xref: /netbsd-src/sys/dev/pci/if_et.c (revision 18df4b598e3235d325a07ceb44c5ed4fb955b2a4)
1 /*	$NetBSD: if_et.c,v 1.36 2023/08/01 20:46:01 andvar Exp $	*/
2 /*	$OpenBSD: if_et.c,v 1.12 2008/07/11 09:29:02 kevlo $	*/
3 /*
4  * Copyright (c) 2007 The DragonFly Project.  All rights reserved.
5  *
6  * This code is derived from software contributed to The DragonFly Project
7  * by Sepherosa Ziehau <sepherosa@gmail.com>
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  *
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in
17  *    the documentation and/or other materials provided with the
18  *    distribution.
19  * 3. Neither the name of The DragonFly Project nor the names of its
20  *    contributors may be used to endorse or promote products derived
21  *    from this software without specific, prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
27  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
29  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
31  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
32  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
33  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  * $DragonFly: src/sys/dev/netif/et/if_et.c,v 1.1 2007/10/12 14:12:42 sephe Exp $
37  */
38 
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: if_et.c,v 1.36 2023/08/01 20:46:01 andvar Exp $");
41 
42 #include <sys/param.h>
43 #include <sys/endian.h>
44 #include <sys/systm.h>
45 #include <sys/types.h>
46 #include <sys/sockio.h>
47 #include <sys/mbuf.h>
48 #include <sys/queue.h>
49 #include <sys/kernel.h>
50 #include <sys/device.h>
51 #include <sys/callout.h>
52 #include <sys/socket.h>
53 
54 #include <sys/bus.h>
55 
56 #include <net/if.h>
57 #include <net/if_dl.h>
58 #include <net/if_media.h>
59 #include <net/if_ether.h>
60 #include <net/if_arp.h>
61 
62 #include <net/bpf.h>
63 
64 #include <dev/mii/mii.h>
65 #include <dev/mii/miivar.h>
66 
67 #include <dev/pci/pcireg.h>
68 #include <dev/pci/pcivar.h>
69 #include <dev/pci/pcidevs.h>
70 
71 #include <dev/pci/if_etreg.h>
72 
73 static int	et_match(device_t, cfdata_t, void *);
74 static void	et_attach(device_t, device_t, void *);
75 static int	et_detach(device_t, int);
76 
77 static int	et_miibus_readreg(device_t, int, int, uint16_t *);
78 static int	et_miibus_writereg(device_t, int, int, uint16_t);
79 static void	et_miibus_statchg(struct ifnet *);
80 
81 static int	et_init(struct ifnet *);
82 static int	et_ioctl(struct ifnet *, u_long, void *);
83 static void	et_start(struct ifnet *);
84 static void	et_watchdog(struct ifnet *);
85 static void	et_ifmedia_sts(struct ifnet *, struct ifmediareq *);
86 
87 static int	et_intr(void *);
88 static void	et_enable_intrs(struct et_softc *, uint32_t);
89 static void	et_disable_intrs(struct et_softc *);
90 static void	et_rxeof(struct et_softc *);
91 static void	et_txeof(struct et_softc *);
92 static void	et_txtick(void *);
93 
94 static int	et_dma_alloc(struct et_softc *);
95 static void	et_dma_free(struct et_softc *);
96 static int	et_dma_mem_create(struct et_softc *, bus_size_t,
97 	    void **, bus_addr_t *, bus_dmamap_t *, bus_dma_segment_t *);
98 static void	et_dma_mem_destroy(struct et_softc *, void *, bus_dmamap_t);
99 static int	et_dma_mbuf_create(struct et_softc *);
100 static void	et_dma_mbuf_destroy(struct et_softc *, int, const int[]);
101 
102 static int	et_init_tx_ring(struct et_softc *);
103 static int	et_init_rx_ring(struct et_softc *);
104 static void	et_free_tx_ring(struct et_softc *);
105 static void	et_free_rx_ring(struct et_softc *);
106 static int	et_encap(struct et_softc *, struct mbuf **);
107 static int	et_newbuf(struct et_rxbuf_data *, int, int, int);
108 static int	et_newbuf_cluster(struct et_rxbuf_data *, int, int);
109 static int	et_newbuf_hdr(struct et_rxbuf_data *, int, int);
110 
111 static void	et_stop(struct et_softc *);
112 static int	et_chip_init(struct et_softc *);
113 static void	et_chip_attach(struct et_softc *);
114 static void	et_init_mac(struct et_softc *);
115 static void	et_init_rxmac(struct et_softc *);
116 static void	et_init_txmac(struct et_softc *);
117 static int	et_init_rxdma(struct et_softc *);
118 static int	et_init_txdma(struct et_softc *);
119 static int	et_start_rxdma(struct et_softc *);
120 static int	et_start_txdma(struct et_softc *);
121 static int	et_stop_rxdma(struct et_softc *);
122 static int	et_stop_txdma(struct et_softc *);
123 static void	et_reset(struct et_softc *);
124 static int	et_bus_config(struct et_softc *);
125 static void	et_get_eaddr(struct et_softc *, uint8_t[]);
126 static void	et_setmulti(struct et_softc *);
127 static void	et_tick(void *);
128 
129 static int	et_rx_intr_npkts = 32;
130 static int	et_rx_intr_delay = 20;		/* x10 usec */
131 static int	et_tx_intr_nsegs = 128;
132 static uint32_t	et_timer = 1000 * 1000 * 1000;	/* nanosec */
133 
134 struct et_bsize {
135 	int		bufsize;
136 	et_newbuf_t	newbuf;
137 };
138 
139 static const struct et_bsize	et_bufsize[ET_RX_NRING] = {
140 	{ .bufsize = 0,	.newbuf = et_newbuf_hdr },
141 	{ .bufsize = 0,	.newbuf = et_newbuf_cluster },
142 };
143 
144 static const struct device_compatible_entry compat_data[] = {
145 	{ .id = PCI_ID_CODE(PCI_VENDOR_LUCENT, PCI_PRODUCT_LUCENT_ET1310),
146 	  .value = 0 },
147 
148 
149 	{ .id = PCI_ID_CODE(PCI_VENDOR_LUCENT, PCI_PRODUCT_LUCENT_ET1301),
150 	  .value = ET_FLAG_FASTETHER },
151 
152 	PCI_COMPAT_EOL
153 };
154 
155 CFATTACH_DECL_NEW(et, sizeof(struct et_softc), et_match, et_attach, et_detach,
156 	NULL);
157 
158 static int
et_match(device_t dev,cfdata_t match,void * aux)159 et_match(device_t dev, cfdata_t match, void *aux)
160 {
161 	struct pci_attach_args *pa = aux;
162 
163 	return pci_compatible_match(pa, compat_data);
164 }
165 
166 static void
et_attach(device_t parent,device_t self,void * aux)167 et_attach(device_t parent, device_t self, void *aux)
168 {
169 	struct et_softc *sc = device_private(self);
170 	struct pci_attach_args *pa = aux;
171 	const struct device_compatible_entry *dce;
172 	pci_chipset_tag_t pc = pa->pa_pc;
173 	pci_intr_handle_t ih;
174 	const char *intrstr;
175 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
176 	struct mii_data * const mii = &sc->sc_miibus;
177 	uint32_t pmcfg;
178 	pcireg_t memtype;
179 	int error;
180 	char intrbuf[PCI_INTRSTR_LEN];
181 
182 	pci_aprint_devinfo(pa, "Ethernet controller");
183 
184 	sc->sc_dev = self;
185 
186 	/*
187 	 * Initialize tunables
188 	 */
189 	sc->sc_rx_intr_npkts = et_rx_intr_npkts;
190 	sc->sc_rx_intr_delay = et_rx_intr_delay;
191 	sc->sc_tx_intr_nsegs = et_tx_intr_nsegs;
192 	sc->sc_timer = et_timer;
193 
194 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, ET_PCIR_BAR);
195 	if (pci_mapreg_map(pa, ET_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
196 	    &sc->sc_mem_bh, NULL, &sc->sc_mem_size)) {
197 		aprint_error_dev(self, "could not map mem space\n");
198 		return;
199 	}
200 
201 	if (pci_intr_map(pa, &ih) != 0) {
202 		aprint_error_dev(self, "could not map interrupt\n");
203 		goto fail;
204 	}
205 
206 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
207 	sc->sc_irq_handle = pci_intr_establish_xname(pc, ih, IPL_NET, et_intr,
208 	    sc, device_xname(self));
209 	if (sc->sc_irq_handle == NULL) {
210 		aprint_error_dev(self, "could not establish interrupt");
211 		if (intrstr != NULL)
212 			aprint_error(" at %s", intrstr);
213 		aprint_error("\n");
214 		goto fail;
215 	}
216 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
217 
218 	sc->sc_pct = pa->pa_pc;
219 	sc->sc_pcitag = pa->pa_tag;
220 
221 	if (pci_dma64_available(pa))
222 		sc->sc_dmat = pa->pa_dmat64;
223 	else
224 		sc->sc_dmat = pa->pa_dmat;
225 
226 	dce = pci_compatible_lookup(pa, compat_data);
227 	KASSERT(dce != NULL);
228 	sc->sc_flags = (uint32_t)dce->value;
229 
230 	error = et_bus_config(sc);
231 	if (error)
232 		goto fail;
233 
234 	et_get_eaddr(sc, sc->sc_enaddr);
235 
236 	aprint_normal_dev(self, "Ethernet address %s\n",
237 	    ether_sprintf(sc->sc_enaddr));
238 
239 	/* Take PHY out of COMA and enable clocks. */
240 	pmcfg = ET_PM_SYSCLK_GATE | ET_PM_TXCLK_GATE | ET_PM_RXCLK_GATE;
241 	if ((sc->sc_flags & ET_FLAG_FASTETHER) == 0)
242 		pmcfg |= EM_PM_GIGEPHY_ENB;
243 	CSR_WRITE_4(sc, ET_PM, pmcfg);
244 
245 	et_reset(sc);
246 
247 	et_disable_intrs(sc);
248 
249 	error = et_dma_alloc(sc);
250 	if (error)
251 		goto fail;
252 
253 	ifp->if_softc = sc;
254 	ifp->if_mtu = ETHERMTU;
255 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
256 	ifp->if_init = et_init;
257 	ifp->if_ioctl = et_ioctl;
258 	ifp->if_start = et_start;
259 	ifp->if_watchdog = et_watchdog;
260 	IFQ_SET_MAXLEN(&ifp->if_snd, ET_TX_NDESC);
261 	IFQ_SET_READY(&ifp->if_snd);
262 	strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
263 
264 	et_chip_attach(sc);
265 
266 	mii->mii_ifp = ifp;
267 	mii->mii_readreg = et_miibus_readreg;
268 	mii->mii_writereg = et_miibus_writereg;
269 	mii->mii_statchg = et_miibus_statchg;
270 
271 	sc->sc_ethercom.ec_mii = mii;
272 	ifmedia_init(&mii->mii_media, 0, ether_mediachange,
273 	    et_ifmedia_sts);
274 	mii_attach(self, mii, 0xffffffff, MII_PHY_ANY, MII_OFFSET_ANY, 0);
275 	if (LIST_FIRST(&mii->mii_phys) == NULL) {
276 		aprint_error_dev(self, "no PHY found!\n");
277 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL,
278 		    0, NULL);
279 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
280 	} else
281 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
282 
283 	if_attach(ifp);
284 	if_deferred_start_init(ifp, NULL);
285 	ether_ifattach(ifp, sc->sc_enaddr);
286 
287 	callout_init(&sc->sc_tick, 0);
288 	callout_setfunc(&sc->sc_tick, et_tick, sc);
289 	callout_init(&sc->sc_txtick, 0);
290 	callout_setfunc(&sc->sc_txtick, et_txtick, sc);
291 
292 	if (pmf_device_register(self, NULL, NULL))
293 		pmf_class_network_register(self, ifp);
294 	else
295 		aprint_error_dev(self, "couldn't establish power handler\n");
296 
297 	return;
298 
299 fail:
300 	et_dma_free(sc);
301 	if (sc->sc_irq_handle != NULL) {
302 		pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
303 		sc->sc_irq_handle = NULL;
304 	}
305 	if (sc->sc_mem_size) {
306 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
307 		sc->sc_mem_size = 0;
308 	}
309 }
310 
311 static int
et_detach(device_t self,int flags)312 et_detach(device_t self, int flags)
313 {
314 	struct et_softc *sc = device_private(self);
315 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
316 	int s;
317 
318 	pmf_device_deregister(self);
319 	s = splnet();
320 	et_stop(sc);
321 	splx(s);
322 
323 	mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
324 
325 	ether_ifdetach(ifp);
326 	if_detach(ifp);
327 	et_dma_free(sc);
328 
329 	/* Delete all remaining media. */
330 	ifmedia_fini(&sc->sc_miibus.mii_media);
331 
332 	if (sc->sc_irq_handle != NULL) {
333 		pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
334 		sc->sc_irq_handle = NULL;
335 	}
336 
337 	if (sc->sc_mem_size) {
338 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
339 		sc->sc_mem_size = 0;
340 	}
341 
342 	return 0;
343 }
344 
345 #if 0 /* XXX XXX XXX UNUSED */
346 static int
347 et_shutdown(device_t self)
348 {
349 	struct et_softc *sc = device_private(self);
350 	int s;
351 
352 	s = splnet();
353 	et_stop(sc);
354 	splx(s);
355 
356 	return 0;
357 }
358 #endif
359 
360 static int
et_miibus_readreg(device_t dev,int phy,int reg,uint16_t * val)361 et_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
362 {
363 	struct et_softc *sc = device_private(dev);
364 	uint32_t data;
365 	int i, ret;
366 
367 	/* Stop any pending operations */
368 	CSR_WRITE_4(sc, ET_MII_CMD, 0);
369 
370 	data = __SHIFTIN(phy, ET_MII_ADDR_PHY) |
371 	      __SHIFTIN(reg, ET_MII_ADDR_REG);
372 	CSR_WRITE_4(sc, ET_MII_ADDR, data);
373 
374 	/* Start reading */
375 	CSR_WRITE_4(sc, ET_MII_CMD, ET_MII_CMD_READ);
376 
377 #define NRETRY	50
378 
379 	for (i = 0; i < NRETRY; ++i) {
380 		data = CSR_READ_4(sc, ET_MII_IND);
381 		if ((data & (ET_MII_IND_BUSY | ET_MII_IND_INVALID)) == 0)
382 			break;
383 		DELAY(50);
384 	}
385 	if (i == NRETRY) {
386 		aprint_error_dev(sc->sc_dev, "read phy %d, reg %d timed out\n",
387 		    phy, reg);
388 		ret = ETIMEDOUT;
389 		goto back;
390 	}
391 
392 #undef NRETRY
393 
394 	data = CSR_READ_4(sc, ET_MII_STAT);
395 	*val = __SHIFTOUT(data, ET_MII_STAT_VALUE);
396 	ret = 0;
397 
398 back:
399 	/* Make sure that the current operation is stopped */
400 	CSR_WRITE_4(sc, ET_MII_CMD, 0);
401 	return ret;
402 }
403 
404 static int
et_miibus_writereg(device_t dev,int phy,int reg,uint16_t val)405 et_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
406 {
407 	struct et_softc *sc = device_private(dev);
408 	uint32_t data;
409 	uint16_t tmp;
410 	int rv = 0;
411 	int i;
412 
413 	/* Stop any pending operations */
414 	CSR_WRITE_4(sc, ET_MII_CMD, 0);
415 
416 	data = __SHIFTIN(phy, ET_MII_ADDR_PHY) |
417 	      __SHIFTIN(reg, ET_MII_ADDR_REG);
418 	CSR_WRITE_4(sc, ET_MII_ADDR, data);
419 
420 	/* Start writing */
421 	CSR_WRITE_4(sc, ET_MII_CTRL, __SHIFTIN(val, ET_MII_CTRL_VALUE));
422 
423 #define NRETRY 100
424 
425 	for (i = 0; i < NRETRY; ++i) {
426 		data = CSR_READ_4(sc, ET_MII_IND);
427 		if ((data & ET_MII_IND_BUSY) == 0)
428 			break;
429 		DELAY(50);
430 	}
431 	if (i == NRETRY) {
432 		aprint_error_dev(sc->sc_dev, "write phy %d, reg %d timed out\n",
433 		    phy, reg);
434 		et_miibus_readreg(dev, phy, reg, &tmp);
435 		rv = ETIMEDOUT;
436 	}
437 
438 #undef NRETRY
439 
440 	/* Make sure that the current operation is stopped */
441 	CSR_WRITE_4(sc, ET_MII_CMD, 0);
442 
443 	return rv;
444 }
445 
446 static void
et_miibus_statchg(struct ifnet * ifp)447 et_miibus_statchg(struct ifnet *ifp)
448 {
449 	struct et_softc *sc = ifp->if_softc;
450 	struct mii_data *mii = &sc->sc_miibus;
451 	uint32_t cfg1, cfg2, ctrl;
452 	int i;
453 
454 	sc->sc_flags &= ~ET_FLAG_LINK;
455 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
456 	    (IFM_ACTIVE | IFM_AVALID)) {
457 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
458 		case IFM_10_T:
459 		case IFM_100_TX:
460 			sc->sc_flags |= ET_FLAG_LINK;
461 			break;
462 		case IFM_1000_T:
463 			if ((sc->sc_flags & ET_FLAG_FASTETHER) == 0)
464 				sc->sc_flags |= ET_FLAG_LINK;
465 			break;
466 		}
467 	}
468 
469 	/* XXX Stop TX/RX MAC? */
470 	if ((sc->sc_flags & ET_FLAG_LINK) == 0)
471 		return;
472 
473 	/* Program MACs with resolved speed/duplex/flow-control. */
474 	ctrl = CSR_READ_4(sc, ET_MAC_CTRL);
475 	ctrl &= ~(ET_MAC_CTRL_GHDX | ET_MAC_CTRL_MODE_MII);
476 	cfg1 = CSR_READ_4(sc, ET_MAC_CFG1);
477 	cfg1 &= ~(ET_MAC_CFG1_TXFLOW | ET_MAC_CFG1_RXFLOW |
478 	    ET_MAC_CFG1_LOOPBACK);
479 	cfg2 = CSR_READ_4(sc, ET_MAC_CFG2);
480 	cfg2 &= ~(ET_MAC_CFG2_MODE_MII | ET_MAC_CFG2_MODE_GMII |
481 	    ET_MAC_CFG2_FDX | ET_MAC_CFG2_BIGFRM);
482 	cfg2 |= ET_MAC_CFG2_LENCHK | ET_MAC_CFG2_CRC | ET_MAC_CFG2_PADCRC |
483 	    __SHIFTIN(7, ET_MAC_CFG2_PREAMBLE_LEN);
484 
485 
486 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T)
487 		cfg2 |= ET_MAC_CFG2_MODE_GMII;
488 	else {
489 		cfg2 |= ET_MAC_CFG2_MODE_MII;
490 		ctrl |= ET_MAC_CTRL_MODE_MII;
491 	}
492 
493 	if (IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) {
494 		cfg2 |= ET_MAC_CFG2_FDX;
495 		/*
496 		 * Controller lacks automatic TX pause frame
497 		 * generation so it should be handled by driver.
498 		 * Even though driver can send pause frame with
499 		 * arbitrary pause time, controller does not
500 		 * provide a way that tells how many free RX
501 		 * buffers are available in controller.  This
502 		 * limitation makes it hard to generate XON frame
503 		 * in time on driver side so don't enable TX flow
504 		 * control.
505 		 */
506 #ifdef notyet
507 		if (IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE)
508 			cfg1 |= ET_MAC_CFG1_TXFLOW;
509 #endif
510 		if (IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE)
511 			cfg1 |= ET_MAC_CFG1_RXFLOW;
512 	} else
513 		ctrl |= ET_MAC_CTRL_GHDX;
514 
515 	CSR_WRITE_4(sc, ET_MAC_CTRL, ctrl);
516 	CSR_WRITE_4(sc, ET_MAC_CFG2, cfg2);
517 	cfg1 |= ET_MAC_CFG1_TXEN | ET_MAC_CFG1_RXEN;
518 	CSR_WRITE_4(sc, ET_MAC_CFG1, cfg1);
519 
520 #define NRETRY	100
521 
522 	for (i = 0; i < NRETRY; ++i) {
523 		cfg1 = CSR_READ_4(sc, ET_MAC_CFG1);
524 		if ((cfg1 & (ET_MAC_CFG1_SYNC_TXEN | ET_MAC_CFG1_SYNC_RXEN)) ==
525 		    (ET_MAC_CFG1_SYNC_TXEN | ET_MAC_CFG1_SYNC_RXEN))
526 			break;
527 
528 		DELAY(10);
529 	}
530 	/* Note: Timeout always happens when cable is not plugged in. */
531 
532 	sc->sc_flags |= ET_FLAG_TXRX_ENABLED;
533 
534 #undef NRETRY
535 }
536 
537 static void
et_ifmedia_sts(struct ifnet * ifp,struct ifmediareq * ifmr)538 et_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
539 {
540 	struct et_softc *sc;
541 	struct mii_data *mii;
542 
543 	sc = ifp->if_softc;
544 	mii = &sc->sc_miibus;
545 	mii_pollstat(mii);
546 	ifmr->ifm_active = mii->mii_media_active;
547 	ifmr->ifm_status = mii->mii_media_status;
548 }
549 
550 static void
et_stop(struct et_softc * sc)551 et_stop(struct et_softc *sc)
552 {
553 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
554 
555 	callout_stop(&sc->sc_tick);
556 	callout_stop(&sc->sc_txtick);
557 
558 	et_stop_rxdma(sc);
559 	et_stop_txdma(sc);
560 
561 	et_disable_intrs(sc);
562 
563 	et_free_tx_ring(sc);
564 	et_free_rx_ring(sc);
565 
566 	et_reset(sc);
567 
568 	sc->sc_tx = 0;
569 	sc->sc_tx_intr = 0;
570 	sc->sc_flags &= ~ET_FLAG_TXRX_ENABLED;
571 
572 	ifp->if_timer = 0;
573 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
574 }
575 
576 static int
et_bus_config(struct et_softc * sc)577 et_bus_config(struct et_softc *sc)
578 {
579 	uint32_t val; //, max_plsz;
580 //	uint16_t ack_latency, replay_timer;
581 
582 	/*
583 	 * Test whether EEPROM is valid
584 	 * NOTE: Read twice to get the correct value
585 	 */
586 	pci_conf_read(sc->sc_pct, sc->sc_pcitag, ET_PCIR_EEPROM_MISC);
587 	val = pci_conf_read(sc->sc_pct, sc->sc_pcitag, ET_PCIR_EEPROM_MISC);
588 
589 	if (val & ET_PCIM_EEPROM_STATUS_ERROR) {
590 		aprint_error_dev(sc->sc_dev, "EEPROM status error 0x%02x\n", val);
591 		return ENXIO;
592 	}
593 
594 	/* TODO: LED */
595 #if 0
596 	/*
597 	 * Configure ACK latency and replay timer according to
598 	 * max playload size
599 	 */
600 	val = pci_conf_read(sc->sc_pct, sc->sc_pcitag, ET_PCIR_DEVICE_CAPS);
601 	max_plsz = val & ET_PCIM_DEVICE_CAPS_MAX_PLSZ;
602 
603 	switch (max_plsz) {
604 	case ET_PCIV_DEVICE_CAPS_PLSZ_128:
605 		ack_latency = ET_PCIV_ACK_LATENCY_128;
606 		replay_timer = ET_PCIV_REPLAY_TIMER_128;
607 		break;
608 
609 	case ET_PCIV_DEVICE_CAPS_PLSZ_256:
610 		ack_latency = ET_PCIV_ACK_LATENCY_256;
611 		replay_timer = ET_PCIV_REPLAY_TIMER_256;
612 		break;
613 
614 	default:
615 		ack_latency = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
616 		    ET_PCIR_ACK_LATENCY) >> 16;
617 		replay_timer = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
618 		    ET_PCIR_REPLAY_TIMER) >> 16;
619 		aprint_normal_dev(sc->sc_dev, "ack latency %u, replay timer %u\n",
620 		    ack_latency, replay_timer);
621 		break;
622 	}
623 	if (ack_latency != 0) {
624 		pci_conf_write(sc->sc_pct, sc->sc_pcitag,
625 		    ET_PCIR_ACK_LATENCY, ack_latency << 16);
626 		pci_conf_write(sc->sc_pct, sc->sc_pcitag,
627 		    ET_PCIR_REPLAY_TIMER, replay_timer << 16);
628 	}
629 
630 	/*
631 	 * Set L0s and L1 latency timer to 2us
632 	 */
633 	val = ET_PCIV_L0S_LATENCY(2) | ET_PCIV_L1_LATENCY(2);
634 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, ET_PCIR_L0S_L1_LATENCY,
635 	    val << 24);
636 
637 	/*
638 	 * Set max read request size to 2048 bytes
639 	 */
640 	val = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
641 	    ET_PCIR_DEVICE_CTRL) >> 16;
642 	val &= ~ET_PCIM_DEVICE_CTRL_MAX_RRSZ;
643 	val |= ET_PCIV_DEVICE_CTRL_RRSZ_2K;
644 	pci_conf_write(sc->sc_pct, sc->sc_pcitag, ET_PCIR_DEVICE_CTRL,
645 	    val << 16);
646 #endif
647 
648 	return 0;
649 }
650 
651 static void
et_get_eaddr(struct et_softc * sc,uint8_t eaddr[])652 et_get_eaddr(struct et_softc *sc, uint8_t eaddr[])
653 {
654 	uint32_t r;
655 
656 	r = pci_conf_read(sc->sc_pct, sc->sc_pcitag, ET_PCIR_MACADDR_LO);
657 	eaddr[0] = r & 0xff;
658 	eaddr[1] = (r >> 8) & 0xff;
659 	eaddr[2] = (r >> 16) & 0xff;
660 	eaddr[3] = (r >> 24) & 0xff;
661 	r = pci_conf_read(sc->sc_pct, sc->sc_pcitag, ET_PCIR_MACADDR_HI);
662 	eaddr[4] = r & 0xff;
663 	eaddr[5] = (r >> 8) & 0xff;
664 }
665 
666 static void
et_reset(struct et_softc * sc)667 et_reset(struct et_softc *sc)
668 {
669 
670 	CSR_WRITE_4(sc, ET_MAC_CFG1,
671 		    ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
672 		    ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC |
673 		    ET_MAC_CFG1_SIM_RST | ET_MAC_CFG1_SOFT_RST);
674 
675 	CSR_WRITE_4(sc, ET_SWRST,
676 		    ET_SWRST_TXDMA | ET_SWRST_RXDMA |
677 		    ET_SWRST_TXMAC | ET_SWRST_RXMAC |
678 		    ET_SWRST_MAC | ET_SWRST_MAC_STAT | ET_SWRST_MMC);
679 
680 	CSR_WRITE_4(sc, ET_MAC_CFG1,
681 		    ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
682 		    ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC);
683 	CSR_WRITE_4(sc, ET_MAC_CFG1, 0);
684 }
685 
686 static void
et_disable_intrs(struct et_softc * sc)687 et_disable_intrs(struct et_softc *sc)
688 {
689 	CSR_WRITE_4(sc, ET_INTR_MASK, 0xffffffff);
690 }
691 
692 static void
et_enable_intrs(struct et_softc * sc,uint32_t intrs)693 et_enable_intrs(struct et_softc *sc, uint32_t intrs)
694 {
695 	CSR_WRITE_4(sc, ET_INTR_MASK, ~intrs);
696 }
697 
698 static int
et_dma_alloc(struct et_softc * sc)699 et_dma_alloc(struct et_softc *sc)
700 {
701 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
702 	struct et_txstatus_data *txsd = &sc->sc_tx_status;
703 	struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
704 	struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
705 	int i, error;
706 
707 	/*
708 	 * Create TX ring DMA stuffs
709 	 */
710 	error = et_dma_mem_create(sc, ET_TX_RING_SIZE,
711 	    (void **)&tx_ring->tr_desc, &tx_ring->tr_paddr, &tx_ring->tr_dmap,
712 	    &tx_ring->tr_seg);
713 	if (error) {
714 		aprint_error_dev(sc->sc_dev, "can't create TX ring DMA stuffs\n");
715 		return error;
716 	}
717 
718 	/*
719 	 * Create TX status DMA stuffs
720 	 */
721 	error = et_dma_mem_create(sc, sizeof(uint32_t),
722 	    (void **)&txsd->txsd_status,
723 	    &txsd->txsd_paddr, &txsd->txsd_dmap, &txsd->txsd_seg);
724 	if (error) {
725 		aprint_error_dev(sc->sc_dev, "can't create TX status DMA stuffs\n");
726 		return error;
727 	}
728 
729 	/*
730 	 * Create DMA stuffs for RX rings
731 	 */
732 	for (i = 0; i < ET_RX_NRING; ++i) {
733 		static const uint32_t rx_ring_posreg[ET_RX_NRING] =
734 		{ ET_RX_RING0_POS, ET_RX_RING1_POS };
735 
736 		struct et_rxdesc_ring *rx_ring = &sc->sc_rx_ring[i];
737 
738 		error = et_dma_mem_create(sc, ET_RX_RING_SIZE,
739 		    (void **)&rx_ring->rr_desc,
740 		    &rx_ring->rr_paddr, &rx_ring->rr_dmap, &rx_ring->rr_seg);
741 		if (error) {
742 			aprint_error_dev(sc->sc_dev, "can't create DMA stuffs for "
743 			    "the %d RX ring\n", i);
744 			return error;
745 		}
746 		rx_ring->rr_posreg = rx_ring_posreg[i];
747 	}
748 
749 	/*
750 	 * Create RX stat ring DMA stuffs
751 	 */
752 	error = et_dma_mem_create(sc, ET_RXSTAT_RING_SIZE,
753 	    (void **)&rxst_ring->rsr_stat,
754 	    &rxst_ring->rsr_paddr, &rxst_ring->rsr_dmap, &rxst_ring->rsr_seg);
755 	if (error) {
756 		aprint_error_dev(sc->sc_dev, "can't create RX stat ring DMA stuffs\n");
757 		return error;
758 	}
759 
760 	/*
761 	 * Create RX status DMA stuffs
762 	 */
763 	error = et_dma_mem_create(sc, sizeof(struct et_rxstatus),
764 	    (void **)&rxsd->rxsd_status,
765 	    &rxsd->rxsd_paddr, &rxsd->rxsd_dmap, &rxsd->rxsd_seg);
766 	if (error) {
767 		aprint_error_dev(sc->sc_dev, "can't create RX status DMA stuffs\n");
768 		return error;
769 	}
770 
771 	/*
772 	 * Create mbuf DMA stuffs
773 	 */
774 	error = et_dma_mbuf_create(sc);
775 	if (error)
776 		return error;
777 
778 	return 0;
779 }
780 
781 static void
et_dma_free(struct et_softc * sc)782 et_dma_free(struct et_softc *sc)
783 {
784 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
785 	struct et_txstatus_data *txsd = &sc->sc_tx_status;
786 	struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
787 	struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
788 	int i, rx_done[ET_RX_NRING];
789 
790 	/*
791 	 * Destroy TX ring DMA stuffs
792 	 */
793 	et_dma_mem_destroy(sc, tx_ring->tr_desc, tx_ring->tr_dmap);
794 
795 	/*
796 	 * Destroy TX status DMA stuffs
797 	 */
798 	et_dma_mem_destroy(sc, txsd->txsd_status, txsd->txsd_dmap);
799 
800 	/*
801 	 * Destroy DMA stuffs for RX rings
802 	 */
803 	for (i = 0; i < ET_RX_NRING; ++i) {
804 		struct et_rxdesc_ring *rx_ring = &sc->sc_rx_ring[i];
805 
806 		et_dma_mem_destroy(sc, rx_ring->rr_desc, rx_ring->rr_dmap);
807 	}
808 
809 	/*
810 	 * Destroy RX stat ring DMA stuffs
811 	 */
812 	et_dma_mem_destroy(sc, rxst_ring->rsr_stat, rxst_ring->rsr_dmap);
813 
814 	/*
815 	 * Destroy RX status DMA stuffs
816 	 */
817 	et_dma_mem_destroy(sc, rxsd->rxsd_status, rxsd->rxsd_dmap);
818 
819 	/*
820 	 * Destroy mbuf DMA stuffs
821 	 */
822 	for (i = 0; i < ET_RX_NRING; ++i)
823 		rx_done[i] = ET_RX_NDESC;
824 	et_dma_mbuf_destroy(sc, ET_TX_NDESC, rx_done);
825 }
826 
827 static int
et_dma_mbuf_create(struct et_softc * sc)828 et_dma_mbuf_create(struct et_softc *sc)
829 {
830 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
831 	int i, error, rx_done[ET_RX_NRING];
832 
833 	/*
834 	 * Create spare DMA map for RX mbufs
835 	 */
836 	error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
837 	    BUS_DMA_NOWAIT, &sc->sc_mbuf_tmp_dmap);
838 	if (error) {
839 		aprint_error_dev(sc->sc_dev, "can't create spare mbuf DMA map\n");
840 		return error;
841 	}
842 
843 	/*
844 	 * Create DMA maps for RX mbufs
845 	 */
846 	bzero(rx_done, sizeof(rx_done));
847 	for (i = 0; i < ET_RX_NRING; ++i) {
848 		struct et_rxbuf_data *rbd = &sc->sc_rx_data[i];
849 		int j;
850 
851 		for (j = 0; j < ET_RX_NDESC; ++j) {
852 			error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
853 			    MCLBYTES, 0, BUS_DMA_NOWAIT,
854 			    &rbd->rbd_buf[j].rb_dmap);
855 			if (error) {
856 				aprint_error_dev(sc->sc_dev, "can't create %d RX mbuf "
857 				    "for %d RX ring\n", j, i);
858 				rx_done[i] = j;
859 				et_dma_mbuf_destroy(sc, 0, rx_done);
860 				return error;
861 			}
862 		}
863 		rx_done[i] = ET_RX_NDESC;
864 
865 		rbd->rbd_softc = sc;
866 		rbd->rbd_ring = &sc->sc_rx_ring[i];
867 	}
868 
869 	/*
870 	 * Create DMA maps for TX mbufs
871 	 */
872 	for (i = 0; i < ET_TX_NDESC; ++i) {
873 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
874 		    0, BUS_DMA_NOWAIT, &tbd->tbd_buf[i].tb_dmap);
875 		if (error) {
876 			aprint_error_dev(sc->sc_dev, "can't create %d TX mbuf "
877 			    "DMA map\n", i);
878 			et_dma_mbuf_destroy(sc, i, rx_done);
879 			return error;
880 		}
881 	}
882 
883 	return 0;
884 }
885 
886 static void
et_dma_mbuf_destroy(struct et_softc * sc,int tx_done,const int rx_done[])887 et_dma_mbuf_destroy(struct et_softc *sc, int tx_done, const int rx_done[])
888 {
889 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
890 	int i;
891 
892 	/*
893 	 * Destroy DMA maps for RX mbufs
894 	 */
895 	for (i = 0; i < ET_RX_NRING; ++i) {
896 		struct et_rxbuf_data *rbd = &sc->sc_rx_data[i];
897 		int j;
898 
899 		for (j = 0; j < rx_done[i]; ++j) {
900 			struct et_rxbuf *rb = &rbd->rbd_buf[j];
901 
902 			KASSERTMSG(rb->rb_mbuf == NULL,
903 			    "RX mbuf in %d RX ring is not freed yet\n", i);
904 			bus_dmamap_destroy(sc->sc_dmat, rb->rb_dmap);
905 		}
906 	}
907 
908 	/*
909 	 * Destroy DMA maps for TX mbufs
910 	 */
911 	for (i = 0; i < tx_done; ++i) {
912 		struct et_txbuf *tb = &tbd->tbd_buf[i];
913 
914 		KASSERTMSG(tb->tb_mbuf == NULL, "TX mbuf is not freed yet\n");
915 		bus_dmamap_destroy(sc->sc_dmat, tb->tb_dmap);
916 	}
917 
918 	/*
919 	 * Destroy spare mbuf DMA map
920 	 */
921 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_mbuf_tmp_dmap);
922 }
923 
924 static int
et_dma_mem_create(struct et_softc * sc,bus_size_t size,void ** addr,bus_addr_t * paddr,bus_dmamap_t * dmap,bus_dma_segment_t * seg)925 et_dma_mem_create(struct et_softc *sc, bus_size_t size,
926     void **addr, bus_addr_t *paddr, bus_dmamap_t *dmap, bus_dma_segment_t *seg)
927 {
928 	int error, nsegs;
929 
930 	error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0, BUS_DMA_NOWAIT,
931 	    dmap);
932 	if (error) {
933 		aprint_error_dev(sc->sc_dev, "can't create DMA map\n");
934 		return error;
935 	}
936 
937 	error = bus_dmamem_alloc(sc->sc_dmat, size, ET_ALIGN, 0, seg,
938 	    1, &nsegs, BUS_DMA_WAITOK);
939 	if (error) {
940 		aprint_error_dev(sc->sc_dev, "can't allocate DMA mem\n");
941 		return error;
942 	}
943 
944 	error = bus_dmamem_map(sc->sc_dmat, seg, nsegs,
945 	    size, (void **)addr, BUS_DMA_NOWAIT);
946 	if (error) {
947 		aprint_error_dev(sc->sc_dev, "can't map DMA mem\n");
948 		return (error);
949 	}
950 
951 	error = bus_dmamap_load(sc->sc_dmat, *dmap, *addr, size, NULL,
952 	    BUS_DMA_WAITOK);
953 	if (error) {
954 		aprint_error_dev(sc->sc_dev, "can't load DMA mem\n");
955 		bus_dmamem_free(sc->sc_dmat, (bus_dma_segment_t *)addr, 1);
956 		return error;
957 	}
958 
959 	memset(*addr, 0, size);
960 
961 	*paddr = (*dmap)->dm_segs[0].ds_addr;
962 
963 	return 0;
964 }
965 
966 static void
et_dma_mem_destroy(struct et_softc * sc,void * addr,bus_dmamap_t dmap)967 et_dma_mem_destroy(struct et_softc *sc, void *addr, bus_dmamap_t dmap)
968 {
969 	bus_dmamap_unload(sc->sc_dmat, dmap);
970 	bus_dmamem_free(sc->sc_dmat, (bus_dma_segment_t *)&addr, 1);
971 }
972 
973 static void
et_chip_attach(struct et_softc * sc)974 et_chip_attach(struct et_softc *sc)
975 {
976 	uint32_t val;
977 
978 	/*
979 	 * Perform minimal initialization
980 	 */
981 
982 	/* Disable loopback */
983 	CSR_WRITE_4(sc, ET_LOOPBACK, 0);
984 
985 	/* Reset MAC */
986 	CSR_WRITE_4(sc, ET_MAC_CFG1,
987 		    ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
988 		    ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC |
989 		    ET_MAC_CFG1_SIM_RST | ET_MAC_CFG1_SOFT_RST);
990 
991 	/*
992 	 * Setup half duplex mode
993 	 */
994 	val = __SHIFTIN(10, ET_MAC_HDX_ALT_BEB_TRUNC) |
995 	      __SHIFTIN(15, ET_MAC_HDX_REXMIT_MAX) |
996 	      __SHIFTIN(55, ET_MAC_HDX_COLLWIN) |
997 	      ET_MAC_HDX_EXC_DEFER;
998 	CSR_WRITE_4(sc, ET_MAC_HDX, val);
999 
1000 	/* Clear MAC control */
1001 	CSR_WRITE_4(sc, ET_MAC_CTRL, 0);
1002 
1003 	/* Reset MII */
1004 	CSR_WRITE_4(sc, ET_MII_CFG, ET_MII_CFG_CLKRST);
1005 
1006 	/* Bring MAC out of reset state */
1007 	CSR_WRITE_4(sc, ET_MAC_CFG1, 0);
1008 
1009 	/* Enable memory controllers */
1010 	CSR_WRITE_4(sc, ET_MMC_CTRL, ET_MMC_CTRL_ENABLE);
1011 }
1012 
1013 static int
et_intr(void * xsc)1014 et_intr(void *xsc)
1015 {
1016 	struct et_softc *sc = xsc;
1017 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1018 	uint32_t intrs;
1019 
1020 	if ((ifp->if_flags & IFF_RUNNING) == 0)
1021 		return (0);
1022 
1023 	intrs = CSR_READ_4(sc, ET_INTR_STATUS);
1024 	if (intrs == 0 || intrs == 0xffffffff)
1025 		return (0);
1026 
1027 	et_disable_intrs(sc);
1028 	intrs &= ET_INTRS;
1029 	if (intrs == 0)	/* Not interested */
1030 		goto back;
1031 
1032 	if (intrs & ET_INTR_RXEOF)
1033 		et_rxeof(sc);
1034 	if (intrs & (ET_INTR_TXEOF | ET_INTR_TIMER))
1035 		et_txeof(sc);
1036 	if (intrs & ET_INTR_TIMER)
1037 		CSR_WRITE_4(sc, ET_TIMER, sc->sc_timer);
1038 back:
1039 	et_enable_intrs(sc, ET_INTRS);
1040 
1041 	return (1);
1042 }
1043 
1044 static int
et_init(struct ifnet * ifp)1045 et_init(struct ifnet *ifp)
1046 {
1047 	struct et_softc *sc = ifp->if_softc;
1048 	int error, i, s;
1049 
1050 	if (ifp->if_flags & IFF_RUNNING)
1051 		return 0;
1052 
1053 	s = splnet();
1054 
1055 	et_stop(sc);
1056 	et_reset(sc);
1057 
1058 	for (i = 0; i < ET_RX_NRING; ++i) {
1059 		sc->sc_rx_data[i].rbd_bufsize = et_bufsize[i].bufsize;
1060 		sc->sc_rx_data[i].rbd_newbuf = et_bufsize[i].newbuf;
1061 	}
1062 
1063 	error = et_init_tx_ring(sc);
1064 	if (error)
1065 		goto back;
1066 
1067 	error = et_init_rx_ring(sc);
1068 	if (error)
1069 		goto back;
1070 
1071 	error = et_chip_init(sc);
1072 	if (error)
1073 		goto back;
1074 
1075 	error = et_start_rxdma(sc);
1076 	if (error)
1077 		goto back;
1078 
1079 	error = et_start_txdma(sc);
1080 	if (error)
1081 		goto back;
1082 
1083 	/* Enable interrupts. */
1084 	et_enable_intrs(sc, ET_INTRS);
1085 
1086 	callout_schedule(&sc->sc_tick, hz);
1087 
1088 	CSR_WRITE_4(sc, ET_TIMER, sc->sc_timer);
1089 
1090 	ifp->if_flags |= IFF_RUNNING;
1091 	ifp->if_flags &= ~IFF_OACTIVE;
1092 
1093 	sc->sc_flags &= ~ET_FLAG_LINK;
1094 	ether_mediachange(ifp);
1095 back:
1096 	if (error)
1097 		et_stop(sc);
1098 
1099 	splx(s);
1100 
1101 	return (0);
1102 }
1103 
1104 static int
et_ioctl(struct ifnet * ifp,u_long cmd,void * data)1105 et_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1106 {
1107 	struct et_softc *sc = ifp->if_softc;
1108 	int s, error = 0;
1109 
1110 	s = splnet();
1111 
1112 	switch (cmd) {
1113 	case SIOCSIFFLAGS:
1114 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1115 			break;
1116 		if (ifp->if_flags & IFF_UP) {
1117 			/*
1118 			 * If only the PROMISC or ALLMULTI flag changes, then
1119 			 * don't do a full re-init of the chip, just update
1120 			 * the Rx filter.
1121 			 */
1122 			if ((ifp->if_flags & IFF_RUNNING) &&
1123 			    ((ifp->if_flags ^ sc->sc_if_flags) &
1124 			     (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
1125 				et_setmulti(sc);
1126 			} else {
1127 				if (!(ifp->if_flags & IFF_RUNNING))
1128 					et_init(ifp);
1129 			}
1130 		} else {
1131 			if (ifp->if_flags & IFF_RUNNING)
1132 				et_stop(sc);
1133 		}
1134 		sc->sc_if_flags = ifp->if_flags;
1135 		break;
1136 	default:
1137 		error = ether_ioctl(ifp, cmd, data);
1138 		if (error == ENETRESET) {
1139 			if (ifp->if_flags & IFF_RUNNING)
1140 				et_setmulti(sc);
1141 			error = 0;
1142 		}
1143 		break;
1144 	}
1145 
1146 	splx(s);
1147 
1148 	return error;
1149 }
1150 
1151 static void
et_start(struct ifnet * ifp)1152 et_start(struct ifnet *ifp)
1153 {
1154 	struct et_softc *sc = ifp->if_softc;
1155 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
1156 	int trans;
1157 	struct mbuf *m;
1158 
1159 	if (((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) ||
1160 	    ((sc->sc_flags & (ET_FLAG_LINK | ET_FLAG_TXRX_ENABLED)) !=
1161 		(ET_FLAG_LINK | ET_FLAG_TXRX_ENABLED)))
1162 		return;
1163 
1164 	trans = 0;
1165 	for (;;) {
1166 		IFQ_DEQUEUE(&ifp->if_snd, m);
1167 		if (m == NULL)
1168 			break;
1169 
1170 		if ((tbd->tbd_used + ET_NSEG_SPARE) > ET_TX_NDESC) {
1171 			ifp->if_flags |= IFF_OACTIVE;
1172 			break;
1173 		}
1174 
1175 		if (et_encap(sc, &m)) {
1176 			if_statinc(ifp, if_oerrors);
1177 			ifp->if_flags |= IFF_OACTIVE;
1178 			break;
1179 		}
1180 
1181 		trans = 1;
1182 
1183 		bpf_mtap(ifp, m, BPF_D_OUT);
1184 	}
1185 
1186 	if (trans) {
1187 		callout_schedule(&sc->sc_txtick, hz);
1188 		ifp->if_timer = 5;
1189 	}
1190 }
1191 
1192 static void
et_watchdog(struct ifnet * ifp)1193 et_watchdog(struct ifnet *ifp)
1194 {
1195 	struct et_softc *sc = ifp->if_softc;
1196 	aprint_error_dev(sc->sc_dev, "watchdog timed out\n");
1197 
1198 	ifp->if_flags &= ~IFF_RUNNING;
1199 	et_init(ifp);
1200 	et_start(ifp);
1201 }
1202 
1203 static int
et_stop_rxdma(struct et_softc * sc)1204 et_stop_rxdma(struct et_softc *sc)
1205 {
1206 
1207 	CSR_WRITE_4(sc, ET_RXDMA_CTRL,
1208 		    ET_RXDMA_CTRL_HALT | ET_RXDMA_CTRL_RING1_ENABLE);
1209 
1210 	DELAY(5);
1211 	if ((CSR_READ_4(sc, ET_RXDMA_CTRL) & ET_RXDMA_CTRL_HALTED) == 0) {
1212 		aprint_error_dev(sc->sc_dev, "can't stop RX DMA engine\n");
1213 		return ETIMEDOUT;
1214 	}
1215 	return 0;
1216 }
1217 
1218 static int
et_stop_txdma(struct et_softc * sc)1219 et_stop_txdma(struct et_softc *sc)
1220 {
1221 
1222 	CSR_WRITE_4(sc, ET_TXDMA_CTRL,
1223 		    ET_TXDMA_CTRL_HALT | ET_TXDMA_CTRL_SINGLE_EPKT);
1224 	return 0;
1225 }
1226 
1227 static void
et_free_tx_ring(struct et_softc * sc)1228 et_free_tx_ring(struct et_softc *sc)
1229 {
1230 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
1231 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1232 	int i;
1233 
1234 	for (i = 0; i < ET_TX_NDESC; ++i) {
1235 		struct et_txbuf *tb = &tbd->tbd_buf[i];
1236 
1237 		if (tb->tb_mbuf != NULL) {
1238 			bus_dmamap_unload(sc->sc_dmat, tb->tb_dmap);
1239 			m_freem(tb->tb_mbuf);
1240 			tb->tb_mbuf = NULL;
1241 		}
1242 	}
1243 
1244 	bzero(tx_ring->tr_desc, ET_TX_RING_SIZE);
1245 	bus_dmamap_sync(sc->sc_dmat, tx_ring->tr_dmap, 0,
1246 	    tx_ring->tr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1247 }
1248 
1249 static void
et_free_rx_ring(struct et_softc * sc)1250 et_free_rx_ring(struct et_softc *sc)
1251 {
1252 	int n;
1253 
1254 	for (n = 0; n < ET_RX_NRING; ++n) {
1255 		struct et_rxbuf_data *rbd = &sc->sc_rx_data[n];
1256 		struct et_rxdesc_ring *rx_ring = &sc->sc_rx_ring[n];
1257 		int i;
1258 
1259 		for (i = 0; i < ET_RX_NDESC; ++i) {
1260 			struct et_rxbuf *rb = &rbd->rbd_buf[i];
1261 
1262 			if (rb->rb_mbuf != NULL) {
1263 				bus_dmamap_unload(sc->sc_dmat, rb->rb_dmap);
1264 				m_freem(rb->rb_mbuf);
1265 				rb->rb_mbuf = NULL;
1266 			}
1267 		}
1268 
1269 		bzero(rx_ring->rr_desc, ET_RX_RING_SIZE);
1270 		bus_dmamap_sync(sc->sc_dmat, rx_ring->rr_dmap, 0,
1271 		    rx_ring->rr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1272 	}
1273 }
1274 
1275 static void
et_setmulti(struct et_softc * sc)1276 et_setmulti(struct et_softc *sc)
1277 {
1278 	struct ethercom *ec = &sc->sc_ethercom;
1279 	struct ifnet *ifp = &ec->ec_if;
1280 	uint32_t hash[4] = { 0, 0, 0, 0 };
1281 	uint32_t rxmac_ctrl, pktfilt;
1282 	struct ether_multi *enm;
1283 	struct ether_multistep step;
1284 	int i, count;
1285 
1286 	pktfilt = CSR_READ_4(sc, ET_PKTFILT);
1287 	rxmac_ctrl = CSR_READ_4(sc, ET_RXMAC_CTRL);
1288 
1289 	pktfilt &= ~(ET_PKTFILT_BCAST | ET_PKTFILT_MCAST | ET_PKTFILT_UCAST);
1290 	if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) {
1291 		rxmac_ctrl |= ET_RXMAC_CTRL_NO_PKTFILT;
1292 		goto back;
1293 	}
1294 
1295 	count = 0;
1296 	ETHER_LOCK(ec);
1297 	ETHER_FIRST_MULTI(step, ec, enm);
1298 	while (enm != NULL) {
1299 		uint32_t *hp, h;
1300 
1301 		h = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
1302 		h = (h & 0x3f800000) >> 23;
1303 
1304 		hp = &hash[0];
1305 		if (h >= 32 && h < 64) {
1306 			h -= 32;
1307 			hp = &hash[1];
1308 		} else if (h >= 64 && h < 96) {
1309 			h -= 64;
1310 			hp = &hash[2];
1311 		} else if (h >= 96) {
1312 			h -= 96;
1313 			hp = &hash[3];
1314 		}
1315 		*hp |= (1 << h);
1316 
1317 		++count;
1318 		ETHER_NEXT_MULTI(step, enm);
1319 	}
1320 	ETHER_UNLOCK(ec);
1321 
1322 	for (i = 0; i < 4; ++i)
1323 		CSR_WRITE_4(sc, ET_MULTI_HASH + (i * 4), hash[i]);
1324 
1325 	if (count > 0)
1326 		pktfilt |= ET_PKTFILT_MCAST;
1327 	rxmac_ctrl &= ~ET_RXMAC_CTRL_NO_PKTFILT;
1328 back:
1329 	CSR_WRITE_4(sc, ET_PKTFILT, pktfilt);
1330 	CSR_WRITE_4(sc, ET_RXMAC_CTRL, rxmac_ctrl);
1331 }
1332 
1333 static int
et_chip_init(struct et_softc * sc)1334 et_chip_init(struct et_softc *sc)
1335 {
1336 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1337 	uint32_t rxq_end;
1338 	int error;
1339 
1340 	/*
1341 	 * Split internal memory between TX and RX according to MTU
1342 	 */
1343 	if (ifp->if_mtu < 2048)
1344 		rxq_end = 0x2bc;
1345 	else if (ifp->if_mtu < 8192)
1346 		rxq_end = 0x1ff;
1347 	else
1348 		rxq_end = 0x1b3;
1349 	CSR_WRITE_4(sc, ET_RXQ_START, 0);
1350 	CSR_WRITE_4(sc, ET_RXQ_END, rxq_end);
1351 	CSR_WRITE_4(sc, ET_TXQ_START, rxq_end + 1);
1352 	CSR_WRITE_4(sc, ET_TXQ_END, ET_INTERN_MEM_END);
1353 
1354 	/* No loopback */
1355 	CSR_WRITE_4(sc, ET_LOOPBACK, 0);
1356 
1357 	/* Clear MSI configure */
1358 	CSR_WRITE_4(sc, ET_MSI_CFG, 0);
1359 
1360 	/* Disable timer */
1361 	CSR_WRITE_4(sc, ET_TIMER, 0);
1362 
1363 	/* Initialize MAC */
1364 	et_init_mac(sc);
1365 
1366 	/* Enable memory controllers */
1367 	CSR_WRITE_4(sc, ET_MMC_CTRL, ET_MMC_CTRL_ENABLE);
1368 
1369 	/* Initialize RX MAC */
1370 	et_init_rxmac(sc);
1371 
1372 	/* Initialize TX MAC */
1373 	et_init_txmac(sc);
1374 
1375 	/* Initialize RX DMA engine */
1376 	error = et_init_rxdma(sc);
1377 	if (error)
1378 		return error;
1379 
1380 	/* Initialize TX DMA engine */
1381 	error = et_init_txdma(sc);
1382 	if (error)
1383 		return error;
1384 
1385 	return 0;
1386 }
1387 
1388 static int
et_init_tx_ring(struct et_softc * sc)1389 et_init_tx_ring(struct et_softc *sc)
1390 {
1391 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1392 	struct et_txstatus_data *txsd = &sc->sc_tx_status;
1393 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
1394 
1395 	bzero(tx_ring->tr_desc, ET_TX_RING_SIZE);
1396 	bus_dmamap_sync(sc->sc_dmat, tx_ring->tr_dmap, 0,
1397 	    tx_ring->tr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1398 
1399 	tbd->tbd_start_index = 0;
1400 	tbd->tbd_start_wrap = 0;
1401 	tbd->tbd_used = 0;
1402 
1403 	bzero(txsd->txsd_status, sizeof(uint32_t));
1404 	bus_dmamap_sync(sc->sc_dmat, txsd->txsd_dmap, 0,
1405 	    txsd->txsd_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1406 	return 0;
1407 }
1408 
1409 static int
et_init_rx_ring(struct et_softc * sc)1410 et_init_rx_ring(struct et_softc *sc)
1411 {
1412 	struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
1413 	struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
1414 	int n;
1415 
1416 	for (n = 0; n < ET_RX_NRING; ++n) {
1417 		struct et_rxbuf_data *rbd = &sc->sc_rx_data[n];
1418 		int i, error;
1419 
1420 		for (i = 0; i < ET_RX_NDESC; ++i) {
1421 			error = rbd->rbd_newbuf(rbd, i, 1);
1422 			if (error) {
1423 				aprint_error_dev(sc->sc_dev, "%d ring %d buf, newbuf failed: "
1424 				    "%d\n", n, i, error);
1425 				return error;
1426 			}
1427 		}
1428 	}
1429 
1430 	bzero(rxsd->rxsd_status, sizeof(struct et_rxstatus));
1431 	bus_dmamap_sync(sc->sc_dmat, rxsd->rxsd_dmap, 0,
1432 	    rxsd->rxsd_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1433 
1434 	bzero(rxst_ring->rsr_stat, ET_RXSTAT_RING_SIZE);
1435 	bus_dmamap_sync(sc->sc_dmat, rxst_ring->rsr_dmap, 0,
1436 	    rxst_ring->rsr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1437 
1438 	return 0;
1439 }
1440 
1441 static int
et_init_rxdma(struct et_softc * sc)1442 et_init_rxdma(struct et_softc *sc)
1443 {
1444 	struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
1445 	struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
1446 	struct et_rxdesc_ring *rx_ring;
1447 	int error;
1448 
1449 	error = et_stop_rxdma(sc);
1450 	if (error) {
1451 		aprint_error_dev(sc->sc_dev, "can't init RX DMA engine\n");
1452 		return error;
1453 	}
1454 
1455 	/*
1456 	 * Install RX status
1457 	 */
1458 	CSR_WRITE_4(sc, ET_RX_STATUS_HI, ET_ADDR_HI(rxsd->rxsd_paddr));
1459 	CSR_WRITE_4(sc, ET_RX_STATUS_LO, ET_ADDR_LO(rxsd->rxsd_paddr));
1460 
1461 	/*
1462 	 * Install RX stat ring
1463 	 */
1464 	CSR_WRITE_4(sc, ET_RXSTAT_HI, ET_ADDR_HI(rxst_ring->rsr_paddr));
1465 	CSR_WRITE_4(sc, ET_RXSTAT_LO, ET_ADDR_LO(rxst_ring->rsr_paddr));
1466 	CSR_WRITE_4(sc, ET_RXSTAT_CNT, ET_RX_NSTAT - 1);
1467 	CSR_WRITE_4(sc, ET_RXSTAT_POS, 0);
1468 	CSR_WRITE_4(sc, ET_RXSTAT_MINCNT, ((ET_RX_NSTAT * 15) / 100) - 1);
1469 
1470 	/* Match ET_RXSTAT_POS */
1471 	rxst_ring->rsr_index = 0;
1472 	rxst_ring->rsr_wrap = 0;
1473 
1474 	/*
1475 	 * Install the 2nd RX descriptor ring
1476 	 */
1477 	rx_ring = &sc->sc_rx_ring[1];
1478 	CSR_WRITE_4(sc, ET_RX_RING1_HI, ET_ADDR_HI(rx_ring->rr_paddr));
1479 	CSR_WRITE_4(sc, ET_RX_RING1_LO, ET_ADDR_LO(rx_ring->rr_paddr));
1480 	CSR_WRITE_4(sc, ET_RX_RING1_CNT, ET_RX_NDESC - 1);
1481 	CSR_WRITE_4(sc, ET_RX_RING1_POS, ET_RX_RING1_POS_WRAP);
1482 	CSR_WRITE_4(sc, ET_RX_RING1_MINCNT, ((ET_RX_NDESC * 15) / 100) - 1);
1483 
1484 	/* Match ET_RX_RING1_POS */
1485 	rx_ring->rr_index = 0;
1486 	rx_ring->rr_wrap = 1;
1487 
1488 	/*
1489 	 * Install the 1st RX descriptor ring
1490 	 */
1491 	rx_ring = &sc->sc_rx_ring[0];
1492 	CSR_WRITE_4(sc, ET_RX_RING0_HI, ET_ADDR_HI(rx_ring->rr_paddr));
1493 	CSR_WRITE_4(sc, ET_RX_RING0_LO, ET_ADDR_LO(rx_ring->rr_paddr));
1494 	CSR_WRITE_4(sc, ET_RX_RING0_CNT, ET_RX_NDESC - 1);
1495 	CSR_WRITE_4(sc, ET_RX_RING0_POS, ET_RX_RING0_POS_WRAP);
1496 	CSR_WRITE_4(sc, ET_RX_RING0_MINCNT, ((ET_RX_NDESC * 15) / 100) - 1);
1497 
1498 	/* Match ET_RX_RING0_POS */
1499 	rx_ring->rr_index = 0;
1500 	rx_ring->rr_wrap = 1;
1501 
1502 	/*
1503 	 * RX intr moderation
1504 	 */
1505 	CSR_WRITE_4(sc, ET_RX_INTR_NPKTS, sc->sc_rx_intr_npkts);
1506 	CSR_WRITE_4(sc, ET_RX_INTR_DELAY, sc->sc_rx_intr_delay);
1507 
1508 	return 0;
1509 }
1510 
1511 static int
et_init_txdma(struct et_softc * sc)1512 et_init_txdma(struct et_softc *sc)
1513 {
1514 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1515 	struct et_txstatus_data *txsd = &sc->sc_tx_status;
1516 	int error;
1517 
1518 	error = et_stop_txdma(sc);
1519 	if (error) {
1520 		aprint_error_dev(sc->sc_dev, "can't init TX DMA engine\n");
1521 		return error;
1522 	}
1523 
1524 	/*
1525 	 * Install TX descriptor ring
1526 	 */
1527 	CSR_WRITE_4(sc, ET_TX_RING_HI, ET_ADDR_HI(tx_ring->tr_paddr));
1528 	CSR_WRITE_4(sc, ET_TX_RING_LO, ET_ADDR_LO(tx_ring->tr_paddr));
1529 	CSR_WRITE_4(sc, ET_TX_RING_CNT, ET_TX_NDESC - 1);
1530 
1531 	/*
1532 	 * Install TX status
1533 	 */
1534 	CSR_WRITE_4(sc, ET_TX_STATUS_HI, ET_ADDR_HI(txsd->txsd_paddr));
1535 	CSR_WRITE_4(sc, ET_TX_STATUS_LO, ET_ADDR_LO(txsd->txsd_paddr));
1536 
1537 	CSR_WRITE_4(sc, ET_TX_READY_POS, 0);
1538 
1539 	/* Match ET_TX_READY_POS */
1540 	tx_ring->tr_ready_index = 0;
1541 	tx_ring->tr_ready_wrap = 0;
1542 
1543 	return 0;
1544 }
1545 
1546 static void
et_init_mac(struct et_softc * sc)1547 et_init_mac(struct et_softc *sc)
1548 {
1549 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1550 	const uint8_t *eaddr = CLLADDR(ifp->if_sadl);
1551 	uint32_t val;
1552 
1553 	/* Reset MAC */
1554 	CSR_WRITE_4(sc, ET_MAC_CFG1,
1555 		    ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC |
1556 		    ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC |
1557 		    ET_MAC_CFG1_SIM_RST | ET_MAC_CFG1_SOFT_RST);
1558 
1559 	/*
1560 	 * Setup inter packet gap
1561 	 */
1562 	val = __SHIFTIN(56, ET_IPG_NONB2B_1) |
1563 	      __SHIFTIN(88, ET_IPG_NONB2B_2) |
1564 	      __SHIFTIN(80, ET_IPG_MINIFG) |
1565 	      __SHIFTIN(96, ET_IPG_B2B);
1566 	CSR_WRITE_4(sc, ET_IPG, val);
1567 
1568 	/*
1569 	 * Setup half duplex mode
1570 	 */
1571 	val = __SHIFTIN(10, ET_MAC_HDX_ALT_BEB_TRUNC) |
1572 	      __SHIFTIN(15, ET_MAC_HDX_REXMIT_MAX) |
1573 	      __SHIFTIN(55, ET_MAC_HDX_COLLWIN) |
1574 	      ET_MAC_HDX_EXC_DEFER;
1575 	CSR_WRITE_4(sc, ET_MAC_HDX, val);
1576 
1577 	/* Clear MAC control */
1578 	CSR_WRITE_4(sc, ET_MAC_CTRL, 0);
1579 
1580 	/* Reset MII */
1581 	CSR_WRITE_4(sc, ET_MII_CFG, ET_MII_CFG_CLKRST);
1582 
1583 	/*
1584 	 * Set MAC address
1585 	 */
1586 	val = eaddr[2] | (eaddr[3] << 8) | (eaddr[4] << 16) | (eaddr[5] << 24);
1587 	CSR_WRITE_4(sc, ET_MAC_ADDR1, val);
1588 	val = (eaddr[0] << 16) | (eaddr[1] << 24);
1589 	CSR_WRITE_4(sc, ET_MAC_ADDR2, val);
1590 
1591 	/* Set max frame length */
1592 	CSR_WRITE_4(sc, ET_MAX_FRMLEN,
1593 		    ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ifp->if_mtu + ETHER_CRC_LEN);
1594 
1595 	/* Bring MAC out of reset state */
1596 	CSR_WRITE_4(sc, ET_MAC_CFG1, 0);
1597 }
1598 
1599 static void
et_init_rxmac(struct et_softc * sc)1600 et_init_rxmac(struct et_softc *sc)
1601 {
1602 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1603 	const uint8_t *eaddr = CLLADDR(ifp->if_sadl);
1604 	uint32_t val;
1605 	int i;
1606 
1607 	/* Disable RX MAC and WOL */
1608 	CSR_WRITE_4(sc, ET_RXMAC_CTRL, ET_RXMAC_CTRL_WOL_DISABLE);
1609 
1610 	/*
1611 	 * Clear all WOL related registers
1612 	 */
1613 	for (i = 0; i < 3; ++i)
1614 		CSR_WRITE_4(sc, ET_WOL_CRC + (i * 4), 0);
1615 	for (i = 0; i < 20; ++i)
1616 		CSR_WRITE_4(sc, ET_WOL_MASK + (i * 4), 0);
1617 
1618 	/*
1619 	 * Set WOL source address.  XXX is this necessary?
1620 	 */
1621 	val = (eaddr[2] << 24) | (eaddr[3] << 16) | (eaddr[4] << 8) | eaddr[5];
1622 	CSR_WRITE_4(sc, ET_WOL_SA_LO, val);
1623 	val = (eaddr[0] << 8) | eaddr[1];
1624 	CSR_WRITE_4(sc, ET_WOL_SA_HI, val);
1625 
1626 	/* Clear packet filters */
1627 	CSR_WRITE_4(sc, ET_PKTFILT, 0);
1628 
1629 	/* No ucast filtering */
1630 	CSR_WRITE_4(sc, ET_UCAST_FILTADDR1, 0);
1631 	CSR_WRITE_4(sc, ET_UCAST_FILTADDR2, 0);
1632 	CSR_WRITE_4(sc, ET_UCAST_FILTADDR3, 0);
1633 
1634 	if (ifp->if_mtu > 8192) {
1635 		/*
1636 		 * In order to transmit jumbo packets greater than 8k,
1637 		 * the FIFO between RX MAC and RX DMA needs to be reduced
1638 		 * in size to (16k - MTU).  In order to implement this, we
1639 		 * must use "cut through" mode in the RX MAC, which chops
1640 		 * packets down into segments which are (max_size * 16).
1641 		 * In this case we selected 256 bytes, since this is the
1642 		 * size of the PCI-Express TLP's that the 1310 uses.
1643 		 */
1644 		val = __SHIFTIN(16, ET_RXMAC_MC_SEGSZ_MAX) |
1645 		      ET_RXMAC_MC_SEGSZ_ENABLE;
1646 	} else {
1647 		val = 0;
1648 	}
1649 	CSR_WRITE_4(sc, ET_RXMAC_MC_SEGSZ, val);
1650 
1651 	CSR_WRITE_4(sc, ET_RXMAC_MC_WATERMARK, 0);
1652 
1653 	/* Initialize RX MAC management register */
1654 	CSR_WRITE_4(sc, ET_RXMAC_MGT, 0);
1655 
1656 	CSR_WRITE_4(sc, ET_RXMAC_SPACE_AVL, 0);
1657 
1658 	CSR_WRITE_4(sc, ET_RXMAC_MGT,
1659 		    ET_RXMAC_MGT_PASS_ECRC |
1660 		    ET_RXMAC_MGT_PASS_ELEN |
1661 		    ET_RXMAC_MGT_PASS_ETRUNC |
1662 		    ET_RXMAC_MGT_CHECK_PKT);
1663 
1664 	/*
1665 	 * Configure runt filtering (may not work on certain chip generation)
1666 	 */
1667 	val = __SHIFTIN(ETHER_MIN_LEN, ET_PKTFILT_MINLEN) | ET_PKTFILT_FRAG;
1668 	CSR_WRITE_4(sc, ET_PKTFILT, val);
1669 
1670 	/* Enable RX MAC but leave WOL disabled */
1671 	CSR_WRITE_4(sc, ET_RXMAC_CTRL,
1672 		    ET_RXMAC_CTRL_WOL_DISABLE | ET_RXMAC_CTRL_ENABLE);
1673 
1674 	/*
1675 	 * Setup multicast hash and allmulti/promisc mode
1676 	 */
1677 	et_setmulti(sc);
1678 }
1679 
1680 static void
et_init_txmac(struct et_softc * sc)1681 et_init_txmac(struct et_softc *sc)
1682 {
1683 
1684 	/* Disable TX MAC and FC(?) */
1685 	CSR_WRITE_4(sc, ET_TXMAC_CTRL, ET_TXMAC_CTRL_FC_DISABLE);
1686 
1687 	/* No flow control yet */
1688 	CSR_WRITE_4(sc, ET_TXMAC_FLOWCTRL, 0);
1689 
1690 	/* Enable TX MAC but leave FC(?) disabled */
1691 	CSR_WRITE_4(sc, ET_TXMAC_CTRL,
1692 		    ET_TXMAC_CTRL_ENABLE | ET_TXMAC_CTRL_FC_DISABLE);
1693 }
1694 
1695 static int
et_start_rxdma(struct et_softc * sc)1696 et_start_rxdma(struct et_softc *sc)
1697 {
1698 	uint32_t val = 0;
1699 
1700 	val |= __SHIFTIN(sc->sc_rx_data[0].rbd_bufsize,
1701 			 ET_RXDMA_CTRL_RING0_SIZE) |
1702 	       ET_RXDMA_CTRL_RING0_ENABLE;
1703 	val |= __SHIFTIN(sc->sc_rx_data[1].rbd_bufsize,
1704 			 ET_RXDMA_CTRL_RING1_SIZE) |
1705 	       ET_RXDMA_CTRL_RING1_ENABLE;
1706 
1707 	CSR_WRITE_4(sc, ET_RXDMA_CTRL, val);
1708 
1709 	DELAY(5);
1710 
1711 	if (CSR_READ_4(sc, ET_RXDMA_CTRL) & ET_RXDMA_CTRL_HALTED) {
1712 		aprint_error_dev(sc->sc_dev, "can't start RX DMA engine\n");
1713 		return ETIMEDOUT;
1714 	}
1715 	return 0;
1716 }
1717 
1718 static int
et_start_txdma(struct et_softc * sc)1719 et_start_txdma(struct et_softc *sc)
1720 {
1721 
1722 	CSR_WRITE_4(sc, ET_TXDMA_CTRL, ET_TXDMA_CTRL_SINGLE_EPKT);
1723 	return 0;
1724 }
1725 
1726 static void
et_rxeof(struct et_softc * sc)1727 et_rxeof(struct et_softc *sc)
1728 {
1729 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1730 	struct et_rxstatus_data *rxsd = &sc->sc_rx_status;
1731 	struct et_rxstat_ring *rxst_ring = &sc->sc_rxstat_ring;
1732 	uint32_t rxs_stat_ring;
1733 	int rxst_wrap, rxst_index;
1734 
1735 	if ((sc->sc_flags & ET_FLAG_TXRX_ENABLED) == 0)
1736 		return;
1737 
1738 	bus_dmamap_sync(sc->sc_dmat, rxsd->rxsd_dmap, 0,
1739 	    rxsd->rxsd_dmap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1740 	bus_dmamap_sync(sc->sc_dmat, rxst_ring->rsr_dmap, 0,
1741 	    rxst_ring->rsr_dmap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1742 
1743 	rxs_stat_ring = rxsd->rxsd_status->rxs_stat_ring;
1744 	rxst_wrap = (rxs_stat_ring & ET_RXS_STATRING_WRAP) ? 1 : 0;
1745 	rxst_index = __SHIFTOUT(rxs_stat_ring, ET_RXS_STATRING_INDEX);
1746 
1747 	while (rxst_index != rxst_ring->rsr_index ||
1748 	       rxst_wrap != rxst_ring->rsr_wrap) {
1749 		struct et_rxbuf_data *rbd;
1750 		struct et_rxdesc_ring *rx_ring;
1751 		struct et_rxstat *st;
1752 		struct et_rxbuf *rb;
1753 		struct mbuf *m;
1754 		int buflen, buf_idx, ring_idx;
1755 		uint32_t rxstat_pos, rxring_pos;
1756 
1757 		KASSERT(rxst_ring->rsr_index < ET_RX_NSTAT);
1758 		st = &rxst_ring->rsr_stat[rxst_ring->rsr_index];
1759 
1760 		buflen = __SHIFTOUT(st->rxst_info2, ET_RXST_INFO2_LEN);
1761 		buf_idx = __SHIFTOUT(st->rxst_info2, ET_RXST_INFO2_BUFIDX);
1762 		ring_idx = __SHIFTOUT(st->rxst_info2, ET_RXST_INFO2_RINGIDX);
1763 
1764 		if (++rxst_ring->rsr_index == ET_RX_NSTAT) {
1765 			rxst_ring->rsr_index = 0;
1766 			rxst_ring->rsr_wrap ^= 1;
1767 		}
1768 		rxstat_pos = __SHIFTIN(rxst_ring->rsr_index,
1769 				       ET_RXSTAT_POS_INDEX);
1770 		if (rxst_ring->rsr_wrap)
1771 			rxstat_pos |= ET_RXSTAT_POS_WRAP;
1772 		CSR_WRITE_4(sc, ET_RXSTAT_POS, rxstat_pos);
1773 
1774 		if (ring_idx >= ET_RX_NRING) {
1775 			if_statinc(ifp, if_ierrors);
1776 			aprint_error_dev(sc->sc_dev, "invalid ring index %d\n",
1777 			    ring_idx);
1778 			continue;
1779 		}
1780 		if (buf_idx >= ET_RX_NDESC) {
1781 			if_statinc(ifp, if_ierrors);
1782 			aprint_error_dev(sc->sc_dev, "invalid buf index %d\n",
1783 			    buf_idx);
1784 			continue;
1785 		}
1786 
1787 		rbd = &sc->sc_rx_data[ring_idx];
1788 		rb = &rbd->rbd_buf[buf_idx];
1789 		m = rb->rb_mbuf;
1790 		bus_dmamap_sync(sc->sc_dmat, rb->rb_dmap, 0,
1791 		    rb->rb_dmap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1792 
1793 		if (rbd->rbd_newbuf(rbd, buf_idx, 0) == 0) {
1794 			if (buflen < ETHER_CRC_LEN) {
1795 				m_freem(m);
1796 				if_statinc(ifp, if_ierrors);
1797 			} else {
1798 				m->m_pkthdr.len = m->m_len = buflen -
1799 				    ETHER_CRC_LEN;
1800 				m_set_rcvif(m, ifp);
1801 
1802 				if_percpuq_enqueue(ifp->if_percpuq, m);
1803 			}
1804 		} else {
1805 			if_statinc(ifp, if_ierrors);
1806 		}
1807 
1808 		rx_ring = &sc->sc_rx_ring[ring_idx];
1809 
1810 		if (buf_idx != rx_ring->rr_index) {
1811 			aprint_error_dev(sc->sc_dev, "WARNING!! ring %d, "
1812 			    "buf_idx %d, rr_idx %d\n",
1813 			    ring_idx, buf_idx, rx_ring->rr_index);
1814 		}
1815 
1816 		KASSERT(rx_ring->rr_index < ET_RX_NDESC);
1817 		if (++rx_ring->rr_index == ET_RX_NDESC) {
1818 			rx_ring->rr_index = 0;
1819 			rx_ring->rr_wrap ^= 1;
1820 		}
1821 		rxring_pos = __SHIFTIN(rx_ring->rr_index, ET_RX_RING_POS_INDEX);
1822 		if (rx_ring->rr_wrap)
1823 			rxring_pos |= ET_RX_RING_POS_WRAP;
1824 		CSR_WRITE_4(sc, rx_ring->rr_posreg, rxring_pos);
1825 	}
1826 }
1827 
1828 static int
et_encap(struct et_softc * sc,struct mbuf ** m0)1829 et_encap(struct et_softc *sc, struct mbuf **m0)
1830 {
1831 	struct mbuf *m = *m0;
1832 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1833 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
1834 	struct et_txdesc *td;
1835 	bus_dmamap_t map;
1836 	int error, maxsegs, first_idx, last_idx, i;
1837 	uint32_t tx_ready_pos, last_td_ctrl2;
1838 
1839 	maxsegs = ET_TX_NDESC - tbd->tbd_used;
1840 	if (maxsegs > ET_NSEG_MAX)
1841 		maxsegs = ET_NSEG_MAX;
1842 	KASSERTMSG(maxsegs >= ET_NSEG_SPARE,
1843 		"not enough spare TX desc (%d)\n", maxsegs);
1844 
1845 	KASSERT(tx_ring->tr_ready_index < ET_TX_NDESC);
1846 	first_idx = tx_ring->tr_ready_index;
1847 	map = tbd->tbd_buf[first_idx].tb_dmap;
1848 
1849 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1850 	    BUS_DMA_NOWAIT);
1851 	if (!error && map->dm_nsegs == 0) {
1852 		bus_dmamap_unload(sc->sc_dmat, map);
1853 		error = EFBIG;
1854 	}
1855 	if (error && error != EFBIG) {
1856 		aprint_error_dev(sc->sc_dev, "can't load TX mbuf");
1857 		goto back;
1858 	}
1859 	if (error) {	/* error == EFBIG */
1860 		struct mbuf *m_new;
1861 
1862 		error = 0;
1863 
1864 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1865 		if (m_new == NULL) {
1866 			aprint_error_dev(sc->sc_dev, "can't defrag TX mbuf\n");
1867 			error = ENOBUFS;
1868 			goto back;
1869 		}
1870 
1871 		m_copy_pkthdr(m_new, m);
1872 		if (m->m_pkthdr.len > MHLEN) {
1873 			MCLGET(m_new, M_DONTWAIT);
1874 			if (!(m_new->m_flags & M_EXT)) {
1875 				m_freem(m_new);
1876 				error = ENOBUFS;
1877 			}
1878 		}
1879 
1880 		if (error) {
1881 			aprint_error_dev(sc->sc_dev, "can't defrag TX buffer\n");
1882 			goto back;
1883 		}
1884 
1885 		m_copydata(m, 0, m->m_pkthdr.len, mtod(m_new, void *));
1886 		m_freem(m);
1887 		m_new->m_len = m_new->m_pkthdr.len;
1888 		*m0 = m = m_new;
1889 
1890 		error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1891 					     BUS_DMA_NOWAIT);
1892 		if (error || map->dm_nsegs == 0) {
1893 			if (map->dm_nsegs == 0) {
1894 				bus_dmamap_unload(sc->sc_dmat, map);
1895 				error = EFBIG;
1896 			}
1897 			aprint_error_dev(sc->sc_dev, "can't load defraged TX mbuf\n");
1898 			goto back;
1899 		}
1900 	}
1901 
1902 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1903 	    BUS_DMASYNC_PREWRITE);
1904 
1905 	last_td_ctrl2 = ET_TDCTRL2_LAST_FRAG;
1906 	sc->sc_tx += map->dm_nsegs;
1907 	if (sc->sc_tx / sc->sc_tx_intr_nsegs != sc->sc_tx_intr) {
1908 		sc->sc_tx_intr = sc->sc_tx / sc->sc_tx_intr_nsegs;
1909 		last_td_ctrl2 |= ET_TDCTRL2_INTR;
1910 	}
1911 
1912 	last_idx = -1;
1913 	for (i = 0; i < map->dm_nsegs; ++i) {
1914 		int idx;
1915 
1916 		idx = (first_idx + i) % ET_TX_NDESC;
1917 		td = &tx_ring->tr_desc[idx];
1918 		td->td_addr_hi = ET_ADDR_HI(map->dm_segs[i].ds_addr);
1919 		td->td_addr_lo = ET_ADDR_LO(map->dm_segs[i].ds_addr);
1920 		td->td_ctrl1 =
1921 		    __SHIFTIN(map->dm_segs[i].ds_len, ET_TDCTRL1_LEN);
1922 
1923 		if (i == map->dm_nsegs - 1) {	/* Last frag */
1924 			td->td_ctrl2 = last_td_ctrl2;
1925 			last_idx = idx;
1926 		}
1927 
1928 		KASSERT(tx_ring->tr_ready_index < ET_TX_NDESC);
1929 		if (++tx_ring->tr_ready_index == ET_TX_NDESC) {
1930 			tx_ring->tr_ready_index = 0;
1931 			tx_ring->tr_ready_wrap ^= 1;
1932 		}
1933 	}
1934 	td = &tx_ring->tr_desc[first_idx];
1935 	td->td_ctrl2 |= ET_TDCTRL2_FIRST_FRAG;	/* First frag */
1936 
1937 	KASSERT(last_idx >= 0);
1938 	tbd->tbd_buf[first_idx].tb_dmap = tbd->tbd_buf[last_idx].tb_dmap;
1939 	tbd->tbd_buf[last_idx].tb_dmap = map;
1940 	tbd->tbd_buf[last_idx].tb_mbuf = m;
1941 
1942 	tbd->tbd_used += map->dm_nsegs;
1943 	KASSERT(tbd->tbd_used <= ET_TX_NDESC);
1944 
1945 	bus_dmamap_sync(sc->sc_dmat, tx_ring->tr_dmap, 0,
1946 	    tx_ring->tr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1947 
1948 	tx_ready_pos = __SHIFTIN(tx_ring->tr_ready_index,
1949 		       ET_TX_READY_POS_INDEX);
1950 	if (tx_ring->tr_ready_wrap)
1951 		tx_ready_pos |= ET_TX_READY_POS_WRAP;
1952 	CSR_WRITE_4(sc, ET_TX_READY_POS, tx_ready_pos);
1953 
1954 	error = 0;
1955 back:
1956 	if (error) {
1957 		m_freem(m);
1958 		*m0 = NULL;
1959 	}
1960 	return error;
1961 }
1962 
1963 static void
et_txeof(struct et_softc * sc)1964 et_txeof(struct et_softc *sc)
1965 {
1966 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1967 	struct et_txdesc_ring *tx_ring = &sc->sc_tx_ring;
1968 	struct et_txbuf_data *tbd = &sc->sc_tx_data;
1969 	uint32_t tx_done;
1970 	int end, wrap;
1971 
1972 	if ((sc->sc_flags & ET_FLAG_TXRX_ENABLED) == 0)
1973 		return;
1974 
1975 	if (tbd->tbd_used == 0)
1976 		return;
1977 
1978 	tx_done = CSR_READ_4(sc, ET_TX_DONE_POS);
1979 	end = __SHIFTOUT(tx_done, ET_TX_DONE_POS_INDEX);
1980 	wrap = (tx_done & ET_TX_DONE_POS_WRAP) ? 1 : 0;
1981 
1982 	while (tbd->tbd_start_index != end || tbd->tbd_start_wrap != wrap) {
1983 		struct et_txbuf *tb;
1984 
1985 		KASSERT(tbd->tbd_start_index < ET_TX_NDESC);
1986 		tb = &tbd->tbd_buf[tbd->tbd_start_index];
1987 
1988 		bzero(&tx_ring->tr_desc[tbd->tbd_start_index],
1989 		      sizeof(struct et_txdesc));
1990 		bus_dmamap_sync(sc->sc_dmat, tx_ring->tr_dmap, 0,
1991 		    tx_ring->tr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1992 
1993 		if (tb->tb_mbuf != NULL) {
1994 			bus_dmamap_unload(sc->sc_dmat, tb->tb_dmap);
1995 			m_freem(tb->tb_mbuf);
1996 			tb->tb_mbuf = NULL;
1997 			if_statinc(ifp, if_opackets);
1998 		}
1999 
2000 		if (++tbd->tbd_start_index == ET_TX_NDESC) {
2001 			tbd->tbd_start_index = 0;
2002 			tbd->tbd_start_wrap ^= 1;
2003 		}
2004 
2005 		KASSERT(tbd->tbd_used > 0);
2006 		tbd->tbd_used--;
2007 	}
2008 
2009 	if (tbd->tbd_used == 0) {
2010 		callout_stop(&sc->sc_txtick);
2011 		ifp->if_timer = 0;
2012 	}
2013 	if (tbd->tbd_used + ET_NSEG_SPARE <= ET_TX_NDESC)
2014 		ifp->if_flags &= ~IFF_OACTIVE;
2015 
2016 	if_schedule_deferred_start(ifp);
2017 }
2018 
2019 static void
et_txtick(void * xsc)2020 et_txtick(void *xsc)
2021 {
2022 	struct et_softc *sc = xsc;
2023 	int s;
2024 
2025 	s = splnet();
2026 	et_txeof(sc);
2027 	splx(s);
2028 }
2029 
2030 static void
et_tick(void * xsc)2031 et_tick(void *xsc)
2032 {
2033 	struct et_softc *sc = xsc;
2034 	int s;
2035 
2036 	s = splnet();
2037 	mii_tick(&sc->sc_miibus);
2038 	callout_schedule(&sc->sc_tick, hz);
2039 	splx(s);
2040 }
2041 
2042 static int
et_newbuf_cluster(struct et_rxbuf_data * rbd,int buf_idx,int init)2043 et_newbuf_cluster(struct et_rxbuf_data *rbd, int buf_idx, int init)
2044 {
2045 	return et_newbuf(rbd, buf_idx, init, MCLBYTES);
2046 }
2047 
2048 static int
et_newbuf_hdr(struct et_rxbuf_data * rbd,int buf_idx,int init)2049 et_newbuf_hdr(struct et_rxbuf_data *rbd, int buf_idx, int init)
2050 {
2051 	return et_newbuf(rbd, buf_idx, init, MHLEN);
2052 }
2053 
2054 static int
et_newbuf(struct et_rxbuf_data * rbd,int buf_idx,int init,int len0)2055 et_newbuf(struct et_rxbuf_data *rbd, int buf_idx, int init, int len0)
2056 {
2057 	struct et_softc *sc = rbd->rbd_softc;
2058 	struct et_rxdesc_ring *rx_ring;
2059 	struct et_rxdesc *desc;
2060 	struct et_rxbuf *rb;
2061 	struct mbuf *m;
2062 	bus_dmamap_t dmap;
2063 	int error, len;
2064 
2065 	KASSERT(buf_idx < ET_RX_NDESC);
2066 	rb = &rbd->rbd_buf[buf_idx];
2067 
2068 	if (len0 >= MINCLSIZE) {
2069 		MGETHDR(m, init ? M_WAITOK : M_DONTWAIT, MT_DATA);
2070 		if (m == NULL)
2071 			return (ENOBUFS);
2072 		MCLGET(m, init ? M_WAITOK : M_DONTWAIT);
2073 		if ((m->m_flags & M_EXT) == 0) {
2074 			m_freem(m);
2075 			return (ENOBUFS);
2076 		}
2077 		len = MCLBYTES;
2078 	} else {
2079 		MGETHDR(m, init ? M_WAITOK : M_DONTWAIT, MT_DATA);
2080 		len = MHLEN;
2081 	}
2082 
2083 	if (m == NULL) {
2084 		error = ENOBUFS;
2085 
2086 		/* XXX for debug */
2087 		aprint_error_dev(sc->sc_dev, "M_CLGET failed, size %d\n", len0);
2088 		if (init) {
2089 			return error;
2090 		} else {
2091 			goto back;
2092 		}
2093 	}
2094 	m->m_len = m->m_pkthdr.len = len;
2095 
2096 	/*
2097 	 * Try load RX mbuf into temporary DMA tag
2098 	 */
2099 	error = bus_dmamap_load_mbuf(sc->sc_dmat, sc->sc_mbuf_tmp_dmap, m,
2100 				     init ? BUS_DMA_WAITOK : BUS_DMA_NOWAIT);
2101 	if (error) {
2102 		m_freem(m);
2103 
2104 		/* XXX for debug */
2105 		aprint_error_dev(sc->sc_dev, "can't load RX mbuf\n");
2106 		if (init) {
2107 			return error;
2108 		} else {
2109 			goto back;
2110 		}
2111 	}
2112 
2113 	if (!init)
2114 		bus_dmamap_unload(sc->sc_dmat, rb->rb_dmap);
2115 	rb->rb_mbuf = m;
2116 
2117 	/*
2118 	 * Swap RX buf's DMA map with the loaded temporary one
2119 	 */
2120 	dmap = rb->rb_dmap;
2121 	rb->rb_dmap = sc->sc_mbuf_tmp_dmap;
2122 	rb->rb_paddr = rb->rb_dmap->dm_segs[0].ds_addr;
2123 	sc->sc_mbuf_tmp_dmap = dmap;
2124 
2125 	error = 0;
2126 back:
2127 	rx_ring = rbd->rbd_ring;
2128 	desc = &rx_ring->rr_desc[buf_idx];
2129 
2130 	desc->rd_addr_hi = ET_ADDR_HI(rb->rb_paddr);
2131 	desc->rd_addr_lo = ET_ADDR_LO(rb->rb_paddr);
2132 	desc->rd_ctrl = __SHIFTIN(buf_idx, ET_RDCTRL_BUFIDX);
2133 
2134 	bus_dmamap_sync(sc->sc_dmat, rx_ring->rr_dmap, 0,
2135 	    rx_ring->rr_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE);
2136 	return error;
2137 }
2138