1 /* $NetBSD: if_vte.c,v 1.38 2024/09/05 17:54:02 andvar Exp $ */ 2 3 /* 4 * Copyright (c) 2011 Manuel Bouyer. All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 /*- 28 * Copyright (c) 2010, Pyun YongHyeon <yongari@FreeBSD.org> 29 * All rights reserved. 30 * 31 * Redistribution and use in source and binary forms, with or without 32 * modification, are permitted provided that the following conditions 33 * are met: 34 * 1. Redistributions of source code must retain the above copyright 35 * notice unmodified, this list of conditions, and the following 36 * disclaimer. 37 * 2. Redistributions in binary form must reproduce the above copyright 38 * notice, this list of conditions and the following disclaimer in the 39 * documentation and/or other materials provided with the distribution. 40 * 41 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 51 * SUCH DAMAGE. 52 */ 53 /* FreeBSD: src/sys/dev/vte/if_vte.c,v 1.2 2010/12/31 01:23:04 yongari Exp */ 54 55 /* Driver for DM&P Electronics, Inc, Vortex86 RDC R6040 FastEthernet. */ 56 57 #include <sys/cdefs.h> 58 __KERNEL_RCSID(0, "$NetBSD: if_vte.c,v 1.38 2024/09/05 17:54:02 andvar Exp $"); 59 60 #include <sys/param.h> 61 #include <sys/systm.h> 62 #include <sys/mbuf.h> 63 #include <sys/protosw.h> 64 #include <sys/socket.h> 65 #include <sys/ioctl.h> 66 #include <sys/errno.h> 67 #include <sys/kernel.h> 68 #include <sys/device.h> 69 #include <sys/sysctl.h> 70 71 #include <net/if.h> 72 #include <net/if_media.h> 73 #include <net/if_types.h> 74 #include <net/if_dl.h> 75 #include <net/route.h> 76 #include <net/bpf.h> 77 78 #include <sys/rndsource.h> 79 80 #include "opt_inet.h" 81 #include <net/if_ether.h> 82 #ifdef INET 83 #include <netinet/in.h> 84 #include <netinet/in_systm.h> 85 #include <netinet/in_var.h> 86 #include <netinet/ip.h> 87 #include <netinet/if_inarp.h> 88 #endif 89 90 #include <sys/bus.h> 91 #include <sys/intr.h> 92 93 #include <dev/pci/pcireg.h> 94 #include <dev/pci/pcivar.h> 95 #include <dev/pci/pcidevs.h> 96 97 #include <dev/mii/mii.h> 98 #include <dev/mii/miivar.h> 99 100 #include <dev/pci/if_vtereg.h> 101 #include <dev/pci/if_vtevar.h> 102 103 static int vte_match(device_t, cfdata_t, void *); 104 static void vte_attach(device_t, device_t, void *); 105 static int vte_detach(device_t, int); 106 static int vte_dma_alloc(struct vte_softc *); 107 static void vte_dma_free(struct vte_softc *); 108 static struct vte_txdesc * 109 vte_encap(struct vte_softc *, struct mbuf **); 110 static void vte_get_macaddr(struct vte_softc *); 111 static int vte_init(struct ifnet *); 112 static int vte_init_rx_ring(struct vte_softc *); 113 static int vte_init_tx_ring(struct vte_softc *); 114 static int vte_intr(void *); 115 static int vte_ifioctl(struct ifnet *, u_long, void *); 116 static void vte_mac_config(struct vte_softc *); 117 static int vte_miibus_readreg(device_t, int, int, uint16_t *); 118 static void vte_miibus_statchg(struct ifnet *); 119 static int vte_miibus_writereg(device_t, int, int, uint16_t); 120 static int vte_mediachange(struct ifnet *); 121 static int vte_newbuf(struct vte_softc *, struct vte_rxdesc *); 122 static void vte_reset(struct vte_softc *); 123 static void vte_rxeof(struct vte_softc *); 124 static void vte_rxfilter(struct vte_softc *); 125 static bool vte_shutdown(device_t, int); 126 static bool vte_suspend(device_t, const pmf_qual_t *); 127 static bool vte_resume(device_t, const pmf_qual_t *); 128 static void vte_ifstart(struct ifnet *); 129 static void vte_start_mac(struct vte_softc *); 130 static void vte_stats_clear(struct vte_softc *); 131 static void vte_stats_update(struct vte_softc *); 132 static void vte_stop(struct ifnet *, int); 133 static void vte_stop_mac(struct vte_softc *); 134 static void vte_tick(void *); 135 static void vte_txeof(struct vte_softc *); 136 static void vte_ifwatchdog(struct ifnet *); 137 138 static int vte_sysctl_intrxct(SYSCTLFN_PROTO); 139 static int vte_sysctl_inttxct(SYSCTLFN_PROTO); 140 static int vte_root_num; 141 142 #define DPRINTF(a) 143 144 CFATTACH_DECL3_NEW(vte, sizeof(struct vte_softc), 145 vte_match, vte_attach, vte_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN); 146 147 148 static int 149 vte_match(device_t parent, cfdata_t cf, void *aux) 150 { 151 struct pci_attach_args *pa = (struct pci_attach_args *)aux; 152 153 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_RDC && 154 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_RDC_R6040) 155 return 1; 156 157 return 0; 158 } 159 160 static void 161 vte_attach(device_t parent, device_t self, void *aux) 162 { 163 struct vte_softc *sc = device_private(self); 164 struct pci_attach_args * const pa = (struct pci_attach_args *)aux; 165 struct ifnet * const ifp = &sc->vte_if; 166 struct mii_data * const mii = &sc->vte_mii; 167 int h_valid; 168 pcireg_t reg, csr; 169 pci_intr_handle_t intrhandle; 170 const char *intrstr; 171 int error; 172 const struct sysctlnode *node; 173 int vte_nodenum; 174 char intrbuf[PCI_INTRSTR_LEN]; 175 176 sc->vte_dev = self; 177 178 callout_init(&sc->vte_tick_ch, 0); 179 callout_setfunc(&sc->vte_tick_ch, vte_tick, sc); 180 181 /* Map the device. */ 182 h_valid = 0; 183 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, VTE_PCI_BMEM); 184 if (PCI_MAPREG_TYPE(reg) == PCI_MAPREG_TYPE_MEM) { 185 h_valid = (pci_mapreg_map(pa, VTE_PCI_BMEM, 186 PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT, 187 0, &sc->vte_bustag, &sc->vte_bushandle, NULL, NULL) == 0); 188 } 189 if (h_valid == 0) { 190 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, VTE_PCI_BIO); 191 if (PCI_MAPREG_TYPE(reg) == PCI_MAPREG_TYPE_IO) { 192 h_valid = (pci_mapreg_map(pa, VTE_PCI_BIO, 193 PCI_MAPREG_TYPE_IO, 0, &sc->vte_bustag, 194 &sc->vte_bushandle, NULL, NULL) == 0); 195 } 196 } 197 if (h_valid == 0) { 198 aprint_error_dev(self, "unable to map device registers\n"); 199 return; 200 } 201 sc->vte_dmatag = pa->pa_dmat; 202 /* Enable the device. */ 203 csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); 204 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, 205 csr | PCI_COMMAND_MASTER_ENABLE); 206 207 pci_aprint_devinfo(pa, NULL); 208 209 /* Reset the ethernet controller. */ 210 vte_reset(sc); 211 212 if ((error = vte_dma_alloc(sc)) != 0) 213 return; 214 215 /* Load station address. */ 216 vte_get_macaddr(sc); 217 218 aprint_normal_dev(self, "Ethernet address %s\n", 219 ether_sprintf(sc->vte_eaddr)); 220 221 /* Map and establish interrupts */ 222 if (pci_intr_map(pa, &intrhandle)) { 223 aprint_error_dev(self, "couldn't map interrupt\n"); 224 return; 225 } 226 intrstr = pci_intr_string(pa->pa_pc, intrhandle, intrbuf, 227 sizeof(intrbuf)); 228 sc->vte_ih = pci_intr_establish_xname(pa->pa_pc, intrhandle, IPL_NET, 229 vte_intr, sc, device_xname(self)); 230 if (sc->vte_ih == NULL) { 231 aprint_error_dev(self, "couldn't establish interrupt"); 232 if (intrstr != NULL) 233 aprint_error(" at %s", intrstr); 234 aprint_error("\n"); 235 return; 236 } 237 aprint_normal_dev(self, "interrupting at %s\n", intrstr); 238 239 sc->vte_if.if_softc = sc; 240 mii->mii_ifp = ifp; 241 mii->mii_readreg = vte_miibus_readreg; 242 mii->mii_writereg = vte_miibus_writereg; 243 mii->mii_statchg = vte_miibus_statchg; 244 sc->vte_ec.ec_mii = mii; 245 ifmedia_init(&mii->mii_media, IFM_IMASK, vte_mediachange, 246 ether_mediastatus); 247 mii_attach(self, mii, 0xffffffff, MII_PHY_ANY, 248 MII_OFFSET_ANY, 0); 249 if (LIST_FIRST(&mii->mii_phys) == NULL) { 250 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL); 251 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE); 252 } else 253 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO); 254 255 /* 256 * We can support 802.1Q VLAN-sized frames. 257 */ 258 sc->vte_ec.ec_capabilities |= ETHERCAP_VLAN_MTU; 259 260 strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ); 261 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 262 ifp->if_ioctl = vte_ifioctl; 263 ifp->if_start = vte_ifstart; 264 ifp->if_watchdog = vte_ifwatchdog; 265 ifp->if_init = vte_init; 266 ifp->if_stop = vte_stop; 267 ifp->if_timer = 0; 268 IFQ_SET_READY(&ifp->if_snd); 269 if_attach(ifp); 270 if_deferred_start_init(ifp, NULL); 271 ether_ifattach(&(sc)->vte_if, (sc)->vte_eaddr); 272 273 if (pmf_device_register1(self, vte_suspend, vte_resume, vte_shutdown)) 274 pmf_class_network_register(self, ifp); 275 else 276 aprint_error_dev(self, "couldn't establish power handler\n"); 277 278 rnd_attach_source(&sc->rnd_source, device_xname(self), 279 RND_TYPE_NET, RND_FLAG_DEFAULT); 280 281 if (sysctl_createv(&sc->vte_clog, 0, NULL, &node, 282 0, CTLTYPE_NODE, device_xname(sc->vte_dev), 283 SYSCTL_DESCR("vte per-controller controls"), 284 NULL, 0, NULL, 0, CTL_HW, vte_root_num, CTL_CREATE, 285 CTL_EOL) != 0) { 286 aprint_normal_dev(sc->vte_dev, "couldn't create sysctl node\n"); 287 return; 288 } 289 vte_nodenum = node->sysctl_num; 290 if (sysctl_createv(&sc->vte_clog, 0, NULL, &node, 291 CTLFLAG_READWRITE, 292 CTLTYPE_INT, "int_rxct", 293 SYSCTL_DESCR("vte RX interrupt moderation packet counter"), 294 vte_sysctl_intrxct, 0, (void *)sc, 295 0, CTL_HW, vte_root_num, vte_nodenum, CTL_CREATE, 296 CTL_EOL) != 0) { 297 aprint_normal_dev(sc->vte_dev, 298 "couldn't create int_rxct sysctl node\n"); 299 } 300 if (sysctl_createv(&sc->vte_clog, 0, NULL, &node, 301 CTLFLAG_READWRITE, 302 CTLTYPE_INT, "int_txct", 303 SYSCTL_DESCR("vte TX interrupt moderation packet counter"), 304 vte_sysctl_inttxct, 0, (void *)sc, 305 0, CTL_HW, vte_root_num, vte_nodenum, CTL_CREATE, 306 CTL_EOL) != 0) { 307 aprint_normal_dev(sc->vte_dev, 308 "couldn't create int_txct sysctl node\n"); 309 } 310 } 311 312 static int 313 vte_detach(device_t dev, int flags __unused) 314 { 315 struct vte_softc *sc = device_private(dev); 316 struct ifnet *ifp = &sc->vte_if; 317 int s; 318 319 s = splnet(); 320 /* Stop the interface. Callouts are stopped in it. */ 321 vte_stop(ifp, 1); 322 splx(s); 323 324 pmf_device_deregister(dev); 325 326 mii_detach(&sc->vte_mii, MII_PHY_ANY, MII_OFFSET_ANY); 327 328 ether_ifdetach(ifp); 329 if_detach(ifp); 330 ifmedia_fini(&sc->vte_mii.mii_media); 331 332 vte_dma_free(sc); 333 334 return (0); 335 } 336 337 static int 338 vte_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val) 339 { 340 struct vte_softc *sc = device_private(dev); 341 int i; 342 343 CSR_WRITE_2(sc, VTE_MMDIO, MMDIO_READ | 344 (phy << MMDIO_PHY_ADDR_SHIFT) | (reg << MMDIO_REG_ADDR_SHIFT)); 345 for (i = VTE_PHY_TIMEOUT; i > 0; i--) { 346 DELAY(5); 347 if ((CSR_READ_2(sc, VTE_MMDIO) & MMDIO_READ) == 0) 348 break; 349 } 350 351 if (i == 0) { 352 aprint_error_dev(sc->vte_dev, "phy read timeout : %d\n", reg); 353 return ETIMEDOUT; 354 } 355 356 *val = CSR_READ_2(sc, VTE_MMRD); 357 return 0; 358 } 359 360 static int 361 vte_miibus_writereg(device_t dev, int phy, int reg, uint16_t val) 362 { 363 struct vte_softc *sc = device_private(dev); 364 int i; 365 366 CSR_WRITE_2(sc, VTE_MMWD, val); 367 CSR_WRITE_2(sc, VTE_MMDIO, MMDIO_WRITE | 368 (phy << MMDIO_PHY_ADDR_SHIFT) | (reg << MMDIO_REG_ADDR_SHIFT)); 369 for (i = VTE_PHY_TIMEOUT; i > 0; i--) { 370 DELAY(5); 371 if ((CSR_READ_2(sc, VTE_MMDIO) & MMDIO_WRITE) == 0) 372 break; 373 } 374 375 if (i == 0) { 376 aprint_error_dev(sc->vte_dev, "phy write timeout : %d\n", reg); 377 return ETIMEDOUT; 378 } 379 380 return 0; 381 } 382 383 static void 384 vte_miibus_statchg(struct ifnet *ifp) 385 { 386 struct vte_softc *sc = ifp->if_softc; 387 uint16_t val; 388 389 DPRINTF(("vte_miibus_statchg 0x%x 0x%x\n", 390 sc->vte_mii.mii_media_status, sc->vte_mii.mii_media_active)); 391 392 sc->vte_flags &= ~VTE_FLAG_LINK; 393 if ((sc->vte_mii.mii_media_status & (IFM_ACTIVE | IFM_AVALID)) == 394 (IFM_ACTIVE | IFM_AVALID)) { 395 switch (IFM_SUBTYPE(sc->vte_mii.mii_media_active)) { 396 case IFM_10_T: 397 case IFM_100_TX: 398 sc->vte_flags |= VTE_FLAG_LINK; 399 break; 400 default: 401 break; 402 } 403 } 404 405 /* Stop RX/TX MACs. */ 406 vte_stop_mac(sc); 407 /* Program MACs with resolved duplex and flow control. */ 408 if ((sc->vte_flags & VTE_FLAG_LINK) != 0) { 409 /* 410 * Timer waiting time : (63 + TIMER * 64) MII clock. 411 * MII clock : 25MHz(100Mbps) or 2.5MHz(10Mbps). 412 */ 413 if (IFM_SUBTYPE(sc->vte_mii.mii_media_active) == IFM_100_TX) 414 val = 18 << VTE_IM_TIMER_SHIFT; 415 else 416 val = 1 << VTE_IM_TIMER_SHIFT; 417 val |= sc->vte_int_rx_mod << VTE_IM_BUNDLE_SHIFT; 418 /* 48.6us for 100Mbps, 50.8us for 10Mbps */ 419 CSR_WRITE_2(sc, VTE_MRICR, val); 420 421 if (IFM_SUBTYPE(sc->vte_mii.mii_media_active) == IFM_100_TX) 422 val = 18 << VTE_IM_TIMER_SHIFT; 423 else 424 val = 1 << VTE_IM_TIMER_SHIFT; 425 val |= sc->vte_int_tx_mod << VTE_IM_BUNDLE_SHIFT; 426 /* 48.6us for 100Mbps, 50.8us for 10Mbps */ 427 CSR_WRITE_2(sc, VTE_MTICR, val); 428 429 vte_mac_config(sc); 430 vte_start_mac(sc); 431 DPRINTF(("vte_miibus_statchg: link\n")); 432 } 433 } 434 435 static void 436 vte_get_macaddr(struct vte_softc *sc) 437 { 438 uint16_t mid; 439 440 /* 441 * It seems there is no way to reload station address and 442 * it is supposed to be set by BIOS. 443 */ 444 mid = CSR_READ_2(sc, VTE_MID0L); 445 sc->vte_eaddr[0] = (mid >> 0) & 0xFF; 446 sc->vte_eaddr[1] = (mid >> 8) & 0xFF; 447 mid = CSR_READ_2(sc, VTE_MID0M); 448 sc->vte_eaddr[2] = (mid >> 0) & 0xFF; 449 sc->vte_eaddr[3] = (mid >> 8) & 0xFF; 450 mid = CSR_READ_2(sc, VTE_MID0H); 451 sc->vte_eaddr[4] = (mid >> 0) & 0xFF; 452 sc->vte_eaddr[5] = (mid >> 8) & 0xFF; 453 } 454 455 456 static int 457 vte_dma_alloc(struct vte_softc *sc) 458 { 459 struct vte_txdesc *txd; 460 struct vte_rxdesc *rxd; 461 int error, i, rseg; 462 463 /* create DMA map for TX ring */ 464 error = bus_dmamap_create(sc->vte_dmatag, VTE_TX_RING_SZ, 1, 465 VTE_TX_RING_SZ, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, 466 &sc->vte_cdata.vte_tx_ring_map); 467 if (error) { 468 aprint_error_dev(sc->vte_dev, 469 "could not create dma map for TX ring (%d)\n", 470 error); 471 goto fail; 472 } 473 /* Allocate and map DMA'able memory and load the DMA map for TX ring. */ 474 error = bus_dmamem_alloc(sc->vte_dmatag, VTE_TX_RING_SZ, 475 VTE_TX_RING_ALIGN, 0, 476 sc->vte_cdata.vte_tx_ring_seg, 1, &rseg, 477 BUS_DMA_NOWAIT); 478 if (error != 0) { 479 aprint_error_dev(sc->vte_dev, 480 "could not allocate DMA'able memory for TX ring (%d).\n", 481 error); 482 goto fail; 483 } 484 KASSERT(rseg == 1); 485 error = bus_dmamem_map(sc->vte_dmatag, 486 sc->vte_cdata.vte_tx_ring_seg, 1, 487 VTE_TX_RING_SZ, (void **)(&sc->vte_cdata.vte_tx_ring), 488 BUS_DMA_NOWAIT | BUS_DMA_COHERENT); 489 if (error != 0) { 490 aprint_error_dev(sc->vte_dev, 491 "could not map DMA'able memory for TX ring (%d).\n", 492 error); 493 goto fail; 494 } 495 memset(sc->vte_cdata.vte_tx_ring, 0, VTE_TX_RING_SZ); 496 error = bus_dmamap_load(sc->vte_dmatag, 497 sc->vte_cdata.vte_tx_ring_map, sc->vte_cdata.vte_tx_ring, 498 VTE_TX_RING_SZ, NULL, 499 BUS_DMA_NOWAIT | BUS_DMA_READ | BUS_DMA_WRITE); 500 if (error != 0) { 501 aprint_error_dev(sc->vte_dev, 502 "could not load DMA'able memory for TX ring.\n"); 503 goto fail; 504 } 505 506 /* create DMA map for RX ring */ 507 error = bus_dmamap_create(sc->vte_dmatag, VTE_RX_RING_SZ, 1, 508 VTE_RX_RING_SZ, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, 509 &sc->vte_cdata.vte_rx_ring_map); 510 if (error) { 511 aprint_error_dev(sc->vte_dev, 512 "could not create dma map for RX ring (%d)\n", 513 error); 514 goto fail; 515 } 516 /* Allocate and map DMA'able memory and load the DMA map for RX ring. */ 517 error = bus_dmamem_alloc(sc->vte_dmatag, VTE_RX_RING_SZ, 518 VTE_RX_RING_ALIGN, 0, 519 sc->vte_cdata.vte_rx_ring_seg, 1, &rseg, 520 BUS_DMA_NOWAIT); 521 if (error != 0) { 522 aprint_error_dev(sc->vte_dev, 523 "could not allocate DMA'able memory for RX ring (%d).\n", 524 error); 525 goto fail; 526 } 527 KASSERT(rseg == 1); 528 error = bus_dmamem_map(sc->vte_dmatag, 529 sc->vte_cdata.vte_rx_ring_seg, 1, 530 VTE_RX_RING_SZ, (void **)(&sc->vte_cdata.vte_rx_ring), 531 BUS_DMA_NOWAIT | BUS_DMA_COHERENT); 532 if (error != 0) { 533 aprint_error_dev(sc->vte_dev, 534 "could not map DMA'able memory for RX ring (%d).\n", 535 error); 536 goto fail; 537 } 538 memset(sc->vte_cdata.vte_rx_ring, 0, VTE_RX_RING_SZ); 539 error = bus_dmamap_load(sc->vte_dmatag, 540 sc->vte_cdata.vte_rx_ring_map, sc->vte_cdata.vte_rx_ring, 541 VTE_RX_RING_SZ, NULL, 542 BUS_DMA_NOWAIT | BUS_DMA_READ | BUS_DMA_WRITE); 543 if (error != 0) { 544 aprint_error_dev(sc->vte_dev, 545 "could not load DMA'able memory for RX ring (%d).\n", 546 error); 547 goto fail; 548 } 549 550 /* Create DMA maps for TX buffers. */ 551 for (i = 0; i < VTE_TX_RING_CNT; i++) { 552 txd = &sc->vte_cdata.vte_txdesc[i]; 553 txd->tx_m = NULL; 554 txd->tx_dmamap = NULL; 555 error = bus_dmamap_create(sc->vte_dmatag, MCLBYTES, 556 1, MCLBYTES, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, 557 &txd->tx_dmamap); 558 if (error != 0) { 559 aprint_error_dev(sc->vte_dev, 560 "could not create TX DMA map %d (%d).\n", i, error); 561 goto fail; 562 } 563 } 564 /* Create DMA maps for RX buffers. */ 565 if ((error = bus_dmamap_create(sc->vte_dmatag, MCLBYTES, 566 1, MCLBYTES, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, 567 &sc->vte_cdata.vte_rx_sparemap)) != 0) { 568 aprint_error_dev(sc->vte_dev, 569 "could not create spare RX dmamap (%d).\n", error); 570 goto fail; 571 } 572 for (i = 0; i < VTE_RX_RING_CNT; i++) { 573 rxd = &sc->vte_cdata.vte_rxdesc[i]; 574 rxd->rx_m = NULL; 575 rxd->rx_dmamap = NULL; 576 error = bus_dmamap_create(sc->vte_dmatag, MCLBYTES, 577 1, MCLBYTES, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, 578 &rxd->rx_dmamap); 579 if (error != 0) { 580 aprint_error_dev(sc->vte_dev, 581 "could not create RX dmamap %d (%d).\n", i, error); 582 goto fail; 583 } 584 } 585 return 0; 586 587 fail: 588 vte_dma_free(sc); 589 return (error); 590 } 591 592 static void 593 vte_dma_free(struct vte_softc *sc) 594 { 595 struct vte_txdesc *txd; 596 struct vte_rxdesc *rxd; 597 int i; 598 599 /* TX buffers. */ 600 for (i = 0; i < VTE_TX_RING_CNT; i++) { 601 txd = &sc->vte_cdata.vte_txdesc[i]; 602 if (txd->tx_dmamap != NULL) { 603 bus_dmamap_destroy(sc->vte_dmatag, txd->tx_dmamap); 604 txd->tx_dmamap = NULL; 605 } 606 } 607 /* RX buffers */ 608 for (i = 0; i < VTE_RX_RING_CNT; i++) { 609 rxd = &sc->vte_cdata.vte_rxdesc[i]; 610 if (rxd->rx_dmamap != NULL) { 611 bus_dmamap_destroy(sc->vte_dmatag, rxd->rx_dmamap); 612 rxd->rx_dmamap = NULL; 613 } 614 } 615 if (sc->vte_cdata.vte_rx_sparemap != NULL) { 616 bus_dmamap_destroy(sc->vte_dmatag, 617 sc->vte_cdata.vte_rx_sparemap); 618 sc->vte_cdata.vte_rx_sparemap = NULL; 619 } 620 /* TX descriptor ring. */ 621 if (sc->vte_cdata.vte_tx_ring_map != NULL) { 622 bus_dmamap_unload(sc->vte_dmatag, 623 sc->vte_cdata.vte_tx_ring_map); 624 bus_dmamap_destroy(sc->vte_dmatag, 625 sc->vte_cdata.vte_tx_ring_map); 626 } 627 if (sc->vte_cdata.vte_tx_ring != NULL) { 628 bus_dmamem_unmap(sc->vte_dmatag, 629 sc->vte_cdata.vte_tx_ring, VTE_TX_RING_SZ); 630 bus_dmamem_free(sc->vte_dmatag, 631 sc->vte_cdata.vte_tx_ring_seg, 1); 632 } 633 sc->vte_cdata.vte_tx_ring = NULL; 634 sc->vte_cdata.vte_tx_ring_map = NULL; 635 /* RX ring. */ 636 if (sc->vte_cdata.vte_rx_ring_map != NULL) { 637 bus_dmamap_unload(sc->vte_dmatag, 638 sc->vte_cdata.vte_rx_ring_map); 639 bus_dmamap_destroy(sc->vte_dmatag, 640 sc->vte_cdata.vte_rx_ring_map); 641 } 642 if (sc->vte_cdata.vte_rx_ring != NULL) { 643 bus_dmamem_unmap(sc->vte_dmatag, 644 sc->vte_cdata.vte_rx_ring, VTE_RX_RING_SZ); 645 bus_dmamem_free(sc->vte_dmatag, 646 sc->vte_cdata.vte_rx_ring_seg, 1); 647 } 648 sc->vte_cdata.vte_rx_ring = NULL; 649 sc->vte_cdata.vte_rx_ring_map = NULL; 650 } 651 652 static bool 653 vte_shutdown(device_t dev, int howto) 654 { 655 656 return (vte_suspend(dev, NULL)); 657 } 658 659 static bool 660 vte_suspend(device_t dev, const pmf_qual_t *qual) 661 { 662 struct vte_softc *sc = device_private(dev); 663 struct ifnet *ifp = &sc->vte_if; 664 665 DPRINTF(("vte_suspend if_flags 0x%x\n", ifp->if_flags)); 666 if ((ifp->if_flags & IFF_RUNNING) != 0) 667 vte_stop(ifp, 1); 668 return (0); 669 } 670 671 static bool 672 vte_resume(device_t dev, const pmf_qual_t *qual) 673 { 674 struct vte_softc *sc = device_private(dev); 675 struct ifnet *ifp; 676 677 ifp = &sc->vte_if; 678 if ((ifp->if_flags & IFF_UP) != 0) { 679 ifp->if_flags &= ~IFF_RUNNING; 680 vte_init(ifp); 681 } 682 683 return (0); 684 } 685 686 static struct vte_txdesc * 687 vte_encap(struct vte_softc *sc, struct mbuf **m_head) 688 { 689 struct vte_txdesc *txd; 690 struct mbuf *m, *n; 691 int copy, error, padlen; 692 693 txd = &sc->vte_cdata.vte_txdesc[sc->vte_cdata.vte_tx_prod]; 694 m = *m_head; 695 /* 696 * Controller doesn't auto-pad, so we have to make sure pad 697 * short frames out to the minimum frame length. 698 */ 699 if (m->m_pkthdr.len < VTE_MIN_FRAMELEN) 700 padlen = VTE_MIN_FRAMELEN - m->m_pkthdr.len; 701 else 702 padlen = 0; 703 704 /* 705 * Controller does not support multi-fragmented TX buffers. 706 * Controller spends most of its TX processing time in 707 * de-fragmenting TX buffers. Either faster CPU or more 708 * advanced controller DMA engine is required to speed up 709 * TX path processing. 710 * To mitigate the de-fragmenting issue, perform deep copy 711 * from fragmented mbuf chains to a pre-allocated mbuf 712 * cluster with extra cost of kernel memory. For frames 713 * that is composed of single TX buffer, the deep copy is 714 * bypassed. 715 */ 716 copy = 0; 717 if (m->m_next != NULL) 718 copy++; 719 if (padlen > 0 && (M_READONLY(m) || 720 padlen > M_TRAILINGSPACE(m))) 721 copy++; 722 if (copy != 0) { 723 n = sc->vte_cdata.vte_txmbufs[sc->vte_cdata.vte_tx_prod]; 724 m_copydata(m, 0, m->m_pkthdr.len, mtod(n, char *)); 725 n->m_pkthdr.len = m->m_pkthdr.len; 726 n->m_len = m->m_pkthdr.len; 727 m = n; 728 txd->tx_flags |= VTE_TXMBUF; 729 } 730 731 if (padlen > 0) { 732 /* Zero out the bytes in the pad area. */ 733 bzero(mtod(m, char *) + m->m_pkthdr.len, padlen); 734 m->m_pkthdr.len += padlen; 735 m->m_len = m->m_pkthdr.len; 736 } 737 738 error = bus_dmamap_load_mbuf(sc->vte_dmatag, txd->tx_dmamap, m, 739 BUS_DMA_NOWAIT); 740 if (error != 0) { 741 txd->tx_flags &= ~VTE_TXMBUF; 742 return (NULL); 743 } 744 KASSERT(txd->tx_dmamap->dm_nsegs == 1); 745 bus_dmamap_sync(sc->vte_dmatag, txd->tx_dmamap, 0, 746 txd->tx_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE); 747 748 txd->tx_desc->dtlen = 749 htole16(VTE_TX_LEN(txd->tx_dmamap->dm_segs[0].ds_len)); 750 txd->tx_desc->dtbp = htole32(txd->tx_dmamap->dm_segs[0].ds_addr); 751 sc->vte_cdata.vte_tx_cnt++; 752 /* Update producer index. */ 753 VTE_DESC_INC(sc->vte_cdata.vte_tx_prod, VTE_TX_RING_CNT); 754 755 /* Finally hand over ownership to controller. */ 756 txd->tx_desc->dtst = htole16(VTE_DTST_TX_OWN); 757 txd->tx_m = m; 758 759 return (txd); 760 } 761 762 static void 763 vte_ifstart(struct ifnet *ifp) 764 { 765 struct vte_softc *sc = ifp->if_softc; 766 struct vte_txdesc *txd; 767 struct mbuf *m_head, *m; 768 int enq; 769 770 ifp = &sc->vte_if; 771 772 DPRINTF(("vte_ifstart 0x%x 0x%x\n", ifp->if_flags, sc->vte_flags)); 773 774 if ((ifp->if_flags & IFF_RUNNING) == 0) { 775 return; 776 } 777 if ((sc->vte_flags & VTE_FLAG_LINK) == 0) { 778 return; 779 } 780 781 /* Reserve one free TX descriptor. */ 782 for (enq = 0; sc->vte_cdata.vte_tx_cnt < VTE_TX_RING_CNT - 1; ) { 783 IFQ_POLL(&ifp->if_snd, m_head); 784 if (m_head == NULL) 785 break; 786 /* 787 * Pack the data into the transmit ring. 788 */ 789 DPRINTF(("vte_encap:")); 790 if ((txd = vte_encap(sc, &m_head)) == NULL) { 791 DPRINTF((" failed\n")); 792 break; 793 } 794 DPRINTF((" ok\n")); 795 IFQ_DEQUEUE(&ifp->if_snd, m); 796 KASSERT(m == m_head); 797 798 enq++; 799 /* 800 * If there's a BPF listener, bounce a copy of this frame 801 * to him. 802 */ 803 bpf_mtap(ifp, m_head, BPF_D_OUT); 804 /* Free consumed TX frame. */ 805 if ((txd->tx_flags & VTE_TXMBUF) != 0) 806 m_freem(m_head); 807 } 808 809 if (enq > 0) { 810 bus_dmamap_sync(sc->vte_dmatag, 811 sc->vte_cdata.vte_tx_ring_map, 0, 812 sc->vte_cdata.vte_tx_ring_map->dm_mapsize, 813 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 814 CSR_WRITE_2(sc, VTE_TX_POLL, TX_POLL_START); 815 sc->vte_watchdog_timer = VTE_TX_TIMEOUT; 816 } 817 } 818 819 static void 820 vte_ifwatchdog(struct ifnet *ifp) 821 { 822 struct vte_softc *sc = ifp->if_softc; 823 824 if (sc->vte_watchdog_timer == 0 || --sc->vte_watchdog_timer) 825 return; 826 827 aprint_error_dev(sc->vte_dev, "watchdog timeout -- resetting\n"); 828 if_statinc(ifp, if_oerrors); 829 vte_init(ifp); 830 if (!IFQ_IS_EMPTY(&ifp->if_snd)) 831 vte_ifstart(ifp); 832 } 833 834 static int 835 vte_mediachange(struct ifnet *ifp) 836 { 837 int error; 838 struct vte_softc *sc = ifp->if_softc; 839 840 if ((error = mii_mediachg(&sc->vte_mii)) == ENXIO) 841 error = 0; 842 else if (error != 0) { 843 aprint_error_dev(sc->vte_dev, "could not set media\n"); 844 return error; 845 } 846 return 0; 847 848 } 849 850 static int 851 vte_ifioctl(struct ifnet *ifp, u_long cmd, void *data) 852 { 853 struct vte_softc *sc = ifp->if_softc; 854 int error, s; 855 856 s = splnet(); 857 error = ether_ioctl(ifp, cmd, data); 858 if (error == ENETRESET) { 859 DPRINTF(("vte_ifioctl if_flags 0x%x\n", ifp->if_flags)); 860 if (ifp->if_flags & IFF_RUNNING) 861 vte_rxfilter(sc); 862 error = 0; 863 } 864 splx(s); 865 return error; 866 } 867 868 static void 869 vte_mac_config(struct vte_softc *sc) 870 { 871 uint16_t mcr; 872 873 mcr = CSR_READ_2(sc, VTE_MCR0); 874 mcr &= ~(MCR0_FC_ENB | MCR0_FULL_DUPLEX); 875 if ((IFM_OPTIONS(sc->vte_mii.mii_media_active) & IFM_FDX) != 0) { 876 mcr |= MCR0_FULL_DUPLEX; 877 #ifdef notyet 878 if ((IFM_OPTIONS(sc->vte_mii.mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0) 879 mcr |= MCR0_FC_ENB; 880 /* 881 * The data sheet is not clear whether the controller 882 * honors received pause frames or not. The is no 883 * separate control bit for RX pause frame so just 884 * enable MCR0_FC_ENB bit. 885 */ 886 if ((IFM_OPTIONS(sc->vte_mii.mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0) 887 mcr |= MCR0_FC_ENB; 888 #endif 889 } 890 CSR_WRITE_2(sc, VTE_MCR0, mcr); 891 } 892 893 static void 894 vte_stats_clear(struct vte_softc *sc) 895 { 896 897 /* Reading counter registers clears its contents. */ 898 CSR_READ_2(sc, VTE_CNT_RX_DONE); 899 CSR_READ_2(sc, VTE_CNT_MECNT0); 900 CSR_READ_2(sc, VTE_CNT_MECNT1); 901 CSR_READ_2(sc, VTE_CNT_MECNT2); 902 CSR_READ_2(sc, VTE_CNT_MECNT3); 903 CSR_READ_2(sc, VTE_CNT_TX_DONE); 904 CSR_READ_2(sc, VTE_CNT_MECNT4); 905 CSR_READ_2(sc, VTE_CNT_PAUSE); 906 } 907 908 static void 909 vte_stats_update(struct vte_softc *sc) 910 { 911 struct vte_hw_stats *stat; 912 struct ifnet *ifp = &sc->vte_if; 913 uint16_t value; 914 915 stat = &sc->vte_stats; 916 917 net_stat_ref_t nsr = IF_STAT_GETREF(ifp); 918 919 CSR_READ_2(sc, VTE_MECISR); 920 921 /* RX stats. */ 922 stat->rx_frames += CSR_READ_2(sc, VTE_CNT_RX_DONE); 923 924 value = CSR_READ_2(sc, VTE_CNT_MECNT0); 925 stat->rx_bcast_frames += (value >> 8); 926 stat->rx_mcast_frames += (value & 0xFF); 927 928 value = CSR_READ_2(sc, VTE_CNT_MECNT1); 929 if_statadd_ref(ifp, nsr, if_ierrors, 930 (value >> 8) + /* rx_runts */ 931 (value & 0xFF)); /* rx_crcerrs */ 932 933 value = CSR_READ_2(sc, VTE_CNT_MECNT2); 934 if_statadd_ref(ifp, nsr, if_ierrors, 935 (value & 0xFF)); /* rx_long_frames */ 936 937 value = CSR_READ_2(sc, VTE_CNT_MECNT3); 938 if_statadd_ref(ifp, nsr, if_ierrors, 939 (value >> 8)); /* rx_fifo_full */ 940 stat->rx_desc_unavail += (value & 0xFF); 941 942 /* TX stats. */ 943 if_statadd_ref(ifp, nsr, if_opackets, 944 CSR_READ_2(sc, VTE_CNT_TX_DONE)); /* tx_frames */ 945 946 value = CSR_READ_2(sc, VTE_CNT_MECNT4); 947 if_statadd_ref(ifp, nsr, if_oerrors, 948 (value >> 8) + /* tx_underruns */ 949 (value & 0xFF)); /* tx_late_colls */ 950 951 /* Pause stats. */ 952 value = CSR_READ_2(sc, VTE_CNT_PAUSE); 953 stat->tx_pause_frames += (value >> 8); 954 stat->rx_pause_frames += (value & 0xFF); 955 956 IF_STAT_PUTREF(ifp); 957 } 958 959 static int 960 vte_intr(void *arg) 961 { 962 struct vte_softc *sc = (struct vte_softc *)arg; 963 struct ifnet *ifp = &sc->vte_if; 964 uint16_t status; 965 int n; 966 967 /* Reading VTE_MISR acknowledges interrupts. */ 968 status = CSR_READ_2(sc, VTE_MISR); 969 DPRINTF(("vte_intr status 0x%x\n", status)); 970 if ((status & VTE_INTRS) == 0) { 971 /* Not ours. */ 972 return 0; 973 } 974 975 /* Disable interrupts. */ 976 CSR_WRITE_2(sc, VTE_MIER, 0); 977 for (n = 8; (status & VTE_INTRS) != 0;) { 978 if ((ifp->if_flags & IFF_RUNNING) == 0) 979 break; 980 if ((status & (MISR_RX_DONE | MISR_RX_DESC_UNAVAIL | 981 MISR_RX_FIFO_FULL)) != 0) 982 vte_rxeof(sc); 983 if ((status & MISR_TX_DONE) != 0) 984 vte_txeof(sc); 985 if ((status & MISR_EVENT_CNT_OFLOW) != 0) 986 vte_stats_update(sc); 987 if_schedule_deferred_start(ifp); 988 if (--n > 0) 989 status = CSR_READ_2(sc, VTE_MISR); 990 else 991 break; 992 } 993 994 if ((ifp->if_flags & IFF_RUNNING) != 0) { 995 /* Re-enable interrupts. */ 996 CSR_WRITE_2(sc, VTE_MIER, VTE_INTRS); 997 } 998 return 1; 999 } 1000 1001 static void 1002 vte_txeof(struct vte_softc *sc) 1003 { 1004 struct ifnet *ifp; 1005 struct vte_txdesc *txd; 1006 uint16_t status; 1007 int cons, prog; 1008 1009 ifp = &sc->vte_if; 1010 1011 if (sc->vte_cdata.vte_tx_cnt == 0) 1012 return; 1013 bus_dmamap_sync(sc->vte_dmatag, 1014 sc->vte_cdata.vte_tx_ring_map, 0, 1015 sc->vte_cdata.vte_tx_ring_map->dm_mapsize, 1016 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1017 cons = sc->vte_cdata.vte_tx_cons; 1018 /* 1019 * Go through our TX list and free mbufs for those 1020 * frames which have been transmitted. 1021 */ 1022 for (prog = 0; sc->vte_cdata.vte_tx_cnt > 0; prog++) { 1023 txd = &sc->vte_cdata.vte_txdesc[cons]; 1024 status = le16toh(txd->tx_desc->dtst); 1025 if ((status & VTE_DTST_TX_OWN) != 0) 1026 break; 1027 if ((status & VTE_DTST_TX_OK) != 0) 1028 if_statadd(ifp, if_collisions, (status & 0xf)); 1029 sc->vte_cdata.vte_tx_cnt--; 1030 /* Reclaim transmitted mbufs. */ 1031 bus_dmamap_sync(sc->vte_dmatag, txd->tx_dmamap, 0, 1032 txd->tx_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE); 1033 bus_dmamap_unload(sc->vte_dmatag, txd->tx_dmamap); 1034 if ((txd->tx_flags & VTE_TXMBUF) == 0) 1035 m_freem(txd->tx_m); 1036 txd->tx_flags &= ~VTE_TXMBUF; 1037 txd->tx_m = NULL; 1038 prog++; 1039 VTE_DESC_INC(cons, VTE_TX_RING_CNT); 1040 } 1041 1042 if (prog > 0) { 1043 sc->vte_cdata.vte_tx_cons = cons; 1044 /* 1045 * Unarm watchdog timer only when there is no pending 1046 * frames in TX queue. 1047 */ 1048 if (sc->vte_cdata.vte_tx_cnt == 0) 1049 sc->vte_watchdog_timer = 0; 1050 } 1051 } 1052 1053 static int 1054 vte_newbuf(struct vte_softc *sc, struct vte_rxdesc *rxd) 1055 { 1056 struct mbuf *m; 1057 bus_dmamap_t map; 1058 1059 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 1060 if (m == NULL) 1061 return (ENOBUFS); 1062 m->m_len = m->m_pkthdr.len = MCLBYTES; 1063 m_adj(m, sizeof(uint32_t)); 1064 1065 if (bus_dmamap_load_mbuf(sc->vte_dmatag, 1066 sc->vte_cdata.vte_rx_sparemap, m, BUS_DMA_NOWAIT) != 0) { 1067 m_freem(m); 1068 return (ENOBUFS); 1069 } 1070 KASSERT(sc->vte_cdata.vte_rx_sparemap->dm_nsegs == 1); 1071 1072 if (rxd->rx_m != NULL) { 1073 bus_dmamap_sync(sc->vte_dmatag, rxd->rx_dmamap, 1074 0, rxd->rx_dmamap->dm_mapsize, 1075 BUS_DMASYNC_POSTREAD); 1076 bus_dmamap_unload(sc->vte_dmatag, rxd->rx_dmamap); 1077 } 1078 map = rxd->rx_dmamap; 1079 rxd->rx_dmamap = sc->vte_cdata.vte_rx_sparemap; 1080 sc->vte_cdata.vte_rx_sparemap = map; 1081 bus_dmamap_sync(sc->vte_dmatag, rxd->rx_dmamap, 1082 0, rxd->rx_dmamap->dm_mapsize, 1083 BUS_DMASYNC_PREREAD); 1084 rxd->rx_m = m; 1085 rxd->rx_desc->drbp = 1086 htole32(rxd->rx_dmamap->dm_segs[0].ds_addr); 1087 rxd->rx_desc->drlen = htole16( 1088 VTE_RX_LEN(rxd->rx_dmamap->dm_segs[0].ds_len)); 1089 DPRINTF(("rx data %p mbuf %p buf 0x%x/0x%x\n", rxd, m, 1090 (u_int)rxd->rx_dmamap->dm_segs[0].ds_addr, 1091 rxd->rx_dmamap->dm_segs[0].ds_len)); 1092 rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN); 1093 1094 return (0); 1095 } 1096 1097 static void 1098 vte_rxeof(struct vte_softc *sc) 1099 { 1100 struct ifnet *ifp; 1101 struct vte_rxdesc *rxd; 1102 struct mbuf *m; 1103 uint16_t status, total_len; 1104 int cons, prog; 1105 1106 bus_dmamap_sync(sc->vte_dmatag, 1107 sc->vte_cdata.vte_rx_ring_map, 0, 1108 sc->vte_cdata.vte_rx_ring_map->dm_mapsize, 1109 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1110 cons = sc->vte_cdata.vte_rx_cons; 1111 ifp = &sc->vte_if; 1112 DPRINTF(("vte_rxeof if_flags 0x%x\n", ifp->if_flags)); 1113 for (prog = 0; (ifp->if_flags & IFF_RUNNING) != 0; prog++, 1114 VTE_DESC_INC(cons, VTE_RX_RING_CNT)) { 1115 rxd = &sc->vte_cdata.vte_rxdesc[cons]; 1116 status = le16toh(rxd->rx_desc->drst); 1117 DPRINTF(("vte_rxeof rxd %d/%p mbuf %p status 0x%x len %d\n", 1118 cons, rxd, rxd->rx_m, status, 1119 VTE_RX_LEN(le16toh(rxd->rx_desc->drlen)))); 1120 if ((status & VTE_DRST_RX_OWN) != 0) 1121 break; 1122 total_len = VTE_RX_LEN(le16toh(rxd->rx_desc->drlen)); 1123 m = rxd->rx_m; 1124 if ((status & VTE_DRST_RX_OK) == 0) { 1125 /* Discard errored frame. */ 1126 rxd->rx_desc->drlen = 1127 htole16(MCLBYTES - sizeof(uint32_t)); 1128 rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN); 1129 continue; 1130 } 1131 if (vte_newbuf(sc, rxd) != 0) { 1132 DPRINTF(("vte_rxeof newbuf failed\n")); 1133 if_statinc(ifp, if_ierrors); 1134 rxd->rx_desc->drlen = 1135 htole16(MCLBYTES - sizeof(uint32_t)); 1136 rxd->rx_desc->drst = htole16(VTE_DRST_RX_OWN); 1137 continue; 1138 } 1139 1140 /* 1141 * It seems there is no way to strip FCS bytes. 1142 */ 1143 m->m_pkthdr.len = m->m_len = total_len - ETHER_CRC_LEN; 1144 m_set_rcvif(m, ifp); 1145 if_percpuq_enqueue(ifp->if_percpuq, m); 1146 } 1147 1148 if (prog > 0) { 1149 /* Update the consumer index. */ 1150 sc->vte_cdata.vte_rx_cons = cons; 1151 /* 1152 * Sync updated RX descriptors such that controller see 1153 * modified RX buffer addresses. 1154 */ 1155 bus_dmamap_sync(sc->vte_dmatag, 1156 sc->vte_cdata.vte_rx_ring_map, 0, 1157 sc->vte_cdata.vte_rx_ring_map->dm_mapsize, 1158 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1159 #ifdef notyet 1160 /* 1161 * Update residue counter. Controller does not 1162 * keep track of number of available RX descriptors 1163 * such that driver should have to update VTE_MRDCR 1164 * to make controller know how many free RX 1165 * descriptors were added to controller. This is 1166 * a similar mechanism used in VIA velocity 1167 * controllers and it indicates controller just 1168 * polls OWN bit of current RX descriptor pointer. 1169 * A couple of severe issues were seen on sample 1170 * board where the controller continuously emits TX 1171 * pause frames once RX pause threshold crossed. 1172 * Once triggered it never recovered form that 1173 * state, I couldn't find a way to make it back to 1174 * work at least. This issue effectively 1175 * disconnected the system from network. Also, the 1176 * controller used 00:00:00:00:00:00 as source 1177 * station address of TX pause frame. Probably this 1178 * is one of reason why vendor recommends not to 1179 * enable flow control on R6040 controller. 1180 */ 1181 CSR_WRITE_2(sc, VTE_MRDCR, prog | 1182 (((VTE_RX_RING_CNT * 2) / 10) << 1183 VTE_MRDCR_RX_PAUSE_THRESH_SHIFT)); 1184 #endif 1185 rnd_add_uint32(&sc->rnd_source, prog); 1186 } 1187 } 1188 1189 static void 1190 vte_tick(void *arg) 1191 { 1192 struct vte_softc *sc; 1193 int s = splnet(); 1194 1195 sc = (struct vte_softc *)arg; 1196 1197 mii_tick(&sc->vte_mii); 1198 vte_stats_update(sc); 1199 vte_txeof(sc); 1200 vte_ifwatchdog(&sc->vte_if); 1201 callout_schedule(&sc->vte_tick_ch, hz); 1202 splx(s); 1203 } 1204 1205 static void 1206 vte_reset(struct vte_softc *sc) 1207 { 1208 uint16_t mcr, mdcsc; 1209 int i; 1210 1211 mdcsc = CSR_READ_2(sc, VTE_MDCSC); 1212 mcr = CSR_READ_2(sc, VTE_MCR1); 1213 CSR_WRITE_2(sc, VTE_MCR1, mcr | MCR1_MAC_RESET); 1214 for (i = VTE_RESET_TIMEOUT; i > 0; i--) { 1215 DELAY(10); 1216 if ((CSR_READ_2(sc, VTE_MCR1) & MCR1_MAC_RESET) == 0) 1217 break; 1218 } 1219 if (i == 0) 1220 aprint_error_dev(sc->vte_dev, "reset timeout(0x%04x)!\n", mcr); 1221 /* 1222 * Follow the guide of vendor recommended way to reset MAC. 1223 * Vendor confirms relying on MCR1_MAC_RESET of VTE_MCR1 is 1224 * not reliable so manually reset internal state machine. 1225 */ 1226 CSR_WRITE_2(sc, VTE_MACSM, 0x0002); 1227 CSR_WRITE_2(sc, VTE_MACSM, 0); 1228 DELAY(5000); 1229 1230 /* 1231 * On some SoCs (like Vortex86DX3) MDC speed control register value 1232 * needs to be restored to original value instead of default one, 1233 * otherwise some PHY registers may fail to be read. 1234 */ 1235 if (mdcsc != MDCSC_DEFAULT) 1236 CSR_WRITE_2(sc, VTE_MDCSC, mdcsc); 1237 } 1238 1239 1240 static int 1241 vte_init(struct ifnet *ifp) 1242 { 1243 struct vte_softc *sc = ifp->if_softc; 1244 bus_addr_t paddr; 1245 uint8_t eaddr[ETHER_ADDR_LEN]; 1246 int s, error; 1247 1248 s = splnet(); 1249 /* 1250 * Cancel any pending I/O. 1251 */ 1252 vte_stop(ifp, 1); 1253 /* 1254 * Reset the chip to a known state. 1255 */ 1256 vte_reset(sc); 1257 1258 if ((sc->vte_if.if_flags & IFF_UP) == 0) { 1259 splx(s); 1260 return 0; 1261 } 1262 1263 /* Initialize RX descriptors. */ 1264 if (vte_init_rx_ring(sc) != 0) { 1265 aprint_error_dev(sc->vte_dev, "no memory for RX buffers.\n"); 1266 vte_stop(ifp, 1); 1267 splx(s); 1268 return ENOMEM; 1269 } 1270 if (vte_init_tx_ring(sc) != 0) { 1271 aprint_error_dev(sc->vte_dev, "no memory for TX buffers.\n"); 1272 vte_stop(ifp, 1); 1273 splx(s); 1274 return ENOMEM; 1275 } 1276 1277 /* 1278 * Reprogram the station address. Controller supports up 1279 * to 4 different station addresses so driver programs the 1280 * first station address as its own ethernet address and 1281 * configure the remaining three addresses as perfect 1282 * multicast addresses. 1283 */ 1284 memcpy(eaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN); 1285 CSR_WRITE_2(sc, VTE_MID0L, eaddr[1] << 8 | eaddr[0]); 1286 CSR_WRITE_2(sc, VTE_MID0M, eaddr[3] << 8 | eaddr[2]); 1287 CSR_WRITE_2(sc, VTE_MID0H, eaddr[5] << 8 | eaddr[4]); 1288 1289 /* Set TX descriptor base addresses. */ 1290 paddr = sc->vte_cdata.vte_tx_ring_map->dm_segs[0].ds_addr; 1291 DPRINTF(("tx paddr 0x%x\n", (u_int)paddr)); 1292 CSR_WRITE_2(sc, VTE_MTDSA1, paddr >> 16); 1293 CSR_WRITE_2(sc, VTE_MTDSA0, paddr & 0xFFFF); 1294 1295 /* Set RX descriptor base addresses. */ 1296 paddr = sc->vte_cdata.vte_rx_ring_map->dm_segs[0].ds_addr; 1297 DPRINTF(("rx paddr 0x%x\n", (u_int)paddr)); 1298 CSR_WRITE_2(sc, VTE_MRDSA1, paddr >> 16); 1299 CSR_WRITE_2(sc, VTE_MRDSA0, paddr & 0xFFFF); 1300 /* 1301 * Initialize RX descriptor residue counter and set RX 1302 * pause threshold to 20% of available RX descriptors. 1303 * See comments on vte_rxeof() for details on flow control 1304 * issues. 1305 */ 1306 CSR_WRITE_2(sc, VTE_MRDCR, (VTE_RX_RING_CNT & VTE_MRDCR_RESIDUE_MASK) | 1307 (((VTE_RX_RING_CNT * 2) / 10) << VTE_MRDCR_RX_PAUSE_THRESH_SHIFT)); 1308 1309 /* 1310 * Always use maximum frame size that controller can 1311 * support. Otherwise received frames that has longer 1312 * frame length than vte(4) MTU would be silently dropped 1313 * in controller. This would break path-MTU discovery as 1314 * sender wouldn't get any responses from receiver. The 1315 * RX buffer size should be multiple of 4. 1316 * Note, jumbo frames are silently ignored by controller 1317 * and even MAC counters do not detect them. 1318 */ 1319 CSR_WRITE_2(sc, VTE_MRBSR, VTE_RX_BUF_SIZE_MAX); 1320 1321 /* Configure FIFO. */ 1322 CSR_WRITE_2(sc, VTE_MBCR, MBCR_FIFO_XFER_LENGTH_16 | 1323 MBCR_TX_FIFO_THRESH_64 | MBCR_RX_FIFO_THRESH_16 | 1324 MBCR_SDRAM_BUS_REQ_TIMER_DEFAULT); 1325 1326 /* 1327 * Configure TX/RX MACs. Actual resolved duplex and flow 1328 * control configuration is done after detecting a valid 1329 * link. Note, we don't generate early interrupt here 1330 * as well since FreeBSD does not have interrupt latency 1331 * problems like Windows. 1332 */ 1333 CSR_WRITE_2(sc, VTE_MCR0, MCR0_ACCPT_LONG_PKT); 1334 /* 1335 * We manually keep track of PHY status changes to 1336 * configure resolved duplex and flow control since only 1337 * duplex configuration can be automatically reflected to 1338 * MCR0. 1339 */ 1340 CSR_WRITE_2(sc, VTE_MCR1, MCR1_PKT_LENGTH_1537 | 1341 MCR1_EXCESS_COL_RETRY_16); 1342 1343 /* Initialize RX filter. */ 1344 vte_rxfilter(sc); 1345 1346 /* Disable TX/RX interrupt moderation control. */ 1347 CSR_WRITE_2(sc, VTE_MRICR, 0); 1348 CSR_WRITE_2(sc, VTE_MTICR, 0); 1349 1350 /* Enable MAC event counter interrupts. */ 1351 CSR_WRITE_2(sc, VTE_MECIER, VTE_MECIER_INTRS); 1352 /* Clear MAC statistics. */ 1353 vte_stats_clear(sc); 1354 1355 /* Acknowledge all pending interrupts and clear it. */ 1356 CSR_WRITE_2(sc, VTE_MIER, VTE_INTRS); 1357 CSR_WRITE_2(sc, VTE_MISR, 0); 1358 DPRINTF(("before ipend 0x%x 0x%x\n", CSR_READ_2(sc, VTE_MIER), 1359 CSR_READ_2(sc, VTE_MISR))); 1360 1361 sc->vte_flags &= ~VTE_FLAG_LINK; 1362 ifp->if_flags |= IFF_RUNNING; 1363 1364 /* calling mii_mediachg will call back vte_start_mac() */ 1365 if ((error = mii_mediachg(&sc->vte_mii)) == ENXIO) 1366 error = 0; 1367 else if (error != 0) { 1368 aprint_error_dev(sc->vte_dev, "could not set media\n"); 1369 splx(s); 1370 return error; 1371 } 1372 1373 callout_schedule(&sc->vte_tick_ch, hz); 1374 1375 DPRINTF(("ipend 0x%x 0x%x\n", CSR_READ_2(sc, VTE_MIER), 1376 CSR_READ_2(sc, VTE_MISR))); 1377 splx(s); 1378 return 0; 1379 } 1380 1381 static void 1382 vte_stop(struct ifnet *ifp, int disable) 1383 { 1384 struct vte_softc *sc = ifp->if_softc; 1385 struct vte_txdesc *txd; 1386 struct vte_rxdesc *rxd; 1387 int i; 1388 1389 DPRINTF(("vte_stop if_flags 0x%x\n", ifp->if_flags)); 1390 if ((ifp->if_flags & IFF_RUNNING) == 0) 1391 return; 1392 /* 1393 * Mark the interface down and cancel the watchdog timer. 1394 */ 1395 ifp->if_flags &= ~IFF_RUNNING; 1396 sc->vte_flags &= ~VTE_FLAG_LINK; 1397 callout_stop(&sc->vte_tick_ch); 1398 sc->vte_watchdog_timer = 0; 1399 vte_stats_update(sc); 1400 /* Disable interrupts. */ 1401 CSR_WRITE_2(sc, VTE_MIER, 0); 1402 CSR_WRITE_2(sc, VTE_MECIER, 0); 1403 /* Stop RX/TX MACs. */ 1404 vte_stop_mac(sc); 1405 /* Clear interrupts. */ 1406 CSR_READ_2(sc, VTE_MISR); 1407 /* 1408 * Free TX/RX mbufs still in the queues. 1409 */ 1410 for (i = 0; i < VTE_RX_RING_CNT; i++) { 1411 rxd = &sc->vte_cdata.vte_rxdesc[i]; 1412 if (rxd->rx_m != NULL) { 1413 bus_dmamap_sync(sc->vte_dmatag, 1414 rxd->rx_dmamap, 0, rxd->rx_dmamap->dm_mapsize, 1415 BUS_DMASYNC_POSTREAD); 1416 bus_dmamap_unload(sc->vte_dmatag, 1417 rxd->rx_dmamap); 1418 m_freem(rxd->rx_m); 1419 rxd->rx_m = NULL; 1420 } 1421 } 1422 for (i = 0; i < VTE_TX_RING_CNT; i++) { 1423 txd = &sc->vte_cdata.vte_txdesc[i]; 1424 if (txd->tx_m != NULL) { 1425 bus_dmamap_sync(sc->vte_dmatag, 1426 txd->tx_dmamap, 0, txd->tx_dmamap->dm_mapsize, 1427 BUS_DMASYNC_POSTWRITE); 1428 bus_dmamap_unload(sc->vte_dmatag, 1429 txd->tx_dmamap); 1430 if ((txd->tx_flags & VTE_TXMBUF) == 0) 1431 m_freem(txd->tx_m); 1432 txd->tx_m = NULL; 1433 txd->tx_flags &= ~VTE_TXMBUF; 1434 } 1435 } 1436 /* Free TX mbuf pools used for deep copy. */ 1437 for (i = 0; i < VTE_TX_RING_CNT; i++) { 1438 m_freem(sc->vte_cdata.vte_txmbufs[i]); 1439 sc->vte_cdata.vte_txmbufs[i] = NULL; 1440 } 1441 } 1442 1443 static void 1444 vte_start_mac(struct vte_softc *sc) 1445 { 1446 struct ifnet *ifp = &sc->vte_if; 1447 uint16_t mcr; 1448 int i; 1449 1450 /* Enable RX/TX MACs. */ 1451 mcr = CSR_READ_2(sc, VTE_MCR0); 1452 if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) != 1453 (MCR0_RX_ENB | MCR0_TX_ENB) && 1454 (ifp->if_flags & IFF_RUNNING) != 0) { 1455 mcr |= MCR0_RX_ENB | MCR0_TX_ENB; 1456 CSR_WRITE_2(sc, VTE_MCR0, mcr); 1457 for (i = VTE_TIMEOUT; i > 0; i--) { 1458 mcr = CSR_READ_2(sc, VTE_MCR0); 1459 if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) == 1460 (MCR0_RX_ENB | MCR0_TX_ENB)) 1461 break; 1462 DELAY(10); 1463 } 1464 if (i == 0) 1465 aprint_error_dev(sc->vte_dev, 1466 "could not enable RX/TX MAC(0x%04x)!\n", mcr); 1467 } 1468 vte_rxfilter(sc); 1469 } 1470 1471 static void 1472 vte_stop_mac(struct vte_softc *sc) 1473 { 1474 uint16_t mcr; 1475 int i; 1476 1477 /* Disable RX/TX MACs. */ 1478 mcr = CSR_READ_2(sc, VTE_MCR0); 1479 if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) != 0) { 1480 mcr &= ~(MCR0_RX_ENB | MCR0_TX_ENB); 1481 CSR_WRITE_2(sc, VTE_MCR0, mcr); 1482 for (i = VTE_TIMEOUT; i > 0; i--) { 1483 mcr = CSR_READ_2(sc, VTE_MCR0); 1484 if ((mcr & (MCR0_RX_ENB | MCR0_TX_ENB)) == 0) 1485 break; 1486 DELAY(10); 1487 } 1488 if (i == 0) 1489 aprint_error_dev(sc->vte_dev, 1490 "could not disable RX/TX MAC(0x%04x)!\n", mcr); 1491 } 1492 } 1493 1494 static int 1495 vte_init_tx_ring(struct vte_softc *sc) 1496 { 1497 struct vte_tx_desc *desc; 1498 struct vte_txdesc *txd; 1499 bus_addr_t addr; 1500 int i; 1501 1502 sc->vte_cdata.vte_tx_prod = 0; 1503 sc->vte_cdata.vte_tx_cons = 0; 1504 sc->vte_cdata.vte_tx_cnt = 0; 1505 1506 /* Pre-allocate TX mbufs for deep copy. */ 1507 for (i = 0; i < VTE_TX_RING_CNT; i++) { 1508 sc->vte_cdata.vte_txmbufs[i] = m_getcl(M_DONTWAIT, 1509 MT_DATA, M_PKTHDR); 1510 if (sc->vte_cdata.vte_txmbufs[i] == NULL) 1511 return (ENOBUFS); 1512 sc->vte_cdata.vte_txmbufs[i]->m_pkthdr.len = MCLBYTES; 1513 sc->vte_cdata.vte_txmbufs[i]->m_len = MCLBYTES; 1514 } 1515 desc = sc->vte_cdata.vte_tx_ring; 1516 bzero(desc, VTE_TX_RING_SZ); 1517 for (i = 0; i < VTE_TX_RING_CNT; i++) { 1518 txd = &sc->vte_cdata.vte_txdesc[i]; 1519 txd->tx_m = NULL; 1520 if (i != VTE_TX_RING_CNT - 1) 1521 addr = sc->vte_cdata.vte_tx_ring_map->dm_segs[0].ds_addr + 1522 sizeof(struct vte_tx_desc) * (i + 1); 1523 else 1524 addr = sc->vte_cdata.vte_tx_ring_map->dm_segs[0].ds_addr + 1525 sizeof(struct vte_tx_desc) * 0; 1526 desc = &sc->vte_cdata.vte_tx_ring[i]; 1527 desc->dtnp = htole32(addr); 1528 DPRINTF(("tx ring desc %d addr 0x%x\n", i, (u_int)addr)); 1529 txd->tx_desc = desc; 1530 } 1531 1532 bus_dmamap_sync(sc->vte_dmatag, 1533 sc->vte_cdata.vte_tx_ring_map, 0, 1534 sc->vte_cdata.vte_tx_ring_map->dm_mapsize, 1535 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1536 return (0); 1537 } 1538 1539 static int 1540 vte_init_rx_ring(struct vte_softc *sc) 1541 { 1542 struct vte_rx_desc *desc; 1543 struct vte_rxdesc *rxd; 1544 bus_addr_t addr; 1545 int i; 1546 1547 sc->vte_cdata.vte_rx_cons = 0; 1548 desc = sc->vte_cdata.vte_rx_ring; 1549 bzero(desc, VTE_RX_RING_SZ); 1550 for (i = 0; i < VTE_RX_RING_CNT; i++) { 1551 rxd = &sc->vte_cdata.vte_rxdesc[i]; 1552 rxd->rx_m = NULL; 1553 if (i != VTE_RX_RING_CNT - 1) 1554 addr = sc->vte_cdata.vte_rx_ring_map->dm_segs[0].ds_addr 1555 + sizeof(struct vte_rx_desc) * (i + 1); 1556 else 1557 addr = sc->vte_cdata.vte_rx_ring_map->dm_segs[0].ds_addr 1558 + sizeof(struct vte_rx_desc) * 0; 1559 desc = &sc->vte_cdata.vte_rx_ring[i]; 1560 desc->drnp = htole32(addr); 1561 DPRINTF(("rx ring desc %d addr 0x%x\n", i, (u_int)addr)); 1562 rxd->rx_desc = desc; 1563 if (vte_newbuf(sc, rxd) != 0) 1564 return (ENOBUFS); 1565 } 1566 1567 bus_dmamap_sync(sc->vte_dmatag, 1568 sc->vte_cdata.vte_rx_ring_map, 0, 1569 sc->vte_cdata.vte_rx_ring_map->dm_mapsize, 1570 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1571 1572 return (0); 1573 } 1574 1575 static void 1576 vte_rxfilter(struct vte_softc *sc) 1577 { 1578 struct ethercom *ec = &sc->vte_ec; 1579 struct ether_multistep step; 1580 struct ether_multi *enm; 1581 struct ifnet *ifp; 1582 uint8_t *eaddr; 1583 uint32_t crc; 1584 uint16_t rxfilt_perf[VTE_RXFILT_PERFECT_CNT][3]; 1585 uint16_t mchash[4], mcr; 1586 int i, nperf; 1587 1588 ifp = &sc->vte_if; 1589 1590 DPRINTF(("vte_rxfilter\n")); 1591 memset(mchash, 0, sizeof(mchash)); 1592 for (i = 0; i < VTE_RXFILT_PERFECT_CNT; i++) { 1593 rxfilt_perf[i][0] = 0xFFFF; 1594 rxfilt_perf[i][1] = 0xFFFF; 1595 rxfilt_perf[i][2] = 0xFFFF; 1596 } 1597 1598 mcr = CSR_READ_2(sc, VTE_MCR0); 1599 DPRINTF(("vte_rxfilter mcr 0x%x\n", mcr)); 1600 mcr &= ~(MCR0_PROMISC | MCR0_BROADCAST_DIS | MCR0_MULTICAST); 1601 if ((ifp->if_flags & IFF_BROADCAST) == 0) 1602 mcr |= MCR0_BROADCAST_DIS; 1603 if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) { 1604 if ((ifp->if_flags & IFF_PROMISC) != 0) 1605 mcr |= MCR0_PROMISC; 1606 if ((ifp->if_flags & IFF_ALLMULTI) != 0) 1607 mcr |= MCR0_MULTICAST; 1608 mchash[0] = 0xFFFF; 1609 mchash[1] = 0xFFFF; 1610 mchash[2] = 0xFFFF; 1611 mchash[3] = 0xFFFF; 1612 goto chipit; 1613 } 1614 1615 ETHER_LOCK(ec); 1616 ETHER_FIRST_MULTI(step, ec, enm); 1617 nperf = 0; 1618 while (enm != NULL) { 1619 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN) 1620 != 0) { 1621 sc->vte_if.if_flags |= IFF_ALLMULTI; 1622 mcr |= MCR0_MULTICAST; 1623 mchash[0] = 0xFFFF; 1624 mchash[1] = 0xFFFF; 1625 mchash[2] = 0xFFFF; 1626 mchash[3] = 0xFFFF; 1627 ETHER_UNLOCK(ec); 1628 goto chipit; 1629 } 1630 /* 1631 * Program the first 3 multicast groups into 1632 * the perfect filter. For all others, use the 1633 * hash table. 1634 */ 1635 if (nperf < VTE_RXFILT_PERFECT_CNT) { 1636 eaddr = enm->enm_addrlo; 1637 rxfilt_perf[nperf][0] = eaddr[1] << 8 | eaddr[0]; 1638 rxfilt_perf[nperf][1] = eaddr[3] << 8 | eaddr[2]; 1639 rxfilt_perf[nperf][2] = eaddr[5] << 8 | eaddr[4]; 1640 nperf++; 1641 } else { 1642 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN); 1643 mchash[crc >> 30] |= 1 << ((crc >> 26) & 0x0F); 1644 } 1645 ETHER_NEXT_MULTI(step, enm); 1646 } 1647 ETHER_UNLOCK(ec); 1648 if (mchash[0] != 0 || mchash[1] != 0 || mchash[2] != 0 || 1649 mchash[3] != 0) 1650 mcr |= MCR0_MULTICAST; 1651 1652 chipit: 1653 /* Program multicast hash table. */ 1654 DPRINTF(("chipit write multicast\n")); 1655 CSR_WRITE_2(sc, VTE_MAR0, mchash[0]); 1656 CSR_WRITE_2(sc, VTE_MAR1, mchash[1]); 1657 CSR_WRITE_2(sc, VTE_MAR2, mchash[2]); 1658 CSR_WRITE_2(sc, VTE_MAR3, mchash[3]); 1659 /* Program perfect filter table. */ 1660 DPRINTF(("chipit write perfect filter\n")); 1661 for (i = 0; i < VTE_RXFILT_PERFECT_CNT; i++) { 1662 CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 0, 1663 rxfilt_perf[i][0]); 1664 CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 2, 1665 rxfilt_perf[i][1]); 1666 CSR_WRITE_2(sc, VTE_RXFILTER_PEEFECT_BASE + 8 * i + 4, 1667 rxfilt_perf[i][2]); 1668 } 1669 DPRINTF(("chipit mcr0 0x%x\n", mcr)); 1670 CSR_WRITE_2(sc, VTE_MCR0, mcr); 1671 DPRINTF(("chipit read mcro\n")); 1672 CSR_READ_2(sc, VTE_MCR0); 1673 DPRINTF(("chipit done\n")); 1674 } 1675 1676 /* 1677 * Set up sysctl(3) MIB, hw.vte.* - Individual controllers will be 1678 * set up in vte_pci_attach() 1679 */ 1680 SYSCTL_SETUP(sysctl_vte, "sysctl vte subtree setup") 1681 { 1682 int rc; 1683 const struct sysctlnode *node; 1684 1685 if ((rc = sysctl_createv(clog, 0, NULL, &node, 1686 0, CTLTYPE_NODE, "vte", 1687 SYSCTL_DESCR("vte interface controls"), 1688 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) { 1689 goto err; 1690 } 1691 1692 vte_root_num = node->sysctl_num; 1693 return; 1694 1695 err: 1696 aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc); 1697 } 1698 1699 static int 1700 vte_sysctl_intrxct(SYSCTLFN_ARGS) 1701 { 1702 int error, t; 1703 struct sysctlnode node; 1704 struct vte_softc *sc; 1705 1706 node = *rnode; 1707 sc = node.sysctl_data; 1708 t = sc->vte_int_rx_mod; 1709 node.sysctl_data = &t; 1710 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 1711 if (error || newp == NULL) 1712 return error; 1713 if (t < VTE_IM_BUNDLE_MIN || t > VTE_IM_BUNDLE_MAX) 1714 return EINVAL; 1715 1716 sc->vte_int_rx_mod = t; 1717 vte_miibus_statchg(&sc->vte_if); 1718 return 0; 1719 } 1720 1721 static int 1722 vte_sysctl_inttxct(SYSCTLFN_ARGS) 1723 { 1724 int error, t; 1725 struct sysctlnode node; 1726 struct vte_softc *sc; 1727 1728 node = *rnode; 1729 sc = node.sysctl_data; 1730 t = sc->vte_int_tx_mod; 1731 node.sysctl_data = &t; 1732 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 1733 if (error || newp == NULL) 1734 return error; 1735 1736 if (t < VTE_IM_BUNDLE_MIN || t > VTE_IM_BUNDLE_MAX) 1737 return EINVAL; 1738 sc->vte_int_tx_mod = t; 1739 vte_miibus_statchg(&sc->vte_if); 1740 return 0; 1741 } 1742