xref: /netbsd-src/sys/dev/pci/if_nfe.c (revision 481d3881954fd794ca5f2d880b68c53a5db8620e)
1 /*	$NetBSD: if_nfe.c,v 1.81 2024/07/05 04:31:51 rin Exp $	*/
2 /*	$OpenBSD: if_nfe.c,v 1.77 2008/02/05 16:52:50 brad Exp $	*/
3 
4 /*-
5  * Copyright (c) 2006, 2007 Damien Bergamini <damien.bergamini@free.fr>
6  * Copyright (c) 2005, 2006 Jonathan Gray <jsg@openbsd.org>
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 /* Driver for NVIDIA nForce MCP Fast Ethernet and Gigabit Ethernet */
22 
23 #include <sys/cdefs.h>
24 __KERNEL_RCSID(0, "$NetBSD: if_nfe.c,v 1.81 2024/07/05 04:31:51 rin Exp $");
25 
26 #include "opt_inet.h"
27 #include "vlan.h"
28 
29 #include <sys/param.h>
30 #include <sys/endian.h>
31 #include <sys/systm.h>
32 #include <sys/types.h>
33 #include <sys/sockio.h>
34 #include <sys/mbuf.h>
35 #include <sys/mutex.h>
36 #include <sys/queue.h>
37 #include <sys/kernel.h>
38 #include <sys/device.h>
39 #include <sys/callout.h>
40 #include <sys/socket.h>
41 
42 #include <sys/bus.h>
43 
44 #include <net/if.h>
45 #include <net/if_dl.h>
46 #include <net/if_media.h>
47 #include <net/if_ether.h>
48 #include <net/if_arp.h>
49 
50 #ifdef INET
51 #include <netinet/in.h>
52 #include <netinet/in_systm.h>
53 #include <netinet/in_var.h>
54 #include <netinet/ip.h>
55 #include <netinet/if_inarp.h>
56 #endif
57 
58 #if NVLAN > 0
59 #include <net/if_types.h>
60 #endif
61 
62 #include <net/bpf.h>
63 
64 #include <dev/mii/mii.h>
65 #include <dev/mii/miivar.h>
66 
67 #include <dev/pci/pcireg.h>
68 #include <dev/pci/pcivar.h>
69 #include <dev/pci/pcidevs.h>
70 
71 #include <dev/pci/if_nfereg.h>
72 #include <dev/pci/if_nfevar.h>
73 
74 static int nfe_ifflags_cb(struct ethercom *);
75 
76 int	nfe_match(device_t, cfdata_t, void *);
77 void	nfe_attach(device_t, device_t, void *);
78 int	nfe_detach(device_t, int);
79 void	nfe_power(int, void *);
80 void	nfe_miibus_statchg(struct ifnet *);
81 int	nfe_miibus_readreg(device_t, int, int, uint16_t *);
82 int	nfe_miibus_writereg(device_t, int, int, uint16_t);
83 int	nfe_intr(void *);
84 int	nfe_ioctl(struct ifnet *, u_long, void *);
85 void	nfe_txdesc32_sync(struct nfe_softc *, struct nfe_desc32 *, int);
86 void	nfe_txdesc64_sync(struct nfe_softc *, struct nfe_desc64 *, int);
87 void	nfe_txdesc32_rsync(struct nfe_softc *, int, int, int);
88 void	nfe_txdesc64_rsync(struct nfe_softc *, int, int, int);
89 void	nfe_rxdesc32_sync(struct nfe_softc *, struct nfe_desc32 *, int);
90 void	nfe_rxdesc64_sync(struct nfe_softc *, struct nfe_desc64 *, int);
91 void	nfe_rxeof(struct nfe_softc *);
92 void	nfe_txeof(struct nfe_softc *);
93 int	nfe_encap(struct nfe_softc *, struct mbuf *);
94 void	nfe_start(struct ifnet *);
95 void	nfe_watchdog(struct ifnet *);
96 int	nfe_init(struct ifnet *);
97 void	nfe_stop(struct ifnet *, int);
98 struct	nfe_jbuf *nfe_jalloc(struct nfe_softc *, int);
99 void	nfe_jfree(struct mbuf *, void *, size_t, void *);
100 int	nfe_jpool_alloc(struct nfe_softc *);
101 void	nfe_jpool_free(struct nfe_softc *);
102 int	nfe_alloc_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
103 void	nfe_reset_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
104 void	nfe_free_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
105 int	nfe_alloc_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
106 void	nfe_reset_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
107 void	nfe_free_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
108 void	nfe_setmulti(struct nfe_softc *);
109 void	nfe_get_macaddr(struct nfe_softc *, uint8_t *);
110 void	nfe_set_macaddr(struct nfe_softc *, const uint8_t *);
111 void	nfe_tick(void *);
112 void	nfe_poweron(device_t);
113 bool	nfe_resume(device_t, const pmf_qual_t *);
114 
115 CFATTACH_DECL_NEW(nfe, sizeof(struct nfe_softc),
116     nfe_match, nfe_attach, nfe_detach, NULL);
117 
118 /* #define NFE_NO_JUMBO */
119 
120 #ifdef NFE_DEBUG
121 int nfedebug = 0;
122 #define DPRINTF(x)	do { if (nfedebug) printf x; } while (0)
123 #define DPRINTFN(n, x)	do { if (nfedebug >= (n)) printf x; } while (0)
124 #else
125 #define DPRINTF(x)
126 #define DPRINTFN(n, x)
127 #endif
128 
129 /* deal with naming differences */
130 
131 #define	PCI_PRODUCT_NVIDIA_NFORCE3_LAN2 \
132 	PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN1
133 #define	PCI_PRODUCT_NVIDIA_NFORCE3_LAN3 \
134 	PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN2
135 #define	PCI_PRODUCT_NVIDIA_NFORCE3_LAN5 \
136 	PCI_PRODUCT_NVIDIA_NFORCE3_250_LAN
137 
138 #define	PCI_PRODUCT_NVIDIA_CK804_LAN1 \
139 	PCI_PRODUCT_NVIDIA_NFORCE4_LAN1
140 #define	PCI_PRODUCT_NVIDIA_CK804_LAN2 \
141 	PCI_PRODUCT_NVIDIA_NFORCE4_LAN2
142 
143 #define	PCI_PRODUCT_NVIDIA_MCP51_LAN1 \
144 	PCI_PRODUCT_NVIDIA_NFORCE430_LAN1
145 #define	PCI_PRODUCT_NVIDIA_MCP51_LAN2 \
146 	PCI_PRODUCT_NVIDIA_NFORCE430_LAN2
147 
148 const struct nfe_product {
149 	pci_vendor_id_t		vendor;
150 	pci_product_id_t	product;
151 } nfe_devices[] = {
152 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE_LAN },
153 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_LAN },
154 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN1 },
155 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN2 },
156 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN3 },
157 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN4 },
158 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN5 },
159 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN1 },
160 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN2 },
161 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN1 },
162 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN2 },
163 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN1 },
164 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN2 },
165 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN1 },
166 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN2 },
167 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN1 },
168 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN2 },
169 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN3 },
170 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN4 },
171 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN1 },
172 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN2 },
173 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN3 },
174 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN4 },
175 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN1 },
176 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN2 },
177 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN3 },
178 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN4 },
179 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN1 },
180 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN2 },
181 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN3 },
182 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN4 },
183 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN1 },
184 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN2 },
185 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN3 },
186 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN4 },
187 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN1 },
188 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN2 },
189 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN3 },
190 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN4 }
191 };
192 
193 int
nfe_match(device_t dev,cfdata_t match,void * aux)194 nfe_match(device_t dev, cfdata_t match, void *aux)
195 {
196 	struct pci_attach_args *pa = aux;
197 	const struct nfe_product *np;
198 	int i;
199 
200 	for (i = 0; i < __arraycount(nfe_devices); i++) {
201 		np = &nfe_devices[i];
202 		if (PCI_VENDOR(pa->pa_id) == np->vendor &&
203 		    PCI_PRODUCT(pa->pa_id) == np->product)
204 			return 1;
205 	}
206 	return 0;
207 }
208 
209 void
nfe_attach(device_t parent,device_t self,void * aux)210 nfe_attach(device_t parent, device_t self, void *aux)
211 {
212 	struct nfe_softc *sc = device_private(self);
213 	struct pci_attach_args *pa = aux;
214 	pci_chipset_tag_t pc = pa->pa_pc;
215 	pci_intr_handle_t ih;
216 	const char *intrstr;
217 	struct ifnet *ifp;
218 	struct mii_data * const mii = &sc->sc_mii;
219 	pcireg_t memtype, csr;
220 	int mii_flags = 0;
221 	char intrbuf[PCI_INTRSTR_LEN];
222 
223 	sc->sc_dev = self;
224 	sc->sc_pc = pa->pa_pc;
225 	pci_aprint_devinfo(pa, NULL);
226 
227 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, NFE_PCI_BA);
228 	switch (memtype) {
229 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
230 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
231 		if (pci_mapreg_map(pa, NFE_PCI_BA, memtype, 0, &sc->sc_memt,
232 		    &sc->sc_memh, NULL, &sc->sc_mems) == 0)
233 			break;
234 		/* FALLTHROUGH */
235 	default:
236 		aprint_error_dev(self, "could not map mem space\n");
237 		return;
238 	}
239 
240 	if (pci_intr_map(pa, &ih) != 0) {
241 		aprint_error_dev(self, "could not map interrupt\n");
242 		goto fail;
243 	}
244 
245 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
246 	sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_NET, nfe_intr, sc,
247 	    device_xname(self));
248 	if (sc->sc_ih == NULL) {
249 		aprint_error_dev(self, "could not establish interrupt");
250 		if (intrstr != NULL)
251 			aprint_error(" at %s", intrstr);
252 		aprint_error("\n");
253 		goto fail;
254 	}
255 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
256 
257 	csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
258 	csr |= PCI_COMMAND_MASTER_ENABLE;
259 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, csr);
260 
261 	sc->sc_flags = 0;
262 
263 	switch (PCI_PRODUCT(pa->pa_id)) {
264 	case PCI_PRODUCT_NVIDIA_NFORCE3_LAN2:
265 	case PCI_PRODUCT_NVIDIA_NFORCE3_LAN3:
266 	case PCI_PRODUCT_NVIDIA_NFORCE3_LAN4:
267 	case PCI_PRODUCT_NVIDIA_NFORCE3_LAN5:
268 		sc->sc_flags |= NFE_JUMBO_SUP | NFE_HW_CSUM;
269 		break;
270 	case PCI_PRODUCT_NVIDIA_MCP51_LAN1:
271 	case PCI_PRODUCT_NVIDIA_MCP51_LAN2:
272 		sc->sc_flags |= NFE_40BIT_ADDR | NFE_PWR_MGMT;
273 		break;
274 	case PCI_PRODUCT_NVIDIA_MCP61_LAN1:
275 	case PCI_PRODUCT_NVIDIA_MCP61_LAN2:
276 	case PCI_PRODUCT_NVIDIA_MCP61_LAN3:
277 	case PCI_PRODUCT_NVIDIA_MCP61_LAN4:
278 	case PCI_PRODUCT_NVIDIA_MCP67_LAN1:
279 	case PCI_PRODUCT_NVIDIA_MCP67_LAN2:
280 	case PCI_PRODUCT_NVIDIA_MCP67_LAN3:
281 	case PCI_PRODUCT_NVIDIA_MCP67_LAN4:
282 	case PCI_PRODUCT_NVIDIA_MCP73_LAN1:
283 	case PCI_PRODUCT_NVIDIA_MCP73_LAN2:
284 	case PCI_PRODUCT_NVIDIA_MCP73_LAN3:
285 	case PCI_PRODUCT_NVIDIA_MCP73_LAN4:
286 		sc->sc_flags |= NFE_40BIT_ADDR | NFE_CORRECT_MACADDR |
287 		    NFE_PWR_MGMT;
288 		break;
289 	case PCI_PRODUCT_NVIDIA_MCP77_LAN1:
290 	case PCI_PRODUCT_NVIDIA_MCP77_LAN2:
291 	case PCI_PRODUCT_NVIDIA_MCP77_LAN3:
292 	case PCI_PRODUCT_NVIDIA_MCP77_LAN4:
293 		sc->sc_flags |= NFE_40BIT_ADDR | NFE_HW_CSUM |
294 		    NFE_CORRECT_MACADDR | NFE_PWR_MGMT;
295 		break;
296 	case PCI_PRODUCT_NVIDIA_MCP79_LAN1:
297 	case PCI_PRODUCT_NVIDIA_MCP79_LAN2:
298 	case PCI_PRODUCT_NVIDIA_MCP79_LAN3:
299 	case PCI_PRODUCT_NVIDIA_MCP79_LAN4:
300 		sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM |
301 		    NFE_CORRECT_MACADDR | NFE_PWR_MGMT;
302 		break;
303 	case PCI_PRODUCT_NVIDIA_CK804_LAN1:
304 	case PCI_PRODUCT_NVIDIA_CK804_LAN2:
305 	case PCI_PRODUCT_NVIDIA_MCP04_LAN1:
306 	case PCI_PRODUCT_NVIDIA_MCP04_LAN2:
307 		sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM;
308 		break;
309 	case PCI_PRODUCT_NVIDIA_MCP65_LAN1:
310 	case PCI_PRODUCT_NVIDIA_MCP65_LAN2:
311 	case PCI_PRODUCT_NVIDIA_MCP65_LAN3:
312 	case PCI_PRODUCT_NVIDIA_MCP65_LAN4:
313 		sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR |
314 		    NFE_CORRECT_MACADDR | NFE_PWR_MGMT;
315 		mii_flags = MIIF_DOPAUSE;
316 		break;
317 	case PCI_PRODUCT_NVIDIA_MCP55_LAN1:
318 	case PCI_PRODUCT_NVIDIA_MCP55_LAN2:
319 		sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM |
320 		    NFE_HW_VLAN | NFE_PWR_MGMT;
321 		break;
322 	}
323 
324 	if (pci_dma64_available(pa) && (sc->sc_flags & NFE_40BIT_ADDR) != 0) {
325 		if (bus_dmatag_subregion(pa->pa_dmat64,
326 					 0,
327 					 (bus_addr_t)__MASK(40),
328 					 &sc->sc_dmat,
329 					 BUS_DMA_WAITOK) != 0) {
330 			aprint_error_dev(self,
331 			    "unable to create 40-bit DMA tag\n");
332 			sc->sc_dmat = pa->pa_dmat64;
333 		} else
334 			sc->sc_dmat_needs_free = true;
335 	} else
336 		sc->sc_dmat = pa->pa_dmat;
337 
338 	nfe_poweron(self);
339 
340 #ifndef NFE_NO_JUMBO
341 	/* enable jumbo frames for adapters that support it */
342 	if (sc->sc_flags & NFE_JUMBO_SUP)
343 		sc->sc_flags |= NFE_USE_JUMBO;
344 #endif
345 
346 	/* Check for reversed ethernet address */
347 	if ((NFE_READ(sc, NFE_TX_UNK) & NFE_MAC_ADDR_INORDER) != 0)
348 		sc->sc_flags |= NFE_CORRECT_MACADDR;
349 
350 	nfe_get_macaddr(sc, sc->sc_enaddr);
351 	aprint_normal_dev(self, "Ethernet address %s\n",
352 	    ether_sprintf(sc->sc_enaddr));
353 
354 	/*
355 	 * Allocate Tx and Rx rings.
356 	 */
357 	if (nfe_alloc_tx_ring(sc, &sc->txq) != 0) {
358 		aprint_error_dev(self, "could not allocate Tx ring\n");
359 		goto fail;
360 	}
361 
362 	mutex_init(&sc->rxq.mtx, MUTEX_DEFAULT, IPL_NET);
363 
364 	if (nfe_alloc_rx_ring(sc, &sc->rxq) != 0) {
365 		aprint_error_dev(self, "could not allocate Rx ring\n");
366 		nfe_free_tx_ring(sc, &sc->txq);
367 		goto fail;
368 	}
369 
370 	ifp = &sc->sc_ethercom.ec_if;
371 	ifp->if_softc = sc;
372 	ifp->if_mtu = ETHERMTU;
373 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
374 	ifp->if_ioctl = nfe_ioctl;
375 	ifp->if_start = nfe_start;
376 	ifp->if_stop = nfe_stop;
377 	ifp->if_watchdog = nfe_watchdog;
378 	ifp->if_init = nfe_init;
379 	ifp->if_baudrate = IF_Gbps(1);
380 	IFQ_SET_MAXLEN(&ifp->if_snd, NFE_IFQ_MAXLEN);
381 	IFQ_SET_READY(&ifp->if_snd);
382 	strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
383 
384 	if (sc->sc_flags & NFE_USE_JUMBO)
385 		sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
386 
387 #if NVLAN > 0
388 	if (sc->sc_flags & NFE_HW_VLAN) {
389 		sc->sc_ethercom.ec_capabilities |=
390 			ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
391 		sc->sc_ethercom.ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
392 	}
393 #endif
394 	if (sc->sc_flags & NFE_HW_CSUM) {
395 		ifp->if_capabilities |=
396 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
397 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
398 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
399 	}
400 
401 	mii->mii_ifp = ifp;
402 	mii->mii_readreg = nfe_miibus_readreg;
403 	mii->mii_writereg = nfe_miibus_writereg;
404 	mii->mii_statchg = nfe_miibus_statchg;
405 
406 	sc->sc_ethercom.ec_mii = mii;
407 	ifmedia_init(&mii->mii_media, 0, ether_mediachange, ether_mediastatus);
408 
409 	mii_attach(self, mii, 0xffffffff, MII_PHY_ANY, 0, mii_flags);
410 
411 	if (LIST_FIRST(&mii->mii_phys) == NULL) {
412 		aprint_error_dev(self, "no PHY found!\n");
413 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL, 0, NULL);
414 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
415 	} else
416 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
417 
418 	if_attach(ifp);
419 	if_deferred_start_init(ifp, NULL);
420 	ether_ifattach(ifp, sc->sc_enaddr);
421 	ether_set_ifflags_cb(&sc->sc_ethercom, nfe_ifflags_cb);
422 
423 	callout_init(&sc->sc_tick_ch, 0);
424 	callout_setfunc(&sc->sc_tick_ch, nfe_tick, sc);
425 
426 	if (pmf_device_register(self, NULL, nfe_resume))
427 		pmf_class_network_register(self, ifp);
428 	else
429 		aprint_error_dev(self, "couldn't establish power handler\n");
430 
431 	return;
432 
433 fail:
434 	if (sc->sc_ih != NULL) {
435 		pci_intr_disestablish(pc, sc->sc_ih);
436 		sc->sc_ih = NULL;
437 	}
438 	if (sc->sc_mems != 0) {
439 		bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_mems);
440 		sc->sc_mems = 0;
441 	}
442 }
443 
444 int
nfe_detach(device_t self,int flags)445 nfe_detach(device_t self, int flags)
446 {
447 	struct nfe_softc *sc = device_private(self);
448 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
449 	int s;
450 
451 	s = splnet();
452 
453 	nfe_stop(ifp, 1);
454 
455 	pmf_device_deregister(self);
456 	callout_destroy(&sc->sc_tick_ch);
457 	ether_ifdetach(ifp);
458 	if_detach(ifp);
459 	mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
460 	ifmedia_fini(&sc->sc_mii.mii_media);
461 
462 	nfe_free_rx_ring(sc, &sc->rxq);
463 	mutex_destroy(&sc->rxq.mtx);
464 	nfe_free_tx_ring(sc, &sc->txq);
465 
466 	if (sc->sc_dmat_needs_free)
467 		bus_dmatag_destroy(sc->sc_dmat);
468 
469 	if (sc->sc_ih != NULL) {
470 		pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
471 		sc->sc_ih = NULL;
472 	}
473 
474 	if ((sc->sc_flags & NFE_CORRECT_MACADDR) != 0) {
475 		nfe_set_macaddr(sc, sc->sc_enaddr);
476 	} else {
477 		NFE_WRITE(sc, NFE_MACADDR_LO,
478 		    sc->sc_enaddr[0] <<  8 | sc->sc_enaddr[1]);
479 		NFE_WRITE(sc, NFE_MACADDR_HI,
480 		    sc->sc_enaddr[2] << 24 | sc->sc_enaddr[3] << 16 |
481 		    sc->sc_enaddr[4] <<  8 | sc->sc_enaddr[5]);
482 	}
483 
484 	if (sc->sc_mems != 0) {
485 		bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_mems);
486 		sc->sc_mems = 0;
487 	}
488 
489 	splx(s);
490 
491 	return 0;
492 }
493 
494 void
nfe_miibus_statchg(struct ifnet * ifp)495 nfe_miibus_statchg(struct ifnet *ifp)
496 {
497 	struct nfe_softc *sc = ifp->if_softc;
498 	struct mii_data *mii = &sc->sc_mii;
499 	uint32_t phy, seed, misc = NFE_MISC1_MAGIC, link = NFE_MEDIA_SET;
500 
501 	phy = NFE_READ(sc, NFE_PHY_IFACE);
502 	phy &= ~(NFE_PHY_HDX | NFE_PHY_100TX | NFE_PHY_1000T);
503 
504 	seed = NFE_READ(sc, NFE_RNDSEED);
505 	seed &= ~NFE_SEED_MASK;
506 
507 	if ((mii->mii_media_active & IFM_HDX) != 0) {
508 		phy  |= NFE_PHY_HDX;	/* half-duplex */
509 		misc |= NFE_MISC1_HDX;
510 	}
511 
512 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
513 	case IFM_1000_T:	/* full-duplex only */
514 		link |= NFE_MEDIA_1000T;
515 		seed |= NFE_SEED_1000T;
516 		phy  |= NFE_PHY_1000T;
517 		break;
518 	case IFM_100_TX:
519 		link |= NFE_MEDIA_100TX;
520 		seed |= NFE_SEED_100TX;
521 		phy  |= NFE_PHY_100TX;
522 		break;
523 	case IFM_10_T:
524 		link |= NFE_MEDIA_10T;
525 		seed |= NFE_SEED_10T;
526 		break;
527 	}
528 
529 	NFE_WRITE(sc, NFE_RNDSEED, seed);	/* XXX: gigabit NICs only? */
530 
531 	NFE_WRITE(sc, NFE_PHY_IFACE, phy);
532 	NFE_WRITE(sc, NFE_MISC1, misc);
533 	NFE_WRITE(sc, NFE_LINKSPEED, link);
534 }
535 
536 int
nfe_miibus_readreg(device_t dev,int phy,int reg,uint16_t * val)537 nfe_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
538 {
539 	struct nfe_softc *sc = device_private(dev);
540 	uint32_t data;
541 	int ntries;
542 
543 	NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
544 
545 	if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
546 		NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
547 		DELAY(100);
548 	}
549 
550 	NFE_WRITE(sc, NFE_PHY_CTL, (phy << NFE_PHYADD_SHIFT) | reg);
551 
552 	for (ntries = 0; ntries < 1000; ntries++) {
553 		DELAY(100);
554 		if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
555 			break;
556 	}
557 	if (ntries == 1000) {
558 		DPRINTFN(2, ("%s: timeout waiting for PHY read (%d, %d)\n",
559 		    device_xname(sc->sc_dev), phy, reg));
560 		return ETIMEDOUT;
561 	}
562 
563 	if (NFE_READ(sc, NFE_PHY_STATUS) & NFE_PHY_ERROR) {
564 		DPRINTFN(2, ("%s: could not read PHY (%d, %d)\n",
565 		    device_xname(sc->sc_dev), phy, reg));
566 		return -1;
567 	}
568 
569 	data = NFE_READ(sc, NFE_PHY_DATA);
570 	sc->mii_phyaddr = phy;
571 
572 	DPRINTFN(2, ("%s: mii read phy %d reg 0x%x data 0x%x\n",
573 	    device_xname(sc->sc_dev), phy, reg, data));
574 
575 	*val = data & 0x0000ffff;
576 	return 0;
577 }
578 
579 int
nfe_miibus_writereg(device_t dev,int phy,int reg,uint16_t val)580 nfe_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
581 {
582 	struct nfe_softc *sc = device_private(dev);
583 	uint32_t ctl;
584 	int ntries;
585 
586 	NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
587 
588 	if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
589 		NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
590 		DELAY(100);
591 	}
592 
593 	NFE_WRITE(sc, NFE_PHY_DATA, val);
594 	ctl = NFE_PHY_WRITE | (phy << NFE_PHYADD_SHIFT) | reg;
595 	NFE_WRITE(sc, NFE_PHY_CTL, ctl);
596 
597 	for (ntries = 0; ntries < 1000; ntries++) {
598 		DELAY(100);
599 		if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
600 			break;
601 	}
602 	if (ntries == 1000) {
603 #ifdef NFE_DEBUG
604 		if (nfedebug >= 2)
605 			printf("timeout waiting for PHY write (%d, %d)\n",
606 			    phy, reg);
607 #endif
608 		return ETIMEDOUT;
609 	}
610 	if (NFE_READ(sc, NFE_PHY_STATUS) & NFE_PHY_ERROR) {
611 		DPRINTFN(2, ("%s: could not write PHY (%d, %d)\n",
612 		    device_xname(sc->sc_dev), phy, reg));
613 		return -1;
614 	}
615 	return 0;
616 }
617 
618 int
nfe_intr(void * arg)619 nfe_intr(void *arg)
620 {
621 	struct nfe_softc *sc = arg;
622 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
623 	uint32_t r;
624 	int handled;
625 
626 	if ((ifp->if_flags & IFF_UP) == 0)
627 		return 0;
628 
629 	handled = 0;
630 
631 	for (;;) {
632 		r = NFE_READ(sc, NFE_IRQ_STATUS);
633 		if ((r & NFE_IRQ_WANTED) == 0)
634 			break;
635 
636 		NFE_WRITE(sc, NFE_IRQ_STATUS, r);
637 		handled = 1;
638 		DPRINTFN(5, ("nfe_intr: interrupt register %x\n", r));
639 
640 		if ((r & (NFE_IRQ_RXERR |NFE_IRQ_RX_NOBUF |NFE_IRQ_RX)) != 0) {
641 			/* check Rx ring */
642 			nfe_rxeof(sc);
643 		}
644 		if ((r & (NFE_IRQ_TXERR|NFE_IRQ_TXERR2|NFE_IRQ_TX_DONE)) != 0) {
645 			/* check Tx ring */
646 			nfe_txeof(sc);
647 		}
648 		if ((r & NFE_IRQ_LINK) != 0) {
649 			NFE_READ(sc, NFE_PHY_STATUS);
650 			NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
651 			DPRINTF(("%s: link state changed\n",
652 			    device_xname(sc->sc_dev)));
653 		}
654 	}
655 
656 	if (handled)
657 		if_schedule_deferred_start(ifp);
658 
659 	return handled;
660 }
661 
662 static int
nfe_ifflags_cb(struct ethercom * ec)663 nfe_ifflags_cb(struct ethercom *ec)
664 {
665 	struct ifnet *ifp = &ec->ec_if;
666 	struct nfe_softc *sc = ifp->if_softc;
667 	u_short change = ifp->if_flags ^ sc->sc_if_flags;
668 
669 	/*
670 	 * If only the PROMISC flag changes, then
671 	 * don't do a full re-init of the chip, just update
672 	 * the Rx filter.
673 	 */
674 	if ((change & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0)
675 		return ENETRESET;
676 	else if ((change & IFF_PROMISC) != 0)
677 		nfe_setmulti(sc);
678 
679 	return 0;
680 }
681 
682 int
nfe_ioctl(struct ifnet * ifp,u_long cmd,void * data)683 nfe_ioctl(struct ifnet *ifp, u_long cmd, void *data)
684 {
685 	struct nfe_softc *sc = ifp->if_softc;
686 	struct ifaddr *ifa = (struct ifaddr *)data;
687 	int s, error = 0;
688 
689 	s = splnet();
690 
691 	switch (cmd) {
692 	case SIOCINITIFADDR:
693 		ifp->if_flags |= IFF_UP;
694 		nfe_init(ifp);
695 		switch (ifa->ifa_addr->sa_family) {
696 #ifdef INET
697 		case AF_INET:
698 			arp_ifinit(ifp, ifa);
699 			break;
700 #endif
701 		default:
702 			break;
703 		}
704 		break;
705 	default:
706 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
707 			break;
708 
709 		error = 0;
710 
711 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
712 			;
713 		else if (ifp->if_flags & IFF_RUNNING)
714 			nfe_setmulti(sc);
715 		break;
716 	}
717 	sc->sc_if_flags = ifp->if_flags;
718 
719 	splx(s);
720 
721 	return error;
722 }
723 
724 void
nfe_txdesc32_sync(struct nfe_softc * sc,struct nfe_desc32 * desc32,int ops)725 nfe_txdesc32_sync(struct nfe_softc *sc, struct nfe_desc32 *desc32, int ops)
726 {
727 	bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
728 	    (char *)desc32 - (char *)sc->txq.desc32,
729 	    sizeof (struct nfe_desc32), ops);
730 }
731 
732 void
nfe_txdesc64_sync(struct nfe_softc * sc,struct nfe_desc64 * desc64,int ops)733 nfe_txdesc64_sync(struct nfe_softc *sc, struct nfe_desc64 *desc64, int ops)
734 {
735 	bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
736 	    (char *)desc64 - (char *)sc->txq.desc64,
737 	    sizeof (struct nfe_desc64), ops);
738 }
739 
740 void
nfe_txdesc32_rsync(struct nfe_softc * sc,int start,int end,int ops)741 nfe_txdesc32_rsync(struct nfe_softc *sc, int start, int end, int ops)
742 {
743 	if (end > start) {
744 		bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
745 		    (char *)&sc->txq.desc32[start] - (char *)sc->txq.desc32,
746 		    (char *)&sc->txq.desc32[end] -
747 		    (char *)&sc->txq.desc32[start], ops);
748 		return;
749 	}
750 	/* sync from 'start' to end of ring */
751 	bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
752 	    (char *)&sc->txq.desc32[start] - (char *)sc->txq.desc32,
753 	    (char *)&sc->txq.desc32[NFE_TX_RING_COUNT] -
754 	    (char *)&sc->txq.desc32[start], ops);
755 
756 	/* sync from start of ring to 'end' */
757 	bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 0,
758 	    (char *)&sc->txq.desc32[end] - (char *)sc->txq.desc32, ops);
759 }
760 
761 void
nfe_txdesc64_rsync(struct nfe_softc * sc,int start,int end,int ops)762 nfe_txdesc64_rsync(struct nfe_softc *sc, int start, int end, int ops)
763 {
764 	if (end > start) {
765 		bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
766 		    (char *)&sc->txq.desc64[start] - (char *)sc->txq.desc64,
767 		    (char *)&sc->txq.desc64[end] -
768 		    (char *)&sc->txq.desc64[start], ops);
769 		return;
770 	}
771 	/* sync from 'start' to end of ring */
772 	bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
773 	    (char *)&sc->txq.desc64[start] - (char *)sc->txq.desc64,
774 	    (char *)&sc->txq.desc64[NFE_TX_RING_COUNT] -
775 	    (char *)&sc->txq.desc64[start], ops);
776 
777 	/* sync from start of ring to 'end' */
778 	bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 0,
779 	    (char *)&sc->txq.desc64[end] - (char *)sc->txq.desc64, ops);
780 }
781 
782 void
nfe_rxdesc32_sync(struct nfe_softc * sc,struct nfe_desc32 * desc32,int ops)783 nfe_rxdesc32_sync(struct nfe_softc *sc, struct nfe_desc32 *desc32, int ops)
784 {
785 	bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
786 	    (char *)desc32 - (char *)sc->rxq.desc32,
787 	    sizeof (struct nfe_desc32), ops);
788 }
789 
790 void
nfe_rxdesc64_sync(struct nfe_softc * sc,struct nfe_desc64 * desc64,int ops)791 nfe_rxdesc64_sync(struct nfe_softc *sc, struct nfe_desc64 *desc64, int ops)
792 {
793 	bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
794 	    (char *)desc64 - (char *)sc->rxq.desc64,
795 	    sizeof (struct nfe_desc64), ops);
796 }
797 
798 void
nfe_rxeof(struct nfe_softc * sc)799 nfe_rxeof(struct nfe_softc *sc)
800 {
801 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
802 	struct nfe_desc32 *desc32;
803 	struct nfe_desc64 *desc64;
804 	struct nfe_rx_data *data;
805 	struct nfe_jbuf *jbuf;
806 	struct mbuf *m, *mnew;
807 	bus_addr_t physaddr;
808 	uint16_t flags;
809 	int error, len, i;
810 
811 	desc32 = NULL;
812 	desc64 = NULL;
813 	for (i = sc->rxq.cur;; i = NFE_RX_NEXTDESC(i)) {
814 		data = &sc->rxq.data[i];
815 
816 		if (sc->sc_flags & NFE_40BIT_ADDR) {
817 			desc64 = &sc->rxq.desc64[i];
818 			nfe_rxdesc64_sync(sc, desc64,
819 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
820 
821 			flags = le16toh(desc64->flags);
822 			len = le16toh(desc64->length) & 0x3fff;
823 		} else {
824 			desc32 = &sc->rxq.desc32[i];
825 			nfe_rxdesc32_sync(sc, desc32,
826 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
827 
828 			flags = le16toh(desc32->flags);
829 			len = le16toh(desc32->length) & 0x3fff;
830 		}
831 
832 		if ((flags & NFE_RX_READY) != 0)
833 			break;
834 
835 		if ((sc->sc_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
836 			if ((flags & NFE_RX_VALID_V1) == 0)
837 				goto skip;
838 
839 			if ((flags & NFE_RX_FIXME_V1) == NFE_RX_FIXME_V1) {
840 				flags &= ~NFE_RX_ERROR;
841 				len--;	/* fix buffer length */
842 			}
843 		} else {
844 			if ((flags & NFE_RX_VALID_V2) == 0)
845 				goto skip;
846 
847 			if ((flags & NFE_RX_FIXME_V2) == NFE_RX_FIXME_V2) {
848 				flags &= ~NFE_RX_ERROR;
849 				len--;	/* fix buffer length */
850 			}
851 		}
852 
853 		if (flags & NFE_RX_ERROR) {
854 			if_statinc(ifp, if_ierrors);
855 			goto skip;
856 		}
857 
858 		/*
859 		 * Try to allocate a new mbuf for this ring element and load
860 		 * it before processing the current mbuf. If the ring element
861 		 * cannot be loaded, drop the received packet and reuse the
862 		 * old mbuf. In the unlikely case that the old mbuf can't be
863 		 * reloaded either, explicitly panic.
864 		 */
865 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
866 		if (mnew == NULL) {
867 			if_statinc(ifp, if_ierrors);
868 			goto skip;
869 		}
870 
871 		if (sc->sc_flags & NFE_USE_JUMBO) {
872 			physaddr =
873 			    sc->rxq.jbuf[sc->rxq.jbufmap[i]].physaddr;
874 			if ((jbuf = nfe_jalloc(sc, i)) == NULL) {
875 				if (len > MCLBYTES) {
876 					m_freem(mnew);
877 					if_statinc(ifp, if_ierrors);
878 					goto skip1;
879 				}
880 				MCLGET(mnew, M_DONTWAIT);
881 				if ((mnew->m_flags & M_EXT) == 0) {
882 					m_freem(mnew);
883 					if_statinc(ifp, if_ierrors);
884 					goto skip1;
885 				}
886 
887 				(void)memcpy(mtod(mnew, void *),
888 				    mtod(data->m, const void *), len);
889 				m = mnew;
890 				goto mbufcopied;
891 			} else {
892 				MEXTADD(mnew, jbuf->buf, NFE_JBYTES, 0, nfe_jfree, sc);
893 				bus_dmamap_sync(sc->sc_dmat, sc->rxq.jmap,
894 				    mtod(data->m, char *) - (char *)sc->rxq.jpool,
895 				    NFE_JBYTES, BUS_DMASYNC_POSTREAD);
896 
897 				physaddr = jbuf->physaddr;
898 			}
899 		} else {
900 			MCLGET(mnew, M_DONTWAIT);
901 			if ((mnew->m_flags & M_EXT) == 0) {
902 				m_freem(mnew);
903 				if_statinc(ifp, if_ierrors);
904 				goto skip;
905 			}
906 
907 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
908 			    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
909 			bus_dmamap_unload(sc->sc_dmat, data->map);
910 
911 			error = bus_dmamap_load(sc->sc_dmat, data->map,
912 			    mtod(mnew, void *), MCLBYTES, NULL,
913 			    BUS_DMA_READ | BUS_DMA_NOWAIT);
914 			if (error != 0) {
915 				m_freem(mnew);
916 
917 				/* try to reload the old mbuf */
918 				error = bus_dmamap_load(sc->sc_dmat, data->map,
919 				    mtod(data->m, void *), MCLBYTES, NULL,
920 				    BUS_DMA_READ | BUS_DMA_NOWAIT);
921 				if (error != 0) {
922 					/* very unlikely that it will fail.. */
923 					panic("%s: could not load old rx mbuf",
924 					    device_xname(sc->sc_dev));
925 				}
926 				if_statinc(ifp, if_ierrors);
927 				goto skip;
928 			}
929 			physaddr = data->map->dm_segs[0].ds_addr;
930 		}
931 
932 		/*
933 		 * New mbuf successfully loaded, update Rx ring and continue
934 		 * processing.
935 		 */
936 		m = data->m;
937 		data->m = mnew;
938 
939 mbufcopied:
940 		/* finalize mbuf */
941 		m->m_pkthdr.len = m->m_len = len;
942 		m_set_rcvif(m, ifp);
943 
944 		if ((sc->sc_flags & NFE_HW_CSUM) != 0) {
945 			/*
946 			 * XXX
947 			 * no way to check M_CSUM_IPv4_BAD or non-IPv4 packets?
948 			 */
949 			if (flags & NFE_RX_IP_CSUMOK) {
950 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
951 				DPRINTFN(3, ("%s: ip4csum-rx ok\n",
952 				    device_xname(sc->sc_dev)));
953 			}
954 			/*
955 			 * XXX
956 			 * no way to check M_CSUM_TCP_UDP_BAD or
957 			 * other protocols?
958 			 */
959 			if (flags & NFE_RX_UDP_CSUMOK) {
960 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
961 				DPRINTFN(3, ("%s: udp4csum-rx ok\n",
962 				    device_xname(sc->sc_dev)));
963 			} else if (flags & NFE_RX_TCP_CSUMOK) {
964 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
965 				DPRINTFN(3, ("%s: tcp4csum-rx ok\n",
966 				    device_xname(sc->sc_dev)));
967 			}
968 		}
969 		if_percpuq_enqueue(ifp->if_percpuq, m);
970 
971 skip1:
972 		/* update mapping address in h/w descriptor */
973 		if (sc->sc_flags & NFE_40BIT_ADDR) {
974 			desc64->physaddr[0] =
975 			    htole32(((uint64_t)physaddr) >> 32);
976 			desc64->physaddr[1] = htole32(physaddr & 0xffffffff);
977 		} else {
978 			desc32->physaddr = htole32(physaddr);
979 		}
980 
981 skip:
982 		if (sc->sc_flags & NFE_40BIT_ADDR) {
983 			desc64->length = htole16(sc->rxq.bufsz);
984 			desc64->flags = htole16(NFE_RX_READY);
985 
986 			nfe_rxdesc64_sync(sc, desc64,
987 			    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
988 		} else {
989 			desc32->length = htole16(sc->rxq.bufsz);
990 			desc32->flags = htole16(NFE_RX_READY);
991 
992 			nfe_rxdesc32_sync(sc, desc32,
993 			    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
994 		}
995 	}
996 	/* update current RX pointer */
997 	sc->rxq.cur = i;
998 }
999 
1000 void
nfe_txeof(struct nfe_softc * sc)1001 nfe_txeof(struct nfe_softc *sc)
1002 {
1003 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1004 	struct nfe_desc32 *desc32;
1005 	struct nfe_desc64 *desc64;
1006 	struct nfe_tx_data *data = NULL;
1007 	int i;
1008 	uint16_t flags;
1009 	char buf[128];
1010 
1011 	for (i = sc->txq.next;
1012 	    sc->txq.queued > 0;
1013 	    i = NFE_TX_NEXTDESC(i), sc->txq.queued--) {
1014 		if (sc->sc_flags & NFE_40BIT_ADDR) {
1015 			desc64 = &sc->txq.desc64[i];
1016 			nfe_txdesc64_sync(sc, desc64,
1017 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1018 
1019 			flags = le16toh(desc64->flags);
1020 		} else {
1021 			desc32 = &sc->txq.desc32[i];
1022 			nfe_txdesc32_sync(sc, desc32,
1023 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1024 
1025 			flags = le16toh(desc32->flags);
1026 		}
1027 
1028 		if ((flags & NFE_TX_VALID) != 0)
1029 			break;
1030 
1031 		data = &sc->txq.data[i];
1032 
1033 		if ((sc->sc_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
1034 			if ((flags & NFE_TX_LASTFRAG_V1) == 0 &&
1035 			    data->m == NULL)
1036 				continue;
1037 
1038 			if ((flags & NFE_TX_ERROR_V1) != 0) {
1039 				snprintb(buf, sizeof(buf), NFE_V1_TXERR, flags);
1040 				aprint_error_dev(sc->sc_dev, "tx v1 error %s\n",
1041 				    buf);
1042 				if_statinc(ifp, if_oerrors);
1043 			} else
1044 				if_statinc(ifp, if_opackets);
1045 		} else {
1046 			if ((flags & NFE_TX_LASTFRAG_V2) == 0 &&
1047 			    data->m == NULL)
1048 				continue;
1049 
1050 			if ((flags & NFE_TX_ERROR_V2) != 0) {
1051 				snprintb(buf, sizeof(buf), NFE_V2_TXERR, flags);
1052 				aprint_error_dev(sc->sc_dev, "tx v2 error %s\n",
1053 				    buf);
1054 				if_statinc(ifp, if_oerrors);
1055 			} else
1056 				if_statinc(ifp, if_opackets);
1057 		}
1058 
1059 		if (data->m == NULL) {	/* should not get there */
1060 			aprint_error_dev(sc->sc_dev,
1061 			    "last fragment bit w/o associated mbuf!\n");
1062 			continue;
1063 		}
1064 
1065 		/* last fragment of the mbuf chain transmitted */
1066 		bus_dmamap_sync(sc->sc_dmat, data->active, 0,
1067 		    data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1068 		bus_dmamap_unload(sc->sc_dmat, data->active);
1069 		m_freem(data->m);
1070 		data->m = NULL;
1071 	}
1072 
1073 	sc->txq.next = i;
1074 
1075 	if (sc->txq.queued < NFE_TX_RING_COUNT) {
1076 		/* at least one slot freed */
1077 		ifp->if_flags &= ~IFF_OACTIVE;
1078 	}
1079 
1080 	if (sc->txq.queued == 0) {
1081 		/* all queued packets are sent */
1082 		ifp->if_timer = 0;
1083 	}
1084 }
1085 
1086 int
nfe_encap(struct nfe_softc * sc,struct mbuf * m0)1087 nfe_encap(struct nfe_softc *sc, struct mbuf *m0)
1088 {
1089 	struct nfe_desc32 *desc32;
1090 	struct nfe_desc64 *desc64;
1091 	struct nfe_tx_data *data;
1092 	bus_dmamap_t map;
1093 	uint16_t flags, csumflags;
1094 #if NVLAN > 0
1095 	uint32_t vtag = 0;
1096 #endif
1097 	int error, i, first;
1098 
1099 	desc32 = NULL;
1100 	desc64 = NULL;
1101 	data = NULL;
1102 
1103 	flags = 0;
1104 	csumflags = 0;
1105 	first = sc->txq.cur;
1106 
1107 	map = sc->txq.data[first].map;
1108 
1109 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m0, BUS_DMA_NOWAIT);
1110 	if (error != 0) {
1111 		aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
1112 		    error);
1113 		return error;
1114 	}
1115 
1116 	if (sc->txq.queued + map->dm_nsegs >= NFE_TX_RING_COUNT - 1) {
1117 		bus_dmamap_unload(sc->sc_dmat, map);
1118 		return ENOBUFS;
1119 	}
1120 
1121 #if NVLAN > 0
1122 	/* setup h/w VLAN tagging */
1123 	if (vlan_has_tag(m0))
1124 		vtag = NFE_TX_VTAG | vlan_get_tag(m0);
1125 #endif
1126 	if ((sc->sc_flags & NFE_HW_CSUM) != 0) {
1127 		if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4)
1128 			csumflags |= NFE_TX_IP_CSUM;
1129 		if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4))
1130 			csumflags |= NFE_TX_TCP_UDP_CSUM;
1131 	}
1132 
1133 	for (i = 0; i < map->dm_nsegs; i++) {
1134 		data = &sc->txq.data[sc->txq.cur];
1135 
1136 		if (sc->sc_flags & NFE_40BIT_ADDR) {
1137 			desc64 = &sc->txq.desc64[sc->txq.cur];
1138 			desc64->physaddr[0] =
1139 			    htole32(((uint64_t)map->dm_segs[i].ds_addr) >> 32);
1140 			desc64->physaddr[1] =
1141 			    htole32(map->dm_segs[i].ds_addr & 0xffffffff);
1142 			desc64->length = htole16(map->dm_segs[i].ds_len - 1);
1143 			desc64->flags = htole16(flags);
1144 			desc64->vtag = 0;
1145 		} else {
1146 			desc32 = &sc->txq.desc32[sc->txq.cur];
1147 
1148 			desc32->physaddr = htole32(map->dm_segs[i].ds_addr);
1149 			desc32->length = htole16(map->dm_segs[i].ds_len - 1);
1150 			desc32->flags = htole16(flags);
1151 		}
1152 
1153 		/*
1154 		 * Setting of the valid bit in the first descriptor is
1155 		 * deferred until the whole chain is fully setup.
1156 		 */
1157 		flags |= NFE_TX_VALID;
1158 
1159 		sc->txq.queued++;
1160 		sc->txq.cur = NFE_TX_NEXTDESC(sc->txq.cur);
1161 	}
1162 
1163 	/* the whole mbuf chain has been setup */
1164 	if (sc->sc_flags & NFE_40BIT_ADDR) {
1165 		/* fix last descriptor */
1166 		flags |= NFE_TX_LASTFRAG_V2;
1167 		desc64->flags = htole16(flags);
1168 
1169 		/* Checksum flags and vtag belong to the first fragment only. */
1170 #if NVLAN > 0
1171 		sc->txq.desc64[first].vtag = htole32(vtag);
1172 #endif
1173 		sc->txq.desc64[first].flags |= htole16(csumflags);
1174 
1175 		/* finally, set the valid bit in the first descriptor */
1176 		sc->txq.desc64[first].flags |= htole16(NFE_TX_VALID);
1177 	} else {
1178 		/* fix last descriptor */
1179 		if (sc->sc_flags & NFE_JUMBO_SUP)
1180 			flags |= NFE_TX_LASTFRAG_V2;
1181 		else
1182 			flags |= NFE_TX_LASTFRAG_V1;
1183 		desc32->flags = htole16(flags);
1184 
1185 		/* Checksum flags belong to the first fragment only. */
1186 		sc->txq.desc32[first].flags |= htole16(csumflags);
1187 
1188 		/* finally, set the valid bit in the first descriptor */
1189 		sc->txq.desc32[first].flags |= htole16(NFE_TX_VALID);
1190 	}
1191 
1192 	data->m = m0;
1193 	data->active = map;
1194 
1195 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1196 	    BUS_DMASYNC_PREWRITE);
1197 
1198 	return 0;
1199 }
1200 
1201 void
nfe_start(struct ifnet * ifp)1202 nfe_start(struct ifnet *ifp)
1203 {
1204 	struct nfe_softc *sc = ifp->if_softc;
1205 	int old = sc->txq.queued;
1206 	struct mbuf *m0;
1207 
1208 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1209 		return;
1210 
1211 	for (;;) {
1212 		IFQ_POLL(&ifp->if_snd, m0);
1213 		if (m0 == NULL)
1214 			break;
1215 
1216 		if (nfe_encap(sc, m0) != 0) {
1217 			ifp->if_flags |= IFF_OACTIVE;
1218 			break;
1219 		}
1220 
1221 		/* packet put in h/w queue, remove from s/w queue */
1222 		IFQ_DEQUEUE(&ifp->if_snd, m0);
1223 
1224 		bpf_mtap(ifp, m0, BPF_D_OUT);
1225 	}
1226 
1227 	if (sc->txq.queued != old) {
1228 		/* packets are queued */
1229 		if (sc->sc_flags & NFE_40BIT_ADDR)
1230 			nfe_txdesc64_rsync(sc, old, sc->txq.cur,
1231 			    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1232 		else
1233 			nfe_txdesc32_rsync(sc, old, sc->txq.cur,
1234 			    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1235 		/* kick Tx */
1236 		NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_KICKTX | sc->rxtxctl);
1237 
1238 		/*
1239 		 * Set a timeout in case the chip goes out to lunch.
1240 		 */
1241 		ifp->if_timer = 5;
1242 	}
1243 }
1244 
1245 void
nfe_watchdog(struct ifnet * ifp)1246 nfe_watchdog(struct ifnet *ifp)
1247 {
1248 	struct nfe_softc *sc = ifp->if_softc;
1249 
1250 	aprint_error_dev(sc->sc_dev, "watchdog timeout\n");
1251 
1252 	ifp->if_flags &= ~IFF_RUNNING;
1253 	nfe_init(ifp);
1254 
1255 	if_statinc(ifp, if_oerrors);
1256 }
1257 
1258 int
nfe_init(struct ifnet * ifp)1259 nfe_init(struct ifnet *ifp)
1260 {
1261 	struct nfe_softc *sc = ifp->if_softc;
1262 	uint32_t tmp;
1263 	int rc = 0, s;
1264 
1265 	if (ifp->if_flags & IFF_RUNNING)
1266 		return 0;
1267 
1268 	nfe_stop(ifp, 0);
1269 
1270 	NFE_WRITE(sc, NFE_TX_UNK, 0);
1271 	NFE_WRITE(sc, NFE_STATUS, 0);
1272 
1273 	sc->rxtxctl = NFE_RXTX_BIT2;
1274 	if (sc->sc_flags & NFE_40BIT_ADDR)
1275 		sc->rxtxctl |= NFE_RXTX_V3MAGIC;
1276 	else if (sc->sc_flags & NFE_JUMBO_SUP)
1277 		sc->rxtxctl |= NFE_RXTX_V2MAGIC;
1278 	if (sc->sc_flags & NFE_HW_CSUM)
1279 		sc->rxtxctl |= NFE_RXTX_RXCSUM;
1280 #if NVLAN > 0
1281 	/*
1282 	 * Although the adapter is capable of stripping VLAN tags from received
1283 	 * frames (NFE_RXTX_VTAG_STRIP), we do not enable this functionality on
1284 	 * purpose.  This will be done in software by our network stack.
1285 	 */
1286 	if (sc->sc_flags & NFE_HW_VLAN)
1287 		sc->rxtxctl |= NFE_RXTX_VTAG_INSERT;
1288 #endif
1289 	NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | sc->rxtxctl);
1290 	DELAY(10);
1291 	NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
1292 
1293 #if NVLAN
1294 	if (sc->sc_flags & NFE_HW_VLAN)
1295 		NFE_WRITE(sc, NFE_VTAG_CTL, NFE_VTAG_ENABLE);
1296 #endif
1297 
1298 	NFE_WRITE(sc, NFE_SETUP_R6, 0);
1299 
1300 	/* set MAC address */
1301 	nfe_set_macaddr(sc, sc->sc_enaddr);
1302 
1303 	/* tell MAC where rings are in memory */
1304 	NFE_WRITE(sc, NFE_RX_RING_ADDR_HI, ((uint64_t)sc->rxq.physaddr) >> 32);
1305 	NFE_WRITE(sc, NFE_RX_RING_ADDR_LO, sc->rxq.physaddr & 0xffffffff);
1306 	NFE_WRITE(sc, NFE_TX_RING_ADDR_HI, ((uint64_t)sc->txq.physaddr) >> 32);
1307 	NFE_WRITE(sc, NFE_TX_RING_ADDR_LO, sc->txq.physaddr & 0xffffffff);
1308 
1309 	NFE_WRITE(sc, NFE_RING_SIZE,
1310 	    (NFE_RX_RING_COUNT - 1) << 16 |
1311 	    (NFE_TX_RING_COUNT - 1));
1312 
1313 	NFE_WRITE(sc, NFE_RXBUFSZ, sc->rxq.bufsz);
1314 
1315 	/* force MAC to wakeup */
1316 	tmp = NFE_READ(sc, NFE_PWR_STATE);
1317 	NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_WAKEUP);
1318 	DELAY(10);
1319 	tmp = NFE_READ(sc, NFE_PWR_STATE);
1320 	NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_VALID);
1321 
1322 	s = splnet();
1323 	NFE_WRITE(sc, NFE_IRQ_MASK, 0);
1324 	nfe_intr(sc); /* XXX clear IRQ status registers */
1325 	NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED);
1326 	splx(s);
1327 
1328 #if 1
1329 	/* configure interrupts coalescing/mitigation */
1330 	NFE_WRITE(sc, NFE_IMTIMER, NFE_IM_DEFAULT);
1331 #else
1332 	/* no interrupt mitigation: one interrupt per packet */
1333 	NFE_WRITE(sc, NFE_IMTIMER, 970);
1334 #endif
1335 
1336 	NFE_WRITE(sc, NFE_SETUP_R1, NFE_R1_MAGIC);
1337 	NFE_WRITE(sc, NFE_SETUP_R2, NFE_R2_MAGIC);
1338 	NFE_WRITE(sc, NFE_SETUP_R6, NFE_R6_MAGIC);
1339 
1340 	/* update MAC knowledge of PHY; generates a NFE_IRQ_LINK interrupt */
1341 	NFE_WRITE(sc, NFE_STATUS, sc->mii_phyaddr << 24 | NFE_STATUS_MAGIC);
1342 
1343 	NFE_WRITE(sc, NFE_SETUP_R4, NFE_R4_MAGIC);
1344 	NFE_WRITE(sc, NFE_WOL_CTL, NFE_WOL_ENABLE);
1345 
1346 	sc->rxtxctl &= ~NFE_RXTX_BIT2;
1347 	NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
1348 	DELAY(10);
1349 	NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT1 | sc->rxtxctl);
1350 
1351 	/* set Rx filter */
1352 	nfe_setmulti(sc);
1353 
1354 	if ((rc = ether_mediachange(ifp)) != 0)
1355 		goto out;
1356 
1357 	nfe_tick(sc);
1358 
1359 	/* enable Rx */
1360 	NFE_WRITE(sc, NFE_RX_CTL, NFE_RX_START);
1361 
1362 	/* enable Tx */
1363 	NFE_WRITE(sc, NFE_TX_CTL, NFE_TX_START);
1364 
1365 	NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
1366 
1367 	/* enable interrupts */
1368 	NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED);
1369 
1370 	callout_schedule(&sc->sc_tick_ch, hz);
1371 
1372 	ifp->if_flags |= IFF_RUNNING;
1373 	ifp->if_flags &= ~IFF_OACTIVE;
1374 
1375 out:
1376 	return rc;
1377 }
1378 
1379 void
nfe_stop(struct ifnet * ifp,int disable)1380 nfe_stop(struct ifnet *ifp, int disable)
1381 {
1382 	struct nfe_softc *sc = ifp->if_softc;
1383 
1384 	callout_stop(&sc->sc_tick_ch);
1385 
1386 	ifp->if_timer = 0;
1387 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1388 
1389 	mii_down(&sc->sc_mii);
1390 
1391 	/* abort Tx */
1392 	NFE_WRITE(sc, NFE_TX_CTL, 0);
1393 
1394 	/* disable Rx */
1395 	NFE_WRITE(sc, NFE_RX_CTL, 0);
1396 
1397 	/* disable interrupts */
1398 	NFE_WRITE(sc, NFE_IRQ_MASK, 0);
1399 
1400 	/* reset Tx and Rx rings */
1401 	nfe_reset_tx_ring(sc, &sc->txq);
1402 	nfe_reset_rx_ring(sc, &sc->rxq);
1403 }
1404 
1405 int
nfe_alloc_rx_ring(struct nfe_softc * sc,struct nfe_rx_ring * ring)1406 nfe_alloc_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1407 {
1408 	struct nfe_desc32 *desc32;
1409 	struct nfe_desc64 *desc64;
1410 	struct nfe_rx_data *data;
1411 	struct nfe_jbuf *jbuf;
1412 	void **desc;
1413 	bus_addr_t physaddr;
1414 	int i, nsegs, error, descsize;
1415 
1416 	if (sc->sc_flags & NFE_40BIT_ADDR) {
1417 		desc = (void **)&ring->desc64;
1418 		descsize = sizeof (struct nfe_desc64);
1419 	} else {
1420 		desc = (void **)&ring->desc32;
1421 		descsize = sizeof (struct nfe_desc32);
1422 	}
1423 
1424 	ring->cur = ring->next = 0;
1425 	ring->bufsz = MCLBYTES;
1426 
1427 	error = bus_dmamap_create(sc->sc_dmat, NFE_RX_RING_COUNT * descsize, 1,
1428 	    NFE_RX_RING_COUNT * descsize, 0, BUS_DMA_NOWAIT, &ring->map);
1429 	if (error != 0) {
1430 		aprint_error_dev(sc->sc_dev,
1431 		    "could not create desc DMA map\n");
1432 		ring->map = NULL;
1433 		goto fail;
1434 	}
1435 
1436 	error = bus_dmamem_alloc(sc->sc_dmat, NFE_RX_RING_COUNT * descsize,
1437 	    PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
1438 	if (error != 0) {
1439 		aprint_error_dev(sc->sc_dev,
1440 		    "could not allocate DMA memory\n");
1441 		goto fail;
1442 	}
1443 
1444 	error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
1445 	    NFE_RX_RING_COUNT * descsize, (void **)desc, BUS_DMA_NOWAIT);
1446 	if (error != 0) {
1447 		aprint_error_dev(sc->sc_dev,
1448 		    "could not map desc DMA memory\n");
1449 		goto fail;
1450 	}
1451 
1452 	error = bus_dmamap_load(sc->sc_dmat, ring->map, *desc,
1453 	    NFE_RX_RING_COUNT * descsize, NULL, BUS_DMA_NOWAIT);
1454 	if (error != 0) {
1455 		aprint_error_dev(sc->sc_dev, "could not load desc DMA map\n");
1456 		goto fail;
1457 	}
1458 
1459 	memset(*desc, 0, NFE_RX_RING_COUNT * descsize);
1460 	ring->physaddr = ring->map->dm_segs[0].ds_addr;
1461 
1462 	if (sc->sc_flags & NFE_USE_JUMBO) {
1463 		ring->bufsz = NFE_JBYTES;
1464 		if ((error = nfe_jpool_alloc(sc)) != 0) {
1465 			aprint_error_dev(sc->sc_dev,
1466 			    "could not allocate jumbo frames\n");
1467 			goto fail;
1468 		}
1469 	}
1470 
1471 	/*
1472 	 * Pre-allocate Rx buffers and populate Rx ring.
1473 	 */
1474 	for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1475 		data = &sc->rxq.data[i];
1476 
1477 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
1478 		if (data->m == NULL) {
1479 			aprint_error_dev(sc->sc_dev,
1480 			    "could not allocate rx mbuf\n");
1481 			error = ENOMEM;
1482 			goto fail;
1483 		}
1484 
1485 		if (sc->sc_flags & NFE_USE_JUMBO) {
1486 			if ((jbuf = nfe_jalloc(sc, i)) == NULL) {
1487 				aprint_error_dev(sc->sc_dev,
1488 				    "could not allocate jumbo buffer\n");
1489 				goto fail;
1490 			}
1491 			MEXTADD(data->m, jbuf->buf, NFE_JBYTES, 0, nfe_jfree,
1492 			    sc);
1493 
1494 			physaddr = jbuf->physaddr;
1495 		} else {
1496 			error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1497 			    MCLBYTES, 0, BUS_DMA_NOWAIT, &data->map);
1498 			if (error != 0) {
1499 				aprint_error_dev(sc->sc_dev,
1500 				    "could not create DMA map\n");
1501 				data->map = NULL;
1502 				goto fail;
1503 			}
1504 			MCLGET(data->m, M_DONTWAIT);
1505 			if (!(data->m->m_flags & M_EXT)) {
1506 				aprint_error_dev(sc->sc_dev,
1507 				    "could not allocate mbuf cluster\n");
1508 				error = ENOMEM;
1509 				goto fail;
1510 			}
1511 
1512 			error = bus_dmamap_load(sc->sc_dmat, data->map,
1513 			    mtod(data->m, void *), MCLBYTES, NULL,
1514 			    BUS_DMA_READ | BUS_DMA_NOWAIT);
1515 			if (error != 0) {
1516 				aprint_error_dev(sc->sc_dev,
1517 				    "could not load rx buf DMA map");
1518 				goto fail;
1519 			}
1520 			physaddr = data->map->dm_segs[0].ds_addr;
1521 		}
1522 
1523 		if (sc->sc_flags & NFE_40BIT_ADDR) {
1524 			desc64 = &sc->rxq.desc64[i];
1525 			desc64->physaddr[0] =
1526 			    htole32(((uint64_t)physaddr) >> 32);
1527 			desc64->physaddr[1] = htole32(physaddr & 0xffffffff);
1528 			desc64->length = htole16(sc->rxq.bufsz);
1529 			desc64->flags = htole16(NFE_RX_READY);
1530 		} else {
1531 			desc32 = &sc->rxq.desc32[i];
1532 			desc32->physaddr = htole32(physaddr);
1533 			desc32->length = htole16(sc->rxq.bufsz);
1534 			desc32->flags = htole16(NFE_RX_READY);
1535 		}
1536 	}
1537 
1538 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
1539 	    BUS_DMASYNC_PREWRITE);
1540 
1541 	return 0;
1542 
1543 fail:	nfe_free_rx_ring(sc, ring);
1544 	return error;
1545 }
1546 
1547 void
nfe_reset_rx_ring(struct nfe_softc * sc,struct nfe_rx_ring * ring)1548 nfe_reset_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1549 {
1550 	int i;
1551 
1552 	for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1553 		if (sc->sc_flags & NFE_40BIT_ADDR) {
1554 			ring->desc64[i].length = htole16(ring->bufsz);
1555 			ring->desc64[i].flags = htole16(NFE_RX_READY);
1556 		} else {
1557 			ring->desc32[i].length = htole16(ring->bufsz);
1558 			ring->desc32[i].flags = htole16(NFE_RX_READY);
1559 		}
1560 	}
1561 
1562 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
1563 	    BUS_DMASYNC_PREWRITE);
1564 
1565 	ring->cur = ring->next = 0;
1566 }
1567 
1568 void
nfe_free_rx_ring(struct nfe_softc * sc,struct nfe_rx_ring * ring)1569 nfe_free_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1570 {
1571 	struct nfe_rx_data *data;
1572 	void *desc;
1573 	int i, descsize;
1574 
1575 	if (sc->sc_flags & NFE_40BIT_ADDR) {
1576 		desc = ring->desc64;
1577 		descsize = sizeof (struct nfe_desc64);
1578 	} else {
1579 		desc = ring->desc32;
1580 		descsize = sizeof (struct nfe_desc32);
1581 	}
1582 
1583 	if (desc != NULL) {
1584 		bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
1585 		    ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1586 		bus_dmamap_unload(sc->sc_dmat, ring->map);
1587 		bus_dmamem_unmap(sc->sc_dmat, (void *)desc,
1588 		    NFE_RX_RING_COUNT * descsize);
1589 		bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
1590 	}
1591 
1592 	for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1593 		data = &ring->data[i];
1594 
1595 		if (data->map != NULL) {
1596 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1597 			    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1598 			bus_dmamap_unload(sc->sc_dmat, data->map);
1599 			bus_dmamap_destroy(sc->sc_dmat, data->map);
1600 		}
1601 		m_freem(data->m);
1602 	}
1603 
1604 	nfe_jpool_free(sc);
1605 }
1606 
1607 struct nfe_jbuf *
nfe_jalloc(struct nfe_softc * sc,int i)1608 nfe_jalloc(struct nfe_softc *sc, int i)
1609 {
1610 	struct nfe_jbuf *jbuf;
1611 
1612 	mutex_enter(&sc->rxq.mtx);
1613 	jbuf = SLIST_FIRST(&sc->rxq.jfreelist);
1614 	if (jbuf != NULL)
1615 		SLIST_REMOVE_HEAD(&sc->rxq.jfreelist, jnext);
1616 	mutex_exit(&sc->rxq.mtx);
1617 	if (jbuf == NULL)
1618 		return NULL;
1619 	sc->rxq.jbufmap[i] =
1620 	    ((char *)jbuf->buf - (char *)sc->rxq.jpool) / NFE_JBYTES;
1621 	return jbuf;
1622 }
1623 
1624 /*
1625  * This is called automatically by the network stack when the mbuf is freed.
1626  * Caution must be taken that the NIC might be reset by the time the mbuf is
1627  * freed.
1628  */
1629 void
nfe_jfree(struct mbuf * m,void * buf,size_t size,void * arg)1630 nfe_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
1631 {
1632 	struct nfe_softc *sc = arg;
1633 	struct nfe_jbuf *jbuf;
1634 	int i;
1635 
1636 	/* find the jbuf from the base pointer */
1637 	i = ((char *)buf - (char *)sc->rxq.jpool) / NFE_JBYTES;
1638 	if (i < 0 || i >= NFE_JPOOL_COUNT) {
1639 		aprint_error_dev(sc->sc_dev,
1640 		    "request to free a buffer (%p) not managed by us\n", buf);
1641 		return;
1642 	}
1643 	jbuf = &sc->rxq.jbuf[i];
1644 
1645 	/* ..and put it back in the free list */
1646 	mutex_enter(&sc->rxq.mtx);
1647 	SLIST_INSERT_HEAD(&sc->rxq.jfreelist, jbuf, jnext);
1648 	mutex_exit(&sc->rxq.mtx);
1649 
1650 	if (m != NULL)
1651 		pool_cache_put(mb_cache, m);
1652 }
1653 
1654 int
nfe_jpool_alloc(struct nfe_softc * sc)1655 nfe_jpool_alloc(struct nfe_softc *sc)
1656 {
1657 	struct nfe_rx_ring *ring = &sc->rxq;
1658 	struct nfe_jbuf *jbuf;
1659 	bus_addr_t physaddr;
1660 	char *buf;
1661 	int i, nsegs, error;
1662 
1663 	/*
1664 	 * Allocate a big chunk of DMA'able memory.
1665 	 */
1666 	error = bus_dmamap_create(sc->sc_dmat, NFE_JPOOL_SIZE, 1,
1667 	    NFE_JPOOL_SIZE, 0, BUS_DMA_NOWAIT, &ring->jmap);
1668 	if (error != 0) {
1669 		aprint_error_dev(sc->sc_dev,
1670 		    "could not create jumbo DMA map\n");
1671 		ring->jmap = NULL;
1672 		goto fail;
1673 	}
1674 
1675 	error = bus_dmamem_alloc(sc->sc_dmat, NFE_JPOOL_SIZE, PAGE_SIZE, 0,
1676 	    &ring->jseg, 1, &nsegs, BUS_DMA_NOWAIT);
1677 	if (error != 0) {
1678 		aprint_error_dev(sc->sc_dev,
1679 		    "could not allocate jumbo DMA memory\n");
1680 		goto fail;
1681 	}
1682 
1683 	error = bus_dmamem_map(sc->sc_dmat, &ring->jseg, nsegs, NFE_JPOOL_SIZE,
1684 	    &ring->jpool, BUS_DMA_NOWAIT);
1685 	if (error != 0) {
1686 		aprint_error_dev(sc->sc_dev,
1687 		    "could not map jumbo DMA memory\n");
1688 		goto fail;
1689 	}
1690 
1691 	error = bus_dmamap_load(sc->sc_dmat, ring->jmap, ring->jpool,
1692 	    NFE_JPOOL_SIZE, NULL, BUS_DMA_READ | BUS_DMA_NOWAIT);
1693 	if (error != 0) {
1694 		aprint_error_dev(sc->sc_dev,
1695 		    "could not load jumbo DMA map\n");
1696 		goto fail;
1697 	}
1698 
1699 	/* ..and split it into 9KB chunks */
1700 	SLIST_INIT(&ring->jfreelist);
1701 
1702 	buf = ring->jpool;
1703 	physaddr = ring->jmap->dm_segs[0].ds_addr;
1704 	for (i = 0; i < NFE_JPOOL_COUNT; i++) {
1705 		jbuf = &ring->jbuf[i];
1706 
1707 		jbuf->buf = buf;
1708 		jbuf->physaddr = physaddr;
1709 
1710 		SLIST_INSERT_HEAD(&ring->jfreelist, jbuf, jnext);
1711 
1712 		buf += NFE_JBYTES;
1713 		physaddr += NFE_JBYTES;
1714 	}
1715 
1716 	return 0;
1717 
1718 fail:	nfe_jpool_free(sc);
1719 	return error;
1720 }
1721 
1722 void
nfe_jpool_free(struct nfe_softc * sc)1723 nfe_jpool_free(struct nfe_softc *sc)
1724 {
1725 	struct nfe_rx_ring *ring = &sc->rxq;
1726 
1727 	if (ring->jmap != NULL) {
1728 		bus_dmamap_sync(sc->sc_dmat, ring->jmap, 0,
1729 		    ring->jmap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1730 		bus_dmamap_unload(sc->sc_dmat, ring->jmap);
1731 		bus_dmamap_destroy(sc->sc_dmat, ring->jmap);
1732 		ring->jmap = NULL;
1733 	}
1734 	if (ring->jpool != NULL) {
1735 		bus_dmamem_unmap(sc->sc_dmat, ring->jpool, NFE_JPOOL_SIZE);
1736 		bus_dmamem_free(sc->sc_dmat, &ring->jseg, 1);
1737 		ring->jpool = NULL;
1738 	}
1739 }
1740 
1741 int
nfe_alloc_tx_ring(struct nfe_softc * sc,struct nfe_tx_ring * ring)1742 nfe_alloc_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1743 {
1744 	int i, nsegs, error;
1745 	void **desc;
1746 	int descsize;
1747 
1748 	if (sc->sc_flags & NFE_40BIT_ADDR) {
1749 		desc = (void **)&ring->desc64;
1750 		descsize = sizeof (struct nfe_desc64);
1751 	} else {
1752 		desc = (void **)&ring->desc32;
1753 		descsize = sizeof (struct nfe_desc32);
1754 	}
1755 
1756 	ring->queued = 0;
1757 	ring->cur = ring->next = 0;
1758 
1759 	error = bus_dmamap_create(sc->sc_dmat, NFE_TX_RING_COUNT * descsize, 1,
1760 	    NFE_TX_RING_COUNT * descsize, 0, BUS_DMA_NOWAIT, &ring->map);
1761 
1762 	if (error != 0) {
1763 		aprint_error_dev(sc->sc_dev,
1764 		    "could not create desc DMA map\n");
1765 		ring->map = NULL;
1766 		goto fail;
1767 	}
1768 
1769 	error = bus_dmamem_alloc(sc->sc_dmat, NFE_TX_RING_COUNT * descsize,
1770 	    PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
1771 	if (error != 0) {
1772 		aprint_error_dev(sc->sc_dev,
1773 		    "could not allocate DMA memory\n");
1774 		goto fail;
1775 	}
1776 
1777 	error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
1778 	    NFE_TX_RING_COUNT * descsize, (void **)desc, BUS_DMA_NOWAIT);
1779 	if (error != 0) {
1780 		aprint_error_dev(sc->sc_dev,
1781 		    "could not map desc DMA memory\n");
1782 		goto fail;
1783 	}
1784 
1785 	error = bus_dmamap_load(sc->sc_dmat, ring->map, *desc,
1786 	    NFE_TX_RING_COUNT * descsize, NULL, BUS_DMA_NOWAIT);
1787 	if (error != 0) {
1788 		aprint_error_dev(sc->sc_dev, "could not load desc DMA map\n");
1789 		goto fail;
1790 	}
1791 
1792 	memset(*desc, 0, NFE_TX_RING_COUNT * descsize);
1793 	ring->physaddr = ring->map->dm_segs[0].ds_addr;
1794 
1795 	for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1796 		error = bus_dmamap_create(sc->sc_dmat, NFE_JBYTES,
1797 		    NFE_MAX_SCATTER, NFE_JBYTES, 0, BUS_DMA_NOWAIT,
1798 		    &ring->data[i].map);
1799 		if (error != 0) {
1800 			aprint_error_dev(sc->sc_dev,
1801 			    "could not create DMA map\n");
1802 			ring->data[i].map = NULL;
1803 			goto fail;
1804 		}
1805 	}
1806 
1807 	return 0;
1808 
1809 fail:	nfe_free_tx_ring(sc, ring);
1810 	return error;
1811 }
1812 
1813 void
nfe_reset_tx_ring(struct nfe_softc * sc,struct nfe_tx_ring * ring)1814 nfe_reset_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1815 {
1816 	struct nfe_tx_data *data;
1817 	int i;
1818 
1819 	for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1820 		if (sc->sc_flags & NFE_40BIT_ADDR)
1821 			ring->desc64[i].flags = 0;
1822 		else
1823 			ring->desc32[i].flags = 0;
1824 
1825 		data = &ring->data[i];
1826 
1827 		if (data->m != NULL) {
1828 			bus_dmamap_sync(sc->sc_dmat, data->active, 0,
1829 			    data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1830 			bus_dmamap_unload(sc->sc_dmat, data->active);
1831 			m_freem(data->m);
1832 			data->m = NULL;
1833 		}
1834 	}
1835 
1836 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
1837 	    BUS_DMASYNC_PREWRITE);
1838 
1839 	ring->queued = 0;
1840 	ring->cur = ring->next = 0;
1841 }
1842 
1843 void
nfe_free_tx_ring(struct nfe_softc * sc,struct nfe_tx_ring * ring)1844 nfe_free_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1845 {
1846 	struct nfe_tx_data *data;
1847 	void *desc;
1848 	int i, descsize;
1849 
1850 	if (sc->sc_flags & NFE_40BIT_ADDR) {
1851 		desc = ring->desc64;
1852 		descsize = sizeof (struct nfe_desc64);
1853 	} else {
1854 		desc = ring->desc32;
1855 		descsize = sizeof (struct nfe_desc32);
1856 	}
1857 
1858 	if (desc != NULL) {
1859 		bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
1860 		    ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1861 		bus_dmamap_unload(sc->sc_dmat, ring->map);
1862 		bus_dmamem_unmap(sc->sc_dmat, (void *)desc,
1863 		    NFE_TX_RING_COUNT * descsize);
1864 		bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
1865 	}
1866 
1867 	for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1868 		data = &ring->data[i];
1869 
1870 		if (data->m != NULL) {
1871 			bus_dmamap_sync(sc->sc_dmat, data->active, 0,
1872 			    data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1873 			bus_dmamap_unload(sc->sc_dmat, data->active);
1874 			m_freem(data->m);
1875 		}
1876 	}
1877 
1878 	/* ..and now actually destroy the DMA mappings */
1879 	for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1880 		data = &ring->data[i];
1881 		if (data->map == NULL)
1882 			continue;
1883 		bus_dmamap_destroy(sc->sc_dmat, data->map);
1884 	}
1885 }
1886 
1887 void
nfe_setmulti(struct nfe_softc * sc)1888 nfe_setmulti(struct nfe_softc *sc)
1889 {
1890 	struct ethercom *ec = &sc->sc_ethercom;
1891 	struct ifnet *ifp = &ec->ec_if;
1892 	struct ether_multi *enm;
1893 	struct ether_multistep step;
1894 	uint8_t addr[ETHER_ADDR_LEN], mask[ETHER_ADDR_LEN];
1895 	uint32_t filter = NFE_RXFILTER_MAGIC;
1896 	int i;
1897 
1898 	if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
1899 		memset(addr, 0, ETHER_ADDR_LEN);
1900 		memset(mask, 0, ETHER_ADDR_LEN);
1901 		goto done;
1902 	}
1903 
1904 	memcpy(addr, etherbroadcastaddr, ETHER_ADDR_LEN);
1905 	memcpy(mask, etherbroadcastaddr, ETHER_ADDR_LEN);
1906 
1907 	ETHER_LOCK(ec);
1908 	ETHER_FIRST_MULTI(step, ec, enm);
1909 	while (enm != NULL) {
1910 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1911 			ifp->if_flags |= IFF_ALLMULTI;
1912 			memset(addr, 0, ETHER_ADDR_LEN);
1913 			memset(mask, 0, ETHER_ADDR_LEN);
1914 			ETHER_UNLOCK(ec);
1915 			goto done;
1916 		}
1917 		for (i = 0; i < ETHER_ADDR_LEN; i++) {
1918 			addr[i] &=  enm->enm_addrlo[i];
1919 			mask[i] &= ~enm->enm_addrlo[i];
1920 		}
1921 		ETHER_NEXT_MULTI(step, enm);
1922 	}
1923 	ETHER_UNLOCK(ec);
1924 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1925 		mask[i] |= addr[i];
1926 
1927 done:
1928 	addr[0] |= 0x01;	/* make sure multicast bit is set */
1929 
1930 	NFE_WRITE(sc, NFE_MULTIADDR_HI,
1931 	    (uint32_t)addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
1932 	NFE_WRITE(sc, NFE_MULTIADDR_LO,
1933 	    addr[5] <<  8 | addr[4]);
1934 	NFE_WRITE(sc, NFE_MULTIMASK_HI,
1935 	    (uint32_t)mask[3] << 24 | mask[2] << 16 | mask[1] << 8 | mask[0]);
1936 	NFE_WRITE(sc, NFE_MULTIMASK_LO,
1937 	    mask[5] <<  8 | mask[4]);
1938 
1939 	filter |= (ifp->if_flags & IFF_PROMISC) ? NFE_PROMISC : NFE_U2M;
1940 	NFE_WRITE(sc, NFE_RXFILTER, filter);
1941 }
1942 
1943 void
nfe_get_macaddr(struct nfe_softc * sc,uint8_t * addr)1944 nfe_get_macaddr(struct nfe_softc *sc, uint8_t *addr)
1945 {
1946 	uint32_t tmp;
1947 
1948 	if ((sc->sc_flags & NFE_CORRECT_MACADDR) != 0) {
1949 		tmp = NFE_READ(sc, NFE_MACADDR_HI);
1950 		addr[0] = (tmp & 0xff);
1951 		addr[1] = (tmp >>  8) & 0xff;
1952 		addr[2] = (tmp >> 16) & 0xff;
1953 		addr[3] = (tmp >> 24) & 0xff;
1954 
1955 		tmp = NFE_READ(sc, NFE_MACADDR_LO);
1956 		addr[4] = (tmp & 0xff);
1957 		addr[5] = (tmp >> 8) & 0xff;
1958 
1959 	} else {
1960 		tmp = NFE_READ(sc, NFE_MACADDR_LO);
1961 		addr[0] = (tmp >> 8) & 0xff;
1962 		addr[1] = (tmp & 0xff);
1963 
1964 		tmp = NFE_READ(sc, NFE_MACADDR_HI);
1965 		addr[2] = (tmp >> 24) & 0xff;
1966 		addr[3] = (tmp >> 16) & 0xff;
1967 		addr[4] = (tmp >>  8) & 0xff;
1968 		addr[5] = (tmp & 0xff);
1969 	}
1970 }
1971 
1972 void
nfe_set_macaddr(struct nfe_softc * sc,const uint8_t * addr)1973 nfe_set_macaddr(struct nfe_softc *sc, const uint8_t *addr)
1974 {
1975 	NFE_WRITE(sc, NFE_MACADDR_LO,
1976 	    addr[5] <<  8 | addr[4]);
1977 	NFE_WRITE(sc, NFE_MACADDR_HI,
1978 	    (uint32_t)addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
1979 }
1980 
1981 void
nfe_tick(void * arg)1982 nfe_tick(void *arg)
1983 {
1984 	struct nfe_softc *sc = arg;
1985 	int s;
1986 
1987 	s = splnet();
1988 	mii_tick(&sc->sc_mii);
1989 	splx(s);
1990 
1991 	callout_schedule(&sc->sc_tick_ch, hz);
1992 }
1993 
1994 void
nfe_poweron(device_t self)1995 nfe_poweron(device_t self)
1996 {
1997 	struct nfe_softc *sc = device_private(self);
1998 
1999 	if ((sc->sc_flags & NFE_PWR_MGMT) != 0) {
2000 		NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | NFE_RXTX_BIT2);
2001 		NFE_WRITE(sc, NFE_MAC_RESET, NFE_MAC_RESET_MAGIC);
2002 		DELAY(100);
2003 		NFE_WRITE(sc, NFE_MAC_RESET, 0);
2004 		DELAY(100);
2005 		NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT2);
2006 		NFE_WRITE(sc, NFE_PWR2_CTL,
2007 		    NFE_READ(sc, NFE_PWR2_CTL) & ~NFE_PWR2_WAKEUP_MASK);
2008 	}
2009 }
2010 
2011 bool
nfe_resume(device_t dv,const pmf_qual_t * qual)2012 nfe_resume(device_t dv, const pmf_qual_t *qual)
2013 {
2014 	nfe_poweron(dv);
2015 
2016 	return true;
2017 }
2018