This field is not cleared by the mere allocation of the rtx, so
859 we clear it here. */
860 MEM_ATTRS (rt) = 0;
861
862 return rt;
863 }
864
865 /* Generate a memory referring to non-trapping constant memory. */
866
867 rtx
gen_const_mem(machine_mode mode,rtx addr)868 gen_const_mem (machine_mode mode, rtx addr)
869 {
870 rtx mem = gen_rtx_MEM (mode, addr);
871 MEM_READONLY_P (mem) = 1;
872 MEM_NOTRAP_P (mem) = 1;
873 return mem;
874 }
875
876 /* Generate a MEM referring to fixed portions of the frame, e.g., register
877 save areas. */
878
879 rtx
gen_frame_mem(machine_mode mode,rtx addr)880 gen_frame_mem (machine_mode mode, rtx addr)
881 {
882 rtx mem = gen_rtx_MEM (mode, addr);
883 MEM_NOTRAP_P (mem) = 1;
884 set_mem_alias_set (mem, get_frame_alias_set ());
885 return mem;
886 }
887
888 /* Generate a MEM referring to a temporary use of the stack, not part
889 of the fixed stack frame. For example, something which is pushed
890 by a target splitter. */
891 rtx
gen_tmp_stack_mem(machine_mode mode,rtx addr)892 gen_tmp_stack_mem (machine_mode mode, rtx addr)
893 {
894 rtx mem = gen_rtx_MEM (mode, addr);
895 MEM_NOTRAP_P (mem) = 1;
896 if (!cfun->calls_alloca)
897 set_mem_alias_set (mem, get_frame_alias_set ());
898 return mem;
899 }
900
901 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
902 this construct would be valid, and false otherwise. */
903
904 bool
validate_subreg(machine_mode omode,machine_mode imode,const_rtx reg,poly_uint64 offset)905 validate_subreg (machine_mode omode, machine_mode imode,
906 const_rtx reg, poly_uint64 offset)
907 {
908 poly_uint64 isize = GET_MODE_SIZE (imode);
909 poly_uint64 osize = GET_MODE_SIZE (omode);
910
911 /* The sizes must be ordered, so that we know whether the subreg
912 is partial, paradoxical or complete. */
913 if (!ordered_p (isize, osize))
914 return false;
915
916 /* All subregs must be aligned. */
917 if (!multiple_p (offset, osize))
918 return false;
919
920 /* The subreg offset cannot be outside the inner object. */
921 if (maybe_ge (offset, isize))
922 return false;
923
924 poly_uint64 regsize = REGMODE_NATURAL_SIZE (imode);
925
926 /* ??? This should not be here. Temporarily continue to allow word_mode
927 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
928 Generally, backends are doing something sketchy but it'll take time to
929 fix them all. */
930 if (omode == word_mode)
931 ;
932 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
933 is the culprit here, and not the backends. */
934 else if (known_ge (osize, regsize) && known_ge (isize, osize))
935 ;
936 /* Allow component subregs of complex and vector. Though given the below
937 extraction rules, it's not always clear what that means. */
938 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
939 && GET_MODE_INNER (imode) == omode)
940 ;
941 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
942 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
943 represent this. It's questionable if this ought to be represented at
944 all -- why can't this all be hidden in post-reload splitters that make
945 arbitrarily mode changes to the registers themselves. */
946 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
947 ;
948 /* Subregs involving floating point modes are not allowed to
949 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
950 (subreg:SI (reg:DF) 0) isn't. */
951 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
952 {
953 if (! (known_eq (isize, osize)
954 /* LRA can use subreg to store a floating point value in
955 an integer mode. Although the floating point and the
956 integer modes need the same number of hard registers,
957 the size of floating point mode can be less than the
958 integer mode. LRA also uses subregs for a register
959 should be used in different mode in on insn. */
960 || lra_in_progress))
961 return false;
962 }
963
964 /* Paradoxical subregs must have offset zero. */
965 if (maybe_gt (osize, isize))
966 return known_eq (offset, 0U);
967
968 /* This is a normal subreg. Verify that the offset is representable. */
969
970 /* For hard registers, we already have most of these rules collected in
971 subreg_offset_representable_p. */
972 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
973 {
974 unsigned int regno = REGNO (reg);
975
976 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
977 && GET_MODE_INNER (imode) == omode)
978 ;
979 else if (!REG_CAN_CHANGE_MODE_P (regno, imode, omode))
980 return false;
981
982 return subreg_offset_representable_p (regno, imode, offset, omode);
983 }
984
985 /* The outer size must be ordered wrt the register size, otherwise
986 we wouldn't know at compile time how many registers the outer
987 mode occupies. */
988 if (!ordered_p (osize, regsize))
989 return false;
990
991 /* For pseudo registers, we want most of the same checks. Namely:
992
993 Assume that the pseudo register will be allocated to hard registers
994 that can hold REGSIZE bytes each. If OSIZE is not a multiple of REGSIZE,
995 the remainder must correspond to the lowpart of the containing hard
996 register. If BYTES_BIG_ENDIAN, the lowpart is at the highest offset,
997 otherwise it is at the lowest offset.
998
999 Given that we've already checked the mode and offset alignment,
1000 we only have to check subblock subregs here. */
1001 if (maybe_lt (osize, regsize)
1002 && ! (lra_in_progress && (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))))
1003 {
1004 /* It is invalid for the target to pick a register size for a mode
1005 that isn't ordered wrt to the size of that mode. */
1006 poly_uint64 block_size = ordered_min (isize, regsize);
1007 unsigned int start_reg;
1008 poly_uint64 offset_within_reg;
1009 if (!can_div_trunc_p (offset, block_size, &start_reg, &offset_within_reg)
1010 || (BYTES_BIG_ENDIAN
1011 ? maybe_ne (offset_within_reg, block_size - osize)
1012 : maybe_ne (offset_within_reg, 0U)))
1013 return false;
1014 }
1015 return true;
1016 }
1017
1018 rtx
gen_rtx_SUBREG(machine_mode mode,rtx reg,poly_uint64 offset)1019 gen_rtx_SUBREG (machine_mode mode, rtx reg, poly_uint64 offset)
1020 {
1021 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
1022 return gen_rtx_raw_SUBREG (mode, reg, offset);
1023 }
1024
1025 /* Generate a SUBREG representing the least-significant part of REG if MODE
1026 is smaller than mode of REG, otherwise paradoxical SUBREG. */
1027
1028 rtx
gen_lowpart_SUBREG(machine_mode mode,rtx reg)1029 gen_lowpart_SUBREG (machine_mode mode, rtx reg)
1030 {
1031 machine_mode inmode;
1032
1033 inmode = GET_MODE (reg);
1034 if (inmode == VOIDmode)
1035 inmode = mode;
1036 return gen_rtx_SUBREG (mode, reg,
1037 subreg_lowpart_offset (mode, inmode));
1038 }
1039
1040 rtx
gen_rtx_VAR_LOCATION(machine_mode mode,tree decl,rtx loc,enum var_init_status status)1041 gen_rtx_VAR_LOCATION (machine_mode mode, tree decl, rtx loc,
1042 enum var_init_status status)
1043 {
1044 rtx x = gen_rtx_fmt_te (VAR_LOCATION, mode, decl, loc);
1045 PAT_VAR_LOCATION_STATUS (x) = status;
1046 return x;
1047 }
1048
1049
1050 /* Create an rtvec and stores within it the RTXen passed in the arguments. */
1051
1052 rtvec
gen_rtvec(int n,...)1053 gen_rtvec (int n, ...)
1054 {
1055 int i;
1056 rtvec rt_val;
1057 va_list p;
1058
1059 va_start (p, n);
1060
1061 /* Don't allocate an empty rtvec... */
1062 if (n == 0)
1063 {
1064 va_end (p);
1065 return NULL_RTVEC;
1066 }
1067
1068 rt_val = rtvec_alloc (n);
1069
1070 for (i = 0; i < n; i++)
1071 rt_val->elem[i] = va_arg (p, rtx);
1072
1073 va_end (p);
1074 return rt_val;
1075 }
1076
1077 rtvec
gen_rtvec_v(int n,rtx * argp)1078 gen_rtvec_v (int n, rtx *argp)
1079 {
1080 int i;
1081 rtvec rt_val;
1082
1083 /* Don't allocate an empty rtvec... */
1084 if (n == 0)
1085 return NULL_RTVEC;
1086
1087 rt_val = rtvec_alloc (n);
1088
1089 for (i = 0; i < n; i++)
1090 rt_val->elem[i] = *argp++;
1091
1092 return rt_val;
1093 }
1094
1095 rtvec
gen_rtvec_v(int n,rtx_insn ** argp)1096 gen_rtvec_v (int n, rtx_insn **argp)
1097 {
1098 int i;
1099 rtvec rt_val;
1100
1101 /* Don't allocate an empty rtvec... */
1102 if (n == 0)
1103 return NULL_RTVEC;
1104
1105 rt_val = rtvec_alloc (n);
1106
1107 for (i = 0; i < n; i++)
1108 rt_val->elem[i] = *argp++;
1109
1110 return rt_val;
1111 }
1112
1113
1114 /* Return the number of bytes between the start of an OUTER_MODE
1115 in-memory value and the start of an INNER_MODE in-memory value,
1116 given that the former is a lowpart of the latter. It may be a
1117 paradoxical lowpart, in which case the offset will be negative
1118 on big-endian targets. */
1119
1120 poly_int64
byte_lowpart_offset(machine_mode outer_mode,machine_mode inner_mode)1121 byte_lowpart_offset (machine_mode outer_mode,
1122 machine_mode inner_mode)
1123 {
1124 if (paradoxical_subreg_p (outer_mode, inner_mode))
1125 return -subreg_lowpart_offset (inner_mode, outer_mode);
1126 else
1127 return subreg_lowpart_offset (outer_mode, inner_mode);
1128 }
1129
1130 /* Return the offset of (subreg:OUTER_MODE (mem:INNER_MODE X) OFFSET)
1131 from address X. For paradoxical big-endian subregs this is a
1132 negative value, otherwise it's the same as OFFSET. */
1133
1134 poly_int64
subreg_memory_offset(machine_mode outer_mode,machine_mode inner_mode,poly_uint64 offset)1135 subreg_memory_offset (machine_mode outer_mode, machine_mode inner_mode,
1136 poly_uint64 offset)
1137 {
1138 if (paradoxical_subreg_p (outer_mode, inner_mode))
1139 {
1140 gcc_assert (known_eq (offset, 0U));
1141 return -subreg_lowpart_offset (inner_mode, outer_mode);
1142 }
1143 return offset;
1144 }
1145
1146 /* As above, but return the offset that existing subreg X would have
1147 if SUBREG_REG (X) were stored in memory. The only significant thing
1148 about the current SUBREG_REG is its mode. */
1149
1150 poly_int64
subreg_memory_offset(const_rtx x)1151 subreg_memory_offset (const_rtx x)
1152 {
1153 return subreg_memory_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
1154 SUBREG_BYTE (x));
1155 }
1156
1157 /* Generate a REG rtx for a new pseudo register of mode MODE.
1158 This pseudo is assigned the next sequential register number. */
1159
1160 rtx
gen_reg_rtx(machine_mode mode)1161 gen_reg_rtx (machine_mode mode)
1162 {
1163 rtx val;
1164 unsigned int align = GET_MODE_ALIGNMENT (mode);
1165
1166 gcc_assert (can_create_pseudo_p ());
1167
1168 /* If a virtual register with bigger mode alignment is generated,
1169 increase stack alignment estimation because it might be spilled
1170 to stack later. */
1171 if (SUPPORTS_STACK_ALIGNMENT
1172 && crtl->stack_alignment_estimated < align
1173 && !crtl->stack_realign_processed)
1174 {
1175 unsigned int min_align = MINIMUM_ALIGNMENT (NULL, mode, align);
1176 if (crtl->stack_alignment_estimated < min_align)
1177 crtl->stack_alignment_estimated = min_align;
1178 }
1179
1180 if (generating_concat_p
1181 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
1182 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
1183 {
1184 /* For complex modes, don't make a single pseudo.
1185 Instead, make a CONCAT of two pseudos.
1186 This allows noncontiguous allocation of the real and imaginary parts,
1187 which makes much better code. Besides, allocating DCmode
1188 pseudos overstrains reload on some machines like the 386. */
1189 rtx realpart, imagpart;
1190 machine_mode partmode = GET_MODE_INNER (mode);
1191
1192 realpart = gen_reg_rtx (partmode);
1193 imagpart = gen_reg_rtx (partmode);
1194 return gen_rtx_CONCAT (mode, realpart, imagpart);
1195 }
1196
1197 /* Do not call gen_reg_rtx with uninitialized crtl. */
1198 gcc_assert (crtl->emit.regno_pointer_align_length);
1199
1200 crtl->emit.ensure_regno_capacity ();
1201 gcc_assert (reg_rtx_no < crtl->emit.regno_pointer_align_length);
1202
1203 val = gen_raw_REG (mode, reg_rtx_no);
1204 regno_reg_rtx[reg_rtx_no++] = val;
1205 return val;
1206 }
1207
1208 /* Make sure m_regno_pointer_align, and regno_reg_rtx are large
1209 enough to have elements in the range 0 <= idx <= reg_rtx_no. */
1210
1211 void
ensure_regno_capacity()1212 emit_status::ensure_regno_capacity ()
1213 {
1214 int old_size = regno_pointer_align_length;
1215
1216 if (reg_rtx_no < old_size)
1217 return;
1218
1219 int new_size = old_size * 2;
1220 while (reg_rtx_no >= new_size)
1221 new_size *= 2;
1222
1223 char *tmp = XRESIZEVEC (char, regno_pointer_align, new_size);
1224 memset (tmp + old_size, 0, new_size - old_size);
1225 regno_pointer_align = (unsigned char *) tmp;
1226
1227 rtx *new1 = GGC_RESIZEVEC (rtx, regno_reg_rtx, new_size);
1228 memset (new1 + old_size, 0, (new_size - old_size) * sizeof (rtx));
1229 regno_reg_rtx = new1;
1230
1231 crtl->emit.regno_pointer_align_length = new_size;
1232 }
1233
1234 /* Return TRUE if REG is a PARM_DECL, FALSE otherwise. */
1235
1236 bool
reg_is_parm_p(rtx reg)1237 reg_is_parm_p (rtx reg)
1238 {
1239 tree decl;
1240
1241 gcc_assert (REG_P (reg));
1242 decl = REG_EXPR (reg);
1243 return (decl && TREE_CODE (decl) == PARM_DECL);
1244 }
1245
1246 /* Update NEW with the same attributes as REG, but with OFFSET added
1247 to the REG_OFFSET. */
1248
1249 static void
update_reg_offset(rtx new_rtx,rtx reg,poly_int64 offset)1250 update_reg_offset (rtx new_rtx, rtx reg, poly_int64 offset)
1251 {
1252 REG_ATTRS (new_rtx) = get_reg_attrs (REG_EXPR (reg),
1253 REG_OFFSET (reg) + offset);
1254 }
1255
1256 /* Generate a register with same attributes as REG, but with OFFSET
1257 added to the REG_OFFSET. */
1258
1259 rtx
gen_rtx_REG_offset(rtx reg,machine_mode mode,unsigned int regno,poly_int64 offset)1260 gen_rtx_REG_offset (rtx reg, machine_mode mode, unsigned int regno,
1261 poly_int64 offset)
1262 {
1263 rtx new_rtx = gen_rtx_REG (mode, regno);
1264
1265 update_reg_offset (new_rtx, reg, offset);
1266 return new_rtx;
1267 }
1268
1269 /* Generate a new pseudo-register with the same attributes as REG, but
1270 with OFFSET added to the REG_OFFSET. */
1271
1272 rtx
gen_reg_rtx_offset(rtx reg,machine_mode mode,int offset)1273 gen_reg_rtx_offset (rtx reg, machine_mode mode, int offset)
1274 {
1275 rtx new_rtx = gen_reg_rtx (mode);
1276
1277 update_reg_offset (new_rtx, reg, offset);
1278 return new_rtx;
1279 }
1280
1281 /* Adjust REG in-place so that it has mode MODE. It is assumed that the
1282 new register is a (possibly paradoxical) lowpart of the old one. */
1283
1284 void
adjust_reg_mode(rtx reg,machine_mode mode)1285 adjust_reg_mode (rtx reg, machine_mode mode)
1286 {
1287 update_reg_offset (reg, reg, byte_lowpart_offset (mode, GET_MODE (reg)));
1288 PUT_MODE (reg, mode);
1289 }
1290
1291 /* Copy REG's attributes from X, if X has any attributes. If REG and X
1292 have different modes, REG is a (possibly paradoxical) lowpart of X. */
1293
1294 void
set_reg_attrs_from_value(rtx reg,rtx x)1295 set_reg_attrs_from_value (rtx reg, rtx x)
1296 {
1297 poly_int64 offset;
1298 bool can_be_reg_pointer = true;
1299
1300 /* Don't call mark_reg_pointer for incompatible pointer sign
1301 extension. */
1302 while (GET_CODE (x) == SIGN_EXTEND
1303 || GET_CODE (x) == ZERO_EXTEND
1304 || GET_CODE (x) == TRUNCATE
1305 || (GET_CODE (x) == SUBREG && subreg_lowpart_p (x)))
1306 {
1307 #if defined(POINTERS_EXTEND_UNSIGNED)
1308 if (((GET_CODE (x) == SIGN_EXTEND && POINTERS_EXTEND_UNSIGNED)
1309 || (GET_CODE (x) == ZERO_EXTEND && ! POINTERS_EXTEND_UNSIGNED)
1310 || (paradoxical_subreg_p (x)
1311 && ! (SUBREG_PROMOTED_VAR_P (x)
1312 && SUBREG_CHECK_PROMOTED_SIGN (x,
1313 POINTERS_EXTEND_UNSIGNED))))
1314 && !targetm.have_ptr_extend ())
1315 can_be_reg_pointer = false;
1316 #endif
1317 x = XEXP (x, 0);
1318 }
1319
1320 /* Hard registers can be reused for multiple purposes within the same
1321 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
1322 on them is wrong. */
1323 if (HARD_REGISTER_P (reg))
1324 return;
1325
1326 offset = byte_lowpart_offset (GET_MODE (reg), GET_MODE (x));
1327 if (MEM_P (x))
1328 {
1329 if (MEM_OFFSET_KNOWN_P (x))
1330 REG_ATTRS (reg) = get_reg_attrs (MEM_EXPR (x),
1331 MEM_OFFSET (x) + offset);
1332 if (can_be_reg_pointer && MEM_POINTER (x))
1333 mark_reg_pointer (reg, 0);
1334 }
1335 else if (REG_P (x))
1336 {
1337 if (REG_ATTRS (x))
1338 update_reg_offset (reg, x, offset);
1339 if (can_be_reg_pointer && REG_POINTER (x))
1340 mark_reg_pointer (reg, REGNO_POINTER_ALIGN (REGNO (x)));
1341 }
1342 }
1343
1344 /* Generate a REG rtx for a new pseudo register, copying the mode
1345 and attributes from X. */
1346
1347 rtx
gen_reg_rtx_and_attrs(rtx x)1348 gen_reg_rtx_and_attrs (rtx x)
1349 {
1350 rtx reg = gen_reg_rtx (GET_MODE (x));
1351 set_reg_attrs_from_value (reg, x);
1352 return reg;
1353 }
1354
1355 /* Set the register attributes for registers contained in PARM_RTX.
1356 Use needed values from memory attributes of MEM. */
1357
1358 void
set_reg_attrs_for_parm(rtx parm_rtx,rtx mem)1359 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
1360 {
1361 if (REG_P (parm_rtx))
1362 set_reg_attrs_from_value (parm_rtx, mem);
1363 else if (GET_CODE (parm_rtx) == PARALLEL)
1364 {
1365 /* Check for a NULL entry in the first slot, used to indicate that the
1366 parameter goes both on the stack and in registers. */
1367 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
1368 for (; i < XVECLEN (parm_rtx, 0); i++)
1369 {
1370 rtx x = XVECEXP (parm_rtx, 0, i);
1371 if (REG_P (XEXP (x, 0)))
1372 REG_ATTRS (XEXP (x, 0))
1373 = get_reg_attrs (MEM_EXPR (mem),
1374 INTVAL (XEXP (x, 1)));
1375 }
1376 }
1377 }
1378
1379 /* Set the REG_ATTRS for registers in value X, given that X represents
1380 decl T. */
1381
1382 void
set_reg_attrs_for_decl_rtl(tree t,rtx x)1383 set_reg_attrs_for_decl_rtl (tree t, rtx x)
1384 {
1385 if (!t)
1386 return;
1387 tree tdecl = t;
1388 if (GET_CODE (x) == SUBREG)
1389 {
1390 gcc_assert (subreg_lowpart_p (x));
1391 x = SUBREG_REG (x);
1392 }
1393 if (REG_P (x))
1394 REG_ATTRS (x)
1395 = get_reg_attrs (t, byte_lowpart_offset (GET_MODE (x),
1396 DECL_P (tdecl)
1397 ? DECL_MODE (tdecl)
1398 : TYPE_MODE (TREE_TYPE (tdecl))));
1399 if (GET_CODE (x) == CONCAT)
1400 {
1401 if (REG_P (XEXP (x, 0)))
1402 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1403 if (REG_P (XEXP (x, 1)))
1404 REG_ATTRS (XEXP (x, 1))
1405 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1406 }
1407 if (GET_CODE (x) == PARALLEL)
1408 {
1409 int i, start;
1410
1411 /* Check for a NULL entry, used to indicate that the parameter goes
1412 both on the stack and in registers. */
1413 if (XEXP (XVECEXP (x, 0, 0), 0))
1414 start = 0;
1415 else
1416 start = 1;
1417
1418 for (i = start; i < XVECLEN (x, 0); i++)
1419 {
1420 rtx y = XVECEXP (x, 0, i);
1421 if (REG_P (XEXP (y, 0)))
1422 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1423 }
1424 }
1425 }
1426
1427 /* Assign the RTX X to declaration T. */
1428
1429 void
set_decl_rtl(tree t,rtx x)1430 set_decl_rtl (tree t, rtx x)
1431 {
1432 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
1433 if (x)
1434 set_reg_attrs_for_decl_rtl (t, x);
1435 }
1436
1437 /* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1438 if the ABI requires the parameter to be passed by reference. */
1439
1440 void
set_decl_incoming_rtl(tree t,rtx x,bool by_reference_p)1441 set_decl_incoming_rtl (tree t, rtx x, bool by_reference_p)
1442 {
1443 DECL_INCOMING_RTL (t) = x;
1444 if (x && !by_reference_p)
1445 set_reg_attrs_for_decl_rtl (t, x);
1446 }
1447
1448 /* Identify REG (which may be a CONCAT) as a user register. */
1449
1450 void
mark_user_reg(rtx reg)1451 mark_user_reg (rtx reg)
1452 {
1453 if (GET_CODE (reg) == CONCAT)
1454 {
1455 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1456 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1457 }
1458 else
1459 {
1460 gcc_assert (REG_P (reg));
1461 REG_USERVAR_P (reg) = 1;
1462 }
1463 }
1464
1465 /* Identify REG as a probable pointer register and show its alignment
1466 as ALIGN, if nonzero. */
1467
1468 void
mark_reg_pointer(rtx reg,int align)1469 mark_reg_pointer (rtx reg, int align)
1470 {
1471 if (! REG_POINTER (reg))
1472 {
1473 REG_POINTER (reg) = 1;
1474
1475 if (align)
1476 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1477 }
1478 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
1479 /* We can no-longer be sure just how aligned this pointer is. */
1480 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1481 }
1482
1483 /* Return 1 plus largest pseudo reg number used in the current function. */
1484
1485 int
max_reg_num(void)1486 max_reg_num (void)
1487 {
1488 return reg_rtx_no;
1489 }
1490
1491 /* Return 1 + the largest label number used so far in the current function. */
1492
1493 int
max_label_num(void)1494 max_label_num (void)
1495 {
1496 return label_num;
1497 }
1498
1499 /* Return first label number used in this function (if any were used). */
1500
1501 int
get_first_label_num(void)1502 get_first_label_num (void)
1503 {
1504 return first_label_num;
1505 }
1506
1507 /* If the rtx for label was created during the expansion of a nested
1508 function, then first_label_num won't include this label number.
1509 Fix this now so that array indices work later. */
1510
1511 void
maybe_set_first_label_num(rtx_code_label * x)1512 maybe_set_first_label_num (rtx_code_label *x)
1513 {
1514 if (CODE_LABEL_NUMBER (x) < first_label_num)
1515 first_label_num = CODE_LABEL_NUMBER (x);
1516 }
1517
1518 /* For use by the RTL function loader, when mingling with normal
1519 functions.
1520 Ensure that label_num is greater than the label num of X, to avoid
1521 duplicate labels in the generated assembler. */
1522
1523 void
maybe_set_max_label_num(rtx_code_label * x)1524 maybe_set_max_label_num (rtx_code_label *x)
1525 {
1526 if (CODE_LABEL_NUMBER (x) >= label_num)
1527 label_num = CODE_LABEL_NUMBER (x) + 1;
1528 }
1529
1530
1531 /* Return a value representing some low-order bits of X, where the number
1532 of low-order bits is given by MODE. Note that no conversion is done
1533 between floating-point and fixed-point values, rather, the bit
1534 representation is returned.
1535
1536 This function handles the cases in common between gen_lowpart, below,
1537 and two variants in cse.c and combine.c. These are the cases that can
1538 be safely handled at all points in the compilation.
1539
1540 If this is not a case we can handle, return 0. */
1541
1542 rtx
gen_lowpart_common(machine_mode mode,rtx x)1543 gen_lowpart_common (machine_mode mode, rtx x)
1544 {
1545 poly_uint64 msize = GET_MODE_SIZE (mode);
1546 machine_mode innermode;
1547
1548 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1549 so we have to make one up. Yuk. */
1550 innermode = GET_MODE (x);
1551 if (CONST_INT_P (x)
1552 && known_le (msize * BITS_PER_UNIT,
1553 (unsigned HOST_WIDE_INT) HOST_BITS_PER_WIDE_INT))
1554 innermode = int_mode_for_size (HOST_BITS_PER_WIDE_INT, 0).require ();
1555 else if (innermode == VOIDmode)
1556 innermode = int_mode_for_size (HOST_BITS_PER_DOUBLE_INT, 0).require ();
1557
1558 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
1559
1560 if (innermode == mode)
1561 return x;
1562
1563 /* The size of the outer and inner modes must be ordered. */
1564 poly_uint64 xsize = GET_MODE_SIZE (innermode);
1565 if (!ordered_p (msize, xsize))
1566 return 0;
1567
1568 if (SCALAR_FLOAT_MODE_P (mode))
1569 {
1570 /* Don't allow paradoxical FLOAT_MODE subregs. */
1571 if (maybe_gt (msize, xsize))
1572 return 0;
1573 }
1574 else
1575 {
1576 /* MODE must occupy no more of the underlying registers than X. */
1577 poly_uint64 regsize = REGMODE_NATURAL_SIZE (innermode);
1578 unsigned int mregs, xregs;
1579 if (!can_div_away_from_zero_p (msize, regsize, &mregs)
1580 || !can_div_away_from_zero_p (xsize, regsize, &xregs)
1581 || mregs > xregs)
1582 return 0;
1583 }
1584
1585 scalar_int_mode int_mode, int_innermode, from_mode;
1586 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1587 && is_a <scalar_int_mode> (mode, &int_mode)
1588 && is_a <scalar_int_mode> (innermode, &int_innermode)
1589 && is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &from_mode))
1590 {
1591 /* If we are getting the low-order part of something that has been
1592 sign- or zero-extended, we can either just use the object being
1593 extended or make a narrower extension. If we want an even smaller
1594 piece than the size of the object being extended, call ourselves
1595 recursively.
1596
1597 This case is used mostly by combine and cse. */
1598
1599 if (from_mode == int_mode)
1600 return XEXP (x, 0);
1601 else if (GET_MODE_SIZE (int_mode) < GET_MODE_SIZE (from_mode))
1602 return gen_lowpart_common (int_mode, XEXP (x, 0));
1603 else if (GET_MODE_SIZE (int_mode) < GET_MODE_SIZE (int_innermode))
1604 return gen_rtx_fmt_e (GET_CODE (x), int_mode, XEXP (x, 0));
1605 }
1606 else if (GET_CODE (x) == SUBREG || REG_P (x)
1607 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1608 || CONST_DOUBLE_AS_FLOAT_P (x) || CONST_SCALAR_INT_P (x)
1609 || CONST_POLY_INT_P (x))
1610 return lowpart_subreg (mode, x, innermode);
1611
1612 /* Otherwise, we can't do this. */
1613 return 0;
1614 }
1615
1616 rtx
gen_highpart(machine_mode mode,rtx x)1617 gen_highpart (machine_mode mode, rtx x)
1618 {
1619 poly_uint64 msize = GET_MODE_SIZE (mode);
1620 rtx result;
1621
1622 /* This case loses if X is a subreg. To catch bugs early,
1623 complain if an invalid MODE is used even in other cases. */
1624 gcc_assert (known_le (msize, (unsigned int) UNITS_PER_WORD)
1625 || known_eq (msize, GET_MODE_UNIT_SIZE (GET_MODE (x))));
1626
1627 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1628 subreg_highpart_offset (mode, GET_MODE (x)));
1629 gcc_assert (result);
1630
1631 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1632 the target if we have a MEM. gen_highpart must return a valid operand,
1633 emitting code if necessary to do so. */
1634 if (MEM_P (result))
1635 {
1636 result = validize_mem (result);
1637 gcc_assert (result);
1638 }
1639
1640 return result;
1641 }
1642
1643 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1644 be VOIDmode constant. */
1645 rtx
gen_highpart_mode(machine_mode outermode,machine_mode innermode,rtx exp)1646 gen_highpart_mode (machine_mode outermode, machine_mode innermode, rtx exp)
1647 {
1648 if (GET_MODE (exp) != VOIDmode)
1649 {
1650 gcc_assert (GET_MODE (exp) == innermode);
1651 return gen_highpart (outermode, exp);
1652 }
1653 return simplify_gen_subreg (outermode, exp, innermode,
1654 subreg_highpart_offset (outermode, innermode));
1655 }
1656
1657 /* Return the SUBREG_BYTE for a lowpart subreg whose outer mode has
1658 OUTER_BYTES bytes and whose inner mode has INNER_BYTES bytes. */
1659
1660 poly_uint64
subreg_size_lowpart_offset(poly_uint64 outer_bytes,poly_uint64 inner_bytes)1661 subreg_size_lowpart_offset (poly_uint64 outer_bytes, poly_uint64 inner_bytes)
1662 {
1663 gcc_checking_assert (ordered_p (outer_bytes, inner_bytes));
1664 if (maybe_gt (outer_bytes, inner_bytes))
1665 /* Paradoxical subregs always have a SUBREG_BYTE of 0. */
1666 return 0;
1667
1668 if (BYTES_BIG_ENDIAN && WORDS_BIG_ENDIAN)
1669 return inner_bytes - outer_bytes;
1670 else if (!BYTES_BIG_ENDIAN && !WORDS_BIG_ENDIAN)
1671 return 0;
1672 else
1673 return subreg_size_offset_from_lsb (outer_bytes, inner_bytes, 0);
1674 }
1675
1676 /* Return the SUBREG_BYTE for a highpart subreg whose outer mode has
1677 OUTER_BYTES bytes and whose inner mode has INNER_BYTES bytes. */
1678
1679 poly_uint64
subreg_size_highpart_offset(poly_uint64 outer_bytes,poly_uint64 inner_bytes)1680 subreg_size_highpart_offset (poly_uint64 outer_bytes, poly_uint64 inner_bytes)
1681 {
1682 gcc_assert (known_ge (inner_bytes, outer_bytes));
1683
1684 if (BYTES_BIG_ENDIAN && WORDS_BIG_ENDIAN)
1685 return 0;
1686 else if (!BYTES_BIG_ENDIAN && !WORDS_BIG_ENDIAN)
1687 return inner_bytes - outer_bytes;
1688 else
1689 return subreg_size_offset_from_lsb (outer_bytes, inner_bytes,
1690 (inner_bytes - outer_bytes)
1691 * BITS_PER_UNIT);
1692 }
1693
1694 /* Return 1 iff X, assumed to be a SUBREG,
1695 refers to the least significant part of its containing reg.
1696 If X is not a SUBREG, always return 1 (it is its own low part!). */
1697
1698 int
subreg_lowpart_p(const_rtx x)1699 subreg_lowpart_p (const_rtx x)
1700 {
1701 if (GET_CODE (x) != SUBREG)
1702 return 1;
1703 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1704 return 0;
1705
1706 return known_eq (subreg_lowpart_offset (GET_MODE (x),
1707 GET_MODE (SUBREG_REG (x))),
1708 SUBREG_BYTE (x));
1709 }
1710
1711 /* Return subword OFFSET of operand OP.
1712 The word number, OFFSET, is interpreted as the word number starting
1713 at the low-order address. OFFSET 0 is the low-order word if not
1714 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1715
1716 If we cannot extract the required word, we return zero. Otherwise,
1717 an rtx corresponding to the requested word will be returned.
1718
1719 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1720 reload has completed, a valid address will always be returned. After
1721 reload, if a valid address cannot be returned, we return zero.
1722
1723 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1724 it is the responsibility of the caller.
1725
1726 MODE is the mode of OP in case it is a CONST_INT.
1727
1728 ??? This is still rather broken for some cases. The problem for the
1729 moment is that all callers of this thing provide no 'goal mode' to
1730 tell us to work with. This exists because all callers were written
1731 in a word based SUBREG world.
1732 Now use of this function can be deprecated by simplify_subreg in most
1733 cases.
1734 */
1735
1736 rtx
operand_subword(rtx op,poly_uint64 offset,int validate_address,machine_mode mode)1737 operand_subword (rtx op, poly_uint64 offset, int validate_address,
1738 machine_mode mode)
1739 {
1740 if (mode == VOIDmode)
1741 mode = GET_MODE (op);
1742
1743 gcc_assert (mode != VOIDmode);
1744
1745 /* If OP is narrower than a word, fail. */
1746 if (mode != BLKmode
1747 && maybe_lt (GET_MODE_SIZE (mode), UNITS_PER_WORD))
1748 return 0;
1749
1750 /* If we want a word outside OP, return zero. */
1751 if (mode != BLKmode
1752 && maybe_gt ((offset + 1) * UNITS_PER_WORD, GET_MODE_SIZE (mode)))
1753 return const0_rtx;
1754
1755 /* Form a new MEM at the requested address. */
1756 if (MEM_P (op))
1757 {
1758 rtx new_rtx = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1759
1760 if (! validate_address)
1761 return new_rtx;
1762
1763 else if (reload_completed)
1764 {
1765 if (! strict_memory_address_addr_space_p (word_mode,
1766 XEXP (new_rtx, 0),
1767 MEM_ADDR_SPACE (op)))
1768 return 0;
1769 }
1770 else
1771 return replace_equiv_address (new_rtx, XEXP (new_rtx, 0));
1772 }
1773
1774 /* Rest can be handled by simplify_subreg. */
1775 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1776 }
1777
1778 /* Similar to `operand_subword', but never return 0. If we can't
1779 extract the required subword, put OP into a register and try again.
1780 The second attempt must succeed. We always validate the address in
1781 this case.
1782
1783 MODE is the mode of OP, in case it is CONST_INT. */
1784
1785 rtx
operand_subword_force(rtx op,poly_uint64 offset,machine_mode mode)1786 operand_subword_force (rtx op, poly_uint64 offset, machine_mode mode)
1787 {
1788 rtx result = operand_subword (op, offset, 1, mode);
1789
1790 if (result)
1791 return result;
1792
1793 if (mode != BLKmode && mode != VOIDmode)
1794 {
1795 /* If this is a register which cannot be accessed by words, copy it
1796 to a pseudo register. */
1797 if (REG_P (op))
1798 op = copy_to_reg (op);
1799 else
1800 op = force_reg (mode, op);
1801 }
1802
1803 result = operand_subword (op, offset, 1, mode);
1804 gcc_assert (result);
1805
1806 return result;
1807 }
1808
mem_attrs()1809 mem_attrs::mem_attrs ()
1810 : expr (NULL_TREE),
1811 offset (0),
1812 size (0),
1813 alias (0),
1814 align (0),
1815 addrspace (ADDR_SPACE_GENERIC),
1816 offset_known_p (false),
1817 size_known_p (false)
1818 {}
1819
1820 /* Returns 1 if both MEM_EXPR can be considered equal
1821 and 0 otherwise. */
1822
1823 int
mem_expr_equal_p(const_tree expr1,const_tree expr2)1824 mem_expr_equal_p (const_tree expr1, const_tree expr2)
1825 {
1826 if (expr1 == expr2)
1827 return 1;
1828
1829 if (! expr1 || ! expr2)
1830 return 0;
1831
1832 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1833 return 0;
1834
1835 return operand_equal_p (expr1, expr2, 0);
1836 }
1837
1838 /* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1839 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1840 -1 if not known. */
1841
1842 int
get_mem_align_offset(rtx mem,unsigned int align)1843 get_mem_align_offset (rtx mem, unsigned int align)
1844 {
1845 tree expr;
1846 poly_uint64 offset;
1847
1848 /* This function can't use
1849 if (!MEM_EXPR (mem) || !MEM_OFFSET_KNOWN_P (mem)
1850 || (MAX (MEM_ALIGN (mem),
1851 MAX (align, get_object_alignment (MEM_EXPR (mem))))
1852 < align))
1853 return -1;
1854 else
1855 return (- MEM_OFFSET (mem)) & (align / BITS_PER_UNIT - 1);
1856 for two reasons:
1857 - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1858 for <variable>. get_inner_reference doesn't handle it and
1859 even if it did, the alignment in that case needs to be determined
1860 from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1861 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1862 isn't sufficiently aligned, the object it is in might be. */
1863 gcc_assert (MEM_P (mem));
1864 expr = MEM_EXPR (mem);
1865 if (expr == NULL_TREE || !MEM_OFFSET_KNOWN_P (mem))
1866 return -1;
1867
1868 offset = MEM_OFFSET (mem);
1869 if (DECL_P (expr))
1870 {
1871 if (DECL_ALIGN (expr) < align)
1872 return -1;
1873 }
1874 else if (INDIRECT_REF_P (expr))
1875 {
1876 if (TYPE_ALIGN (TREE_TYPE (expr)) < (unsigned int) align)
1877 return -1;
1878 }
1879 else if (TREE_CODE (expr) == COMPONENT_REF)
1880 {
1881 while (1)
1882 {
1883 tree inner = TREE_OPERAND (expr, 0);
1884 tree field = TREE_OPERAND (expr, 1);
1885 tree byte_offset = component_ref_field_offset (expr);
1886 tree bit_offset = DECL_FIELD_BIT_OFFSET (field);
1887
1888 poly_uint64 suboffset;
1889 if (!byte_offset
1890 || !poly_int_tree_p (byte_offset, &suboffset)
1891 || !tree_fits_uhwi_p (bit_offset))
1892 return -1;
1893
1894 offset += suboffset;
1895 offset += tree_to_uhwi (bit_offset) / BITS_PER_UNIT;
1896
1897 if (inner == NULL_TREE)
1898 {
1899 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field))
1900 < (unsigned int) align)
1901 return -1;
1902 break;
1903 }
1904 else if (DECL_P (inner))
1905 {
1906 if (DECL_ALIGN (inner) < align)
1907 return -1;
1908 break;
1909 }
1910 else if (TREE_CODE (inner) != COMPONENT_REF)
1911 return -1;
1912 expr = inner;
1913 }
1914 }
1915 else
1916 return -1;
1917
1918 HOST_WIDE_INT misalign;
1919 if (!known_misalignment (offset, align / BITS_PER_UNIT, &misalign))
1920 return -1;
1921 return misalign;
1922 }
1923
1924 /* Given REF (a MEM) and T, either the type of X or the expression
1925 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1926 if we are making a new object of this type. BITPOS is nonzero if
1927 there is an offset outstanding on T that will be applied later. */
1928
1929 void
set_mem_attributes_minus_bitpos(rtx ref,tree t,int objectp,poly_int64 bitpos)1930 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1931 poly_int64 bitpos)
1932 {
1933 poly_int64 apply_bitpos = 0;
1934 tree type;
1935 class mem_attrs attrs, *defattrs, *refattrs;
1936 addr_space_t as;
1937
1938 /* It can happen that type_for_mode was given a mode for which there
1939 is no language-level type. In which case it returns NULL, which
1940 we can see here. */
1941 if (t == NULL_TREE)
1942 return;
1943
1944 type = TYPE_P (t) ? t : TREE_TYPE (t);
1945 if (type == error_mark_node)
1946 return;
1947
1948 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1949 wrong answer, as it assumes that DECL_RTL already has the right alias
1950 info. Callers should not set DECL_RTL until after the call to
1951 set_mem_attributes. */
1952 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
1953
1954 /* Get the alias set from the expression or type (perhaps using a
1955 front-end routine) and use it. */
1956 attrs.alias = get_alias_set (t);
1957
1958 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1959 MEM_POINTER (ref) = POINTER_TYPE_P (type);
1960
1961 /* Default values from pre-existing memory attributes if present. */
1962 refattrs = MEM_ATTRS (ref);
1963 if (refattrs)
1964 {
1965 /* ??? Can this ever happen? Calling this routine on a MEM that
1966 already carries memory attributes should probably be invalid. */
1967 attrs.expr = refattrs->expr;
1968 attrs.offset_known_p = refattrs->offset_known_p;
1969 attrs.offset = refattrs->offset;
1970 attrs.size_known_p = refattrs->size_known_p;
1971 attrs.size = refattrs->size;
1972 attrs.align = refattrs->align;
1973 }
1974
1975 /* Otherwise, default values from the mode of the MEM reference. */
1976 else
1977 {
1978 defattrs = mode_mem_attrs[(int) GET_MODE (ref)];
1979 gcc_assert (!defattrs->expr);
1980 gcc_assert (!defattrs->offset_known_p);
1981
1982 /* Respect mode size. */
1983 attrs.size_known_p = defattrs->size_known_p;
1984 attrs.size = defattrs->size;
1985 /* ??? Is this really necessary? We probably should always get
1986 the size from the type below. */
1987
1988 /* Respect mode alignment for STRICT_ALIGNMENT targets if T is a type;
1989 if T is an object, always compute the object alignment below. */
1990 if (TYPE_P (t))
1991 attrs.align = defattrs->align;
1992 else
1993 attrs.align = BITS_PER_UNIT;
1994 /* ??? If T is a type, respecting mode alignment may *also* be wrong
1995 e.g. if the type carries an alignment attribute. Should we be
1996 able to simply always use TYPE_ALIGN? */
1997 }
1998
1999 /* We can set the alignment from the type if we are making an object or if
2000 this is an INDIRECT_REF. */
2001 if (objectp || TREE_CODE (t) == INDIRECT_REF)
2002 attrs.align = MAX (attrs.align, TYPE_ALIGN (type));
2003
2004 /* If the size is known, we can set that. */
2005 tree new_size = TYPE_SIZE_UNIT (type);
2006
2007 /* The address-space is that of the type. */
2008 as = TYPE_ADDR_SPACE (type);
2009
2010 /* If T is not a type, we may be able to deduce some more information about
2011 the expression. */
2012 if (! TYPE_P (t))
2013 {
2014 tree base;
2015
2016 if (TREE_THIS_VOLATILE (t))
2017 MEM_VOLATILE_P (ref) = 1;
2018
2019 /* Now remove any conversions: they don't change what the underlying
2020 object is. Likewise for SAVE_EXPR. */
2021 while (CONVERT_EXPR_P (t)
2022 || TREE_CODE (t) == VIEW_CONVERT_EXPR
2023 || TREE_CODE (t) == SAVE_EXPR)
2024 t = TREE_OPERAND (t, 0);
2025
2026 /* Note whether this expression can trap. */
2027 MEM_NOTRAP_P (ref) = !tree_could_trap_p (t);
2028
2029 base = get_base_address (t);
2030 if (base)
2031 {
2032 if (DECL_P (base)
2033 && TREE_READONLY (base)
2034 && (TREE_STATIC (base) || DECL_EXTERNAL (base))
2035 && !TREE_THIS_VOLATILE (base))
2036 MEM_READONLY_P (ref) = 1;
2037
2038 /* Mark static const strings readonly as well. */
2039 if (TREE_CODE (base) == STRING_CST
2040 && TREE_READONLY (base)
2041 && TREE_STATIC (base))
2042 MEM_READONLY_P (ref) = 1;
2043
2044 /* Address-space information is on the base object. */
2045 if (TREE_CODE (base) == MEM_REF
2046 || TREE_CODE (base) == TARGET_MEM_REF)
2047 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (base,
2048 0))));
2049 else
2050 as = TYPE_ADDR_SPACE (TREE_TYPE (base));
2051 }
2052
2053 /* If this expression uses it's parent's alias set, mark it such
2054 that we won't change it. */
2055 if (component_uses_parent_alias_set_from (t) != NULL_TREE)
2056 MEM_KEEP_ALIAS_SET_P (ref) = 1;
2057
2058 /* If this is a decl, set the attributes of the MEM from it. */
2059 if (DECL_P (t))
2060 {
2061 attrs.expr = t;
2062 attrs.offset_known_p = true;
2063 attrs.offset = 0;
2064 apply_bitpos = bitpos;
2065 new_size = DECL_SIZE_UNIT (t);
2066 }
2067
2068 /* ??? If we end up with a constant or a descriptor do not
2069 record a MEM_EXPR. */
2070 else if (CONSTANT_CLASS_P (t)
2071 || TREE_CODE (t) == CONSTRUCTOR)
2072 ;
2073
2074 /* If this is a field reference, record it. */
2075 else if (TREE_CODE (t) == COMPONENT_REF)
2076 {
2077 attrs.expr = t;
2078 attrs.offset_known_p = true;
2079 attrs.offset = 0;
2080 apply_bitpos = bitpos;
2081 if (DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
2082 new_size = DECL_SIZE_UNIT (TREE_OPERAND (t, 1));
2083 }
2084
2085 /* Else record it. */
2086 else
2087 {
2088 gcc_assert (handled_component_p (t)
2089 || TREE_CODE (t) == MEM_REF
2090 || TREE_CODE (t) == TARGET_MEM_REF);
2091 attrs.expr = t;
2092 attrs.offset_known_p = true;
2093 attrs.offset = 0;
2094 apply_bitpos = bitpos;
2095 }
2096
2097 /* If this is a reference based on a partitioned decl replace the
2098 base with a MEM_REF of the pointer representative we created
2099 during stack slot partitioning. */
2100 if (attrs.expr
2101 && VAR_P (base)
2102 && ! is_global_var (base)
2103 && cfun->gimple_df->decls_to_pointers != NULL)
2104 {
2105 tree *namep = cfun->gimple_df->decls_to_pointers->get (base);
2106 if (namep)
2107 {
2108 attrs.expr = unshare_expr (attrs.expr);
2109 tree *orig_base = &attrs.expr;
2110 while (handled_component_p (*orig_base))
2111 orig_base = &TREE_OPERAND (*orig_base, 0);
2112 tree aptrt = reference_alias_ptr_type (*orig_base);
2113 *orig_base = build2 (MEM_REF, TREE_TYPE (*orig_base), *namep,
2114 build_int_cst (aptrt, 0));
2115 }
2116 }
2117
2118 /* Compute the alignment. */
2119 unsigned int obj_align;
2120 unsigned HOST_WIDE_INT obj_bitpos;
2121 get_object_alignment_1 (t, &obj_align, &obj_bitpos);
2122 unsigned int diff_align = known_alignment (obj_bitpos - bitpos);
2123 if (diff_align != 0)
2124 obj_align = MIN (obj_align, diff_align);
2125 attrs.align = MAX (attrs.align, obj_align);
2126 }
2127
2128 poly_uint64 const_size;
2129 if (poly_int_tree_p (new_size, &const_size))
2130 {
2131 attrs.size_known_p = true;
2132 attrs.size = const_size;
2133 }
2134
2135 /* If we modified OFFSET based on T, then subtract the outstanding
2136 bit position offset. Similarly, increase the size of the accessed
2137 object to contain the negative offset. */
2138 if (maybe_ne (apply_bitpos, 0))
2139 {
2140 gcc_assert (attrs.offset_known_p);
2141 poly_int64 bytepos = bits_to_bytes_round_down (apply_bitpos);
2142 attrs.offset -= bytepos;
2143 if (attrs.size_known_p)
2144 attrs.size += bytepos;
2145 }
2146
2147 /* Now set the attributes we computed above. */
2148 attrs.addrspace = as;
2149 set_mem_attrs (ref, &attrs);
2150 }
2151
2152 void
set_mem_attributes(rtx ref,tree t,int objectp)2153 set_mem_attributes (rtx ref, tree t, int objectp)
2154 {
2155 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
2156 }
2157
2158 /* Set the alias set of MEM to SET. */
2159
2160 void
set_mem_alias_set(rtx mem,alias_set_type set)2161 set_mem_alias_set (rtx mem, alias_set_type set)
2162 {
2163 /* If the new and old alias sets don't conflict, something is wrong. */
2164 gcc_checking_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
2165 mem_attrs attrs (*get_mem_attrs (mem));
2166 attrs.alias = set;
2167 set_mem_attrs (mem, &attrs);
2168 }
2169
2170 /* Set the address space of MEM to ADDRSPACE (target-defined). */
2171
2172 void
set_mem_addr_space(rtx mem,addr_space_t addrspace)2173 set_mem_addr_space (rtx mem, addr_space_t addrspace)
2174 {
2175 mem_attrs attrs (*get_mem_attrs (mem));
2176 attrs.addrspace = addrspace;
2177 set_mem_attrs (mem, &attrs);
2178 }
2179
2180 /* Set the alignment of MEM to ALIGN bits. */
2181
2182 void
set_mem_align(rtx mem,unsigned int align)2183 set_mem_align (rtx mem, unsigned int align)
2184 {
2185 mem_attrs attrs (*get_mem_attrs (mem));
2186 attrs.align = align;
2187 set_mem_attrs (mem, &attrs);
2188 }
2189
2190 /* Set the expr for MEM to EXPR. */
2191
2192 void
set_mem_expr(rtx mem,tree expr)2193 set_mem_expr (rtx mem, tree expr)
2194 {
2195 mem_attrs attrs (*get_mem_attrs (mem));
2196 attrs.expr = expr;
2197 set_mem_attrs (mem, &attrs);
2198 }
2199
2200 /* Set the offset of MEM to OFFSET. */
2201
2202 void
set_mem_offset(rtx mem,poly_int64 offset)2203 set_mem_offset (rtx mem, poly_int64 offset)
2204 {
2205 mem_attrs attrs (*get_mem_attrs (mem));
2206 attrs.offset_known_p = true;
2207 attrs.offset = offset;
2208 set_mem_attrs (mem, &attrs);
2209 }
2210
2211 /* Clear the offset of MEM. */
2212
2213 void
clear_mem_offset(rtx mem)2214 clear_mem_offset (rtx mem)
2215 {
2216 mem_attrs attrs (*get_mem_attrs (mem));
2217 attrs.offset_known_p = false;
2218 set_mem_attrs (mem, &attrs);
2219 }
2220
2221 /* Set the size of MEM to SIZE. */
2222
2223 void
set_mem_size(rtx mem,poly_int64 size)2224 set_mem_size (rtx mem, poly_int64 size)
2225 {
2226 mem_attrs attrs (*get_mem_attrs (mem));
2227 attrs.size_known_p = true;
2228 attrs.size = size;
2229 set_mem_attrs (mem, &attrs);
2230 }
2231
2232 /* Clear the size of MEM. */
2233
2234 void
clear_mem_size(rtx mem)2235 clear_mem_size (rtx mem)
2236 {
2237 mem_attrs attrs (*get_mem_attrs (mem));
2238 attrs.size_known_p = false;
2239 set_mem_attrs (mem, &attrs);
2240 }
2241
2242 /* Return a memory reference like MEMREF, but with its mode changed to MODE
2243 and its address changed to ADDR. (VOIDmode means don't change the mode.
2244 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
2245 returned memory location is required to be valid. INPLACE is true if any
2246 changes can be made directly to MEMREF or false if MEMREF must be treated
2247 as immutable.
2248
2249 The memory attributes are not changed. */
2250
2251 static rtx
change_address_1(rtx memref,machine_mode mode,rtx addr,int validate,bool inplace)2252 change_address_1 (rtx memref, machine_mode mode, rtx addr, int validate,
2253 bool inplace)
2254 {
2255 addr_space_t as;
2256 rtx new_rtx;
2257
2258 gcc_assert (MEM_P (memref));
2259 as = MEM_ADDR_SPACE (memref);
2260 if (mode == VOIDmode)
2261 mode = GET_MODE (memref);
2262 if (addr == 0)
2263 addr = XEXP (memref, 0);
2264 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
2265 && (!validate || memory_address_addr_space_p (mode, addr, as)))
2266 return memref;
2267
2268 /* Don't validate address for LRA. LRA can make the address valid
2269 by itself in most efficient way. */
2270 if (validate && !lra_in_progress)
2271 {
2272 if (reload_in_progress || reload_completed)
2273 gcc_assert (memory_address_addr_space_p (mode, addr, as));
2274 else
2275 addr = memory_address_addr_space (mode, addr, as);
2276 }
2277
2278 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
2279 return memref;
2280
2281 if (inplace)
2282 {
2283 XEXP (memref, 0) = addr;
2284 return memref;
2285 }
2286
2287 new_rtx = gen_rtx_MEM (mode, addr);
2288 MEM_COPY_ATTRIBUTES (new_rtx, memref);
2289 return new_rtx;
2290 }
2291
2292 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
2293 way we are changing MEMREF, so we only preserve the alias set. */
2294
2295 rtx
change_address(rtx memref,machine_mode mode,rtx addr)2296 change_address (rtx memref, machine_mode mode, rtx addr)
2297 {
2298 rtx new_rtx = change_address_1 (memref, mode, addr, 1, false);
2299 machine_mode mmode = GET_MODE (new_rtx);
2300 class mem_attrs *defattrs;
2301
2302 mem_attrs attrs (*get_mem_attrs (memref));
2303 defattrs = mode_mem_attrs[(int) mmode];
2304 attrs.expr = NULL_TREE;
2305 attrs.offset_known_p = false;
2306 attrs.size_known_p = defattrs->size_known_p;
2307 attrs.size = defattrs->size;
2308 attrs.align = defattrs->align;
2309
2310 /* If there are no changes, just return the original memory reference. */
2311 if (new_rtx == memref)
2312 {
2313 if (mem_attrs_eq_p (get_mem_attrs (memref), &attrs))
2314 return new_rtx;
2315
2316 new_rtx = gen_rtx_MEM (mmode, XEXP (memref, 0));
2317 MEM_COPY_ATTRIBUTES (new_rtx, memref);
2318 }
2319
2320 set_mem_attrs (new_rtx, &attrs);
2321 return new_rtx;
2322 }
2323
2324 /* Return a memory reference like MEMREF, but with its mode changed
2325 to MODE and its address offset by OFFSET bytes. If VALIDATE is
2326 nonzero, the memory address is forced to be valid.
2327 If ADJUST_ADDRESS is zero, OFFSET is only used to update MEM_ATTRS
2328 and the caller is responsible for adjusting MEMREF base register.
2329 If ADJUST_OBJECT is zero, the underlying object associated with the
2330 memory reference is left unchanged and the caller is responsible for
2331 dealing with it. Otherwise, if the new memory reference is outside
2332 the underlying object, even partially, then the object is dropped.
2333 SIZE, if nonzero, is the size of an access in cases where MODE
2334 has no inherent size. */
2335
2336 rtx
adjust_address_1(rtx memref,machine_mode mode,poly_int64 offset,int validate,int adjust_address,int adjust_object,poly_int64 size)2337 adjust_address_1 (rtx memref, machine_mode mode, poly_int64 offset,
2338 int validate, int adjust_address, int adjust_object,
2339 poly_int64 size)
2340 {
2341 rtx addr = XEXP (memref, 0);
2342 rtx new_rtx;
2343 scalar_int_mode address_mode;
2344 class mem_attrs attrs (*get_mem_attrs (memref)), *defattrs;
2345 unsigned HOST_WIDE_INT max_align;
2346 #ifdef POINTERS_EXTEND_UNSIGNED
2347 scalar_int_mode pointer_mode
2348 = targetm.addr_space.pointer_mode (attrs.addrspace);
2349 #endif
2350
2351 /* VOIDmode means no mode change for change_address_1. */
2352 if (mode == VOIDmode)
2353 mode = GET_MODE (memref);
2354
2355 /* Take the size of non-BLKmode accesses from the mode. */
2356 defattrs = mode_mem_attrs[(int) mode];
2357 if (defattrs->size_known_p)
2358 size = defattrs->size;
2359
2360 /* If there are no changes, just return the original memory reference. */
2361 if (mode == GET_MODE (memref)
2362 && known_eq (offset, 0)
2363 && (known_eq (size, 0)
2364 || (attrs.size_known_p && known_eq (attrs.size, size)))
2365 && (!validate || memory_address_addr_space_p (mode, addr,
2366 attrs.addrspace)))
2367 return memref;
2368
2369 /* ??? Prefer to create garbage instead of creating shared rtl.
2370 This may happen even if offset is nonzero -- consider
2371 (plus (plus reg reg) const_int) -- so do this always. */
2372 addr = copy_rtx (addr);
2373
2374 /* Convert a possibly large offset to a signed value within the
2375 range of the target address space. */
2376 address_mode = get_address_mode (memref);
2377 offset = trunc_int_for_mode (offset, address_mode);
2378
2379 if (adjust_address)
2380 {
2381 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2382 object, we can merge it into the LO_SUM. */
2383 if (GET_MODE (memref) != BLKmode
2384 && GET_CODE (addr) == LO_SUM
2385 && known_in_range_p (offset,
2386 0, (GET_MODE_ALIGNMENT (GET_MODE (memref))
2387 / BITS_PER_UNIT)))
2388 addr = gen_rtx_LO_SUM (address_mode, XEXP (addr, 0),
2389 plus_constant (address_mode,
2390 XEXP (addr, 1), offset));
2391 #ifdef POINTERS_EXTEND_UNSIGNED
2392 /* If MEMREF is a ZERO_EXTEND from pointer_mode and the offset is valid
2393 in that mode, we merge it into the ZERO_EXTEND. We take advantage of
2394 the fact that pointers are not allowed to overflow. */
2395 else if (POINTERS_EXTEND_UNSIGNED > 0
2396 && GET_CODE (addr) == ZERO_EXTEND
2397 && GET_MODE (XEXP (addr, 0)) == pointer_mode
2398 && known_eq (trunc_int_for_mode (offset, pointer_mode), offset))
2399 addr = gen_rtx_ZERO_EXTEND (address_mode,
2400 plus_constant (pointer_mode,
2401 XEXP (addr, 0), offset));
2402 #endif
2403 else
2404 addr = plus_constant (address_mode, addr, offset);
2405 }
2406
2407 new_rtx = change_address_1 (memref, mode, addr, validate, false);
2408
2409 /* If the address is a REG, change_address_1 rightfully returns memref,
2410 but this would destroy memref's MEM_ATTRS. */
2411 if (new_rtx == memref && maybe_ne (offset, 0))
2412 new_rtx = copy_rtx (new_rtx);
2413
2414 /* Conservatively drop the object if we don't know where we start from. */
2415 if (adjust_object && (!attrs.offset_known_p || !attrs.size_known_p))
2416 {
2417 attrs.expr = NULL_TREE;
2418 attrs.alias = 0;
2419 }
2420
2421 /* Compute the new values of the memory attributes due to this adjustment.
2422 We add the offsets and update the alignment. */
2423 if (attrs.offset_known_p)
2424 {
2425 attrs.offset += offset;
2426
2427 /* Drop the object if the new left end is not within its bounds. */
2428 if (adjust_object && maybe_lt (attrs.offset, 0))
2429 {
2430 attrs.expr = NULL_TREE;
2431 attrs.alias = 0;
2432 }
2433 }
2434
2435 /* Compute the new alignment by taking the MIN of the alignment and the
2436 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2437 if zero. */
2438 if (maybe_ne (offset, 0))
2439 {
2440 max_align = known_alignment (offset) * BITS_PER_UNIT;
2441 attrs.align = MIN (attrs.align, max_align);
2442 }
2443
2444 if (maybe_ne (size, 0))
2445 {
2446 /* Drop the object if the new right end is not within its bounds. */
2447 if (adjust_object && maybe_gt (offset + size, attrs.size))
2448 {
2449 attrs.expr = NULL_TREE;
2450 attrs.alias = 0;
2451 }
2452 attrs.size_known_p = true;
2453 attrs.size = size;
2454 }
2455 else if (attrs.size_known_p)
2456 {
2457 gcc_assert (!adjust_object);
2458 attrs.size -= offset;
2459 /* ??? The store_by_pieces machinery generates negative sizes,
2460 so don't assert for that here. */
2461 }
2462
2463 set_mem_attrs (new_rtx, &attrs);
2464
2465 return new_rtx;
2466 }
2467
2468 /* Return a memory reference like MEMREF, but with its mode changed
2469 to MODE and its address changed to ADDR, which is assumed to be
2470 MEMREF offset by OFFSET bytes. If VALIDATE is
2471 nonzero, the memory address is forced to be valid. */
2472
2473 rtx
adjust_automodify_address_1(rtx memref,machine_mode mode,rtx addr,poly_int64 offset,int validate)2474 adjust_automodify_address_1 (rtx memref, machine_mode mode, rtx addr,
2475 poly_int64 offset, int validate)
2476 {
2477 memref = change_address_1 (memref, VOIDmode, addr, validate, false);
2478 return adjust_address_1 (memref, mode, offset, validate, 0, 0, 0);
2479 }
2480
2481 /* Return a memory reference like MEMREF, but whose address is changed by
2482 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2483 known to be in OFFSET (possibly 1). */
2484
2485 rtx
offset_address(rtx memref,rtx offset,unsigned HOST_WIDE_INT pow2)2486 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
2487 {
2488 rtx new_rtx, addr = XEXP (memref, 0);
2489 machine_mode address_mode;
2490 class mem_attrs *defattrs;
2491
2492 mem_attrs attrs (*get_mem_attrs (memref));
2493 address_mode = get_address_mode (memref);
2494 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2495
2496 /* At this point we don't know _why_ the address is invalid. It
2497 could have secondary memory references, multiplies or anything.
2498
2499 However, if we did go and rearrange things, we can wind up not
2500 being able to recognize the magic around pic_offset_table_rtx.
2501 This stuff is fragile, and is yet another example of why it is
2502 bad to expose PIC machinery too early. */
2503 if (! memory_address_addr_space_p (GET_MODE (memref), new_rtx,
2504 attrs.addrspace)
2505 && GET_CODE (addr) == PLUS
2506 && XEXP (addr, 0) == pic_offset_table_rtx)
2507 {
2508 addr = force_reg (GET_MODE (addr), addr);
2509 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2510 }
2511
2512 update_temp_slot_address (XEXP (memref, 0), new_rtx);
2513 new_rtx = change_address_1 (memref, VOIDmode, new_rtx, 1, false);
2514
2515 /* If there are no changes, just return the original memory reference. */
2516 if (new_rtx == memref)
2517 return new_rtx;
2518
2519 /* Update the alignment to reflect the offset. Reset the offset, which
2520 we don't know. */
2521 defattrs = mode_mem_attrs[(int) GET_MODE (new_rtx)];
2522 attrs.offset_known_p = false;
2523 attrs.size_known_p = defattrs->size_known_p;
2524 attrs.size = defattrs->size;
2525 attrs.align = MIN (attrs.align, pow2 * BITS_PER_UNIT);
2526 set_mem_attrs (new_rtx, &attrs);
2527 return new_rtx;
2528 }
2529
2530 /* Return a memory reference like MEMREF, but with its address changed to
2531 ADDR. The caller is asserting that the actual piece of memory pointed
2532 to is the same, just the form of the address is being changed, such as
2533 by putting something into a register. INPLACE is true if any changes
2534 can be made directly to MEMREF or false if MEMREF must be treated as
2535 immutable. */
2536
2537 rtx
replace_equiv_address(rtx memref,rtx addr,bool inplace)2538 replace_equiv_address (rtx memref, rtx addr, bool inplace)
2539 {
2540 /* change_address_1 copies the memory attribute structure without change
2541 and that's exactly what we want here. */
2542 update_temp_slot_address (XEXP (memref, 0), addr);
2543 return change_address_1 (memref, VOIDmode, addr, 1, inplace);
2544 }
2545
2546 /* Likewise, but the reference is not required to be valid. */
2547
2548 rtx
replace_equiv_address_nv(rtx memref,rtx addr,bool inplace)2549 replace_equiv_address_nv (rtx memref, rtx addr, bool inplace)
2550 {
2551 return change_address_1 (memref, VOIDmode, addr, 0, inplace);
2552 }
2553
2554 /* Return a memory reference like MEMREF, but with its mode widened to
2555 MODE and offset by OFFSET. This would be used by targets that e.g.
2556 cannot issue QImode memory operations and have to use SImode memory
2557 operations plus masking logic. */
2558
2559 rtx
widen_memory_access(rtx memref,machine_mode mode,poly_int64 offset)2560 widen_memory_access (rtx memref, machine_mode mode, poly_int64 offset)
2561 {
2562 rtx new_rtx = adjust_address_1 (memref, mode, offset, 1, 1, 0, 0);
2563 poly_uint64 size = GET_MODE_SIZE (mode);
2564
2565 /* If there are no changes, just return the original memory reference. */
2566 if (new_rtx == memref)
2567 return new_rtx;
2568
2569 mem_attrs attrs (*get_mem_attrs (new_rtx));
2570
2571 /* If we don't know what offset we were at within the expression, then
2572 we can't know if we've overstepped the bounds. */
2573 if (! attrs.offset_known_p)
2574 attrs.expr = NULL_TREE;
2575
2576 while (attrs.expr)
2577 {
2578 if (TREE_CODE (attrs.expr) == COMPONENT_REF)
2579 {
2580 tree field = TREE_OPERAND (attrs.expr, 1);
2581 tree offset = component_ref_field_offset (attrs.expr);
2582
2583 if (! DECL_SIZE_UNIT (field))
2584 {
2585 attrs.expr = NULL_TREE;
2586 break;
2587 }
2588
2589 /* Is the field at least as large as the access? If so, ok,
2590 otherwise strip back to the containing structure. */
2591 if (poly_int_tree_p (DECL_SIZE_UNIT (field))
2592 && known_ge (wi::to_poly_offset (DECL_SIZE_UNIT (field)), size)
2593 && known_ge (attrs.offset, 0))
2594 break;
2595
2596 poly_uint64 suboffset;
2597 if (!poly_int_tree_p (offset, &suboffset))
2598 {
2599 attrs.expr = NULL_TREE;
2600 break;
2601 }
2602
2603 attrs.expr = TREE_OPERAND (attrs.expr, 0);
2604 attrs.offset += suboffset;
2605 attrs.offset += (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
2606 / BITS_PER_UNIT);
2607 }
2608 /* Similarly for the decl. */
2609 else if (DECL_P (attrs.expr)
2610 && DECL_SIZE_UNIT (attrs.expr)
2611 && poly_int_tree_p (DECL_SIZE_UNIT (attrs.expr))
2612 && known_ge (wi::to_poly_offset (DECL_SIZE_UNIT (attrs.expr)),
2613 size)
2614 && known_ge (attrs.offset, 0))
2615 break;
2616 else
2617 {
2618 /* The widened memory access overflows the expression, which means
2619 that it could alias another expression. Zap it. */
2620 attrs.expr = NULL_TREE;
2621 break;
2622 }
2623 }
2624
2625 if (! attrs.expr)
2626 attrs.offset_known_p = false;
2627
2628 /* The widened memory may alias other stuff, so zap the alias set. */
2629 /* ??? Maybe use get_alias_set on any remaining expression. */
2630 attrs.alias = 0;
2631 attrs.size_known_p = true;
2632 attrs.size = size;
2633 set_mem_attrs (new_rtx, &attrs);
2634 return new_rtx;
2635 }
2636
2637 /* A fake decl that is used as the MEM_EXPR of spill slots. */
2638 static GTY(()) tree spill_slot_decl;
2639
2640 tree
get_spill_slot_decl(bool force_build_p)2641 get_spill_slot_decl (bool force_build_p)
2642 {
2643 tree d = spill_slot_decl;
2644 rtx rd;
2645
2646 if (d || !force_build_p)
2647 return d;
2648
2649 d = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
2650 VAR_DECL, get_identifier ("%sfp"), void_type_node);
2651 DECL_ARTIFICIAL (d) = 1;
2652 DECL_IGNORED_P (d) = 1;
2653 TREE_USED (d) = 1;
2654 spill_slot_decl = d;
2655
2656 rd = gen_rtx_MEM (BLKmode, frame_pointer_rtx);
2657 MEM_NOTRAP_P (rd) = 1;
2658 mem_attrs attrs (*mode_mem_attrs[(int) BLKmode]);
2659 attrs.alias = new_alias_set ();
2660 attrs.expr = d;
2661 set_mem_attrs (rd, &attrs);
2662 SET_DECL_RTL (d, rd);
2663
2664 return d;
2665 }
2666
2667 /* Given MEM, a result from assign_stack_local, fill in the memory
2668 attributes as appropriate for a register allocator spill slot.
2669 These slots are not aliasable by other memory. We arrange for
2670 them all to use a single MEM_EXPR, so that the aliasing code can
2671 work properly in the case of shared spill slots. */
2672
2673 void
set_mem_attrs_for_spill(rtx mem)2674 set_mem_attrs_for_spill (rtx mem)
2675 {
2676 rtx addr;
2677
2678 mem_attrs attrs (*get_mem_attrs (mem));
2679 attrs.expr = get_spill_slot_decl (true);
2680 attrs.alias = MEM_ALIAS_SET (DECL_RTL (attrs.expr));
2681 attrs.addrspace = ADDR_SPACE_GENERIC;
2682
2683 /* We expect the incoming memory to be of the form:
2684 (mem:MODE (plus (reg sfp) (const_int offset)))
2685 with perhaps the plus missing for offset = 0. */
2686 addr = XEXP (mem, 0);
2687 attrs.offset_known_p = true;
2688 strip_offset (addr, &attrs.offset);
2689
2690 set_mem_attrs (mem, &attrs);
2691 MEM_NOTRAP_P (mem) = 1;
2692 }
2693
2694 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2695
2696 rtx_code_label *
gen_label_rtx(void)2697 gen_label_rtx (void)
2698 {
2699 return as_a <rtx_code_label *> (
2700 gen_rtx_CODE_LABEL (VOIDmode, NULL_RTX, NULL_RTX,
2701 NULL, label_num++, NULL));
2702 }
2703
2704 /* For procedure integration. */
2705
2706 /* Install new pointers to the first and last insns in the chain.
2707 Also, set cur_insn_uid to one higher than the last in use.
2708 Used for an inline-procedure after copying the insn chain. */
2709
2710 void
set_new_first_and_last_insn(rtx_insn * first,rtx_insn * last)2711 set_new_first_and_last_insn (rtx_insn *first, rtx_insn *last)
2712 {
2713 rtx_insn *insn;
2714
2715 set_first_insn (first);
2716 set_last_insn (last);
2717 cur_insn_uid = 0;
2718
2719 if (param_min_nondebug_insn_uid || MAY_HAVE_DEBUG_INSNS)
2720 {
2721 int debug_count = 0;
2722
2723 cur_insn_uid = param_min_nondebug_insn_uid - 1;
2724 cur_debug_insn_uid = 0;
2725
2726 for (insn = first; insn; insn = NEXT_INSN (insn))
2727 if (INSN_UID (insn) < param_min_nondebug_insn_uid)
2728 cur_debug_insn_uid = MAX (cur_debug_insn_uid, INSN_UID (insn));
2729 else
2730 {
2731 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2732 if (DEBUG_INSN_P (insn))
2733 debug_count++;
2734 }
2735
2736 if (debug_count)
2737 cur_debug_insn_uid = param_min_nondebug_insn_uid + debug_count;
2738 else
2739 cur_debug_insn_uid++;
2740 }
2741 else
2742 for (insn = first; insn; insn = NEXT_INSN (insn))
2743 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2744
2745 cur_insn_uid++;
2746 }
2747
2748 /* Go through all the RTL insn bodies and copy any invalid shared
2749 structure. This routine should only be called once. */
2750
2751 static void
unshare_all_rtl_1(rtx_insn * insn)2752 unshare_all_rtl_1 (rtx_insn *insn)
2753 {
2754 /* Unshare just about everything else. */
2755 unshare_all_rtl_in_chain (insn);
2756
2757 /* Make sure the addresses of stack slots found outside the insn chain
2758 (such as, in DECL_RTL of a variable) are not shared
2759 with the insn chain.
2760
2761 This special care is necessary when the stack slot MEM does not
2762 actually appear in the insn chain. If it does appear, its address
2763 is unshared from all else at that point. */
2764 unsigned int i;
2765 rtx temp;
2766 FOR_EACH_VEC_SAFE_ELT (stack_slot_list, i, temp)
2767 (*stack_slot_list)[i] = copy_rtx_if_shared (temp);
2768 }
2769
2770 /* Go through all the RTL insn bodies and copy any invalid shared
2771 structure, again. This is a fairly expensive thing to do so it
2772 should be done sparingly. */
2773
2774 void
unshare_all_rtl_again(rtx_insn * insn)2775 unshare_all_rtl_again (rtx_insn *insn)
2776 {
2777 rtx_insn *p;
2778 tree decl;
2779
2780 for (p = insn; p; p = NEXT_INSN (p))
2781 if (INSN_P (p))
2782 {
2783 reset_used_flags (PATTERN (p));
2784 reset_used_flags (REG_NOTES (p));
2785 if (CALL_P (p))
2786 reset_used_flags (CALL_INSN_FUNCTION_USAGE (p));
2787 }
2788
2789 /* Make sure that virtual stack slots are not shared. */
2790 set_used_decls (DECL_INITIAL (cfun->decl));
2791
2792 /* Make sure that virtual parameters are not shared. */
2793 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = DECL_CHAIN (decl))
2794 set_used_flags (DECL_RTL (decl));
2795
2796 rtx temp;
2797 unsigned int i;
2798 FOR_EACH_VEC_SAFE_ELT (stack_slot_list, i, temp)
2799 reset_used_flags (temp);
2800
2801 unshare_all_rtl_1 (insn);
2802 }
2803
2804 unsigned int
unshare_all_rtl(void)2805 unshare_all_rtl (void)
2806 {
2807 unshare_all_rtl_1 (get_insns ());
2808
2809 for (tree decl = DECL_ARGUMENTS (cfun->decl); decl; decl = DECL_CHAIN (decl))
2810 {
2811 if (DECL_RTL_SET_P (decl))
2812 SET_DECL_RTL (decl, copy_rtx_if_shared (DECL_RTL (decl)));
2813 DECL_INCOMING_RTL (decl) = copy_rtx_if_shared (DECL_INCOMING_RTL (decl));
2814 }
2815
2816 return 0;
2817 }
2818
2819
2820 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2821 Recursively does the same for subexpressions. */
2822
2823 static void
verify_rtx_sharing(rtx orig,rtx insn)2824 verify_rtx_sharing (rtx orig, rtx insn)
2825 {
2826 rtx x = orig;
2827 int i;
2828 enum rtx_code code;
2829 const char *format_ptr;
2830
2831 if (x == 0)
2832 return;
2833
2834 code = GET_CODE (x);
2835
2836 /* These types may be freely shared. */
2837
2838 switch (code)
2839 {
2840 case REG:
2841 case DEBUG_EXPR:
2842 case VALUE:
2843 CASE_CONST_ANY:
2844 case SYMBOL_REF:
2845 case LABEL_REF:
2846 case CODE_LABEL:
2847 case PC:
2848 case CC0:
2849 case RETURN:
2850 case SIMPLE_RETURN:
2851 case SCRATCH:
2852 /* SCRATCH must be shared because they represent distinct values. */
2853 return;
2854 case CLOBBER:
2855 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
2856 clobbers or clobbers of hard registers that originated as pseudos.
2857 This is needed to allow safe register renaming. */
2858 if (REG_P (XEXP (x, 0))
2859 && HARD_REGISTER_NUM_P (REGNO (XEXP (x, 0)))
2860 && HARD_REGISTER_NUM_P (ORIGINAL_REGNO (XEXP (x, 0))))
2861 return;
2862 break;
2863
2864 case CONST:
2865 if (shared_const_p (orig))
2866 return;
2867 break;
2868
2869 case MEM:
2870 /* A MEM is allowed to be shared if its address is constant. */
2871 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2872 || reload_completed || reload_in_progress)
2873 return;
2874
2875 break;
2876
2877 default:
2878 break;
2879 }
2880
2881 /* This rtx may not be shared. If it has already been seen,
2882 replace it with a copy of itself. */
2883 if (flag_checking && RTX_FLAG (x, used))
2884 {
2885 error ("invalid rtl sharing found in the insn");
2886 debug_rtx (insn);
2887 error ("shared rtx");
2888 debug_rtx (x);
2889 internal_error ("internal consistency failure");
2890 }
2891 gcc_assert (!RTX_FLAG (x, used));
2892
2893 RTX_FLAG (x, used) = 1;
2894
2895 /* Now scan the subexpressions recursively. */
2896
2897 format_ptr = GET_RTX_FORMAT (code);
2898
2899 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2900 {
2901 switch (*format_ptr++)
2902 {
2903 case 'e':
2904 verify_rtx_sharing (XEXP (x, i), insn);
2905 break;
2906
2907 case 'E':
2908 if (XVEC (x, i) != NULL)
2909 {
2910 int j;
2911 int len = XVECLEN (x, i);
2912
2913 for (j = 0; j < len; j++)
2914 {
2915 /* We allow sharing of ASM_OPERANDS inside single
2916 instruction. */
2917 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2918 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2919 == ASM_OPERANDS))
2920 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2921 else
2922 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2923 }
2924 }
2925 break;
2926 }
2927 }
2928 return;
2929 }
2930
2931 /* Reset used-flags for INSN. */
2932
2933 static void
reset_insn_used_flags(rtx insn)2934 reset_insn_used_flags (rtx insn)
2935 {
2936 gcc_assert (INSN_P (insn));
2937 reset_used_flags (PATTERN (insn));
2938 reset_used_flags (REG_NOTES (insn));
2939 if (CALL_P (insn))
2940 reset_used_flags (CALL_INSN_FUNCTION_USAGE (insn));
2941 }
2942
2943 /* Go through all the RTL insn bodies and clear all the USED bits. */
2944
2945 static void
reset_all_used_flags(void)2946 reset_all_used_flags (void)
2947 {
2948 rtx_insn *p;
2949
2950 for (p = get_insns (); p; p = NEXT_INSN (p))
2951 if (INSN_P (p))
2952 {
2953 rtx pat = PATTERN (p);
2954 if (GET_CODE (pat) != SEQUENCE)
2955 reset_insn_used_flags (p);
2956 else
2957 {
2958 gcc_assert (REG_NOTES (p) == NULL);
2959 for (int i = 0; i < XVECLEN (pat, 0); i++)
2960 {
2961 rtx insn = XVECEXP (pat, 0, i);
2962 if (INSN_P (insn))
2963 reset_insn_used_flags (insn);
2964 }
2965 }
2966 }
2967 }
2968
2969 /* Verify sharing in INSN. */
2970
2971 static void
verify_insn_sharing(rtx insn)2972 verify_insn_sharing (rtx insn)
2973 {
2974 gcc_assert (INSN_P (insn));
2975 verify_rtx_sharing (PATTERN (insn), insn);
2976 verify_rtx_sharing (REG_NOTES (insn), insn);
2977 if (CALL_P (insn))
2978 verify_rtx_sharing (CALL_INSN_FUNCTION_USAGE (insn), insn);
2979 }
2980
2981 /* Go through all the RTL insn bodies and check that there is no unexpected
2982 sharing in between the subexpressions. */
2983
2984 DEBUG_FUNCTION void
verify_rtl_sharing(void)2985 verify_rtl_sharing (void)
2986 {
2987 rtx_insn *p;
2988
2989 timevar_push (TV_VERIFY_RTL_SHARING);
2990
2991 reset_all_used_flags ();
2992
2993 for (p = get_insns (); p; p = NEXT_INSN (p))
2994 if (INSN_P (p))
2995 {
2996 rtx pat = PATTERN (p);
2997 if (GET_CODE (pat) != SEQUENCE)
2998 verify_insn_sharing (p);
2999 else
3000 for (int i = 0; i < XVECLEN (pat, 0); i++)
3001 {
3002 rtx insn = XVECEXP (pat, 0, i);
3003 if (INSN_P (insn))
3004 verify_insn_sharing (insn);
3005 }
3006 }
3007
3008 reset_all_used_flags ();
3009
3010 timevar_pop (TV_VERIFY_RTL_SHARING);
3011 }
3012
3013 /* Go through all the RTL insn bodies and copy any invalid shared structure.
3014 Assumes the mark bits are cleared at entry. */
3015
3016 void
unshare_all_rtl_in_chain(rtx_insn * insn)3017 unshare_all_rtl_in_chain (rtx_insn *insn)
3018 {
3019 for (; insn; insn = NEXT_INSN (insn))
3020 if (INSN_P (insn))
3021 {
3022 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
3023 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
3024 if (CALL_P (insn))
3025 CALL_INSN_FUNCTION_USAGE (insn)
3026 = copy_rtx_if_shared (CALL_INSN_FUNCTION_USAGE (insn));
3027 }
3028 }
3029
3030 /* Go through all virtual stack slots of a function and mark them as
3031 shared. We never replace the DECL_RTLs themselves with a copy,
3032 but expressions mentioned into a DECL_RTL cannot be shared with
3033 expressions in the instruction stream.
3034
3035 Note that reload may convert pseudo registers into memories in-place.
3036 Pseudo registers are always shared, but MEMs never are. Thus if we
3037 reset the used flags on MEMs in the instruction stream, we must set
3038 them again on MEMs that appear in DECL_RTLs. */
3039
3040 static void
set_used_decls(tree blk)3041 set_used_decls (tree blk)
3042 {
3043 tree t;
3044
3045 /* Mark decls. */
3046 for (t = BLOCK_VARS (blk); t; t = DECL_CHAIN (t))
3047 if (DECL_RTL_SET_P (t))
3048 set_used_flags (DECL_RTL (t));
3049
3050 /* Now process sub-blocks. */
3051 for (t = BLOCK_SUBBLOCKS (blk); t; t = BLOCK_CHAIN (t))
3052 set_used_decls (t);
3053 }
3054
3055 /* Mark ORIG as in use, and return a copy of it if it was already in use.
3056 Recursively does the same for subexpressions. Uses
3057 copy_rtx_if_shared_1 to reduce stack space. */
3058
3059 rtx
copy_rtx_if_shared(rtx orig)3060 copy_rtx_if_shared (rtx orig)
3061 {
3062 copy_rtx_if_shared_1 (&orig);
3063 return orig;
3064 }
3065
3066 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
3067 use. Recursively does the same for subexpressions. */
3068
3069 static void
copy_rtx_if_shared_1(rtx * orig1)3070 copy_rtx_if_shared_1 (rtx *orig1)
3071 {
3072 rtx x;
3073 int i;
3074 enum rtx_code code;
3075 rtx *last_ptr;
3076 const char *format_ptr;
3077 int copied = 0;
3078 int length;
3079
3080 /* Repeat is used to turn tail-recursion into iteration. */
3081 repeat:
3082 x = *orig1;
3083
3084 if (x == 0)
3085 return;
3086
3087 code = GET_CODE (x);
3088
3089 /* These types may be freely shared. */
3090
3091 switch (code)
3092 {
3093 case REG:
3094 case DEBUG_EXPR:
3095 case VALUE:
3096 CASE_CONST_ANY:
3097 case SYMBOL_REF:
3098 case LABEL_REF:
3099 case CODE_LABEL:
3100 case PC:
3101 case CC0:
3102 case RETURN:
3103 case SIMPLE_RETURN:
3104 case SCRATCH:
3105 /* SCRATCH must be shared because they represent distinct values. */
3106 return;
3107 case CLOBBER:
3108 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
3109 clobbers or clobbers of hard registers that originated as pseudos.
3110 This is needed to allow safe register renaming. */
3111 if (REG_P (XEXP (x, 0))
3112 && HARD_REGISTER_NUM_P (REGNO (XEXP (x, 0)))
3113 && HARD_REGISTER_NUM_P (ORIGINAL_REGNO (XEXP (x, 0))))
3114 return;
3115 break;
3116
3117 case CONST:
3118 if (shared_const_p (x))
3119 return;
3120 break;
3121
3122 case DEBUG_INSN:
3123 case INSN:
3124 case JUMP_INSN:
3125 case CALL_INSN:
3126 case NOTE:
3127 case BARRIER:
3128 /* The chain of insns is not being copied. */
3129 return;
3130
3131 default:
3132 break;
3133 }
3134
3135 /* This rtx may not be shared. If it has already been seen,
3136 replace it with a copy of itself. */
3137
3138 if (RTX_FLAG (x, used))
3139 {
3140 x = shallow_copy_rtx (x);
3141 copied = 1;
3142 }
3143 RTX_FLAG (x, used) = 1;
3144
3145 /* Now scan the subexpressions recursively.
3146 We can store any replaced subexpressions directly into X
3147 since we know X is not shared! Any vectors in X
3148 must be copied if X was copied. */
3149
3150 format_ptr = GET_RTX_FORMAT (code);
3151 length = GET_RTX_LENGTH (code);
3152 last_ptr = NULL;
3153
3154 for (i = 0; i < length; i++)
3155 {
3156 switch (*format_ptr++)
3157 {
3158 case 'e':
3159 if (last_ptr)
3160 copy_rtx_if_shared_1 (last_ptr);
3161 last_ptr = &XEXP (x, i);
3162 break;
3163
3164 case 'E':
3165 if (XVEC (x, i) != NULL)
3166 {
3167 int j;
3168 int len = XVECLEN (x, i);
3169
3170 /* Copy the vector iff I copied the rtx and the length
3171 is nonzero. */
3172 if (copied && len > 0)
3173 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
3174
3175 /* Call recursively on all inside the vector. */
3176 for (j = 0; j < len; j++)
3177 {
3178 if (last_ptr)
3179 copy_rtx_if_shared_1 (last_ptr);
3180 last_ptr = &XVECEXP (x, i, j);
3181 }
3182 }
3183 break;
3184 }
3185 }
3186 *orig1 = x;
3187 if (last_ptr)
3188 {
3189 orig1 = last_ptr;
3190 goto repeat;
3191 }
3192 return;
3193 }
3194
3195 /* Set the USED bit in X and its non-shareable subparts to FLAG. */
3196
3197 static void
mark_used_flags(rtx x,int flag)3198 mark_used_flags (rtx x, int flag)
3199 {
3200 int i, j;
3201 enum rtx_code code;
3202 const char *format_ptr;
3203 int length;
3204
3205 /* Repeat is used to turn tail-recursion into iteration. */
3206 repeat:
3207 if (x == 0)
3208 return;
3209
3210 code = GET_CODE (x);
3211
3212 /* These types may be freely shared so we needn't do any resetting
3213 for them. */
3214
3215 switch (code)
3216 {
3217 case REG:
3218 case DEBUG_EXPR:
3219 case VALUE:
3220 CASE_CONST_ANY:
3221 case SYMBOL_REF:
3222 case CODE_LABEL:
3223 case PC:
3224 case CC0:
3225 case RETURN:
3226 case SIMPLE_RETURN:
3227 return;
3228
3229 case DEBUG_INSN:
3230 case INSN:
3231 case JUMP_INSN:
3232 case CALL_INSN:
3233 case NOTE:
3234 case LABEL_REF:
3235 case BARRIER:
3236 /* The chain of insns is not being copied. */
3237 return;
3238
3239 default:
3240 break;
3241 }
3242
3243 RTX_FLAG (x, used) = flag;
3244
3245 format_ptr = GET_RTX_FORMAT (code);
3246 length = GET_RTX_LENGTH (code);
3247
3248 for (i = 0; i < length; i++)
3249 {
3250 switch (*format_ptr++)
3251 {
3252 case 'e':
3253 if (i == length-1)
3254 {
3255 x = XEXP (x, i);
3256 goto repeat;
3257 }
3258 mark_used_flags (XEXP (x, i), flag);
3259 break;
3260
3261 case 'E':
3262 for (j = 0; j < XVECLEN (x, i); j++)
3263 mark_used_flags (XVECEXP (x, i, j), flag);
3264 break;
3265 }
3266 }
3267 }
3268
3269 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
3270 to look for shared sub-parts. */
3271
3272 void
reset_used_flags(rtx x)3273 reset_used_flags (rtx x)
3274 {
3275 mark_used_flags (x, 0);
3276 }
3277
3278 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
3279 to look for shared sub-parts. */
3280
3281 void
set_used_flags(rtx x)3282 set_used_flags (rtx x)
3283 {
3284 mark_used_flags (x, 1);
3285 }
3286
3287 /* Copy X if necessary so that it won't be altered by changes in OTHER.
3288 Return X or the rtx for the pseudo reg the value of X was copied into.
3289 OTHER must be valid as a SET_DEST. */
3290
3291 rtx
make_safe_from(rtx x,rtx other)3292 make_safe_from (rtx x, rtx other)
3293 {
3294 while (1)
3295 switch (GET_CODE (other))
3296 {
3297 case SUBREG:
3298 other = SUBREG_REG (other);
3299 break;
3300 case STRICT_LOW_PART:
3301 case SIGN_EXTEND:
3302 case ZERO_EXTEND:
3303 other = XEXP (other, 0);
3304 break;
3305 default:
3306 goto done;
3307 }
3308 done:
3309 if ((MEM_P (other)
3310 && ! CONSTANT_P (x)
3311 && !REG_P (x)
3312 && GET_CODE (x) != SUBREG)
3313 || (REG_P (other)
3314 && (REGNO (other) < FIRST_PSEUDO_REGISTER
3315 || reg_mentioned_p (other, x))))
3316 {
3317 rtx temp = gen_reg_rtx (GET_MODE (x));
3318 emit_move_insn (temp, x);
3319 return temp;
3320 }
3321 return x;
3322 }
3323
3324 /* Emission of insns (adding them to the doubly-linked list). */
3325
3326 /* Return the last insn emitted, even if it is in a sequence now pushed. */
3327
3328 rtx_insn *
get_last_insn_anywhere(void)3329 get_last_insn_anywhere (void)
3330 {
3331 struct sequence_stack *seq;
3332 for (seq = get_current_sequence (); seq; seq = seq->next)
3333 if (seq->last != 0)
3334 return seq->last;
3335 return 0;
3336 }
3337
3338 /* Return the first nonnote insn emitted in current sequence or current
3339 function. This routine looks inside SEQUENCEs. */
3340
3341 rtx_insn *
get_first_nonnote_insn(void)3342 get_first_nonnote_insn (void)
3343 {
3344 rtx_insn *insn = get_insns ();
3345
3346 if (insn)
3347 {
3348 if (NOTE_P (insn))
3349 for (insn = next_insn (insn);
3350 insn && NOTE_P (insn);
3351 insn = next_insn (insn))
3352 continue;
3353 else
3354 {
3355 if (NONJUMP_INSN_P (insn)
3356 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3357 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
3358 }
3359 }
3360
3361 return insn;
3362 }
3363
3364 /* Return the last nonnote insn emitted in current sequence or current
3365 function. This routine looks inside SEQUENCEs. */
3366
3367 rtx_insn *
get_last_nonnote_insn(void)3368 get_last_nonnote_insn (void)
3369 {
3370 rtx_insn *insn = get_last_insn ();
3371
3372 if (insn)
3373 {
3374 if (NOTE_P (insn))
3375 for (insn = previous_insn (insn);
3376 insn && NOTE_P (insn);
3377 insn = previous_insn (insn))
3378 continue;
3379 else
3380 {
3381 if (NONJUMP_INSN_P (insn))
3382 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (PATTERN (insn)))
3383 insn = seq->insn (seq->len () - 1);
3384 }
3385 }
3386
3387 return insn;
3388 }
3389
3390 /* Return the number of actual (non-debug) insns emitted in this
3391 function. */
3392
3393 int
get_max_insn_count(void)3394 get_max_insn_count (void)
3395 {
3396 int n = cur_insn_uid;
3397
3398 /* The table size must be stable across -g, to avoid codegen
3399 differences due to debug insns, and not be affected by
3400 -fmin-insn-uid, to avoid excessive table size and to simplify
3401 debugging of -fcompare-debug failures. */
3402 if (cur_debug_insn_uid > param_min_nondebug_insn_uid)
3403 n -= cur_debug_insn_uid;
3404 else
3405 n -= param_min_nondebug_insn_uid;
3406
3407 return n;
3408 }
3409
3410
3411 /* Return the next insn. If it is a SEQUENCE, return the first insn
3412 of the sequence. */
3413
3414 rtx_insn *
next_insn(rtx_insn * insn)3415 next_insn (rtx_insn *insn)
3416 {
3417 if (insn)
3418 {
3419 insn = NEXT_INSN (insn);
3420 if (insn && NONJUMP_INSN_P (insn)
3421 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3422 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
3423 }
3424
3425 return insn;
3426 }
3427
3428 /* Return the previous insn. If it is a SEQUENCE, return the last insn
3429 of the sequence. */
3430
3431 rtx_insn *
previous_insn(rtx_insn * insn)3432 previous_insn (rtx_insn *insn)
3433 {
3434 if (insn)
3435 {
3436 insn = PREV_INSN (insn);
3437 if (insn && NONJUMP_INSN_P (insn))
3438 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (PATTERN (insn)))
3439 insn = seq->insn (seq->len () - 1);
3440 }
3441
3442 return insn;
3443 }
3444
3445 /* Return the next insn after INSN that is not a NOTE. This routine does not
3446 look inside SEQUENCEs. */
3447
3448 rtx_insn *
next_nonnote_insn(rtx_insn * insn)3449 next_nonnote_insn (rtx_insn *insn)
3450 {
3451 while (insn)
3452 {
3453 insn = NEXT_INSN (insn);
3454 if (insn == 0 || !NOTE_P (insn))
3455 break;
3456 }
3457
3458 return insn;
3459 }
3460
3461 /* Return the next insn after INSN that is not a DEBUG_INSN. This
3462 routine does not look inside SEQUENCEs. */
3463
3464 rtx_insn *
next_nondebug_insn(rtx_insn * insn)3465 next_nondebug_insn (rtx_insn *insn)
3466 {
3467 while (insn)
3468 {
3469 insn = NEXT_INSN (insn);
3470 if (insn == 0 || !DEBUG_INSN_P (insn))
3471 break;
3472 }
3473
3474 return insn;
3475 }
3476
3477 /* Return the previous insn before INSN that is not a NOTE. This routine does
3478 not look inside SEQUENCEs. */
3479
3480 rtx_insn *
prev_nonnote_insn(rtx_insn * insn)3481 prev_nonnote_insn (rtx_insn *insn)
3482 {
3483 while (insn)
3484 {
3485 insn = PREV_INSN (insn);
3486 if (insn == 0 || !NOTE_P (insn))
3487 break;
3488 }
3489
3490 return insn;
3491 }
3492
3493 /* Return the previous insn before INSN that is not a DEBUG_INSN.
3494 This routine does not look inside SEQUENCEs. */
3495
3496 rtx_insn *
prev_nondebug_insn(rtx_insn * insn)3497 prev_nondebug_insn (rtx_insn *insn)
3498 {
3499 while (insn)
3500 {
3501 insn = PREV_INSN (insn);
3502 if (insn == 0 || !DEBUG_INSN_P (insn))
3503 break;
3504 }
3505
3506 return insn;
3507 }
3508
3509 /* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN.
3510 This routine does not look inside SEQUENCEs. */
3511
3512 rtx_insn *
next_nonnote_nondebug_insn(rtx_insn * insn)3513 next_nonnote_nondebug_insn (rtx_insn *insn)
3514 {
3515 while (insn)
3516 {
3517 insn = NEXT_INSN (insn);
3518 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3519 break;
3520 }
3521
3522 return insn;
3523 }
3524
3525 /* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN,
3526 but stop the search before we enter another basic block. This
3527 routine does not look inside SEQUENCEs. */
3528
3529 rtx_insn *
next_nonnote_nondebug_insn_bb(rtx_insn * insn)3530 next_nonnote_nondebug_insn_bb (rtx_insn *insn)
3531 {
3532 while (insn)
3533 {
3534 insn = NEXT_INSN (insn);
3535 if (insn == 0)
3536 break;
3537 if (DEBUG_INSN_P (insn))
3538 continue;
3539 if (!NOTE_P (insn))
3540 break;
3541 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3542 return NULL;
3543 }
3544
3545 return insn;
3546 }
3547
3548 /* Return the previous insn before INSN that is not a NOTE nor DEBUG_INSN.
3549 This routine does not look inside SEQUENCEs. */
3550
3551 rtx_insn *
prev_nonnote_nondebug_insn(rtx_insn * insn)3552 prev_nonnote_nondebug_insn (rtx_insn *insn)
3553 {
3554 while (insn)
3555 {
3556 insn = PREV_INSN (insn);
3557 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3558 break;
3559 }
3560
3561 return insn;
3562 }
3563
3564 /* Return the previous insn before INSN that is not a NOTE nor
3565 DEBUG_INSN, but stop the search before we enter another basic
3566 block. This routine does not look inside SEQUENCEs. */
3567
3568 rtx_insn *
prev_nonnote_nondebug_insn_bb(rtx_insn * insn)3569 prev_nonnote_nondebug_insn_bb (rtx_insn *insn)
3570 {
3571 while (insn)
3572 {
3573 insn = PREV_INSN (insn);
3574 if (insn == 0)
3575 break;
3576 if (DEBUG_INSN_P (insn))
3577 continue;
3578 if (!NOTE_P (insn))
3579 break;
3580 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3581 return NULL;
3582 }
3583
3584 return insn;
3585 }
3586
3587 /* Return the next INSN, CALL_INSN, JUMP_INSN or DEBUG_INSN after INSN;
3588 or 0, if there is none. This routine does not look inside
3589 SEQUENCEs. */
3590
3591 rtx_insn *
next_real_insn(rtx_insn * insn)3592 next_real_insn (rtx_insn *insn)
3593 {
3594 while (insn)
3595 {
3596 insn = NEXT_INSN (insn);
3597 if (insn == 0 || INSN_P (insn))
3598 break;
3599 }
3600
3601 return insn;
3602 }
3603
3604 /* Return the last INSN, CALL_INSN, JUMP_INSN or DEBUG_INSN before INSN;
3605 or 0, if there is none. This routine does not look inside
3606 SEQUENCEs. */
3607
3608 rtx_insn *
prev_real_insn(rtx_insn * insn)3609 prev_real_insn (rtx_insn *insn)
3610 {
3611 while (insn)
3612 {
3613 insn = PREV_INSN (insn);
3614 if (insn == 0 || INSN_P (insn))
3615 break;
3616 }
3617
3618 return insn;
3619 }
3620
3621 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3622 or 0, if there is none. This routine does not look inside
3623 SEQUENCEs. */
3624
3625 rtx_insn *
next_real_nondebug_insn(rtx uncast_insn)3626 next_real_nondebug_insn (rtx uncast_insn)
3627 {
3628 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3629
3630 while (insn)
3631 {
3632 insn = NEXT_INSN (insn);
3633 if (insn == 0 || NONDEBUG_INSN_P (insn))
3634 break;
3635 }
3636
3637 return insn;
3638 }
3639
3640 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3641 or 0, if there is none. This routine does not look inside
3642 SEQUENCEs. */
3643
3644 rtx_insn *
prev_real_nondebug_insn(rtx_insn * insn)3645 prev_real_nondebug_insn (rtx_insn *insn)
3646 {
3647 while (insn)
3648 {
3649 insn = PREV_INSN (insn);
3650 if (insn == 0 || NONDEBUG_INSN_P (insn))
3651 break;
3652 }
3653
3654 return insn;
3655 }
3656
3657 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3658 This routine does not look inside SEQUENCEs. */
3659
3660 rtx_call_insn *
last_call_insn(void)3661 last_call_insn (void)
3662 {
3663 rtx_insn *insn;
3664
3665 for (insn = get_last_insn ();
3666 insn && !CALL_P (insn);
3667 insn = PREV_INSN (insn))
3668 ;
3669
3670 return safe_as_a <rtx_call_insn *> (insn);
3671 }
3672
3673 /* Find the next insn after INSN that really does something. This routine
3674 does not look inside SEQUENCEs. After reload this also skips over
3675 standalone USE and CLOBBER insn. */
3676
3677 int
active_insn_p(const rtx_insn * insn)3678 active_insn_p (const rtx_insn *insn)
3679 {
3680 return (CALL_P (insn) || JUMP_P (insn)
3681 || JUMP_TABLE_DATA_P (insn) /* FIXME */
3682 || (NONJUMP_INSN_P (insn)
3683 && (! reload_completed
3684 || (GET_CODE (PATTERN (insn)) != USE
3685 && GET_CODE (PATTERN (insn)) != CLOBBER))));
3686 }
3687
3688 rtx_insn *
next_active_insn(rtx_insn * insn)3689 next_active_insn (rtx_insn *insn)
3690 {
3691 while (insn)
3692 {
3693 insn = NEXT_INSN (insn);
3694 if (insn == 0 || active_insn_p (insn))
3695 break;
3696 }
3697
3698 return insn;
3699 }
3700
3701 /* Find the last insn before INSN that really does something. This routine
3702 does not look inside SEQUENCEs. After reload this also skips over
3703 standalone USE and CLOBBER insn. */
3704
3705 rtx_insn *
prev_active_insn(rtx_insn * insn)3706 prev_active_insn (rtx_insn *insn)
3707 {
3708 while (insn)
3709 {
3710 insn = PREV_INSN (insn);
3711 if (insn == 0 || active_insn_p (insn))
3712 break;
3713 }
3714
3715 return insn;
3716 }
3717
3718 /* Return the next insn that uses CC0 after INSN, which is assumed to
3719 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3720 applied to the result of this function should yield INSN).
3721
3722 Normally, this is simply the next insn. However, if a REG_CC_USER note
3723 is present, it contains the insn that uses CC0.
3724
3725 Return 0 if we can't find the insn. */
3726
3727 rtx_insn *
next_cc0_user(rtx_insn * insn)3728 next_cc0_user (rtx_insn *insn)
3729 {
3730 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3731
3732 if (note)
3733 return safe_as_a <rtx_insn *> (XEXP (note, 0));
3734
3735 insn = next_nonnote_insn (insn);
3736 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3737 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
3738
3739 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3740 return insn;
3741
3742 return 0;
3743 }
3744
3745 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3746 note, it is the previous insn. */
3747
3748 rtx_insn *
prev_cc0_setter(rtx_insn * insn)3749 prev_cc0_setter (rtx_insn *insn)
3750 {
3751 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3752
3753 if (note)
3754 return safe_as_a <rtx_insn *> (XEXP (note, 0));
3755
3756 insn = prev_nonnote_insn (insn);
3757 gcc_assert (sets_cc0_p (PATTERN (insn)));
3758
3759 return insn;
3760 }
3761
3762 /* Find a RTX_AUTOINC class rtx which matches DATA. */
3763
3764 static int
find_auto_inc(const_rtx x,const_rtx reg)3765 find_auto_inc (const_rtx x, const_rtx reg)
3766 {
3767 subrtx_iterator::array_type array;
3768 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
3769 {
3770 const_rtx x = *iter;
3771 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC
3772 && rtx_equal_p (reg, XEXP (x, 0)))
3773 return true;
3774 }
3775 return false;
3776 }
3777
3778 /* Increment the label uses for all labels present in rtx. */
3779
3780 static void
mark_label_nuses(rtx x)3781 mark_label_nuses (rtx x)
3782 {
3783 enum rtx_code code;
3784 int i, j;
3785 const char *fmt;
3786
3787 code = GET_CODE (x);
3788 if (code == LABEL_REF && LABEL_P (label_ref_label (x)))
3789 LABEL_NUSES (label_ref_label (x))++;
3790
3791 fmt = GET_RTX_FORMAT (code);
3792 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3793 {
3794 if (fmt[i] == 'e')
3795 mark_label_nuses (XEXP (x, i));
3796 else if (fmt[i] == 'E')
3797 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3798 mark_label_nuses (XVECEXP (x, i, j));
3799 }
3800 }
3801
3802
3803 /* Try splitting insns that can be split for better scheduling.
3804 PAT is the pattern which might split.
3805 TRIAL is the insn providing PAT.
3806 LAST is nonzero if we should return the last insn of the sequence produced.
3807
3808 If this routine succeeds in splitting, it returns the first or last
3809 replacement insn depending on the value of LAST. Otherwise, it
3810 returns TRIAL. If the insn to be returned can be split, it will be. */
3811
3812 rtx_insn *
try_split(rtx pat,rtx_insn * trial,int last)3813 try_split (rtx pat, rtx_insn *trial, int last)
3814 {
3815 rtx_insn *before, *after;
3816 rtx note;
3817 rtx_insn *seq, *tem;
3818 profile_probability probability;
3819 rtx_insn *insn_last, *insn;
3820 int njumps = 0;
3821 rtx_insn *call_insn = NULL;
3822
3823 /* We're not good at redistributing frame information. */
3824 if (RTX_FRAME_RELATED_P (trial))
3825 return trial;
3826
3827 if (any_condjump_p (trial)
3828 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3829 split_branch_probability
3830 = profile_probability::from_reg_br_prob_note (XINT (note, 0));
3831 else
3832 split_branch_probability = profile_probability::uninitialized ();
3833
3834 probability = split_branch_probability;
3835
3836 seq = split_insns (pat, trial);
3837
3838 split_branch_probability = profile_probability::uninitialized ();
3839
3840 if (!seq)
3841 return trial;
3842
3843 /* Avoid infinite loop if any insn of the result matches
3844 the original pattern. */
3845 insn_last = seq;
3846 while (1)
3847 {
3848 if (INSN_P (insn_last)
3849 && rtx_equal_p (PATTERN (insn_last), pat))
3850 return trial;
3851 if (!NEXT_INSN (insn_last))
3852 break;
3853 insn_last = NEXT_INSN (insn_last);
3854 }
3855
3856 /* We will be adding the new sequence to the function. The splitters
3857 may have introduced invalid RTL sharing, so unshare the sequence now. */
3858 unshare_all_rtl_in_chain (seq);
3859
3860 /* Mark labels and copy flags. */
3861 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3862 {
3863 if (JUMP_P (insn))
3864 {
3865 if (JUMP_P (trial))
3866 CROSSING_JUMP_P (insn) = CROSSING_JUMP_P (trial);
3867 mark_jump_label (PATTERN (insn), insn, 0);
3868 njumps++;
3869 if (probability.initialized_p ()
3870 && any_condjump_p (insn)
3871 && !find_reg_note (insn, REG_BR_PROB, 0))
3872 {
3873 /* We can preserve the REG_BR_PROB notes only if exactly
3874 one jump is created, otherwise the machine description
3875 is responsible for this step using
3876 split_branch_probability variable. */
3877 gcc_assert (njumps == 1);
3878 add_reg_br_prob_note (insn, probability);
3879 }
3880 }
3881 }
3882
3883 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3884 in SEQ and copy any additional information across. */
3885 if (CALL_P (trial))
3886 {
3887 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3888 if (CALL_P (insn))
3889 {
3890 gcc_assert (call_insn == NULL_RTX);
3891 call_insn = insn;
3892
3893 /* Add the old CALL_INSN_FUNCTION_USAGE to whatever the
3894 target may have explicitly specified. */
3895 rtx *p = &CALL_INSN_FUNCTION_USAGE (insn);
3896 while (*p)
3897 p = &XEXP (*p, 1);
3898 *p = CALL_INSN_FUNCTION_USAGE (trial);
3899
3900 /* If the old call was a sibling call, the new one must
3901 be too. */
3902 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3903 }
3904 }
3905
3906 /* Copy notes, particularly those related to the CFG. */
3907 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3908 {
3909 switch (REG_NOTE_KIND (note))
3910 {
3911 case REG_EH_REGION:
3912 copy_reg_eh_region_note_backward (note, insn_last, NULL);
3913 break;
3914
3915 case REG_NORETURN:
3916 case REG_SETJMP:
3917 case REG_TM:
3918 case REG_CALL_NOCF_CHECK:
3919 case REG_CALL_ARG_LOCATION:
3920 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3921 {
3922 if (CALL_P (insn))
3923 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3924 }
3925 break;
3926
3927 case REG_NON_LOCAL_GOTO:
3928 case REG_LABEL_TARGET:
3929 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3930 {
3931 if (JUMP_P (insn))
3932 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3933 }
3934 break;
3935
3936 case REG_INC:
3937 if (!AUTO_INC_DEC)
3938 break;
3939
3940 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3941 {
3942 rtx reg = XEXP (note, 0);
3943 if (!FIND_REG_INC_NOTE (insn, reg)
3944 && find_auto_inc (PATTERN (insn), reg))
3945 add_reg_note (insn, REG_INC, reg);
3946 }
3947 break;
3948
3949 case REG_ARGS_SIZE:
3950 fixup_args_size_notes (NULL, insn_last, get_args_size (note));
3951 break;
3952
3953 case REG_CALL_DECL:
3954 gcc_assert (call_insn != NULL_RTX);
3955 add_reg_note (call_insn, REG_NOTE_KIND (note), XEXP (note, 0));
3956 break;
3957
3958 default:
3959 break;
3960 }
3961 }
3962
3963 /* If there are LABELS inside the split insns increment the
3964 usage count so we don't delete the label. */
3965 if (INSN_P (trial))
3966 {
3967 insn = insn_last;
3968 while (insn != NULL_RTX)
3969 {
3970 /* JUMP_P insns have already been "marked" above. */
3971 if (NONJUMP_INSN_P (insn))
3972 mark_label_nuses (PATTERN (insn));
3973
3974 insn = PREV_INSN (insn);
3975 }
3976 }
3977
3978 before = PREV_INSN (trial);
3979 after = NEXT_INSN (trial);
3980
3981 emit_insn_after_setloc (seq, trial, INSN_LOCATION (trial));
3982
3983 delete_insn (trial);
3984
3985 /* Recursively call try_split for each new insn created; by the
3986 time control returns here that insn will be fully split, so
3987 set LAST and continue from the insn after the one returned.
3988 We can't use next_active_insn here since AFTER may be a note.
3989 Ignore deleted insns, which can be occur if not optimizing. */
3990 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3991 if (! tem->deleted () && INSN_P (tem))
3992 tem = try_split (PATTERN (tem), tem, 1);
3993
3994 /* Return either the first or the last insn, depending on which was
3995 requested. */
3996 return last
3997 ? (after ? PREV_INSN (after) : get_last_insn ())
3998 : NEXT_INSN (before);
3999 }
4000
4001 /* Make and return an INSN rtx, initializing all its slots.
4002 Store PATTERN in the pattern slots. */
4003
4004 rtx_insn *
make_insn_raw(rtx pattern)4005 make_insn_raw (rtx pattern)
4006 {
4007 rtx_insn *insn;
4008
4009 insn = as_a <rtx_insn *> (rtx_alloc (INSN));
4010
4011 INSN_UID (insn) = cur_insn_uid++;
4012 PATTERN (insn) = pattern;
4013 INSN_CODE (insn) = -1;
4014 REG_NOTES (insn) = NULL;
4015 INSN_LOCATION (insn) = curr_insn_location ();
4016 BLOCK_FOR_INSN (insn) = NULL;
4017
4018 #ifdef ENABLE_RTL_CHECKING
4019 if (insn
4020 && INSN_P (insn)
4021 && (returnjump_p (insn)
4022 || (GET_CODE (insn) == SET
4023 && SET_DEST (insn) == pc_rtx)))
4024 {
4025 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
4026 debug_rtx (insn);
4027 }
4028 #endif
4029
4030 return insn;
4031 }
4032
4033 /* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn. */
4034
4035 static rtx_insn *
make_debug_insn_raw(rtx pattern)4036 make_debug_insn_raw (rtx pattern)
4037 {
4038 rtx_debug_insn *insn;
4039
4040 insn = as_a <rtx_debug_insn *> (rtx_alloc (DEBUG_INSN));
4041 INSN_UID (insn) = cur_debug_insn_uid++;
4042 if (cur_debug_insn_uid > param_min_nondebug_insn_uid)
4043 INSN_UID (insn) = cur_insn_uid++;
4044
4045 PATTERN (insn) = pattern;
4046 INSN_CODE (insn) = -1;
4047 REG_NOTES (insn) = NULL;
4048 INSN_LOCATION (insn) = curr_insn_location ();
4049 BLOCK_FOR_INSN (insn) = NULL;
4050
4051 return insn;
4052 }
4053
4054 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
4055
4056 static rtx_insn *
make_jump_insn_raw(rtx pattern)4057 make_jump_insn_raw (rtx pattern)
4058 {
4059 rtx_jump_insn *insn;
4060
4061 insn = as_a <rtx_jump_insn *> (rtx_alloc (JUMP_INSN));
4062 INSN_UID (insn) = cur_insn_uid++;
4063
4064 PATTERN (insn) = pattern;
4065 INSN_CODE (insn) = -1;
4066 REG_NOTES (insn) = NULL;
4067 JUMP_LABEL (insn) = NULL;
4068 INSN_LOCATION (insn) = curr_insn_location ();
4069 BLOCK_FOR_INSN (insn) = NULL;
4070
4071 return insn;
4072 }
4073
4074 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
4075
4076 static rtx_insn *
make_call_insn_raw(rtx pattern)4077 make_call_insn_raw (rtx pattern)
4078 {
4079 rtx_call_insn *insn;
4080
4081 insn = as_a <rtx_call_insn *> (rtx_alloc (CALL_INSN));
4082 INSN_UID (insn) = cur_insn_uid++;
4083
4084 PATTERN (insn) = pattern;
4085 INSN_CODE (insn) = -1;
4086 REG_NOTES (insn) = NULL;
4087 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
4088 INSN_LOCATION (insn) = curr_insn_location ();
4089 BLOCK_FOR_INSN (insn) = NULL;
4090
4091 return insn;
4092 }
4093
4094 /* Like `make_insn_raw' but make a NOTE instead of an insn. */
4095
4096 static rtx_note *
make_note_raw(enum insn_note subtype)4097 make_note_raw (enum insn_note subtype)
4098 {
4099 /* Some notes are never created this way at all. These notes are
4100 only created by patching out insns. */
4101 gcc_assert (subtype != NOTE_INSN_DELETED_LABEL
4102 && subtype != NOTE_INSN_DELETED_DEBUG_LABEL);
4103
4104 rtx_note *note = as_a <rtx_note *> (rtx_alloc (NOTE));
4105 INSN_UID (note) = cur_insn_uid++;
4106 NOTE_KIND (note) = subtype;
4107 BLOCK_FOR_INSN (note) = NULL;
4108 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4109 return note;
4110 }
4111
4112 /* Add INSN to the end of the doubly-linked list, between PREV and NEXT.
4113 INSN may be any object that can appear in the chain: INSN_P and NOTE_P objects,
4114 but also BARRIERs and JUMP_TABLE_DATAs. PREV and NEXT may be NULL. */
4115
4116 static inline void
link_insn_into_chain(rtx_insn * insn,rtx_insn * prev,rtx_insn * next)4117 link_insn_into_chain (rtx_insn *insn, rtx_insn *prev, rtx_insn *next)
4118 {
4119 SET_PREV_INSN (insn) = prev;
4120 SET_NEXT_INSN (insn) = next;
4121 if (prev != NULL)
4122 {
4123 SET_NEXT_INSN (prev) = insn;
4124 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
4125 {
4126 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (prev));
4127 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = insn;
4128 }
4129 }
4130 if (next != NULL)
4131 {
4132 SET_PREV_INSN (next) = insn;
4133 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
4134 {
4135 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (next));
4136 SET_PREV_INSN (sequence->insn (0)) = insn;
4137 }
4138 }
4139
4140 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
4141 {
4142 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (insn));
4143 SET_PREV_INSN (sequence->insn (0)) = prev;
4144 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = next;
4145 }
4146 }
4147
4148 /* Add INSN to the end of the doubly-linked list.
4149 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
4150
4151 void
add_insn(rtx_insn * insn)4152 add_insn (rtx_insn *insn)
4153 {
4154 rtx_insn *prev = get_last_insn ();
4155 link_insn_into_chain (insn, prev, NULL);
4156 if (get_insns () == NULL)
4157 set_first_insn (insn);
4158 set_last_insn (insn);
4159 }
4160
4161 /* Add INSN into the doubly-linked list after insn AFTER. */
4162
4163 static void
add_insn_after_nobb(rtx_insn * insn,rtx_insn * after)4164 add_insn_after_nobb (rtx_insn *insn, rtx_insn *after)
4165 {
4166 rtx_insn *next = NEXT_INSN (after);
4167
4168 gcc_assert (!optimize || !after->deleted ());
4169
4170 link_insn_into_chain (insn, after, next);
4171
4172 if (next == NULL)
4173 {
4174 struct sequence_stack *seq;
4175
4176 for (seq = get_current_sequence (); seq; seq = seq->next)
4177 if (after == seq->last)
4178 {
4179 seq->last = insn;
4180 break;
4181 }
4182 }
4183 }
4184
4185 /* Add INSN into the doubly-linked list before insn BEFORE. */
4186
4187 static void
add_insn_before_nobb(rtx_insn * insn,rtx_insn * before)4188 add_insn_before_nobb (rtx_insn *insn, rtx_insn *before)
4189 {
4190 rtx_insn *prev = PREV_INSN (before);
4191
4192 gcc_assert (!optimize || !before->deleted ());
4193
4194 link_insn_into_chain (insn, prev, before);
4195
4196 if (prev == NULL)
4197 {
4198 struct sequence_stack *seq;
4199
4200 for (seq = get_current_sequence (); seq; seq = seq->next)
4201 if (before == seq->first)
4202 {
4203 seq->first = insn;
4204 break;
4205 }
4206
4207 gcc_assert (seq);
4208 }
4209 }
4210
4211 /* Like add_insn_after_nobb, but try to set BLOCK_FOR_INSN.
4212 If BB is NULL, an attempt is made to infer the bb from before.
4213
4214 This and the next function should be the only functions called
4215 to insert an insn once delay slots have been filled since only
4216 they know how to update a SEQUENCE. */
4217
4218 void
add_insn_after(rtx_insn * insn,rtx_insn * after,basic_block bb)4219 add_insn_after (rtx_insn *insn, rtx_insn *after, basic_block bb)
4220 {
4221 add_insn_after_nobb (insn, after);
4222 if (!BARRIER_P (after)
4223 && !BARRIER_P (insn)
4224 && (bb = BLOCK_FOR_INSN (after)))
4225 {
4226 set_block_for_insn (insn, bb);
4227 if (INSN_P (insn))
4228 df_insn_rescan (insn);
4229 /* Should not happen as first in the BB is always
4230 either NOTE or LABEL. */
4231 if (BB_END (bb) == after
4232 /* Avoid clobbering of structure when creating new BB. */
4233 && !BARRIER_P (insn)
4234 && !NOTE_INSN_BASIC_BLOCK_P (insn))
4235 BB_END (bb) = insn;
4236 }
4237 }
4238
4239 /* Like add_insn_before_nobb, but try to set BLOCK_FOR_INSN.
4240 If BB is NULL, an attempt is made to infer the bb from before.
4241
4242 This and the previous function should be the only functions called
4243 to insert an insn once delay slots have been filled since only
4244 they know how to update a SEQUENCE. */
4245
4246 void
add_insn_before(rtx_insn * insn,rtx_insn * before,basic_block bb)4247 add_insn_before (rtx_insn *insn, rtx_insn *before, basic_block bb)
4248 {
4249 add_insn_before_nobb (insn, before);
4250
4251 if (!bb
4252 && !BARRIER_P (before)
4253 && !BARRIER_P (insn))
4254 bb = BLOCK_FOR_INSN (before);
4255
4256 if (bb)
4257 {
4258 set_block_for_insn (insn, bb);
4259 if (INSN_P (insn))
4260 df_insn_rescan (insn);
4261 /* Should not happen as first in the BB is always either NOTE or
4262 LABEL. */
4263 gcc_assert (BB_HEAD (bb) != insn
4264 /* Avoid clobbering of structure when creating new BB. */
4265 || BARRIER_P (insn)
4266 || NOTE_INSN_BASIC_BLOCK_P (insn));
4267 }
4268 }
4269
4270 /* Replace insn with an deleted instruction note. */
4271
4272 void
set_insn_deleted(rtx_insn * insn)4273 set_insn_deleted (rtx_insn *insn)
4274 {
4275 if (INSN_P (insn))
4276 df_insn_delete (insn);
4277 PUT_CODE (insn, NOTE);
4278 NOTE_KIND (insn) = NOTE_INSN_DELETED;
4279 }
4280
4281
4282 /* Unlink INSN from the insn chain.
4283
4284 This function knows how to handle sequences.
4285
4286 This function does not invalidate data flow information associated with
4287 INSN (i.e. does not call df_insn_delete). That makes this function
4288 usable for only disconnecting an insn from the chain, and re-emit it
4289 elsewhere later.
4290
4291 To later insert INSN elsewhere in the insn chain via add_insn and
4292 similar functions, PREV_INSN and NEXT_INSN must be nullified by
4293 the caller. Nullifying them here breaks many insn chain walks.
4294
4295 To really delete an insn and related DF information, use delete_insn. */
4296
4297 void
remove_insn(rtx_insn * insn)4298 remove_insn (rtx_insn *insn)
4299 {
4300 rtx_insn *next = NEXT_INSN (insn);
4301 rtx_insn *prev = PREV_INSN (insn);
4302 basic_block bb;
4303
4304 if (prev)
4305 {
4306 SET_NEXT_INSN (prev) = next;
4307 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
4308 {
4309 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (prev));
4310 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = next;
4311 }
4312 }
4313 else
4314 {
4315 struct sequence_stack *seq;
4316
4317 for (seq = get_current_sequence (); seq; seq = seq->next)
4318 if (insn == seq->first)
4319 {
4320 seq->first = next;
4321 break;
4322 }
4323
4324 gcc_assert (seq);
4325 }
4326
4327 if (next)
4328 {
4329 SET_PREV_INSN (next) = prev;
4330 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
4331 {
4332 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (next));
4333 SET_PREV_INSN (sequence->insn (0)) = prev;
4334 }
4335 }
4336 else
4337 {
4338 struct sequence_stack *seq;
4339
4340 for (seq = get_current_sequence (); seq; seq = seq->next)
4341 if (insn == seq->last)
4342 {
4343 seq->last = prev;
4344 break;
4345 }
4346
4347 gcc_assert (seq);
4348 }
4349
4350 /* Fix up basic block boundaries, if necessary. */
4351 if (!BARRIER_P (insn)
4352 && (bb = BLOCK_FOR_INSN (insn)))
4353 {
4354 if (BB_HEAD (bb) == insn)
4355 {
4356 /* Never ever delete the basic block note without deleting whole
4357 basic block. */
4358 gcc_assert (!NOTE_P (insn));
4359 BB_HEAD (bb) = next;
4360 }
4361 if (BB_END (bb) == insn)
4362 BB_END (bb) = prev;
4363 }
4364 }
4365
4366 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
4367
4368 void
add_function_usage_to(rtx call_insn,rtx call_fusage)4369 add_function_usage_to (rtx call_insn, rtx call_fusage)
4370 {
4371 gcc_assert (call_insn && CALL_P (call_insn));
4372
4373 /* Put the register usage information on the CALL. If there is already
4374 some usage information, put ours at the end. */
4375 if (CALL_INSN_FUNCTION_USAGE (call_insn))
4376 {
4377 rtx link;
4378
4379 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
4380 link = XEXP (link, 1))
4381 ;
4382
4383 XEXP (link, 1) = call_fusage;
4384 }
4385 else
4386 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
4387 }
4388
4389 /* Delete all insns made since FROM.
4390 FROM becomes the new last instruction. */
4391
4392 void
delete_insns_since(rtx_insn * from)4393 delete_insns_since (rtx_insn *from)
4394 {
4395 if (from == 0)
4396 set_first_insn (0);
4397 else
4398 SET_NEXT_INSN (from) = 0;
4399 set_last_insn (from);
4400 }
4401
4402 /* This function is deprecated, please use sequences instead.
4403
4404 Move a consecutive bunch of insns to a different place in the chain.
4405 The insns to be moved are those between FROM and TO.
4406 They are moved to a new position after the insn AFTER.
4407 AFTER must not be FROM or TO or any insn in between.
4408
4409 This function does not know about SEQUENCEs and hence should not be
4410 called after delay-slot filling has been done. */
4411
4412 void
reorder_insns_nobb(rtx_insn * from,rtx_insn * to,rtx_insn * after)4413 reorder_insns_nobb (rtx_insn *from, rtx_insn *to, rtx_insn *after)
4414 {
4415 if (flag_checking)
4416 {
4417 for (rtx_insn *x = from; x != to; x = NEXT_INSN (x))
4418 gcc_assert (after != x);
4419 gcc_assert (after != to);
4420 }
4421
4422 /* Splice this bunch out of where it is now. */
4423 if (PREV_INSN (from))
4424 SET_NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
4425 if (NEXT_INSN (to))
4426 SET_PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
4427 if (get_last_insn () == to)
4428 set_last_insn (PREV_INSN (from));
4429 if (get_insns () == from)
4430 set_first_insn (NEXT_INSN (to));
4431
4432 /* Make the new neighbors point to it and it to them. */
4433 if (NEXT_INSN (after))
4434 SET_PREV_INSN (NEXT_INSN (after)) = to;
4435
4436 SET_NEXT_INSN (to) = NEXT_INSN (after);
4437 SET_PREV_INSN (from) = after;
4438 SET_NEXT_INSN (after) = from;
4439 if (after == get_last_insn ())
4440 set_last_insn (to);
4441 }
4442
4443 /* Same as function above, but take care to update BB boundaries. */
4444 void
reorder_insns(rtx_insn * from,rtx_insn * to,rtx_insn * after)4445 reorder_insns (rtx_insn *from, rtx_insn *to, rtx_insn *after)
4446 {
4447 rtx_insn *prev = PREV_INSN (from);
4448 basic_block bb, bb2;
4449
4450 reorder_insns_nobb (from, to, after);
4451
4452 if (!BARRIER_P (after)
4453 && (bb = BLOCK_FOR_INSN (after)))
4454 {
4455 rtx_insn *x;
4456 df_set_bb_dirty (bb);
4457
4458 if (!BARRIER_P (from)
4459 && (bb2 = BLOCK_FOR_INSN (from)))
4460 {
4461 if (BB_END (bb2) == to)
4462 BB_END (bb2) = prev;
4463 df_set_bb_dirty (bb2);
4464 }
4465
4466 if (BB_END (bb) == after)
4467 BB_END (bb) = to;
4468
4469 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
4470 if (!BARRIER_P (x))
4471 df_insn_change_bb (x, bb);
4472 }
4473 }
4474
4475
4476 /* Emit insn(s) of given code and pattern
4477 at a specified place within the doubly-linked list.
4478
4479 All of the emit_foo global entry points accept an object
4480 X which is either an insn list or a PATTERN of a single
4481 instruction.
4482
4483 There are thus a few canonical ways to generate code and
4484 emit it at a specific place in the instruction stream. For
4485 example, consider the instruction named SPOT and the fact that
4486 we would like to emit some instructions before SPOT. We might
4487 do it like this:
4488
4489 start_sequence ();
4490 ... emit the new instructions ...
4491 insns_head = get_insns ();
4492 end_sequence ();
4493
4494 emit_insn_before (insns_head, SPOT);
4495
4496 It used to be common to generate SEQUENCE rtl instead, but that
4497 is a relic of the past which no longer occurs. The reason is that
4498 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4499 generated would almost certainly die right after it was created. */
4500
4501 static rtx_insn *
emit_pattern_before_noloc(rtx x,rtx_insn * before,rtx_insn * last,basic_block bb,rtx_insn * (* make_raw)(rtx))4502 emit_pattern_before_noloc (rtx x, rtx_insn *before, rtx_insn *last,
4503 basic_block bb,
4504 rtx_insn *(*make_raw) (rtx))
4505 {
4506 rtx_insn *insn;
4507
4508 gcc_assert (before);
4509
4510 if (x == NULL_RTX)
4511 return last;
4512
4513 switch (GET_CODE (x))
4514 {
4515 case DEBUG_INSN:
4516 case INSN:
4517 case JUMP_INSN:
4518 case CALL_INSN:
4519 case CODE_LABEL:
4520 case BARRIER:
4521 case NOTE:
4522 insn = as_a <rtx_insn *> (x);
4523 while (insn)
4524 {
4525 rtx_insn *next = NEXT_INSN (insn);
4526 add_insn_before (insn, before, bb);
4527 last = insn;
4528 insn = next;
4529 }
4530 break;
4531
4532 #ifdef ENABLE_RTL_CHECKING
4533 case SEQUENCE:
4534 gcc_unreachable ();
4535 break;
4536 #endif
4537
4538 default:
4539 last = (*make_raw) (x);
4540 add_insn_before (last, before, bb);
4541 break;
4542 }
4543
4544 return last;
4545 }
4546
4547 /* Make X be output before the instruction BEFORE. */
4548
4549 rtx_insn *
emit_insn_before_noloc(rtx x,rtx_insn * before,basic_block bb)4550 emit_insn_before_noloc (rtx x, rtx_insn *before, basic_block bb)
4551 {
4552 return emit_pattern_before_noloc (x, before, before, bb, make_insn_raw);
4553 }
4554
4555 /* Make an instruction with body X and code JUMP_INSN
4556 and output it before the instruction BEFORE. */
4557
4558 rtx_jump_insn *
emit_jump_insn_before_noloc(rtx x,rtx_insn * before)4559 emit_jump_insn_before_noloc (rtx x, rtx_insn *before)
4560 {
4561 return as_a <rtx_jump_insn *> (
4562 emit_pattern_before_noloc (x, before, NULL, NULL,
4563 make_jump_insn_raw));
4564 }
4565
4566 /* Make an instruction with body X and code CALL_INSN
4567 and output it before the instruction BEFORE. */
4568
4569 rtx_insn *
emit_call_insn_before_noloc(rtx x,rtx_insn * before)4570 emit_call_insn_before_noloc (rtx x, rtx_insn *before)
4571 {
4572 return emit_pattern_before_noloc (x, before, NULL, NULL,
4573 make_call_insn_raw);
4574 }
4575
4576 /* Make an instruction with body X and code DEBUG_INSN
4577 and output it before the instruction BEFORE. */
4578
4579 rtx_insn *
emit_debug_insn_before_noloc(rtx x,rtx_insn * before)4580 emit_debug_insn_before_noloc (rtx x, rtx_insn *before)
4581 {
4582 return emit_pattern_before_noloc (x, before, NULL, NULL,
4583 make_debug_insn_raw);
4584 }
4585
4586 /* Make an insn of code BARRIER
4587 and output it before the insn BEFORE. */
4588
4589 rtx_barrier *
emit_barrier_before(rtx_insn * before)4590 emit_barrier_before (rtx_insn *before)
4591 {
4592 rtx_barrier *insn = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
4593
4594 INSN_UID (insn) = cur_insn_uid++;
4595
4596 add_insn_before (insn, before, NULL);
4597 return insn;
4598 }
4599
4600 /* Emit the label LABEL before the insn BEFORE. */
4601
4602 rtx_code_label *
emit_label_before(rtx_code_label * label,rtx_insn * before)4603 emit_label_before (rtx_code_label *label, rtx_insn *before)
4604 {
4605 gcc_checking_assert (INSN_UID (label) == 0);
4606 INSN_UID (label) = cur_insn_uid++;
4607 add_insn_before (label, before, NULL);
4608 return label;
4609 }
4610
4611 /* Helper for emit_insn_after, handles lists of instructions
4612 efficiently. */
4613
4614 static rtx_insn *
emit_insn_after_1(rtx_insn * first,rtx_insn * after,basic_block bb)4615 emit_insn_after_1 (rtx_insn *first, rtx_insn *after, basic_block bb)
4616 {
4617 rtx_insn *last;
4618 rtx_insn *after_after;
4619 if (!bb && !BARRIER_P (after))
4620 bb = BLOCK_FOR_INSN (after);
4621
4622 if (bb)
4623 {
4624 df_set_bb_dirty (bb);
4625 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4626 if (!BARRIER_P (last))
4627 {
4628 set_block_for_insn (last, bb);
4629 df_insn_rescan (last);
4630 }
4631 if (!BARRIER_P (last))
4632 {
4633 set_block_for_insn (last, bb);
4634 df_insn_rescan (last);
4635 }
4636 if (BB_END (bb) == after)
4637 BB_END (bb) = last;
4638 }
4639 else
4640 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4641 continue;
4642
4643 after_after = NEXT_INSN (after);
4644
4645 SET_NEXT_INSN (after) = first;
4646 SET_PREV_INSN (first) = after;
4647 SET_NEXT_INSN (last) = after_after;
4648 if (after_after)
4649 SET_PREV_INSN (after_after) = last;
4650
4651 if (after == get_last_insn ())
4652 set_last_insn (last);
4653
4654 return last;
4655 }
4656
4657 static rtx_insn *
emit_pattern_after_noloc(rtx x,rtx_insn * after,basic_block bb,rtx_insn * (* make_raw)(rtx))4658 emit_pattern_after_noloc (rtx x, rtx_insn *after, basic_block bb,
4659 rtx_insn *(*make_raw)(rtx))
4660 {
4661 rtx_insn *last = after;
4662
4663 gcc_assert (after);
4664
4665 if (x == NULL_RTX)
4666 return last;
4667
4668 switch (GET_CODE (x))
4669 {
4670 case DEBUG_INSN:
4671 case INSN:
4672 case JUMP_INSN:
4673 case CALL_INSN:
4674 case CODE_LABEL:
4675 case BARRIER:
4676 case NOTE:
4677 last = emit_insn_after_1 (as_a <rtx_insn *> (x), after, bb);
4678 break;
4679
4680 #ifdef ENABLE_RTL_CHECKING
4681 case SEQUENCE:
4682 gcc_unreachable ();
4683 break;
4684 #endif
4685
4686 default:
4687 last = (*make_raw) (x);
4688 add_insn_after (last, after, bb);
4689 break;
4690 }
4691
4692 return last;
4693 }
4694
4695 /* Make X be output after the insn AFTER and set the BB of insn. If
4696 BB is NULL, an attempt is made to infer the BB from AFTER. */
4697
4698 rtx_insn *
emit_insn_after_noloc(rtx x,rtx_insn * after,basic_block bb)4699 emit_insn_after_noloc (rtx x, rtx_insn *after, basic_block bb)
4700 {
4701 return emit_pattern_after_noloc (x, after, bb, make_insn_raw);
4702 }
4703
4704
4705 /* Make an insn of code JUMP_INSN with body X
4706 and output it after the insn AFTER. */
4707
4708 rtx_jump_insn *
emit_jump_insn_after_noloc(rtx x,rtx_insn * after)4709 emit_jump_insn_after_noloc (rtx x, rtx_insn *after)
4710 {
4711 return as_a <rtx_jump_insn *> (
4712 emit_pattern_after_noloc (x, after, NULL, make_jump_insn_raw));
4713 }
4714
4715 /* Make an instruction with body X and code CALL_INSN
4716 and output it after the instruction AFTER. */
4717
4718 rtx_insn *
emit_call_insn_after_noloc(rtx x,rtx_insn * after)4719 emit_call_insn_after_noloc (rtx x, rtx_insn *after)
4720 {
4721 return emit_pattern_after_noloc (x, after, NULL, make_call_insn_raw);
4722 }
4723
4724 /* Make an instruction with body X and code CALL_INSN
4725 and output it after the instruction AFTER. */
4726
4727 rtx_insn *
emit_debug_insn_after_noloc(rtx x,rtx_insn * after)4728 emit_debug_insn_after_noloc (rtx x, rtx_insn *after)
4729 {
4730 return emit_pattern_after_noloc (x, after, NULL, make_debug_insn_raw);
4731 }
4732
4733 /* Make an insn of code BARRIER
4734 and output it after the insn AFTER. */
4735
4736 rtx_barrier *
emit_barrier_after(rtx_insn * after)4737 emit_barrier_after (rtx_insn *after)
4738 {
4739 rtx_barrier *insn = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
4740
4741 INSN_UID (insn) = cur_insn_uid++;
4742
4743 add_insn_after (insn, after, NULL);
4744 return insn;
4745 }
4746
4747 /* Emit the label LABEL after the insn AFTER. */
4748
4749 rtx_insn *
emit_label_after(rtx_insn * label,rtx_insn * after)4750 emit_label_after (rtx_insn *label, rtx_insn *after)
4751 {
4752 gcc_checking_assert (INSN_UID (label) == 0);
4753 INSN_UID (label) = cur_insn_uid++;
4754 add_insn_after (label, after, NULL);
4755 return label;
4756 }
4757
4758 /* Notes require a bit of special handling: Some notes need to have their
4759 BLOCK_FOR_INSN set, others should never have it set, and some should
4760 have it set or clear depending on the context. */
4761
4762 /* Return true iff a note of kind SUBTYPE should be emitted with routines
4763 that never set BLOCK_FOR_INSN on NOTE. BB_BOUNDARY is true if the
4764 caller is asked to emit a note before BB_HEAD, or after BB_END. */
4765
4766 static bool
note_outside_basic_block_p(enum insn_note subtype,bool on_bb_boundary_p)4767 note_outside_basic_block_p (enum insn_note subtype, bool on_bb_boundary_p)
4768 {
4769 switch (subtype)
4770 {
4771 /* NOTE_INSN_SWITCH_TEXT_SECTIONS only appears between basic blocks. */
4772 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
4773 return true;
4774
4775 /* Notes for var tracking and EH region markers can appear between or
4776 inside basic blocks. If the caller is emitting on the basic block
4777 boundary, do not set BLOCK_FOR_INSN on the new note. */
4778 case NOTE_INSN_VAR_LOCATION:
4779 case NOTE_INSN_EH_REGION_BEG:
4780 case NOTE_INSN_EH_REGION_END:
4781 return on_bb_boundary_p;
4782
4783 /* Otherwise, BLOCK_FOR_INSN must be set. */
4784 default:
4785 return false;
4786 }
4787 }
4788
4789 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4790
4791 rtx_note *
emit_note_after(enum insn_note subtype,rtx_insn * after)4792 emit_note_after (enum insn_note subtype, rtx_insn *after)
4793 {
4794 rtx_note *note = make_note_raw (subtype);
4795 basic_block bb = BARRIER_P (after) ? NULL : BLOCK_FOR_INSN (after);
4796 bool on_bb_boundary_p = (bb != NULL && BB_END (bb) == after);
4797
4798 if (note_outside_basic_block_p (subtype, on_bb_boundary_p))
4799 add_insn_after_nobb (note, after);
4800 else
4801 add_insn_after (note, after, bb);
4802 return note;
4803 }
4804
4805 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4806
4807 rtx_note *
emit_note_before(enum insn_note subtype,rtx_insn * before)4808 emit_note_before (enum insn_note subtype, rtx_insn *before)
4809 {
4810 rtx_note *note = make_note_raw (subtype);
4811 basic_block bb = BARRIER_P (before) ? NULL : BLOCK_FOR_INSN (before);
4812 bool on_bb_boundary_p = (bb != NULL && BB_HEAD (bb) == before);
4813
4814 if (note_outside_basic_block_p (subtype, on_bb_boundary_p))
4815 add_insn_before_nobb (note, before);
4816 else
4817 add_insn_before (note, before, bb);
4818 return note;
4819 }
4820
4821 /* Insert PATTERN after AFTER, setting its INSN_LOCATION to LOC.
4822 MAKE_RAW indicates how to turn PATTERN into a real insn. */
4823
4824 static rtx_insn *
emit_pattern_after_setloc(rtx pattern,rtx_insn * after,location_t loc,rtx_insn * (* make_raw)(rtx))4825 emit_pattern_after_setloc (rtx pattern, rtx_insn *after, location_t loc,
4826 rtx_insn *(*make_raw) (rtx))
4827 {
4828 rtx_insn *last = emit_pattern_after_noloc (pattern, after, NULL, make_raw);
4829
4830 if (pattern == NULL_RTX || !loc)
4831 return last;
4832
4833 after = NEXT_INSN (after);
4834 while (1)
4835 {
4836 if (active_insn_p (after)
4837 && !JUMP_TABLE_DATA_P (after) /* FIXME */
4838 && !INSN_LOCATION (after))
4839 INSN_LOCATION (after) = loc;
4840 if (after == last)
4841 break;
4842 after = NEXT_INSN (after);
4843 }
4844 return last;
4845 }
4846
4847 /* Insert PATTERN after AFTER. MAKE_RAW indicates how to turn PATTERN
4848 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert after
4849 any DEBUG_INSNs. */
4850
4851 static rtx_insn *
emit_pattern_after(rtx pattern,rtx_insn * after,bool skip_debug_insns,rtx_insn * (* make_raw)(rtx))4852 emit_pattern_after (rtx pattern, rtx_insn *after, bool skip_debug_insns,
4853 rtx_insn *(*make_raw) (rtx))
4854 {
4855 rtx_insn *prev = after;
4856
4857 if (skip_debug_insns)
4858 while (DEBUG_INSN_P (prev))
4859 prev = PREV_INSN (prev);
4860
4861 if (INSN_P (prev))
4862 return emit_pattern_after_setloc (pattern, after, INSN_LOCATION (prev),
4863 make_raw);
4864 else
4865 return emit_pattern_after_noloc (pattern, after, NULL, make_raw);
4866 }
4867
4868 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4869 rtx_insn *
emit_insn_after_setloc(rtx pattern,rtx_insn * after,location_t loc)4870 emit_insn_after_setloc (rtx pattern, rtx_insn *after, location_t loc)
4871 {
4872 return emit_pattern_after_setloc (pattern, after, loc, make_insn_raw);
4873 }
4874
4875 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4876 rtx_insn *
emit_insn_after(rtx pattern,rtx_insn * after)4877 emit_insn_after (rtx pattern, rtx_insn *after)
4878 {
4879 return emit_pattern_after (pattern, after, true, make_insn_raw);
4880 }
4881
4882 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4883 rtx_jump_insn *
emit_jump_insn_after_setloc(rtx pattern,rtx_insn * after,location_t loc)4884 emit_jump_insn_after_setloc (rtx pattern, rtx_insn *after, location_t loc)
4885 {
4886 return as_a <rtx_jump_insn *> (
4887 emit_pattern_after_setloc (pattern, after, loc, make_jump_insn_raw));
4888 }
4889
4890 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4891 rtx_jump_insn *
emit_jump_insn_after(rtx pattern,rtx_insn * after)4892 emit_jump_insn_after (rtx pattern, rtx_insn *after)
4893 {
4894 return as_a <rtx_jump_insn *> (
4895 emit_pattern_after (pattern, after, true, make_jump_insn_raw));
4896 }
4897
4898 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4899 rtx_insn *
emit_call_insn_after_setloc(rtx pattern,rtx_insn * after,location_t loc)4900 emit_call_insn_after_setloc (rtx pattern, rtx_insn *after, location_t loc)
4901 {
4902 return emit_pattern_after_setloc (pattern, after, loc, make_call_insn_raw);
4903 }
4904
4905 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4906 rtx_insn *
emit_call_insn_after(rtx pattern,rtx_insn * after)4907 emit_call_insn_after (rtx pattern, rtx_insn *after)
4908 {
4909 return emit_pattern_after (pattern, after, true, make_call_insn_raw);
4910 }
4911
4912 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4913 rtx_insn *
emit_debug_insn_after_setloc(rtx pattern,rtx_insn * after,location_t loc)4914 emit_debug_insn_after_setloc (rtx pattern, rtx_insn *after, location_t loc)
4915 {
4916 return emit_pattern_after_setloc (pattern, after, loc, make_debug_insn_raw);
4917 }
4918
4919 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4920 rtx_insn *
emit_debug_insn_after(rtx pattern,rtx_insn * after)4921 emit_debug_insn_after (rtx pattern, rtx_insn *after)
4922 {
4923 return emit_pattern_after (pattern, after, false, make_debug_insn_raw);
4924 }
4925
4926 /* Insert PATTERN before BEFORE, setting its INSN_LOCATION to LOC.
4927 MAKE_RAW indicates how to turn PATTERN into a real insn. INSNP
4928 indicates if PATTERN is meant for an INSN as opposed to a JUMP_INSN,
4929 CALL_INSN, etc. */
4930
4931 static rtx_insn *
emit_pattern_before_setloc(rtx pattern,rtx_insn * before,location_t loc,bool insnp,rtx_insn * (* make_raw)(rtx))4932 emit_pattern_before_setloc (rtx pattern, rtx_insn *before, location_t loc,
4933 bool insnp, rtx_insn *(*make_raw) (rtx))
4934 {
4935 rtx_insn *first = PREV_INSN (before);
4936 rtx_insn *last = emit_pattern_before_noloc (pattern, before,
4937 insnp ? before : NULL,
4938 NULL, make_raw);
4939
4940 if (pattern == NULL_RTX || !loc)
4941 return last;
4942
4943 if (!first)
4944 first = get_insns ();
4945 else
4946 first = NEXT_INSN (first);
4947 while (1)
4948 {
4949 if (active_insn_p (first)
4950 && !JUMP_TABLE_DATA_P (first) /* FIXME */
4951 && !INSN_LOCATION (first))
4952 INSN_LOCATION (first) = loc;
4953 if (first == last)
4954 break;
4955 first = NEXT_INSN (first);
4956 }
4957 return last;
4958 }
4959
4960 /* Insert PATTERN before BEFORE. MAKE_RAW indicates how to turn PATTERN
4961 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert
4962 before any DEBUG_INSNs. INSNP indicates if PATTERN is meant for an
4963 INSN as opposed to a JUMP_INSN, CALL_INSN, etc. */
4964
4965 static rtx_insn *
emit_pattern_before(rtx pattern,rtx_insn * before,bool skip_debug_insns,bool insnp,rtx_insn * (* make_raw)(rtx))4966 emit_pattern_before (rtx pattern, rtx_insn *before, bool skip_debug_insns,
4967 bool insnp, rtx_insn *(*make_raw) (rtx))
4968 {
4969 rtx_insn *next = before;
4970
4971 if (skip_debug_insns)
4972 while (DEBUG_INSN_P (next))
4973 next = PREV_INSN (next);
4974
4975 if (INSN_P (next))
4976 return emit_pattern_before_setloc (pattern, before, INSN_LOCATION (next),
4977 insnp, make_raw);
4978 else
4979 return emit_pattern_before_noloc (pattern, before,
4980 insnp ? before : NULL,
4981 NULL, make_raw);
4982 }
4983
4984 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4985 rtx_insn *
emit_insn_before_setloc(rtx pattern,rtx_insn * before,location_t loc)4986 emit_insn_before_setloc (rtx pattern, rtx_insn *before, location_t loc)
4987 {
4988 return emit_pattern_before_setloc (pattern, before, loc, true,
4989 make_insn_raw);
4990 }
4991
4992 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4993 rtx_insn *
emit_insn_before(rtx pattern,rtx_insn * before)4994 emit_insn_before (rtx pattern, rtx_insn *before)
4995 {
4996 return emit_pattern_before (pattern, before, true, true, make_insn_raw);
4997 }
4998
4999 /* like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
5000 rtx_jump_insn *
emit_jump_insn_before_setloc(rtx pattern,rtx_insn * before,location_t loc)5001 emit_jump_insn_before_setloc (rtx pattern, rtx_insn *before, location_t loc)
5002 {
5003 return as_a <rtx_jump_insn *> (
5004 emit_pattern_before_setloc (pattern, before, loc, false,
5005 make_jump_insn_raw));
5006 }
5007
5008 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
5009 rtx_jump_insn *
emit_jump_insn_before(rtx pattern,rtx_insn * before)5010 emit_jump_insn_before (rtx pattern, rtx_insn *before)
5011 {
5012 return as_a <rtx_jump_insn *> (
5013 emit_pattern_before (pattern, before, true, false,
5014 make_jump_insn_raw));
5015 }
5016
5017 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
5018 rtx_insn *
emit_call_insn_before_setloc(rtx pattern,rtx_insn * before,location_t loc)5019 emit_call_insn_before_setloc (rtx pattern, rtx_insn *before, location_t loc)
5020 {
5021 return emit_pattern_before_setloc (pattern, before, loc, false,
5022 make_call_insn_raw);
5023 }
5024
5025 /* Like emit_call_insn_before_noloc,
5026 but set insn_location according to BEFORE. */
5027 rtx_insn *
emit_call_insn_before(rtx pattern,rtx_insn * before)5028 emit_call_insn_before (rtx pattern, rtx_insn *before)
5029 {
5030 return emit_pattern_before (pattern, before, true, false,
5031 make_call_insn_raw);
5032 }
5033
5034 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
5035 rtx_insn *
emit_debug_insn_before_setloc(rtx pattern,rtx_insn * before,location_t loc)5036 emit_debug_insn_before_setloc (rtx pattern, rtx_insn *before, location_t loc)
5037 {
5038 return emit_pattern_before_setloc (pattern, before, loc, false,
5039 make_debug_insn_raw);
5040 }
5041
5042 /* Like emit_debug_insn_before_noloc,
5043 but set insn_location according to BEFORE. */
5044 rtx_insn *
emit_debug_insn_before(rtx pattern,rtx_insn * before)5045 emit_debug_insn_before (rtx pattern, rtx_insn *before)
5046 {
5047 return emit_pattern_before (pattern, before, false, false,
5048 make_debug_insn_raw);
5049 }
5050
5051 /* Take X and emit it at the end of the doubly-linked
5052 INSN list.
5053
5054 Returns the last insn emitted. */
5055
5056 rtx_insn *
emit_insn(rtx x)5057 emit_insn (rtx x)
5058 {
5059 rtx_insn *last = get_last_insn ();
5060 rtx_insn *insn;
5061
5062 if (x == NULL_RTX)
5063 return last;
5064
5065 switch (GET_CODE (x))
5066 {
5067 case DEBUG_INSN:
5068 case INSN:
5069 case JUMP_INSN:
5070 case CALL_INSN:
5071 case CODE_LABEL:
5072 case BARRIER:
5073 case NOTE:
5074 insn = as_a <rtx_insn *> (x);
5075 while (insn)
5076 {
5077 rtx_insn *next = NEXT_INSN (insn);
5078 add_insn (insn);
5079 last = insn;
5080 insn = next;
5081 }
5082 break;
5083
5084 #ifdef ENABLE_RTL_CHECKING
5085 case JUMP_TABLE_DATA:
5086 case SEQUENCE:
5087 gcc_unreachable ();
5088 break;
5089 #endif
5090
5091 default:
5092 last = make_insn_raw (x);
5093 add_insn (last);
5094 break;
5095 }
5096
5097 return last;
5098 }
5099
5100 /* Make an insn of code DEBUG_INSN with pattern X
5101 and add it to the end of the doubly-linked list. */
5102
5103 rtx_insn *
emit_debug_insn(rtx x)5104 emit_debug_insn (rtx x)
5105 {
5106 rtx_insn *last = get_last_insn ();
5107 rtx_insn *insn;
5108
5109 if (x == NULL_RTX)
5110 return last;
5111
5112 switch (GET_CODE (x))
5113 {
5114 case DEBUG_INSN:
5115 case INSN:
5116 case JUMP_INSN:
5117 case CALL_INSN:
5118 case CODE_LABEL:
5119 case BARRIER:
5120 case NOTE:
5121 insn = as_a <rtx_insn *> (x);
5122 while (insn)
5123 {
5124 rtx_insn *next = NEXT_INSN (insn);
5125 add_insn (insn);
5126 last = insn;
5127 insn = next;
5128 }
5129 break;
5130
5131 #ifdef ENABLE_RTL_CHECKING
5132 case JUMP_TABLE_DATA:
5133 case SEQUENCE:
5134 gcc_unreachable ();
5135 break;
5136 #endif
5137
5138 default:
5139 last = make_debug_insn_raw (x);
5140 add_insn (last);
5141 break;
5142 }
5143
5144 return last;
5145 }
5146
5147 /* Make an insn of code JUMP_INSN with pattern X
5148 and add it to the end of the doubly-linked list. */
5149
5150 rtx_insn *
emit_jump_insn(rtx x)5151 emit_jump_insn (rtx x)
5152 {
5153 rtx_insn *last = NULL;
5154 rtx_insn *insn;
5155
5156 switch (GET_CODE (x))
5157 {
5158 case DEBUG_INSN:
5159 case INSN:
5160 case JUMP_INSN:
5161 case CALL_INSN:
5162 case CODE_LABEL:
5163 case BARRIER:
5164 case NOTE:
5165 insn = as_a <rtx_insn *> (x);
5166 while (insn)
5167 {
5168 rtx_insn *next = NEXT_INSN (insn);
5169 add_insn (insn);
5170 last = insn;
5171 insn = next;
5172 }
5173 break;
5174
5175 #ifdef ENABLE_RTL_CHECKING
5176 case JUMP_TABLE_DATA:
5177 case SEQUENCE:
5178 gcc_unreachable ();
5179 break;
5180 #endif
5181
5182 default:
5183 last = make_jump_insn_raw (x);
5184 add_insn (last);
5185 break;
5186 }
5187
5188 return last;
5189 }
5190
5191 /* Make an insn of code CALL_INSN with pattern X
5192 and add it to the end of the doubly-linked list. */
5193
5194 rtx_insn *
emit_call_insn(rtx x)5195 emit_call_insn (rtx x)
5196 {
5197 rtx_insn *insn;
5198
5199 switch (GET_CODE (x))
5200 {
5201 case DEBUG_INSN:
5202 case INSN:
5203 case JUMP_INSN:
5204 case CALL_INSN:
5205 case CODE_LABEL:
5206 case BARRIER:
5207 case NOTE:
5208 insn = emit_insn (x);
5209 break;
5210
5211 #ifdef ENABLE_RTL_CHECKING
5212 case SEQUENCE:
5213 case JUMP_TABLE_DATA:
5214 gcc_unreachable ();
5215 break;
5216 #endif
5217
5218 default:
5219 insn = make_call_insn_raw (x);
5220 add_insn (insn);
5221 break;
5222 }
5223
5224 return insn;
5225 }
5226
5227 /* Add the label LABEL to the end of the doubly-linked list. */
5228
5229 rtx_code_label *
emit_label(rtx uncast_label)5230 emit_label (rtx uncast_label)
5231 {
5232 rtx_code_label *label = as_a <rtx_code_label *> (uncast_label);
5233
5234 gcc_checking_assert (INSN_UID (label) == 0);
5235 INSN_UID (label) = cur_insn_uid++;
5236 add_insn (label);
5237 return label;
5238 }
5239
5240 /* Make an insn of code JUMP_TABLE_DATA
5241 and add it to the end of the doubly-linked list. */
5242
5243 rtx_jump_table_data *
emit_jump_table_data(rtx table)5244 emit_jump_table_data (rtx table)
5245 {
5246 rtx_jump_table_data *jump_table_data =
5247 as_a <rtx_jump_table_data *> (rtx_alloc (JUMP_TABLE_DATA));
5248 INSN_UID (jump_table_data) = cur_insn_uid++;
5249 PATTERN (jump_table_data) = table;
5250 BLOCK_FOR_INSN (jump_table_data) = NULL;
5251 add_insn (jump_table_data);
5252 return jump_table_data;
5253 }
5254
5255 /* Make an insn of code BARRIER
5256 and add it to the end of the doubly-linked list. */
5257
5258 rtx_barrier *
emit_barrier(void)5259 emit_barrier (void)
5260 {
5261 rtx_barrier *barrier = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
5262 INSN_UID (barrier) = cur_insn_uid++;
5263 add_insn (barrier);
5264 return barrier;
5265 }
5266
5267 /* Emit a copy of note ORIG. */
5268
5269 rtx_note *
emit_note_copy(rtx_note * orig)5270 emit_note_copy (rtx_note *orig)
5271 {
5272 enum insn_note kind = (enum insn_note) NOTE_KIND (orig);
5273 rtx_note *note = make_note_raw (kind);
5274 NOTE_DATA (note) = NOTE_DATA (orig);
5275 add_insn (note);
5276 return note;
5277 }
5278
5279 /* Make an insn of code NOTE or type NOTE_NO
5280 and add it to the end of the doubly-linked list. */
5281
5282 rtx_note *
emit_note(enum insn_note kind)5283 emit_note (enum insn_note kind)
5284 {
5285 rtx_note *note = make_note_raw (kind);
5286 add_insn (note);
5287 return note;
5288 }
5289
5290 /* Emit a clobber of lvalue X. */
5291
5292 rtx_insn *
emit_clobber(rtx x)5293 emit_clobber (rtx x)
5294 {
5295 /* CONCATs should not appear in the insn stream. */
5296 if (GET_CODE (x) == CONCAT)
5297 {
5298 emit_clobber (XEXP (x, 0));
5299 return emit_clobber (XEXP (x, 1));
5300 }
5301 return emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
5302 }
5303
5304 /* Return a sequence of insns to clobber lvalue X. */
5305
5306 rtx_insn *
gen_clobber(rtx x)5307 gen_clobber (rtx x)
5308 {
5309 rtx_insn *seq;
5310
5311 start_sequence ();
5312 emit_clobber (x);
5313 seq = get_insns ();
5314 end_sequence ();
5315 return seq;
5316 }
5317
5318 /* Emit a use of rvalue X. */
5319
5320 rtx_insn *
emit_use(rtx x)5321 emit_use (rtx x)
5322 {
5323 /* CONCATs should not appear in the insn stream. */
5324 if (GET_CODE (x) == CONCAT)
5325 {
5326 emit_use (XEXP (x, 0));
5327 return emit_use (XEXP (x, 1));
5328 }
5329 return emit_insn (gen_rtx_USE (VOIDmode, x));
5330 }
5331
5332 /* Return a sequence of insns to use rvalue X. */
5333
5334 rtx_insn *
gen_use(rtx x)5335 gen_use (rtx x)
5336 {
5337 rtx_insn *seq;
5338
5339 start_sequence ();
5340 emit_use (x);
5341 seq = get_insns ();
5342 end_sequence ();
5343 return seq;
5344 }
5345
5346 /* Notes like REG_EQUAL and REG_EQUIV refer to a set in an instruction.
5347 Return the set in INSN that such notes describe, or NULL if the notes
5348 have no meaning for INSN. */
5349
5350 rtx
set_for_reg_notes(rtx insn)5351 set_for_reg_notes (rtx insn)
5352 {
5353 rtx pat, reg;
5354
5355 if (!INSN_P (insn))
5356 return NULL_RTX;
5357
5358 pat = PATTERN (insn);
5359 if (GET_CODE (pat) == PARALLEL)
5360 {
5361 /* We do not use single_set because that ignores SETs of unused
5362 registers. REG_EQUAL and REG_EQUIV notes really do require the
5363 PARALLEL to have a single SET. */
5364 if (multiple_sets (insn))
5365 return NULL_RTX;
5366 pat = XVECEXP (pat, 0, 0);
5367 }
5368
5369 if (GET_CODE (pat) != SET)
5370 return NULL_RTX;
5371
5372 reg = SET_DEST (pat);
5373
5374 /* Notes apply to the contents of a STRICT_LOW_PART. */
5375 if (GET_CODE (reg) == STRICT_LOW_PART
5376 || GET_CODE (reg) == ZERO_EXTRACT)
5377 reg = XEXP (reg, 0);
5378
5379 /* Check that we have a register. */
5380 if (!(REG_P (reg) || GET_CODE (reg) == SUBREG))
5381 return NULL_RTX;
5382
5383 return pat;
5384 }
5385
5386 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
5387 note of this type already exists, remove it first. */
5388
5389 rtx
set_unique_reg_note(rtx insn,enum reg_note kind,rtx datum)5390 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
5391 {
5392 rtx note = find_reg_note (insn, kind, NULL_RTX);
5393
5394 switch (kind)
5395 {
5396 case REG_EQUAL:
5397 case REG_EQUIV:
5398 /* We need to support the REG_EQUAL on USE trick of find_reloads. */
5399 if (!set_for_reg_notes (insn) && GET_CODE (PATTERN (insn)) != USE)
5400 return NULL_RTX;
5401
5402 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
5403 It serves no useful purpose and breaks eliminate_regs. */
5404 if (GET_CODE (datum) == ASM_OPERANDS)
5405 return NULL_RTX;
5406
5407 /* Notes with side effects are dangerous. Even if the side-effect
5408 initially mirrors one in PATTERN (INSN), later optimizations
5409 might alter the way that the final register value is calculated
5410 and so move or alter the side-effect in some way. The note would
5411 then no longer be a valid substitution for SET_SRC. */
5412 if (side_effects_p (datum))
5413 return NULL_RTX;
5414 break;
5415
5416 default:
5417 break;
5418 }
5419
5420 if (note)
5421 XEXP (note, 0) = datum;
5422 else
5423 {
5424 add_reg_note (insn, kind, datum);
5425 note = REG_NOTES (insn);
5426 }
5427
5428 switch (kind)
5429 {
5430 case REG_EQUAL:
5431 case REG_EQUIV:
5432 df_notes_rescan (as_a <rtx_insn *> (insn));
5433 break;
5434 default:
5435 break;
5436 }
5437
5438 return note;
5439 }
5440
5441 /* Like set_unique_reg_note, but don't do anything unless INSN sets DST. */
5442 rtx
set_dst_reg_note(rtx insn,enum reg_note kind,rtx datum,rtx dst)5443 set_dst_reg_note (rtx insn, enum reg_note kind, rtx datum, rtx dst)
5444 {
5445 rtx set = set_for_reg_notes (insn);
5446
5447 if (set && SET_DEST (set) == dst)
5448 return set_unique_reg_note (insn, kind, datum);
5449 return NULL_RTX;
5450 }
5451
5452 /* Emit the rtl pattern X as an appropriate kind of insn. Also emit a
5453 following barrier if the instruction needs one and if ALLOW_BARRIER_P
5454 is true.
5455
5456 If X is a label, it is simply added into the insn chain. */
5457
5458 rtx_insn *
emit(rtx x,bool allow_barrier_p)5459 emit (rtx x, bool allow_barrier_p)
5460 {
5461 enum rtx_code code = classify_insn (x);
5462
5463 switch (code)
5464 {
5465 case CODE_LABEL:
5466 return emit_label (x);
5467 case INSN:
5468 return emit_insn (x);
5469 case JUMP_INSN:
5470 {
5471 rtx_insn *insn = emit_jump_insn (x);
5472 if (allow_barrier_p
5473 && (any_uncondjump_p (insn) || GET_CODE (x) == RETURN))
5474 return emit_barrier ();
5475 return insn;
5476 }
5477 case CALL_INSN:
5478 return emit_call_insn (x);
5479 case DEBUG_INSN:
5480 return emit_debug_insn (x);
5481 default:
5482 gcc_unreachable ();
5483 }
5484 }
5485
5486 /* Space for free sequence stack entries. */
5487 static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
5488
5489 /* Begin emitting insns to a sequence. If this sequence will contain
5490 something that might cause the compiler to pop arguments to function
5491 calls (because those pops have previously been deferred; see
5492 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
5493 before calling this function. That will ensure that the deferred
5494 pops are not accidentally emitted in the middle of this sequence. */
5495
5496 void
start_sequence(void)5497 start_sequence (void)
5498 {
5499 struct sequence_stack *tem;
5500
5501 if (free_sequence_stack != NULL)
5502 {
5503 tem = free_sequence_stack;
5504 free_sequence_stack = tem->next;
5505 }
5506 else
5507 tem = ggc_alloc<sequence_stack> ();
5508
5509 tem->next = get_current_sequence ()->next;
5510 tem->first = get_insns ();
5511 tem->last = get_last_insn ();
5512 get_current_sequence ()->next = tem;
5513
5514 set_first_insn (0);
5515 set_last_insn (0);
5516 }
5517
5518 /* Set up the insn chain starting with FIRST as the current sequence,
5519 saving the previously current one. See the documentation for
5520 start_sequence for more information about how to use this function. */
5521
5522 void
push_to_sequence(rtx_insn * first)5523 push_to_sequence (rtx_insn *first)
5524 {
5525 rtx_insn *last;
5526
5527 start_sequence ();
5528
5529 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last))
5530 ;
5531
5532 set_first_insn (first);
5533 set_last_insn (last);
5534 }
5535
5536 /* Like push_to_sequence, but take the last insn as an argument to avoid
5537 looping through the list. */
5538
5539 void
push_to_sequence2(rtx_insn * first,rtx_insn * last)5540 push_to_sequence2 (rtx_insn *first, rtx_insn *last)
5541 {
5542 start_sequence ();
5543
5544 set_first_insn (first);
5545 set_last_insn (last);
5546 }
5547
5548 /* Set up the outer-level insn chain
5549 as the current sequence, saving the previously current one. */
5550
5551 void
push_topmost_sequence(void)5552 push_topmost_sequence (void)
5553 {
5554 struct sequence_stack *top;
5555
5556 start_sequence ();
5557
5558 top = get_topmost_sequence ();
5559 set_first_insn (top->first);
5560 set_last_insn (top->last);
5561 }
5562
5563 /* After emitting to the outer-level insn chain, update the outer-level
5564 insn chain, and restore the previous saved state. */
5565
5566 void
pop_topmost_sequence(void)5567 pop_topmost_sequence (void)
5568 {
5569 struct sequence_stack *top;
5570
5571 top = get_topmost_sequence ();
5572 top->first = get_insns ();
5573 top->last = get_last_insn ();
5574
5575 end_sequence ();
5576 }
5577
5578 /* After emitting to a sequence, restore previous saved state.
5579
5580 To get the contents of the sequence just made, you must call
5581 `get_insns' *before* calling here.
5582
5583 If the compiler might have deferred popping arguments while
5584 generating this sequence, and this sequence will not be immediately
5585 inserted into the instruction stream, use do_pending_stack_adjust
5586 before calling get_insns. That will ensure that the deferred
5587 pops are inserted into this sequence, and not into some random
5588 location in the instruction stream. See INHIBIT_DEFER_POP for more
5589 information about deferred popping of arguments. */
5590
5591 void
end_sequence(void)5592 end_sequence (void)
5593 {
5594 struct sequence_stack *tem = get_current_sequence ()->next;
5595
5596 set_first_insn (tem->first);
5597 set_last_insn (tem->last);
5598 get_current_sequence ()->next = tem->next;
5599
5600 memset (tem, 0, sizeof (*tem));
5601 tem->next = free_sequence_stack;
5602 free_sequence_stack = tem;
5603 }
5604
5605 /* Return 1 if currently emitting into a sequence. */
5606
5607 int
in_sequence_p(void)5608 in_sequence_p (void)
5609 {
5610 return get_current_sequence ()->next != 0;
5611 }
5612
5613 /* Put the various virtual registers into REGNO_REG_RTX. */
5614
5615 static void
init_virtual_regs(void)5616 init_virtual_regs (void)
5617 {
5618 regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5619 regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5620 regno_reg_rtx[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5621 regno_reg_rtx[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5622 regno_reg_rtx[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
5623 regno_reg_rtx[VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM]
5624 = virtual_preferred_stack_boundary_rtx;
5625 }
5626
5627
5628 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5629 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5630 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5631 static int copy_insn_n_scratches;
5632
5633 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5634 copied an ASM_OPERANDS.
5635 In that case, it is the original input-operand vector. */
5636 static rtvec orig_asm_operands_vector;
5637
5638 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5639 copied an ASM_OPERANDS.
5640 In that case, it is the copied input-operand vector. */
5641 static rtvec copy_asm_operands_vector;
5642
5643 /* Likewise for the constraints vector. */
5644 static rtvec orig_asm_constraints_vector;
5645 static rtvec copy_asm_constraints_vector;
5646
5647 /* Recursively create a new copy of an rtx for copy_insn.
5648 This function differs from copy_rtx in that it handles SCRATCHes and
5649 ASM_OPERANDs properly.
5650 Normally, this function is not used directly; use copy_insn as front end.
5651 However, you could first copy an insn pattern with copy_insn and then use
5652 this function afterwards to properly copy any REG_NOTEs containing
5653 SCRATCHes. */
5654
5655 rtx
copy_insn_1(rtx orig)5656 copy_insn_1 (rtx orig)
5657 {
5658 rtx copy;
5659 int i, j;
5660 RTX_CODE code;
5661 const char *format_ptr;
5662
5663 if (orig == NULL)
5664 return NULL;
5665
5666 code = GET_CODE (orig);
5667
5668 switch (code)
5669 {
5670 case REG:
5671 case DEBUG_EXPR:
5672 CASE_CONST_ANY:
5673 case SYMBOL_REF:
5674 case CODE_LABEL:
5675 case PC:
5676 case CC0:
5677 case RETURN:
5678 case SIMPLE_RETURN:
5679 return orig;
5680 case CLOBBER:
5681 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
5682 clobbers or clobbers of hard registers that originated as pseudos.
5683 This is needed to allow safe register renaming. */
5684 if (REG_P (XEXP (orig, 0))
5685 && HARD_REGISTER_NUM_P (REGNO (XEXP (orig, 0)))
5686 && HARD_REGISTER_NUM_P (ORIGINAL_REGNO (XEXP (orig, 0))))
5687 return orig;
5688 break;
5689
5690 case SCRATCH:
5691 for (i = 0; i < copy_insn_n_scratches; i++)
5692 if (copy_insn_scratch_in[i] == orig)
5693 return copy_insn_scratch_out[i];
5694 break;
5695
5696 case CONST:
5697 if (shared_const_p (orig))
5698 return orig;
5699 break;
5700
5701 /* A MEM with a constant address is not sharable. The problem is that
5702 the constant address may need to be reloaded. If the mem is shared,
5703 then reloading one copy of this mem will cause all copies to appear
5704 to have been reloaded. */
5705
5706 default:
5707 break;
5708 }
5709
5710 /* Copy the various flags, fields, and other information. We assume
5711 that all fields need copying, and then clear the fields that should
5712 not be copied. That is the sensible default behavior, and forces
5713 us to explicitly document why we are *not* copying a flag. */
5714 copy = shallow_copy_rtx (orig);
5715
5716 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5717 if (INSN_P (orig))
5718 {
5719 RTX_FLAG (copy, jump) = 0;
5720 RTX_FLAG (copy, call) = 0;
5721 RTX_FLAG (copy, frame_related) = 0;
5722 }
5723
5724 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5725
5726 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5727 switch (*format_ptr++)
5728 {
5729 case 'e':
5730 if (XEXP (orig, i) != NULL)
5731 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5732 break;
5733
5734 case 'E':
5735 case 'V':
5736 if (XVEC (orig, i) == orig_asm_constraints_vector)
5737 XVEC (copy, i) = copy_asm_constraints_vector;
5738 else if (XVEC (orig, i) == orig_asm_operands_vector)
5739 XVEC (copy, i) = copy_asm_operands_vector;
5740 else if (XVEC (orig, i) != NULL)
5741 {
5742 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5743 for (j = 0; j < XVECLEN (copy, i); j++)
5744 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5745 }
5746 break;
5747
5748 case 't':
5749 case 'w':
5750 case 'i':
5751 case 'p':
5752 case 's':
5753 case 'S':
5754 case 'u':
5755 case '0':
5756 /* These are left unchanged. */
5757 break;
5758
5759 default:
5760 gcc_unreachable ();
5761 }
5762
5763 if (code == SCRATCH)
5764 {
5765 i = copy_insn_n_scratches++;
5766 gcc_assert (i < MAX_RECOG_OPERANDS);
5767 copy_insn_scratch_in[i] = orig;
5768 copy_insn_scratch_out[i] = copy;
5769 }
5770 else if (code == ASM_OPERANDS)
5771 {
5772 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5773 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5774 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5775 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5776 }
5777
5778 return copy;
5779 }
5780
5781 /* Create a new copy of an rtx.
5782 This function differs from copy_rtx in that it handles SCRATCHes and
5783 ASM_OPERANDs properly.
5784 INSN doesn't really have to be a full INSN; it could be just the
5785 pattern. */
5786 rtx
copy_insn(rtx insn)5787 copy_insn (rtx insn)
5788 {
5789 copy_insn_n_scratches = 0;
5790 orig_asm_operands_vector = 0;
5791 orig_asm_constraints_vector = 0;
5792 copy_asm_operands_vector = 0;
5793 copy_asm_constraints_vector = 0;
5794 return copy_insn_1 (insn);
5795 }
5796
5797 /* Return a copy of INSN that can be used in a SEQUENCE delay slot,
5798 on that assumption that INSN itself remains in its original place. */
5799
5800 rtx_insn *
copy_delay_slot_insn(rtx_insn * insn)5801 copy_delay_slot_insn (rtx_insn *insn)
5802 {
5803 /* Copy INSN with its rtx_code, all its notes, location etc. */
5804 insn = as_a <rtx_insn *> (copy_rtx (insn));
5805 INSN_UID (insn) = cur_insn_uid++;
5806 return insn;
5807 }
5808
5809 /* Initialize data structures and variables in this file
5810 before generating rtl for each function. */
5811
5812 void
init_emit(void)5813 init_emit (void)
5814 {
5815 set_first_insn (NULL);
5816 set_last_insn (NULL);
5817 if (param_min_nondebug_insn_uid)
5818 cur_insn_uid = param_min_nondebug_insn_uid;
5819 else
5820 cur_insn_uid = 1;
5821 cur_debug_insn_uid = 1;
5822 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5823 first_label_num = label_num;
5824 get_current_sequence ()->next = NULL;
5825
5826 /* Init the tables that describe all the pseudo regs. */
5827
5828 crtl->emit.regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5829
5830 crtl->emit.regno_pointer_align
5831 = XCNEWVEC (unsigned char, crtl->emit.regno_pointer_align_length);
5832
5833 regno_reg_rtx
5834 = ggc_cleared_vec_alloc<rtx> (crtl->emit.regno_pointer_align_length);
5835
5836 /* Put copies of all the hard registers into regno_reg_rtx. */
5837 memcpy (regno_reg_rtx,
5838 initial_regno_reg_rtx,
5839 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5840
5841 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5842 init_virtual_regs ();
5843
5844 /* Indicate that the virtual registers and stack locations are
5845 all pointers. */
5846 REG_POINTER (stack_pointer_rtx) = 1;
5847 REG_POINTER (frame_pointer_rtx) = 1;
5848 REG_POINTER (hard_frame_pointer_rtx) = 1;
5849 REG_POINTER (arg_pointer_rtx) = 1;
5850
5851 REG_POINTER (virtual_incoming_args_rtx) = 1;
5852 REG_POINTER (virtual_stack_vars_rtx) = 1;
5853 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5854 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5855 REG_POINTER (virtual_cfa_rtx) = 1;
5856
5857 #ifdef STACK_BOUNDARY
5858 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5859 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5860 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5861 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5862
5863 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5864 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5865 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5866 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5867
5868 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5869 #endif
5870
5871 #ifdef INIT_EXPANDERS
5872 INIT_EXPANDERS;
5873 #endif
5874 }
5875
5876 /* Return the value of element I of CONST_VECTOR X as a wide_int. */
5877
5878 wide_int
const_vector_int_elt(const_rtx x,unsigned int i)5879 const_vector_int_elt (const_rtx x, unsigned int i)
5880 {
5881 /* First handle elements that are directly encoded. */
5882 machine_mode elt_mode = GET_MODE_INNER (GET_MODE (x));
5883 if (i < (unsigned int) XVECLEN (x, 0))
5884 return rtx_mode_t (CONST_VECTOR_ENCODED_ELT (x, i), elt_mode);
5885
5886 /* Identify the pattern that contains element I and work out the index of
5887 the last encoded element for that pattern. */
5888 unsigned int encoded_nelts = const_vector_encoded_nelts (x);
5889 unsigned int npatterns = CONST_VECTOR_NPATTERNS (x);
5890 unsigned int count = i / npatterns;
5891 unsigned int pattern = i % npatterns;
5892 unsigned int final_i = encoded_nelts - npatterns + pattern;
5893
5894 /* If there are no steps, the final encoded value is the right one. */
5895 if (!CONST_VECTOR_STEPPED_P (x))
5896 return rtx_mode_t (CONST_VECTOR_ENCODED_ELT (x, final_i), elt_mode);
5897
5898 /* Otherwise work out the value from the last two encoded elements. */
5899 rtx v1 = CONST_VECTOR_ENCODED_ELT (x, final_i - npatterns);
5900 rtx v2 = CONST_VECTOR_ENCODED_ELT (x, final_i);
5901 wide_int diff = wi::sub (rtx_mode_t (v2, elt_mode),
5902 rtx_mode_t (v1, elt_mode));
5903 return wi::add (rtx_mode_t (v2, elt_mode), (count - 2) * diff);
5904 }
5905
5906 /* Return the value of element I of CONST_VECTOR X. */
5907
5908 rtx
const_vector_elt(const_rtx x,unsigned int i)5909 const_vector_elt (const_rtx x, unsigned int i)
5910 {
5911 /* First handle elements that are directly encoded. */
5912 if (i < (unsigned int) XVECLEN (x, 0))
5913 return CONST_VECTOR_ENCODED_ELT (x, i);
5914
5915 /* If there are no steps, the final encoded value is the right one. */
5916 if (!CONST_VECTOR_STEPPED_P (x))
5917 {
5918 /* Identify the pattern that contains element I and work out the index of
5919 the last encoded element for that pattern. */
5920 unsigned int encoded_nelts = const_vector_encoded_nelts (x);
5921 unsigned int npatterns = CONST_VECTOR_NPATTERNS (x);
5922 unsigned int pattern = i % npatterns;
5923 unsigned int final_i = encoded_nelts - npatterns + pattern;
5924 return CONST_VECTOR_ENCODED_ELT (x, final_i);
5925 }
5926
5927 /* Otherwise work out the value from the last two encoded elements. */
5928 return immed_wide_int_const (const_vector_int_elt (x, i),
5929 GET_MODE_INNER (GET_MODE (x)));
5930 }
5931
5932 /* Return true if X is a valid element for a CONST_VECTOR of the given
5933 mode. */
5934
5935 bool
valid_for_const_vector_p(machine_mode,rtx x)5936 valid_for_const_vector_p (machine_mode, rtx x)
5937 {
5938 return (CONST_SCALAR_INT_P (x)
5939 || CONST_POLY_INT_P (x)
5940 || CONST_DOUBLE_AS_FLOAT_P (x)
5941 || CONST_FIXED_P (x));
5942 }
5943
5944 /* Generate a vector constant of mode MODE in which every element has
5945 value ELT. */
5946
5947 rtx
gen_const_vec_duplicate(machine_mode mode,rtx elt)5948 gen_const_vec_duplicate (machine_mode mode, rtx elt)
5949 {
5950 rtx_vector_builder builder (mode, 1, 1);
5951 builder.quick_push (elt);
5952 return builder.build ();
5953 }
5954
5955 /* Return a vector rtx of mode MODE in which every element has value X.
5956 The result will be a constant if X is constant. */
5957
5958 rtx
gen_vec_duplicate(machine_mode mode,rtx x)5959 gen_vec_duplicate (machine_mode mode, rtx x)
5960 {
5961 if (valid_for_const_vector_p (mode, x))
5962 return gen_const_vec_duplicate (mode, x);
5963 return gen_rtx_VEC_DUPLICATE (mode, x);
5964 }
5965
5966 /* A subroutine of const_vec_series_p that handles the case in which:
5967
5968 (GET_CODE (X) == CONST_VECTOR
5969 && CONST_VECTOR_NPATTERNS (X) == 1
5970 && !CONST_VECTOR_DUPLICATE_P (X))
5971
5972 is known to hold. */
5973
5974 bool
const_vec_series_p_1(const_rtx x,rtx * base_out,rtx * step_out)5975 const_vec_series_p_1 (const_rtx x, rtx *base_out, rtx *step_out)
5976 {
5977 /* Stepped sequences are only defined for integers, to avoid specifying
5978 rounding behavior. */
5979 if (GET_MODE_CLASS (GET_MODE (x)) != MODE_VECTOR_INT)
5980 return false;
5981
5982 /* A non-duplicated vector with two elements can always be seen as a
5983 series with a nonzero step. Longer vectors must have a stepped
5984 encoding. */
5985 if (maybe_ne (CONST_VECTOR_NUNITS (x), 2)
5986 && !CONST_VECTOR_STEPPED_P (x))
5987 return false;
5988
5989 /* Calculate the step between the first and second elements. */
5990 scalar_mode inner = GET_MODE_INNER (GET_MODE (x));
5991 rtx base = CONST_VECTOR_ELT (x, 0);
5992 rtx step = simplify_binary_operation (MINUS, inner,
5993 CONST_VECTOR_ENCODED_ELT (x, 1), base);
5994 if (rtx_equal_p (step, CONST0_RTX (inner)))
5995 return false;
5996
5997 /* If we have a stepped encoding, check that the step between the
5998 second and third elements is the same as STEP. */
5999 if (CONST_VECTOR_STEPPED_P (x))
6000 {
6001 rtx diff = simplify_binary_operation (MINUS, inner,
6002 CONST_VECTOR_ENCODED_ELT (x, 2),
6003 CONST_VECTOR_ENCODED_ELT (x, 1));
6004 if (!rtx_equal_p (step, diff))
6005 return false;
6006 }
6007
6008 *base_out = base;
6009 *step_out = step;
6010 return true;
6011 }
6012
6013 /* Generate a vector constant of mode MODE in which element I has
6014 the value BASE + I * STEP. */
6015
6016 rtx
gen_const_vec_series(machine_mode mode,rtx base,rtx step)6017 gen_const_vec_series (machine_mode mode, rtx base, rtx step)
6018 {
6019 gcc_assert (valid_for_const_vector_p (mode, base)
6020 && valid_for_const_vector_p (mode, step));
6021
6022 rtx_vector_builder builder (mode, 1, 3);
6023 builder.quick_push (base);
6024 for (int i = 1; i < 3; ++i)
6025 builder.quick_push (simplify_gen_binary (PLUS, GET_MODE_INNER (mode),
6026 builder[i - 1], step));
6027 return builder.build ();
6028 }
6029
6030 /* Generate a vector of mode MODE in which element I has the value
6031 BASE + I * STEP. The result will be a constant if BASE and STEP
6032 are both constants. */
6033
6034 rtx
gen_vec_series(machine_mode mode,rtx base,rtx step)6035 gen_vec_series (machine_mode mode, rtx base, rtx step)
6036 {
6037 if (step == const0_rtx)
6038 return gen_vec_duplicate (mode, base);
6039 if (valid_for_const_vector_p (mode, base)
6040 && valid_for_const_vector_p (mode, step))
6041 return gen_const_vec_series (mode, base, step);
6042 return gen_rtx_VEC_SERIES (mode, base, step);
6043 }
6044
6045 /* Generate a new vector constant for mode MODE and constant value
6046 CONSTANT. */
6047
6048 static rtx
gen_const_vector(machine_mode mode,int constant)6049 gen_const_vector (machine_mode mode, int constant)
6050 {
6051 machine_mode inner = GET_MODE_INNER (mode);
6052
6053 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
6054
6055 rtx el = const_tiny_rtx[constant][(int) inner];
6056 gcc_assert (el);
6057
6058 return gen_const_vec_duplicate (mode, el);
6059 }
6060
6061 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
6062 all elements are zero, and the one vector when all elements are one. */
6063 rtx
gen_rtx_CONST_VECTOR(machine_mode mode,rtvec v)6064 gen_rtx_CONST_VECTOR (machine_mode mode, rtvec v)
6065 {
6066 gcc_assert (known_eq (GET_MODE_NUNITS (mode), GET_NUM_ELEM (v)));
6067
6068 /* If the values are all the same, check to see if we can use one of the
6069 standard constant vectors. */
6070 if (rtvec_all_equal_p (v))
6071 return gen_const_vec_duplicate (mode, RTVEC_ELT (v, 0));
6072
6073 unsigned int nunits = GET_NUM_ELEM (v);
6074 rtx_vector_builder builder (mode, nunits, 1);
6075 for (unsigned int i = 0; i < nunits; ++i)
6076 builder.quick_push (RTVEC_ELT (v, i));
6077 return builder.build (v);
6078 }
6079
6080 /* Initialise global register information required by all functions. */
6081
6082 void
init_emit_regs(void)6083 init_emit_regs (void)
6084 {
6085 int i;
6086 machine_mode mode;
6087 mem_attrs *attrs;
6088
6089 /* Reset register attributes */
6090 reg_attrs_htab->empty ();
6091
6092 /* We need reg_raw_mode, so initialize the modes now. */
6093 init_reg_modes_target ();
6094
6095 /* Assign register numbers to the globally defined register rtx. */
6096 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
6097 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
6098 hard_frame_pointer_rtx = gen_raw_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
6099 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
6100 virtual_incoming_args_rtx =
6101 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
6102 virtual_stack_vars_rtx =
6103 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
6104 virtual_stack_dynamic_rtx =
6105 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
6106 virtual_outgoing_args_rtx =
6107 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
6108 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
6109 virtual_preferred_stack_boundary_rtx =
6110 gen_raw_REG (Pmode, VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM);
6111
6112 /* Initialize RTL for commonly used hard registers. These are
6113 copied into regno_reg_rtx as we begin to compile each function. */
6114 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
6115 initial_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
6116
6117 #ifdef RETURN_ADDRESS_POINTER_REGNUM
6118 return_address_pointer_rtx
6119 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
6120 #endif
6121
6122 pic_offset_table_rtx = NULL_RTX;
6123 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
6124 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
6125
6126 for (i = 0; i < (int) MAX_MACHINE_MODE; i++)
6127 {
6128 mode = (machine_mode) i;
6129 attrs = ggc_cleared_alloc<mem_attrs> ();
6130 attrs->align = BITS_PER_UNIT;
6131 attrs->addrspace = ADDR_SPACE_GENERIC;
6132 if (mode != BLKmode && mode != VOIDmode)
6133 {
6134 attrs->size_known_p = true;
6135 attrs->size = GET_MODE_SIZE (mode);
6136 if (STRICT_ALIGNMENT)
6137 attrs->align = GET_MODE_ALIGNMENT (mode);
6138 }
6139 mode_mem_attrs[i] = attrs;
6140 }
6141
6142 split_branch_probability = profile_probability::uninitialized ();
6143 }
6144
6145 /* Initialize global machine_mode variables. */
6146
6147 void
init_derived_machine_modes(void)6148 init_derived_machine_modes (void)
6149 {
6150 opt_scalar_int_mode mode_iter, opt_byte_mode, opt_word_mode;
6151 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
6152 {
6153 scalar_int_mode mode = mode_iter.require ();
6154
6155 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
6156 && !opt_byte_mode.exists ())
6157 opt_byte_mode = mode;
6158
6159 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
6160 && !opt_word_mode.exists ())
6161 opt_word_mode = mode;
6162 }
6163
6164 byte_mode = opt_byte_mode.require ();
6165 word_mode = opt_word_mode.require ();
6166 ptr_mode = as_a <scalar_int_mode>
6167 (mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0).require ());
6168 }
6169
6170 /* Create some permanent unique rtl objects shared between all functions. */
6171
6172 void
init_emit_once(void)6173 init_emit_once (void)
6174 {
6175 int i;
6176 machine_mode mode;
6177 scalar_float_mode double_mode;
6178 opt_scalar_mode smode_iter;
6179
6180 /* Initialize the CONST_INT, CONST_WIDE_INT, CONST_DOUBLE,
6181 CONST_FIXED, and memory attribute hash tables. */
6182 const_int_htab = hash_table<const_int_hasher>::create_ggc (37);
6183
6184 #if TARGET_SUPPORTS_WIDE_INT
6185 const_wide_int_htab = hash_table<const_wide_int_hasher>::create_ggc (37);
6186 #endif
6187 const_double_htab = hash_table<const_double_hasher>::create_ggc (37);
6188
6189 if (NUM_POLY_INT_COEFFS > 1)
6190 const_poly_int_htab = hash_table<const_poly_int_hasher>::create_ggc (37);
6191
6192 const_fixed_htab = hash_table<const_fixed_hasher>::create_ggc (37);
6193
6194 reg_attrs_htab = hash_table<reg_attr_hasher>::create_ggc (37);
6195
6196 #ifdef INIT_EXPANDERS
6197 /* This is to initialize {init|mark|free}_machine_status before the first
6198 call to push_function_context_to. This is needed by the Chill front
6199 end which calls push_function_context_to before the first call to
6200 init_function_start. */
6201 INIT_EXPANDERS;
6202 #endif
6203
6204 /* Create the unique rtx's for certain rtx codes and operand values. */
6205
6206 /* Process stack-limiting command-line options. */
6207 if (opt_fstack_limit_symbol_arg != NULL)
6208 stack_limit_rtx
6209 = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (opt_fstack_limit_symbol_arg));
6210 if (opt_fstack_limit_register_no >= 0)
6211 stack_limit_rtx = gen_rtx_REG (Pmode, opt_fstack_limit_register_no);
6212
6213 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
6214 tries to use these variables. */
6215 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
6216 const_int_rtx[i + MAX_SAVED_CONST_INT] =
6217 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
6218
6219 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
6220 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
6221 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
6222 else
6223 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
6224
6225 double_mode = float_mode_for_size (DOUBLE_TYPE_SIZE).require ();
6226
6227 real_from_integer (&dconst0, double_mode, 0, SIGNED);
6228 real_from_integer (&dconst1, double_mode, 1, SIGNED);
6229 real_from_integer (&dconst2, double_mode, 2, SIGNED);
6230
6231 dconstm1 = dconst1;
6232 dconstm1.sign = 1;
6233
6234 dconsthalf = dconst1;
6235 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
6236
6237 for (i = 0; i < 3; i++)
6238 {
6239 const REAL_VALUE_TYPE *const r =
6240 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
6241
6242 FOR_EACH_MODE_IN_CLASS (mode, MODE_FLOAT)
6243 const_tiny_rtx[i][(int) mode] =
6244 const_double_from_real_value (*r, mode);
6245
6246 FOR_EACH_MODE_IN_CLASS (mode, MODE_DECIMAL_FLOAT)
6247 const_tiny_rtx[i][(int) mode] =
6248 const_double_from_real_value (*r, mode);
6249
6250 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
6251
6252 FOR_EACH_MODE_IN_CLASS (mode, MODE_INT)
6253 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
6254
6255 for (mode = MIN_MODE_PARTIAL_INT;
6256 mode <= MAX_MODE_PARTIAL_INT;
6257 mode = (machine_mode)((int)(mode) + 1))
6258 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
6259 }
6260
6261 const_tiny_rtx[3][(int) VOIDmode] = constm1_rtx;
6262
6263 FOR_EACH_MODE_IN_CLASS (mode, MODE_INT)
6264 const_tiny_rtx[3][(int) mode] = constm1_rtx;
6265
6266 /* For BImode, 1 and -1 are unsigned and signed interpretations
6267 of the same value. */
6268 const_tiny_rtx[0][(int) BImode] = const0_rtx;
6269 const_tiny_rtx[1][(int) BImode] = const_true_rtx;
6270 const_tiny_rtx[3][(int) BImode] = const_true_rtx;
6271
6272 for (mode = MIN_MODE_PARTIAL_INT;
6273 mode <= MAX_MODE_PARTIAL_INT;
6274 mode = (machine_mode)((int)(mode) + 1))
6275 const_tiny_rtx[3][(int) mode] = constm1_rtx;
6276
6277 FOR_EACH_MODE_IN_CLASS (mode, MODE_COMPLEX_INT)
6278 {
6279 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
6280 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
6281 }
6282
6283 FOR_EACH_MODE_IN_CLASS (mode, MODE_COMPLEX_FLOAT)
6284 {
6285 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
6286 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
6287 }
6288
6289 /* As for BImode, "all 1" and "all -1" are unsigned and signed
6290 interpretations of the same value. */
6291 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_BOOL)
6292 {
6293 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6294 const_tiny_rtx[3][(int) mode] = gen_const_vector (mode, 3);
6295 const_tiny_rtx[1][(int) mode] = const_tiny_rtx[3][(int) mode];
6296 }
6297
6298 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_INT)
6299 {
6300 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6301 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6302 const_tiny_rtx[3][(int) mode] = gen_const_vector (mode, 3);
6303 }
6304
6305 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_FLOAT)
6306 {
6307 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6308 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6309 }
6310
6311 FOR_EACH_MODE_IN_CLASS (smode_iter, MODE_FRACT)
6312 {
6313 scalar_mode smode = smode_iter.require ();
6314 FCONST0 (smode).data.high = 0;
6315 FCONST0 (smode).data.low = 0;
6316 FCONST0 (smode).mode = smode;
6317 const_tiny_rtx[0][(int) smode]
6318 = CONST_FIXED_FROM_FIXED_VALUE (FCONST0 (smode), smode);
6319 }
6320
6321 FOR_EACH_MODE_IN_CLASS (smode_iter, MODE_UFRACT)
6322 {
6323 scalar_mode smode = smode_iter.require ();
6324 FCONST0 (smode).data.high = 0;
6325 FCONST0 (smode).data.low = 0;
6326 FCONST0 (smode).mode = smode;
6327 const_tiny_rtx[0][(int) smode]
6328 = CONST_FIXED_FROM_FIXED_VALUE (FCONST0 (smode), smode);
6329 }
6330
6331 FOR_EACH_MODE_IN_CLASS (smode_iter, MODE_ACCUM)
6332 {
6333 scalar_mode smode = smode_iter.require ();
6334 FCONST0 (smode).data.high = 0;
6335 FCONST0 (smode).data.low = 0;
6336 FCONST0 (smode).mode = smode;
6337 const_tiny_rtx[0][(int) smode]
6338 = CONST_FIXED_FROM_FIXED_VALUE (FCONST0 (smode), smode);
6339
6340 /* We store the value 1. */
6341 FCONST1 (smode).data.high = 0;
6342 FCONST1 (smode).data.low = 0;
6343 FCONST1 (smode).mode = smode;
6344 FCONST1 (smode).data
6345 = double_int_one.lshift (GET_MODE_FBIT (smode),
6346 HOST_BITS_PER_DOUBLE_INT,
6347 SIGNED_FIXED_POINT_MODE_P (smode));
6348 const_tiny_rtx[1][(int) smode]
6349 = CONST_FIXED_FROM_FIXED_VALUE (FCONST1 (smode), smode);
6350 }
6351
6352 FOR_EACH_MODE_IN_CLASS (smode_iter, MODE_UACCUM)
6353 {
6354 scalar_mode smode = smode_iter.require ();
6355 FCONST0 (smode).data.high = 0;
6356 FCONST0 (smode).data.low = 0;
6357 FCONST0 (smode).mode = smode;
6358 const_tiny_rtx[0][(int) smode]
6359 = CONST_FIXED_FROM_FIXED_VALUE (FCONST0 (smode), smode);
6360
6361 /* We store the value 1. */
6362 FCONST1 (smode).data.high = 0;
6363 FCONST1 (smode).data.low = 0;
6364 FCONST1 (smode).mode = smode;
6365 FCONST1 (smode).data
6366 = double_int_one.lshift (GET_MODE_FBIT (smode),
6367 HOST_BITS_PER_DOUBLE_INT,
6368 SIGNED_FIXED_POINT_MODE_P (smode));
6369 const_tiny_rtx[1][(int) smode]
6370 = CONST_FIXED_FROM_FIXED_VALUE (FCONST1 (smode), smode);
6371 }
6372
6373 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_FRACT)
6374 {
6375 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6376 }
6377
6378 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_UFRACT)
6379 {
6380 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6381 }
6382
6383 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_ACCUM)
6384 {
6385 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6386 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6387 }
6388
6389 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_UACCUM)
6390 {
6391 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6392 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6393 }
6394
6395 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
6396 if (GET_MODE_CLASS ((machine_mode) i) == MODE_CC)
6397 const_tiny_rtx[0][i] = const0_rtx;
6398
6399 pc_rtx = gen_rtx_fmt_ (PC, VOIDmode);
6400 ret_rtx = gen_rtx_fmt_ (RETURN, VOIDmode);
6401 simple_return_rtx = gen_rtx_fmt_ (SIMPLE_RETURN, VOIDmode);
6402 cc0_rtx = gen_rtx_fmt_ (CC0, VOIDmode);
6403 invalid_insn_rtx = gen_rtx_INSN (VOIDmode,
6404 /*prev_insn=*/NULL,
6405 /*next_insn=*/NULL,
6406 /*bb=*/NULL,
6407 /*pattern=*/NULL_RTX,
6408 /*location=*/-1,
6409 CODE_FOR_nothing,
6410 /*reg_notes=*/NULL_RTX);
6411 }
6412
6413 /* Produce exact duplicate of insn INSN after AFTER.
6414 Care updating of libcall regions if present. */
6415
6416 rtx_insn *
emit_copy_of_insn_after(rtx_insn * insn,rtx_insn * after)6417 emit_copy_of_insn_after (rtx_insn *insn, rtx_insn *after)
6418 {
6419 rtx_insn *new_rtx;
6420 rtx link;
6421
6422 switch (GET_CODE (insn))
6423 {
6424 case INSN:
6425 new_rtx = emit_insn_after (copy_insn (PATTERN (insn)), after);
6426 break;
6427
6428 case JUMP_INSN:
6429 new_rtx = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
6430 CROSSING_JUMP_P (new_rtx) = CROSSING_JUMP_P (insn);
6431 break;
6432
6433 case DEBUG_INSN:
6434 new_rtx = emit_debug_insn_after (copy_insn (PATTERN (insn)), after);
6435 break;
6436
6437 case CALL_INSN:
6438 new_rtx = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
6439 if (CALL_INSN_FUNCTION_USAGE (insn))
6440 CALL_INSN_FUNCTION_USAGE (new_rtx)
6441 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
6442 SIBLING_CALL_P (new_rtx) = SIBLING_CALL_P (insn);
6443 RTL_CONST_CALL_P (new_rtx) = RTL_CONST_CALL_P (insn);
6444 RTL_PURE_CALL_P (new_rtx) = RTL_PURE_CALL_P (insn);
6445 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx)
6446 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn);
6447 break;
6448
6449 default:
6450 gcc_unreachable ();
6451 }
6452
6453 /* Update LABEL_NUSES. */
6454 mark_jump_label (PATTERN (new_rtx), new_rtx, 0);
6455
6456 INSN_LOCATION (new_rtx) = INSN_LOCATION (insn);
6457
6458 /* If the old insn is frame related, then so is the new one. This is
6459 primarily needed for IA-64 unwind info which marks epilogue insns,
6460 which may be duplicated by the basic block reordering code. */
6461 RTX_FRAME_RELATED_P (new_rtx) = RTX_FRAME_RELATED_P (insn);
6462
6463 /* Locate the end of existing REG_NOTES in NEW_RTX. */
6464 rtx *ptail = ®_NOTES (new_rtx);
6465 while (*ptail != NULL_RTX)
6466 ptail = &XEXP (*ptail, 1);
6467
6468 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
6469 will make them. REG_LABEL_TARGETs are created there too, but are
6470 supposed to be sticky, so we copy them. */
6471 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
6472 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND)
6473 {
6474 *ptail = duplicate_reg_note (link);
6475 ptail = &XEXP (*ptail, 1);
6476 }
6477
6478 INSN_CODE (new_rtx) = INSN_CODE (insn);
6479 return new_rtx;
6480 }
6481
6482 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
6483 rtx
gen_hard_reg_clobber(machine_mode mode,unsigned int regno)6484 gen_hard_reg_clobber (machine_mode mode, unsigned int regno)
6485 {
6486 if (hard_reg_clobbers[mode][regno])
6487 return hard_reg_clobbers[mode][regno];
6488 else
6489 return (hard_reg_clobbers[mode][regno] =
6490 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
6491 }
6492
6493 location_t prologue_location;
6494 location_t epilogue_location;
6495
6496 /* Hold current location information and last location information, so the
6497 datastructures are built lazily only when some instructions in given
6498 place are needed. */
6499 static location_t curr_location;
6500
6501 /* Allocate insn location datastructure. */
6502 void
insn_locations_init(void)6503 insn_locations_init (void)
6504 {
6505 prologue_location = epilogue_location = 0;
6506 curr_location = UNKNOWN_LOCATION;
6507 }
6508
6509 /* At the end of emit stage, clear current location. */
6510 void
insn_locations_finalize(void)6511 insn_locations_finalize (void)
6512 {
6513 epilogue_location = curr_location;
6514 curr_location = UNKNOWN_LOCATION;
6515 }
6516
6517 /* Set current location. */
6518 void
set_curr_insn_location(location_t location)6519 set_curr_insn_location (location_t location)
6520 {
6521 curr_location = location;
6522 }
6523
6524 /* Get current location. */
6525 location_t
curr_insn_location(void)6526 curr_insn_location (void)
6527 {
6528 return curr_location;
6529 }
6530
6531 /* Set the location of the insn chain starting at INSN to LOC. */
6532 void
set_insn_locations(rtx_insn * insn,location_t loc)6533 set_insn_locations (rtx_insn *insn, location_t loc)
6534 {
6535 while (insn)
6536 {
6537 if (INSN_P (insn))
6538 INSN_LOCATION (insn) = loc;
6539 insn = NEXT_INSN (insn);
6540 }
6541 }
6542
6543 /* Return lexical scope block insn belongs to. */
6544 tree
insn_scope(const rtx_insn * insn)6545 insn_scope (const rtx_insn *insn)
6546 {
6547 return LOCATION_BLOCK (INSN_LOCATION (insn));
6548 }
6549
6550 /* Return line number of the statement that produced this insn. */
6551 int
insn_line(const rtx_insn * insn)6552 insn_line (const rtx_insn *insn)
6553 {
6554 return LOCATION_LINE (INSN_LOCATION (insn));
6555 }
6556
6557 /* Return source file of the statement that produced this insn. */
6558 const char *
insn_file(const rtx_insn * insn)6559 insn_file (const rtx_insn *insn)
6560 {
6561 return LOCATION_FILE (INSN_LOCATION (insn));
6562 }
6563
6564 /* Return expanded location of the statement that produced this insn. */
6565 expanded_location
insn_location(const rtx_insn * insn)6566 insn_location (const rtx_insn *insn)
6567 {
6568 return expand_location (INSN_LOCATION (insn));
6569 }
6570
6571 /* Return true if memory model MODEL requires a pre-operation (release-style)
6572 barrier or a post-operation (acquire-style) barrier. While not universal,
6573 this function matches behavior of several targets. */
6574
6575 bool
need_atomic_barrier_p(enum memmodel model,bool pre)6576 need_atomic_barrier_p (enum memmodel model, bool pre)
6577 {
6578 switch (model & MEMMODEL_BASE_MASK)
6579 {
6580 case MEMMODEL_RELAXED:
6581 case MEMMODEL_CONSUME:
6582 return false;
6583 case MEMMODEL_RELEASE:
6584 return pre;
6585 case MEMMODEL_ACQUIRE:
6586 return !pre;
6587 case MEMMODEL_ACQ_REL:
6588 case MEMMODEL_SEQ_CST:
6589 return true;
6590 default:
6591 gcc_unreachable ();
6592 }
6593 }
6594
6595 /* Return a constant shift amount for shifting a value of mode MODE
6596 by VALUE bits. */
6597
6598 rtx
gen_int_shift_amount(machine_mode,poly_int64 value)6599 gen_int_shift_amount (machine_mode, poly_int64 value)
6600 {
6601 /* Use a 64-bit mode, to avoid any truncation.
6602
6603 ??? Perhaps this should be automatically derived from the .md files
6604 instead, or perhaps have a target hook. */
6605 scalar_int_mode shift_mode = (BITS_PER_UNIT == 8
6606 ? DImode
6607 : int_mode_for_size (64, 0).require ());
6608 return gen_int_mode (value, shift_mode);
6609 }
6610
6611 /* Initialize fields of rtl_data related to stack alignment. */
6612
6613 void
init_stack_alignment()6614 rtl_data::init_stack_alignment ()
6615 {
6616 stack_alignment_needed = STACK_BOUNDARY;
6617 max_used_stack_slot_alignment = STACK_BOUNDARY;
6618 stack_alignment_estimated = 0;
6619 preferred_stack_boundary = STACK_BOUNDARY;
6620 }
6621
6622
6623 #include "gt-emit-rtl.h"
6624