xref: /netbsd-src/sys/dev/usb/if_zyd.c (revision 100a3398b8d3c64e571cff36b46c23431b410e09)
1 /*	$OpenBSD: if_zyd.c,v 1.52 2007/02/11 00:08:04 jsg Exp $	*/
2 /*	$NetBSD: if_zyd.c,v 1.61 2024/02/09 22:08:37 andvar Exp $	*/
3 
4 /*-
5  * Copyright (c) 2006 by Damien Bergamini <damien.bergamini@free.fr>
6  * Copyright (c) 2006 by Florian Stoehr <ich@florian-stoehr.de>
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 /*-
22  * ZyDAS ZD1211/ZD1211B USB WLAN driver.
23  */
24 
25 #include <sys/cdefs.h>
26 __KERNEL_RCSID(0, "$NetBSD: if_zyd.c,v 1.61 2024/02/09 22:08:37 andvar Exp $");
27 
28 #ifdef _KERNEL_OPT
29 #include "opt_usb.h"
30 #endif
31 
32 #include <sys/param.h>
33 #include <sys/sockio.h>
34 #include <sys/proc.h>
35 #include <sys/mbuf.h>
36 #include <sys/kernel.h>
37 #include <sys/kmem.h>
38 #include <sys/socket.h>
39 #include <sys/systm.h>
40 #include <sys/malloc.h>
41 #include <sys/conf.h>
42 #include <sys/device.h>
43 
44 #include <sys/bus.h>
45 #include <machine/endian.h>
46 
47 #include <net/bpf.h>
48 #include <net/if.h>
49 #include <net/if_arp.h>
50 #include <net/if_dl.h>
51 #include <net/if_ether.h>
52 #include <net/if_media.h>
53 #include <net/if_types.h>
54 
55 #include <netinet/in.h>
56 #include <netinet/in_systm.h>
57 #include <netinet/in_var.h>
58 #include <netinet/ip.h>
59 
60 #include <net80211/ieee80211_netbsd.h>
61 #include <net80211/ieee80211_var.h>
62 #include <net80211/ieee80211_amrr.h>
63 #include <net80211/ieee80211_radiotap.h>
64 
65 #include <dev/firmload.h>
66 
67 #include <dev/usb/usb.h>
68 #include <dev/usb/usbdi.h>
69 #include <dev/usb/usbdi_util.h>
70 #include <dev/usb/usbdevs.h>
71 
72 #include <dev/usb/if_zydreg.h>
73 
74 #ifdef ZYD_DEBUG
75 #define DPRINTF(x)	do { if (zyddebug > 0) printf x; } while (0)
76 #define DPRINTFN(n, x)	do { if (zyddebug > (n)) printf x; } while (0)
77 int zyddebug = 0;
78 #else
79 #define DPRINTF(x)
80 #define DPRINTFN(n, x)
81 #endif
82 
83 static const struct zyd_phy_pair zyd_def_phy[] = ZYD_DEF_PHY;
84 static const struct zyd_phy_pair zyd_def_phyB[] = ZYD_DEF_PHYB;
85 
86 /* various supported device vendors/products */
87 #define ZYD_ZD1211_DEV(v, p)	\
88 	{ { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, ZYD_ZD1211 }
89 #define ZYD_ZD1211B_DEV(v, p)	\
90 	{ { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, ZYD_ZD1211B }
91 static const struct zyd_type {
92 	struct usb_devno	dev;
93 	uint8_t			rev;
94 #define ZYD_ZD1211	0
95 #define ZYD_ZD1211B	1
96 } zyd_devs[] = {
97 	ZYD_ZD1211_DEV(3COM2,		3CRUSB10075),
98 	ZYD_ZD1211_DEV(ABOCOM,		WL54),
99 	ZYD_ZD1211_DEV(ASUSTEK,		WL159G),
100 	ZYD_ZD1211_DEV(CYBERTAN,	TG54USB),
101 	ZYD_ZD1211_DEV(DRAYTEK,		VIGOR550),
102 	ZYD_ZD1211_DEV(PLANEX2,		GWUS54GD),
103 	ZYD_ZD1211_DEV(PLANEX2,		GWUS54GZL),
104 	ZYD_ZD1211_DEV(PLANEX3,		GWUS54GZ),
105 	ZYD_ZD1211_DEV(PLANEX3,		GWUS54MINI),
106 	ZYD_ZD1211_DEV(SAGEM,		XG760A),
107 	ZYD_ZD1211_DEV(SENAO,		NUB8301),
108 	ZYD_ZD1211_DEV(SITECOMEU,	WL113),
109 	ZYD_ZD1211_DEV(SWEEX,		ZD1211),
110 	ZYD_ZD1211_DEV(TEKRAM,		QUICKWLAN),
111 	ZYD_ZD1211_DEV(TEKRAM,		ZD1211_1),
112 	ZYD_ZD1211_DEV(TEKRAM,		ZD1211_2),
113 	ZYD_ZD1211_DEV(TWINMOS,		G240),
114 	ZYD_ZD1211_DEV(UMEDIA,		ALL0298V2),
115 	ZYD_ZD1211_DEV(UMEDIA,		TEW429UB_A),
116 	ZYD_ZD1211_DEV(UMEDIA,		TEW429UB),
117 	ZYD_ZD1211_DEV(WISTRONNEWEB,	UR055G),
118 	ZYD_ZD1211_DEV(ZCOM,		ZD1211),
119 	ZYD_ZD1211_DEV(ZYDAS,		ZD1211),
120 	ZYD_ZD1211_DEV(ZYXEL,		AG225H),
121 	ZYD_ZD1211_DEV(ZYXEL,		ZYAIRG220),
122 	ZYD_ZD1211_DEV(ZYXEL,		G200V2),
123 
124 	ZYD_ZD1211B_DEV(ACCTON,		SMCWUSBG),
125 	ZYD_ZD1211B_DEV(ACCTON,		WN4501H_LF_IR),
126 	ZYD_ZD1211B_DEV(ACCTON,		WUS201),
127 	ZYD_ZD1211B_DEV(ACCTON,		ZD1211B),
128 	ZYD_ZD1211B_DEV(ASUSTEK,	A9T_WIFI),
129 	ZYD_ZD1211B_DEV(BELKIN,		F5D7050C),
130 	ZYD_ZD1211B_DEV(BELKIN,		ZD1211B),
131 	ZYD_ZD1211B_DEV(BEWAN,		BWIFI_USB54AR),
132 	ZYD_ZD1211B_DEV(CISCOLINKSYS,	WUSBF54G),
133 	ZYD_ZD1211B_DEV(CYBERTAN,	ZD1211B),
134 	ZYD_ZD1211B_DEV(FIBERLINE,	WL430U),
135 	ZYD_ZD1211B_DEV(MELCO,		KG54L),
136 	ZYD_ZD1211B_DEV(PHILIPS,	SNU5600),
137 	ZYD_ZD1211B_DEV(PHILIPS,	SNU5630NS05),
138 	ZYD_ZD1211B_DEV(PLANEX2,	GWUS54GXS),
139 	ZYD_ZD1211B_DEV(SAGEM,		XG76NA),
140 	ZYD_ZD1211B_DEV(SITECOMEU,	WL603),
141 	ZYD_ZD1211B_DEV(SITECOMEU,	ZD1211B),
142 	ZYD_ZD1211B_DEV(SONY,		IFU_WLM2),
143 	ZYD_ZD1211B_DEV(UMEDIA,		TEW429UBC1),
144 	ZYD_ZD1211B_DEV(UNKNOWN1,	ZD1211B),
145 	ZYD_ZD1211B_DEV(UNKNOWN2,	ZD1211B),
146 	ZYD_ZD1211B_DEV(UNKNOWN3,	ZD1211B),
147 	ZYD_ZD1211B_DEV(USR,		USR5423),
148 	ZYD_ZD1211B_DEV(VTECH,		ZD1211B),
149 	ZYD_ZD1211B_DEV(ZCOM,		ZD1211B),
150 	ZYD_ZD1211B_DEV(ZYDAS,		ZD1211B),
151 	ZYD_ZD1211B_DEV(ZYDAS,		ZD1211B_2),
152 	ZYD_ZD1211B_DEV(ZYXEL,		M202),
153 	ZYD_ZD1211B_DEV(ZYXEL,		G220V2),
154 };
155 #define zyd_lookup(v, p)	\
156 	((const struct zyd_type *)usb_lookup(zyd_devs, v, p))
157 
158 static int zyd_match(device_t, cfdata_t, void *);
159 static void zyd_attach(device_t, device_t, void *);
160 static int zyd_detach(device_t, int);
161 static int zyd_activate(device_t, enum devact);
162 
163 
164 CFATTACH_DECL_NEW(zyd, sizeof(struct zyd_softc), zyd_match,
165     zyd_attach, zyd_detach, zyd_activate);
166 
167 Static void	zyd_attachhook(device_t);
168 Static int	zyd_complete_attach(struct zyd_softc *);
169 Static int	zyd_open_pipes(struct zyd_softc *);
170 Static void	zyd_close_pipes(struct zyd_softc *);
171 Static int	zyd_alloc_tx_list(struct zyd_softc *);
172 Static void	zyd_free_tx_list(struct zyd_softc *);
173 Static int	zyd_alloc_rx_list(struct zyd_softc *);
174 Static void	zyd_free_rx_list(struct zyd_softc *);
175 Static struct	ieee80211_node *zyd_node_alloc(struct ieee80211_node_table *);
176 Static int	zyd_media_change(struct ifnet *);
177 Static void	zyd_next_scan(void *);
178 Static void	zyd_task(void *);
179 Static int	zyd_newstate(struct ieee80211com *, enum ieee80211_state, int);
180 Static int	zyd_cmd(struct zyd_softc *, uint16_t, const void *, int,
181 		    void *, int, u_int);
182 Static int	zyd_read16(struct zyd_softc *, uint16_t, uint16_t *);
183 Static int	zyd_read32(struct zyd_softc *, uint16_t, uint32_t *);
184 Static int	zyd_write16(struct zyd_softc *, uint16_t, uint16_t);
185 Static int	zyd_write32(struct zyd_softc *, uint16_t, uint32_t);
186 Static int	zyd_rfwrite(struct zyd_softc *, uint32_t);
187 Static void	zyd_lock_phy(struct zyd_softc *);
188 Static void	zyd_unlock_phy(struct zyd_softc *);
189 Static int	zyd_rfmd_init(struct zyd_rf *);
190 Static int	zyd_rfmd_switch_radio(struct zyd_rf *, int);
191 Static int	zyd_rfmd_set_channel(struct zyd_rf *, uint8_t);
192 Static int	zyd_al2230_init(struct zyd_rf *);
193 Static int	zyd_al2230_switch_radio(struct zyd_rf *, int);
194 Static int	zyd_al2230_set_channel(struct zyd_rf *, uint8_t);
195 Static int	zyd_al2230_init_b(struct zyd_rf *);
196 Static int	zyd_al7230B_init(struct zyd_rf *);
197 Static int	zyd_al7230B_switch_radio(struct zyd_rf *, int);
198 Static int	zyd_al7230B_set_channel(struct zyd_rf *, uint8_t);
199 Static int	zyd_al2210_init(struct zyd_rf *);
200 Static int	zyd_al2210_switch_radio(struct zyd_rf *, int);
201 Static int	zyd_al2210_set_channel(struct zyd_rf *, uint8_t);
202 Static int	zyd_gct_init(struct zyd_rf *);
203 Static int	zyd_gct_switch_radio(struct zyd_rf *, int);
204 Static int	zyd_gct_set_channel(struct zyd_rf *, uint8_t);
205 Static int	zyd_maxim_init(struct zyd_rf *);
206 Static int	zyd_maxim_switch_radio(struct zyd_rf *, int);
207 Static int	zyd_maxim_set_channel(struct zyd_rf *, uint8_t);
208 Static int	zyd_maxim2_init(struct zyd_rf *);
209 Static int	zyd_maxim2_switch_radio(struct zyd_rf *, int);
210 Static int	zyd_maxim2_set_channel(struct zyd_rf *, uint8_t);
211 Static int	zyd_rf_attach(struct zyd_softc *, uint8_t);
212 Static const char *zyd_rf_name(uint8_t);
213 Static int	zyd_hw_init(struct zyd_softc *);
214 Static int	zyd_read_eeprom(struct zyd_softc *);
215 Static int	zyd_set_macaddr(struct zyd_softc *, const uint8_t *);
216 Static int	zyd_set_bssid(struct zyd_softc *, const uint8_t *);
217 Static int	zyd_switch_radio(struct zyd_softc *, int);
218 Static void	zyd_set_led(struct zyd_softc *, int, int);
219 Static int	zyd_set_rxfilter(struct zyd_softc *);
220 Static void	zyd_set_chan(struct zyd_softc *, struct ieee80211_channel *);
221 Static int	zyd_set_beacon_interval(struct zyd_softc *, int);
222 Static uint8_t	zyd_plcp_signal(int);
223 Static void	zyd_intr(struct usbd_xfer *, void *, usbd_status);
224 Static void	zyd_rx_data(struct zyd_softc *, const uint8_t *, uint16_t);
225 Static void	zyd_rxeof(struct usbd_xfer *, void *, usbd_status);
226 Static void	zyd_txeof(struct usbd_xfer *, void *, usbd_status);
227 Static int	zyd_tx_mgt(struct zyd_softc *, struct mbuf *,
228 		    struct ieee80211_node *);
229 Static int	zyd_tx_data(struct zyd_softc *, struct mbuf *,
230 		    struct ieee80211_node *);
231 Static void	zyd_start(struct ifnet *);
232 Static void	zyd_watchdog(struct ifnet *);
233 Static int	zyd_ioctl(struct ifnet *, u_long, void *);
234 Static int	zyd_init(struct ifnet *);
235 Static void	zyd_stop(struct ifnet *, int);
236 Static int	zyd_loadfirmware(struct zyd_softc *, u_char *, size_t);
237 Static void	zyd_iter_func(void *, struct ieee80211_node *);
238 Static void	zyd_amrr_timeout(void *);
239 Static void	zyd_newassoc(struct ieee80211_node *, int);
240 
241 static int
zyd_match(device_t parent,cfdata_t match,void * aux)242 zyd_match(device_t parent, cfdata_t match, void *aux)
243 {
244 	struct usb_attach_arg *uaa = aux;
245 
246 	return (zyd_lookup(uaa->uaa_vendor, uaa->uaa_product) != NULL) ?
247 	    UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
248 }
249 
250 Static void
zyd_attachhook(device_t self)251 zyd_attachhook(device_t self)
252 {
253 	struct zyd_softc *sc = device_private(self);
254 	firmware_handle_t fwh;
255 	const char *fwname;
256 	u_char *fw;
257 	size_t size;
258 	int error;
259 
260 	fwname = (sc->mac_rev == ZYD_ZD1211) ? "zyd-zd1211" : "zyd-zd1211b";
261 	if ((error = firmware_open("zyd", fwname, &fwh)) != 0) {
262 		aprint_error_dev(sc->sc_dev,
263 		    "failed to open firmware %s (error=%d)\n", fwname, error);
264 		return;
265 	}
266 	size = firmware_get_size(fwh);
267 	fw = firmware_malloc(size);
268 	if (fw == NULL) {
269 		aprint_error_dev(sc->sc_dev,
270 		    "failed to allocate firmware memory\n");
271 		firmware_close(fwh);
272 		return;
273 	}
274 	error = firmware_read(fwh, 0, fw, size);
275 	firmware_close(fwh);
276 	if (error != 0) {
277 		aprint_error_dev(sc->sc_dev,
278 		    "failed to read firmware (error %d)\n", error);
279 		firmware_free(fw, size);
280 		return;
281 	}
282 
283 	error = zyd_loadfirmware(sc, fw, size);
284 	if (error != 0) {
285 		aprint_error_dev(sc->sc_dev,
286 		    "could not load firmware (error=%d)\n", error);
287 		firmware_free(fw, size);
288 		return;
289 	}
290 
291 	firmware_free(fw, size);
292 
293 	/* complete the attach process */
294 	if ((error = zyd_complete_attach(sc)) == 0)
295 		sc->attached = 1;
296 	return;
297 }
298 
299 static void
zyd_attach(device_t parent,device_t self,void * aux)300 zyd_attach(device_t parent, device_t self, void *aux)
301 {
302 	struct zyd_softc *sc = device_private(self);
303 	struct usb_attach_arg *uaa = aux;
304 	char *devinfop;
305 	usb_device_descriptor_t* ddesc;
306 	struct ifnet *ifp = &sc->sc_if;
307 
308 	sc->sc_dev = self;
309 	sc->sc_udev = uaa->uaa_device;
310 
311 	aprint_naive("\n");
312 	aprint_normal("\n");
313 
314 	devinfop = usbd_devinfo_alloc(uaa->uaa_device, 0);
315 	aprint_normal_dev(self, "%s\n", devinfop);
316 	usbd_devinfo_free(devinfop);
317 
318 	sc->mac_rev = zyd_lookup(uaa->uaa_vendor, uaa->uaa_product)->rev;
319 
320 	ddesc = usbd_get_device_descriptor(sc->sc_udev);
321 	if (UGETW(ddesc->bcdDevice) < 0x4330) {
322 		aprint_error_dev(self, "device version mismatch: %#x "
323 		    "(only >= 43.30 supported)\n", UGETW(ddesc->bcdDevice));
324 		return;
325 	}
326 
327 	ifp->if_softc = sc;
328 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
329 	ifp->if_init = zyd_init;
330 	ifp->if_ioctl = zyd_ioctl;
331 	ifp->if_start = zyd_start;
332 	ifp->if_watchdog = zyd_watchdog;
333 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
334 	IFQ_SET_READY(&ifp->if_snd);
335 	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
336 
337 	mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_SOFTUSB);
338 	cv_init(&sc->sc_cmdcv, "zydcmd");
339 	SIMPLEQ_INIT(&sc->sc_rqh);
340 
341 	/* defer configuration after file system is ready to load firmware */
342 	config_mountroot(self, zyd_attachhook);
343 }
344 
345 Static int
zyd_complete_attach(struct zyd_softc * sc)346 zyd_complete_attach(struct zyd_softc *sc)
347 {
348 	struct ieee80211com *ic = &sc->sc_ic;
349 	struct ifnet *ifp = &sc->sc_if;
350 	usbd_status error;
351 	int i;
352 
353 	usb_init_task(&sc->sc_task, zyd_task, sc, 0);
354 	callout_init(&(sc->sc_scan_ch), 0);
355 
356 	sc->amrr.amrr_min_success_threshold =  1;
357 	sc->amrr.amrr_max_success_threshold = 10;
358 	callout_init(&sc->sc_amrr_ch, 0);
359 
360 	error = usbd_set_config_no(sc->sc_udev, ZYD_CONFIG_NO, 1);
361 	if (error != 0) {
362 		aprint_error_dev(sc->sc_dev, "failed to set configuration"
363 		    ", err=%s\n", usbd_errstr(error));
364 		goto fail;
365 	}
366 
367 	error = usbd_device2interface_handle(sc->sc_udev, ZYD_IFACE_INDEX,
368 	    &sc->sc_iface);
369 	if (error != 0) {
370 		aprint_error_dev(sc->sc_dev,
371 		    "getting interface handle failed\n");
372 		goto fail;
373 	}
374 
375 	if ((error = zyd_open_pipes(sc)) != 0) {
376 		aprint_error_dev(sc->sc_dev, "could not open pipes\n");
377 		goto fail;
378 	}
379 
380 	if ((error = zyd_read_eeprom(sc)) != 0) {
381 		aprint_error_dev(sc->sc_dev, "could not read EEPROM\n");
382 		goto fail;
383 	}
384 
385 	if ((error = zyd_rf_attach(sc, sc->rf_rev)) != 0) {
386 		aprint_error_dev(sc->sc_dev, "could not attach RF\n");
387 		goto fail;
388 	}
389 
390 	if ((error = zyd_hw_init(sc)) != 0) {
391 		aprint_error_dev(sc->sc_dev,
392 		    "hardware initialization failed\n");
393 		goto fail;
394 	}
395 
396 	aprint_normal_dev(sc->sc_dev,
397 	    "HMAC ZD1211%s, FW %02x.%02x, RF %s, PA %x, address %s\n",
398 	    (sc->mac_rev == ZYD_ZD1211) ? "": "B",
399 	    sc->fw_rev >> 8, sc->fw_rev & 0xff, zyd_rf_name(sc->rf_rev),
400 	    sc->pa_rev, ether_sprintf(ic->ic_myaddr));
401 
402 	ic->ic_ifp = ifp;
403 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
404 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
405 	ic->ic_state = IEEE80211_S_INIT;
406 
407 	/* set device capabilities */
408 	ic->ic_caps =
409 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
410 	    IEEE80211_C_TXPMGT |	/* tx power management */
411 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
412 	    IEEE80211_C_WEP;		/* s/w WEP */
413 
414 	/* set supported .11b and .11g rates */
415 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
416 	ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
417 
418 	/* set supported .11b and .11g channels (1 through 14) */
419 	for (i = 1; i <= 14; i++) {
420 		ic->ic_channels[i].ic_freq =
421 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
422 		ic->ic_channels[i].ic_flags =
423 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
424 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
425 	}
426 
427 	if_attach(ifp);
428 	ieee80211_ifattach(ic);
429 	ic->ic_node_alloc = zyd_node_alloc;
430 	ic->ic_newassoc = zyd_newassoc;
431 
432 	/* override state transition machine */
433 	sc->sc_newstate = ic->ic_newstate;
434 	ic->ic_newstate = zyd_newstate;
435 
436 	/* XXX media locking needs revisiting */
437 	mutex_init(&sc->sc_media_mtx, MUTEX_DEFAULT, IPL_SOFTUSB);
438 	ieee80211_media_init_with_lock(ic,
439 	    zyd_media_change, ieee80211_media_status, &sc->sc_media_mtx);
440 
441 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
442 	    sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
443 	    &sc->sc_drvbpf);
444 
445 	sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
446 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
447 	sc->sc_rxtap.wr_ihdr.it_present = htole32(ZYD_RX_RADIOTAP_PRESENT);
448 
449 	sc->sc_txtap_len = sizeof(sc->sc_txtapu);
450 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
451 	sc->sc_txtap.wt_ihdr.it_present = htole32(ZYD_TX_RADIOTAP_PRESENT);
452 
453 	ieee80211_announce(ic);
454 
455 	usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
456 
457 fail:	return error;
458 }
459 
460 static int
zyd_detach(device_t self,int flags)461 zyd_detach(device_t self, int flags)
462 {
463 	struct zyd_softc *sc = device_private(self);
464 	struct ieee80211com *ic = &sc->sc_ic;
465 	struct ifnet *ifp = &sc->sc_if;
466 
467 	if (!sc->attached)
468 		return 0;
469 
470 	mutex_enter(&sc->sc_lock);
471 
472 	zyd_stop(ifp, 1);
473 	callout_halt(&sc->sc_scan_ch, NULL);
474 	callout_halt(&sc->sc_amrr_ch, NULL);
475 	usb_rem_task_wait(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER, NULL);
476 
477 	/* Abort, etc. done by zyd_stop */
478 	zyd_close_pipes(sc);
479 
480 	sc->attached = 0;
481 
482 	bpf_detach(ifp);
483 	ieee80211_ifdetach(ic);
484 	if_detach(ifp);
485 
486 	mutex_exit(&sc->sc_lock);
487 
488 	mutex_destroy(&sc->sc_lock);
489 	cv_destroy(&sc->sc_cmdcv);
490 
491 	usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
492 
493 	return 0;
494 }
495 
496 Static int
zyd_open_pipes(struct zyd_softc * sc)497 zyd_open_pipes(struct zyd_softc *sc)
498 {
499 	usb_endpoint_descriptor_t *edesc;
500 	usbd_status error;
501 
502 	/* interrupt in */
503 	edesc = usbd_get_endpoint_descriptor(sc->sc_iface, 0x83);
504 	if (edesc == NULL)
505 		return EINVAL;
506 
507 	sc->ibuf_size = UGETW(edesc->wMaxPacketSize);
508 	if (sc->ibuf_size == 0)	/* should not happen */
509 		return EINVAL;
510 
511 	sc->ibuf = kmem_alloc(sc->ibuf_size, KM_SLEEP);
512 
513 	error = usbd_open_pipe_intr(sc->sc_iface, 0x83, USBD_SHORT_XFER_OK,
514 	    &sc->zyd_ep[ZYD_ENDPT_IIN], sc, sc->ibuf, sc->ibuf_size, zyd_intr,
515 	    USBD_DEFAULT_INTERVAL);
516 	if (error != 0) {
517 		printf("%s: open rx intr pipe failed: %s\n",
518 		    device_xname(sc->sc_dev), usbd_errstr(error));
519 		goto fail;
520 	}
521 
522 	/* interrupt out (not necessarily an interrupt pipe) */
523 	error = usbd_open_pipe(sc->sc_iface, 0x04, USBD_EXCLUSIVE_USE,
524 	    &sc->zyd_ep[ZYD_ENDPT_IOUT]);
525 	if (error != 0) {
526 		printf("%s: open tx intr pipe failed: %s\n",
527 		    device_xname(sc->sc_dev), usbd_errstr(error));
528 		goto fail;
529 	}
530 
531 	/* bulk in */
532 	error = usbd_open_pipe(sc->sc_iface, 0x82, USBD_EXCLUSIVE_USE,
533 	    &sc->zyd_ep[ZYD_ENDPT_BIN]);
534 	if (error != 0) {
535 		printf("%s: open rx pipe failed: %s\n",
536 		    device_xname(sc->sc_dev), usbd_errstr(error));
537 		goto fail;
538 	}
539 
540 	/* bulk out */
541 	error = usbd_open_pipe(sc->sc_iface, 0x01, USBD_EXCLUSIVE_USE,
542 	    &sc->zyd_ep[ZYD_ENDPT_BOUT]);
543 	if (error != 0) {
544 		printf("%s: open tx pipe failed: %s\n",
545 		    device_xname(sc->sc_dev), usbd_errstr(error));
546 		goto fail;
547 	}
548 
549 	return 0;
550 
551 fail:	zyd_close_pipes(sc);
552 	return error;
553 }
554 
555 Static void
zyd_close_pipes(struct zyd_softc * sc)556 zyd_close_pipes(struct zyd_softc *sc)
557 {
558 	int i;
559 
560 	for (i = 0; i < ZYD_ENDPT_CNT; i++) {
561 		if (sc->zyd_ep[i] != NULL) {
562 			usbd_close_pipe(sc->zyd_ep[i]);
563 			sc->zyd_ep[i] = NULL;
564 		}
565 	}
566 	if (sc->ibuf != NULL) {
567 		kmem_free(sc->ibuf, sc->ibuf_size);
568 		sc->ibuf = NULL;
569 	}
570 }
571 
572 Static int
zyd_alloc_tx_list(struct zyd_softc * sc)573 zyd_alloc_tx_list(struct zyd_softc *sc)
574 {
575 	int i, error;
576 
577 	sc->tx_queued = 0;
578 
579 	for (i = 0; i < ZYD_TX_LIST_CNT; i++) {
580 		struct zyd_tx_data *data = &sc->tx_data[i];
581 
582 		data->sc = sc;	/* backpointer for callbacks */
583 
584 		error = usbd_create_xfer(sc->zyd_ep[ZYD_ENDPT_BOUT],
585 		    ZYD_MAX_TXBUFSZ, USBD_FORCE_SHORT_XFER, 0, &data->xfer);
586 		if (error) {
587 			printf("%s: could not allocate tx xfer\n",
588 			    device_xname(sc->sc_dev));
589 			goto fail;
590 		}
591 		data->buf = usbd_get_buffer(data->xfer);
592 
593 		/* clear Tx descriptor */
594 		memset(data->buf, 0, sizeof(struct zyd_tx_desc));
595 	}
596 	return 0;
597 
598 fail:	zyd_free_tx_list(sc);
599 	return error;
600 }
601 
602 Static void
zyd_free_tx_list(struct zyd_softc * sc)603 zyd_free_tx_list(struct zyd_softc *sc)
604 {
605 	int i;
606 
607 	for (i = 0; i < ZYD_TX_LIST_CNT; i++) {
608 		struct zyd_tx_data *data = &sc->tx_data[i];
609 
610 		if (data->xfer != NULL) {
611 			usbd_destroy_xfer(data->xfer);
612 			data->xfer = NULL;
613 		}
614 		if (data->ni != NULL) {
615 			ieee80211_free_node(data->ni);
616 			data->ni = NULL;
617 		}
618 	}
619 }
620 
621 Static int
zyd_alloc_rx_list(struct zyd_softc * sc)622 zyd_alloc_rx_list(struct zyd_softc *sc)
623 {
624 	int i, error;
625 
626 	for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
627 		struct zyd_rx_data *data = &sc->rx_data[i];
628 
629 		data->sc = sc;	/* backpointer for callbacks */
630 
631 		error = usbd_create_xfer(sc->zyd_ep[ZYD_ENDPT_BIN],
632 		    ZYX_MAX_RXBUFSZ, 0, 0, &data->xfer);
633 		if (error) {
634 			printf("%s: could not allocate rx xfer\n",
635 			    device_xname(sc->sc_dev));
636 			goto fail;
637 		}
638 		data->buf = usbd_get_buffer(data->xfer);
639 	}
640 	return 0;
641 
642 fail:	zyd_free_rx_list(sc);
643 	return error;
644 }
645 
646 Static void
zyd_free_rx_list(struct zyd_softc * sc)647 zyd_free_rx_list(struct zyd_softc *sc)
648 {
649 	int i;
650 
651 	for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
652 		struct zyd_rx_data *data = &sc->rx_data[i];
653 
654 		if (data->xfer != NULL) {
655 			usbd_destroy_xfer(data->xfer);
656 			data->xfer = NULL;
657 		}
658 	}
659 }
660 
661 /* ARGUSED */
662 Static struct ieee80211_node *
zyd_node_alloc(struct ieee80211_node_table * nt __unused)663 zyd_node_alloc(struct ieee80211_node_table *nt __unused)
664 {
665 	struct zyd_node *zn;
666 
667 	zn = malloc(sizeof(struct zyd_node), M_80211_NODE, M_NOWAIT | M_ZERO);
668 	return zn ? &zn->ni : NULL;
669 }
670 
671 Static int
zyd_media_change(struct ifnet * ifp)672 zyd_media_change(struct ifnet *ifp)
673 {
674 	int error;
675 
676 	error = ieee80211_media_change(ifp);
677 	if (error != ENETRESET)
678 		return error;
679 
680 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
681 		zyd_init(ifp);
682 
683 	return 0;
684 }
685 
686 /*
687  * This function is called periodically (every 200ms) during scanning to
688  * switch from one channel to another.
689  */
690 Static void
zyd_next_scan(void * arg)691 zyd_next_scan(void *arg)
692 {
693 	struct zyd_softc *sc = arg;
694 	struct ieee80211com *ic = &sc->sc_ic;
695 
696 	if (ic->ic_state == IEEE80211_S_SCAN)
697 		ieee80211_next_scan(ic);
698 }
699 
700 Static void
zyd_task(void * arg)701 zyd_task(void *arg)
702 {
703 	struct zyd_softc *sc = arg;
704 	struct ieee80211com *ic = &sc->sc_ic;
705 	enum ieee80211_state ostate;
706 
707 	ostate = ic->ic_state;
708 
709 	switch (sc->sc_state) {
710 	case IEEE80211_S_INIT:
711 		if (ostate == IEEE80211_S_RUN) {
712 			/* turn link LED off */
713 			zyd_set_led(sc, ZYD_LED1, 0);
714 
715 			/* stop data LED from blinking */
716 			zyd_write32(sc, sc->fwbase + ZYD_FW_LINK_STATUS, 0);
717 		}
718 		break;
719 
720 	case IEEE80211_S_SCAN:
721 		zyd_set_chan(sc, ic->ic_curchan);
722 		callout_reset(&sc->sc_scan_ch, hz / 5, zyd_next_scan, sc);
723 		break;
724 
725 	case IEEE80211_S_AUTH:
726 	case IEEE80211_S_ASSOC:
727 		zyd_set_chan(sc, ic->ic_curchan);
728 		break;
729 
730 	case IEEE80211_S_RUN:
731 	{
732 		struct ieee80211_node *ni = ic->ic_bss;
733 
734 		zyd_set_chan(sc, ic->ic_curchan);
735 
736 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
737 			/* turn link LED on */
738 			zyd_set_led(sc, ZYD_LED1, 1);
739 
740 			/* make data LED blink upon Tx */
741 			zyd_write32(sc, sc->fwbase + ZYD_FW_LINK_STATUS, 1);
742 
743 			zyd_set_bssid(sc, ni->ni_bssid);
744 		}
745 
746 		if (ic->ic_opmode == IEEE80211_M_STA) {
747 			/* fake a join to init the tx rate */
748 			zyd_newassoc(ni, 1);
749 		}
750 
751 		/* start automatic rate control timer */
752 		if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
753 			callout_reset(&sc->sc_amrr_ch, hz, zyd_amrr_timeout, sc);
754 
755 		break;
756 	}
757 	}
758 
759 	sc->sc_newstate(ic, sc->sc_state, -1);
760 }
761 
762 Static int
zyd_newstate(struct ieee80211com * ic,enum ieee80211_state nstate,int arg)763 zyd_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
764 {
765 	struct zyd_softc *sc = ic->ic_ifp->if_softc;
766 
767 	if (!sc->attached)
768 		return ENXIO;
769 
770 	/*
771 	 * XXXSMP: This does not wait for the task, if it is in flight,
772 	 * to complete.  If this code works at all, it must rely on the
773 	 * kernel lock to serialize with the USB task thread.
774 	 */
775 	usb_rem_task(sc->sc_udev, &sc->sc_task);
776 	callout_stop(&sc->sc_scan_ch);
777 	callout_stop(&sc->sc_amrr_ch);
778 
779 	/* do it in a process context */
780 	sc->sc_state = nstate;
781 	usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
782 
783 	return 0;
784 }
785 
786 Static int
zyd_cmd(struct zyd_softc * sc,uint16_t code,const void * idata,int ilen,void * odata,int olen,u_int flags)787 zyd_cmd(struct zyd_softc *sc, uint16_t code, const void *idata, int ilen,
788     void *odata, int olen, u_int flags)
789 {
790 	struct usbd_xfer *xfer;
791 	struct zyd_cmd cmd;
792 	struct rq rq;
793 	uint16_t xferflags;
794 	int error;
795 	usbd_status uerror;
796 
797 	error = usbd_create_xfer(sc->zyd_ep[ZYD_ENDPT_IOUT],
798 	    sizeof(uint16_t) + ilen, USBD_FORCE_SHORT_XFER, 0, &xfer);
799 	if (error)
800 		return error;
801 
802 	cmd.code = htole16(code);
803 	memcpy(cmd.data, idata, ilen);
804 
805 	xferflags = USBD_FORCE_SHORT_XFER;
806 	if (!(flags & ZYD_CMD_FLAG_READ))
807 		xferflags |= USBD_SYNCHRONOUS;
808 	else {
809 		rq.idata = idata;
810 		rq.odata = odata;
811 		rq.len = olen / sizeof(struct zyd_pair);
812 		mutex_enter(&sc->sc_lock);
813 		SIMPLEQ_INSERT_TAIL(&sc->sc_rqh, &rq, rq);
814 		mutex_exit(&sc->sc_lock);
815 	}
816 
817 	usbd_setup_xfer(xfer, 0, &cmd, sizeof(uint16_t) + ilen, xferflags,
818 	    ZYD_INTR_TIMEOUT, NULL);
819 	uerror = usbd_transfer(xfer);
820 	if (uerror != USBD_IN_PROGRESS && uerror != 0) {
821 		printf("%s: could not send command (error=%s)\n",
822 		    device_xname(sc->sc_dev), usbd_errstr(uerror));
823 		(void)usbd_destroy_xfer(xfer);
824 		return EIO;
825 	}
826 	if (!(flags & ZYD_CMD_FLAG_READ)) {
827 		(void)usbd_destroy_xfer(xfer);
828 		return 0;	/* write: don't wait for reply */
829 	}
830 	/* wait at most one second for command reply */
831 	mutex_enter(&sc->sc_lock);
832 	error = cv_timedwait_sig(&sc->sc_cmdcv, &sc->sc_lock, hz);
833 	if (error == EWOULDBLOCK)
834 		printf("%s: zyd_read sleep timeout\n", device_xname(sc->sc_dev));
835 	SIMPLEQ_REMOVE(&sc->sc_rqh, &rq, rq, rq);
836 	mutex_exit(&sc->sc_lock);
837 
838 	(void)usbd_destroy_xfer(xfer);
839 	return error;
840 }
841 
842 Static int
zyd_read16(struct zyd_softc * sc,uint16_t reg,uint16_t * val)843 zyd_read16(struct zyd_softc *sc, uint16_t reg, uint16_t *val)
844 {
845 	struct zyd_pair tmp;
846 	int error;
847 
848 	reg = htole16(reg);
849 	error = zyd_cmd(sc, ZYD_CMD_IORD, &reg, sizeof(reg), &tmp, sizeof(tmp),
850 	    ZYD_CMD_FLAG_READ);
851 	if (error == 0)
852 		*val = le16toh(tmp.val);
853 	else
854 		*val = 0;
855 	return error;
856 }
857 
858 Static int
zyd_read32(struct zyd_softc * sc,uint16_t reg,uint32_t * val)859 zyd_read32(struct zyd_softc *sc, uint16_t reg, uint32_t *val)
860 {
861 	struct zyd_pair tmp[2];
862 	uint16_t regs[2];
863 	int error;
864 
865 	regs[0] = htole16(ZYD_REG32_HI(reg));
866 	regs[1] = htole16(ZYD_REG32_LO(reg));
867 	error = zyd_cmd(sc, ZYD_CMD_IORD, regs, sizeof(regs), tmp, sizeof(tmp),
868 	    ZYD_CMD_FLAG_READ);
869 	if (error == 0)
870 		*val = le16toh(tmp[0].val) << 16 | le16toh(tmp[1].val);
871 	else
872 		*val = 0;
873 	return error;
874 }
875 
876 Static int
zyd_write16(struct zyd_softc * sc,uint16_t reg,uint16_t val)877 zyd_write16(struct zyd_softc *sc, uint16_t reg, uint16_t val)
878 {
879 	struct zyd_pair pair;
880 
881 	pair.reg = htole16(reg);
882 	pair.val = htole16(val);
883 
884 	return zyd_cmd(sc, ZYD_CMD_IOWR, &pair, sizeof(pair), NULL, 0, 0);
885 }
886 
887 Static int
zyd_write32(struct zyd_softc * sc,uint16_t reg,uint32_t val)888 zyd_write32(struct zyd_softc *sc, uint16_t reg, uint32_t val)
889 {
890 	struct zyd_pair pair[2];
891 
892 	pair[0].reg = htole16(ZYD_REG32_HI(reg));
893 	pair[0].val = htole16(val >> 16);
894 	pair[1].reg = htole16(ZYD_REG32_LO(reg));
895 	pair[1].val = htole16(val & 0xffff);
896 
897 	return zyd_cmd(sc, ZYD_CMD_IOWR, pair, sizeof(pair), NULL, 0, 0);
898 }
899 
900 Static int
zyd_rfwrite(struct zyd_softc * sc,uint32_t val)901 zyd_rfwrite(struct zyd_softc *sc, uint32_t val)
902 {
903 	struct zyd_rf *rf = &sc->sc_rf;
904 	struct zyd_rfwrite req;
905 	uint16_t cr203;
906 	int i;
907 
908 	(void)zyd_read16(sc, ZYD_CR203, &cr203);
909 	cr203 &= ~(ZYD_RF_IF_LE | ZYD_RF_CLK | ZYD_RF_DATA);
910 
911 	req.code  = htole16(2);
912 	req.width = htole16(rf->width);
913 	for (i = 0; i < rf->width; i++) {
914 		req.bit[i] = htole16(cr203);
915 		if (val & (1 << (rf->width - 1 - i)))
916 			req.bit[i] |= htole16(ZYD_RF_DATA);
917 	}
918 	return zyd_cmd(sc, ZYD_CMD_RFCFG, &req, 4 + 2 * rf->width, NULL, 0, 0);
919 }
920 
921 Static void
zyd_lock_phy(struct zyd_softc * sc)922 zyd_lock_phy(struct zyd_softc *sc)
923 {
924 	uint32_t tmp;
925 
926 	(void)zyd_read32(sc, ZYD_MAC_MISC, &tmp);
927 	tmp &= ~ZYD_UNLOCK_PHY_REGS;
928 	(void)zyd_write32(sc, ZYD_MAC_MISC, tmp);
929 }
930 
931 Static void
zyd_unlock_phy(struct zyd_softc * sc)932 zyd_unlock_phy(struct zyd_softc *sc)
933 {
934 	uint32_t tmp;
935 
936 	(void)zyd_read32(sc, ZYD_MAC_MISC, &tmp);
937 	tmp |= ZYD_UNLOCK_PHY_REGS;
938 	(void)zyd_write32(sc, ZYD_MAC_MISC, tmp);
939 }
940 
941 /*
942  * RFMD RF methods.
943  */
944 Static int
zyd_rfmd_init(struct zyd_rf * rf)945 zyd_rfmd_init(struct zyd_rf *rf)
946 {
947 	struct zyd_softc *sc = rf->rf_sc;
948 	static const struct zyd_phy_pair phyini[] = ZYD_RFMD_PHY;
949 	static const uint32_t rfini[] = ZYD_RFMD_RF;
950 	int error;
951 	size_t i;
952 
953 	/* init RF-dependent PHY registers */
954 	for (i = 0; i < __arraycount(phyini); i++) {
955 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
956 		if (error != 0)
957 			return error;
958 	}
959 
960 	/* init RFMD radio */
961 	for (i = 0; i < __arraycount(rfini); i++) {
962 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
963 			return error;
964 	}
965 	return 0;
966 }
967 
968 Static int
zyd_rfmd_switch_radio(struct zyd_rf * rf,int on)969 zyd_rfmd_switch_radio(struct zyd_rf *rf, int on)
970 {
971 	struct zyd_softc *sc = rf->rf_sc;
972 
973 	(void)zyd_write16(sc, ZYD_CR10, on ? 0x89 : 0x15);
974 	(void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x81);
975 
976 	return 0;
977 }
978 
979 Static int
zyd_rfmd_set_channel(struct zyd_rf * rf,uint8_t chan)980 zyd_rfmd_set_channel(struct zyd_rf *rf, uint8_t chan)
981 {
982 	struct zyd_softc *sc = rf->rf_sc;
983 	static const struct {
984 		uint32_t	r1, r2;
985 	} rfprog[] = ZYD_RFMD_CHANTABLE;
986 
987 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
988 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
989 
990 	return 0;
991 }
992 
993 /*
994  * AL2230 RF methods.
995  */
996 Static int
zyd_al2230_init(struct zyd_rf * rf)997 zyd_al2230_init(struct zyd_rf *rf)
998 {
999 	struct zyd_softc *sc = rf->rf_sc;
1000 	static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY;
1001 	static const struct zyd_phy_pair phy2230s[] = ZYD_AL2230S_PHY_INIT;
1002 	static const uint32_t rfini[] = ZYD_AL2230_RF;
1003 	int error;
1004 	size_t i;
1005 
1006 	/* init RF-dependent PHY registers */
1007 	for (i = 0; i < __arraycount(phyini); i++) {
1008 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1009 		if (error != 0)
1010 			return error;
1011 	}
1012 
1013 	if (sc->rf_rev == ZYD_RF_AL2230S) {
1014 		for (i = 0; i < __arraycount(phy2230s); i++) {
1015 			error = zyd_write16(sc, phy2230s[i].reg,
1016 			    phy2230s[i].val);
1017 			if (error != 0)
1018 				return error;
1019 		}
1020 	}
1021 
1022 	/* init AL2230 radio */
1023 	for (i = 0; i < __arraycount(rfini); i++) {
1024 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1025 			return error;
1026 	}
1027 	return 0;
1028 }
1029 
1030 Static int
zyd_al2230_init_b(struct zyd_rf * rf)1031 zyd_al2230_init_b(struct zyd_rf *rf)
1032 {
1033 	struct zyd_softc *sc = rf->rf_sc;
1034 	static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY_B;
1035 	static const uint32_t rfini[] = ZYD_AL2230_RF_B;
1036 	int error;
1037 	size_t i;
1038 
1039 	/* init RF-dependent PHY registers */
1040 	for (i = 0; i < __arraycount(phyini); i++) {
1041 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1042 		if (error != 0)
1043 			return error;
1044 	}
1045 
1046 	/* init AL2230 radio */
1047 	for (i = 0; i < __arraycount(rfini); i++) {
1048 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1049 			return error;
1050 	}
1051 	return 0;
1052 }
1053 
1054 Static int
zyd_al2230_switch_radio(struct zyd_rf * rf,int on)1055 zyd_al2230_switch_radio(struct zyd_rf *rf, int on)
1056 {
1057 	struct zyd_softc *sc = rf->rf_sc;
1058 	int on251 = (sc->mac_rev == ZYD_ZD1211) ? 0x3f : 0x7f;
1059 
1060 	(void)zyd_write16(sc, ZYD_CR11,  on ? 0x00 : 0x04);
1061 	(void)zyd_write16(sc, ZYD_CR251, on ? on251 : 0x2f);
1062 
1063 	return 0;
1064 }
1065 
1066 Static int
zyd_al2230_set_channel(struct zyd_rf * rf,uint8_t chan)1067 zyd_al2230_set_channel(struct zyd_rf *rf, uint8_t chan)
1068 {
1069 	struct zyd_softc *sc = rf->rf_sc;
1070 	static const struct {
1071 		uint32_t	r1, r2, r3;
1072 	} rfprog[] = ZYD_AL2230_CHANTABLE;
1073 
1074 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1075 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1076 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r3);
1077 
1078 	(void)zyd_write16(sc, ZYD_CR138, 0x28);
1079 	(void)zyd_write16(sc, ZYD_CR203, 0x06);
1080 
1081 	return 0;
1082 }
1083 
1084 /*
1085  * AL7230B RF methods.
1086  */
1087 Static int
zyd_al7230B_init(struct zyd_rf * rf)1088 zyd_al7230B_init(struct zyd_rf *rf)
1089 {
1090 	struct zyd_softc *sc = rf->rf_sc;
1091 	static const struct zyd_phy_pair phyini_1[] = ZYD_AL7230B_PHY_1;
1092 	static const struct zyd_phy_pair phyini_2[] = ZYD_AL7230B_PHY_2;
1093 	static const struct zyd_phy_pair phyini_3[] = ZYD_AL7230B_PHY_3;
1094 	static const uint32_t rfini_1[] = ZYD_AL7230B_RF_1;
1095 	static const uint32_t rfini_2[] = ZYD_AL7230B_RF_2;
1096 	int error;
1097 	size_t i;
1098 
1099 	/* for AL7230B, PHY and RF need to be initialized in "phases" */
1100 
1101 	/* init RF-dependent PHY registers, part one */
1102 	for (i = 0; i < __arraycount(phyini_1); i++) {
1103 		error = zyd_write16(sc, phyini_1[i].reg, phyini_1[i].val);
1104 		if (error != 0)
1105 			return error;
1106 	}
1107 	/* init AL7230B radio, part one */
1108 	for (i = 0; i < __arraycount(rfini_1); i++) {
1109 		if ((error = zyd_rfwrite(sc, rfini_1[i])) != 0)
1110 			return error;
1111 	}
1112 	/* init RF-dependent PHY registers, part two */
1113 	for (i = 0; i < __arraycount(phyini_2); i++) {
1114 		error = zyd_write16(sc, phyini_2[i].reg, phyini_2[i].val);
1115 		if (error != 0)
1116 			return error;
1117 	}
1118 	/* init AL7230B radio, part two */
1119 	for (i = 0; i < __arraycount(rfini_2); i++) {
1120 		if ((error = zyd_rfwrite(sc, rfini_2[i])) != 0)
1121 			return error;
1122 	}
1123 	/* init RF-dependent PHY registers, part three */
1124 	for (i = 0; i < __arraycount(phyini_3); i++) {
1125 		error = zyd_write16(sc, phyini_3[i].reg, phyini_3[i].val);
1126 		if (error != 0)
1127 			return error;
1128 	}
1129 
1130 	return 0;
1131 }
1132 
1133 Static int
zyd_al7230B_switch_radio(struct zyd_rf * rf,int on)1134 zyd_al7230B_switch_radio(struct zyd_rf *rf, int on)
1135 {
1136 	struct zyd_softc *sc = rf->rf_sc;
1137 
1138 	(void)zyd_write16(sc, ZYD_CR11,  on ? 0x00 : 0x04);
1139 	(void)zyd_write16(sc, ZYD_CR251, on ? 0x3f : 0x2f);
1140 
1141 	return 0;
1142 }
1143 
1144 Static int
zyd_al7230B_set_channel(struct zyd_rf * rf,uint8_t chan)1145 zyd_al7230B_set_channel(struct zyd_rf *rf, uint8_t chan)
1146 {
1147 	struct zyd_softc *sc = rf->rf_sc;
1148 	static const struct {
1149 		uint32_t	r1, r2;
1150 	} rfprog[] = ZYD_AL7230B_CHANTABLE;
1151 	static const uint32_t rfsc[] = ZYD_AL7230B_RF_SETCHANNEL;
1152 	int error;
1153 	size_t i;
1154 
1155 	(void)zyd_write16(sc, ZYD_CR240, 0x57);
1156 	(void)zyd_write16(sc, ZYD_CR251, 0x2f);
1157 
1158 	for (i = 0; i < __arraycount(rfsc); i++) {
1159 		if ((error = zyd_rfwrite(sc, rfsc[i])) != 0)
1160 			return error;
1161 	}
1162 
1163 	(void)zyd_write16(sc, ZYD_CR128, 0x14);
1164 	(void)zyd_write16(sc, ZYD_CR129, 0x12);
1165 	(void)zyd_write16(sc, ZYD_CR130, 0x10);
1166 	(void)zyd_write16(sc, ZYD_CR38,  0x38);
1167 	(void)zyd_write16(sc, ZYD_CR136, 0xdf);
1168 
1169 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1170 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1171 	(void)zyd_rfwrite(sc, 0x3c9000);
1172 
1173 	(void)zyd_write16(sc, ZYD_CR251, 0x3f);
1174 	(void)zyd_write16(sc, ZYD_CR203, 0x06);
1175 	(void)zyd_write16(sc, ZYD_CR240, 0x08);
1176 
1177 	return 0;
1178 }
1179 
1180 /*
1181  * AL2210 RF methods.
1182  */
1183 Static int
zyd_al2210_init(struct zyd_rf * rf)1184 zyd_al2210_init(struct zyd_rf *rf)
1185 {
1186 	struct zyd_softc *sc = rf->rf_sc;
1187 	static const struct zyd_phy_pair phyini[] = ZYD_AL2210_PHY;
1188 	static const uint32_t rfini[] = ZYD_AL2210_RF;
1189 	uint32_t tmp;
1190 	int error;
1191 	size_t i;
1192 
1193 	(void)zyd_write32(sc, ZYD_CR18, 2);
1194 
1195 	/* init RF-dependent PHY registers */
1196 	for (i = 0; i < __arraycount(phyini); i++) {
1197 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1198 		if (error != 0)
1199 			return error;
1200 	}
1201 	/* init AL2210 radio */
1202 	for (i = 0; i < __arraycount(rfini); i++) {
1203 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1204 			return error;
1205 	}
1206 	(void)zyd_write16(sc, ZYD_CR47, 0x1e);
1207 	(void)zyd_read32(sc, ZYD_CR_RADIO_PD, &tmp);
1208 	(void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp & ~1);
1209 	(void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp | 1);
1210 	(void)zyd_write32(sc, ZYD_CR_RFCFG, 0x05);
1211 	(void)zyd_write32(sc, ZYD_CR_RFCFG, 0x00);
1212 	(void)zyd_write16(sc, ZYD_CR47, 0x1e);
1213 	(void)zyd_write32(sc, ZYD_CR18, 3);
1214 
1215 	return 0;
1216 }
1217 
1218 Static int
zyd_al2210_switch_radio(struct zyd_rf * rf,int on)1219 zyd_al2210_switch_radio(struct zyd_rf *rf, int on)
1220 {
1221 	/* vendor driver does nothing for this RF chip */
1222 
1223 	return 0;
1224 }
1225 
1226 Static int
zyd_al2210_set_channel(struct zyd_rf * rf,uint8_t chan)1227 zyd_al2210_set_channel(struct zyd_rf *rf, uint8_t chan)
1228 {
1229 	struct zyd_softc *sc = rf->rf_sc;
1230 	static const uint32_t rfprog[] = ZYD_AL2210_CHANTABLE;
1231 	uint32_t tmp;
1232 
1233 	(void)zyd_write32(sc, ZYD_CR18, 2);
1234 	(void)zyd_write16(sc, ZYD_CR47, 0x1e);
1235 	(void)zyd_read32(sc, ZYD_CR_RADIO_PD, &tmp);
1236 	(void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp & ~1);
1237 	(void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp | 1);
1238 	(void)zyd_write32(sc, ZYD_CR_RFCFG, 0x05);
1239 
1240 	(void)zyd_write32(sc, ZYD_CR_RFCFG, 0x00);
1241 	(void)zyd_write16(sc, ZYD_CR47, 0x1e);
1242 
1243 	/* actually set the channel */
1244 	(void)zyd_rfwrite(sc, rfprog[chan - 1]);
1245 
1246 	(void)zyd_write32(sc, ZYD_CR18, 3);
1247 
1248 	return 0;
1249 }
1250 
1251 /*
1252  * GCT RF methods.
1253  */
1254 Static int
zyd_gct_init(struct zyd_rf * rf)1255 zyd_gct_init(struct zyd_rf *rf)
1256 {
1257 	struct zyd_softc *sc = rf->rf_sc;
1258 	static const struct zyd_phy_pair phyini[] = ZYD_GCT_PHY;
1259 	static const uint32_t rfini[] = ZYD_GCT_RF;
1260 	int error;
1261 	size_t i;
1262 
1263 	/* init RF-dependent PHY registers */
1264 	for (i = 0; i < __arraycount(phyini); i++) {
1265 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1266 		if (error != 0)
1267 			return error;
1268 	}
1269 	/* init cgt radio */
1270 	for (i = 0; i < __arraycount(rfini); i++) {
1271 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1272 			return error;
1273 	}
1274 	return 0;
1275 }
1276 
1277 Static int
zyd_gct_switch_radio(struct zyd_rf * rf,int on)1278 zyd_gct_switch_radio(struct zyd_rf *rf, int on)
1279 {
1280 	/* vendor driver does nothing for this RF chip */
1281 
1282 	return 0;
1283 }
1284 
1285 Static int
zyd_gct_set_channel(struct zyd_rf * rf,uint8_t chan)1286 zyd_gct_set_channel(struct zyd_rf *rf, uint8_t chan)
1287 {
1288 	struct zyd_softc *sc = rf->rf_sc;
1289 	static const uint32_t rfprog[] = ZYD_GCT_CHANTABLE;
1290 
1291 	(void)zyd_rfwrite(sc, 0x1c0000);
1292 	(void)zyd_rfwrite(sc, rfprog[chan - 1]);
1293 	(void)zyd_rfwrite(sc, 0x1c0008);
1294 
1295 	return 0;
1296 }
1297 
1298 /*
1299  * Maxim RF methods.
1300  */
1301 Static int
zyd_maxim_init(struct zyd_rf * rf)1302 zyd_maxim_init(struct zyd_rf *rf)
1303 {
1304 	struct zyd_softc *sc = rf->rf_sc;
1305 	static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY;
1306 	static const uint32_t rfini[] = ZYD_MAXIM_RF;
1307 	uint16_t tmp;
1308 	int error;
1309 	size_t i;
1310 
1311 	/* init RF-dependent PHY registers */
1312 	for (i = 0; i < __arraycount(phyini); i++) {
1313 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1314 		if (error != 0)
1315 			return error;
1316 	}
1317 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1318 	(void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1319 
1320 	/* init maxim radio */
1321 	for (i = 0; i < __arraycount(rfini); i++) {
1322 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1323 			return error;
1324 	}
1325 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1326 	(void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1327 
1328 	return 0;
1329 }
1330 
1331 Static int
zyd_maxim_switch_radio(struct zyd_rf * rf,int on)1332 zyd_maxim_switch_radio(struct zyd_rf *rf, int on)
1333 {
1334 	/* vendor driver does nothing for this RF chip */
1335 
1336 	return 0;
1337 }
1338 
1339 Static int
zyd_maxim_set_channel(struct zyd_rf * rf,uint8_t chan)1340 zyd_maxim_set_channel(struct zyd_rf *rf, uint8_t chan)
1341 {
1342 	struct zyd_softc *sc = rf->rf_sc;
1343 	static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY;
1344 	static const uint32_t rfini[] = ZYD_MAXIM_RF;
1345 	static const struct {
1346 		uint32_t	r1, r2;
1347 	} rfprog[] = ZYD_MAXIM_CHANTABLE;
1348 	uint16_t tmp;
1349 	int error;
1350 	size_t i;
1351 
1352 	/*
1353 	 * Do the same as we do when initializing it, except for the channel
1354 	 * values coming from the two channel tables.
1355 	 */
1356 
1357 	/* init RF-dependent PHY registers */
1358 	for (i = 0; i < __arraycount(phyini); i++) {
1359 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1360 		if (error != 0)
1361 			return error;
1362 	}
1363 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1364 	(void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1365 
1366 	/* first two values taken from the chantables */
1367 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1368 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1369 
1370 	/* init maxim radio - skipping the two first values */
1371 	for (i = 2; i < __arraycount(rfini); i++) {
1372 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1373 			return error;
1374 	}
1375 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1376 	(void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1377 
1378 	return 0;
1379 }
1380 
1381 /*
1382  * Maxim2 RF methods.
1383  */
1384 Static int
zyd_maxim2_init(struct zyd_rf * rf)1385 zyd_maxim2_init(struct zyd_rf *rf)
1386 {
1387 	struct zyd_softc *sc = rf->rf_sc;
1388 	static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY;
1389 	static const uint32_t rfini[] = ZYD_MAXIM2_RF;
1390 	uint16_t tmp;
1391 	int error;
1392 	size_t i;
1393 
1394 	/* init RF-dependent PHY registers */
1395 	for (i = 0; i < __arraycount(phyini); i++) {
1396 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1397 		if (error != 0)
1398 			return error;
1399 	}
1400 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1401 	(void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1402 
1403 	/* init maxim2 radio */
1404 	for (i = 0; i < __arraycount(rfini); i++) {
1405 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1406 			return error;
1407 	}
1408 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1409 	(void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1410 
1411 	return 0;
1412 }
1413 
1414 Static int
zyd_maxim2_switch_radio(struct zyd_rf * rf,int on)1415 zyd_maxim2_switch_radio(struct zyd_rf *rf, int on)
1416 {
1417 	/* vendor driver does nothing for this RF chip */
1418 
1419 	return 0;
1420 }
1421 
1422 Static int
zyd_maxim2_set_channel(struct zyd_rf * rf,uint8_t chan)1423 zyd_maxim2_set_channel(struct zyd_rf *rf, uint8_t chan)
1424 {
1425 	struct zyd_softc *sc = rf->rf_sc;
1426 	static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY;
1427 	static const uint32_t rfini[] = ZYD_MAXIM2_RF;
1428 	static const struct {
1429 		uint32_t	r1, r2;
1430 	} rfprog[] = ZYD_MAXIM2_CHANTABLE;
1431 	uint16_t tmp;
1432 	int error;
1433 	size_t i;
1434 
1435 	/*
1436 	 * Do the same as we do when initializing it, except for the channel
1437 	 * values coming from the two channel tables.
1438 	 */
1439 
1440 	/* init RF-dependent PHY registers */
1441 	for (i = 0; i < __arraycount(phyini); i++) {
1442 		error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1443 		if (error != 0)
1444 			return error;
1445 	}
1446 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1447 	(void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1448 
1449 	/* first two values taken from the chantables */
1450 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1451 	(void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1452 
1453 	/* init maxim2 radio - skipping the two first values */
1454 	for (i = 2; i < __arraycount(rfini); i++) {
1455 		if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1456 			return error;
1457 	}
1458 	(void)zyd_read16(sc, ZYD_CR203, &tmp);
1459 	(void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1460 
1461 	return 0;
1462 }
1463 
1464 Static int
zyd_rf_attach(struct zyd_softc * sc,uint8_t type)1465 zyd_rf_attach(struct zyd_softc *sc, uint8_t type)
1466 {
1467 	struct zyd_rf *rf = &sc->sc_rf;
1468 
1469 	rf->rf_sc = sc;
1470 
1471 	switch (type) {
1472 	case ZYD_RF_RFMD:
1473 		rf->init         = zyd_rfmd_init;
1474 		rf->switch_radio = zyd_rfmd_switch_radio;
1475 		rf->set_channel  = zyd_rfmd_set_channel;
1476 		rf->width        = 24;	/* 24-bit RF values */
1477 		break;
1478 	case ZYD_RF_AL2230:
1479 	case ZYD_RF_AL2230S:
1480 		if (sc->mac_rev == ZYD_ZD1211B)
1481 			rf->init = zyd_al2230_init_b;
1482 		else
1483 			rf->init = zyd_al2230_init;
1484 		rf->switch_radio = zyd_al2230_switch_radio;
1485 		rf->set_channel  = zyd_al2230_set_channel;
1486 		rf->width        = 24;	/* 24-bit RF values */
1487 		break;
1488 	case ZYD_RF_AL7230B:
1489 		rf->init         = zyd_al7230B_init;
1490 		rf->switch_radio = zyd_al7230B_switch_radio;
1491 		rf->set_channel  = zyd_al7230B_set_channel;
1492 		rf->width        = 24;	/* 24-bit RF values */
1493 		break;
1494 	case ZYD_RF_AL2210:
1495 		rf->init         = zyd_al2210_init;
1496 		rf->switch_radio = zyd_al2210_switch_radio;
1497 		rf->set_channel  = zyd_al2210_set_channel;
1498 		rf->width        = 24;	/* 24-bit RF values */
1499 		break;
1500 	case ZYD_RF_GCT:
1501 		rf->init         = zyd_gct_init;
1502 		rf->switch_radio = zyd_gct_switch_radio;
1503 		rf->set_channel  = zyd_gct_set_channel;
1504 		rf->width        = 21;	/* 21-bit RF values */
1505 		break;
1506 	case ZYD_RF_MAXIM_NEW:
1507 		rf->init         = zyd_maxim_init;
1508 		rf->switch_radio = zyd_maxim_switch_radio;
1509 		rf->set_channel  = zyd_maxim_set_channel;
1510 		rf->width        = 18;	/* 18-bit RF values */
1511 		break;
1512 	case ZYD_RF_MAXIM_NEW2:
1513 		rf->init         = zyd_maxim2_init;
1514 		rf->switch_radio = zyd_maxim2_switch_radio;
1515 		rf->set_channel  = zyd_maxim2_set_channel;
1516 		rf->width        = 18;	/* 18-bit RF values */
1517 		break;
1518 	default:
1519 		printf("%s: sorry, radio \"%s\" is not supported yet\n",
1520 		    device_xname(sc->sc_dev), zyd_rf_name(type));
1521 		return EINVAL;
1522 	}
1523 	return 0;
1524 }
1525 
1526 Static const char *
zyd_rf_name(uint8_t type)1527 zyd_rf_name(uint8_t type)
1528 {
1529 	static const char * const zyd_rfs[] = {
1530 		"unknown", "unknown", "UW2451",   "UCHIP",     "AL2230",
1531 		"AL7230B", "THETA",   "AL2210",   "MAXIM_NEW", "GCT",
1532 		"AL2230S", "RALINK",  "INTERSIL", "RFMD",      "MAXIM_NEW2",
1533 		"PHILIPS"
1534 	};
1535 
1536 	return zyd_rfs[(type > 15) ? 0 : type];
1537 }
1538 
1539 Static int
zyd_hw_init(struct zyd_softc * sc)1540 zyd_hw_init(struct zyd_softc *sc)
1541 {
1542 	struct zyd_rf *rf = &sc->sc_rf;
1543 	const struct zyd_phy_pair *phyp;
1544 	int error;
1545 
1546 	/* specify that the plug and play is finished */
1547 	(void)zyd_write32(sc, ZYD_MAC_AFTER_PNP, 1);
1548 
1549 	(void)zyd_read16(sc, ZYD_FIRMWARE_BASE_ADDR, &sc->fwbase);
1550 	DPRINTF(("firmware base address=0x%04x\n", sc->fwbase));
1551 
1552 	/* retrieve firmware revision number */
1553 	(void)zyd_read16(sc, sc->fwbase + ZYD_FW_FIRMWARE_REV, &sc->fw_rev);
1554 
1555 	(void)zyd_write32(sc, ZYD_CR_GPI_EN, 0);
1556 	(void)zyd_write32(sc, ZYD_MAC_CONT_WIN_LIMIT, 0x7f043f);
1557 
1558 	/* disable interrupts */
1559 	(void)zyd_write32(sc, ZYD_CR_INTERRUPT, 0);
1560 
1561 	/* PHY init */
1562 	zyd_lock_phy(sc);
1563 	phyp = (sc->mac_rev == ZYD_ZD1211B) ? zyd_def_phyB : zyd_def_phy;
1564 	for (; phyp->reg != 0; phyp++) {
1565 		if ((error = zyd_write16(sc, phyp->reg, phyp->val)) != 0)
1566 			goto fail;
1567 	}
1568 	zyd_unlock_phy(sc);
1569 
1570 	/* HMAC init */
1571 	zyd_write32(sc, ZYD_MAC_ACK_EXT, 0x00000020);
1572 	zyd_write32(sc, ZYD_CR_ADDA_MBIAS_WT, 0x30000808);
1573 
1574 	if (sc->mac_rev == ZYD_ZD1211) {
1575 		zyd_write32(sc, ZYD_MAC_RETRY, 0x00000002);
1576 	} else {
1577 		zyd_write32(sc, ZYD_MAC_RETRY, 0x02020202);
1578 		zyd_write32(sc, ZYD_MACB_TXPWR_CTL4, 0x007f003f);
1579 		zyd_write32(sc, ZYD_MACB_TXPWR_CTL3, 0x007f003f);
1580 		zyd_write32(sc, ZYD_MACB_TXPWR_CTL2, 0x003f001f);
1581 		zyd_write32(sc, ZYD_MACB_TXPWR_CTL1, 0x001f000f);
1582 		zyd_write32(sc, ZYD_MACB_AIFS_CTL1, 0x00280028);
1583 		zyd_write32(sc, ZYD_MACB_AIFS_CTL2, 0x008C003C);
1584 		zyd_write32(sc, ZYD_MACB_TXOP, 0x01800824);
1585 	}
1586 
1587 	zyd_write32(sc, ZYD_MAC_SNIFFER, 0x00000000);
1588 	zyd_write32(sc, ZYD_MAC_RXFILTER, 0x00000000);
1589 	zyd_write32(sc, ZYD_MAC_GHTBL, 0x00000000);
1590 	zyd_write32(sc, ZYD_MAC_GHTBH, 0x80000000);
1591 	zyd_write32(sc, ZYD_MAC_MISC, 0x000000a4);
1592 	zyd_write32(sc, ZYD_CR_ADDA_PWR_DWN, 0x0000007f);
1593 	zyd_write32(sc, ZYD_MAC_BCNCFG, 0x00f00401);
1594 	zyd_write32(sc, ZYD_MAC_PHY_DELAY2, 0x00000000);
1595 	zyd_write32(sc, ZYD_MAC_ACK_EXT, 0x00000080);
1596 	zyd_write32(sc, ZYD_CR_ADDA_PWR_DWN, 0x00000000);
1597 	zyd_write32(sc, ZYD_MAC_SIFS_ACK_TIME, 0x00000100);
1598 	zyd_write32(sc, ZYD_MAC_DIFS_EIFS_SIFS, 0x0547c032);
1599 	zyd_write32(sc, ZYD_CR_RX_PE_DELAY, 0x00000070);
1600 	zyd_write32(sc, ZYD_CR_PS_CTRL, 0x10000000);
1601 	zyd_write32(sc, ZYD_MAC_RTSCTSRATE, 0x02030203);
1602 	zyd_write32(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0640);
1603 	zyd_write32(sc, ZYD_MAC_BACKOFF_PROTECT, 0x00000114);
1604 
1605 	/* RF chip init */
1606 	zyd_lock_phy(sc);
1607 	error = (*rf->init)(rf);
1608 	zyd_unlock_phy(sc);
1609 	if (error != 0) {
1610 		printf("%s: radio initialization failed\n",
1611 		    device_xname(sc->sc_dev));
1612 		goto fail;
1613 	}
1614 
1615 	/* init beacon interval to 100ms */
1616 	if ((error = zyd_set_beacon_interval(sc, 100)) != 0)
1617 		goto fail;
1618 
1619 fail:	return error;
1620 }
1621 
1622 Static int
zyd_read_eeprom(struct zyd_softc * sc)1623 zyd_read_eeprom(struct zyd_softc *sc)
1624 {
1625 	struct ieee80211com *ic = &sc->sc_ic;
1626 	uint32_t tmp;
1627 	uint16_t val;
1628 	int i;
1629 
1630 	/* read MAC address */
1631 	(void)zyd_read32(sc, ZYD_EEPROM_MAC_ADDR_P1, &tmp);
1632 	ic->ic_myaddr[0] = tmp & 0xff;
1633 	ic->ic_myaddr[1] = tmp >>  8;
1634 	ic->ic_myaddr[2] = tmp >> 16;
1635 	ic->ic_myaddr[3] = tmp >> 24;
1636 	(void)zyd_read32(sc, ZYD_EEPROM_MAC_ADDR_P2, &tmp);
1637 	ic->ic_myaddr[4] = tmp & 0xff;
1638 	ic->ic_myaddr[5] = tmp >>  8;
1639 
1640 	(void)zyd_read32(sc, ZYD_EEPROM_POD, &tmp);
1641 	sc->rf_rev = tmp & 0x0f;
1642 	sc->pa_rev = (tmp >> 16) & 0x0f;
1643 
1644 	/* read regulatory domain (currently unused) */
1645 	(void)zyd_read32(sc, ZYD_EEPROM_SUBID, &tmp);
1646 	sc->regdomain = tmp >> 16;
1647 	DPRINTF(("regulatory domain %x\n", sc->regdomain));
1648 
1649 	/* read Tx power calibration tables */
1650 	for (i = 0; i < 7; i++) {
1651 		(void)zyd_read16(sc, ZYD_EEPROM_PWR_CAL + i, &val);
1652 		sc->pwr_cal[i * 2] = val >> 8;
1653 		sc->pwr_cal[i * 2 + 1] = val & 0xff;
1654 
1655 		(void)zyd_read16(sc, ZYD_EEPROM_PWR_INT + i, &val);
1656 		sc->pwr_int[i * 2] = val >> 8;
1657 		sc->pwr_int[i * 2 + 1] = val & 0xff;
1658 
1659 		(void)zyd_read16(sc, ZYD_EEPROM_36M_CAL + i, &val);
1660 		sc->ofdm36_cal[i * 2] = val >> 8;
1661 		sc->ofdm36_cal[i * 2 + 1] = val & 0xff;
1662 
1663 		(void)zyd_read16(sc, ZYD_EEPROM_48M_CAL + i, &val);
1664 		sc->ofdm48_cal[i * 2] = val >> 8;
1665 		sc->ofdm48_cal[i * 2 + 1] = val & 0xff;
1666 
1667 		(void)zyd_read16(sc, ZYD_EEPROM_54M_CAL + i, &val);
1668 		sc->ofdm54_cal[i * 2] = val >> 8;
1669 		sc->ofdm54_cal[i * 2 + 1] = val & 0xff;
1670 	}
1671 	return 0;
1672 }
1673 
1674 Static int
zyd_set_macaddr(struct zyd_softc * sc,const uint8_t * addr)1675 zyd_set_macaddr(struct zyd_softc *sc, const uint8_t *addr)
1676 {
1677 	uint32_t tmp;
1678 
1679 	tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0];
1680 	(void)zyd_write32(sc, ZYD_MAC_MACADRL, tmp);
1681 
1682 	tmp = addr[5] << 8 | addr[4];
1683 	(void)zyd_write32(sc, ZYD_MAC_MACADRH, tmp);
1684 
1685 	return 0;
1686 }
1687 
1688 Static int
zyd_set_bssid(struct zyd_softc * sc,const uint8_t * addr)1689 zyd_set_bssid(struct zyd_softc *sc, const uint8_t *addr)
1690 {
1691 	uint32_t tmp;
1692 
1693 	tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0];
1694 	(void)zyd_write32(sc, ZYD_MAC_BSSADRL, tmp);
1695 
1696 	tmp = addr[5] << 8 | addr[4];
1697 	(void)zyd_write32(sc, ZYD_MAC_BSSADRH, tmp);
1698 
1699 	return 0;
1700 }
1701 
1702 Static int
zyd_switch_radio(struct zyd_softc * sc,int on)1703 zyd_switch_radio(struct zyd_softc *sc, int on)
1704 {
1705 	struct zyd_rf *rf = &sc->sc_rf;
1706 	int error;
1707 
1708 	zyd_lock_phy(sc);
1709 	error = (*rf->switch_radio)(rf, on);
1710 	zyd_unlock_phy(sc);
1711 
1712 	return error;
1713 }
1714 
1715 Static void
zyd_set_led(struct zyd_softc * sc,int which,int on)1716 zyd_set_led(struct zyd_softc *sc, int which, int on)
1717 {
1718 	uint32_t tmp;
1719 
1720 	(void)zyd_read32(sc, ZYD_MAC_TX_PE_CONTROL, &tmp);
1721 	tmp &= ~which;
1722 	if (on)
1723 		tmp |= which;
1724 	(void)zyd_write32(sc, ZYD_MAC_TX_PE_CONTROL, tmp);
1725 }
1726 
1727 Static int
zyd_set_rxfilter(struct zyd_softc * sc)1728 zyd_set_rxfilter(struct zyd_softc *sc)
1729 {
1730 	uint32_t rxfilter;
1731 
1732 	switch (sc->sc_ic.ic_opmode) {
1733 	case IEEE80211_M_STA:
1734 		rxfilter = ZYD_FILTER_BSS;
1735 		break;
1736 	case IEEE80211_M_IBSS:
1737 	case IEEE80211_M_HOSTAP:
1738 		rxfilter = ZYD_FILTER_HOSTAP;
1739 		break;
1740 	case IEEE80211_M_MONITOR:
1741 		rxfilter = ZYD_FILTER_MONITOR;
1742 		break;
1743 	default:
1744 		/* should not get there */
1745 		return EINVAL;
1746 	}
1747 	return zyd_write32(sc, ZYD_MAC_RXFILTER, rxfilter);
1748 }
1749 
1750 Static void
zyd_set_chan(struct zyd_softc * sc,struct ieee80211_channel * c)1751 zyd_set_chan(struct zyd_softc *sc, struct ieee80211_channel *c)
1752 {
1753 	struct ieee80211com *ic = &sc->sc_ic;
1754 	struct zyd_rf *rf = &sc->sc_rf;
1755 	u_int chan;
1756 
1757 	chan = ieee80211_chan2ieee(ic, c);
1758 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1759 		return;
1760 
1761 	zyd_lock_phy(sc);
1762 
1763 	(*rf->set_channel)(rf, chan);
1764 
1765 	/* update Tx power */
1766 	(void)zyd_write32(sc, ZYD_CR31, sc->pwr_int[chan - 1]);
1767 	(void)zyd_write32(sc, ZYD_CR68, sc->pwr_cal[chan - 1]);
1768 
1769 	if (sc->mac_rev == ZYD_ZD1211B) {
1770 		(void)zyd_write32(sc, ZYD_CR67, sc->ofdm36_cal[chan - 1]);
1771 		(void)zyd_write32(sc, ZYD_CR66, sc->ofdm48_cal[chan - 1]);
1772 		(void)zyd_write32(sc, ZYD_CR65, sc->ofdm54_cal[chan - 1]);
1773 
1774 		(void)zyd_write32(sc, ZYD_CR69, 0x28);
1775 		(void)zyd_write32(sc, ZYD_CR69, 0x2a);
1776 	}
1777 
1778 	zyd_unlock_phy(sc);
1779 }
1780 
1781 Static int
zyd_set_beacon_interval(struct zyd_softc * sc,int bintval)1782 zyd_set_beacon_interval(struct zyd_softc *sc, int bintval)
1783 {
1784 	/* XXX this is probably broken.. */
1785 	(void)zyd_write32(sc, ZYD_CR_ATIM_WND_PERIOD, bintval - 2);
1786 	(void)zyd_write32(sc, ZYD_CR_PRE_TBTT,        bintval - 1);
1787 	(void)zyd_write32(sc, ZYD_CR_BCN_INTERVAL,    bintval);
1788 
1789 	return 0;
1790 }
1791 
1792 Static uint8_t
zyd_plcp_signal(int rate)1793 zyd_plcp_signal(int rate)
1794 {
1795 	switch (rate) {
1796 	/* CCK rates (returned values are device-dependent) */
1797 	case 2:		return 0x0;
1798 	case 4:		return 0x1;
1799 	case 11:	return 0x2;
1800 	case 22:	return 0x3;
1801 
1802 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1803 	case 12:	return 0xb;
1804 	case 18:	return 0xf;
1805 	case 24:	return 0xa;
1806 	case 36:	return 0xe;
1807 	case 48:	return 0x9;
1808 	case 72:	return 0xd;
1809 	case 96:	return 0x8;
1810 	case 108:	return 0xc;
1811 
1812 	/* unsupported rates (should not get there) */
1813 	default:	return 0xff;
1814 	}
1815 }
1816 
1817 Static void
zyd_intr(struct usbd_xfer * xfer,void * priv,usbd_status status)1818 zyd_intr(struct usbd_xfer *xfer, void * priv, usbd_status status)
1819 {
1820 	struct zyd_softc *sc = (struct zyd_softc *)priv;
1821 	struct zyd_cmd *cmd;
1822 	uint32_t datalen;
1823 
1824 	if (status != USBD_NORMAL_COMPLETION) {
1825 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
1826 			return;
1827 
1828 		if (status == USBD_STALLED) {
1829 			usbd_clear_endpoint_stall_async(
1830 			    sc->zyd_ep[ZYD_ENDPT_IIN]);
1831 		}
1832 		return;
1833 	}
1834 
1835 	cmd = (struct zyd_cmd *)sc->ibuf;
1836 
1837 	if (le16toh(cmd->code) == ZYD_NOTIF_RETRYSTATUS) {
1838 		struct zyd_notif_retry *retry =
1839 		    (struct zyd_notif_retry *)cmd->data;
1840 		struct ieee80211com *ic = &sc->sc_ic;
1841 		struct ifnet *ifp = &sc->sc_if;
1842 		struct ieee80211_node *ni;
1843 
1844 		DPRINTF(("retry intr: rate=%#x addr=%s count=%d (%#x)\n",
1845 		    le16toh(retry->rate), ether_sprintf(retry->macaddr),
1846 		    le16toh(retry->count) & 0xff, le16toh(retry->count)));
1847 
1848 		/*
1849 		 * Find the node to which the packet was sent and update its
1850 		 * retry statistics.  In BSS mode, this node is the AP we're
1851 		 * associated to so no lookup is actually needed.
1852 		 */
1853 		if (ic->ic_opmode != IEEE80211_M_STA) {
1854 			ni = ieee80211_find_node(&ic->ic_scan, retry->macaddr);
1855 			if (ni == NULL)
1856 				return;	/* just ignore */
1857 		} else
1858 			ni = ic->ic_bss;
1859 
1860 		((struct zyd_node *)ni)->amn.amn_retrycnt++;
1861 
1862 		if (le16toh(retry->count) & 0x100)
1863 			if_statinc(ifp, if_oerrors);
1864 
1865 	} else if (le16toh(cmd->code) == ZYD_NOTIF_IORD) {
1866 		struct rq *rqp;
1867 
1868 		if (le16toh(*(uint16_t *)cmd->data) == ZYD_CR_INTERRUPT)
1869 			return;	/* HMAC interrupt */
1870 
1871 		usbd_get_xfer_status(xfer, NULL, NULL, &datalen, NULL);
1872 		datalen -= sizeof(cmd->code);
1873 		datalen -= 2;	/* XXX: padding? */
1874 
1875 		mutex_enter(&sc->sc_lock);
1876 		SIMPLEQ_FOREACH(rqp, &sc->sc_rqh, rq) {
1877 			int i;
1878 
1879 			if (sizeof(struct zyd_pair) * rqp->len != datalen)
1880 				continue;
1881 			for (i = 0; i < rqp->len; i++) {
1882 				if (*(((const uint16_t *)rqp->idata) + i) !=
1883 				    (((struct zyd_pair *)cmd->data) + i)->reg)
1884 					break;
1885 			}
1886 			if (i != rqp->len)
1887 				continue;
1888 
1889 			/* copy answer into caller-supplied buffer */
1890 			memcpy(rqp->odata, cmd->data,
1891 			    sizeof(struct zyd_pair) * rqp->len);
1892 			cv_signal(&sc->sc_cmdcv);
1893 			mutex_exit(&sc->sc_lock);
1894 			return;
1895 		}
1896 		mutex_exit(&sc->sc_lock);
1897 		return;	/* unexpected IORD notification */
1898 	} else {
1899 		printf("%s: unknown notification %x\n", device_xname(sc->sc_dev),
1900 		    le16toh(cmd->code));
1901 	}
1902 }
1903 
1904 Static void
zyd_rx_data(struct zyd_softc * sc,const uint8_t * buf,uint16_t len)1905 zyd_rx_data(struct zyd_softc *sc, const uint8_t *buf, uint16_t len)
1906 {
1907 	struct ieee80211com *ic = &sc->sc_ic;
1908 	struct ifnet *ifp = &sc->sc_if;
1909 	struct ieee80211_node *ni;
1910 	struct ieee80211_frame *wh;
1911 	const struct zyd_plcphdr *plcp;
1912 	const struct zyd_rx_stat *stat;
1913 	struct mbuf *m;
1914 	int rlen, s;
1915 
1916 	if (len < ZYD_MIN_FRAGSZ) {
1917 		printf("%s: frame too short (length=%d)\n",
1918 		    device_xname(sc->sc_dev), len);
1919 		if_statinc(ifp, if_ierrors);
1920 		return;
1921 	}
1922 
1923 	plcp = (const struct zyd_plcphdr *)buf;
1924 	stat = (const struct zyd_rx_stat *)
1925 	    (buf + len - sizeof(struct zyd_rx_stat));
1926 
1927 	if (stat->flags & ZYD_RX_ERROR) {
1928 		DPRINTF(("%s: RX status indicated error (%x)\n",
1929 		    device_xname(sc->sc_dev), stat->flags));
1930 		if_statinc(ifp, if_ierrors);
1931 		return;
1932 	}
1933 
1934 	/* compute actual frame length */
1935 	rlen = len - sizeof(struct zyd_plcphdr) -
1936 	    sizeof(struct zyd_rx_stat) - IEEE80211_CRC_LEN;
1937 
1938 	/* allocate a mbuf to store the frame */
1939 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1940 	if (m == NULL) {
1941 		printf("%s: could not allocate rx mbuf\n",
1942 		    device_xname(sc->sc_dev));
1943 		if_statinc(ifp, if_ierrors);
1944 		return;
1945 	}
1946 	if (rlen > MHLEN) {
1947 		MCLGET(m, M_DONTWAIT);
1948 		if (!(m->m_flags & M_EXT)) {
1949 			printf("%s: could not allocate rx mbuf cluster\n",
1950 			    device_xname(sc->sc_dev));
1951 			m_freem(m);
1952 			if_statinc(ifp, if_ierrors);
1953 			return;
1954 		}
1955 	}
1956 	m_set_rcvif(m, ifp);
1957 	m->m_pkthdr.len = m->m_len = rlen;
1958 	memcpy(mtod(m, uint8_t *), (const uint8_t *)(plcp + 1), rlen);
1959 
1960 	s = splnet();
1961 
1962 	if (sc->sc_drvbpf != NULL) {
1963 		struct zyd_rx_radiotap_header *tap = &sc->sc_rxtap;
1964 		static const uint8_t rates[] = {
1965 			/* reverse function of zyd_plcp_signal() */
1966 			2, 4, 11, 22, 0, 0, 0, 0,
1967 			96, 48, 24, 12, 108, 72, 36, 18
1968 		};
1969 
1970 		tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
1971 		tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
1972 		tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
1973 		tap->wr_rssi = stat->rssi;
1974 		tap->wr_rate = rates[plcp->signal & 0xf];
1975 
1976 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m, BPF_D_IN);
1977 	}
1978 
1979 	wh = mtod(m, struct ieee80211_frame *);
1980 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1981 	ieee80211_input(ic, m, ni, stat->rssi, 0);
1982 
1983 	/* node is no longer needed */
1984 	ieee80211_free_node(ni);
1985 
1986 	splx(s);
1987 }
1988 
1989 Static void
zyd_rxeof(struct usbd_xfer * xfer,void * priv,usbd_status status)1990 zyd_rxeof(struct usbd_xfer *xfer, void * priv, usbd_status status)
1991 {
1992 	struct zyd_rx_data *data = priv;
1993 	struct zyd_softc *sc = data->sc;
1994 	struct ifnet *ifp = &sc->sc_if;
1995 	const struct zyd_rx_desc *desc;
1996 	int len;
1997 
1998 	if (status != USBD_NORMAL_COMPLETION) {
1999 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
2000 			return;
2001 
2002 		if (status == USBD_STALLED)
2003 			usbd_clear_endpoint_stall(sc->zyd_ep[ZYD_ENDPT_BIN]);
2004 
2005 		goto skip;
2006 	}
2007 	usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
2008 
2009 	if (len < ZYD_MIN_RXBUFSZ) {
2010 		printf("%s: xfer too short (length=%d)\n",
2011 		    device_xname(sc->sc_dev), len);
2012 		if_statinc(ifp, if_ierrors);
2013 		goto skip;
2014 	}
2015 
2016 	desc = (const struct zyd_rx_desc *)
2017 	    (data->buf + len - sizeof(struct zyd_rx_desc));
2018 
2019 	if (UGETW(desc->tag) == ZYD_TAG_MULTIFRAME) {
2020 		const uint8_t *p = data->buf, *end = p + len;
2021 		int i;
2022 
2023 		DPRINTFN(3, ("received multi-frame transfer\n"));
2024 
2025 		for (i = 0; i < ZYD_MAX_RXFRAMECNT; i++) {
2026 			const uint16_t len16 = UGETW(desc->len[i]);
2027 
2028 			if (len16 == 0 || p + len16 > end)
2029 				break;
2030 
2031 			zyd_rx_data(sc, p, len16);
2032 			/* next frame is aligned on a 32-bit boundary */
2033 			p += (len16 + 3) & ~3;
2034 		}
2035 	} else {
2036 		DPRINTFN(3, ("received single-frame transfer\n"));
2037 
2038 		zyd_rx_data(sc, data->buf, len);
2039 	}
2040 
2041 skip:	/* setup a new transfer */
2042 
2043 	usbd_setup_xfer(xfer, data, NULL, ZYX_MAX_RXBUFSZ, USBD_SHORT_XFER_OK,
2044 	    USBD_NO_TIMEOUT, zyd_rxeof);
2045 	(void)usbd_transfer(xfer);
2046 }
2047 
2048 Static int
zyd_tx_mgt(struct zyd_softc * sc,struct mbuf * m0,struct ieee80211_node * ni)2049 zyd_tx_mgt(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
2050 {
2051 	struct ieee80211com *ic = &sc->sc_ic;
2052 	struct ifnet *ifp = &sc->sc_if;
2053 	struct zyd_tx_desc *desc;
2054 	struct zyd_tx_data *data;
2055 	struct ieee80211_frame *wh;
2056 	struct ieee80211_key *k;
2057 	int xferlen, totlen, rate;
2058 	uint16_t pktlen;
2059 	usbd_status error;
2060 
2061 	data = &sc->tx_data[0];
2062 	desc = (struct zyd_tx_desc *)data->buf;
2063 
2064 	rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
2065 
2066 	wh = mtod(m0, struct ieee80211_frame *);
2067 
2068 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2069 		k = ieee80211_crypto_encap(ic, ni, m0);
2070 		if (k == NULL) {
2071 			m_freem(m0);
2072 			return ENOBUFS;
2073 		}
2074 	}
2075 
2076 	data->ni = ni;
2077 
2078 	wh = mtod(m0, struct ieee80211_frame *);
2079 
2080 	xferlen = sizeof(struct zyd_tx_desc) + m0->m_pkthdr.len;
2081 	totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
2082 
2083 	/* fill Tx descriptor */
2084 	desc->len = htole16(totlen);
2085 
2086 	desc->flags = ZYD_TX_FLAG_BACKOFF;
2087 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2088 		/* multicast frames are not sent at OFDM rates in 802.11b/g */
2089 		if (totlen > ic->ic_rtsthreshold) {
2090 			desc->flags |= ZYD_TX_FLAG_RTS;
2091 		} else if (ZYD_RATE_IS_OFDM(rate) &&
2092 		    (ic->ic_flags & IEEE80211_F_USEPROT)) {
2093 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2094 				desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF;
2095 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2096 				desc->flags |= ZYD_TX_FLAG_RTS;
2097 		}
2098 	} else
2099 		desc->flags |= ZYD_TX_FLAG_MULTICAST;
2100 
2101 	if ((wh->i_fc[0] &
2102 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2103 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL))
2104 		desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL);
2105 
2106 	desc->phy = zyd_plcp_signal(rate);
2107 	if (ZYD_RATE_IS_OFDM(rate)) {
2108 		desc->phy |= ZYD_TX_PHY_OFDM;
2109 		if (ic->ic_curmode == IEEE80211_MODE_11A)
2110 			desc->phy |= ZYD_TX_PHY_5GHZ;
2111 	} else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
2112 		desc->phy |= ZYD_TX_PHY_SHPREAMBLE;
2113 
2114 	/* actual transmit length (XXX why +10?) */
2115 	pktlen = sizeof(struct zyd_tx_desc) + 10;
2116 	if (sc->mac_rev == ZYD_ZD1211)
2117 		pktlen += totlen;
2118 	desc->pktlen = htole16(pktlen);
2119 
2120 	desc->plcp_length = (16 * totlen + rate - 1) / rate;
2121 	desc->plcp_service = 0;
2122 	if (rate == 22) {
2123 		const int remainder = (16 * totlen) % 22;
2124 		if (remainder != 0 && remainder < 7)
2125 			desc->plcp_service |= ZYD_PLCP_LENGEXT;
2126 	}
2127 
2128 	if (sc->sc_drvbpf != NULL) {
2129 		struct zyd_tx_radiotap_header *tap = &sc->sc_txtap;
2130 
2131 		tap->wt_flags = 0;
2132 		tap->wt_rate = rate;
2133 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
2134 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
2135 
2136 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0, BPF_D_OUT);
2137 	}
2138 
2139 	m_copydata(m0, 0, m0->m_pkthdr.len,
2140 	    data->buf + sizeof(struct zyd_tx_desc));
2141 
2142 	DPRINTFN(10, ("%s: sending mgt frame len=%zu rate=%u xferlen=%u\n",
2143 	    device_xname(sc->sc_dev), (size_t)m0->m_pkthdr.len, rate, xferlen));
2144 
2145 	m_freem(m0);	/* mbuf no longer needed */
2146 
2147 	usbd_setup_xfer(data->xfer, data, data->buf, xferlen,
2148 	    USBD_FORCE_SHORT_XFER, ZYD_TX_TIMEOUT, zyd_txeof);
2149 	error = usbd_transfer(data->xfer);
2150 	if (error != USBD_IN_PROGRESS && error != 0) {
2151 		if_statinc(ifp, if_oerrors);
2152 		return EIO;
2153 	}
2154 	sc->tx_queued++;
2155 
2156 	return 0;
2157 }
2158 
2159 Static void
zyd_txeof(struct usbd_xfer * xfer,void * priv,usbd_status status)2160 zyd_txeof(struct usbd_xfer *xfer, void * priv, usbd_status status)
2161 {
2162 	struct zyd_tx_data *data = priv;
2163 	struct zyd_softc *sc = data->sc;
2164 	struct ifnet *ifp = &sc->sc_if;
2165 	int s;
2166 
2167 	if (status != USBD_NORMAL_COMPLETION) {
2168 		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
2169 			return;
2170 
2171 		printf("%s: could not transmit buffer: %s\n",
2172 		    device_xname(sc->sc_dev), usbd_errstr(status));
2173 
2174 		if (status == USBD_STALLED) {
2175 			usbd_clear_endpoint_stall_async(
2176 			    sc->zyd_ep[ZYD_ENDPT_BOUT]);
2177 		}
2178 		if_statinc(ifp, if_oerrors);
2179 		return;
2180 	}
2181 
2182 	s = splnet();
2183 
2184 	/* update rate control statistics */
2185 	((struct zyd_node *)data->ni)->amn.amn_txcnt++;
2186 
2187 	ieee80211_free_node(data->ni);
2188 	data->ni = NULL;
2189 
2190 	sc->tx_queued--;
2191 	if_statinc(ifp, if_opackets);
2192 
2193 	sc->tx_timer = 0;
2194 	ifp->if_flags &= ~IFF_OACTIVE;
2195 	zyd_start(ifp);
2196 
2197 	splx(s);
2198 }
2199 
2200 Static int
zyd_tx_data(struct zyd_softc * sc,struct mbuf * m0,struct ieee80211_node * ni)2201 zyd_tx_data(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
2202 {
2203 	struct ieee80211com *ic = &sc->sc_ic;
2204 	struct ifnet *ifp = &sc->sc_if;
2205 	struct zyd_tx_desc *desc;
2206 	struct zyd_tx_data *data;
2207 	struct ieee80211_frame *wh;
2208 	struct ieee80211_key *k;
2209 	int xferlen, totlen, rate;
2210 	uint16_t pktlen;
2211 	usbd_status error;
2212 
2213 	wh = mtod(m0, struct ieee80211_frame *);
2214 
2215 	if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
2216 		rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
2217 	else
2218 		rate = ni->ni_rates.rs_rates[ni->ni_txrate];
2219 	rate &= IEEE80211_RATE_VAL;
2220 
2221 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2222 		k = ieee80211_crypto_encap(ic, ni, m0);
2223 		if (k == NULL) {
2224 			m_freem(m0);
2225 			return ENOBUFS;
2226 		}
2227 
2228 		/* packet header may have moved, reset our local pointer */
2229 		wh = mtod(m0, struct ieee80211_frame *);
2230 	}
2231 
2232 	data = &sc->tx_data[0];
2233 	desc = (struct zyd_tx_desc *)data->buf;
2234 
2235 	data->ni = ni;
2236 
2237 	xferlen = sizeof(struct zyd_tx_desc) + m0->m_pkthdr.len;
2238 	totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
2239 
2240 	/* fill Tx descriptor */
2241 	desc->len = htole16(totlen);
2242 
2243 	desc->flags = ZYD_TX_FLAG_BACKOFF;
2244 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2245 		/* multicast frames are not sent at OFDM rates in 802.11b/g */
2246 		if (totlen > ic->ic_rtsthreshold) {
2247 			desc->flags |= ZYD_TX_FLAG_RTS;
2248 		} else if (ZYD_RATE_IS_OFDM(rate) &&
2249 		    (ic->ic_flags & IEEE80211_F_USEPROT)) {
2250 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2251 				desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF;
2252 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2253 				desc->flags |= ZYD_TX_FLAG_RTS;
2254 		}
2255 	} else
2256 		desc->flags |= ZYD_TX_FLAG_MULTICAST;
2257 
2258 	if ((wh->i_fc[0] &
2259 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2260 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL))
2261 		desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL);
2262 
2263 	desc->phy = zyd_plcp_signal(rate);
2264 	if (ZYD_RATE_IS_OFDM(rate)) {
2265 		desc->phy |= ZYD_TX_PHY_OFDM;
2266 		if (ic->ic_curmode == IEEE80211_MODE_11A)
2267 			desc->phy |= ZYD_TX_PHY_5GHZ;
2268 	} else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
2269 		desc->phy |= ZYD_TX_PHY_SHPREAMBLE;
2270 
2271 	/* actual transmit length (XXX why +10?) */
2272 	pktlen = sizeof(struct zyd_tx_desc) + 10;
2273 	if (sc->mac_rev == ZYD_ZD1211)
2274 		pktlen += totlen;
2275 	desc->pktlen = htole16(pktlen);
2276 
2277 	desc->plcp_length = (16 * totlen + rate - 1) / rate;
2278 	desc->plcp_service = 0;
2279 	if (rate == 22) {
2280 		const int remainder = (16 * totlen) % 22;
2281 		if (remainder != 0 && remainder < 7)
2282 			desc->plcp_service |= ZYD_PLCP_LENGEXT;
2283 	}
2284 
2285 	if (sc->sc_drvbpf != NULL) {
2286 		struct zyd_tx_radiotap_header *tap = &sc->sc_txtap;
2287 
2288 		tap->wt_flags = 0;
2289 		tap->wt_rate = rate;
2290 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
2291 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
2292 
2293 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0, BPF_D_OUT);
2294 	}
2295 
2296 	m_copydata(m0, 0, m0->m_pkthdr.len,
2297 	    data->buf + sizeof(struct zyd_tx_desc));
2298 
2299 	DPRINTFN(10, ("%s: sending data frame len=%zu rate=%u xferlen=%u\n",
2300 	    device_xname(sc->sc_dev), (size_t)m0->m_pkthdr.len, rate, xferlen));
2301 
2302 	m_freem(m0);	/* mbuf no longer needed */
2303 
2304 	usbd_setup_xfer(data->xfer, data, data->buf, xferlen,
2305 	    USBD_FORCE_SHORT_XFER, ZYD_TX_TIMEOUT, zyd_txeof);
2306 	error = usbd_transfer(data->xfer);
2307 	if (error != USBD_IN_PROGRESS && error != 0) {
2308 		if_statinc(ifp, if_oerrors);
2309 		return EIO;
2310 	}
2311 	sc->tx_queued++;
2312 
2313 	return 0;
2314 }
2315 
2316 Static void
zyd_start(struct ifnet * ifp)2317 zyd_start(struct ifnet *ifp)
2318 {
2319 	struct zyd_softc *sc = ifp->if_softc;
2320 	struct ieee80211com *ic = &sc->sc_ic;
2321 	struct ether_header *eh;
2322 	struct ieee80211_node *ni;
2323 	struct mbuf *m0;
2324 
2325 	for (;;) {
2326 		IF_POLL(&ic->ic_mgtq, m0);
2327 		if (m0 != NULL) {
2328 			if (sc->tx_queued >= ZYD_TX_LIST_CNT) {
2329 				ifp->if_flags |= IFF_OACTIVE;
2330 				break;
2331 			}
2332 			IF_DEQUEUE(&ic->ic_mgtq, m0);
2333 
2334 			ni = M_GETCTX(m0, struct ieee80211_node *);
2335 			M_CLEARCTX(m0);
2336 			bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
2337 			if (zyd_tx_mgt(sc, m0, ni) != 0)
2338 				break;
2339 		} else {
2340 			if (ic->ic_state != IEEE80211_S_RUN)
2341 				break;
2342 			IFQ_POLL(&ifp->if_snd, m0);
2343 			if (m0 == NULL)
2344 				break;
2345 			if (sc->tx_queued >= ZYD_TX_LIST_CNT) {
2346 				ifp->if_flags |= IFF_OACTIVE;
2347 				break;
2348 			}
2349 			IFQ_DEQUEUE(&ifp->if_snd, m0);
2350 
2351 			if (m0->m_len < sizeof(struct ether_header) &&
2352 			    !(m0 = m_pullup(m0, sizeof(struct ether_header))))
2353 				continue;
2354 
2355 			eh = mtod(m0, struct ether_header *);
2356 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2357 			if (ni == NULL) {
2358 				m_freem(m0);
2359 				continue;
2360 			}
2361 			bpf_mtap(ifp, m0, BPF_D_OUT);
2362 			if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) {
2363 				ieee80211_free_node(ni);
2364 				if_statinc(ifp, if_oerrors);
2365 				continue;
2366 			}
2367 			bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
2368 			if (zyd_tx_data(sc, m0, ni) != 0) {
2369 				ieee80211_free_node(ni);
2370 				if_statinc(ifp, if_oerrors);
2371 				break;
2372 			}
2373 		}
2374 
2375 		sc->tx_timer = 5;
2376 		ifp->if_timer = 1;
2377 	}
2378 }
2379 
2380 Static void
zyd_watchdog(struct ifnet * ifp)2381 zyd_watchdog(struct ifnet *ifp)
2382 {
2383 	struct zyd_softc *sc = ifp->if_softc;
2384 	struct ieee80211com *ic = &sc->sc_ic;
2385 
2386 	ifp->if_timer = 0;
2387 
2388 	if (sc->tx_timer > 0) {
2389 		if (--sc->tx_timer == 0) {
2390 			printf("%s: device timeout\n", device_xname(sc->sc_dev));
2391 			/* zyd_init(ifp); XXX needs a process context ? */
2392 			if_statinc(ifp, if_oerrors);
2393 			return;
2394 		}
2395 		ifp->if_timer = 1;
2396 	}
2397 
2398 	ieee80211_watchdog(ic);
2399 }
2400 
2401 Static int
zyd_ioctl(struct ifnet * ifp,u_long cmd,void * data)2402 zyd_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2403 {
2404 	struct zyd_softc *sc = ifp->if_softc;
2405 	struct ieee80211com *ic = &sc->sc_ic;
2406 	int s, error = 0;
2407 
2408 	s = splnet();
2409 
2410 	switch (cmd) {
2411 	case SIOCSIFFLAGS:
2412 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
2413 			break;
2414 		/* XXX re-use ether_ioctl() */
2415 		switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
2416 		case IFF_UP:
2417 			zyd_init(ifp);
2418 			break;
2419 		case IFF_RUNNING:
2420 			zyd_stop(ifp, 1);
2421 			break;
2422 		default:
2423 			break;
2424 		}
2425 		break;
2426 
2427 	default:
2428 		error = ieee80211_ioctl(ic, cmd, data);
2429 	}
2430 
2431 	if (error == ENETRESET) {
2432 		if ((ifp->if_flags & (IFF_RUNNING | IFF_UP)) ==
2433 		    (IFF_RUNNING | IFF_UP))
2434 			zyd_init(ifp);
2435 		error = 0;
2436 	}
2437 
2438 	splx(s);
2439 
2440 	return error;
2441 }
2442 
2443 Static int
zyd_init(struct ifnet * ifp)2444 zyd_init(struct ifnet *ifp)
2445 {
2446 	struct zyd_softc *sc = ifp->if_softc;
2447 	struct ieee80211com *ic = &sc->sc_ic;
2448 	int i, error;
2449 
2450 	zyd_stop(ifp, 0);
2451 
2452 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2453 	DPRINTF(("setting MAC address to %s\n", ether_sprintf(ic->ic_myaddr)));
2454 	error = zyd_set_macaddr(sc, ic->ic_myaddr);
2455 	if (error != 0)
2456 		return error;
2457 
2458 	/* we'll do software WEP decryption for now */
2459 	DPRINTF(("setting encryption type\n"));
2460 	error = zyd_write32(sc, ZYD_MAC_ENCRYPTION_TYPE, ZYD_ENC_SNIFFER);
2461 	if (error != 0)
2462 		return error;
2463 
2464 	/* promiscuous mode */
2465 	(void)zyd_write32(sc, ZYD_MAC_SNIFFER,
2466 	    (ic->ic_opmode == IEEE80211_M_MONITOR) ? 1 : 0);
2467 
2468 	(void)zyd_set_rxfilter(sc);
2469 
2470 	/* switch radio transmitter ON */
2471 	(void)zyd_switch_radio(sc, 1);
2472 
2473 	/* set basic rates */
2474 	if (ic->ic_curmode == IEEE80211_MODE_11B)
2475 		(void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x0003);
2476 	else if (ic->ic_curmode == IEEE80211_MODE_11A)
2477 		(void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x1500);
2478 	else	/* assumes 802.11b/g */
2479 		(void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x000f);
2480 
2481 	/* set mandatory rates */
2482 	if (ic->ic_curmode == IEEE80211_MODE_11B)
2483 		(void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x000f);
2484 	else if (ic->ic_curmode == IEEE80211_MODE_11A)
2485 		(void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x1500);
2486 	else	/* assumes 802.11b/g */
2487 		(void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x150f);
2488 
2489 	/* set default BSS channel */
2490 	ic->ic_bss->ni_chan = ic->ic_ibss_chan;
2491 	zyd_set_chan(sc, ic->ic_bss->ni_chan);
2492 
2493 	/* enable interrupts */
2494 	(void)zyd_write32(sc, ZYD_CR_INTERRUPT, ZYD_HWINT_MASK);
2495 
2496 	/*
2497 	 * Allocate Tx and Rx xfer queues.
2498 	 */
2499 	if ((error = zyd_alloc_tx_list(sc)) != 0) {
2500 		printf("%s: could not allocate Tx list\n",
2501 		    device_xname(sc->sc_dev));
2502 		goto fail;
2503 	}
2504 	if ((error = zyd_alloc_rx_list(sc)) != 0) {
2505 		printf("%s: could not allocate Rx list\n",
2506 		    device_xname(sc->sc_dev));
2507 		goto fail;
2508 	}
2509 
2510 	/*
2511 	 * Start up the receive pipe.
2512 	 */
2513 	for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
2514 		struct zyd_rx_data *data = &sc->rx_data[i];
2515 
2516 		usbd_setup_xfer(data->xfer, data, NULL, ZYX_MAX_RXBUFSZ,
2517 		    USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, zyd_rxeof);
2518 		error = usbd_transfer(data->xfer);
2519 		if (error != USBD_IN_PROGRESS && error != 0) {
2520 			printf("%s: could not queue Rx transfer\n",
2521 			    device_xname(sc->sc_dev));
2522 			goto fail;
2523 		}
2524 	}
2525 
2526 	ifp->if_flags &= ~IFF_OACTIVE;
2527 	ifp->if_flags |= IFF_RUNNING;
2528 
2529 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
2530 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2531 	else
2532 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2533 
2534 	return 0;
2535 
2536 fail:	zyd_stop(ifp, 1);
2537 	return error;
2538 }
2539 
2540 Static void
zyd_stop(struct ifnet * ifp,int disable)2541 zyd_stop(struct ifnet *ifp, int disable)
2542 {
2543 	struct zyd_softc *sc = ifp->if_softc;
2544 	struct ieee80211com *ic = &sc->sc_ic;
2545 
2546 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);	/* free all nodes */
2547 
2548 	sc->tx_timer = 0;
2549 	ifp->if_timer = 0;
2550 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2551 
2552 	/* switch radio transmitter OFF */
2553 	(void)zyd_switch_radio(sc, 0);
2554 
2555 	/* disable Rx */
2556 	(void)zyd_write32(sc, ZYD_MAC_RXFILTER, 0);
2557 
2558 	/* disable interrupts */
2559 	(void)zyd_write32(sc, ZYD_CR_INTERRUPT, 0);
2560 
2561 	usbd_abort_pipe(sc->zyd_ep[ZYD_ENDPT_BIN]);
2562 	usbd_abort_pipe(sc->zyd_ep[ZYD_ENDPT_BOUT]);
2563 
2564 	zyd_free_rx_list(sc);
2565 	zyd_free_tx_list(sc);
2566 }
2567 
2568 Static int
zyd_loadfirmware(struct zyd_softc * sc,u_char * fw,size_t size)2569 zyd_loadfirmware(struct zyd_softc *sc, u_char *fw, size_t size)
2570 {
2571 	usb_device_request_t req;
2572 	uint16_t addr;
2573 	uint8_t stat;
2574 
2575 	DPRINTF(("firmware size=%zu\n", size));
2576 
2577 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2578 	req.bRequest = ZYD_DOWNLOADREQ;
2579 	USETW(req.wIndex, 0);
2580 
2581 	addr = ZYD_FIRMWARE_START_ADDR;
2582 	while (size > 0) {
2583 #if 0
2584 		const int mlen = uimin(size, 4096);
2585 #else
2586 		/*
2587 		 * XXXX: When the transfer size is 4096 bytes, it is not
2588 		 * likely to be able to transfer it.
2589 		 * The cause is port or machine or chip?
2590 		 */
2591 		const int mlen = uimin(size, 64);
2592 #endif
2593 
2594 		DPRINTF(("loading firmware block: len=%d, addr=%#x\n", mlen,
2595 		    addr));
2596 
2597 		USETW(req.wValue, addr);
2598 		USETW(req.wLength, mlen);
2599 		if (usbd_do_request(sc->sc_udev, &req, fw) != 0)
2600 			return EIO;
2601 
2602 		addr += mlen / 2;
2603 		fw   += mlen;
2604 		size -= mlen;
2605 	}
2606 
2607 	/* check whether the upload succeeded */
2608 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
2609 	req.bRequest = ZYD_DOWNLOADSTS;
2610 	USETW(req.wValue, 0);
2611 	USETW(req.wIndex, 0);
2612 	USETW(req.wLength, sizeof(stat));
2613 	if (usbd_do_request(sc->sc_udev, &req, &stat) != 0)
2614 		return EIO;
2615 
2616 	return (stat & 0x80) ? EIO : 0;
2617 }
2618 
2619 Static void
zyd_iter_func(void * arg,struct ieee80211_node * ni)2620 zyd_iter_func(void *arg, struct ieee80211_node *ni)
2621 {
2622 	struct zyd_softc *sc = arg;
2623 	struct zyd_node *zn = (struct zyd_node *)ni;
2624 
2625 	ieee80211_amrr_choose(&sc->amrr, ni, &zn->amn);
2626 }
2627 
2628 Static void
zyd_amrr_timeout(void * arg)2629 zyd_amrr_timeout(void *arg)
2630 {
2631 	struct zyd_softc *sc = arg;
2632 	struct ieee80211com *ic = &sc->sc_ic;
2633 	int s;
2634 
2635 	s = splnet();
2636 	if (ic->ic_opmode == IEEE80211_M_STA)
2637 		zyd_iter_func(sc, ic->ic_bss);
2638 	else
2639 		ieee80211_iterate_nodes(&ic->ic_sta, zyd_iter_func, sc);
2640 	splx(s);
2641 
2642 	callout_reset(&sc->sc_amrr_ch, hz, zyd_amrr_timeout, sc);
2643 }
2644 
2645 Static void
zyd_newassoc(struct ieee80211_node * ni,int isnew)2646 zyd_newassoc(struct ieee80211_node *ni, int isnew)
2647 {
2648 	struct zyd_softc *sc = ni->ni_ic->ic_ifp->if_softc;
2649 	int i;
2650 
2651 	ieee80211_amrr_node_init(&sc->amrr, &((struct zyd_node *)ni)->amn);
2652 
2653 	/* set rate to some reasonable initial value */
2654 	for (i = ni->ni_rates.rs_nrates - 1;
2655 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2656 	     i--);
2657 	ni->ni_txrate = i;
2658 }
2659 
2660 static int
zyd_activate(device_t self,enum devact act)2661 zyd_activate(device_t self, enum devact act)
2662 {
2663 	struct zyd_softc *sc = device_private(self);
2664 
2665 	switch (act) {
2666 	case DVACT_DEACTIVATE:
2667 		if_deactivate(&sc->sc_if);
2668 		return 0;
2669 	default:
2670 		return EOPNOTSUPP;
2671 	}
2672 }
2673