1 /* $OpenBSD: if_zyd.c,v 1.52 2007/02/11 00:08:04 jsg Exp $ */
2 /* $NetBSD: if_zyd.c,v 1.61 2024/02/09 22:08:37 andvar Exp $ */
3
4 /*-
5 * Copyright (c) 2006 by Damien Bergamini <damien.bergamini@free.fr>
6 * Copyright (c) 2006 by Florian Stoehr <ich@florian-stoehr.de>
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21 /*-
22 * ZyDAS ZD1211/ZD1211B USB WLAN driver.
23 */
24
25 #include <sys/cdefs.h>
26 __KERNEL_RCSID(0, "$NetBSD: if_zyd.c,v 1.61 2024/02/09 22:08:37 andvar Exp $");
27
28 #ifdef _KERNEL_OPT
29 #include "opt_usb.h"
30 #endif
31
32 #include <sys/param.h>
33 #include <sys/sockio.h>
34 #include <sys/proc.h>
35 #include <sys/mbuf.h>
36 #include <sys/kernel.h>
37 #include <sys/kmem.h>
38 #include <sys/socket.h>
39 #include <sys/systm.h>
40 #include <sys/malloc.h>
41 #include <sys/conf.h>
42 #include <sys/device.h>
43
44 #include <sys/bus.h>
45 #include <machine/endian.h>
46
47 #include <net/bpf.h>
48 #include <net/if.h>
49 #include <net/if_arp.h>
50 #include <net/if_dl.h>
51 #include <net/if_ether.h>
52 #include <net/if_media.h>
53 #include <net/if_types.h>
54
55 #include <netinet/in.h>
56 #include <netinet/in_systm.h>
57 #include <netinet/in_var.h>
58 #include <netinet/ip.h>
59
60 #include <net80211/ieee80211_netbsd.h>
61 #include <net80211/ieee80211_var.h>
62 #include <net80211/ieee80211_amrr.h>
63 #include <net80211/ieee80211_radiotap.h>
64
65 #include <dev/firmload.h>
66
67 #include <dev/usb/usb.h>
68 #include <dev/usb/usbdi.h>
69 #include <dev/usb/usbdi_util.h>
70 #include <dev/usb/usbdevs.h>
71
72 #include <dev/usb/if_zydreg.h>
73
74 #ifdef ZYD_DEBUG
75 #define DPRINTF(x) do { if (zyddebug > 0) printf x; } while (0)
76 #define DPRINTFN(n, x) do { if (zyddebug > (n)) printf x; } while (0)
77 int zyddebug = 0;
78 #else
79 #define DPRINTF(x)
80 #define DPRINTFN(n, x)
81 #endif
82
83 static const struct zyd_phy_pair zyd_def_phy[] = ZYD_DEF_PHY;
84 static const struct zyd_phy_pair zyd_def_phyB[] = ZYD_DEF_PHYB;
85
86 /* various supported device vendors/products */
87 #define ZYD_ZD1211_DEV(v, p) \
88 { { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, ZYD_ZD1211 }
89 #define ZYD_ZD1211B_DEV(v, p) \
90 { { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, ZYD_ZD1211B }
91 static const struct zyd_type {
92 struct usb_devno dev;
93 uint8_t rev;
94 #define ZYD_ZD1211 0
95 #define ZYD_ZD1211B 1
96 } zyd_devs[] = {
97 ZYD_ZD1211_DEV(3COM2, 3CRUSB10075),
98 ZYD_ZD1211_DEV(ABOCOM, WL54),
99 ZYD_ZD1211_DEV(ASUSTEK, WL159G),
100 ZYD_ZD1211_DEV(CYBERTAN, TG54USB),
101 ZYD_ZD1211_DEV(DRAYTEK, VIGOR550),
102 ZYD_ZD1211_DEV(PLANEX2, GWUS54GD),
103 ZYD_ZD1211_DEV(PLANEX2, GWUS54GZL),
104 ZYD_ZD1211_DEV(PLANEX3, GWUS54GZ),
105 ZYD_ZD1211_DEV(PLANEX3, GWUS54MINI),
106 ZYD_ZD1211_DEV(SAGEM, XG760A),
107 ZYD_ZD1211_DEV(SENAO, NUB8301),
108 ZYD_ZD1211_DEV(SITECOMEU, WL113),
109 ZYD_ZD1211_DEV(SWEEX, ZD1211),
110 ZYD_ZD1211_DEV(TEKRAM, QUICKWLAN),
111 ZYD_ZD1211_DEV(TEKRAM, ZD1211_1),
112 ZYD_ZD1211_DEV(TEKRAM, ZD1211_2),
113 ZYD_ZD1211_DEV(TWINMOS, G240),
114 ZYD_ZD1211_DEV(UMEDIA, ALL0298V2),
115 ZYD_ZD1211_DEV(UMEDIA, TEW429UB_A),
116 ZYD_ZD1211_DEV(UMEDIA, TEW429UB),
117 ZYD_ZD1211_DEV(WISTRONNEWEB, UR055G),
118 ZYD_ZD1211_DEV(ZCOM, ZD1211),
119 ZYD_ZD1211_DEV(ZYDAS, ZD1211),
120 ZYD_ZD1211_DEV(ZYXEL, AG225H),
121 ZYD_ZD1211_DEV(ZYXEL, ZYAIRG220),
122 ZYD_ZD1211_DEV(ZYXEL, G200V2),
123
124 ZYD_ZD1211B_DEV(ACCTON, SMCWUSBG),
125 ZYD_ZD1211B_DEV(ACCTON, WN4501H_LF_IR),
126 ZYD_ZD1211B_DEV(ACCTON, WUS201),
127 ZYD_ZD1211B_DEV(ACCTON, ZD1211B),
128 ZYD_ZD1211B_DEV(ASUSTEK, A9T_WIFI),
129 ZYD_ZD1211B_DEV(BELKIN, F5D7050C),
130 ZYD_ZD1211B_DEV(BELKIN, ZD1211B),
131 ZYD_ZD1211B_DEV(BEWAN, BWIFI_USB54AR),
132 ZYD_ZD1211B_DEV(CISCOLINKSYS, WUSBF54G),
133 ZYD_ZD1211B_DEV(CYBERTAN, ZD1211B),
134 ZYD_ZD1211B_DEV(FIBERLINE, WL430U),
135 ZYD_ZD1211B_DEV(MELCO, KG54L),
136 ZYD_ZD1211B_DEV(PHILIPS, SNU5600),
137 ZYD_ZD1211B_DEV(PHILIPS, SNU5630NS05),
138 ZYD_ZD1211B_DEV(PLANEX2, GWUS54GXS),
139 ZYD_ZD1211B_DEV(SAGEM, XG76NA),
140 ZYD_ZD1211B_DEV(SITECOMEU, WL603),
141 ZYD_ZD1211B_DEV(SITECOMEU, ZD1211B),
142 ZYD_ZD1211B_DEV(SONY, IFU_WLM2),
143 ZYD_ZD1211B_DEV(UMEDIA, TEW429UBC1),
144 ZYD_ZD1211B_DEV(UNKNOWN1, ZD1211B),
145 ZYD_ZD1211B_DEV(UNKNOWN2, ZD1211B),
146 ZYD_ZD1211B_DEV(UNKNOWN3, ZD1211B),
147 ZYD_ZD1211B_DEV(USR, USR5423),
148 ZYD_ZD1211B_DEV(VTECH, ZD1211B),
149 ZYD_ZD1211B_DEV(ZCOM, ZD1211B),
150 ZYD_ZD1211B_DEV(ZYDAS, ZD1211B),
151 ZYD_ZD1211B_DEV(ZYDAS, ZD1211B_2),
152 ZYD_ZD1211B_DEV(ZYXEL, M202),
153 ZYD_ZD1211B_DEV(ZYXEL, G220V2),
154 };
155 #define zyd_lookup(v, p) \
156 ((const struct zyd_type *)usb_lookup(zyd_devs, v, p))
157
158 static int zyd_match(device_t, cfdata_t, void *);
159 static void zyd_attach(device_t, device_t, void *);
160 static int zyd_detach(device_t, int);
161 static int zyd_activate(device_t, enum devact);
162
163
164 CFATTACH_DECL_NEW(zyd, sizeof(struct zyd_softc), zyd_match,
165 zyd_attach, zyd_detach, zyd_activate);
166
167 Static void zyd_attachhook(device_t);
168 Static int zyd_complete_attach(struct zyd_softc *);
169 Static int zyd_open_pipes(struct zyd_softc *);
170 Static void zyd_close_pipes(struct zyd_softc *);
171 Static int zyd_alloc_tx_list(struct zyd_softc *);
172 Static void zyd_free_tx_list(struct zyd_softc *);
173 Static int zyd_alloc_rx_list(struct zyd_softc *);
174 Static void zyd_free_rx_list(struct zyd_softc *);
175 Static struct ieee80211_node *zyd_node_alloc(struct ieee80211_node_table *);
176 Static int zyd_media_change(struct ifnet *);
177 Static void zyd_next_scan(void *);
178 Static void zyd_task(void *);
179 Static int zyd_newstate(struct ieee80211com *, enum ieee80211_state, int);
180 Static int zyd_cmd(struct zyd_softc *, uint16_t, const void *, int,
181 void *, int, u_int);
182 Static int zyd_read16(struct zyd_softc *, uint16_t, uint16_t *);
183 Static int zyd_read32(struct zyd_softc *, uint16_t, uint32_t *);
184 Static int zyd_write16(struct zyd_softc *, uint16_t, uint16_t);
185 Static int zyd_write32(struct zyd_softc *, uint16_t, uint32_t);
186 Static int zyd_rfwrite(struct zyd_softc *, uint32_t);
187 Static void zyd_lock_phy(struct zyd_softc *);
188 Static void zyd_unlock_phy(struct zyd_softc *);
189 Static int zyd_rfmd_init(struct zyd_rf *);
190 Static int zyd_rfmd_switch_radio(struct zyd_rf *, int);
191 Static int zyd_rfmd_set_channel(struct zyd_rf *, uint8_t);
192 Static int zyd_al2230_init(struct zyd_rf *);
193 Static int zyd_al2230_switch_radio(struct zyd_rf *, int);
194 Static int zyd_al2230_set_channel(struct zyd_rf *, uint8_t);
195 Static int zyd_al2230_init_b(struct zyd_rf *);
196 Static int zyd_al7230B_init(struct zyd_rf *);
197 Static int zyd_al7230B_switch_radio(struct zyd_rf *, int);
198 Static int zyd_al7230B_set_channel(struct zyd_rf *, uint8_t);
199 Static int zyd_al2210_init(struct zyd_rf *);
200 Static int zyd_al2210_switch_radio(struct zyd_rf *, int);
201 Static int zyd_al2210_set_channel(struct zyd_rf *, uint8_t);
202 Static int zyd_gct_init(struct zyd_rf *);
203 Static int zyd_gct_switch_radio(struct zyd_rf *, int);
204 Static int zyd_gct_set_channel(struct zyd_rf *, uint8_t);
205 Static int zyd_maxim_init(struct zyd_rf *);
206 Static int zyd_maxim_switch_radio(struct zyd_rf *, int);
207 Static int zyd_maxim_set_channel(struct zyd_rf *, uint8_t);
208 Static int zyd_maxim2_init(struct zyd_rf *);
209 Static int zyd_maxim2_switch_radio(struct zyd_rf *, int);
210 Static int zyd_maxim2_set_channel(struct zyd_rf *, uint8_t);
211 Static int zyd_rf_attach(struct zyd_softc *, uint8_t);
212 Static const char *zyd_rf_name(uint8_t);
213 Static int zyd_hw_init(struct zyd_softc *);
214 Static int zyd_read_eeprom(struct zyd_softc *);
215 Static int zyd_set_macaddr(struct zyd_softc *, const uint8_t *);
216 Static int zyd_set_bssid(struct zyd_softc *, const uint8_t *);
217 Static int zyd_switch_radio(struct zyd_softc *, int);
218 Static void zyd_set_led(struct zyd_softc *, int, int);
219 Static int zyd_set_rxfilter(struct zyd_softc *);
220 Static void zyd_set_chan(struct zyd_softc *, struct ieee80211_channel *);
221 Static int zyd_set_beacon_interval(struct zyd_softc *, int);
222 Static uint8_t zyd_plcp_signal(int);
223 Static void zyd_intr(struct usbd_xfer *, void *, usbd_status);
224 Static void zyd_rx_data(struct zyd_softc *, const uint8_t *, uint16_t);
225 Static void zyd_rxeof(struct usbd_xfer *, void *, usbd_status);
226 Static void zyd_txeof(struct usbd_xfer *, void *, usbd_status);
227 Static int zyd_tx_mgt(struct zyd_softc *, struct mbuf *,
228 struct ieee80211_node *);
229 Static int zyd_tx_data(struct zyd_softc *, struct mbuf *,
230 struct ieee80211_node *);
231 Static void zyd_start(struct ifnet *);
232 Static void zyd_watchdog(struct ifnet *);
233 Static int zyd_ioctl(struct ifnet *, u_long, void *);
234 Static int zyd_init(struct ifnet *);
235 Static void zyd_stop(struct ifnet *, int);
236 Static int zyd_loadfirmware(struct zyd_softc *, u_char *, size_t);
237 Static void zyd_iter_func(void *, struct ieee80211_node *);
238 Static void zyd_amrr_timeout(void *);
239 Static void zyd_newassoc(struct ieee80211_node *, int);
240
241 static int
zyd_match(device_t parent,cfdata_t match,void * aux)242 zyd_match(device_t parent, cfdata_t match, void *aux)
243 {
244 struct usb_attach_arg *uaa = aux;
245
246 return (zyd_lookup(uaa->uaa_vendor, uaa->uaa_product) != NULL) ?
247 UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
248 }
249
250 Static void
zyd_attachhook(device_t self)251 zyd_attachhook(device_t self)
252 {
253 struct zyd_softc *sc = device_private(self);
254 firmware_handle_t fwh;
255 const char *fwname;
256 u_char *fw;
257 size_t size;
258 int error;
259
260 fwname = (sc->mac_rev == ZYD_ZD1211) ? "zyd-zd1211" : "zyd-zd1211b";
261 if ((error = firmware_open("zyd", fwname, &fwh)) != 0) {
262 aprint_error_dev(sc->sc_dev,
263 "failed to open firmware %s (error=%d)\n", fwname, error);
264 return;
265 }
266 size = firmware_get_size(fwh);
267 fw = firmware_malloc(size);
268 if (fw == NULL) {
269 aprint_error_dev(sc->sc_dev,
270 "failed to allocate firmware memory\n");
271 firmware_close(fwh);
272 return;
273 }
274 error = firmware_read(fwh, 0, fw, size);
275 firmware_close(fwh);
276 if (error != 0) {
277 aprint_error_dev(sc->sc_dev,
278 "failed to read firmware (error %d)\n", error);
279 firmware_free(fw, size);
280 return;
281 }
282
283 error = zyd_loadfirmware(sc, fw, size);
284 if (error != 0) {
285 aprint_error_dev(sc->sc_dev,
286 "could not load firmware (error=%d)\n", error);
287 firmware_free(fw, size);
288 return;
289 }
290
291 firmware_free(fw, size);
292
293 /* complete the attach process */
294 if ((error = zyd_complete_attach(sc)) == 0)
295 sc->attached = 1;
296 return;
297 }
298
299 static void
zyd_attach(device_t parent,device_t self,void * aux)300 zyd_attach(device_t parent, device_t self, void *aux)
301 {
302 struct zyd_softc *sc = device_private(self);
303 struct usb_attach_arg *uaa = aux;
304 char *devinfop;
305 usb_device_descriptor_t* ddesc;
306 struct ifnet *ifp = &sc->sc_if;
307
308 sc->sc_dev = self;
309 sc->sc_udev = uaa->uaa_device;
310
311 aprint_naive("\n");
312 aprint_normal("\n");
313
314 devinfop = usbd_devinfo_alloc(uaa->uaa_device, 0);
315 aprint_normal_dev(self, "%s\n", devinfop);
316 usbd_devinfo_free(devinfop);
317
318 sc->mac_rev = zyd_lookup(uaa->uaa_vendor, uaa->uaa_product)->rev;
319
320 ddesc = usbd_get_device_descriptor(sc->sc_udev);
321 if (UGETW(ddesc->bcdDevice) < 0x4330) {
322 aprint_error_dev(self, "device version mismatch: %#x "
323 "(only >= 43.30 supported)\n", UGETW(ddesc->bcdDevice));
324 return;
325 }
326
327 ifp->if_softc = sc;
328 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
329 ifp->if_init = zyd_init;
330 ifp->if_ioctl = zyd_ioctl;
331 ifp->if_start = zyd_start;
332 ifp->if_watchdog = zyd_watchdog;
333 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
334 IFQ_SET_READY(&ifp->if_snd);
335 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
336
337 mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_SOFTUSB);
338 cv_init(&sc->sc_cmdcv, "zydcmd");
339 SIMPLEQ_INIT(&sc->sc_rqh);
340
341 /* defer configuration after file system is ready to load firmware */
342 config_mountroot(self, zyd_attachhook);
343 }
344
345 Static int
zyd_complete_attach(struct zyd_softc * sc)346 zyd_complete_attach(struct zyd_softc *sc)
347 {
348 struct ieee80211com *ic = &sc->sc_ic;
349 struct ifnet *ifp = &sc->sc_if;
350 usbd_status error;
351 int i;
352
353 usb_init_task(&sc->sc_task, zyd_task, sc, 0);
354 callout_init(&(sc->sc_scan_ch), 0);
355
356 sc->amrr.amrr_min_success_threshold = 1;
357 sc->amrr.amrr_max_success_threshold = 10;
358 callout_init(&sc->sc_amrr_ch, 0);
359
360 error = usbd_set_config_no(sc->sc_udev, ZYD_CONFIG_NO, 1);
361 if (error != 0) {
362 aprint_error_dev(sc->sc_dev, "failed to set configuration"
363 ", err=%s\n", usbd_errstr(error));
364 goto fail;
365 }
366
367 error = usbd_device2interface_handle(sc->sc_udev, ZYD_IFACE_INDEX,
368 &sc->sc_iface);
369 if (error != 0) {
370 aprint_error_dev(sc->sc_dev,
371 "getting interface handle failed\n");
372 goto fail;
373 }
374
375 if ((error = zyd_open_pipes(sc)) != 0) {
376 aprint_error_dev(sc->sc_dev, "could not open pipes\n");
377 goto fail;
378 }
379
380 if ((error = zyd_read_eeprom(sc)) != 0) {
381 aprint_error_dev(sc->sc_dev, "could not read EEPROM\n");
382 goto fail;
383 }
384
385 if ((error = zyd_rf_attach(sc, sc->rf_rev)) != 0) {
386 aprint_error_dev(sc->sc_dev, "could not attach RF\n");
387 goto fail;
388 }
389
390 if ((error = zyd_hw_init(sc)) != 0) {
391 aprint_error_dev(sc->sc_dev,
392 "hardware initialization failed\n");
393 goto fail;
394 }
395
396 aprint_normal_dev(sc->sc_dev,
397 "HMAC ZD1211%s, FW %02x.%02x, RF %s, PA %x, address %s\n",
398 (sc->mac_rev == ZYD_ZD1211) ? "": "B",
399 sc->fw_rev >> 8, sc->fw_rev & 0xff, zyd_rf_name(sc->rf_rev),
400 sc->pa_rev, ether_sprintf(ic->ic_myaddr));
401
402 ic->ic_ifp = ifp;
403 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
404 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
405 ic->ic_state = IEEE80211_S_INIT;
406
407 /* set device capabilities */
408 ic->ic_caps =
409 IEEE80211_C_MONITOR | /* monitor mode supported */
410 IEEE80211_C_TXPMGT | /* tx power management */
411 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
412 IEEE80211_C_WEP; /* s/w WEP */
413
414 /* set supported .11b and .11g rates */
415 ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
416 ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
417
418 /* set supported .11b and .11g channels (1 through 14) */
419 for (i = 1; i <= 14; i++) {
420 ic->ic_channels[i].ic_freq =
421 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
422 ic->ic_channels[i].ic_flags =
423 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
424 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
425 }
426
427 if_attach(ifp);
428 ieee80211_ifattach(ic);
429 ic->ic_node_alloc = zyd_node_alloc;
430 ic->ic_newassoc = zyd_newassoc;
431
432 /* override state transition machine */
433 sc->sc_newstate = ic->ic_newstate;
434 ic->ic_newstate = zyd_newstate;
435
436 /* XXX media locking needs revisiting */
437 mutex_init(&sc->sc_media_mtx, MUTEX_DEFAULT, IPL_SOFTUSB);
438 ieee80211_media_init_with_lock(ic,
439 zyd_media_change, ieee80211_media_status, &sc->sc_media_mtx);
440
441 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
442 sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
443 &sc->sc_drvbpf);
444
445 sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
446 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
447 sc->sc_rxtap.wr_ihdr.it_present = htole32(ZYD_RX_RADIOTAP_PRESENT);
448
449 sc->sc_txtap_len = sizeof(sc->sc_txtapu);
450 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
451 sc->sc_txtap.wt_ihdr.it_present = htole32(ZYD_TX_RADIOTAP_PRESENT);
452
453 ieee80211_announce(ic);
454
455 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
456
457 fail: return error;
458 }
459
460 static int
zyd_detach(device_t self,int flags)461 zyd_detach(device_t self, int flags)
462 {
463 struct zyd_softc *sc = device_private(self);
464 struct ieee80211com *ic = &sc->sc_ic;
465 struct ifnet *ifp = &sc->sc_if;
466
467 if (!sc->attached)
468 return 0;
469
470 mutex_enter(&sc->sc_lock);
471
472 zyd_stop(ifp, 1);
473 callout_halt(&sc->sc_scan_ch, NULL);
474 callout_halt(&sc->sc_amrr_ch, NULL);
475 usb_rem_task_wait(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER, NULL);
476
477 /* Abort, etc. done by zyd_stop */
478 zyd_close_pipes(sc);
479
480 sc->attached = 0;
481
482 bpf_detach(ifp);
483 ieee80211_ifdetach(ic);
484 if_detach(ifp);
485
486 mutex_exit(&sc->sc_lock);
487
488 mutex_destroy(&sc->sc_lock);
489 cv_destroy(&sc->sc_cmdcv);
490
491 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
492
493 return 0;
494 }
495
496 Static int
zyd_open_pipes(struct zyd_softc * sc)497 zyd_open_pipes(struct zyd_softc *sc)
498 {
499 usb_endpoint_descriptor_t *edesc;
500 usbd_status error;
501
502 /* interrupt in */
503 edesc = usbd_get_endpoint_descriptor(sc->sc_iface, 0x83);
504 if (edesc == NULL)
505 return EINVAL;
506
507 sc->ibuf_size = UGETW(edesc->wMaxPacketSize);
508 if (sc->ibuf_size == 0) /* should not happen */
509 return EINVAL;
510
511 sc->ibuf = kmem_alloc(sc->ibuf_size, KM_SLEEP);
512
513 error = usbd_open_pipe_intr(sc->sc_iface, 0x83, USBD_SHORT_XFER_OK,
514 &sc->zyd_ep[ZYD_ENDPT_IIN], sc, sc->ibuf, sc->ibuf_size, zyd_intr,
515 USBD_DEFAULT_INTERVAL);
516 if (error != 0) {
517 printf("%s: open rx intr pipe failed: %s\n",
518 device_xname(sc->sc_dev), usbd_errstr(error));
519 goto fail;
520 }
521
522 /* interrupt out (not necessarily an interrupt pipe) */
523 error = usbd_open_pipe(sc->sc_iface, 0x04, USBD_EXCLUSIVE_USE,
524 &sc->zyd_ep[ZYD_ENDPT_IOUT]);
525 if (error != 0) {
526 printf("%s: open tx intr pipe failed: %s\n",
527 device_xname(sc->sc_dev), usbd_errstr(error));
528 goto fail;
529 }
530
531 /* bulk in */
532 error = usbd_open_pipe(sc->sc_iface, 0x82, USBD_EXCLUSIVE_USE,
533 &sc->zyd_ep[ZYD_ENDPT_BIN]);
534 if (error != 0) {
535 printf("%s: open rx pipe failed: %s\n",
536 device_xname(sc->sc_dev), usbd_errstr(error));
537 goto fail;
538 }
539
540 /* bulk out */
541 error = usbd_open_pipe(sc->sc_iface, 0x01, USBD_EXCLUSIVE_USE,
542 &sc->zyd_ep[ZYD_ENDPT_BOUT]);
543 if (error != 0) {
544 printf("%s: open tx pipe failed: %s\n",
545 device_xname(sc->sc_dev), usbd_errstr(error));
546 goto fail;
547 }
548
549 return 0;
550
551 fail: zyd_close_pipes(sc);
552 return error;
553 }
554
555 Static void
zyd_close_pipes(struct zyd_softc * sc)556 zyd_close_pipes(struct zyd_softc *sc)
557 {
558 int i;
559
560 for (i = 0; i < ZYD_ENDPT_CNT; i++) {
561 if (sc->zyd_ep[i] != NULL) {
562 usbd_close_pipe(sc->zyd_ep[i]);
563 sc->zyd_ep[i] = NULL;
564 }
565 }
566 if (sc->ibuf != NULL) {
567 kmem_free(sc->ibuf, sc->ibuf_size);
568 sc->ibuf = NULL;
569 }
570 }
571
572 Static int
zyd_alloc_tx_list(struct zyd_softc * sc)573 zyd_alloc_tx_list(struct zyd_softc *sc)
574 {
575 int i, error;
576
577 sc->tx_queued = 0;
578
579 for (i = 0; i < ZYD_TX_LIST_CNT; i++) {
580 struct zyd_tx_data *data = &sc->tx_data[i];
581
582 data->sc = sc; /* backpointer for callbacks */
583
584 error = usbd_create_xfer(sc->zyd_ep[ZYD_ENDPT_BOUT],
585 ZYD_MAX_TXBUFSZ, USBD_FORCE_SHORT_XFER, 0, &data->xfer);
586 if (error) {
587 printf("%s: could not allocate tx xfer\n",
588 device_xname(sc->sc_dev));
589 goto fail;
590 }
591 data->buf = usbd_get_buffer(data->xfer);
592
593 /* clear Tx descriptor */
594 memset(data->buf, 0, sizeof(struct zyd_tx_desc));
595 }
596 return 0;
597
598 fail: zyd_free_tx_list(sc);
599 return error;
600 }
601
602 Static void
zyd_free_tx_list(struct zyd_softc * sc)603 zyd_free_tx_list(struct zyd_softc *sc)
604 {
605 int i;
606
607 for (i = 0; i < ZYD_TX_LIST_CNT; i++) {
608 struct zyd_tx_data *data = &sc->tx_data[i];
609
610 if (data->xfer != NULL) {
611 usbd_destroy_xfer(data->xfer);
612 data->xfer = NULL;
613 }
614 if (data->ni != NULL) {
615 ieee80211_free_node(data->ni);
616 data->ni = NULL;
617 }
618 }
619 }
620
621 Static int
zyd_alloc_rx_list(struct zyd_softc * sc)622 zyd_alloc_rx_list(struct zyd_softc *sc)
623 {
624 int i, error;
625
626 for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
627 struct zyd_rx_data *data = &sc->rx_data[i];
628
629 data->sc = sc; /* backpointer for callbacks */
630
631 error = usbd_create_xfer(sc->zyd_ep[ZYD_ENDPT_BIN],
632 ZYX_MAX_RXBUFSZ, 0, 0, &data->xfer);
633 if (error) {
634 printf("%s: could not allocate rx xfer\n",
635 device_xname(sc->sc_dev));
636 goto fail;
637 }
638 data->buf = usbd_get_buffer(data->xfer);
639 }
640 return 0;
641
642 fail: zyd_free_rx_list(sc);
643 return error;
644 }
645
646 Static void
zyd_free_rx_list(struct zyd_softc * sc)647 zyd_free_rx_list(struct zyd_softc *sc)
648 {
649 int i;
650
651 for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
652 struct zyd_rx_data *data = &sc->rx_data[i];
653
654 if (data->xfer != NULL) {
655 usbd_destroy_xfer(data->xfer);
656 data->xfer = NULL;
657 }
658 }
659 }
660
661 /* ARGUSED */
662 Static struct ieee80211_node *
zyd_node_alloc(struct ieee80211_node_table * nt __unused)663 zyd_node_alloc(struct ieee80211_node_table *nt __unused)
664 {
665 struct zyd_node *zn;
666
667 zn = malloc(sizeof(struct zyd_node), M_80211_NODE, M_NOWAIT | M_ZERO);
668 return zn ? &zn->ni : NULL;
669 }
670
671 Static int
zyd_media_change(struct ifnet * ifp)672 zyd_media_change(struct ifnet *ifp)
673 {
674 int error;
675
676 error = ieee80211_media_change(ifp);
677 if (error != ENETRESET)
678 return error;
679
680 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
681 zyd_init(ifp);
682
683 return 0;
684 }
685
686 /*
687 * This function is called periodically (every 200ms) during scanning to
688 * switch from one channel to another.
689 */
690 Static void
zyd_next_scan(void * arg)691 zyd_next_scan(void *arg)
692 {
693 struct zyd_softc *sc = arg;
694 struct ieee80211com *ic = &sc->sc_ic;
695
696 if (ic->ic_state == IEEE80211_S_SCAN)
697 ieee80211_next_scan(ic);
698 }
699
700 Static void
zyd_task(void * arg)701 zyd_task(void *arg)
702 {
703 struct zyd_softc *sc = arg;
704 struct ieee80211com *ic = &sc->sc_ic;
705 enum ieee80211_state ostate;
706
707 ostate = ic->ic_state;
708
709 switch (sc->sc_state) {
710 case IEEE80211_S_INIT:
711 if (ostate == IEEE80211_S_RUN) {
712 /* turn link LED off */
713 zyd_set_led(sc, ZYD_LED1, 0);
714
715 /* stop data LED from blinking */
716 zyd_write32(sc, sc->fwbase + ZYD_FW_LINK_STATUS, 0);
717 }
718 break;
719
720 case IEEE80211_S_SCAN:
721 zyd_set_chan(sc, ic->ic_curchan);
722 callout_reset(&sc->sc_scan_ch, hz / 5, zyd_next_scan, sc);
723 break;
724
725 case IEEE80211_S_AUTH:
726 case IEEE80211_S_ASSOC:
727 zyd_set_chan(sc, ic->ic_curchan);
728 break;
729
730 case IEEE80211_S_RUN:
731 {
732 struct ieee80211_node *ni = ic->ic_bss;
733
734 zyd_set_chan(sc, ic->ic_curchan);
735
736 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
737 /* turn link LED on */
738 zyd_set_led(sc, ZYD_LED1, 1);
739
740 /* make data LED blink upon Tx */
741 zyd_write32(sc, sc->fwbase + ZYD_FW_LINK_STATUS, 1);
742
743 zyd_set_bssid(sc, ni->ni_bssid);
744 }
745
746 if (ic->ic_opmode == IEEE80211_M_STA) {
747 /* fake a join to init the tx rate */
748 zyd_newassoc(ni, 1);
749 }
750
751 /* start automatic rate control timer */
752 if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
753 callout_reset(&sc->sc_amrr_ch, hz, zyd_amrr_timeout, sc);
754
755 break;
756 }
757 }
758
759 sc->sc_newstate(ic, sc->sc_state, -1);
760 }
761
762 Static int
zyd_newstate(struct ieee80211com * ic,enum ieee80211_state nstate,int arg)763 zyd_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
764 {
765 struct zyd_softc *sc = ic->ic_ifp->if_softc;
766
767 if (!sc->attached)
768 return ENXIO;
769
770 /*
771 * XXXSMP: This does not wait for the task, if it is in flight,
772 * to complete. If this code works at all, it must rely on the
773 * kernel lock to serialize with the USB task thread.
774 */
775 usb_rem_task(sc->sc_udev, &sc->sc_task);
776 callout_stop(&sc->sc_scan_ch);
777 callout_stop(&sc->sc_amrr_ch);
778
779 /* do it in a process context */
780 sc->sc_state = nstate;
781 usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
782
783 return 0;
784 }
785
786 Static int
zyd_cmd(struct zyd_softc * sc,uint16_t code,const void * idata,int ilen,void * odata,int olen,u_int flags)787 zyd_cmd(struct zyd_softc *sc, uint16_t code, const void *idata, int ilen,
788 void *odata, int olen, u_int flags)
789 {
790 struct usbd_xfer *xfer;
791 struct zyd_cmd cmd;
792 struct rq rq;
793 uint16_t xferflags;
794 int error;
795 usbd_status uerror;
796
797 error = usbd_create_xfer(sc->zyd_ep[ZYD_ENDPT_IOUT],
798 sizeof(uint16_t) + ilen, USBD_FORCE_SHORT_XFER, 0, &xfer);
799 if (error)
800 return error;
801
802 cmd.code = htole16(code);
803 memcpy(cmd.data, idata, ilen);
804
805 xferflags = USBD_FORCE_SHORT_XFER;
806 if (!(flags & ZYD_CMD_FLAG_READ))
807 xferflags |= USBD_SYNCHRONOUS;
808 else {
809 rq.idata = idata;
810 rq.odata = odata;
811 rq.len = olen / sizeof(struct zyd_pair);
812 mutex_enter(&sc->sc_lock);
813 SIMPLEQ_INSERT_TAIL(&sc->sc_rqh, &rq, rq);
814 mutex_exit(&sc->sc_lock);
815 }
816
817 usbd_setup_xfer(xfer, 0, &cmd, sizeof(uint16_t) + ilen, xferflags,
818 ZYD_INTR_TIMEOUT, NULL);
819 uerror = usbd_transfer(xfer);
820 if (uerror != USBD_IN_PROGRESS && uerror != 0) {
821 printf("%s: could not send command (error=%s)\n",
822 device_xname(sc->sc_dev), usbd_errstr(uerror));
823 (void)usbd_destroy_xfer(xfer);
824 return EIO;
825 }
826 if (!(flags & ZYD_CMD_FLAG_READ)) {
827 (void)usbd_destroy_xfer(xfer);
828 return 0; /* write: don't wait for reply */
829 }
830 /* wait at most one second for command reply */
831 mutex_enter(&sc->sc_lock);
832 error = cv_timedwait_sig(&sc->sc_cmdcv, &sc->sc_lock, hz);
833 if (error == EWOULDBLOCK)
834 printf("%s: zyd_read sleep timeout\n", device_xname(sc->sc_dev));
835 SIMPLEQ_REMOVE(&sc->sc_rqh, &rq, rq, rq);
836 mutex_exit(&sc->sc_lock);
837
838 (void)usbd_destroy_xfer(xfer);
839 return error;
840 }
841
842 Static int
zyd_read16(struct zyd_softc * sc,uint16_t reg,uint16_t * val)843 zyd_read16(struct zyd_softc *sc, uint16_t reg, uint16_t *val)
844 {
845 struct zyd_pair tmp;
846 int error;
847
848 reg = htole16(reg);
849 error = zyd_cmd(sc, ZYD_CMD_IORD, ®, sizeof(reg), &tmp, sizeof(tmp),
850 ZYD_CMD_FLAG_READ);
851 if (error == 0)
852 *val = le16toh(tmp.val);
853 else
854 *val = 0;
855 return error;
856 }
857
858 Static int
zyd_read32(struct zyd_softc * sc,uint16_t reg,uint32_t * val)859 zyd_read32(struct zyd_softc *sc, uint16_t reg, uint32_t *val)
860 {
861 struct zyd_pair tmp[2];
862 uint16_t regs[2];
863 int error;
864
865 regs[0] = htole16(ZYD_REG32_HI(reg));
866 regs[1] = htole16(ZYD_REG32_LO(reg));
867 error = zyd_cmd(sc, ZYD_CMD_IORD, regs, sizeof(regs), tmp, sizeof(tmp),
868 ZYD_CMD_FLAG_READ);
869 if (error == 0)
870 *val = le16toh(tmp[0].val) << 16 | le16toh(tmp[1].val);
871 else
872 *val = 0;
873 return error;
874 }
875
876 Static int
zyd_write16(struct zyd_softc * sc,uint16_t reg,uint16_t val)877 zyd_write16(struct zyd_softc *sc, uint16_t reg, uint16_t val)
878 {
879 struct zyd_pair pair;
880
881 pair.reg = htole16(reg);
882 pair.val = htole16(val);
883
884 return zyd_cmd(sc, ZYD_CMD_IOWR, &pair, sizeof(pair), NULL, 0, 0);
885 }
886
887 Static int
zyd_write32(struct zyd_softc * sc,uint16_t reg,uint32_t val)888 zyd_write32(struct zyd_softc *sc, uint16_t reg, uint32_t val)
889 {
890 struct zyd_pair pair[2];
891
892 pair[0].reg = htole16(ZYD_REG32_HI(reg));
893 pair[0].val = htole16(val >> 16);
894 pair[1].reg = htole16(ZYD_REG32_LO(reg));
895 pair[1].val = htole16(val & 0xffff);
896
897 return zyd_cmd(sc, ZYD_CMD_IOWR, pair, sizeof(pair), NULL, 0, 0);
898 }
899
900 Static int
zyd_rfwrite(struct zyd_softc * sc,uint32_t val)901 zyd_rfwrite(struct zyd_softc *sc, uint32_t val)
902 {
903 struct zyd_rf *rf = &sc->sc_rf;
904 struct zyd_rfwrite req;
905 uint16_t cr203;
906 int i;
907
908 (void)zyd_read16(sc, ZYD_CR203, &cr203);
909 cr203 &= ~(ZYD_RF_IF_LE | ZYD_RF_CLK | ZYD_RF_DATA);
910
911 req.code = htole16(2);
912 req.width = htole16(rf->width);
913 for (i = 0; i < rf->width; i++) {
914 req.bit[i] = htole16(cr203);
915 if (val & (1 << (rf->width - 1 - i)))
916 req.bit[i] |= htole16(ZYD_RF_DATA);
917 }
918 return zyd_cmd(sc, ZYD_CMD_RFCFG, &req, 4 + 2 * rf->width, NULL, 0, 0);
919 }
920
921 Static void
zyd_lock_phy(struct zyd_softc * sc)922 zyd_lock_phy(struct zyd_softc *sc)
923 {
924 uint32_t tmp;
925
926 (void)zyd_read32(sc, ZYD_MAC_MISC, &tmp);
927 tmp &= ~ZYD_UNLOCK_PHY_REGS;
928 (void)zyd_write32(sc, ZYD_MAC_MISC, tmp);
929 }
930
931 Static void
zyd_unlock_phy(struct zyd_softc * sc)932 zyd_unlock_phy(struct zyd_softc *sc)
933 {
934 uint32_t tmp;
935
936 (void)zyd_read32(sc, ZYD_MAC_MISC, &tmp);
937 tmp |= ZYD_UNLOCK_PHY_REGS;
938 (void)zyd_write32(sc, ZYD_MAC_MISC, tmp);
939 }
940
941 /*
942 * RFMD RF methods.
943 */
944 Static int
zyd_rfmd_init(struct zyd_rf * rf)945 zyd_rfmd_init(struct zyd_rf *rf)
946 {
947 struct zyd_softc *sc = rf->rf_sc;
948 static const struct zyd_phy_pair phyini[] = ZYD_RFMD_PHY;
949 static const uint32_t rfini[] = ZYD_RFMD_RF;
950 int error;
951 size_t i;
952
953 /* init RF-dependent PHY registers */
954 for (i = 0; i < __arraycount(phyini); i++) {
955 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
956 if (error != 0)
957 return error;
958 }
959
960 /* init RFMD radio */
961 for (i = 0; i < __arraycount(rfini); i++) {
962 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
963 return error;
964 }
965 return 0;
966 }
967
968 Static int
zyd_rfmd_switch_radio(struct zyd_rf * rf,int on)969 zyd_rfmd_switch_radio(struct zyd_rf *rf, int on)
970 {
971 struct zyd_softc *sc = rf->rf_sc;
972
973 (void)zyd_write16(sc, ZYD_CR10, on ? 0x89 : 0x15);
974 (void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x81);
975
976 return 0;
977 }
978
979 Static int
zyd_rfmd_set_channel(struct zyd_rf * rf,uint8_t chan)980 zyd_rfmd_set_channel(struct zyd_rf *rf, uint8_t chan)
981 {
982 struct zyd_softc *sc = rf->rf_sc;
983 static const struct {
984 uint32_t r1, r2;
985 } rfprog[] = ZYD_RFMD_CHANTABLE;
986
987 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
988 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
989
990 return 0;
991 }
992
993 /*
994 * AL2230 RF methods.
995 */
996 Static int
zyd_al2230_init(struct zyd_rf * rf)997 zyd_al2230_init(struct zyd_rf *rf)
998 {
999 struct zyd_softc *sc = rf->rf_sc;
1000 static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY;
1001 static const struct zyd_phy_pair phy2230s[] = ZYD_AL2230S_PHY_INIT;
1002 static const uint32_t rfini[] = ZYD_AL2230_RF;
1003 int error;
1004 size_t i;
1005
1006 /* init RF-dependent PHY registers */
1007 for (i = 0; i < __arraycount(phyini); i++) {
1008 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1009 if (error != 0)
1010 return error;
1011 }
1012
1013 if (sc->rf_rev == ZYD_RF_AL2230S) {
1014 for (i = 0; i < __arraycount(phy2230s); i++) {
1015 error = zyd_write16(sc, phy2230s[i].reg,
1016 phy2230s[i].val);
1017 if (error != 0)
1018 return error;
1019 }
1020 }
1021
1022 /* init AL2230 radio */
1023 for (i = 0; i < __arraycount(rfini); i++) {
1024 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1025 return error;
1026 }
1027 return 0;
1028 }
1029
1030 Static int
zyd_al2230_init_b(struct zyd_rf * rf)1031 zyd_al2230_init_b(struct zyd_rf *rf)
1032 {
1033 struct zyd_softc *sc = rf->rf_sc;
1034 static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY_B;
1035 static const uint32_t rfini[] = ZYD_AL2230_RF_B;
1036 int error;
1037 size_t i;
1038
1039 /* init RF-dependent PHY registers */
1040 for (i = 0; i < __arraycount(phyini); i++) {
1041 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1042 if (error != 0)
1043 return error;
1044 }
1045
1046 /* init AL2230 radio */
1047 for (i = 0; i < __arraycount(rfini); i++) {
1048 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1049 return error;
1050 }
1051 return 0;
1052 }
1053
1054 Static int
zyd_al2230_switch_radio(struct zyd_rf * rf,int on)1055 zyd_al2230_switch_radio(struct zyd_rf *rf, int on)
1056 {
1057 struct zyd_softc *sc = rf->rf_sc;
1058 int on251 = (sc->mac_rev == ZYD_ZD1211) ? 0x3f : 0x7f;
1059
1060 (void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x04);
1061 (void)zyd_write16(sc, ZYD_CR251, on ? on251 : 0x2f);
1062
1063 return 0;
1064 }
1065
1066 Static int
zyd_al2230_set_channel(struct zyd_rf * rf,uint8_t chan)1067 zyd_al2230_set_channel(struct zyd_rf *rf, uint8_t chan)
1068 {
1069 struct zyd_softc *sc = rf->rf_sc;
1070 static const struct {
1071 uint32_t r1, r2, r3;
1072 } rfprog[] = ZYD_AL2230_CHANTABLE;
1073
1074 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1075 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1076 (void)zyd_rfwrite(sc, rfprog[chan - 1].r3);
1077
1078 (void)zyd_write16(sc, ZYD_CR138, 0x28);
1079 (void)zyd_write16(sc, ZYD_CR203, 0x06);
1080
1081 return 0;
1082 }
1083
1084 /*
1085 * AL7230B RF methods.
1086 */
1087 Static int
zyd_al7230B_init(struct zyd_rf * rf)1088 zyd_al7230B_init(struct zyd_rf *rf)
1089 {
1090 struct zyd_softc *sc = rf->rf_sc;
1091 static const struct zyd_phy_pair phyini_1[] = ZYD_AL7230B_PHY_1;
1092 static const struct zyd_phy_pair phyini_2[] = ZYD_AL7230B_PHY_2;
1093 static const struct zyd_phy_pair phyini_3[] = ZYD_AL7230B_PHY_3;
1094 static const uint32_t rfini_1[] = ZYD_AL7230B_RF_1;
1095 static const uint32_t rfini_2[] = ZYD_AL7230B_RF_2;
1096 int error;
1097 size_t i;
1098
1099 /* for AL7230B, PHY and RF need to be initialized in "phases" */
1100
1101 /* init RF-dependent PHY registers, part one */
1102 for (i = 0; i < __arraycount(phyini_1); i++) {
1103 error = zyd_write16(sc, phyini_1[i].reg, phyini_1[i].val);
1104 if (error != 0)
1105 return error;
1106 }
1107 /* init AL7230B radio, part one */
1108 for (i = 0; i < __arraycount(rfini_1); i++) {
1109 if ((error = zyd_rfwrite(sc, rfini_1[i])) != 0)
1110 return error;
1111 }
1112 /* init RF-dependent PHY registers, part two */
1113 for (i = 0; i < __arraycount(phyini_2); i++) {
1114 error = zyd_write16(sc, phyini_2[i].reg, phyini_2[i].val);
1115 if (error != 0)
1116 return error;
1117 }
1118 /* init AL7230B radio, part two */
1119 for (i = 0; i < __arraycount(rfini_2); i++) {
1120 if ((error = zyd_rfwrite(sc, rfini_2[i])) != 0)
1121 return error;
1122 }
1123 /* init RF-dependent PHY registers, part three */
1124 for (i = 0; i < __arraycount(phyini_3); i++) {
1125 error = zyd_write16(sc, phyini_3[i].reg, phyini_3[i].val);
1126 if (error != 0)
1127 return error;
1128 }
1129
1130 return 0;
1131 }
1132
1133 Static int
zyd_al7230B_switch_radio(struct zyd_rf * rf,int on)1134 zyd_al7230B_switch_radio(struct zyd_rf *rf, int on)
1135 {
1136 struct zyd_softc *sc = rf->rf_sc;
1137
1138 (void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x04);
1139 (void)zyd_write16(sc, ZYD_CR251, on ? 0x3f : 0x2f);
1140
1141 return 0;
1142 }
1143
1144 Static int
zyd_al7230B_set_channel(struct zyd_rf * rf,uint8_t chan)1145 zyd_al7230B_set_channel(struct zyd_rf *rf, uint8_t chan)
1146 {
1147 struct zyd_softc *sc = rf->rf_sc;
1148 static const struct {
1149 uint32_t r1, r2;
1150 } rfprog[] = ZYD_AL7230B_CHANTABLE;
1151 static const uint32_t rfsc[] = ZYD_AL7230B_RF_SETCHANNEL;
1152 int error;
1153 size_t i;
1154
1155 (void)zyd_write16(sc, ZYD_CR240, 0x57);
1156 (void)zyd_write16(sc, ZYD_CR251, 0x2f);
1157
1158 for (i = 0; i < __arraycount(rfsc); i++) {
1159 if ((error = zyd_rfwrite(sc, rfsc[i])) != 0)
1160 return error;
1161 }
1162
1163 (void)zyd_write16(sc, ZYD_CR128, 0x14);
1164 (void)zyd_write16(sc, ZYD_CR129, 0x12);
1165 (void)zyd_write16(sc, ZYD_CR130, 0x10);
1166 (void)zyd_write16(sc, ZYD_CR38, 0x38);
1167 (void)zyd_write16(sc, ZYD_CR136, 0xdf);
1168
1169 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1170 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1171 (void)zyd_rfwrite(sc, 0x3c9000);
1172
1173 (void)zyd_write16(sc, ZYD_CR251, 0x3f);
1174 (void)zyd_write16(sc, ZYD_CR203, 0x06);
1175 (void)zyd_write16(sc, ZYD_CR240, 0x08);
1176
1177 return 0;
1178 }
1179
1180 /*
1181 * AL2210 RF methods.
1182 */
1183 Static int
zyd_al2210_init(struct zyd_rf * rf)1184 zyd_al2210_init(struct zyd_rf *rf)
1185 {
1186 struct zyd_softc *sc = rf->rf_sc;
1187 static const struct zyd_phy_pair phyini[] = ZYD_AL2210_PHY;
1188 static const uint32_t rfini[] = ZYD_AL2210_RF;
1189 uint32_t tmp;
1190 int error;
1191 size_t i;
1192
1193 (void)zyd_write32(sc, ZYD_CR18, 2);
1194
1195 /* init RF-dependent PHY registers */
1196 for (i = 0; i < __arraycount(phyini); i++) {
1197 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1198 if (error != 0)
1199 return error;
1200 }
1201 /* init AL2210 radio */
1202 for (i = 0; i < __arraycount(rfini); i++) {
1203 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1204 return error;
1205 }
1206 (void)zyd_write16(sc, ZYD_CR47, 0x1e);
1207 (void)zyd_read32(sc, ZYD_CR_RADIO_PD, &tmp);
1208 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp & ~1);
1209 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp | 1);
1210 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x05);
1211 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x00);
1212 (void)zyd_write16(sc, ZYD_CR47, 0x1e);
1213 (void)zyd_write32(sc, ZYD_CR18, 3);
1214
1215 return 0;
1216 }
1217
1218 Static int
zyd_al2210_switch_radio(struct zyd_rf * rf,int on)1219 zyd_al2210_switch_radio(struct zyd_rf *rf, int on)
1220 {
1221 /* vendor driver does nothing for this RF chip */
1222
1223 return 0;
1224 }
1225
1226 Static int
zyd_al2210_set_channel(struct zyd_rf * rf,uint8_t chan)1227 zyd_al2210_set_channel(struct zyd_rf *rf, uint8_t chan)
1228 {
1229 struct zyd_softc *sc = rf->rf_sc;
1230 static const uint32_t rfprog[] = ZYD_AL2210_CHANTABLE;
1231 uint32_t tmp;
1232
1233 (void)zyd_write32(sc, ZYD_CR18, 2);
1234 (void)zyd_write16(sc, ZYD_CR47, 0x1e);
1235 (void)zyd_read32(sc, ZYD_CR_RADIO_PD, &tmp);
1236 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp & ~1);
1237 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp | 1);
1238 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x05);
1239
1240 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x00);
1241 (void)zyd_write16(sc, ZYD_CR47, 0x1e);
1242
1243 /* actually set the channel */
1244 (void)zyd_rfwrite(sc, rfprog[chan - 1]);
1245
1246 (void)zyd_write32(sc, ZYD_CR18, 3);
1247
1248 return 0;
1249 }
1250
1251 /*
1252 * GCT RF methods.
1253 */
1254 Static int
zyd_gct_init(struct zyd_rf * rf)1255 zyd_gct_init(struct zyd_rf *rf)
1256 {
1257 struct zyd_softc *sc = rf->rf_sc;
1258 static const struct zyd_phy_pair phyini[] = ZYD_GCT_PHY;
1259 static const uint32_t rfini[] = ZYD_GCT_RF;
1260 int error;
1261 size_t i;
1262
1263 /* init RF-dependent PHY registers */
1264 for (i = 0; i < __arraycount(phyini); i++) {
1265 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1266 if (error != 0)
1267 return error;
1268 }
1269 /* init cgt radio */
1270 for (i = 0; i < __arraycount(rfini); i++) {
1271 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1272 return error;
1273 }
1274 return 0;
1275 }
1276
1277 Static int
zyd_gct_switch_radio(struct zyd_rf * rf,int on)1278 zyd_gct_switch_radio(struct zyd_rf *rf, int on)
1279 {
1280 /* vendor driver does nothing for this RF chip */
1281
1282 return 0;
1283 }
1284
1285 Static int
zyd_gct_set_channel(struct zyd_rf * rf,uint8_t chan)1286 zyd_gct_set_channel(struct zyd_rf *rf, uint8_t chan)
1287 {
1288 struct zyd_softc *sc = rf->rf_sc;
1289 static const uint32_t rfprog[] = ZYD_GCT_CHANTABLE;
1290
1291 (void)zyd_rfwrite(sc, 0x1c0000);
1292 (void)zyd_rfwrite(sc, rfprog[chan - 1]);
1293 (void)zyd_rfwrite(sc, 0x1c0008);
1294
1295 return 0;
1296 }
1297
1298 /*
1299 * Maxim RF methods.
1300 */
1301 Static int
zyd_maxim_init(struct zyd_rf * rf)1302 zyd_maxim_init(struct zyd_rf *rf)
1303 {
1304 struct zyd_softc *sc = rf->rf_sc;
1305 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY;
1306 static const uint32_t rfini[] = ZYD_MAXIM_RF;
1307 uint16_t tmp;
1308 int error;
1309 size_t i;
1310
1311 /* init RF-dependent PHY registers */
1312 for (i = 0; i < __arraycount(phyini); i++) {
1313 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1314 if (error != 0)
1315 return error;
1316 }
1317 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1318 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1319
1320 /* init maxim radio */
1321 for (i = 0; i < __arraycount(rfini); i++) {
1322 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1323 return error;
1324 }
1325 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1326 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1327
1328 return 0;
1329 }
1330
1331 Static int
zyd_maxim_switch_radio(struct zyd_rf * rf,int on)1332 zyd_maxim_switch_radio(struct zyd_rf *rf, int on)
1333 {
1334 /* vendor driver does nothing for this RF chip */
1335
1336 return 0;
1337 }
1338
1339 Static int
zyd_maxim_set_channel(struct zyd_rf * rf,uint8_t chan)1340 zyd_maxim_set_channel(struct zyd_rf *rf, uint8_t chan)
1341 {
1342 struct zyd_softc *sc = rf->rf_sc;
1343 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY;
1344 static const uint32_t rfini[] = ZYD_MAXIM_RF;
1345 static const struct {
1346 uint32_t r1, r2;
1347 } rfprog[] = ZYD_MAXIM_CHANTABLE;
1348 uint16_t tmp;
1349 int error;
1350 size_t i;
1351
1352 /*
1353 * Do the same as we do when initializing it, except for the channel
1354 * values coming from the two channel tables.
1355 */
1356
1357 /* init RF-dependent PHY registers */
1358 for (i = 0; i < __arraycount(phyini); i++) {
1359 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1360 if (error != 0)
1361 return error;
1362 }
1363 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1364 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1365
1366 /* first two values taken from the chantables */
1367 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1368 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1369
1370 /* init maxim radio - skipping the two first values */
1371 for (i = 2; i < __arraycount(rfini); i++) {
1372 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1373 return error;
1374 }
1375 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1376 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1377
1378 return 0;
1379 }
1380
1381 /*
1382 * Maxim2 RF methods.
1383 */
1384 Static int
zyd_maxim2_init(struct zyd_rf * rf)1385 zyd_maxim2_init(struct zyd_rf *rf)
1386 {
1387 struct zyd_softc *sc = rf->rf_sc;
1388 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY;
1389 static const uint32_t rfini[] = ZYD_MAXIM2_RF;
1390 uint16_t tmp;
1391 int error;
1392 size_t i;
1393
1394 /* init RF-dependent PHY registers */
1395 for (i = 0; i < __arraycount(phyini); i++) {
1396 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1397 if (error != 0)
1398 return error;
1399 }
1400 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1401 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1402
1403 /* init maxim2 radio */
1404 for (i = 0; i < __arraycount(rfini); i++) {
1405 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1406 return error;
1407 }
1408 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1409 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1410
1411 return 0;
1412 }
1413
1414 Static int
zyd_maxim2_switch_radio(struct zyd_rf * rf,int on)1415 zyd_maxim2_switch_radio(struct zyd_rf *rf, int on)
1416 {
1417 /* vendor driver does nothing for this RF chip */
1418
1419 return 0;
1420 }
1421
1422 Static int
zyd_maxim2_set_channel(struct zyd_rf * rf,uint8_t chan)1423 zyd_maxim2_set_channel(struct zyd_rf *rf, uint8_t chan)
1424 {
1425 struct zyd_softc *sc = rf->rf_sc;
1426 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY;
1427 static const uint32_t rfini[] = ZYD_MAXIM2_RF;
1428 static const struct {
1429 uint32_t r1, r2;
1430 } rfprog[] = ZYD_MAXIM2_CHANTABLE;
1431 uint16_t tmp;
1432 int error;
1433 size_t i;
1434
1435 /*
1436 * Do the same as we do when initializing it, except for the channel
1437 * values coming from the two channel tables.
1438 */
1439
1440 /* init RF-dependent PHY registers */
1441 for (i = 0; i < __arraycount(phyini); i++) {
1442 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1443 if (error != 0)
1444 return error;
1445 }
1446 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1447 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1448
1449 /* first two values taken from the chantables */
1450 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1451 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1452
1453 /* init maxim2 radio - skipping the two first values */
1454 for (i = 2; i < __arraycount(rfini); i++) {
1455 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1456 return error;
1457 }
1458 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1459 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1460
1461 return 0;
1462 }
1463
1464 Static int
zyd_rf_attach(struct zyd_softc * sc,uint8_t type)1465 zyd_rf_attach(struct zyd_softc *sc, uint8_t type)
1466 {
1467 struct zyd_rf *rf = &sc->sc_rf;
1468
1469 rf->rf_sc = sc;
1470
1471 switch (type) {
1472 case ZYD_RF_RFMD:
1473 rf->init = zyd_rfmd_init;
1474 rf->switch_radio = zyd_rfmd_switch_radio;
1475 rf->set_channel = zyd_rfmd_set_channel;
1476 rf->width = 24; /* 24-bit RF values */
1477 break;
1478 case ZYD_RF_AL2230:
1479 case ZYD_RF_AL2230S:
1480 if (sc->mac_rev == ZYD_ZD1211B)
1481 rf->init = zyd_al2230_init_b;
1482 else
1483 rf->init = zyd_al2230_init;
1484 rf->switch_radio = zyd_al2230_switch_radio;
1485 rf->set_channel = zyd_al2230_set_channel;
1486 rf->width = 24; /* 24-bit RF values */
1487 break;
1488 case ZYD_RF_AL7230B:
1489 rf->init = zyd_al7230B_init;
1490 rf->switch_radio = zyd_al7230B_switch_radio;
1491 rf->set_channel = zyd_al7230B_set_channel;
1492 rf->width = 24; /* 24-bit RF values */
1493 break;
1494 case ZYD_RF_AL2210:
1495 rf->init = zyd_al2210_init;
1496 rf->switch_radio = zyd_al2210_switch_radio;
1497 rf->set_channel = zyd_al2210_set_channel;
1498 rf->width = 24; /* 24-bit RF values */
1499 break;
1500 case ZYD_RF_GCT:
1501 rf->init = zyd_gct_init;
1502 rf->switch_radio = zyd_gct_switch_radio;
1503 rf->set_channel = zyd_gct_set_channel;
1504 rf->width = 21; /* 21-bit RF values */
1505 break;
1506 case ZYD_RF_MAXIM_NEW:
1507 rf->init = zyd_maxim_init;
1508 rf->switch_radio = zyd_maxim_switch_radio;
1509 rf->set_channel = zyd_maxim_set_channel;
1510 rf->width = 18; /* 18-bit RF values */
1511 break;
1512 case ZYD_RF_MAXIM_NEW2:
1513 rf->init = zyd_maxim2_init;
1514 rf->switch_radio = zyd_maxim2_switch_radio;
1515 rf->set_channel = zyd_maxim2_set_channel;
1516 rf->width = 18; /* 18-bit RF values */
1517 break;
1518 default:
1519 printf("%s: sorry, radio \"%s\" is not supported yet\n",
1520 device_xname(sc->sc_dev), zyd_rf_name(type));
1521 return EINVAL;
1522 }
1523 return 0;
1524 }
1525
1526 Static const char *
zyd_rf_name(uint8_t type)1527 zyd_rf_name(uint8_t type)
1528 {
1529 static const char * const zyd_rfs[] = {
1530 "unknown", "unknown", "UW2451", "UCHIP", "AL2230",
1531 "AL7230B", "THETA", "AL2210", "MAXIM_NEW", "GCT",
1532 "AL2230S", "RALINK", "INTERSIL", "RFMD", "MAXIM_NEW2",
1533 "PHILIPS"
1534 };
1535
1536 return zyd_rfs[(type > 15) ? 0 : type];
1537 }
1538
1539 Static int
zyd_hw_init(struct zyd_softc * sc)1540 zyd_hw_init(struct zyd_softc *sc)
1541 {
1542 struct zyd_rf *rf = &sc->sc_rf;
1543 const struct zyd_phy_pair *phyp;
1544 int error;
1545
1546 /* specify that the plug and play is finished */
1547 (void)zyd_write32(sc, ZYD_MAC_AFTER_PNP, 1);
1548
1549 (void)zyd_read16(sc, ZYD_FIRMWARE_BASE_ADDR, &sc->fwbase);
1550 DPRINTF(("firmware base address=0x%04x\n", sc->fwbase));
1551
1552 /* retrieve firmware revision number */
1553 (void)zyd_read16(sc, sc->fwbase + ZYD_FW_FIRMWARE_REV, &sc->fw_rev);
1554
1555 (void)zyd_write32(sc, ZYD_CR_GPI_EN, 0);
1556 (void)zyd_write32(sc, ZYD_MAC_CONT_WIN_LIMIT, 0x7f043f);
1557
1558 /* disable interrupts */
1559 (void)zyd_write32(sc, ZYD_CR_INTERRUPT, 0);
1560
1561 /* PHY init */
1562 zyd_lock_phy(sc);
1563 phyp = (sc->mac_rev == ZYD_ZD1211B) ? zyd_def_phyB : zyd_def_phy;
1564 for (; phyp->reg != 0; phyp++) {
1565 if ((error = zyd_write16(sc, phyp->reg, phyp->val)) != 0)
1566 goto fail;
1567 }
1568 zyd_unlock_phy(sc);
1569
1570 /* HMAC init */
1571 zyd_write32(sc, ZYD_MAC_ACK_EXT, 0x00000020);
1572 zyd_write32(sc, ZYD_CR_ADDA_MBIAS_WT, 0x30000808);
1573
1574 if (sc->mac_rev == ZYD_ZD1211) {
1575 zyd_write32(sc, ZYD_MAC_RETRY, 0x00000002);
1576 } else {
1577 zyd_write32(sc, ZYD_MAC_RETRY, 0x02020202);
1578 zyd_write32(sc, ZYD_MACB_TXPWR_CTL4, 0x007f003f);
1579 zyd_write32(sc, ZYD_MACB_TXPWR_CTL3, 0x007f003f);
1580 zyd_write32(sc, ZYD_MACB_TXPWR_CTL2, 0x003f001f);
1581 zyd_write32(sc, ZYD_MACB_TXPWR_CTL1, 0x001f000f);
1582 zyd_write32(sc, ZYD_MACB_AIFS_CTL1, 0x00280028);
1583 zyd_write32(sc, ZYD_MACB_AIFS_CTL2, 0x008C003C);
1584 zyd_write32(sc, ZYD_MACB_TXOP, 0x01800824);
1585 }
1586
1587 zyd_write32(sc, ZYD_MAC_SNIFFER, 0x00000000);
1588 zyd_write32(sc, ZYD_MAC_RXFILTER, 0x00000000);
1589 zyd_write32(sc, ZYD_MAC_GHTBL, 0x00000000);
1590 zyd_write32(sc, ZYD_MAC_GHTBH, 0x80000000);
1591 zyd_write32(sc, ZYD_MAC_MISC, 0x000000a4);
1592 zyd_write32(sc, ZYD_CR_ADDA_PWR_DWN, 0x0000007f);
1593 zyd_write32(sc, ZYD_MAC_BCNCFG, 0x00f00401);
1594 zyd_write32(sc, ZYD_MAC_PHY_DELAY2, 0x00000000);
1595 zyd_write32(sc, ZYD_MAC_ACK_EXT, 0x00000080);
1596 zyd_write32(sc, ZYD_CR_ADDA_PWR_DWN, 0x00000000);
1597 zyd_write32(sc, ZYD_MAC_SIFS_ACK_TIME, 0x00000100);
1598 zyd_write32(sc, ZYD_MAC_DIFS_EIFS_SIFS, 0x0547c032);
1599 zyd_write32(sc, ZYD_CR_RX_PE_DELAY, 0x00000070);
1600 zyd_write32(sc, ZYD_CR_PS_CTRL, 0x10000000);
1601 zyd_write32(sc, ZYD_MAC_RTSCTSRATE, 0x02030203);
1602 zyd_write32(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0640);
1603 zyd_write32(sc, ZYD_MAC_BACKOFF_PROTECT, 0x00000114);
1604
1605 /* RF chip init */
1606 zyd_lock_phy(sc);
1607 error = (*rf->init)(rf);
1608 zyd_unlock_phy(sc);
1609 if (error != 0) {
1610 printf("%s: radio initialization failed\n",
1611 device_xname(sc->sc_dev));
1612 goto fail;
1613 }
1614
1615 /* init beacon interval to 100ms */
1616 if ((error = zyd_set_beacon_interval(sc, 100)) != 0)
1617 goto fail;
1618
1619 fail: return error;
1620 }
1621
1622 Static int
zyd_read_eeprom(struct zyd_softc * sc)1623 zyd_read_eeprom(struct zyd_softc *sc)
1624 {
1625 struct ieee80211com *ic = &sc->sc_ic;
1626 uint32_t tmp;
1627 uint16_t val;
1628 int i;
1629
1630 /* read MAC address */
1631 (void)zyd_read32(sc, ZYD_EEPROM_MAC_ADDR_P1, &tmp);
1632 ic->ic_myaddr[0] = tmp & 0xff;
1633 ic->ic_myaddr[1] = tmp >> 8;
1634 ic->ic_myaddr[2] = tmp >> 16;
1635 ic->ic_myaddr[3] = tmp >> 24;
1636 (void)zyd_read32(sc, ZYD_EEPROM_MAC_ADDR_P2, &tmp);
1637 ic->ic_myaddr[4] = tmp & 0xff;
1638 ic->ic_myaddr[5] = tmp >> 8;
1639
1640 (void)zyd_read32(sc, ZYD_EEPROM_POD, &tmp);
1641 sc->rf_rev = tmp & 0x0f;
1642 sc->pa_rev = (tmp >> 16) & 0x0f;
1643
1644 /* read regulatory domain (currently unused) */
1645 (void)zyd_read32(sc, ZYD_EEPROM_SUBID, &tmp);
1646 sc->regdomain = tmp >> 16;
1647 DPRINTF(("regulatory domain %x\n", sc->regdomain));
1648
1649 /* read Tx power calibration tables */
1650 for (i = 0; i < 7; i++) {
1651 (void)zyd_read16(sc, ZYD_EEPROM_PWR_CAL + i, &val);
1652 sc->pwr_cal[i * 2] = val >> 8;
1653 sc->pwr_cal[i * 2 + 1] = val & 0xff;
1654
1655 (void)zyd_read16(sc, ZYD_EEPROM_PWR_INT + i, &val);
1656 sc->pwr_int[i * 2] = val >> 8;
1657 sc->pwr_int[i * 2 + 1] = val & 0xff;
1658
1659 (void)zyd_read16(sc, ZYD_EEPROM_36M_CAL + i, &val);
1660 sc->ofdm36_cal[i * 2] = val >> 8;
1661 sc->ofdm36_cal[i * 2 + 1] = val & 0xff;
1662
1663 (void)zyd_read16(sc, ZYD_EEPROM_48M_CAL + i, &val);
1664 sc->ofdm48_cal[i * 2] = val >> 8;
1665 sc->ofdm48_cal[i * 2 + 1] = val & 0xff;
1666
1667 (void)zyd_read16(sc, ZYD_EEPROM_54M_CAL + i, &val);
1668 sc->ofdm54_cal[i * 2] = val >> 8;
1669 sc->ofdm54_cal[i * 2 + 1] = val & 0xff;
1670 }
1671 return 0;
1672 }
1673
1674 Static int
zyd_set_macaddr(struct zyd_softc * sc,const uint8_t * addr)1675 zyd_set_macaddr(struct zyd_softc *sc, const uint8_t *addr)
1676 {
1677 uint32_t tmp;
1678
1679 tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0];
1680 (void)zyd_write32(sc, ZYD_MAC_MACADRL, tmp);
1681
1682 tmp = addr[5] << 8 | addr[4];
1683 (void)zyd_write32(sc, ZYD_MAC_MACADRH, tmp);
1684
1685 return 0;
1686 }
1687
1688 Static int
zyd_set_bssid(struct zyd_softc * sc,const uint8_t * addr)1689 zyd_set_bssid(struct zyd_softc *sc, const uint8_t *addr)
1690 {
1691 uint32_t tmp;
1692
1693 tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0];
1694 (void)zyd_write32(sc, ZYD_MAC_BSSADRL, tmp);
1695
1696 tmp = addr[5] << 8 | addr[4];
1697 (void)zyd_write32(sc, ZYD_MAC_BSSADRH, tmp);
1698
1699 return 0;
1700 }
1701
1702 Static int
zyd_switch_radio(struct zyd_softc * sc,int on)1703 zyd_switch_radio(struct zyd_softc *sc, int on)
1704 {
1705 struct zyd_rf *rf = &sc->sc_rf;
1706 int error;
1707
1708 zyd_lock_phy(sc);
1709 error = (*rf->switch_radio)(rf, on);
1710 zyd_unlock_phy(sc);
1711
1712 return error;
1713 }
1714
1715 Static void
zyd_set_led(struct zyd_softc * sc,int which,int on)1716 zyd_set_led(struct zyd_softc *sc, int which, int on)
1717 {
1718 uint32_t tmp;
1719
1720 (void)zyd_read32(sc, ZYD_MAC_TX_PE_CONTROL, &tmp);
1721 tmp &= ~which;
1722 if (on)
1723 tmp |= which;
1724 (void)zyd_write32(sc, ZYD_MAC_TX_PE_CONTROL, tmp);
1725 }
1726
1727 Static int
zyd_set_rxfilter(struct zyd_softc * sc)1728 zyd_set_rxfilter(struct zyd_softc *sc)
1729 {
1730 uint32_t rxfilter;
1731
1732 switch (sc->sc_ic.ic_opmode) {
1733 case IEEE80211_M_STA:
1734 rxfilter = ZYD_FILTER_BSS;
1735 break;
1736 case IEEE80211_M_IBSS:
1737 case IEEE80211_M_HOSTAP:
1738 rxfilter = ZYD_FILTER_HOSTAP;
1739 break;
1740 case IEEE80211_M_MONITOR:
1741 rxfilter = ZYD_FILTER_MONITOR;
1742 break;
1743 default:
1744 /* should not get there */
1745 return EINVAL;
1746 }
1747 return zyd_write32(sc, ZYD_MAC_RXFILTER, rxfilter);
1748 }
1749
1750 Static void
zyd_set_chan(struct zyd_softc * sc,struct ieee80211_channel * c)1751 zyd_set_chan(struct zyd_softc *sc, struct ieee80211_channel *c)
1752 {
1753 struct ieee80211com *ic = &sc->sc_ic;
1754 struct zyd_rf *rf = &sc->sc_rf;
1755 u_int chan;
1756
1757 chan = ieee80211_chan2ieee(ic, c);
1758 if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1759 return;
1760
1761 zyd_lock_phy(sc);
1762
1763 (*rf->set_channel)(rf, chan);
1764
1765 /* update Tx power */
1766 (void)zyd_write32(sc, ZYD_CR31, sc->pwr_int[chan - 1]);
1767 (void)zyd_write32(sc, ZYD_CR68, sc->pwr_cal[chan - 1]);
1768
1769 if (sc->mac_rev == ZYD_ZD1211B) {
1770 (void)zyd_write32(sc, ZYD_CR67, sc->ofdm36_cal[chan - 1]);
1771 (void)zyd_write32(sc, ZYD_CR66, sc->ofdm48_cal[chan - 1]);
1772 (void)zyd_write32(sc, ZYD_CR65, sc->ofdm54_cal[chan - 1]);
1773
1774 (void)zyd_write32(sc, ZYD_CR69, 0x28);
1775 (void)zyd_write32(sc, ZYD_CR69, 0x2a);
1776 }
1777
1778 zyd_unlock_phy(sc);
1779 }
1780
1781 Static int
zyd_set_beacon_interval(struct zyd_softc * sc,int bintval)1782 zyd_set_beacon_interval(struct zyd_softc *sc, int bintval)
1783 {
1784 /* XXX this is probably broken.. */
1785 (void)zyd_write32(sc, ZYD_CR_ATIM_WND_PERIOD, bintval - 2);
1786 (void)zyd_write32(sc, ZYD_CR_PRE_TBTT, bintval - 1);
1787 (void)zyd_write32(sc, ZYD_CR_BCN_INTERVAL, bintval);
1788
1789 return 0;
1790 }
1791
1792 Static uint8_t
zyd_plcp_signal(int rate)1793 zyd_plcp_signal(int rate)
1794 {
1795 switch (rate) {
1796 /* CCK rates (returned values are device-dependent) */
1797 case 2: return 0x0;
1798 case 4: return 0x1;
1799 case 11: return 0x2;
1800 case 22: return 0x3;
1801
1802 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1803 case 12: return 0xb;
1804 case 18: return 0xf;
1805 case 24: return 0xa;
1806 case 36: return 0xe;
1807 case 48: return 0x9;
1808 case 72: return 0xd;
1809 case 96: return 0x8;
1810 case 108: return 0xc;
1811
1812 /* unsupported rates (should not get there) */
1813 default: return 0xff;
1814 }
1815 }
1816
1817 Static void
zyd_intr(struct usbd_xfer * xfer,void * priv,usbd_status status)1818 zyd_intr(struct usbd_xfer *xfer, void * priv, usbd_status status)
1819 {
1820 struct zyd_softc *sc = (struct zyd_softc *)priv;
1821 struct zyd_cmd *cmd;
1822 uint32_t datalen;
1823
1824 if (status != USBD_NORMAL_COMPLETION) {
1825 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
1826 return;
1827
1828 if (status == USBD_STALLED) {
1829 usbd_clear_endpoint_stall_async(
1830 sc->zyd_ep[ZYD_ENDPT_IIN]);
1831 }
1832 return;
1833 }
1834
1835 cmd = (struct zyd_cmd *)sc->ibuf;
1836
1837 if (le16toh(cmd->code) == ZYD_NOTIF_RETRYSTATUS) {
1838 struct zyd_notif_retry *retry =
1839 (struct zyd_notif_retry *)cmd->data;
1840 struct ieee80211com *ic = &sc->sc_ic;
1841 struct ifnet *ifp = &sc->sc_if;
1842 struct ieee80211_node *ni;
1843
1844 DPRINTF(("retry intr: rate=%#x addr=%s count=%d (%#x)\n",
1845 le16toh(retry->rate), ether_sprintf(retry->macaddr),
1846 le16toh(retry->count) & 0xff, le16toh(retry->count)));
1847
1848 /*
1849 * Find the node to which the packet was sent and update its
1850 * retry statistics. In BSS mode, this node is the AP we're
1851 * associated to so no lookup is actually needed.
1852 */
1853 if (ic->ic_opmode != IEEE80211_M_STA) {
1854 ni = ieee80211_find_node(&ic->ic_scan, retry->macaddr);
1855 if (ni == NULL)
1856 return; /* just ignore */
1857 } else
1858 ni = ic->ic_bss;
1859
1860 ((struct zyd_node *)ni)->amn.amn_retrycnt++;
1861
1862 if (le16toh(retry->count) & 0x100)
1863 if_statinc(ifp, if_oerrors);
1864
1865 } else if (le16toh(cmd->code) == ZYD_NOTIF_IORD) {
1866 struct rq *rqp;
1867
1868 if (le16toh(*(uint16_t *)cmd->data) == ZYD_CR_INTERRUPT)
1869 return; /* HMAC interrupt */
1870
1871 usbd_get_xfer_status(xfer, NULL, NULL, &datalen, NULL);
1872 datalen -= sizeof(cmd->code);
1873 datalen -= 2; /* XXX: padding? */
1874
1875 mutex_enter(&sc->sc_lock);
1876 SIMPLEQ_FOREACH(rqp, &sc->sc_rqh, rq) {
1877 int i;
1878
1879 if (sizeof(struct zyd_pair) * rqp->len != datalen)
1880 continue;
1881 for (i = 0; i < rqp->len; i++) {
1882 if (*(((const uint16_t *)rqp->idata) + i) !=
1883 (((struct zyd_pair *)cmd->data) + i)->reg)
1884 break;
1885 }
1886 if (i != rqp->len)
1887 continue;
1888
1889 /* copy answer into caller-supplied buffer */
1890 memcpy(rqp->odata, cmd->data,
1891 sizeof(struct zyd_pair) * rqp->len);
1892 cv_signal(&sc->sc_cmdcv);
1893 mutex_exit(&sc->sc_lock);
1894 return;
1895 }
1896 mutex_exit(&sc->sc_lock);
1897 return; /* unexpected IORD notification */
1898 } else {
1899 printf("%s: unknown notification %x\n", device_xname(sc->sc_dev),
1900 le16toh(cmd->code));
1901 }
1902 }
1903
1904 Static void
zyd_rx_data(struct zyd_softc * sc,const uint8_t * buf,uint16_t len)1905 zyd_rx_data(struct zyd_softc *sc, const uint8_t *buf, uint16_t len)
1906 {
1907 struct ieee80211com *ic = &sc->sc_ic;
1908 struct ifnet *ifp = &sc->sc_if;
1909 struct ieee80211_node *ni;
1910 struct ieee80211_frame *wh;
1911 const struct zyd_plcphdr *plcp;
1912 const struct zyd_rx_stat *stat;
1913 struct mbuf *m;
1914 int rlen, s;
1915
1916 if (len < ZYD_MIN_FRAGSZ) {
1917 printf("%s: frame too short (length=%d)\n",
1918 device_xname(sc->sc_dev), len);
1919 if_statinc(ifp, if_ierrors);
1920 return;
1921 }
1922
1923 plcp = (const struct zyd_plcphdr *)buf;
1924 stat = (const struct zyd_rx_stat *)
1925 (buf + len - sizeof(struct zyd_rx_stat));
1926
1927 if (stat->flags & ZYD_RX_ERROR) {
1928 DPRINTF(("%s: RX status indicated error (%x)\n",
1929 device_xname(sc->sc_dev), stat->flags));
1930 if_statinc(ifp, if_ierrors);
1931 return;
1932 }
1933
1934 /* compute actual frame length */
1935 rlen = len - sizeof(struct zyd_plcphdr) -
1936 sizeof(struct zyd_rx_stat) - IEEE80211_CRC_LEN;
1937
1938 /* allocate a mbuf to store the frame */
1939 MGETHDR(m, M_DONTWAIT, MT_DATA);
1940 if (m == NULL) {
1941 printf("%s: could not allocate rx mbuf\n",
1942 device_xname(sc->sc_dev));
1943 if_statinc(ifp, if_ierrors);
1944 return;
1945 }
1946 if (rlen > MHLEN) {
1947 MCLGET(m, M_DONTWAIT);
1948 if (!(m->m_flags & M_EXT)) {
1949 printf("%s: could not allocate rx mbuf cluster\n",
1950 device_xname(sc->sc_dev));
1951 m_freem(m);
1952 if_statinc(ifp, if_ierrors);
1953 return;
1954 }
1955 }
1956 m_set_rcvif(m, ifp);
1957 m->m_pkthdr.len = m->m_len = rlen;
1958 memcpy(mtod(m, uint8_t *), (const uint8_t *)(plcp + 1), rlen);
1959
1960 s = splnet();
1961
1962 if (sc->sc_drvbpf != NULL) {
1963 struct zyd_rx_radiotap_header *tap = &sc->sc_rxtap;
1964 static const uint8_t rates[] = {
1965 /* reverse function of zyd_plcp_signal() */
1966 2, 4, 11, 22, 0, 0, 0, 0,
1967 96, 48, 24, 12, 108, 72, 36, 18
1968 };
1969
1970 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
1971 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
1972 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
1973 tap->wr_rssi = stat->rssi;
1974 tap->wr_rate = rates[plcp->signal & 0xf];
1975
1976 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m, BPF_D_IN);
1977 }
1978
1979 wh = mtod(m, struct ieee80211_frame *);
1980 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1981 ieee80211_input(ic, m, ni, stat->rssi, 0);
1982
1983 /* node is no longer needed */
1984 ieee80211_free_node(ni);
1985
1986 splx(s);
1987 }
1988
1989 Static void
zyd_rxeof(struct usbd_xfer * xfer,void * priv,usbd_status status)1990 zyd_rxeof(struct usbd_xfer *xfer, void * priv, usbd_status status)
1991 {
1992 struct zyd_rx_data *data = priv;
1993 struct zyd_softc *sc = data->sc;
1994 struct ifnet *ifp = &sc->sc_if;
1995 const struct zyd_rx_desc *desc;
1996 int len;
1997
1998 if (status != USBD_NORMAL_COMPLETION) {
1999 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
2000 return;
2001
2002 if (status == USBD_STALLED)
2003 usbd_clear_endpoint_stall(sc->zyd_ep[ZYD_ENDPT_BIN]);
2004
2005 goto skip;
2006 }
2007 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
2008
2009 if (len < ZYD_MIN_RXBUFSZ) {
2010 printf("%s: xfer too short (length=%d)\n",
2011 device_xname(sc->sc_dev), len);
2012 if_statinc(ifp, if_ierrors);
2013 goto skip;
2014 }
2015
2016 desc = (const struct zyd_rx_desc *)
2017 (data->buf + len - sizeof(struct zyd_rx_desc));
2018
2019 if (UGETW(desc->tag) == ZYD_TAG_MULTIFRAME) {
2020 const uint8_t *p = data->buf, *end = p + len;
2021 int i;
2022
2023 DPRINTFN(3, ("received multi-frame transfer\n"));
2024
2025 for (i = 0; i < ZYD_MAX_RXFRAMECNT; i++) {
2026 const uint16_t len16 = UGETW(desc->len[i]);
2027
2028 if (len16 == 0 || p + len16 > end)
2029 break;
2030
2031 zyd_rx_data(sc, p, len16);
2032 /* next frame is aligned on a 32-bit boundary */
2033 p += (len16 + 3) & ~3;
2034 }
2035 } else {
2036 DPRINTFN(3, ("received single-frame transfer\n"));
2037
2038 zyd_rx_data(sc, data->buf, len);
2039 }
2040
2041 skip: /* setup a new transfer */
2042
2043 usbd_setup_xfer(xfer, data, NULL, ZYX_MAX_RXBUFSZ, USBD_SHORT_XFER_OK,
2044 USBD_NO_TIMEOUT, zyd_rxeof);
2045 (void)usbd_transfer(xfer);
2046 }
2047
2048 Static int
zyd_tx_mgt(struct zyd_softc * sc,struct mbuf * m0,struct ieee80211_node * ni)2049 zyd_tx_mgt(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
2050 {
2051 struct ieee80211com *ic = &sc->sc_ic;
2052 struct ifnet *ifp = &sc->sc_if;
2053 struct zyd_tx_desc *desc;
2054 struct zyd_tx_data *data;
2055 struct ieee80211_frame *wh;
2056 struct ieee80211_key *k;
2057 int xferlen, totlen, rate;
2058 uint16_t pktlen;
2059 usbd_status error;
2060
2061 data = &sc->tx_data[0];
2062 desc = (struct zyd_tx_desc *)data->buf;
2063
2064 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
2065
2066 wh = mtod(m0, struct ieee80211_frame *);
2067
2068 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2069 k = ieee80211_crypto_encap(ic, ni, m0);
2070 if (k == NULL) {
2071 m_freem(m0);
2072 return ENOBUFS;
2073 }
2074 }
2075
2076 data->ni = ni;
2077
2078 wh = mtod(m0, struct ieee80211_frame *);
2079
2080 xferlen = sizeof(struct zyd_tx_desc) + m0->m_pkthdr.len;
2081 totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
2082
2083 /* fill Tx descriptor */
2084 desc->len = htole16(totlen);
2085
2086 desc->flags = ZYD_TX_FLAG_BACKOFF;
2087 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2088 /* multicast frames are not sent at OFDM rates in 802.11b/g */
2089 if (totlen > ic->ic_rtsthreshold) {
2090 desc->flags |= ZYD_TX_FLAG_RTS;
2091 } else if (ZYD_RATE_IS_OFDM(rate) &&
2092 (ic->ic_flags & IEEE80211_F_USEPROT)) {
2093 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2094 desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF;
2095 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2096 desc->flags |= ZYD_TX_FLAG_RTS;
2097 }
2098 } else
2099 desc->flags |= ZYD_TX_FLAG_MULTICAST;
2100
2101 if ((wh->i_fc[0] &
2102 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2103 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL))
2104 desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL);
2105
2106 desc->phy = zyd_plcp_signal(rate);
2107 if (ZYD_RATE_IS_OFDM(rate)) {
2108 desc->phy |= ZYD_TX_PHY_OFDM;
2109 if (ic->ic_curmode == IEEE80211_MODE_11A)
2110 desc->phy |= ZYD_TX_PHY_5GHZ;
2111 } else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
2112 desc->phy |= ZYD_TX_PHY_SHPREAMBLE;
2113
2114 /* actual transmit length (XXX why +10?) */
2115 pktlen = sizeof(struct zyd_tx_desc) + 10;
2116 if (sc->mac_rev == ZYD_ZD1211)
2117 pktlen += totlen;
2118 desc->pktlen = htole16(pktlen);
2119
2120 desc->plcp_length = (16 * totlen + rate - 1) / rate;
2121 desc->plcp_service = 0;
2122 if (rate == 22) {
2123 const int remainder = (16 * totlen) % 22;
2124 if (remainder != 0 && remainder < 7)
2125 desc->plcp_service |= ZYD_PLCP_LENGEXT;
2126 }
2127
2128 if (sc->sc_drvbpf != NULL) {
2129 struct zyd_tx_radiotap_header *tap = &sc->sc_txtap;
2130
2131 tap->wt_flags = 0;
2132 tap->wt_rate = rate;
2133 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
2134 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
2135
2136 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0, BPF_D_OUT);
2137 }
2138
2139 m_copydata(m0, 0, m0->m_pkthdr.len,
2140 data->buf + sizeof(struct zyd_tx_desc));
2141
2142 DPRINTFN(10, ("%s: sending mgt frame len=%zu rate=%u xferlen=%u\n",
2143 device_xname(sc->sc_dev), (size_t)m0->m_pkthdr.len, rate, xferlen));
2144
2145 m_freem(m0); /* mbuf no longer needed */
2146
2147 usbd_setup_xfer(data->xfer, data, data->buf, xferlen,
2148 USBD_FORCE_SHORT_XFER, ZYD_TX_TIMEOUT, zyd_txeof);
2149 error = usbd_transfer(data->xfer);
2150 if (error != USBD_IN_PROGRESS && error != 0) {
2151 if_statinc(ifp, if_oerrors);
2152 return EIO;
2153 }
2154 sc->tx_queued++;
2155
2156 return 0;
2157 }
2158
2159 Static void
zyd_txeof(struct usbd_xfer * xfer,void * priv,usbd_status status)2160 zyd_txeof(struct usbd_xfer *xfer, void * priv, usbd_status status)
2161 {
2162 struct zyd_tx_data *data = priv;
2163 struct zyd_softc *sc = data->sc;
2164 struct ifnet *ifp = &sc->sc_if;
2165 int s;
2166
2167 if (status != USBD_NORMAL_COMPLETION) {
2168 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
2169 return;
2170
2171 printf("%s: could not transmit buffer: %s\n",
2172 device_xname(sc->sc_dev), usbd_errstr(status));
2173
2174 if (status == USBD_STALLED) {
2175 usbd_clear_endpoint_stall_async(
2176 sc->zyd_ep[ZYD_ENDPT_BOUT]);
2177 }
2178 if_statinc(ifp, if_oerrors);
2179 return;
2180 }
2181
2182 s = splnet();
2183
2184 /* update rate control statistics */
2185 ((struct zyd_node *)data->ni)->amn.amn_txcnt++;
2186
2187 ieee80211_free_node(data->ni);
2188 data->ni = NULL;
2189
2190 sc->tx_queued--;
2191 if_statinc(ifp, if_opackets);
2192
2193 sc->tx_timer = 0;
2194 ifp->if_flags &= ~IFF_OACTIVE;
2195 zyd_start(ifp);
2196
2197 splx(s);
2198 }
2199
2200 Static int
zyd_tx_data(struct zyd_softc * sc,struct mbuf * m0,struct ieee80211_node * ni)2201 zyd_tx_data(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
2202 {
2203 struct ieee80211com *ic = &sc->sc_ic;
2204 struct ifnet *ifp = &sc->sc_if;
2205 struct zyd_tx_desc *desc;
2206 struct zyd_tx_data *data;
2207 struct ieee80211_frame *wh;
2208 struct ieee80211_key *k;
2209 int xferlen, totlen, rate;
2210 uint16_t pktlen;
2211 usbd_status error;
2212
2213 wh = mtod(m0, struct ieee80211_frame *);
2214
2215 if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
2216 rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
2217 else
2218 rate = ni->ni_rates.rs_rates[ni->ni_txrate];
2219 rate &= IEEE80211_RATE_VAL;
2220
2221 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2222 k = ieee80211_crypto_encap(ic, ni, m0);
2223 if (k == NULL) {
2224 m_freem(m0);
2225 return ENOBUFS;
2226 }
2227
2228 /* packet header may have moved, reset our local pointer */
2229 wh = mtod(m0, struct ieee80211_frame *);
2230 }
2231
2232 data = &sc->tx_data[0];
2233 desc = (struct zyd_tx_desc *)data->buf;
2234
2235 data->ni = ni;
2236
2237 xferlen = sizeof(struct zyd_tx_desc) + m0->m_pkthdr.len;
2238 totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
2239
2240 /* fill Tx descriptor */
2241 desc->len = htole16(totlen);
2242
2243 desc->flags = ZYD_TX_FLAG_BACKOFF;
2244 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2245 /* multicast frames are not sent at OFDM rates in 802.11b/g */
2246 if (totlen > ic->ic_rtsthreshold) {
2247 desc->flags |= ZYD_TX_FLAG_RTS;
2248 } else if (ZYD_RATE_IS_OFDM(rate) &&
2249 (ic->ic_flags & IEEE80211_F_USEPROT)) {
2250 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2251 desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF;
2252 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2253 desc->flags |= ZYD_TX_FLAG_RTS;
2254 }
2255 } else
2256 desc->flags |= ZYD_TX_FLAG_MULTICAST;
2257
2258 if ((wh->i_fc[0] &
2259 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2260 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL))
2261 desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL);
2262
2263 desc->phy = zyd_plcp_signal(rate);
2264 if (ZYD_RATE_IS_OFDM(rate)) {
2265 desc->phy |= ZYD_TX_PHY_OFDM;
2266 if (ic->ic_curmode == IEEE80211_MODE_11A)
2267 desc->phy |= ZYD_TX_PHY_5GHZ;
2268 } else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
2269 desc->phy |= ZYD_TX_PHY_SHPREAMBLE;
2270
2271 /* actual transmit length (XXX why +10?) */
2272 pktlen = sizeof(struct zyd_tx_desc) + 10;
2273 if (sc->mac_rev == ZYD_ZD1211)
2274 pktlen += totlen;
2275 desc->pktlen = htole16(pktlen);
2276
2277 desc->plcp_length = (16 * totlen + rate - 1) / rate;
2278 desc->plcp_service = 0;
2279 if (rate == 22) {
2280 const int remainder = (16 * totlen) % 22;
2281 if (remainder != 0 && remainder < 7)
2282 desc->plcp_service |= ZYD_PLCP_LENGEXT;
2283 }
2284
2285 if (sc->sc_drvbpf != NULL) {
2286 struct zyd_tx_radiotap_header *tap = &sc->sc_txtap;
2287
2288 tap->wt_flags = 0;
2289 tap->wt_rate = rate;
2290 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
2291 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
2292
2293 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0, BPF_D_OUT);
2294 }
2295
2296 m_copydata(m0, 0, m0->m_pkthdr.len,
2297 data->buf + sizeof(struct zyd_tx_desc));
2298
2299 DPRINTFN(10, ("%s: sending data frame len=%zu rate=%u xferlen=%u\n",
2300 device_xname(sc->sc_dev), (size_t)m0->m_pkthdr.len, rate, xferlen));
2301
2302 m_freem(m0); /* mbuf no longer needed */
2303
2304 usbd_setup_xfer(data->xfer, data, data->buf, xferlen,
2305 USBD_FORCE_SHORT_XFER, ZYD_TX_TIMEOUT, zyd_txeof);
2306 error = usbd_transfer(data->xfer);
2307 if (error != USBD_IN_PROGRESS && error != 0) {
2308 if_statinc(ifp, if_oerrors);
2309 return EIO;
2310 }
2311 sc->tx_queued++;
2312
2313 return 0;
2314 }
2315
2316 Static void
zyd_start(struct ifnet * ifp)2317 zyd_start(struct ifnet *ifp)
2318 {
2319 struct zyd_softc *sc = ifp->if_softc;
2320 struct ieee80211com *ic = &sc->sc_ic;
2321 struct ether_header *eh;
2322 struct ieee80211_node *ni;
2323 struct mbuf *m0;
2324
2325 for (;;) {
2326 IF_POLL(&ic->ic_mgtq, m0);
2327 if (m0 != NULL) {
2328 if (sc->tx_queued >= ZYD_TX_LIST_CNT) {
2329 ifp->if_flags |= IFF_OACTIVE;
2330 break;
2331 }
2332 IF_DEQUEUE(&ic->ic_mgtq, m0);
2333
2334 ni = M_GETCTX(m0, struct ieee80211_node *);
2335 M_CLEARCTX(m0);
2336 bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
2337 if (zyd_tx_mgt(sc, m0, ni) != 0)
2338 break;
2339 } else {
2340 if (ic->ic_state != IEEE80211_S_RUN)
2341 break;
2342 IFQ_POLL(&ifp->if_snd, m0);
2343 if (m0 == NULL)
2344 break;
2345 if (sc->tx_queued >= ZYD_TX_LIST_CNT) {
2346 ifp->if_flags |= IFF_OACTIVE;
2347 break;
2348 }
2349 IFQ_DEQUEUE(&ifp->if_snd, m0);
2350
2351 if (m0->m_len < sizeof(struct ether_header) &&
2352 !(m0 = m_pullup(m0, sizeof(struct ether_header))))
2353 continue;
2354
2355 eh = mtod(m0, struct ether_header *);
2356 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2357 if (ni == NULL) {
2358 m_freem(m0);
2359 continue;
2360 }
2361 bpf_mtap(ifp, m0, BPF_D_OUT);
2362 if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) {
2363 ieee80211_free_node(ni);
2364 if_statinc(ifp, if_oerrors);
2365 continue;
2366 }
2367 bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
2368 if (zyd_tx_data(sc, m0, ni) != 0) {
2369 ieee80211_free_node(ni);
2370 if_statinc(ifp, if_oerrors);
2371 break;
2372 }
2373 }
2374
2375 sc->tx_timer = 5;
2376 ifp->if_timer = 1;
2377 }
2378 }
2379
2380 Static void
zyd_watchdog(struct ifnet * ifp)2381 zyd_watchdog(struct ifnet *ifp)
2382 {
2383 struct zyd_softc *sc = ifp->if_softc;
2384 struct ieee80211com *ic = &sc->sc_ic;
2385
2386 ifp->if_timer = 0;
2387
2388 if (sc->tx_timer > 0) {
2389 if (--sc->tx_timer == 0) {
2390 printf("%s: device timeout\n", device_xname(sc->sc_dev));
2391 /* zyd_init(ifp); XXX needs a process context ? */
2392 if_statinc(ifp, if_oerrors);
2393 return;
2394 }
2395 ifp->if_timer = 1;
2396 }
2397
2398 ieee80211_watchdog(ic);
2399 }
2400
2401 Static int
zyd_ioctl(struct ifnet * ifp,u_long cmd,void * data)2402 zyd_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2403 {
2404 struct zyd_softc *sc = ifp->if_softc;
2405 struct ieee80211com *ic = &sc->sc_ic;
2406 int s, error = 0;
2407
2408 s = splnet();
2409
2410 switch (cmd) {
2411 case SIOCSIFFLAGS:
2412 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
2413 break;
2414 /* XXX re-use ether_ioctl() */
2415 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
2416 case IFF_UP:
2417 zyd_init(ifp);
2418 break;
2419 case IFF_RUNNING:
2420 zyd_stop(ifp, 1);
2421 break;
2422 default:
2423 break;
2424 }
2425 break;
2426
2427 default:
2428 error = ieee80211_ioctl(ic, cmd, data);
2429 }
2430
2431 if (error == ENETRESET) {
2432 if ((ifp->if_flags & (IFF_RUNNING | IFF_UP)) ==
2433 (IFF_RUNNING | IFF_UP))
2434 zyd_init(ifp);
2435 error = 0;
2436 }
2437
2438 splx(s);
2439
2440 return error;
2441 }
2442
2443 Static int
zyd_init(struct ifnet * ifp)2444 zyd_init(struct ifnet *ifp)
2445 {
2446 struct zyd_softc *sc = ifp->if_softc;
2447 struct ieee80211com *ic = &sc->sc_ic;
2448 int i, error;
2449
2450 zyd_stop(ifp, 0);
2451
2452 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2453 DPRINTF(("setting MAC address to %s\n", ether_sprintf(ic->ic_myaddr)));
2454 error = zyd_set_macaddr(sc, ic->ic_myaddr);
2455 if (error != 0)
2456 return error;
2457
2458 /* we'll do software WEP decryption for now */
2459 DPRINTF(("setting encryption type\n"));
2460 error = zyd_write32(sc, ZYD_MAC_ENCRYPTION_TYPE, ZYD_ENC_SNIFFER);
2461 if (error != 0)
2462 return error;
2463
2464 /* promiscuous mode */
2465 (void)zyd_write32(sc, ZYD_MAC_SNIFFER,
2466 (ic->ic_opmode == IEEE80211_M_MONITOR) ? 1 : 0);
2467
2468 (void)zyd_set_rxfilter(sc);
2469
2470 /* switch radio transmitter ON */
2471 (void)zyd_switch_radio(sc, 1);
2472
2473 /* set basic rates */
2474 if (ic->ic_curmode == IEEE80211_MODE_11B)
2475 (void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x0003);
2476 else if (ic->ic_curmode == IEEE80211_MODE_11A)
2477 (void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x1500);
2478 else /* assumes 802.11b/g */
2479 (void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x000f);
2480
2481 /* set mandatory rates */
2482 if (ic->ic_curmode == IEEE80211_MODE_11B)
2483 (void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x000f);
2484 else if (ic->ic_curmode == IEEE80211_MODE_11A)
2485 (void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x1500);
2486 else /* assumes 802.11b/g */
2487 (void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x150f);
2488
2489 /* set default BSS channel */
2490 ic->ic_bss->ni_chan = ic->ic_ibss_chan;
2491 zyd_set_chan(sc, ic->ic_bss->ni_chan);
2492
2493 /* enable interrupts */
2494 (void)zyd_write32(sc, ZYD_CR_INTERRUPT, ZYD_HWINT_MASK);
2495
2496 /*
2497 * Allocate Tx and Rx xfer queues.
2498 */
2499 if ((error = zyd_alloc_tx_list(sc)) != 0) {
2500 printf("%s: could not allocate Tx list\n",
2501 device_xname(sc->sc_dev));
2502 goto fail;
2503 }
2504 if ((error = zyd_alloc_rx_list(sc)) != 0) {
2505 printf("%s: could not allocate Rx list\n",
2506 device_xname(sc->sc_dev));
2507 goto fail;
2508 }
2509
2510 /*
2511 * Start up the receive pipe.
2512 */
2513 for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
2514 struct zyd_rx_data *data = &sc->rx_data[i];
2515
2516 usbd_setup_xfer(data->xfer, data, NULL, ZYX_MAX_RXBUFSZ,
2517 USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, zyd_rxeof);
2518 error = usbd_transfer(data->xfer);
2519 if (error != USBD_IN_PROGRESS && error != 0) {
2520 printf("%s: could not queue Rx transfer\n",
2521 device_xname(sc->sc_dev));
2522 goto fail;
2523 }
2524 }
2525
2526 ifp->if_flags &= ~IFF_OACTIVE;
2527 ifp->if_flags |= IFF_RUNNING;
2528
2529 if (ic->ic_opmode == IEEE80211_M_MONITOR)
2530 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2531 else
2532 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2533
2534 return 0;
2535
2536 fail: zyd_stop(ifp, 1);
2537 return error;
2538 }
2539
2540 Static void
zyd_stop(struct ifnet * ifp,int disable)2541 zyd_stop(struct ifnet *ifp, int disable)
2542 {
2543 struct zyd_softc *sc = ifp->if_softc;
2544 struct ieee80211com *ic = &sc->sc_ic;
2545
2546 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */
2547
2548 sc->tx_timer = 0;
2549 ifp->if_timer = 0;
2550 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2551
2552 /* switch radio transmitter OFF */
2553 (void)zyd_switch_radio(sc, 0);
2554
2555 /* disable Rx */
2556 (void)zyd_write32(sc, ZYD_MAC_RXFILTER, 0);
2557
2558 /* disable interrupts */
2559 (void)zyd_write32(sc, ZYD_CR_INTERRUPT, 0);
2560
2561 usbd_abort_pipe(sc->zyd_ep[ZYD_ENDPT_BIN]);
2562 usbd_abort_pipe(sc->zyd_ep[ZYD_ENDPT_BOUT]);
2563
2564 zyd_free_rx_list(sc);
2565 zyd_free_tx_list(sc);
2566 }
2567
2568 Static int
zyd_loadfirmware(struct zyd_softc * sc,u_char * fw,size_t size)2569 zyd_loadfirmware(struct zyd_softc *sc, u_char *fw, size_t size)
2570 {
2571 usb_device_request_t req;
2572 uint16_t addr;
2573 uint8_t stat;
2574
2575 DPRINTF(("firmware size=%zu\n", size));
2576
2577 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2578 req.bRequest = ZYD_DOWNLOADREQ;
2579 USETW(req.wIndex, 0);
2580
2581 addr = ZYD_FIRMWARE_START_ADDR;
2582 while (size > 0) {
2583 #if 0
2584 const int mlen = uimin(size, 4096);
2585 #else
2586 /*
2587 * XXXX: When the transfer size is 4096 bytes, it is not
2588 * likely to be able to transfer it.
2589 * The cause is port or machine or chip?
2590 */
2591 const int mlen = uimin(size, 64);
2592 #endif
2593
2594 DPRINTF(("loading firmware block: len=%d, addr=%#x\n", mlen,
2595 addr));
2596
2597 USETW(req.wValue, addr);
2598 USETW(req.wLength, mlen);
2599 if (usbd_do_request(sc->sc_udev, &req, fw) != 0)
2600 return EIO;
2601
2602 addr += mlen / 2;
2603 fw += mlen;
2604 size -= mlen;
2605 }
2606
2607 /* check whether the upload succeeded */
2608 req.bmRequestType = UT_READ_VENDOR_DEVICE;
2609 req.bRequest = ZYD_DOWNLOADSTS;
2610 USETW(req.wValue, 0);
2611 USETW(req.wIndex, 0);
2612 USETW(req.wLength, sizeof(stat));
2613 if (usbd_do_request(sc->sc_udev, &req, &stat) != 0)
2614 return EIO;
2615
2616 return (stat & 0x80) ? EIO : 0;
2617 }
2618
2619 Static void
zyd_iter_func(void * arg,struct ieee80211_node * ni)2620 zyd_iter_func(void *arg, struct ieee80211_node *ni)
2621 {
2622 struct zyd_softc *sc = arg;
2623 struct zyd_node *zn = (struct zyd_node *)ni;
2624
2625 ieee80211_amrr_choose(&sc->amrr, ni, &zn->amn);
2626 }
2627
2628 Static void
zyd_amrr_timeout(void * arg)2629 zyd_amrr_timeout(void *arg)
2630 {
2631 struct zyd_softc *sc = arg;
2632 struct ieee80211com *ic = &sc->sc_ic;
2633 int s;
2634
2635 s = splnet();
2636 if (ic->ic_opmode == IEEE80211_M_STA)
2637 zyd_iter_func(sc, ic->ic_bss);
2638 else
2639 ieee80211_iterate_nodes(&ic->ic_sta, zyd_iter_func, sc);
2640 splx(s);
2641
2642 callout_reset(&sc->sc_amrr_ch, hz, zyd_amrr_timeout, sc);
2643 }
2644
2645 Static void
zyd_newassoc(struct ieee80211_node * ni,int isnew)2646 zyd_newassoc(struct ieee80211_node *ni, int isnew)
2647 {
2648 struct zyd_softc *sc = ni->ni_ic->ic_ifp->if_softc;
2649 int i;
2650
2651 ieee80211_amrr_node_init(&sc->amrr, &((struct zyd_node *)ni)->amn);
2652
2653 /* set rate to some reasonable initial value */
2654 for (i = ni->ni_rates.rs_nrates - 1;
2655 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2656 i--);
2657 ni->ni_txrate = i;
2658 }
2659
2660 static int
zyd_activate(device_t self,enum devact act)2661 zyd_activate(device_t self, enum devact act)
2662 {
2663 struct zyd_softc *sc = device_private(self);
2664
2665 switch (act) {
2666 case DVACT_DEACTIVATE:
2667 if_deactivate(&sc->sc_if);
2668 return 0;
2669 default:
2670 return EOPNOTSUPP;
2671 }
2672 }
2673