xref: /netbsd-src/sys/dev/usb/if_mue.c (revision 8a36802c94ee8c74a89384514bb6c86b06cd2dec)
1 /*	$NetBSD: if_mue.c,v 1.83 2022/10/31 21:22:06 andvar Exp $	*/
2 /*	$OpenBSD: if_mue.c,v 1.3 2018/08/04 16:42:46 jsg Exp $	*/
3 
4 /*
5  * Copyright (c) 2018 Kevin Lo <kevlo@openbsd.org>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 /* Driver for Microchip LAN7500/LAN7800 chipsets. */
21 
22 #include <sys/cdefs.h>
23 __KERNEL_RCSID(0, "$NetBSD: if_mue.c,v 1.83 2022/10/31 21:22:06 andvar Exp $");
24 
25 #ifdef _KERNEL_OPT
26 #include "opt_usb.h"
27 #include "opt_inet.h"
28 #endif
29 
30 #include <sys/param.h>
31 
32 #include <dev/usb/usbnet.h>
33 
34 #include <dev/usb/if_muereg.h>
35 #include <dev/usb/if_muevar.h>
36 
37 #define MUE_PRINTF(un, fmt, args...)					\
38 	device_printf((un)->un_dev, "%s: " fmt, __func__, ##args);
39 
40 #ifdef USB_DEBUG
41 int muedebug = 0;
42 #define DPRINTF(un, fmt, args...)					\
43 	do {								\
44 		if (muedebug)						\
45 			MUE_PRINTF(un, fmt, ##args);			\
46 	} while (0 /* CONSTCOND */)
47 #else
48 #define DPRINTF(un, fmt, args...)	__nothing
49 #endif
50 
51 /*
52  * Various supported device vendors/products.
53  */
54 struct mue_type {
55 	struct usb_devno	mue_dev;
56 	uint16_t		mue_flags;
57 #define LAN7500		0x0001	/* LAN7500 */
58 #define LAN7800		0x0002	/* LAN7800 */
59 #define LAN7801		0x0004	/* LAN7801 */
60 #define LAN7850		0x0008	/* LAN7850 */
61 };
62 
63 static const struct mue_type mue_devs[] = {
64 	{ { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_LAN7500 }, LAN7500 },
65 	{ { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_LAN7505 }, LAN7500 },
66 	{ { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_LAN7800 }, LAN7800 },
67 	{ { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_LAN7801 }, LAN7801 },
68 	{ { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_LAN7850 }, LAN7850 }
69 };
70 
71 #define MUE_LOOKUP(uaa)	((const struct mue_type *)usb_lookup(mue_devs, \
72     uaa->uaa_vendor, uaa->uaa_product))
73 
74 #define MUE_ENADDR_LO(enaddr) \
75     ((enaddr[3] << 24) | (enaddr[2] << 16) | (enaddr[1] << 8) | enaddr[0])
76 #define MUE_ENADDR_HI(enaddr) \
77     ((enaddr[5] << 8) | enaddr[4])
78 
79 static int	mue_match(device_t, cfdata_t, void *);
80 static void	mue_attach(device_t, device_t, void *);
81 
82 static uint32_t	mue_csr_read(struct usbnet *, uint32_t);
83 static int	mue_csr_write(struct usbnet *, uint32_t, uint32_t);
84 static int	mue_wait_for_bits(struct usbnet *, uint32_t, uint32_t,
85 		    uint32_t, uint32_t);
86 static uint8_t	mue_eeprom_getbyte(struct usbnet *, int, uint8_t *);
87 static bool	mue_eeprom_present(struct usbnet *);
88 static void	mue_dataport_write(struct usbnet *, uint32_t, uint32_t,
89 		    uint32_t, uint32_t *);
90 static void	mue_init_ltm(struct usbnet *);
91 static int	mue_chip_init(struct usbnet *);
92 static void	mue_set_macaddr(struct usbnet *);
93 static int	mue_get_macaddr(struct usbnet *, prop_dictionary_t);
94 static int	mue_prepare_tso(struct usbnet *, struct mbuf *);
95 static void	mue_uno_mcast(struct ifnet *);
96 static void	mue_sethwcsum_locked(struct usbnet *);
97 static void	mue_setmtu_locked(struct usbnet *);
98 static void	mue_reset(struct usbnet *);
99 
100 static void	mue_uno_stop(struct ifnet *, int);
101 static int	mue_uno_ioctl(struct ifnet *, u_long, void *);
102 static int	mue_uno_mii_read_reg(struct usbnet *, int, int, uint16_t *);
103 static int	mue_uno_mii_write_reg(struct usbnet *, int, int, uint16_t);
104 static void	mue_uno_mii_statchg(struct ifnet *);
105 static void	mue_uno_rx_loop(struct usbnet *, struct usbnet_chain *,
106 				uint32_t);
107 static unsigned	mue_uno_tx_prepare(struct usbnet *, struct mbuf *,
108 				   struct usbnet_chain *);
109 static int	mue_uno_init(struct ifnet *);
110 
111 static const struct usbnet_ops mue_ops = {
112 	.uno_stop = mue_uno_stop,
113 	.uno_ioctl = mue_uno_ioctl,
114 	.uno_mcast = mue_uno_mcast,
115 	.uno_read_reg = mue_uno_mii_read_reg,
116 	.uno_write_reg = mue_uno_mii_write_reg,
117 	.uno_statchg = mue_uno_mii_statchg,
118 	.uno_tx_prepare = mue_uno_tx_prepare,
119 	.uno_rx_loop = mue_uno_rx_loop,
120 	.uno_init = mue_uno_init,
121 };
122 
123 #define MUE_SETBIT(un, reg, x)	\
124 	mue_csr_write(un, reg, mue_csr_read(un, reg) | (x))
125 
126 #define MUE_CLRBIT(un, reg, x)	\
127 	mue_csr_write(un, reg, mue_csr_read(un, reg) & ~(x))
128 
129 #define MUE_WAIT_SET(un, reg, set, fail)	\
130 	mue_wait_for_bits(un, reg, set, ~0, fail)
131 
132 #define MUE_WAIT_CLR(un, reg, clear, fail)	\
133 	mue_wait_for_bits(un, reg, 0, clear, fail)
134 
135 #define ETHER_IS_VALID(addr) \
136 	(!ETHER_IS_MULTICAST(addr) && !ETHER_IS_ZERO(addr))
137 
138 #define ETHER_IS_ZERO(addr) \
139 	(!(addr[0] | addr[1] | addr[2] | addr[3] | addr[4] | addr[5]))
140 
141 CFATTACH_DECL_NEW(mue, sizeof(struct usbnet), mue_match, mue_attach,
142     usbnet_detach, usbnet_activate);
143 
144 static uint32_t
mue_csr_read(struct usbnet * un,uint32_t reg)145 mue_csr_read(struct usbnet *un, uint32_t reg)
146 {
147 	usb_device_request_t req;
148 	usbd_status err;
149 	uDWord val;
150 
151 	if (usbnet_isdying(un))
152 		return 0;
153 
154 	USETDW(val, 0);
155 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
156 	req.bRequest = MUE_UR_READREG;
157 	USETW(req.wValue, 0);
158 	USETW(req.wIndex, reg);
159 	USETW(req.wLength, 4);
160 
161 	err = usbd_do_request(un->un_udev, &req, &val);
162 	if (err) {
163 		MUE_PRINTF(un, "reg = %#x: %s\n", reg, usbd_errstr(err));
164 		return 0;
165 	}
166 
167 	return UGETDW(val);
168 }
169 
170 static int
mue_csr_write(struct usbnet * un,uint32_t reg,uint32_t aval)171 mue_csr_write(struct usbnet *un, uint32_t reg, uint32_t aval)
172 {
173 	usb_device_request_t req;
174 	usbd_status err;
175 	uDWord val;
176 
177 	if (usbnet_isdying(un))
178 		return 0;
179 
180 	USETDW(val, aval);
181 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
182 	req.bRequest = MUE_UR_WRITEREG;
183 	USETW(req.wValue, 0);
184 	USETW(req.wIndex, reg);
185 	USETW(req.wLength, 4);
186 
187 	err = usbd_do_request(un->un_udev, &req, &val);
188 	if (err) {
189 		MUE_PRINTF(un, "reg = %#x: %s\n", reg, usbd_errstr(err));
190 		return -1;
191 	}
192 
193 	return 0;
194 }
195 
196 static int
mue_wait_for_bits(struct usbnet * un,uint32_t reg,uint32_t set,uint32_t clear,uint32_t fail)197 mue_wait_for_bits(struct usbnet *un, uint32_t reg,
198     uint32_t set, uint32_t clear, uint32_t fail)
199 {
200 	uint32_t val;
201 	int ntries;
202 
203 	for (ntries = 0; ntries < 1000; ntries++) {
204 		if (usbnet_isdying(un))
205 			return 1;
206 		val = mue_csr_read(un, reg);
207 		if ((val & set) || !(val & clear))
208 			return 0;
209 		if (val & fail)
210 			return 1;
211 		usbd_delay_ms(un->un_udev, 1);
212 	}
213 
214 	return 1;
215 }
216 
217 static int
mue_uno_mii_read_reg(struct usbnet * un,int phy,int reg,uint16_t * val)218 mue_uno_mii_read_reg(struct usbnet *un, int phy, int reg, uint16_t *val)
219 {
220 	uint32_t data;
221 
222 	if (un->un_phyno != phy) {
223 		*val = 0;
224 		return EINVAL;
225 	}
226 
227 	if (MUE_WAIT_CLR(un, MUE_MII_ACCESS, MUE_MII_ACCESS_BUSY, 0)) {
228 		MUE_PRINTF(un, "not ready\n");
229 		*val = 0;
230 		return EBUSY;
231 	}
232 
233 	mue_csr_write(un, MUE_MII_ACCESS, MUE_MII_ACCESS_READ |
234 	    MUE_MII_ACCESS_BUSY | MUE_MII_ACCESS_REGADDR(reg) |
235 	    MUE_MII_ACCESS_PHYADDR(phy));
236 
237 	if (MUE_WAIT_CLR(un, MUE_MII_ACCESS, MUE_MII_ACCESS_BUSY, 0)) {
238 		MUE_PRINTF(un, "timed out\n");
239 		*val = 0;
240 		return ETIMEDOUT;
241 	}
242 
243 	data = mue_csr_read(un, MUE_MII_DATA);
244 	*val = data & 0xffff;
245 
246 	return 0;
247 }
248 
249 static int
mue_uno_mii_write_reg(struct usbnet * un,int phy,int reg,uint16_t val)250 mue_uno_mii_write_reg(struct usbnet *un, int phy, int reg, uint16_t val)
251 {
252 
253 	if (un->un_phyno != phy)
254 		return EINVAL;
255 
256 	if (MUE_WAIT_CLR(un, MUE_MII_ACCESS, MUE_MII_ACCESS_BUSY, 0)) {
257 		MUE_PRINTF(un, "not ready\n");
258 		return EBUSY;
259 	}
260 
261 	mue_csr_write(un, MUE_MII_DATA, val);
262 	mue_csr_write(un, MUE_MII_ACCESS, MUE_MII_ACCESS_WRITE |
263 	    MUE_MII_ACCESS_BUSY | MUE_MII_ACCESS_REGADDR(reg) |
264 	    MUE_MII_ACCESS_PHYADDR(phy));
265 
266 	if (MUE_WAIT_CLR(un, MUE_MII_ACCESS, MUE_MII_ACCESS_BUSY, 0)) {
267 		MUE_PRINTF(un, "timed out\n");
268 		return ETIMEDOUT;
269 	}
270 
271 	return 0;
272 }
273 
274 static void
mue_uno_mii_statchg(struct ifnet * ifp)275 mue_uno_mii_statchg(struct ifnet *ifp)
276 {
277 	struct usbnet * const un = ifp->if_softc;
278 	struct mii_data * const mii = usbnet_mii(un);
279 	uint32_t flow, threshold;
280 
281 	if (usbnet_isdying(un))
282 		return;
283 
284 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
285 	    (IFM_ACTIVE | IFM_AVALID)) {
286 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
287 		case IFM_10_T:
288 		case IFM_100_TX:
289 		case IFM_1000_T:
290 			usbnet_set_link(un, true);
291 			break;
292 		default:
293 			break;
294 		}
295 	}
296 
297 	/* Lost link, do nothing. */
298 	if (!usbnet_havelink(un)) {
299 		DPRINTF(un, "mii_media_status = %#x\n", mii->mii_media_status);
300 		return;
301 	}
302 
303 	if (!(un->un_flags & LAN7500)) {
304 		if (un->un_udev->ud_speed == USB_SPEED_SUPER) {
305 			if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
306 				/* Disable U2 and enable U1. */
307 				MUE_CLRBIT(un, MUE_USB_CFG1,
308 				    MUE_USB_CFG1_DEV_U2_INIT_EN);
309 				MUE_SETBIT(un, MUE_USB_CFG1,
310 				    MUE_USB_CFG1_DEV_U1_INIT_EN);
311 			} else {
312 				/* Enable U1 and U2. */
313 				MUE_SETBIT(un, MUE_USB_CFG1,
314 				    MUE_USB_CFG1_DEV_U1_INIT_EN |
315 				    MUE_USB_CFG1_DEV_U2_INIT_EN);
316 			}
317 		}
318 	}
319 
320 	flow = 0;
321 	/* XXX Linux does not check IFM_FDX flag for 7800. */
322 	if (IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) {
323 		if (IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE)
324 			flow |= MUE_FLOW_TX_FCEN | MUE_FLOW_PAUSE_TIME;
325 		if (IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE)
326 			flow |= MUE_FLOW_RX_FCEN;
327 	}
328 
329 	/* XXX Magic numbers taken from Linux driver. */
330 	if (un->un_flags & LAN7500)
331 		threshold = 0x820;
332 	else
333 		switch (un->un_udev->ud_speed) {
334 		case USB_SPEED_SUPER:
335 			threshold = 0x817;
336 			break;
337 		case USB_SPEED_HIGH:
338 			threshold = 0x211;
339 			break;
340 		default:
341 			threshold = 0;
342 			break;
343 		}
344 
345 	/* Threshold value should be set before enabling flow. */
346 	mue_csr_write(un, (un->un_flags & LAN7500) ?
347 	    MUE_7500_FCT_FLOW : MUE_7800_FCT_FLOW, threshold);
348 	mue_csr_write(un, MUE_FLOW, flow);
349 
350 	DPRINTF(un, "done\n");
351 }
352 
353 static uint8_t
mue_eeprom_getbyte(struct usbnet * un,int off,uint8_t * dest)354 mue_eeprom_getbyte(struct usbnet *un, int off, uint8_t *dest)
355 {
356 	uint32_t val;
357 
358 	if (MUE_WAIT_CLR(un, MUE_E2P_CMD, MUE_E2P_CMD_BUSY, 0)) {
359 		MUE_PRINTF(un, "not ready\n");
360 		return ETIMEDOUT;
361 	}
362 
363 	KASSERT((off & ~MUE_E2P_CMD_ADDR_MASK) == 0);
364 	mue_csr_write(un, MUE_E2P_CMD, MUE_E2P_CMD_READ | MUE_E2P_CMD_BUSY |
365 	    off);
366 
367 	if (MUE_WAIT_CLR(un, MUE_E2P_CMD, MUE_E2P_CMD_BUSY,
368 	    MUE_E2P_CMD_TIMEOUT)) {
369 		MUE_PRINTF(un, "timed out\n");
370 		return ETIMEDOUT;
371 	}
372 
373 	val = mue_csr_read(un, MUE_E2P_DATA);
374 	*dest = val & 0xff;
375 
376 	return 0;
377 }
378 
379 static int
mue_read_eeprom(struct usbnet * un,uint8_t * dest,int off,int cnt)380 mue_read_eeprom(struct usbnet *un, uint8_t *dest, int off, int cnt)
381 {
382 	uint32_t val = 0; /* XXX gcc */
383 	uint8_t byte;
384 	int i, err = 0;
385 
386 	/*
387 	 * EEPROM pins are muxed with the LED function on LAN7800 device.
388 	 */
389 	if (un->un_flags & LAN7800) {
390 		val = mue_csr_read(un, MUE_HW_CFG);
391 		mue_csr_write(un, MUE_HW_CFG,
392 		    val & ~(MUE_HW_CFG_LED0_EN | MUE_HW_CFG_LED1_EN));
393 	}
394 
395 	for (i = 0; i < cnt; i++) {
396 		err = mue_eeprom_getbyte(un, off + i, &byte);
397 		if (err)
398 			break;
399 		*(dest + i) = byte;
400 	}
401 
402 	if (un->un_flags & LAN7800)
403 		mue_csr_write(un, MUE_HW_CFG, val);
404 
405 	return err ? 1 : 0;
406 }
407 
408 static bool
mue_eeprom_present(struct usbnet * un)409 mue_eeprom_present(struct usbnet *un)
410 {
411 	uint32_t val;
412 	uint8_t sig;
413 	int ret;
414 
415 	if (un->un_flags & LAN7500) {
416 		val = mue_csr_read(un, MUE_E2P_CMD);
417 		return val & MUE_E2P_CMD_LOADED;
418 	} else {
419 		ret = mue_read_eeprom(un, &sig, MUE_E2P_IND_OFFSET, 1);
420 		return (ret == 0) && (sig == MUE_E2P_IND);
421 	}
422 }
423 
424 static int
mue_read_otp_raw(struct usbnet * un,uint8_t * dest,int off,int cnt)425 mue_read_otp_raw(struct usbnet *un, uint8_t *dest, int off, int cnt)
426 {
427 	uint32_t val;
428 	int i, err;
429 
430 	val = mue_csr_read(un, MUE_OTP_PWR_DN);
431 
432 	/* Checking if bit is set. */
433 	if (val & MUE_OTP_PWR_DN_PWRDN_N) {
434 		/* Clear it, then wait for it to be cleared. */
435 		mue_csr_write(un, MUE_OTP_PWR_DN, 0);
436 		err = MUE_WAIT_CLR(un, MUE_OTP_PWR_DN, MUE_OTP_PWR_DN_PWRDN_N,
437 		    0);
438 		if (err) {
439 			MUE_PRINTF(un, "not ready\n");
440 			return 1;
441 		}
442 	}
443 
444 	/* Start reading the bytes, one at a time. */
445 	for (i = 0; i < cnt; i++) {
446 		mue_csr_write(un, MUE_OTP_ADDR1,
447 		    ((off + i) >> 8) & MUE_OTP_ADDR1_MASK);
448 		mue_csr_write(un, MUE_OTP_ADDR2,
449 		    ((off + i) & MUE_OTP_ADDR2_MASK));
450 		mue_csr_write(un, MUE_OTP_FUNC_CMD, MUE_OTP_FUNC_CMD_READ);
451 		mue_csr_write(un, MUE_OTP_CMD_GO, MUE_OTP_CMD_GO_GO);
452 
453 		err = MUE_WAIT_CLR(un, MUE_OTP_STATUS, MUE_OTP_STATUS_BUSY, 0);
454 		if (err) {
455 			MUE_PRINTF(un, "timed out\n");
456 			return 1;
457 		}
458 		val = mue_csr_read(un, MUE_OTP_RD_DATA);
459 		*(dest + i) = (uint8_t)(val & 0xff);
460 	}
461 
462 	return 0;
463 }
464 
465 static int
mue_read_otp(struct usbnet * un,uint8_t * dest,int off,int cnt)466 mue_read_otp(struct usbnet *un, uint8_t *dest, int off, int cnt)
467 {
468 	uint8_t sig;
469 	int err;
470 
471 	if (un->un_flags & LAN7500)
472 		return 1;
473 
474 	err = mue_read_otp_raw(un, &sig, MUE_OTP_IND_OFFSET, 1);
475 	if (err)
476 		return 1;
477 	switch (sig) {
478 	case MUE_OTP_IND_1:
479 		break;
480 	case MUE_OTP_IND_2:
481 		off += 0x100;
482 		break;
483 	default:
484 		DPRINTF(un, "OTP not found\n");
485 		return 1;
486 	}
487 	err = mue_read_otp_raw(un, dest, off, cnt);
488 	return err;
489 }
490 
491 static void
mue_dataport_write(struct usbnet * un,uint32_t sel,uint32_t addr,uint32_t cnt,uint32_t * data)492 mue_dataport_write(struct usbnet *un, uint32_t sel, uint32_t addr,
493     uint32_t cnt, uint32_t *data)
494 {
495 	uint32_t i;
496 
497 	if (MUE_WAIT_SET(un, MUE_DP_SEL, MUE_DP_SEL_DPRDY, 0)) {
498 		MUE_PRINTF(un, "not ready\n");
499 		return;
500 	}
501 
502 	mue_csr_write(un, MUE_DP_SEL,
503 	    (mue_csr_read(un, MUE_DP_SEL) & ~MUE_DP_SEL_RSEL_MASK) | sel);
504 
505 	for (i = 0; i < cnt; i++) {
506 		mue_csr_write(un, MUE_DP_ADDR, addr + i);
507 		mue_csr_write(un, MUE_DP_DATA, data[i]);
508 		mue_csr_write(un, MUE_DP_CMD, MUE_DP_CMD_WRITE);
509 		if (MUE_WAIT_SET(un, MUE_DP_SEL, MUE_DP_SEL_DPRDY, 0)) {
510 			MUE_PRINTF(un, "timed out\n");
511 			return;
512 		}
513 	}
514 }
515 
516 static void
mue_init_ltm(struct usbnet * un)517 mue_init_ltm(struct usbnet *un)
518 {
519 	uint32_t idx[MUE_NUM_LTM_INDEX] = { 0, 0, 0, 0, 0, 0 };
520 	uint8_t temp[2];
521 	size_t i;
522 
523 	if (mue_csr_read(un, MUE_USB_CFG1) & MUE_USB_CFG1_LTM_ENABLE) {
524 		if (mue_eeprom_present(un) &&
525 		    (mue_read_eeprom(un, temp, MUE_E2P_LTM_OFFSET, 2) == 0)) {
526 			if (temp[0] != sizeof(idx)) {
527 				DPRINTF(un, "EEPROM: unexpected size\n");
528 				goto done;
529 			}
530 			if (mue_read_eeprom(un, (uint8_t *)idx, temp[1] << 1,
531 				sizeof(idx))) {
532 				DPRINTF(un, "EEPROM: failed to read\n");
533 				goto done;
534 			}
535 			DPRINTF(un, "success\n");
536 		} else if (mue_read_otp(un, temp, MUE_E2P_LTM_OFFSET, 2) == 0) {
537 			if (temp[0] != sizeof(idx)) {
538 				DPRINTF(un, "OTP: unexpected size\n");
539 				goto done;
540 			}
541 			if (mue_read_otp(un, (uint8_t *)idx, temp[1] << 1,
542 				sizeof(idx))) {
543 				DPRINTF(un, "OTP: failed to read\n");
544 				goto done;
545 			}
546 			DPRINTF(un, "success\n");
547 		} else
548 			DPRINTF(un, "nothing to do\n");
549 	} else
550 		DPRINTF(un, "nothing to do\n");
551 done:
552 	for (i = 0; i < __arraycount(idx); i++)
553 		mue_csr_write(un, MUE_LTM_INDEX(i), idx[i]);
554 }
555 
556 static int
mue_chip_init(struct usbnet * un)557 mue_chip_init(struct usbnet *un)
558 {
559 	uint32_t val;
560 
561 	if ((un->un_flags & LAN7500) &&
562 	    MUE_WAIT_SET(un, MUE_PMT_CTL, MUE_PMT_CTL_READY, 0)) {
563 		MUE_PRINTF(un, "not ready\n");
564 			return ETIMEDOUT;
565 	}
566 
567 	MUE_SETBIT(un, MUE_HW_CFG, MUE_HW_CFG_LRST);
568 	if (MUE_WAIT_CLR(un, MUE_HW_CFG, MUE_HW_CFG_LRST, 0)) {
569 		MUE_PRINTF(un, "timed out\n");
570 		return ETIMEDOUT;
571 	}
572 
573 	/* Respond to the IN token with a NAK. */
574 	if (un->un_flags & LAN7500)
575 		MUE_SETBIT(un, MUE_HW_CFG, MUE_HW_CFG_BIR);
576 	else
577 		MUE_SETBIT(un, MUE_USB_CFG0, MUE_USB_CFG0_BIR);
578 
579 	if (un->un_flags & LAN7500) {
580 		if (un->un_udev->ud_speed == USB_SPEED_HIGH)
581 			val = MUE_7500_HS_RX_BUFSIZE /
582 			    MUE_HS_USB_PKT_SIZE;
583 		else
584 			val = MUE_7500_FS_RX_BUFSIZE /
585 			    MUE_FS_USB_PKT_SIZE;
586 		mue_csr_write(un, MUE_7500_BURST_CAP, val);
587 		mue_csr_write(un, MUE_7500_BULKIN_DELAY,
588 		    MUE_7500_DEFAULT_BULKIN_DELAY);
589 
590 		MUE_SETBIT(un, MUE_HW_CFG, MUE_HW_CFG_BCE | MUE_HW_CFG_MEF);
591 
592 		/* Set FIFO sizes. */
593 		val = (MUE_7500_MAX_RX_FIFO_SIZE - 512) / 512;
594 		mue_csr_write(un, MUE_7500_FCT_RX_FIFO_END, val);
595 		val = (MUE_7500_MAX_TX_FIFO_SIZE - 512) / 512;
596 		mue_csr_write(un, MUE_7500_FCT_TX_FIFO_END, val);
597 	} else {
598 		/* Init LTM. */
599 		mue_init_ltm(un);
600 
601 		val = MUE_7800_RX_BUFSIZE;
602 		switch (un->un_udev->ud_speed) {
603 		case USB_SPEED_SUPER:
604 			val /= MUE_SS_USB_PKT_SIZE;
605 			break;
606 		case USB_SPEED_HIGH:
607 			val /= MUE_HS_USB_PKT_SIZE;
608 			break;
609 		default:
610 			val /= MUE_FS_USB_PKT_SIZE;
611 			break;
612 		}
613 		mue_csr_write(un, MUE_7800_BURST_CAP, val);
614 		mue_csr_write(un, MUE_7800_BULKIN_DELAY,
615 		    MUE_7800_DEFAULT_BULKIN_DELAY);
616 
617 		MUE_SETBIT(un, MUE_HW_CFG, MUE_HW_CFG_MEF);
618 		MUE_SETBIT(un, MUE_USB_CFG0, MUE_USB_CFG0_BCE);
619 
620 		/*
621 		 * Set FCL's RX and TX FIFO sizes: according to data sheet this
622 		 * is already the default value. But we initialize it to the
623 		 * same value anyways, as that's what the Linux driver does.
624 		 */
625 		val = (MUE_7800_MAX_RX_FIFO_SIZE - 512) / 512;
626 		mue_csr_write(un, MUE_7800_FCT_RX_FIFO_END, val);
627 		val = (MUE_7800_MAX_TX_FIFO_SIZE - 512) / 512;
628 		mue_csr_write(un, MUE_7800_FCT_TX_FIFO_END, val);
629 	}
630 
631 	/* Enabling interrupts. */
632 	mue_csr_write(un, MUE_INT_STATUS, ~0);
633 
634 	mue_csr_write(un, (un->un_flags & LAN7500) ?
635 	    MUE_7500_FCT_FLOW : MUE_7800_FCT_FLOW, 0);
636 	mue_csr_write(un, MUE_FLOW, 0);
637 
638 	/* Reset PHY. */
639 	MUE_SETBIT(un, MUE_PMT_CTL, MUE_PMT_CTL_PHY_RST);
640 	if (MUE_WAIT_CLR(un, MUE_PMT_CTL, MUE_PMT_CTL_PHY_RST, 0)) {
641 		MUE_PRINTF(un, "PHY not ready\n");
642 		return ETIMEDOUT;
643 	}
644 
645 	/* LAN7801 only has RGMII mode. */
646 	if (un->un_flags & LAN7801)
647 		MUE_CLRBIT(un, MUE_MAC_CR, MUE_MAC_CR_GMII_EN);
648 
649 	if ((un->un_flags & (LAN7500 | LAN7800)) ||
650 	    !mue_eeprom_present(un)) {
651 		/* Allow MAC to detect speed and duplex from PHY. */
652 		MUE_SETBIT(un, MUE_MAC_CR, MUE_MAC_CR_AUTO_SPEED |
653 		    MUE_MAC_CR_AUTO_DUPLEX);
654 	}
655 
656 	MUE_SETBIT(un, MUE_MAC_TX, MUE_MAC_TX_TXEN);
657 	MUE_SETBIT(un, (un->un_flags & LAN7500) ?
658 	    MUE_7500_FCT_TX_CTL : MUE_7800_FCT_TX_CTL, MUE_FCT_TX_CTL_EN);
659 
660 	MUE_SETBIT(un, (un->un_flags & LAN7500) ?
661 	    MUE_7500_FCT_RX_CTL : MUE_7800_FCT_RX_CTL, MUE_FCT_RX_CTL_EN);
662 
663 	/* Set default GPIO/LED settings only if no EEPROM is detected. */
664 	if ((un->un_flags & LAN7500) && !mue_eeprom_present(un)) {
665 		MUE_CLRBIT(un, MUE_LED_CFG, MUE_LED_CFG_LED10_FUN_SEL);
666 		MUE_SETBIT(un, MUE_LED_CFG,
667 		    MUE_LED_CFG_LEDGPIO_EN | MUE_LED_CFG_LED2_FUN_SEL);
668 	}
669 
670 	/* XXX We assume two LEDs at least when EEPROM is missing. */
671 	if (un->un_flags & LAN7800 &&
672 	    !mue_eeprom_present(un))
673 		MUE_SETBIT(un, MUE_HW_CFG,
674 		    MUE_HW_CFG_LED0_EN | MUE_HW_CFG_LED1_EN);
675 
676 	return 0;
677 }
678 
679 static void
mue_set_macaddr(struct usbnet * un)680 mue_set_macaddr(struct usbnet *un)
681 {
682 	struct ifnet * const ifp = usbnet_ifp(un);
683 	const uint8_t *enaddr = CLLADDR(ifp->if_sadl);
684 	uint32_t lo, hi;
685 
686 	lo = MUE_ENADDR_LO(enaddr);
687 	hi = MUE_ENADDR_HI(enaddr);
688 
689 	mue_csr_write(un, MUE_RX_ADDRL, lo);
690 	mue_csr_write(un, MUE_RX_ADDRH, hi);
691 }
692 
693 static int
mue_get_macaddr(struct usbnet * un,prop_dictionary_t dict)694 mue_get_macaddr(struct usbnet *un, prop_dictionary_t dict)
695 {
696 	prop_data_t eaprop;
697 	uint32_t low, high;
698 
699 	if (!(un->un_flags & LAN7500)) {
700 		low  = mue_csr_read(un, MUE_RX_ADDRL);
701 		high = mue_csr_read(un, MUE_RX_ADDRH);
702 		un->un_eaddr[5] = (uint8_t)((high >> 8) & 0xff);
703 		un->un_eaddr[4] = (uint8_t)((high) & 0xff);
704 		un->un_eaddr[3] = (uint8_t)((low >> 24) & 0xff);
705 		un->un_eaddr[2] = (uint8_t)((low >> 16) & 0xff);
706 		un->un_eaddr[1] = (uint8_t)((low >> 8) & 0xff);
707 		un->un_eaddr[0] = (uint8_t)((low) & 0xff);
708 		if (ETHER_IS_VALID(un->un_eaddr))
709 			return 0;
710 		else
711 			DPRINTF(un, "registers: %s\n",
712 			    ether_sprintf(un->un_eaddr));
713 	}
714 
715 	if (mue_eeprom_present(un) && !mue_read_eeprom(un, un->un_eaddr,
716 	    MUE_E2P_MAC_OFFSET, ETHER_ADDR_LEN)) {
717 		if (ETHER_IS_VALID(un->un_eaddr))
718 			return 0;
719 		else
720 			DPRINTF(un, "EEPROM: %s\n",
721 			    ether_sprintf(un->un_eaddr));
722 	}
723 
724 	if (mue_read_otp(un, un->un_eaddr, MUE_OTP_MAC_OFFSET,
725 	    ETHER_ADDR_LEN) == 0) {
726 		if (ETHER_IS_VALID(un->un_eaddr))
727 			return 0;
728 		else
729 			DPRINTF(un, "OTP: %s\n",
730 			    ether_sprintf(un->un_eaddr));
731 	}
732 
733 	/*
734 	 * Other MD methods. This should be tried only if other methods fail.
735 	 * Otherwise, MAC address for internal device can be assigned to
736 	 * external devices on Raspberry Pi, for example.
737 	 */
738 	eaprop = prop_dictionary_get(dict, "mac-address");
739 	if (eaprop != NULL) {
740 		KASSERT(prop_object_type(eaprop) == PROP_TYPE_DATA);
741 		KASSERT(prop_data_size(eaprop) == ETHER_ADDR_LEN);
742 		memcpy(un->un_eaddr, prop_data_value(eaprop),
743 		    ETHER_ADDR_LEN);
744 		if (ETHER_IS_VALID(un->un_eaddr))
745 			return 0;
746 		else
747 			DPRINTF(un, "prop_dictionary_get: %s\n",
748 			    ether_sprintf(un->un_eaddr));
749 	}
750 
751 	return 1;
752 }
753 
754 
755 /*
756  * Probe for a Microchip chip.
757  */
758 static int
mue_match(device_t parent,cfdata_t match,void * aux)759 mue_match(device_t parent, cfdata_t match, void *aux)
760 {
761 	struct usb_attach_arg *uaa = aux;
762 
763 	return (MUE_LOOKUP(uaa) != NULL) ?  UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
764 }
765 
766 static void
mue_attach(device_t parent,device_t self,void * aux)767 mue_attach(device_t parent, device_t self, void *aux)
768 {
769 	USBNET_MII_DECL_DEFAULT(unm);
770 	struct usbnet * const un = device_private(self);
771 	prop_dictionary_t dict = device_properties(self);
772 	struct usb_attach_arg *uaa = aux;
773 	struct usbd_device *dev = uaa->uaa_device;
774 	usb_interface_descriptor_t *id;
775 	usb_endpoint_descriptor_t *ed;
776 	char *devinfop;
777 	usbd_status err;
778 	const char *descr;
779 	uint32_t id_rev;
780 	uint8_t i;
781 	unsigned rx_list_cnt, tx_list_cnt;
782 	unsigned rx_bufsz;
783 
784 	aprint_naive("\n");
785 	aprint_normal("\n");
786 	devinfop = usbd_devinfo_alloc(dev, 0);
787 	aprint_normal_dev(self, "%s\n", devinfop);
788 	usbd_devinfo_free(devinfop);
789 
790 	un->un_dev = self;
791 	un->un_udev = dev;
792 	un->un_sc = un;
793 	un->un_ops = &mue_ops;
794 	un->un_rx_xfer_flags = USBD_SHORT_XFER_OK;
795 	un->un_tx_xfer_flags = USBD_FORCE_SHORT_XFER;
796 
797 #define MUE_CONFIG_NO	1
798 	err = usbd_set_config_no(dev, MUE_CONFIG_NO, 1);
799 	if (err) {
800 		aprint_error_dev(self, "failed to set configuration: %s\n",
801 		    usbd_errstr(err));
802 		return;
803 	}
804 
805 #define MUE_IFACE_IDX	0
806 	err = usbd_device2interface_handle(dev, MUE_IFACE_IDX, &un->un_iface);
807 	if (err) {
808 		aprint_error_dev(self, "failed to get interface handle: %s\n",
809 		    usbd_errstr(err));
810 		return;
811 	}
812 
813 	un->un_flags = MUE_LOOKUP(uaa)->mue_flags;
814 
815 	/* Decide on what our bufsize will be. */
816 	if (un->un_flags & LAN7500) {
817 		rx_bufsz = (un->un_udev->ud_speed == USB_SPEED_HIGH) ?
818 		    MUE_7500_HS_RX_BUFSIZE : MUE_7500_FS_RX_BUFSIZE;
819 		rx_list_cnt = 1;
820 		tx_list_cnt = 1;
821 	} else {
822 		rx_bufsz = MUE_7800_RX_BUFSIZE;
823 		rx_list_cnt = MUE_RX_LIST_CNT;
824 		tx_list_cnt = MUE_TX_LIST_CNT;
825 	}
826 
827 	un->un_rx_list_cnt = rx_list_cnt;
828 	un->un_tx_list_cnt = tx_list_cnt;
829 	un->un_rx_bufsz = rx_bufsz;
830 	un->un_tx_bufsz = MUE_TX_BUFSIZE;
831 
832 	/* Find endpoints. */
833 	id = usbd_get_interface_descriptor(un->un_iface);
834 	for (i = 0; i < id->bNumEndpoints; i++) {
835 		ed = usbd_interface2endpoint_descriptor(un->un_iface, i);
836 		if (ed == NULL) {
837 			aprint_error_dev(self, "failed to get ep %hhd\n", i);
838 			return;
839 		}
840 		if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
841 		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) {
842 			un->un_ed[USBNET_ENDPT_RX] = ed->bEndpointAddress;
843 		} else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
844 			   UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) {
845 			un->un_ed[USBNET_ENDPT_TX] = ed->bEndpointAddress;
846 		} else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
847 			   UE_GET_XFERTYPE(ed->bmAttributes) == UE_INTERRUPT) {
848 			un->un_ed[USBNET_ENDPT_INTR] = ed->bEndpointAddress;
849 		}
850 	}
851 	if (un->un_ed[USBNET_ENDPT_RX] == 0 ||
852 	    un->un_ed[USBNET_ENDPT_TX] == 0 ||
853 	    un->un_ed[USBNET_ENDPT_INTR] == 0) {
854 		aprint_error_dev(self, "failed to find endpoints\n");
855 		return;
856 	}
857 
858 	/* Set these up now for mue_cmd().  */
859 	usbnet_attach(un);
860 
861 	un->un_phyno = 1;
862 
863 	if (mue_chip_init(un)) {
864 		aprint_error_dev(self, "failed to initialize chip\n");
865 		return;
866 	}
867 
868 	/* A Microchip chip was detected.  Inform the world. */
869 	id_rev = mue_csr_read(un, MUE_ID_REV);
870 	descr = (un->un_flags & LAN7500) ? "LAN7500" : "LAN7800";
871 	aprint_normal_dev(self, "%s id %#x rev %#x\n", descr,
872 		(unsigned)__SHIFTOUT(id_rev, MUE_ID_REV_ID),
873 		(unsigned)__SHIFTOUT(id_rev, MUE_ID_REV_REV));
874 
875 	if (mue_get_macaddr(un, dict)) {
876 		aprint_error_dev(self, "failed to read MAC address\n");
877 		return;
878 	}
879 
880 	struct ifnet *ifp = usbnet_ifp(un);
881 	ifp->if_capabilities = IFCAP_TSOv4 | IFCAP_TSOv6 |
882 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
883 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
884 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
885 	    IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_TCPv6_Rx |
886 	    IFCAP_CSUM_UDPv6_Tx | IFCAP_CSUM_UDPv6_Rx;
887 
888 	struct ethercom *ec = usbnet_ec(un);
889 	ec->ec_capabilities = ETHERCAP_VLAN_MTU;
890 #if 0 /* XXX not yet */
891 	ec->ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
892 #endif
893 
894 	usbnet_attach_ifp(un, IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST,
895 	    0, &unm);
896 }
897 
898 static unsigned
mue_uno_tx_prepare(struct usbnet * un,struct mbuf * m,struct usbnet_chain * c)899 mue_uno_tx_prepare(struct usbnet *un, struct mbuf *m, struct usbnet_chain *c)
900 {
901 	struct ifnet * const ifp = usbnet_ifp(un);
902 	struct mue_txbuf_hdr hdr;
903 	uint32_t tx_cmd_a, tx_cmd_b;
904 	int csum, len, rv;
905 	bool tso, ipe, tpe;
906 
907 	if ((unsigned)m->m_pkthdr.len > un->un_tx_bufsz - sizeof(hdr))
908 		return 0;
909 
910 	csum = m->m_pkthdr.csum_flags;
911 	tso = csum & (M_CSUM_TSOv4 | M_CSUM_TSOv6);
912 	ipe = csum & M_CSUM_IPv4;
913 	tpe = csum & (M_CSUM_TCPv4 | M_CSUM_UDPv4 |
914 		      M_CSUM_TCPv6 | M_CSUM_UDPv6);
915 
916 	len = m->m_pkthdr.len;
917 	if (__predict_false((!tso && len > (int)MUE_FRAME_LEN(ifp->if_mtu)) ||
918 			    ( tso && len > MUE_TSO_FRAME_LEN))) {
919 		MUE_PRINTF(un, "packet length %d\n too long", len);
920 		return 0;
921 	}
922 
923 	KASSERT((len & ~MUE_TX_CMD_A_LEN_MASK) == 0);
924 	tx_cmd_a = len | MUE_TX_CMD_A_FCS;
925 
926 	if (tso) {
927 		tx_cmd_a |= MUE_TX_CMD_A_LSO;
928 		if (__predict_true(m->m_pkthdr.segsz > MUE_TX_MSS_MIN))
929 			tx_cmd_b = m->m_pkthdr.segsz;
930 		else
931 			tx_cmd_b = MUE_TX_MSS_MIN;
932 		tx_cmd_b <<= MUE_TX_CMD_B_MSS_SHIFT;
933 		KASSERT((tx_cmd_b & ~MUE_TX_CMD_B_MSS_MASK) == 0);
934 		rv = mue_prepare_tso(un, m);
935 		if (__predict_false(rv))
936 			return 0;
937 	} else {
938 		if (ipe)
939 			tx_cmd_a |= MUE_TX_CMD_A_IPE;
940 		if (tpe)
941 			tx_cmd_a |= MUE_TX_CMD_A_TPE;
942 		tx_cmd_b = 0;
943 	}
944 
945 	hdr.tx_cmd_a = htole32(tx_cmd_a);
946 	hdr.tx_cmd_b = htole32(tx_cmd_b);
947 
948 	memcpy(c->unc_buf, &hdr, sizeof(hdr));
949 	m_copydata(m, 0, len, c->unc_buf + sizeof(hdr));
950 
951 	return len + sizeof(hdr);
952 }
953 
954 /*
955  * L3 length field should be cleared.
956  */
957 static int
mue_prepare_tso(struct usbnet * un,struct mbuf * m)958 mue_prepare_tso(struct usbnet *un, struct mbuf *m)
959 {
960 	struct ether_header *eh;
961 	struct ip *ip;
962 	struct ip6_hdr *ip6;
963 	uint16_t type, len = 0;
964 	int off;
965 
966 	if (__predict_true(m->m_len >= (int)sizeof(*eh))) {
967 		eh = mtod(m, struct ether_header *);
968 		type = eh->ether_type;
969 	} else
970 		m_copydata(m, offsetof(struct ether_header, ether_type),
971 		    sizeof(type), &type);
972 	switch (type = htons(type)) {
973 	case ETHERTYPE_IP:
974 	case ETHERTYPE_IPV6:
975 		off = ETHER_HDR_LEN;
976 		break;
977 	case ETHERTYPE_VLAN:
978 		off = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
979 		break;
980 	default:
981 		return EINVAL;
982 	}
983 
984 	if (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) {
985 		if (__predict_true(m->m_len >= off + (int)sizeof(*ip))) {
986 			ip = (void *)(mtod(m, char *) + off);
987 			ip->ip_len = 0;
988 		} else
989 			m_copyback(m, off + offsetof(struct ip, ip_len),
990 			    sizeof(len), &len);
991 	} else {
992 		if (__predict_true(m->m_len >= off + (int)sizeof(*ip6))) {
993 			ip6 = (void *)(mtod(m, char *) + off);
994 			ip6->ip6_plen = 0;
995 		} else
996 			m_copyback(m, off + offsetof(struct ip6_hdr, ip6_plen),
997 			    sizeof(len), &len);
998 	}
999 	return 0;
1000 }
1001 
1002 static void
mue_uno_mcast(struct ifnet * ifp)1003 mue_uno_mcast(struct ifnet *ifp)
1004 {
1005 	struct usbnet *un = ifp->if_softc;
1006 	struct ethercom *ec = usbnet_ec(un);
1007 	const uint8_t *enaddr = CLLADDR(ifp->if_sadl);
1008 	struct ether_multi *enm;
1009 	struct ether_multistep step;
1010 	uint32_t pfiltbl[MUE_NUM_ADDR_FILTX][2];
1011 	uint32_t hashtbl[MUE_DP_SEL_VHF_HASH_LEN];
1012 	uint32_t reg, rxfilt, h, hireg, loreg;
1013 	size_t i;
1014 
1015 	if (usbnet_isdying(un))
1016 		return;
1017 
1018 	/* Clear perfect filter and hash tables. */
1019 	memset(pfiltbl, 0, sizeof(pfiltbl));
1020 	memset(hashtbl, 0, sizeof(hashtbl));
1021 
1022 	reg = (un->un_flags & LAN7500) ? MUE_7500_RFE_CTL : MUE_7800_RFE_CTL;
1023 	rxfilt = mue_csr_read(un, reg);
1024 	rxfilt &= ~(MUE_RFE_CTL_PERFECT | MUE_RFE_CTL_MULTICAST_HASH |
1025 	    MUE_RFE_CTL_UNICAST | MUE_RFE_CTL_MULTICAST);
1026 
1027 	/* Always accept broadcast frames. */
1028 	rxfilt |= MUE_RFE_CTL_BROADCAST;
1029 
1030 	ETHER_LOCK(ec);
1031 	if (usbnet_ispromisc(un)) {
1032 		rxfilt |= MUE_RFE_CTL_UNICAST;
1033 allmulti:	rxfilt |= MUE_RFE_CTL_MULTICAST;
1034 		ec->ec_flags |= ETHER_F_ALLMULTI;
1035 		if (usbnet_ispromisc(un))
1036 			DPRINTF(un, "promisc\n");
1037 		else
1038 			DPRINTF(un, "allmulti\n");
1039 	} else {
1040 		/* Now program new ones. */
1041 		pfiltbl[0][0] = MUE_ENADDR_HI(enaddr) | MUE_ADDR_FILTX_VALID;
1042 		pfiltbl[0][1] = MUE_ENADDR_LO(enaddr);
1043 		i = 1;
1044 		ETHER_FIRST_MULTI(step, ec, enm);
1045 		while (enm != NULL) {
1046 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1047 			    ETHER_ADDR_LEN)) {
1048 				memset(pfiltbl, 0, sizeof(pfiltbl));
1049 				memset(hashtbl, 0, sizeof(hashtbl));
1050 				rxfilt &= ~MUE_RFE_CTL_MULTICAST_HASH;
1051 				goto allmulti;
1052 			}
1053 			if (i < MUE_NUM_ADDR_FILTX) {
1054 				/* Use perfect address table if possible. */
1055 				pfiltbl[i][0] = MUE_ENADDR_HI(enm->enm_addrlo) |
1056 				    MUE_ADDR_FILTX_VALID;
1057 				pfiltbl[i][1] = MUE_ENADDR_LO(enm->enm_addrlo);
1058 			} else {
1059 				/* Otherwise, use hash table. */
1060 				rxfilt |= MUE_RFE_CTL_MULTICAST_HASH;
1061 				h = (ether_crc32_be(enm->enm_addrlo,
1062 				    ETHER_ADDR_LEN) >> 23) & 0x1ff;
1063 				hashtbl[h / 32] |= 1 << (h % 32);
1064 			}
1065 			i++;
1066 			ETHER_NEXT_MULTI(step, enm);
1067 		}
1068 		ec->ec_flags &= ~ETHER_F_ALLMULTI;
1069 		rxfilt |= MUE_RFE_CTL_PERFECT;
1070 		if (rxfilt & MUE_RFE_CTL_MULTICAST_HASH)
1071 			DPRINTF(un, "perfect filter and hash tables\n");
1072 		else
1073 			DPRINTF(un, "perfect filter\n");
1074 	}
1075 	ETHER_UNLOCK(ec);
1076 
1077 	for (i = 0; i < MUE_NUM_ADDR_FILTX; i++) {
1078 		hireg = (un->un_flags & LAN7500) ?
1079 		    MUE_7500_ADDR_FILTX(i) : MUE_7800_ADDR_FILTX(i);
1080 		loreg = hireg + 4;
1081 		mue_csr_write(un, hireg, 0);
1082 		mue_csr_write(un, loreg, pfiltbl[i][1]);
1083 		mue_csr_write(un, hireg, pfiltbl[i][0]);
1084 	}
1085 
1086 	mue_dataport_write(un, MUE_DP_SEL_VHF, MUE_DP_SEL_VHF_VLAN_LEN,
1087 	    MUE_DP_SEL_VHF_HASH_LEN, hashtbl);
1088 
1089 	mue_csr_write(un, reg, rxfilt);
1090 }
1091 
1092 static void
mue_sethwcsum_locked(struct usbnet * un)1093 mue_sethwcsum_locked(struct usbnet *un)
1094 {
1095 	struct ifnet * const ifp = usbnet_ifp(un);
1096 	uint32_t reg, val;
1097 
1098 	KASSERT(IFNET_LOCKED(ifp));
1099 
1100 	reg = (un->un_flags & LAN7500) ? MUE_7500_RFE_CTL : MUE_7800_RFE_CTL;
1101 	val = mue_csr_read(un, reg);
1102 
1103 	if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) {
1104 		DPRINTF(un, "RX IPv4 hwcsum enabled\n");
1105 		val |= MUE_RFE_CTL_IP_COE;
1106 	} else {
1107 		DPRINTF(un, "RX IPv4 hwcsum disabled\n");
1108 		val &= ~MUE_RFE_CTL_IP_COE;
1109 	}
1110 
1111 	if (ifp->if_capenable &
1112 	    (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx |
1113 	     IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx)) {
1114 		DPRINTF(un, "RX L4 hwcsum enabled\n");
1115 		val |= MUE_RFE_CTL_TCPUDP_COE;
1116 	} else {
1117 		DPRINTF(un, "RX L4 hwcsum disabled\n");
1118 		val &= ~MUE_RFE_CTL_TCPUDP_COE;
1119 	}
1120 
1121 	val &= ~MUE_RFE_CTL_VLAN_FILTER;
1122 
1123 	mue_csr_write(un, reg, val);
1124 }
1125 
1126 static void
mue_setmtu_locked(struct usbnet * un)1127 mue_setmtu_locked(struct usbnet *un)
1128 {
1129 	struct ifnet * const ifp = usbnet_ifp(un);
1130 	uint32_t val;
1131 
1132 	KASSERT(IFNET_LOCKED(ifp));
1133 
1134 	/* Set the maximum frame size. */
1135 	MUE_CLRBIT(un, MUE_MAC_RX, MUE_MAC_RX_RXEN);
1136 	val = mue_csr_read(un, MUE_MAC_RX);
1137 	val &= ~MUE_MAC_RX_MAX_SIZE_MASK;
1138 	val |= MUE_MAC_RX_MAX_LEN(MUE_FRAME_LEN(ifp->if_mtu));
1139 	mue_csr_write(un, MUE_MAC_RX, val);
1140 	MUE_SETBIT(un, MUE_MAC_RX, MUE_MAC_RX_RXEN);
1141 }
1142 
1143 static void
mue_uno_rx_loop(struct usbnet * un,struct usbnet_chain * c,uint32_t total_len)1144 mue_uno_rx_loop(struct usbnet *un, struct usbnet_chain *c, uint32_t total_len)
1145 {
1146 	struct ifnet * const ifp = usbnet_ifp(un);
1147 	struct mue_rxbuf_hdr *hdrp;
1148 	uint32_t rx_cmd_a;
1149 	uint16_t pktlen;
1150 	int csum;
1151 	uint8_t *buf = c->unc_buf;
1152 	bool v6;
1153 
1154 	KASSERTMSG(total_len <= un->un_rx_bufsz, "%u vs %u",
1155 	    total_len, un->un_rx_bufsz);
1156 
1157 	do {
1158 		if (__predict_false(total_len < sizeof(*hdrp))) {
1159 			MUE_PRINTF(un, "packet length %u too short\n", total_len);
1160 			if_statinc(ifp, if_ierrors);
1161 			return;
1162 		}
1163 
1164 		hdrp = (struct mue_rxbuf_hdr *)buf;
1165 		rx_cmd_a = le32toh(hdrp->rx_cmd_a);
1166 
1167 		if (__predict_false(rx_cmd_a & MUE_RX_CMD_A_ERRORS)) {
1168 			/*
1169 			 * We cannot use MUE_RX_CMD_A_RED bit here;
1170 			 * it is turned on in the cases of L3/L4
1171 			 * checksum errors which we handle below.
1172 			 */
1173 			MUE_PRINTF(un, "rx_cmd_a: %#x\n", rx_cmd_a);
1174 			if_statinc(ifp, if_ierrors);
1175 			return;
1176 		}
1177 
1178 		pktlen = (uint16_t)(rx_cmd_a & MUE_RX_CMD_A_LEN_MASK);
1179 		if (un->un_flags & LAN7500)
1180 			pktlen -= 2;
1181 
1182 		if (__predict_false(pktlen < ETHER_HDR_LEN + ETHER_CRC_LEN ||
1183 		    pktlen > MCLBYTES - ETHER_ALIGN || /* XXX */
1184 		    pktlen + sizeof(*hdrp) > total_len)) {
1185 			MUE_PRINTF(un, "invalid packet length %d\n", pktlen);
1186 			if_statinc(ifp, if_ierrors);
1187 			return;
1188 		}
1189 
1190 		if (__predict_false(rx_cmd_a & MUE_RX_CMD_A_ICSM)) {
1191 			csum = 0;
1192 		} else {
1193 			v6 = rx_cmd_a & MUE_RX_CMD_A_IPV;
1194 			switch (rx_cmd_a & MUE_RX_CMD_A_PID) {
1195 			case MUE_RX_CMD_A_PID_TCP:
1196 				csum = v6 ?
1197 				    M_CSUM_TCPv6 : M_CSUM_IPv4 | M_CSUM_TCPv4;
1198 				break;
1199 			case MUE_RX_CMD_A_PID_UDP:
1200 				csum = v6 ?
1201 				    M_CSUM_UDPv6 : M_CSUM_IPv4 | M_CSUM_UDPv4;
1202 				break;
1203 			case MUE_RX_CMD_A_PID_IP:
1204 				csum = v6 ? 0 : M_CSUM_IPv4;
1205 				break;
1206 			default:
1207 				csum = 0;
1208 				break;
1209 			}
1210 			csum &= ifp->if_csum_flags_rx;
1211 			if (__predict_false((csum & M_CSUM_IPv4) &&
1212 			    (rx_cmd_a & MUE_RX_CMD_A_ICE)))
1213 				csum |= M_CSUM_IPv4_BAD;
1214 			if (__predict_false((csum & ~M_CSUM_IPv4) &&
1215 			    (rx_cmd_a & MUE_RX_CMD_A_TCE)))
1216 				csum |= M_CSUM_TCP_UDP_BAD;
1217 		}
1218 
1219 		usbnet_enqueue(un, buf + sizeof(*hdrp), pktlen, csum,
1220 			       0, M_HASFCS);
1221 
1222 		/* Attention: sizeof(hdr) = 10 */
1223 		pktlen = roundup(pktlen + sizeof(*hdrp), 4);
1224 		if (pktlen > total_len)
1225 			pktlen = total_len;
1226 		total_len -= pktlen;
1227 		buf += pktlen;
1228 	} while (total_len > 0);
1229 }
1230 
1231 static int
mue_uno_init(struct ifnet * ifp)1232 mue_uno_init(struct ifnet *ifp)
1233 {
1234 	struct usbnet * const un = ifp->if_softc;
1235 
1236 	mue_reset(un);
1237 
1238 	/* Set MAC address. */
1239 	mue_set_macaddr(un);
1240 
1241 	/* TCP/UDP checksum offload engines. */
1242 	mue_sethwcsum_locked(un);
1243 
1244 	/* Set MTU. */
1245 	mue_setmtu_locked(un);
1246 
1247 	return 0;
1248 }
1249 
1250 static int
mue_uno_ioctl(struct ifnet * ifp,u_long cmd,void * data)1251 mue_uno_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1252 {
1253 	struct usbnet * const un = ifp->if_softc;
1254 
1255 	switch (cmd) {
1256 	case SIOCSIFCAP:
1257 		mue_sethwcsum_locked(un);
1258 		break;
1259 	case SIOCSIFMTU:
1260 		mue_setmtu_locked(un);
1261 		break;
1262 	default:
1263 		break;
1264 	}
1265 
1266 	return 0;
1267 }
1268 
1269 static void
mue_reset(struct usbnet * un)1270 mue_reset(struct usbnet *un)
1271 {
1272 	if (usbnet_isdying(un))
1273 		return;
1274 
1275 	/* Wait a little while for the chip to get its brains in order. */
1276 	usbd_delay_ms(un->un_udev, 1);
1277 
1278 //	mue_chip_init(un); /* XXX */
1279 }
1280 
1281 static void
mue_uno_stop(struct ifnet * ifp,int disable)1282 mue_uno_stop(struct ifnet *ifp, int disable)
1283 {
1284 	struct usbnet * const un = ifp->if_softc;
1285 
1286 	mue_reset(un);
1287 }
1288 
1289 #ifdef _MODULE
1290 #include "ioconf.c"
1291 #endif
1292 
1293 USBNET_MODULE(mue)
1294