xref: /netbsd-src/sys/dev/raidframe/rf_paritylogging.c (revision 95d8fbc88da9e5ee5180fce784c27970174a5a1d)
1 /*	$NetBSD: rf_paritylogging.c,v 1.35 2019/02/09 03:34:00 christos Exp $	*/
2 /*
3  * Copyright (c) 1995 Carnegie-Mellon University.
4  * All rights reserved.
5  *
6  * Author: William V. Courtright II
7  *
8  * Permission to use, copy, modify and distribute this software and
9  * its documentation is hereby granted, provided that both the copyright
10  * notice and this permission notice appear in all copies of the
11  * software, derivative works or modified versions, and any portions
12  * thereof, and that both notices appear in supporting documentation.
13  *
14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17  *
18  * Carnegie Mellon requests users of this software to return to
19  *
20  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
21  *  School of Computer Science
22  *  Carnegie Mellon University
23  *  Pittsburgh PA 15213-3890
24  *
25  * any improvements or extensions that they make and grant Carnegie the
26  * rights to redistribute these changes.
27  */
28 
29 
30 /*
31   parity logging configuration, dag selection, and mapping is implemented here
32  */
33 
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: rf_paritylogging.c,v 1.35 2019/02/09 03:34:00 christos Exp $");
36 
37 #include "rf_archs.h"
38 
39 #if RF_INCLUDE_PARITYLOGGING > 0
40 
41 #include <dev/raidframe/raidframevar.h>
42 
43 #include "rf_raid.h"
44 #include "rf_dag.h"
45 #include "rf_dagutils.h"
46 #include "rf_dagfuncs.h"
47 #include "rf_dagffrd.h"
48 #include "rf_dagffwr.h"
49 #include "rf_dagdegrd.h"
50 #include "rf_dagdegwr.h"
51 #include "rf_paritylog.h"
52 #include "rf_paritylogDiskMgr.h"
53 #include "rf_paritylogging.h"
54 #include "rf_parityloggingdags.h"
55 #include "rf_general.h"
56 #include "rf_map.h"
57 #include "rf_utils.h"
58 #include "rf_shutdown.h"
59 
60 typedef struct RF_ParityLoggingConfigInfo_s {
61 	RF_RowCol_t **stripeIdentifier;	/* filled in at config time & used by
62 					 * IdentifyStripe */
63 }       RF_ParityLoggingConfigInfo_t;
64 
65 static void FreeRegionInfo(RF_Raid_t * raidPtr, RF_RegionId_t regionID);
66 static void rf_ShutdownParityLogging(RF_ThreadArg_t arg);
67 static void rf_ShutdownParityLoggingRegionInfo(RF_ThreadArg_t arg);
68 static void rf_ShutdownParityLoggingPool(RF_ThreadArg_t arg);
69 static void rf_ShutdownParityLoggingRegionBufferPool(RF_ThreadArg_t arg);
70 static void rf_ShutdownParityLoggingParityBufferPool(RF_ThreadArg_t arg);
71 static void rf_ShutdownParityLoggingDiskQueue(RF_ThreadArg_t arg);
72 
73 int
rf_ConfigureParityLogging(RF_ShutdownList_t ** listp,RF_Raid_t * raidPtr,RF_Config_t * cfgPtr)74 rf_ConfigureParityLogging(
75     RF_ShutdownList_t ** listp,
76     RF_Raid_t * raidPtr,
77     RF_Config_t * cfgPtr)
78 {
79 	int     i, j, startdisk, rc;
80 	RF_SectorCount_t totalLogCapacity, fragmentation, lastRegionCapacity;
81 	RF_SectorCount_t parityBufferCapacity, maxRegionParityRange;
82 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
83 	RF_ParityLoggingConfigInfo_t *info;
84 	RF_ParityLog_t *l = NULL, *next;
85 	void *lHeapPtr;
86 
87 	if (rf_numParityRegions <= 0)
88 		return(EINVAL);
89 
90 	/*
91          * We create multiple entries on the shutdown list here, since
92          * this configuration routine is fairly complicated in and of
93          * itself, and this makes backing out of a failed configuration
94          * much simpler.
95          */
96 
97 	raidPtr->numSectorsPerLog = RF_DEFAULT_NUM_SECTORS_PER_LOG;
98 
99 	/* create a parity logging configuration structure */
100 	info = RF_MallocAndAdd(sizeof(*info), raidPtr->cleanupList);
101 	if (info == NULL)
102 		return (ENOMEM);
103 	layoutPtr->layoutSpecificInfo = (void *) info;
104 
105 	/* the stripe identifier must identify the disks in each stripe, IN
106 	 * THE ORDER THAT THEY APPEAR IN THE STRIPE. */
107 	info->stripeIdentifier = rf_make_2d_array((raidPtr->numCol),
108 						  (raidPtr->numCol),
109 						  raidPtr->cleanupList);
110 	if (info->stripeIdentifier == NULL)
111 		return (ENOMEM);
112 
113 	startdisk = 0;
114 	for (i = 0; i < (raidPtr->numCol); i++) {
115 		for (j = 0; j < (raidPtr->numCol); j++) {
116 			info->stripeIdentifier[i][j] = (startdisk + j) %
117 				(raidPtr->numCol - 1);
118 		}
119 		if ((--startdisk) < 0)
120 			startdisk = raidPtr->numCol - 1 - 1;
121 	}
122 
123 	/* fill in the remaining layout parameters */
124 	layoutPtr->numStripe = layoutPtr->stripeUnitsPerDisk;
125 	layoutPtr->numParityCol = 1;
126 	layoutPtr->numParityLogCol = 1;
127 	layoutPtr->numDataCol = raidPtr->numCol - layoutPtr->numParityCol -
128 		layoutPtr->numParityLogCol;
129 	layoutPtr->dataSectorsPerStripe = layoutPtr->numDataCol *
130 		layoutPtr->sectorsPerStripeUnit;
131 	layoutPtr->dataStripeUnitsPerDisk = layoutPtr->stripeUnitsPerDisk;
132 	raidPtr->sectorsPerDisk = layoutPtr->stripeUnitsPerDisk *
133 		layoutPtr->sectorsPerStripeUnit;
134 
135 	raidPtr->totalSectors = layoutPtr->stripeUnitsPerDisk *
136 		layoutPtr->numDataCol * layoutPtr->sectorsPerStripeUnit;
137 
138 	/* configure parity log parameters
139 	 *
140 	 * parameter               comment/constraints
141 	 * -------------------------------------------
142 	 * numParityRegions*       all regions (except possibly last)
143 	 *                         of equal size
144 	 * totalInCoreLogCapacity* amount of memory in bytes available
145 	 *                         for in-core logs (default 1 MB)
146 	 * numSectorsPerLog#       capacity of an in-core log in sectors
147 	 *                         (1 * disk track)
148 	 * numParityLogs           total number of in-core logs,
149 	 *                         should be at least numParityRegions
150 	 * regionLogCapacity       size of a region log (except possibly
151 	 *                         last one) in sectors
152 	 * totalLogCapacity        total amount of log space in sectors
153 	 *
154 	 * where '*' denotes a user settable parameter.
155 	 * Note that logs are fixed to be the size of a disk track,
156 	 * value #defined in rf_paritylog.h
157 	 *
158 	 */
159 
160 	totalLogCapacity = layoutPtr->stripeUnitsPerDisk * layoutPtr->sectorsPerStripeUnit * layoutPtr->numParityLogCol;
161 	raidPtr->regionLogCapacity = totalLogCapacity / rf_numParityRegions;
162 	if (rf_parityLogDebug)
163 		printf("bytes per sector %d\n", raidPtr->bytesPerSector);
164 
165 	/* reduce fragmentation within a disk region by adjusting the number
166 	 * of regions in an attempt to allow an integral number of logs to fit
167 	 * into a disk region */
168 	fragmentation = raidPtr->regionLogCapacity % raidPtr->numSectorsPerLog;
169 	if (fragmentation > 0)
170 		for (i = 1; i < (raidPtr->numSectorsPerLog / 2); i++) {
171 			if (((totalLogCapacity / (rf_numParityRegions + i)) %
172 			     raidPtr->numSectorsPerLog) < fragmentation) {
173 				rf_numParityRegions++;
174 				raidPtr->regionLogCapacity = totalLogCapacity /
175 					rf_numParityRegions;
176 				fragmentation = raidPtr->regionLogCapacity %
177 					raidPtr->numSectorsPerLog;
178 			}
179 			if (((totalLogCapacity / (rf_numParityRegions - i)) %
180 			     raidPtr->numSectorsPerLog) < fragmentation) {
181 				rf_numParityRegions--;
182 				raidPtr->regionLogCapacity = totalLogCapacity /
183 					rf_numParityRegions;
184 				fragmentation = raidPtr->regionLogCapacity %
185 					raidPtr->numSectorsPerLog;
186 			}
187 		}
188 	/* ensure integral number of regions per log */
189 	raidPtr->regionLogCapacity = (raidPtr->regionLogCapacity /
190 				      raidPtr->numSectorsPerLog) *
191 		raidPtr->numSectorsPerLog;
192 
193 	raidPtr->numParityLogs = rf_totalInCoreLogCapacity /
194 		(raidPtr->bytesPerSector * raidPtr->numSectorsPerLog);
195 	/* to avoid deadlock, must ensure that enough logs exist for each
196 	 * region to have one simultaneously */
197 	if (raidPtr->numParityLogs < rf_numParityRegions)
198 		raidPtr->numParityLogs = rf_numParityRegions;
199 
200 	/* create region information structs */
201 	printf("Allocating %d bytes for in-core parity region info\n",
202 	       (int) (rf_numParityRegions * sizeof(RF_RegionInfo_t)));
203 	raidPtr->regionInfo = RF_Malloc(
204 	    rf_numParityRegions * sizeof(*raidPtr->regionInfo));
205 	if (raidPtr->regionInfo == NULL)
206 		return (ENOMEM);
207 
208 	/* last region may not be full capacity */
209 	lastRegionCapacity = raidPtr->regionLogCapacity;
210 	while ((rf_numParityRegions - 1) * raidPtr->regionLogCapacity +
211 	       lastRegionCapacity > totalLogCapacity)
212 		lastRegionCapacity = lastRegionCapacity -
213 			raidPtr->numSectorsPerLog;
214 
215 	raidPtr->regionParityRange = raidPtr->sectorsPerDisk /
216 		rf_numParityRegions;
217 	maxRegionParityRange = raidPtr->regionParityRange;
218 
219 /* i can't remember why this line is in the code -wvcii 6/30/95 */
220 /*  if (raidPtr->sectorsPerDisk % rf_numParityRegions > 0)
221     regionParityRange++; */
222 
223 	/* build pool of unused parity logs */
224 	printf("Allocating %d bytes for %d parity logs\n",
225 	       raidPtr->numParityLogs * raidPtr->numSectorsPerLog *
226 	       raidPtr->bytesPerSector,
227 	       raidPtr->numParityLogs);
228 	raidPtr->parityLogBufferHeap = RF_Malloc(raidPtr->numParityLogs
229 	    * raidPtr->numSectorsPerLog * raidPtr->bytesPerSector);
230 	if (raidPtr->parityLogBufferHeap == NULL)
231 		return (ENOMEM);
232 	lHeapPtr = raidPtr->parityLogBufferHeap;
233 	rf_init_mutex2(raidPtr->parityLogPool.mutex, IPL_VM);
234 	for (i = 0; i < raidPtr->numParityLogs; i++) {
235 		if (i == 0) {
236 			raidPtr->parityLogPool.parityLogs =
237 			    RF_Malloc(
238 			    sizeof(*raidPtr->parityLogPool.parityLogs));
239 			if (raidPtr->parityLogPool.parityLogs == NULL) {
240 				RF_Free(raidPtr->parityLogBufferHeap,
241 					raidPtr->numParityLogs *
242 					raidPtr->numSectorsPerLog *
243 					raidPtr->bytesPerSector);
244 				return (ENOMEM);
245 			}
246 			l = raidPtr->parityLogPool.parityLogs;
247 		} else {
248 			l->next = RF_Malloc(sizeof(*l->next));
249 			if (l->next == NULL) {
250 				RF_Free(raidPtr->parityLogBufferHeap,
251 					raidPtr->numParityLogs *
252 					raidPtr->numSectorsPerLog *
253 					raidPtr->bytesPerSector);
254 				for (l = raidPtr->parityLogPool.parityLogs;
255 				     l;
256 				     l = next) {
257 					next = l->next;
258 					if (l->records)
259 						RF_Free(l->records, (raidPtr->numSectorsPerLog * sizeof(RF_ParityLogRecord_t)));
260 					RF_Free(l, sizeof(RF_ParityLog_t));
261 				}
262 				return (ENOMEM);
263 			}
264 			l = l->next;
265 		}
266 		l->bufPtr = lHeapPtr;
267 		lHeapPtr = (char *)lHeapPtr + raidPtr->numSectorsPerLog *
268 			raidPtr->bytesPerSector;
269 		l->records = RF_Malloc(raidPtr->numSectorsPerLog *
270 		    sizeof(*l->records));
271 		if (l->records == NULL) {
272 			RF_Free(raidPtr->parityLogBufferHeap,
273 				raidPtr->numParityLogs *
274 				raidPtr->numSectorsPerLog *
275 				raidPtr->bytesPerSector);
276 			for (l = raidPtr->parityLogPool.parityLogs;
277 			     l;
278 			     l = next) {
279 				next = l->next;
280 				if (l->records)
281 					RF_Free(l->records,
282 						(raidPtr->numSectorsPerLog *
283 						 sizeof(RF_ParityLogRecord_t)));
284 				RF_Free(l, sizeof(RF_ParityLog_t));
285 			}
286 			return (ENOMEM);
287 		}
288 	}
289 	rf_ShutdownCreate(listp, rf_ShutdownParityLoggingPool, raidPtr);
290 	/* build pool of region buffers */
291 	rf_init_mutex2(raidPtr->regionBufferPool.mutex, IPL_VM);
292 	rf_init_cond2(raidPtr->regionBufferPool.cond, "rfrbpl");
293 	raidPtr->regionBufferPool.bufferSize = raidPtr->regionLogCapacity *
294 		raidPtr->bytesPerSector;
295 	printf("regionBufferPool.bufferSize %d\n",
296 	       raidPtr->regionBufferPool.bufferSize);
297 
298 	/* for now, only one region at a time may be reintegrated */
299 	raidPtr->regionBufferPool.totalBuffers = 1;
300 
301 	raidPtr->regionBufferPool.availableBuffers =
302 		raidPtr->regionBufferPool.totalBuffers;
303 	raidPtr->regionBufferPool.availBuffersIndex = 0;
304 	raidPtr->regionBufferPool.emptyBuffersIndex = 0;
305 	printf("Allocating %d bytes for regionBufferPool\n",
306 	       (int) (raidPtr->regionBufferPool.totalBuffers *
307 		      sizeof(void *)));
308 	raidPtr->regionBufferPool.buffers =  RF_Malloc(
309 	    raidPtr->regionBufferPool.totalBuffers *
310 	    sizeof(*raidPtr->regionBufferPool.buffers));
311 	if (raidPtr->regionBufferPool.buffers == NULL) {
312 		return (ENOMEM);
313 	}
314 	for (i = 0; i < raidPtr->regionBufferPool.totalBuffers; i++) {
315 		printf("Allocating %d bytes for regionBufferPool#%d\n",
316 		       (int) (raidPtr->regionBufferPool.bufferSize *
317 			      sizeof(char)), i);
318 		raidPtr->regionBufferPool.buffers[i] =
319 		    RF_Malloc(raidPtr->regionBufferPool.bufferSize);
320 		if (raidPtr->regionBufferPool.buffers[i] == NULL) {
321 			for (j = 0; j < i; j++) {
322 				RF_Free(raidPtr->regionBufferPool.buffers[i],
323 					raidPtr->regionBufferPool.bufferSize *
324 					sizeof(char));
325 			}
326 			RF_Free(raidPtr->regionBufferPool.buffers,
327 				raidPtr->regionBufferPool.totalBuffers *
328 				sizeof(void *));
329 			return (ENOMEM);
330 		}
331 		printf("raidPtr->regionBufferPool.buffers[%d] = %lx\n", i,
332 		    (long) raidPtr->regionBufferPool.buffers[i]);
333 	}
334 	rf_ShutdownCreate(listp,
335 			  rf_ShutdownParityLoggingRegionBufferPool,
336 			  raidPtr);
337 	/* build pool of parity buffers */
338 	parityBufferCapacity = maxRegionParityRange;
339 	rf_init_mutex2(raidPtr->parityBufferPool.mutex, IPL_VM);
340 	rf_init_cond2(raidPtr->parityBufferPool.cond, "rfpbpl");
341 	raidPtr->parityBufferPool.bufferSize = parityBufferCapacity *
342 		raidPtr->bytesPerSector;
343 	printf("parityBufferPool.bufferSize %d\n",
344 	       raidPtr->parityBufferPool.bufferSize);
345 
346 	/* for now, only one region at a time may be reintegrated */
347 	raidPtr->parityBufferPool.totalBuffers = 1;
348 
349 	raidPtr->parityBufferPool.availableBuffers =
350 		raidPtr->parityBufferPool.totalBuffers;
351 	raidPtr->parityBufferPool.availBuffersIndex = 0;
352 	raidPtr->parityBufferPool.emptyBuffersIndex = 0;
353 	printf("Allocating %d bytes for parityBufferPool of %d units\n",
354 	       (int) (raidPtr->parityBufferPool.totalBuffers *
355 		      sizeof(void *)),
356 	       raidPtr->parityBufferPool.totalBuffers );
357 	raidPtr->parityBufferPool.buffers = RF_Malloc(
358 	    raidPtr->parityBufferPool.totalBuffers *
359 	    sizeof(*raidPtr->parityBufferPool.buffers));
360 	if (raidPtr->parityBufferPool.buffers == NULL) {
361 		return (ENOMEM);
362 	}
363 	for (i = 0; i < raidPtr->parityBufferPool.totalBuffers; i++) {
364 		printf("Allocating %d bytes for parityBufferPool#%d\n",
365 		       (int) (raidPtr->parityBufferPool.bufferSize *
366 			      sizeof(char)),i);
367 		raidPtr->parityBufferPool.buffers[i] = RF_Malloc(
368 		    raidPtr->parityBufferPool.bufferSize);
369 		if (raidPtr->parityBufferPool.buffers == NULL) {
370 			for (j = 0; j < i; j++) {
371 				RF_Free(raidPtr->parityBufferPool.buffers[i],
372 					raidPtr->regionBufferPool.bufferSize *
373 					sizeof(char));
374 			}
375 			RF_Free(raidPtr->parityBufferPool.buffers,
376 				raidPtr->regionBufferPool.totalBuffers *
377 				sizeof(void *));
378 			return (ENOMEM);
379 		}
380 		printf("parityBufferPool.buffers[%d] = %lx\n", i,
381 		    (long) raidPtr->parityBufferPool.buffers[i]);
382 	}
383 	rf_ShutdownCreate(listp,
384 			  rf_ShutdownParityLoggingParityBufferPool,
385 			  raidPtr);
386 	/* initialize parityLogDiskQueue */
387 	rf_init_mutex2(raidPtr->parityLogDiskQueue.mutex, IPL_VM);
388 	rf_init_cond2(raidPtr->parityLogDiskQueue.cond, "rfpldq");
389 	raidPtr->parityLogDiskQueue.flushQueue = NULL;
390 	raidPtr->parityLogDiskQueue.reintQueue = NULL;
391 	raidPtr->parityLogDiskQueue.bufHead = NULL;
392 	raidPtr->parityLogDiskQueue.bufTail = NULL;
393 	raidPtr->parityLogDiskQueue.reintHead = NULL;
394 	raidPtr->parityLogDiskQueue.reintTail = NULL;
395 	raidPtr->parityLogDiskQueue.logBlockHead = NULL;
396 	raidPtr->parityLogDiskQueue.logBlockTail = NULL;
397 	raidPtr->parityLogDiskQueue.reintBlockHead = NULL;
398 	raidPtr->parityLogDiskQueue.reintBlockTail = NULL;
399 	raidPtr->parityLogDiskQueue.freeDataList = NULL;
400 	raidPtr->parityLogDiskQueue.freeCommonList = NULL;
401 
402 	rf_ShutdownCreate(listp,
403 			  rf_ShutdownParityLoggingDiskQueue,
404 			  raidPtr);
405 	for (i = 0; i < rf_numParityRegions; i++) {
406 		rf_init_mutex2(raidPtr->regionInfo[i].mutex, IPL_VM);
407 		rf_init_mutex2(raidPtr->regionInfo[i].reintMutex, IPL_VM);
408 		raidPtr->regionInfo[i].reintInProgress = RF_FALSE;
409 		raidPtr->regionInfo[i].regionStartAddr =
410 			raidPtr->regionLogCapacity * i;
411 		raidPtr->regionInfo[i].parityStartAddr =
412 			raidPtr->regionParityRange * i;
413 		if (i < rf_numParityRegions - 1) {
414 			raidPtr->regionInfo[i].capacity =
415 				raidPtr->regionLogCapacity;
416 			raidPtr->regionInfo[i].numSectorsParity =
417 				raidPtr->regionParityRange;
418 		} else {
419 			raidPtr->regionInfo[i].capacity =
420 				lastRegionCapacity;
421 			raidPtr->regionInfo[i].numSectorsParity =
422 				raidPtr->sectorsPerDisk -
423 				raidPtr->regionParityRange * i;
424 			if (raidPtr->regionInfo[i].numSectorsParity >
425 			    maxRegionParityRange)
426 				maxRegionParityRange =
427 					raidPtr->regionInfo[i].numSectorsParity;
428 		}
429 		raidPtr->regionInfo[i].diskCount = 0;
430 		RF_ASSERT(raidPtr->regionInfo[i].capacity +
431 			  raidPtr->regionInfo[i].regionStartAddr <=
432 			  totalLogCapacity);
433 		RF_ASSERT(raidPtr->regionInfo[i].parityStartAddr +
434 			  raidPtr->regionInfo[i].numSectorsParity <=
435 			  raidPtr->sectorsPerDisk);
436 		printf("Allocating %d bytes for region %d\n",
437 		       (int) (raidPtr->regionInfo[i].capacity *
438 			   sizeof(RF_DiskMap_t)), i);
439 		raidPtr->regionInfo[i].diskMap = RF_Malloc(
440 		    raidPtr->regionInfo[i].capacity *
441 		    sizeof(*raidPtr->regionInfo[i].diskMap));
442 		if (raidPtr->regionInfo[i].diskMap == NULL) {
443 			for (j = 0; j < i; j++)
444 				FreeRegionInfo(raidPtr, j);
445 			RF_Free(raidPtr->regionInfo,
446 				(rf_numParityRegions *
447 				 sizeof(RF_RegionInfo_t)));
448 			return (ENOMEM);
449 		}
450 		raidPtr->regionInfo[i].loggingEnabled = RF_FALSE;
451 		raidPtr->regionInfo[i].coreLog = NULL;
452 	}
453 	rf_ShutdownCreate(listp,
454 			  rf_ShutdownParityLoggingRegionInfo,
455 			  raidPtr);
456 	RF_ASSERT(raidPtr->parityLogDiskQueue.threadState == 0);
457 	raidPtr->parityLogDiskQueue.threadState = RF_PLOG_CREATED;
458 	rc = RF_CREATE_THREAD(raidPtr->pLogDiskThreadHandle,
459 			      rf_ParityLoggingDiskManager, raidPtr,"rf_log");
460 	if (rc) {
461 		raidPtr->parityLogDiskQueue.threadState = 0;
462 		RF_ERRORMSG3("Unable to create parity logging disk thread file %s line %d rc=%d\n",
463 		    __FILE__, __LINE__, rc);
464 		return (ENOMEM);
465 	}
466 	/* wait for thread to start */
467 	rf_lock_mutex2(raidPtr->parityLogDiskQueue.mutex);
468 	while (!(raidPtr->parityLogDiskQueue.threadState & RF_PLOG_RUNNING)) {
469 		rf_wait_cond2(raidPtr->parityLogDiskQueue.cond,
470 			      raidPtr->parityLogDiskQueue.mutex);
471 	}
472 	rf_unlock_mutex2(raidPtr->parityLogDiskQueue.mutex);
473 
474 	rf_ShutdownCreate(listp, rf_ShutdownParityLogging, raidPtr);
475 	if (rf_parityLogDebug) {
476 		printf("                            size of disk log in sectors: %d\n",
477 		    (int) totalLogCapacity);
478 		printf("                            total number of parity regions is %d\n", (int) rf_numParityRegions);
479 		printf("                            nominal sectors of log per parity region is %d\n", (int) raidPtr->regionLogCapacity);
480 		printf("                            nominal region fragmentation is %d sectors\n", (int) fragmentation);
481 		printf("                            total number of parity logs is %d\n", raidPtr->numParityLogs);
482 		printf("                            parity log size is %d sectors\n", raidPtr->numSectorsPerLog);
483 		printf("                            total in-core log space is %d bytes\n", (int) rf_totalInCoreLogCapacity);
484 	}
485 	rf_EnableParityLogging(raidPtr);
486 
487 	return (0);
488 }
489 
490 static void
FreeRegionInfo(RF_Raid_t * raidPtr,RF_RegionId_t regionID)491 FreeRegionInfo(
492     RF_Raid_t * raidPtr,
493     RF_RegionId_t regionID)
494 {
495 	RF_Free(raidPtr->regionInfo[regionID].diskMap,
496 		(raidPtr->regionInfo[regionID].capacity *
497 		 sizeof(RF_DiskMap_t)));
498 	if (!rf_forceParityLogReint && raidPtr->regionInfo[regionID].coreLog) {
499 		rf_ReleaseParityLogs(raidPtr,
500 				     raidPtr->regionInfo[regionID].coreLog);
501 		raidPtr->regionInfo[regionID].coreLog = NULL;
502 	} else {
503 		RF_ASSERT(raidPtr->regionInfo[regionID].coreLog == NULL);
504 		RF_ASSERT(raidPtr->regionInfo[regionID].diskCount == 0);
505 	}
506 	rf_destroy_mutex2(raidPtr->regionInfo[regionID].reintMutex);
507 	rf_destroy_mutex2(raidPtr->regionInfo[regionID].mutex);
508 }
509 
510 
511 static void
FreeParityLogQueue(RF_Raid_t * raidPtr)512 FreeParityLogQueue(RF_Raid_t * raidPtr)
513 {
514 	RF_ParityLog_t *l1, *l2;
515 
516 	l1 = raidPtr->parityLogPool.parityLogs;
517 	while (l1) {
518 		l2 = l1;
519 		l1 = l2->next;
520 		RF_Free(l2->records, (raidPtr->numSectorsPerLog *
521 				      sizeof(RF_ParityLogRecord_t)));
522 		RF_Free(l2, sizeof(RF_ParityLog_t));
523 	}
524 	rf_destroy_mutex2(raidPtr->parityLogPool.mutex);
525 }
526 
527 
528 static void
FreeRegionBufferQueue(RF_RegionBufferQueue_t * queue)529 FreeRegionBufferQueue(RF_RegionBufferQueue_t * queue)
530 {
531 	int     i;
532 
533 	if (queue->availableBuffers != queue->totalBuffers) {
534 		printf("Attempt to free region queue which is still in use!\n");
535 		RF_ASSERT(0);
536 	}
537 	for (i = 0; i < queue->totalBuffers; i++)
538 		RF_Free(queue->buffers[i], queue->bufferSize);
539 	RF_Free(queue->buffers, queue->totalBuffers * sizeof(void *));
540 	rf_destroy_mutex2(queue->mutex);
541 	rf_destroy_cond2(queue->cond);
542 }
543 
544 static void
rf_ShutdownParityLoggingRegionInfo(RF_ThreadArg_t arg)545 rf_ShutdownParityLoggingRegionInfo(RF_ThreadArg_t arg)
546 {
547 	RF_Raid_t *raidPtr;
548 	RF_RegionId_t i;
549 
550 	raidPtr = (RF_Raid_t *) arg;
551 	if (rf_parityLogDebug) {
552 		printf("raid%d: ShutdownParityLoggingRegionInfo\n",
553 		       raidPtr->raidid);
554 	}
555 	/* free region information structs */
556 	for (i = 0; i < rf_numParityRegions; i++)
557 		FreeRegionInfo(raidPtr, i);
558 	RF_Free(raidPtr->regionInfo, (rf_numParityRegions *
559 				      sizeof(raidPtr->regionInfo)));
560 	raidPtr->regionInfo = NULL;
561 }
562 
563 static void
rf_ShutdownParityLoggingPool(RF_ThreadArg_t arg)564 rf_ShutdownParityLoggingPool(RF_ThreadArg_t arg)
565 {
566 	RF_Raid_t *raidPtr;
567 
568 	raidPtr = (RF_Raid_t *) arg;
569 	if (rf_parityLogDebug) {
570 		printf("raid%d: ShutdownParityLoggingPool\n", raidPtr->raidid);
571 	}
572 	/* free contents of parityLogPool */
573 	FreeParityLogQueue(raidPtr);
574 	RF_Free(raidPtr->parityLogBufferHeap, raidPtr->numParityLogs *
575 		raidPtr->numSectorsPerLog * raidPtr->bytesPerSector);
576 }
577 
578 static void
rf_ShutdownParityLoggingRegionBufferPool(RF_ThreadArg_t arg)579 rf_ShutdownParityLoggingRegionBufferPool(RF_ThreadArg_t arg)
580 {
581 	RF_Raid_t *raidPtr;
582 
583 	raidPtr = (RF_Raid_t *) arg;
584 	if (rf_parityLogDebug) {
585 		printf("raid%d: ShutdownParityLoggingRegionBufferPool\n",
586 		       raidPtr->raidid);
587 	}
588 	FreeRegionBufferQueue(&raidPtr->regionBufferPool);
589 }
590 
591 static void
rf_ShutdownParityLoggingParityBufferPool(RF_ThreadArg_t arg)592 rf_ShutdownParityLoggingParityBufferPool(RF_ThreadArg_t arg)
593 {
594 	RF_Raid_t *raidPtr;
595 
596 	raidPtr = (RF_Raid_t *) arg;
597 	if (rf_parityLogDebug) {
598 		printf("raid%d: ShutdownParityLoggingParityBufferPool\n",
599 		       raidPtr->raidid);
600 	}
601 	FreeRegionBufferQueue(&raidPtr->parityBufferPool);
602 }
603 
604 static void
rf_ShutdownParityLoggingDiskQueue(RF_ThreadArg_t arg)605 rf_ShutdownParityLoggingDiskQueue(RF_ThreadArg_t arg)
606 {
607 	RF_ParityLogData_t *d;
608 	RF_CommonLogData_t *c;
609 	RF_Raid_t *raidPtr;
610 
611 	raidPtr = (RF_Raid_t *) arg;
612 	if (rf_parityLogDebug) {
613 		printf("raid%d: ShutdownParityLoggingDiskQueue\n",
614 		       raidPtr->raidid);
615 	}
616 	/* free disk manager stuff */
617 	RF_ASSERT(raidPtr->parityLogDiskQueue.bufHead == NULL);
618 	RF_ASSERT(raidPtr->parityLogDiskQueue.bufTail == NULL);
619 	RF_ASSERT(raidPtr->parityLogDiskQueue.reintHead == NULL);
620 	RF_ASSERT(raidPtr->parityLogDiskQueue.reintTail == NULL);
621 	while (raidPtr->parityLogDiskQueue.freeDataList) {
622 		d = raidPtr->parityLogDiskQueue.freeDataList;
623 		raidPtr->parityLogDiskQueue.freeDataList =
624 			raidPtr->parityLogDiskQueue.freeDataList->next;
625 		RF_Free(d, sizeof(RF_ParityLogData_t));
626 	}
627 	while (raidPtr->parityLogDiskQueue.freeCommonList) {
628 		c = raidPtr->parityLogDiskQueue.freeCommonList;
629 		raidPtr->parityLogDiskQueue.freeCommonList = c->next;
630 		/* init is in rf_paritylog.c */
631 		rf_destroy_mutex2(c->mutex);
632 		RF_Free(c, sizeof(RF_CommonLogData_t));
633 	}
634 
635 	rf_destroy_mutex2(raidPtr->parityLogDiskQueue.mutex);
636 	rf_destroy_cond2(raidPtr->parityLogDiskQueue.cond);
637 }
638 
639 static void
rf_ShutdownParityLogging(RF_ThreadArg_t arg)640 rf_ShutdownParityLogging(RF_ThreadArg_t arg)
641 {
642 	RF_Raid_t *raidPtr;
643 
644 	raidPtr = (RF_Raid_t *) arg;
645 	if (rf_parityLogDebug) {
646 		printf("raid%d: ShutdownParityLogging\n", raidPtr->raidid);
647 	}
648 	/* shutdown disk thread */
649 	/* This has the desirable side-effect of forcing all regions to be
650 	 * reintegrated.  This is necessary since all parity log maps are
651 	 * currently held in volatile memory. */
652 
653 	rf_lock_mutex2(raidPtr->parityLogDiskQueue.mutex);
654 	raidPtr->parityLogDiskQueue.threadState |= RF_PLOG_TERMINATE;
655 	rf_signal_cond2(raidPtr->parityLogDiskQueue.cond);
656 	rf_unlock_mutex2(raidPtr->parityLogDiskQueue.mutex);
657 	/*
658          * pLogDiskThread will now terminate when queues are cleared
659          * now wait for it to be done
660          */
661 	rf_lock_mutex2(raidPtr->parityLogDiskQueue.mutex);
662 	while (!(raidPtr->parityLogDiskQueue.threadState & RF_PLOG_SHUTDOWN)) {
663 		rf_wait_cond2(raidPtr->parityLogDiskQueue.cond,
664 			      raidPtr->parityLogDiskQueue.mutex);
665 	}
666 	rf_unlock_mutex2(raidPtr->parityLogDiskQueue.mutex);
667 	if (rf_parityLogDebug) {
668 		printf("raid%d: ShutdownParityLogging done (thread completed)\n", raidPtr->raidid);
669 	}
670 }
671 
672 int
rf_GetDefaultNumFloatingReconBuffersParityLogging(RF_Raid_t * raidPtr)673 rf_GetDefaultNumFloatingReconBuffersParityLogging(RF_Raid_t * raidPtr)
674 {
675 	return (20);
676 }
677 
678 RF_HeadSepLimit_t
rf_GetDefaultHeadSepLimitParityLogging(RF_Raid_t * raidPtr)679 rf_GetDefaultHeadSepLimitParityLogging(RF_Raid_t * raidPtr)
680 {
681 	return (10);
682 }
683 /* return the region ID for a given RAID address */
684 RF_RegionId_t
rf_MapRegionIDParityLogging(RF_Raid_t * raidPtr,RF_SectorNum_t address)685 rf_MapRegionIDParityLogging(
686     RF_Raid_t * raidPtr,
687     RF_SectorNum_t address)
688 {
689 	RF_RegionId_t regionID;
690 
691 /*  regionID = address / (raidPtr->regionParityRange * raidPtr->Layout.numDataCol); */
692 	regionID = address / raidPtr->regionParityRange;
693 	if (regionID == rf_numParityRegions) {
694 		/* last region may be larger than other regions */
695 		regionID--;
696 	}
697 	RF_ASSERT(address >= raidPtr->regionInfo[regionID].parityStartAddr);
698 	RF_ASSERT(address < raidPtr->regionInfo[regionID].parityStartAddr +
699 		  raidPtr->regionInfo[regionID].numSectorsParity);
700 	RF_ASSERT(regionID < rf_numParityRegions);
701 	return (regionID);
702 }
703 
704 
705 /* given a logical RAID sector, determine physical disk address of data */
706 void
rf_MapSectorParityLogging(RF_Raid_t * raidPtr,RF_RaidAddr_t raidSector,RF_RowCol_t * col,RF_SectorNum_t * diskSector,int remap)707 rf_MapSectorParityLogging(
708     RF_Raid_t * raidPtr,
709     RF_RaidAddr_t raidSector,
710     RF_RowCol_t * col,
711     RF_SectorNum_t * diskSector,
712     int remap)
713 {
714 	RF_StripeNum_t SUID = raidSector /
715 		raidPtr->Layout.sectorsPerStripeUnit;
716 	/* *col = (SUID % (raidPtr->numCol -
717 	 * raidPtr->Layout.numParityLogCol)); */
718 	*col = SUID % raidPtr->Layout.numDataCol;
719 	*diskSector = (SUID / (raidPtr->Layout.numDataCol)) *
720 		raidPtr->Layout.sectorsPerStripeUnit +
721 		(raidSector % raidPtr->Layout.sectorsPerStripeUnit);
722 }
723 
724 
725 /* given a logical RAID sector, determine physical disk address of parity  */
726 void
rf_MapParityParityLogging(RF_Raid_t * raidPtr,RF_RaidAddr_t raidSector,RF_RowCol_t * col,RF_SectorNum_t * diskSector,int remap)727 rf_MapParityParityLogging(
728     RF_Raid_t * raidPtr,
729     RF_RaidAddr_t raidSector,
730     RF_RowCol_t * col,
731     RF_SectorNum_t * diskSector,
732     int remap)
733 {
734 	RF_StripeNum_t SUID = raidSector /
735 		raidPtr->Layout.sectorsPerStripeUnit;
736 
737 	/* *col =
738 	 * raidPtr->Layout.numDataCol-(SUID/raidPtr->Layout.numDataCol)%(raidPt
739 	 * r->numCol - raidPtr->Layout.numParityLogCol); */
740 	*col = raidPtr->Layout.numDataCol;
741 	*diskSector = (SUID / (raidPtr->Layout.numDataCol)) *
742 		raidPtr->Layout.sectorsPerStripeUnit +
743 		(raidSector % raidPtr->Layout.sectorsPerStripeUnit);
744 }
745 
746 
747 /* given a regionID and sector offset, determine the physical disk address of the parity log */
748 void
rf_MapLogParityLogging(RF_Raid_t * raidPtr,RF_RegionId_t regionID,RF_SectorNum_t regionOffset,RF_RowCol_t * col,RF_SectorNum_t * startSector)749 rf_MapLogParityLogging(
750     RF_Raid_t * raidPtr,
751     RF_RegionId_t regionID,
752     RF_SectorNum_t regionOffset,
753     RF_RowCol_t * col,
754     RF_SectorNum_t * startSector)
755 {
756 	*col = raidPtr->numCol - 1;
757 	*startSector = raidPtr->regionInfo[regionID].regionStartAddr + regionOffset;
758 }
759 
760 
761 /* given a regionID, determine the physical disk address of the logged
762    parity for that region */
763 void
rf_MapRegionParity(RF_Raid_t * raidPtr,RF_RegionId_t regionID,RF_RowCol_t * col,RF_SectorNum_t * startSector,RF_SectorCount_t * numSector)764 rf_MapRegionParity(
765     RF_Raid_t * raidPtr,
766     RF_RegionId_t regionID,
767     RF_RowCol_t * col,
768     RF_SectorNum_t * startSector,
769     RF_SectorCount_t * numSector)
770 {
771 	*col = raidPtr->numCol - 2;
772 	*startSector = raidPtr->regionInfo[regionID].parityStartAddr;
773 	*numSector = raidPtr->regionInfo[regionID].numSectorsParity;
774 }
775 
776 
777 /* given a logical RAID address, determine the participating disks in
778    the stripe */
779 void
rf_IdentifyStripeParityLogging(RF_Raid_t * raidPtr,RF_RaidAddr_t addr,RF_RowCol_t ** diskids)780 rf_IdentifyStripeParityLogging(
781     RF_Raid_t * raidPtr,
782     RF_RaidAddr_t addr,
783     RF_RowCol_t ** diskids)
784 {
785 	RF_StripeNum_t stripeID = rf_RaidAddressToStripeID(&raidPtr->Layout,
786 							   addr);
787 	RF_ParityLoggingConfigInfo_t *info = (RF_ParityLoggingConfigInfo_t *)
788 		raidPtr->Layout.layoutSpecificInfo;
789 	*diskids = info->stripeIdentifier[stripeID % raidPtr->numCol];
790 }
791 
792 
793 void
rf_MapSIDToPSIDParityLogging(RF_RaidLayout_t * layoutPtr,RF_StripeNum_t stripeID,RF_StripeNum_t * psID,RF_ReconUnitNum_t * which_ru)794 rf_MapSIDToPSIDParityLogging(
795     RF_RaidLayout_t * layoutPtr,
796     RF_StripeNum_t stripeID,
797     RF_StripeNum_t * psID,
798     RF_ReconUnitNum_t * which_ru)
799 {
800 	*which_ru = 0;
801 	*psID = stripeID;
802 }
803 
804 
805 /* select an algorithm for performing an access.  Returns two pointers,
806  * one to a function that will return information about the DAG, and
807  * another to a function that will create the dag.
808  */
809 void
rf_ParityLoggingDagSelect(RF_Raid_t * raidPtr,RF_IoType_t type,RF_AccessStripeMap_t * asmp,RF_VoidFuncPtr * createFunc)810 rf_ParityLoggingDagSelect(
811     RF_Raid_t * raidPtr,
812     RF_IoType_t type,
813     RF_AccessStripeMap_t * asmp,
814     RF_VoidFuncPtr * createFunc)
815 {
816 	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
817 	RF_PhysDiskAddr_t *failedPDA = NULL;
818 	RF_RowCol_t fcol;
819 	RF_RowStatus_t rstat;
820 	int     prior_recon;
821 
822 	RF_ASSERT(RF_IO_IS_R_OR_W(type));
823 
824 	if (asmp->numDataFailed + asmp->numParityFailed > 1) {
825 		RF_ERRORMSG("Multiple disks failed in a single group!  Aborting I/O operation.\n");
826 		*createFunc = NULL;
827 		return;
828 	} else
829 		if (asmp->numDataFailed + asmp->numParityFailed == 1) {
830 
831 			/* if under recon & already reconstructed, redirect
832 			 * the access to the spare drive and eliminate the
833 			 * failure indication */
834 			failedPDA = asmp->failedPDAs[0];
835 			fcol = failedPDA->col;
836 			rstat = raidPtr->status;
837 			prior_recon = (rstat == rf_rs_reconfigured) || (
838 			    (rstat == rf_rs_reconstructing) ?
839 			    rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, failedPDA->startSector) : 0
840 			    );
841 			if (prior_recon) {
842 				RF_RowCol_t oc = failedPDA->col;
843 				RF_SectorNum_t oo = failedPDA->startSector;
844 				if (layoutPtr->map->flags &
845 				    RF_DISTRIBUTE_SPARE) {
846 					/* redirect to dist spare space */
847 
848 					if (failedPDA == asmp->parityInfo) {
849 
850 						/* parity has failed */
851 						(layoutPtr->map->MapParity) (raidPtr, failedPDA->raidAddress,
852 						    &failedPDA->col, &failedPDA->startSector, RF_REMAP);
853 
854 						if (asmp->parityInfo->next) {	/* redir 2nd component,
855 										 * if any */
856 							RF_PhysDiskAddr_t *p = asmp->parityInfo->next;
857 							RF_SectorNum_t SUoffs = p->startSector % layoutPtr->sectorsPerStripeUnit;
858 							p->col = failedPDA->col;
859 							p->startSector = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, failedPDA->startSector) +
860 							    SUoffs;	/* cheating:
861 									 * startSector is not
862 									 * really a RAID address */
863 						}
864 					} else
865 						if (asmp->parityInfo->next && failedPDA == asmp->parityInfo->next) {
866 							RF_ASSERT(0);	/* should not ever
867 									 * happen */
868 						} else {
869 
870 							/* data has failed */
871 							(layoutPtr->map->MapSector) (raidPtr, failedPDA->raidAddress,
872 							    &failedPDA->col, &failedPDA->startSector, RF_REMAP);
873 
874 						}
875 
876 				} else {
877 					/* redirect to dedicated spare space */
878 
879 					failedPDA->col = raidPtr->Disks[fcol].spareCol;
880 
881 					/* the parity may have two distinct
882 					 * components, both of which may need
883 					 * to be redirected */
884 					if (asmp->parityInfo->next) {
885 						if (failedPDA == asmp->parityInfo) {
886 							failedPDA->next->col = failedPDA->col;
887 						} else
888 							if (failedPDA == asmp->parityInfo->next) {	/* paranoid:  should never occur */
889 								asmp->parityInfo->col = failedPDA->col;
890 							}
891 					}
892 				}
893 
894 				RF_ASSERT(failedPDA->col != -1);
895 
896 				if (rf_dagDebug || rf_mapDebug) {
897 					printf("raid%d: Redirected type '%c' c %d o %ld -> c %d o %ld\n",
898 					    raidPtr->raidid, type, oc, (long) oo, failedPDA->col, (long) failedPDA->startSector);
899 				}
900 				asmp->numDataFailed = asmp->numParityFailed = 0;
901 			}
902 		}
903 	if (type == RF_IO_TYPE_READ) {
904 
905 		if (asmp->numDataFailed == 0)
906 			*createFunc = (RF_VoidFuncPtr) rf_CreateFaultFreeReadDAG;
907 		else
908 			*createFunc = (RF_VoidFuncPtr) rf_CreateRaidFiveDegradedReadDAG;
909 
910 	} else {
911 
912 
913 		/* if mirroring, always use large writes.  If the access
914 		 * requires two distinct parity updates, always do a small
915 		 * write.  If the stripe contains a failure but the access
916 		 * does not, do a small write. The first conditional
917 		 * (numStripeUnitsAccessed <= numDataCol/2) uses a
918 		 * less-than-or-equal rather than just a less-than because
919 		 * when G is 3 or 4, numDataCol/2 is 1, and I want
920 		 * single-stripe-unit updates to use just one disk. */
921 		if ((asmp->numDataFailed + asmp->numParityFailed) == 0) {
922 			if (((asmp->numStripeUnitsAccessed <=
923 			      (layoutPtr->numDataCol / 2)) &&
924 			     (layoutPtr->numDataCol != 1)) ||
925 			    (asmp->parityInfo->next != NULL) ||
926 			    rf_CheckStripeForFailures(raidPtr, asmp)) {
927 				*createFunc = (RF_VoidFuncPtr) rf_CreateParityLoggingSmallWriteDAG;
928 			} else
929 				*createFunc = (RF_VoidFuncPtr) rf_CreateParityLoggingLargeWriteDAG;
930 		} else
931 			if (asmp->numParityFailed == 1)
932 				*createFunc = (RF_VoidFuncPtr) rf_CreateNonRedundantWriteDAG;
933 			else
934 				if (asmp->numStripeUnitsAccessed != 1 && failedPDA->numSector != layoutPtr->sectorsPerStripeUnit)
935 					*createFunc = NULL;
936 				else
937 					*createFunc = (RF_VoidFuncPtr) rf_CreateDegradedWriteDAG;
938 	}
939 }
940 #endif				/* RF_INCLUDE_PARITYLOGGING > 0 */
941