xref: /netbsd-src/sys/dev/nvmm/x86/nvmm_x86_svm.c (revision fe02344ba90aedf407ec90cf26388981038fc949)
1 /*	$NetBSD: nvmm_x86_svm.c,v 1.85 2023/02/23 02:54:02 riastradh Exp $	*/
2 
3 /*
4  * Copyright (c) 2018-2020 Maxime Villard, m00nbsd.net
5  * All rights reserved.
6  *
7  * This code is part of the NVMM hypervisor.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  */
30 
31 #include <sys/cdefs.h>
32 __KERNEL_RCSID(0, "$NetBSD: nvmm_x86_svm.c,v 1.85 2023/02/23 02:54:02 riastradh Exp $");
33 
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/kernel.h>
37 #include <sys/kmem.h>
38 #include <sys/cpu.h>
39 #include <sys/xcall.h>
40 #include <sys/mman.h>
41 
42 #include <uvm/uvm_extern.h>
43 #include <uvm/uvm_page.h>
44 
45 #include <x86/cputypes.h>
46 #include <x86/specialreg.h>
47 #include <x86/dbregs.h>
48 #include <x86/cpu_counter.h>
49 
50 #include <machine/cpuvar.h>
51 #include <machine/pmap_private.h>
52 
53 #include <dev/nvmm/nvmm.h>
54 #include <dev/nvmm/nvmm_internal.h>
55 #include <dev/nvmm/x86/nvmm_x86.h>
56 
57 int svm_vmrun(paddr_t, uint64_t *);
58 
59 static inline void
svm_clgi(void)60 svm_clgi(void)
61 {
62 	asm volatile ("clgi" ::: "memory");
63 }
64 
65 static inline void
svm_stgi(void)66 svm_stgi(void)
67 {
68 	asm volatile ("stgi" ::: "memory");
69 }
70 
71 #define	MSR_VM_HSAVE_PA	0xC0010117
72 
73 /* -------------------------------------------------------------------------- */
74 
75 #define VMCB_EXITCODE_CR0_READ		0x0000
76 #define VMCB_EXITCODE_CR1_READ		0x0001
77 #define VMCB_EXITCODE_CR2_READ		0x0002
78 #define VMCB_EXITCODE_CR3_READ		0x0003
79 #define VMCB_EXITCODE_CR4_READ		0x0004
80 #define VMCB_EXITCODE_CR5_READ		0x0005
81 #define VMCB_EXITCODE_CR6_READ		0x0006
82 #define VMCB_EXITCODE_CR7_READ		0x0007
83 #define VMCB_EXITCODE_CR8_READ		0x0008
84 #define VMCB_EXITCODE_CR9_READ		0x0009
85 #define VMCB_EXITCODE_CR10_READ		0x000A
86 #define VMCB_EXITCODE_CR11_READ		0x000B
87 #define VMCB_EXITCODE_CR12_READ		0x000C
88 #define VMCB_EXITCODE_CR13_READ		0x000D
89 #define VMCB_EXITCODE_CR14_READ		0x000E
90 #define VMCB_EXITCODE_CR15_READ		0x000F
91 #define VMCB_EXITCODE_CR0_WRITE		0x0010
92 #define VMCB_EXITCODE_CR1_WRITE		0x0011
93 #define VMCB_EXITCODE_CR2_WRITE		0x0012
94 #define VMCB_EXITCODE_CR3_WRITE		0x0013
95 #define VMCB_EXITCODE_CR4_WRITE		0x0014
96 #define VMCB_EXITCODE_CR5_WRITE		0x0015
97 #define VMCB_EXITCODE_CR6_WRITE		0x0016
98 #define VMCB_EXITCODE_CR7_WRITE		0x0017
99 #define VMCB_EXITCODE_CR8_WRITE		0x0018
100 #define VMCB_EXITCODE_CR9_WRITE		0x0019
101 #define VMCB_EXITCODE_CR10_WRITE	0x001A
102 #define VMCB_EXITCODE_CR11_WRITE	0x001B
103 #define VMCB_EXITCODE_CR12_WRITE	0x001C
104 #define VMCB_EXITCODE_CR13_WRITE	0x001D
105 #define VMCB_EXITCODE_CR14_WRITE	0x001E
106 #define VMCB_EXITCODE_CR15_WRITE	0x001F
107 #define VMCB_EXITCODE_DR0_READ		0x0020
108 #define VMCB_EXITCODE_DR1_READ		0x0021
109 #define VMCB_EXITCODE_DR2_READ		0x0022
110 #define VMCB_EXITCODE_DR3_READ		0x0023
111 #define VMCB_EXITCODE_DR4_READ		0x0024
112 #define VMCB_EXITCODE_DR5_READ		0x0025
113 #define VMCB_EXITCODE_DR6_READ		0x0026
114 #define VMCB_EXITCODE_DR7_READ		0x0027
115 #define VMCB_EXITCODE_DR8_READ		0x0028
116 #define VMCB_EXITCODE_DR9_READ		0x0029
117 #define VMCB_EXITCODE_DR10_READ		0x002A
118 #define VMCB_EXITCODE_DR11_READ		0x002B
119 #define VMCB_EXITCODE_DR12_READ		0x002C
120 #define VMCB_EXITCODE_DR13_READ		0x002D
121 #define VMCB_EXITCODE_DR14_READ		0x002E
122 #define VMCB_EXITCODE_DR15_READ		0x002F
123 #define VMCB_EXITCODE_DR0_WRITE		0x0030
124 #define VMCB_EXITCODE_DR1_WRITE		0x0031
125 #define VMCB_EXITCODE_DR2_WRITE		0x0032
126 #define VMCB_EXITCODE_DR3_WRITE		0x0033
127 #define VMCB_EXITCODE_DR4_WRITE		0x0034
128 #define VMCB_EXITCODE_DR5_WRITE		0x0035
129 #define VMCB_EXITCODE_DR6_WRITE		0x0036
130 #define VMCB_EXITCODE_DR7_WRITE		0x0037
131 #define VMCB_EXITCODE_DR8_WRITE		0x0038
132 #define VMCB_EXITCODE_DR9_WRITE		0x0039
133 #define VMCB_EXITCODE_DR10_WRITE	0x003A
134 #define VMCB_EXITCODE_DR11_WRITE	0x003B
135 #define VMCB_EXITCODE_DR12_WRITE	0x003C
136 #define VMCB_EXITCODE_DR13_WRITE	0x003D
137 #define VMCB_EXITCODE_DR14_WRITE	0x003E
138 #define VMCB_EXITCODE_DR15_WRITE	0x003F
139 #define VMCB_EXITCODE_EXCP0		0x0040
140 #define VMCB_EXITCODE_EXCP1		0x0041
141 #define VMCB_EXITCODE_EXCP2		0x0042
142 #define VMCB_EXITCODE_EXCP3		0x0043
143 #define VMCB_EXITCODE_EXCP4		0x0044
144 #define VMCB_EXITCODE_EXCP5		0x0045
145 #define VMCB_EXITCODE_EXCP6		0x0046
146 #define VMCB_EXITCODE_EXCP7		0x0047
147 #define VMCB_EXITCODE_EXCP8		0x0048
148 #define VMCB_EXITCODE_EXCP9		0x0049
149 #define VMCB_EXITCODE_EXCP10		0x004A
150 #define VMCB_EXITCODE_EXCP11		0x004B
151 #define VMCB_EXITCODE_EXCP12		0x004C
152 #define VMCB_EXITCODE_EXCP13		0x004D
153 #define VMCB_EXITCODE_EXCP14		0x004E
154 #define VMCB_EXITCODE_EXCP15		0x004F
155 #define VMCB_EXITCODE_EXCP16		0x0050
156 #define VMCB_EXITCODE_EXCP17		0x0051
157 #define VMCB_EXITCODE_EXCP18		0x0052
158 #define VMCB_EXITCODE_EXCP19		0x0053
159 #define VMCB_EXITCODE_EXCP20		0x0054
160 #define VMCB_EXITCODE_EXCP21		0x0055
161 #define VMCB_EXITCODE_EXCP22		0x0056
162 #define VMCB_EXITCODE_EXCP23		0x0057
163 #define VMCB_EXITCODE_EXCP24		0x0058
164 #define VMCB_EXITCODE_EXCP25		0x0059
165 #define VMCB_EXITCODE_EXCP26		0x005A
166 #define VMCB_EXITCODE_EXCP27		0x005B
167 #define VMCB_EXITCODE_EXCP28		0x005C
168 #define VMCB_EXITCODE_EXCP29		0x005D
169 #define VMCB_EXITCODE_EXCP30		0x005E
170 #define VMCB_EXITCODE_EXCP31		0x005F
171 #define VMCB_EXITCODE_INTR		0x0060
172 #define VMCB_EXITCODE_NMI		0x0061
173 #define VMCB_EXITCODE_SMI		0x0062
174 #define VMCB_EXITCODE_INIT		0x0063
175 #define VMCB_EXITCODE_VINTR		0x0064
176 #define VMCB_EXITCODE_CR0_SEL_WRITE	0x0065
177 #define VMCB_EXITCODE_IDTR_READ		0x0066
178 #define VMCB_EXITCODE_GDTR_READ		0x0067
179 #define VMCB_EXITCODE_LDTR_READ		0x0068
180 #define VMCB_EXITCODE_TR_READ		0x0069
181 #define VMCB_EXITCODE_IDTR_WRITE	0x006A
182 #define VMCB_EXITCODE_GDTR_WRITE	0x006B
183 #define VMCB_EXITCODE_LDTR_WRITE	0x006C
184 #define VMCB_EXITCODE_TR_WRITE		0x006D
185 #define VMCB_EXITCODE_RDTSC		0x006E
186 #define VMCB_EXITCODE_RDPMC		0x006F
187 #define VMCB_EXITCODE_PUSHF		0x0070
188 #define VMCB_EXITCODE_POPF		0x0071
189 #define VMCB_EXITCODE_CPUID		0x0072
190 #define VMCB_EXITCODE_RSM		0x0073
191 #define VMCB_EXITCODE_IRET		0x0074
192 #define VMCB_EXITCODE_SWINT		0x0075
193 #define VMCB_EXITCODE_INVD		0x0076
194 #define VMCB_EXITCODE_PAUSE		0x0077
195 #define VMCB_EXITCODE_HLT		0x0078
196 #define VMCB_EXITCODE_INVLPG		0x0079
197 #define VMCB_EXITCODE_INVLPGA		0x007A
198 #define VMCB_EXITCODE_IOIO		0x007B
199 #define VMCB_EXITCODE_MSR		0x007C
200 #define VMCB_EXITCODE_TASK_SWITCH	0x007D
201 #define VMCB_EXITCODE_FERR_FREEZE	0x007E
202 #define VMCB_EXITCODE_SHUTDOWN		0x007F
203 #define VMCB_EXITCODE_VMRUN		0x0080
204 #define VMCB_EXITCODE_VMMCALL		0x0081
205 #define VMCB_EXITCODE_VMLOAD		0x0082
206 #define VMCB_EXITCODE_VMSAVE		0x0083
207 #define VMCB_EXITCODE_STGI		0x0084
208 #define VMCB_EXITCODE_CLGI		0x0085
209 #define VMCB_EXITCODE_SKINIT		0x0086
210 #define VMCB_EXITCODE_RDTSCP		0x0087
211 #define VMCB_EXITCODE_ICEBP		0x0088
212 #define VMCB_EXITCODE_WBINVD		0x0089
213 #define VMCB_EXITCODE_MONITOR		0x008A
214 #define VMCB_EXITCODE_MWAIT		0x008B
215 #define VMCB_EXITCODE_MWAIT_CONDITIONAL	0x008C
216 #define VMCB_EXITCODE_XSETBV		0x008D
217 #define VMCB_EXITCODE_RDPRU		0x008E
218 #define VMCB_EXITCODE_EFER_WRITE_TRAP	0x008F
219 #define VMCB_EXITCODE_CR0_WRITE_TRAP	0x0090
220 #define VMCB_EXITCODE_CR1_WRITE_TRAP	0x0091
221 #define VMCB_EXITCODE_CR2_WRITE_TRAP	0x0092
222 #define VMCB_EXITCODE_CR3_WRITE_TRAP	0x0093
223 #define VMCB_EXITCODE_CR4_WRITE_TRAP	0x0094
224 #define VMCB_EXITCODE_CR5_WRITE_TRAP	0x0095
225 #define VMCB_EXITCODE_CR6_WRITE_TRAP	0x0096
226 #define VMCB_EXITCODE_CR7_WRITE_TRAP	0x0097
227 #define VMCB_EXITCODE_CR8_WRITE_TRAP	0x0098
228 #define VMCB_EXITCODE_CR9_WRITE_TRAP	0x0099
229 #define VMCB_EXITCODE_CR10_WRITE_TRAP	0x009A
230 #define VMCB_EXITCODE_CR11_WRITE_TRAP	0x009B
231 #define VMCB_EXITCODE_CR12_WRITE_TRAP	0x009C
232 #define VMCB_EXITCODE_CR13_WRITE_TRAP	0x009D
233 #define VMCB_EXITCODE_CR14_WRITE_TRAP	0x009E
234 #define VMCB_EXITCODE_CR15_WRITE_TRAP	0x009F
235 #define VMCB_EXITCODE_INVLPGB		0x00A0
236 #define VMCB_EXITCODE_INVLPGB_ILLEGAL	0x00A1
237 #define VMCB_EXITCODE_INVPCID		0x00A2
238 #define VMCB_EXITCODE_MCOMMIT		0x00A3
239 #define VMCB_EXITCODE_TLBSYNC		0x00A4
240 #define VMCB_EXITCODE_NPF		0x0400
241 #define VMCB_EXITCODE_AVIC_INCOMP_IPI	0x0401
242 #define VMCB_EXITCODE_AVIC_NOACCEL	0x0402
243 #define VMCB_EXITCODE_VMGEXIT		0x0403
244 #define VMCB_EXITCODE_BUSY		-2ULL
245 #define VMCB_EXITCODE_INVALID		-1ULL
246 
247 /* -------------------------------------------------------------------------- */
248 
249 struct vmcb_ctrl {
250 	uint32_t intercept_cr;
251 #define VMCB_CTRL_INTERCEPT_RCR(x)	__BIT( 0 + x)
252 #define VMCB_CTRL_INTERCEPT_WCR(x)	__BIT(16 + x)
253 
254 	uint32_t intercept_dr;
255 #define VMCB_CTRL_INTERCEPT_RDR(x)	__BIT( 0 + x)
256 #define VMCB_CTRL_INTERCEPT_WDR(x)	__BIT(16 + x)
257 
258 	uint32_t intercept_vec;
259 #define VMCB_CTRL_INTERCEPT_VEC(x)	__BIT(x)
260 
261 	uint32_t intercept_misc1;
262 #define VMCB_CTRL_INTERCEPT_INTR	__BIT(0)
263 #define VMCB_CTRL_INTERCEPT_NMI		__BIT(1)
264 #define VMCB_CTRL_INTERCEPT_SMI		__BIT(2)
265 #define VMCB_CTRL_INTERCEPT_INIT	__BIT(3)
266 #define VMCB_CTRL_INTERCEPT_VINTR	__BIT(4)
267 #define VMCB_CTRL_INTERCEPT_CR0_SPEC	__BIT(5)
268 #define VMCB_CTRL_INTERCEPT_RIDTR	__BIT(6)
269 #define VMCB_CTRL_INTERCEPT_RGDTR	__BIT(7)
270 #define VMCB_CTRL_INTERCEPT_RLDTR	__BIT(8)
271 #define VMCB_CTRL_INTERCEPT_RTR		__BIT(9)
272 #define VMCB_CTRL_INTERCEPT_WIDTR	__BIT(10)
273 #define VMCB_CTRL_INTERCEPT_WGDTR	__BIT(11)
274 #define VMCB_CTRL_INTERCEPT_WLDTR	__BIT(12)
275 #define VMCB_CTRL_INTERCEPT_WTR		__BIT(13)
276 #define VMCB_CTRL_INTERCEPT_RDTSC	__BIT(14)
277 #define VMCB_CTRL_INTERCEPT_RDPMC	__BIT(15)
278 #define VMCB_CTRL_INTERCEPT_PUSHF	__BIT(16)
279 #define VMCB_CTRL_INTERCEPT_POPF	__BIT(17)
280 #define VMCB_CTRL_INTERCEPT_CPUID	__BIT(18)
281 #define VMCB_CTRL_INTERCEPT_RSM		__BIT(19)
282 #define VMCB_CTRL_INTERCEPT_IRET	__BIT(20)
283 #define VMCB_CTRL_INTERCEPT_INTN	__BIT(21)
284 #define VMCB_CTRL_INTERCEPT_INVD	__BIT(22)
285 #define VMCB_CTRL_INTERCEPT_PAUSE	__BIT(23)
286 #define VMCB_CTRL_INTERCEPT_HLT		__BIT(24)
287 #define VMCB_CTRL_INTERCEPT_INVLPG	__BIT(25)
288 #define VMCB_CTRL_INTERCEPT_INVLPGA	__BIT(26)
289 #define VMCB_CTRL_INTERCEPT_IOIO_PROT	__BIT(27)
290 #define VMCB_CTRL_INTERCEPT_MSR_PROT	__BIT(28)
291 #define VMCB_CTRL_INTERCEPT_TASKSW	__BIT(29)
292 #define VMCB_CTRL_INTERCEPT_FERR_FREEZE	__BIT(30)
293 #define VMCB_CTRL_INTERCEPT_SHUTDOWN	__BIT(31)
294 
295 	uint32_t intercept_misc2;
296 #define VMCB_CTRL_INTERCEPT_VMRUN	__BIT(0)
297 #define VMCB_CTRL_INTERCEPT_VMMCALL	__BIT(1)
298 #define VMCB_CTRL_INTERCEPT_VMLOAD	__BIT(2)
299 #define VMCB_CTRL_INTERCEPT_VMSAVE	__BIT(3)
300 #define VMCB_CTRL_INTERCEPT_STGI	__BIT(4)
301 #define VMCB_CTRL_INTERCEPT_CLGI	__BIT(5)
302 #define VMCB_CTRL_INTERCEPT_SKINIT	__BIT(6)
303 #define VMCB_CTRL_INTERCEPT_RDTSCP	__BIT(7)
304 #define VMCB_CTRL_INTERCEPT_ICEBP	__BIT(8)
305 #define VMCB_CTRL_INTERCEPT_WBINVD	__BIT(9)
306 #define VMCB_CTRL_INTERCEPT_MONITOR	__BIT(10)
307 #define VMCB_CTRL_INTERCEPT_MWAIT	__BIT(11)
308 #define VMCB_CTRL_INTERCEPT_MWAIT_ARMED	__BIT(12)
309 #define VMCB_CTRL_INTERCEPT_XSETBV	__BIT(13)
310 #define VMCB_CTRL_INTERCEPT_RDPRU	__BIT(14)
311 #define VMCB_CTRL_INTERCEPT_EFER_SPEC	__BIT(15)
312 #define VMCB_CTRL_INTERCEPT_WCR_SPEC(x)	__BIT(16 + x)
313 
314 	uint32_t intercept_misc3;
315 #define VMCB_CTRL_INTERCEPT_INVLPGB_ALL	__BIT(0)
316 #define VMCB_CTRL_INTERCEPT_INVLPGB_ILL	__BIT(1)
317 #define VMCB_CTRL_INTERCEPT_PCID	__BIT(2)
318 #define VMCB_CTRL_INTERCEPT_MCOMMIT	__BIT(3)
319 #define VMCB_CTRL_INTERCEPT_TLBSYNC	__BIT(4)
320 
321 	uint8_t  rsvd1[36];
322 	uint16_t pause_filt_thresh;
323 	uint16_t pause_filt_cnt;
324 	uint64_t iopm_base_pa;
325 	uint64_t msrpm_base_pa;
326 	uint64_t tsc_offset;
327 	uint32_t guest_asid;
328 
329 	uint32_t tlb_ctrl;
330 #define VMCB_CTRL_TLB_CTRL_FLUSH_ALL			0x01
331 #define VMCB_CTRL_TLB_CTRL_FLUSH_GUEST			0x03
332 #define VMCB_CTRL_TLB_CTRL_FLUSH_GUEST_NONGLOBAL	0x07
333 
334 	uint64_t v;
335 #define VMCB_CTRL_V_TPR			__BITS(3,0)
336 #define VMCB_CTRL_V_IRQ			__BIT(8)
337 #define VMCB_CTRL_V_VGIF		__BIT(9)
338 #define VMCB_CTRL_V_INTR_PRIO		__BITS(19,16)
339 #define VMCB_CTRL_V_IGN_TPR		__BIT(20)
340 #define VMCB_CTRL_V_INTR_MASKING	__BIT(24)
341 #define VMCB_CTRL_V_GUEST_VGIF		__BIT(25)
342 #define VMCB_CTRL_V_AVIC_EN		__BIT(31)
343 #define VMCB_CTRL_V_INTR_VECTOR		__BITS(39,32)
344 
345 	uint64_t intr;
346 #define VMCB_CTRL_INTR_SHADOW		__BIT(0)
347 #define VMCB_CTRL_INTR_MASK		__BIT(1)
348 
349 	uint64_t exitcode;
350 	uint64_t exitinfo1;
351 	uint64_t exitinfo2;
352 
353 	uint64_t exitintinfo;
354 #define VMCB_CTRL_EXITINTINFO_VECTOR	__BITS(7,0)
355 #define VMCB_CTRL_EXITINTINFO_TYPE	__BITS(10,8)
356 #define VMCB_CTRL_EXITINTINFO_EV	__BIT(11)
357 #define VMCB_CTRL_EXITINTINFO_V		__BIT(31)
358 #define VMCB_CTRL_EXITINTINFO_ERRORCODE	__BITS(63,32)
359 
360 	uint64_t enable1;
361 #define VMCB_CTRL_ENABLE_NP		__BIT(0)
362 #define VMCB_CTRL_ENABLE_SEV		__BIT(1)
363 #define VMCB_CTRL_ENABLE_ES_SEV		__BIT(2)
364 #define VMCB_CTRL_ENABLE_GMET		__BIT(3)
365 #define VMCB_CTRL_ENABLE_VTE		__BIT(5)
366 
367 	uint64_t avic;
368 #define VMCB_CTRL_AVIC_APIC_BAR		__BITS(51,0)
369 
370 	uint64_t ghcb;
371 
372 	uint64_t eventinj;
373 #define VMCB_CTRL_EVENTINJ_VECTOR	__BITS(7,0)
374 #define VMCB_CTRL_EVENTINJ_TYPE		__BITS(10,8)
375 #define VMCB_CTRL_EVENTINJ_EV		__BIT(11)
376 #define VMCB_CTRL_EVENTINJ_V		__BIT(31)
377 #define VMCB_CTRL_EVENTINJ_ERRORCODE	__BITS(63,32)
378 
379 	uint64_t n_cr3;
380 
381 	uint64_t enable2;
382 #define VMCB_CTRL_ENABLE_LBR		__BIT(0)
383 #define VMCB_CTRL_ENABLE_VVMSAVE	__BIT(1)
384 
385 	uint32_t vmcb_clean;
386 #define VMCB_CTRL_VMCB_CLEAN_I		__BIT(0)
387 #define VMCB_CTRL_VMCB_CLEAN_IOPM	__BIT(1)
388 #define VMCB_CTRL_VMCB_CLEAN_ASID	__BIT(2)
389 #define VMCB_CTRL_VMCB_CLEAN_TPR	__BIT(3)
390 #define VMCB_CTRL_VMCB_CLEAN_NP		__BIT(4)
391 #define VMCB_CTRL_VMCB_CLEAN_CR		__BIT(5)
392 #define VMCB_CTRL_VMCB_CLEAN_DR		__BIT(6)
393 #define VMCB_CTRL_VMCB_CLEAN_DT		__BIT(7)
394 #define VMCB_CTRL_VMCB_CLEAN_SEG	__BIT(8)
395 #define VMCB_CTRL_VMCB_CLEAN_CR2	__BIT(9)
396 #define VMCB_CTRL_VMCB_CLEAN_LBR	__BIT(10)
397 #define VMCB_CTRL_VMCB_CLEAN_AVIC	__BIT(11)
398 
399 	uint32_t rsvd2;
400 	uint64_t nrip;
401 	uint8_t	inst_len;
402 	uint8_t	inst_bytes[15];
403 	uint64_t avic_abpp;
404 	uint64_t rsvd3;
405 	uint64_t avic_ltp;
406 
407 	uint64_t avic_phys;
408 #define VMCB_CTRL_AVIC_PHYS_TABLE_PTR	__BITS(51,12)
409 #define VMCB_CTRL_AVIC_PHYS_MAX_INDEX	__BITS(7,0)
410 
411 	uint64_t rsvd4;
412 	uint64_t vmsa_ptr;
413 
414 	uint8_t	pad[752];
415 } __packed;
416 
417 CTASSERT(sizeof(struct vmcb_ctrl) == 1024);
418 
419 struct vmcb_segment {
420 	uint16_t selector;
421 	uint16_t attrib;	/* hidden */
422 	uint32_t limit;		/* hidden */
423 	uint64_t base;		/* hidden */
424 } __packed;
425 
426 CTASSERT(sizeof(struct vmcb_segment) == 16);
427 
428 struct vmcb_state {
429 	struct   vmcb_segment es;
430 	struct   vmcb_segment cs;
431 	struct   vmcb_segment ss;
432 	struct   vmcb_segment ds;
433 	struct   vmcb_segment fs;
434 	struct   vmcb_segment gs;
435 	struct   vmcb_segment gdt;
436 	struct   vmcb_segment ldt;
437 	struct   vmcb_segment idt;
438 	struct   vmcb_segment tr;
439 	uint8_t	 rsvd1[43];
440 	uint8_t	 cpl;
441 	uint8_t  rsvd2[4];
442 	uint64_t efer;
443 	uint8_t	 rsvd3[112];
444 	uint64_t cr4;
445 	uint64_t cr3;
446 	uint64_t cr0;
447 	uint64_t dr7;
448 	uint64_t dr6;
449 	uint64_t rflags;
450 	uint64_t rip;
451 	uint8_t	 rsvd4[88];
452 	uint64_t rsp;
453 	uint8_t	 rsvd5[24];
454 	uint64_t rax;
455 	uint64_t star;
456 	uint64_t lstar;
457 	uint64_t cstar;
458 	uint64_t sfmask;
459 	uint64_t kernelgsbase;
460 	uint64_t sysenter_cs;
461 	uint64_t sysenter_esp;
462 	uint64_t sysenter_eip;
463 	uint64_t cr2;
464 	uint8_t	 rsvd6[32];
465 	uint64_t g_pat;
466 	uint64_t dbgctl;
467 	uint64_t br_from;
468 	uint64_t br_to;
469 	uint64_t int_from;
470 	uint64_t int_to;
471 	uint8_t	 pad[2408];
472 } __packed;
473 
474 CTASSERT(sizeof(struct vmcb_state) == 0xC00);
475 
476 struct vmcb {
477 	struct vmcb_ctrl ctrl;
478 	struct vmcb_state state;
479 } __packed;
480 
481 CTASSERT(sizeof(struct vmcb) == PAGE_SIZE);
482 CTASSERT(offsetof(struct vmcb, state) == 0x400);
483 
484 /* -------------------------------------------------------------------------- */
485 
486 static void svm_vcpu_state_provide(struct nvmm_cpu *, uint64_t);
487 static void svm_vcpu_state_commit(struct nvmm_cpu *);
488 
489 struct svm_hsave {
490 	paddr_t pa;
491 };
492 
493 static struct svm_hsave hsave[MAXCPUS];
494 
495 static uint8_t *svm_asidmap __read_mostly;
496 static uint32_t svm_maxasid __read_mostly;
497 static kmutex_t svm_asidlock __cacheline_aligned;
498 
499 static bool svm_decode_assist __read_mostly;
500 static uint32_t svm_ctrl_tlb_flush __read_mostly;
501 
502 #define SVM_XCR0_MASK_DEFAULT	(XCR0_X87|XCR0_SSE)
503 static uint64_t svm_xcr0_mask __read_mostly;
504 
505 #define SVM_NCPUIDS	32
506 
507 #define VMCB_NPAGES	1
508 
509 #define MSRBM_NPAGES	2
510 #define MSRBM_SIZE	(MSRBM_NPAGES * PAGE_SIZE)
511 
512 #define IOBM_NPAGES	3
513 #define IOBM_SIZE	(IOBM_NPAGES * PAGE_SIZE)
514 
515 /* Does not include EFER_LMSLE. */
516 #define EFER_VALID \
517 	(EFER_SCE|EFER_LME|EFER_LMA|EFER_NXE|EFER_SVME|EFER_FFXSR|EFER_TCE)
518 
519 #define EFER_TLB_FLUSH \
520 	(EFER_NXE|EFER_LMA|EFER_LME)
521 #define CR0_TLB_FLUSH \
522 	(CR0_PG|CR0_WP|CR0_CD|CR0_NW)
523 #define CR4_TLB_FLUSH \
524 	(CR4_PSE|CR4_PAE|CR4_PGE|CR4_PCIDE|CR4_SMEP)
525 
526 #define CR4_VALID \
527 	(CR4_VME |			\
528 	 CR4_PVI |			\
529 	 CR4_TSD |			\
530 	 CR4_DE |			\
531 	 CR4_PSE |			\
532 	 CR4_PAE |			\
533 	 CR4_MCE |			\
534 	 CR4_PGE |			\
535 	 CR4_PCE |			\
536 	 CR4_OSFXSR |			\
537 	 CR4_OSXMMEXCPT |		\
538 	 CR4_UMIP |			\
539 	 /* CR4_LA57 excluded */	\
540 	 /* bit 13 reserved on AMD */	\
541 	 /* bit 14 reserved on AMD */	\
542 	 /* bit 15 reserved on AMD */	\
543 	 CR4_FSGSBASE |			\
544 	 CR4_PCIDE |			\
545 	 CR4_OSXSAVE |			\
546 	 /* bit 19 reserved on AMD */	\
547 	 CR4_SMEP |			\
548 	 CR4_SMAP			\
549 	 /* CR4_PKE excluded */		\
550 	 /* CR4_CET excluded */		\
551 	 /* bits 24:63 reserved on AMD */)
552 
553 /* -------------------------------------------------------------------------- */
554 
555 struct svm_machdata {
556 	volatile uint64_t mach_htlb_gen;
557 };
558 
559 static const size_t svm_vcpu_conf_sizes[NVMM_X86_VCPU_NCONF] = {
560 	[NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_CPUID)] =
561 	    sizeof(struct nvmm_vcpu_conf_cpuid),
562 	[NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_TPR)] =
563 	    sizeof(struct nvmm_vcpu_conf_tpr)
564 };
565 
566 struct svm_cpudata {
567 	/* General */
568 	bool shared_asid;
569 	bool gtlb_want_flush;
570 	bool gtsc_want_update;
571 	uint64_t vcpu_htlb_gen;
572 
573 	/* VMCB */
574 	struct vmcb *vmcb;
575 	paddr_t vmcb_pa;
576 
577 	/* I/O bitmap */
578 	uint8_t *iobm;
579 	paddr_t iobm_pa;
580 
581 	/* MSR bitmap */
582 	uint8_t *msrbm;
583 	paddr_t msrbm_pa;
584 
585 	/* Host state */
586 	uint64_t hxcr0;
587 	uint64_t star;
588 	uint64_t lstar;
589 	uint64_t cstar;
590 	uint64_t sfmask;
591 	uint64_t fsbase;
592 	uint64_t kernelgsbase;
593 
594 	/* Intr state */
595 	bool int_window_exit;
596 	bool nmi_window_exit;
597 	bool evt_pending;
598 
599 	/* Guest state */
600 	uint64_t gxcr0;
601 	uint64_t gprs[NVMM_X64_NGPR];
602 	uint64_t drs[NVMM_X64_NDR];
603 	uint64_t gtsc;
604 	struct xsave_header gfpu __aligned(64);
605 
606 	/* VCPU configuration. */
607 	bool cpuidpresent[SVM_NCPUIDS];
608 	struct nvmm_vcpu_conf_cpuid cpuid[SVM_NCPUIDS];
609 };
610 
611 static void
svm_vmcb_cache_default(struct vmcb * vmcb)612 svm_vmcb_cache_default(struct vmcb *vmcb)
613 {
614 	vmcb->ctrl.vmcb_clean =
615 	    VMCB_CTRL_VMCB_CLEAN_I |
616 	    VMCB_CTRL_VMCB_CLEAN_IOPM |
617 	    VMCB_CTRL_VMCB_CLEAN_ASID |
618 	    VMCB_CTRL_VMCB_CLEAN_TPR |
619 	    VMCB_CTRL_VMCB_CLEAN_NP |
620 	    VMCB_CTRL_VMCB_CLEAN_CR |
621 	    VMCB_CTRL_VMCB_CLEAN_DR |
622 	    VMCB_CTRL_VMCB_CLEAN_DT |
623 	    VMCB_CTRL_VMCB_CLEAN_SEG |
624 	    VMCB_CTRL_VMCB_CLEAN_CR2 |
625 	    VMCB_CTRL_VMCB_CLEAN_LBR |
626 	    VMCB_CTRL_VMCB_CLEAN_AVIC;
627 }
628 
629 static void
svm_vmcb_cache_update(struct vmcb * vmcb,uint64_t flags)630 svm_vmcb_cache_update(struct vmcb *vmcb, uint64_t flags)
631 {
632 	if (flags & NVMM_X64_STATE_SEGS) {
633 		vmcb->ctrl.vmcb_clean &=
634 		    ~(VMCB_CTRL_VMCB_CLEAN_SEG | VMCB_CTRL_VMCB_CLEAN_DT);
635 	}
636 	if (flags & NVMM_X64_STATE_CRS) {
637 		vmcb->ctrl.vmcb_clean &=
638 		    ~(VMCB_CTRL_VMCB_CLEAN_CR | VMCB_CTRL_VMCB_CLEAN_CR2 |
639 		      VMCB_CTRL_VMCB_CLEAN_TPR);
640 	}
641 	if (flags & NVMM_X64_STATE_DRS) {
642 		vmcb->ctrl.vmcb_clean &= ~VMCB_CTRL_VMCB_CLEAN_DR;
643 	}
644 	if (flags & NVMM_X64_STATE_MSRS) {
645 		/* CR for EFER, NP for PAT. */
646 		vmcb->ctrl.vmcb_clean &=
647 		    ~(VMCB_CTRL_VMCB_CLEAN_CR | VMCB_CTRL_VMCB_CLEAN_NP);
648 	}
649 }
650 
651 static inline void
svm_vmcb_cache_flush(struct vmcb * vmcb,uint64_t flags)652 svm_vmcb_cache_flush(struct vmcb *vmcb, uint64_t flags)
653 {
654 	vmcb->ctrl.vmcb_clean &= ~flags;
655 }
656 
657 static inline void
svm_vmcb_cache_flush_all(struct vmcb * vmcb)658 svm_vmcb_cache_flush_all(struct vmcb *vmcb)
659 {
660 	vmcb->ctrl.vmcb_clean = 0;
661 }
662 
663 #define SVM_EVENT_TYPE_HW_INT	0
664 #define SVM_EVENT_TYPE_NMI	2
665 #define SVM_EVENT_TYPE_EXC	3
666 #define SVM_EVENT_TYPE_SW_INT	4
667 
668 static void
svm_event_waitexit_enable(struct nvmm_cpu * vcpu,bool nmi)669 svm_event_waitexit_enable(struct nvmm_cpu *vcpu, bool nmi)
670 {
671 	struct svm_cpudata *cpudata = vcpu->cpudata;
672 	struct vmcb *vmcb = cpudata->vmcb;
673 
674 	if (nmi) {
675 		vmcb->ctrl.intercept_misc1 |= VMCB_CTRL_INTERCEPT_IRET;
676 		cpudata->nmi_window_exit = true;
677 	} else {
678 		vmcb->ctrl.intercept_misc1 |= VMCB_CTRL_INTERCEPT_VINTR;
679 		vmcb->ctrl.v |= (VMCB_CTRL_V_IRQ | VMCB_CTRL_V_IGN_TPR);
680 		svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_TPR);
681 		cpudata->int_window_exit = true;
682 	}
683 
684 	svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
685 }
686 
687 static void
svm_event_waitexit_disable(struct nvmm_cpu * vcpu,bool nmi)688 svm_event_waitexit_disable(struct nvmm_cpu *vcpu, bool nmi)
689 {
690 	struct svm_cpudata *cpudata = vcpu->cpudata;
691 	struct vmcb *vmcb = cpudata->vmcb;
692 
693 	if (nmi) {
694 		vmcb->ctrl.intercept_misc1 &= ~VMCB_CTRL_INTERCEPT_IRET;
695 		cpudata->nmi_window_exit = false;
696 	} else {
697 		vmcb->ctrl.intercept_misc1 &= ~VMCB_CTRL_INTERCEPT_VINTR;
698 		vmcb->ctrl.v &= ~(VMCB_CTRL_V_IRQ | VMCB_CTRL_V_IGN_TPR);
699 		svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_TPR);
700 		cpudata->int_window_exit = false;
701 	}
702 
703 	svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
704 }
705 
706 static inline bool
svm_excp_has_rf(uint8_t vector)707 svm_excp_has_rf(uint8_t vector)
708 {
709 	switch (vector) {
710 	case 1:		/* #DB */
711 	case 4:		/* #OF */
712 	case 8:		/* #DF */
713 	case 18:	/* #MC */
714 		return false;
715 	default:
716 		return true;
717 	}
718 }
719 
720 static inline int
svm_excp_has_error(uint8_t vector)721 svm_excp_has_error(uint8_t vector)
722 {
723 	switch (vector) {
724 	case 8:		/* #DF */
725 	case 10:	/* #TS */
726 	case 11:	/* #NP */
727 	case 12:	/* #SS */
728 	case 13:	/* #GP */
729 	case 14:	/* #PF */
730 	case 17:	/* #AC */
731 	case 30:	/* #SX */
732 		return 1;
733 	default:
734 		return 0;
735 	}
736 }
737 
738 static int
svm_vcpu_inject(struct nvmm_cpu * vcpu)739 svm_vcpu_inject(struct nvmm_cpu *vcpu)
740 {
741 	struct nvmm_comm_page *comm = vcpu->comm;
742 	struct svm_cpudata *cpudata = vcpu->cpudata;
743 	struct vmcb *vmcb = cpudata->vmcb;
744 	u_int evtype;
745 	uint8_t vector;
746 	uint64_t error;
747 	int type = 0, err = 0;
748 
749 	evtype = comm->event.type;
750 	vector = comm->event.vector;
751 	error = comm->event.u.excp.error;
752 	__insn_barrier();
753 
754 	switch (evtype) {
755 	case NVMM_VCPU_EVENT_EXCP:
756 		type = SVM_EVENT_TYPE_EXC;
757 		if (vector == 2 || vector >= 32)
758 			return EINVAL;
759 		if (vector == 3 || vector == 0)
760 			return EINVAL;
761 		if (svm_excp_has_rf(vector)) {
762 			vmcb->state.rflags |= PSL_RF;
763 		}
764 		err = svm_excp_has_error(vector);
765 		break;
766 	case NVMM_VCPU_EVENT_INTR:
767 		type = SVM_EVENT_TYPE_HW_INT;
768 		if (vector == 2) {
769 			type = SVM_EVENT_TYPE_NMI;
770 			svm_event_waitexit_enable(vcpu, true);
771 		}
772 		err = 0;
773 		break;
774 	default:
775 		return EINVAL;
776 	}
777 
778 	vmcb->ctrl.eventinj =
779 	    __SHIFTIN((uint64_t)vector, VMCB_CTRL_EVENTINJ_VECTOR) |
780 	    __SHIFTIN((uint64_t)type, VMCB_CTRL_EVENTINJ_TYPE) |
781 	    __SHIFTIN((uint64_t)err, VMCB_CTRL_EVENTINJ_EV) |
782 	    __SHIFTIN((uint64_t)1, VMCB_CTRL_EVENTINJ_V) |
783 	    __SHIFTIN((uint64_t)error, VMCB_CTRL_EVENTINJ_ERRORCODE);
784 
785 	cpudata->evt_pending = true;
786 
787 	return 0;
788 }
789 
790 static void
svm_inject_ud(struct nvmm_cpu * vcpu)791 svm_inject_ud(struct nvmm_cpu *vcpu)
792 {
793 	struct nvmm_comm_page *comm = vcpu->comm;
794 	int ret __diagused;
795 
796 	comm->event.type = NVMM_VCPU_EVENT_EXCP;
797 	comm->event.vector = 6;
798 	comm->event.u.excp.error = 0;
799 
800 	ret = svm_vcpu_inject(vcpu);
801 	KASSERT(ret == 0);
802 }
803 
804 static void
svm_inject_gp(struct nvmm_cpu * vcpu)805 svm_inject_gp(struct nvmm_cpu *vcpu)
806 {
807 	struct nvmm_comm_page *comm = vcpu->comm;
808 	int ret __diagused;
809 
810 	comm->event.type = NVMM_VCPU_EVENT_EXCP;
811 	comm->event.vector = 13;
812 	comm->event.u.excp.error = 0;
813 
814 	ret = svm_vcpu_inject(vcpu);
815 	KASSERT(ret == 0);
816 }
817 
818 static inline int
svm_vcpu_event_commit(struct nvmm_cpu * vcpu)819 svm_vcpu_event_commit(struct nvmm_cpu *vcpu)
820 {
821 	if (__predict_true(!vcpu->comm->event_commit)) {
822 		return 0;
823 	}
824 	vcpu->comm->event_commit = false;
825 	return svm_vcpu_inject(vcpu);
826 }
827 
828 static inline void
svm_inkernel_advance(struct vmcb * vmcb)829 svm_inkernel_advance(struct vmcb *vmcb)
830 {
831 	/*
832 	 * Maybe we should also apply single-stepping and debug exceptions.
833 	 * Matters for guest-ring3, because it can execute 'cpuid' under a
834 	 * debugger.
835 	 */
836 	vmcb->state.rip = vmcb->ctrl.nrip;
837 	vmcb->state.rflags &= ~PSL_RF;
838 	vmcb->ctrl.intr &= ~VMCB_CTRL_INTR_SHADOW;
839 }
840 
841 #define SVM_CPUID_MAX_BASIC		0xD
842 #define SVM_CPUID_MAX_HYPERVISOR	0x40000000
843 #define SVM_CPUID_MAX_EXTENDED		0x8000001F
844 static uint32_t svm_cpuid_max_basic __read_mostly;
845 static uint32_t svm_cpuid_max_extended __read_mostly;
846 
847 static void
svm_inkernel_exec_cpuid(struct svm_cpudata * cpudata,uint64_t eax,uint64_t ecx)848 svm_inkernel_exec_cpuid(struct svm_cpudata *cpudata, uint64_t eax, uint64_t ecx)
849 {
850 	u_int descs[4];
851 
852 	x86_cpuid2(eax, ecx, descs);
853 	cpudata->vmcb->state.rax = descs[0];
854 	cpudata->gprs[NVMM_X64_GPR_RBX] = descs[1];
855 	cpudata->gprs[NVMM_X64_GPR_RCX] = descs[2];
856 	cpudata->gprs[NVMM_X64_GPR_RDX] = descs[3];
857 }
858 
859 static void
svm_inkernel_handle_cpuid(struct nvmm_cpu * vcpu,uint64_t eax,uint64_t ecx)860 svm_inkernel_handle_cpuid(struct nvmm_cpu *vcpu, uint64_t eax, uint64_t ecx)
861 {
862 	struct svm_cpudata *cpudata = vcpu->cpudata;
863 	uint64_t cr4;
864 
865 	if (eax < 0x40000000) {
866 		if (__predict_false(eax > svm_cpuid_max_basic)) {
867 			eax = svm_cpuid_max_basic;
868 			svm_inkernel_exec_cpuid(cpudata, eax, ecx);
869 		}
870 	} else if (eax < 0x80000000) {
871 		if (__predict_false(eax > SVM_CPUID_MAX_HYPERVISOR)) {
872 			eax = svm_cpuid_max_basic;
873 			svm_inkernel_exec_cpuid(cpudata, eax, ecx);
874 		}
875 	} else {
876 		if (__predict_false(eax > svm_cpuid_max_extended)) {
877 			eax = svm_cpuid_max_basic;
878 			svm_inkernel_exec_cpuid(cpudata, eax, ecx);
879 		}
880 	}
881 
882 	switch (eax) {
883 	case 0x00000000:
884 		cpudata->vmcb->state.rax = svm_cpuid_max_basic;
885 		break;
886 	case 0x00000001:
887 		cpudata->vmcb->state.rax &= nvmm_cpuid_00000001.eax;
888 
889 		cpudata->gprs[NVMM_X64_GPR_RBX] &= ~CPUID_LOCAL_APIC_ID;
890 		cpudata->gprs[NVMM_X64_GPR_RBX] |= __SHIFTIN(vcpu->cpuid,
891 		    CPUID_LOCAL_APIC_ID);
892 
893 		cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000001.ecx;
894 		cpudata->gprs[NVMM_X64_GPR_RCX] |= CPUID2_RAZ;
895 
896 		cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000001.edx;
897 
898 		/* CPUID2_OSXSAVE depends on CR4. */
899 		cr4 = cpudata->vmcb->state.cr4;
900 		if (!(cr4 & CR4_OSXSAVE)) {
901 			cpudata->gprs[NVMM_X64_GPR_RCX] &= ~CPUID2_OSXSAVE;
902 		}
903 		break;
904 	case 0x00000002: /* Empty */
905 	case 0x00000003: /* Empty */
906 	case 0x00000004: /* Empty */
907 	case 0x00000005: /* Monitor/MWait */
908 	case 0x00000006: /* Power Management Related Features */
909 		cpudata->vmcb->state.rax = 0;
910 		cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
911 		cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
912 		cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
913 		break;
914 	case 0x00000007: /* Structured Extended Features */
915 		switch (ecx) {
916 		case 0:
917 			cpudata->vmcb->state.rax = 0;
918 			cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_00000007.ebx;
919 			cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000007.ecx;
920 			cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000007.edx;
921 			break;
922 		default:
923 			cpudata->vmcb->state.rax = 0;
924 			cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
925 			cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
926 			cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
927 			break;
928 		}
929 		break;
930 	case 0x00000008: /* Empty */
931 	case 0x00000009: /* Empty */
932 	case 0x0000000A: /* Empty */
933 	case 0x0000000B: /* Empty */
934 	case 0x0000000C: /* Empty */
935 		cpudata->vmcb->state.rax = 0;
936 		cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
937 		cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
938 		cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
939 		break;
940 	case 0x0000000D: /* Processor Extended State Enumeration */
941 		if (svm_xcr0_mask == 0) {
942 			break;
943 		}
944 		switch (ecx) {
945 		case 0:
946 			cpudata->vmcb->state.rax = svm_xcr0_mask & 0xFFFFFFFF;
947 			if (cpudata->gxcr0 & XCR0_SSE) {
948 				cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct fxsave);
949 			} else {
950 				cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct save87);
951 			}
952 			cpudata->gprs[NVMM_X64_GPR_RBX] += 64; /* XSAVE header */
953 			cpudata->gprs[NVMM_X64_GPR_RCX] = sizeof(struct fxsave) + 64;
954 			cpudata->gprs[NVMM_X64_GPR_RDX] = svm_xcr0_mask >> 32;
955 			break;
956 		case 1:
957 			cpudata->vmcb->state.rax &=
958 			    (CPUID_PES1_XSAVEOPT | CPUID_PES1_XSAVEC |
959 			     CPUID_PES1_XGETBV);
960 			cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
961 			cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
962 			cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
963 			break;
964 		default:
965 			cpudata->vmcb->state.rax = 0;
966 			cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
967 			cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
968 			cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
969 			break;
970 		}
971 		break;
972 
973 	case 0x40000000: /* Hypervisor Information */
974 		cpudata->vmcb->state.rax = SVM_CPUID_MAX_HYPERVISOR;
975 		cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
976 		cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
977 		cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
978 		memcpy(&cpudata->gprs[NVMM_X64_GPR_RBX], "___ ", 4);
979 		memcpy(&cpudata->gprs[NVMM_X64_GPR_RCX], "NVMM", 4);
980 		memcpy(&cpudata->gprs[NVMM_X64_GPR_RDX], " ___", 4);
981 		break;
982 
983 	case 0x80000000:
984 		cpudata->vmcb->state.rax = svm_cpuid_max_extended;
985 		break;
986 	case 0x80000001:
987 		cpudata->vmcb->state.rax &= nvmm_cpuid_80000001.eax;
988 		cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000001.ebx;
989 		cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000001.ecx;
990 		cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000001.edx;
991 		break;
992 	case 0x80000002: /* Extended Processor Name String */
993 	case 0x80000003: /* Extended Processor Name String */
994 	case 0x80000004: /* Extended Processor Name String */
995 	case 0x80000005: /* L1 Cache and TLB Information */
996 	case 0x80000006: /* L2 Cache and TLB and L3 Cache Information */
997 		break;
998 	case 0x80000007: /* Processor Power Management and RAS Capabilities */
999 		cpudata->vmcb->state.rax &= nvmm_cpuid_80000007.eax;
1000 		cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000007.ebx;
1001 		cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000007.ecx;
1002 		cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000007.edx;
1003 		break;
1004 	case 0x80000008: /* Processor Capacity Parameters and Ext Feat Ident */
1005 		cpudata->vmcb->state.rax &= nvmm_cpuid_80000008.eax;
1006 		cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000008.ebx;
1007 		cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000008.ecx;
1008 		cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000008.edx;
1009 		break;
1010 	case 0x80000009: /* Empty */
1011 	case 0x8000000A: /* SVM Features */
1012 	case 0x8000000B: /* Empty */
1013 	case 0x8000000C: /* Empty */
1014 	case 0x8000000D: /* Empty */
1015 	case 0x8000000E: /* Empty */
1016 	case 0x8000000F: /* Empty */
1017 	case 0x80000010: /* Empty */
1018 	case 0x80000011: /* Empty */
1019 	case 0x80000012: /* Empty */
1020 	case 0x80000013: /* Empty */
1021 	case 0x80000014: /* Empty */
1022 	case 0x80000015: /* Empty */
1023 	case 0x80000016: /* Empty */
1024 	case 0x80000017: /* Empty */
1025 	case 0x80000018: /* Empty */
1026 		cpudata->vmcb->state.rax = 0;
1027 		cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1028 		cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1029 		cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1030 		break;
1031 	case 0x80000019: /* TLB Characteristics for 1GB pages */
1032 	case 0x8000001A: /* Instruction Optimizations */
1033 		break;
1034 	case 0x8000001B: /* Instruction-Based Sampling Capabilities */
1035 	case 0x8000001C: /* Lightweight Profiling Capabilities */
1036 		cpudata->vmcb->state.rax = 0;
1037 		cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1038 		cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1039 		cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1040 		break;
1041 	case 0x8000001D: /* Cache Topology Information */
1042 	case 0x8000001E: /* Processor Topology Information */
1043 		break; /* TODO? */
1044 	case 0x8000001F: /* Encrypted Memory Capabilities */
1045 		cpudata->vmcb->state.rax = 0;
1046 		cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1047 		cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1048 		cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1049 		break;
1050 
1051 	default:
1052 		break;
1053 	}
1054 }
1055 
1056 static void
svm_exit_insn(struct vmcb * vmcb,struct nvmm_vcpu_exit * exit,uint64_t reason)1057 svm_exit_insn(struct vmcb *vmcb, struct nvmm_vcpu_exit *exit, uint64_t reason)
1058 {
1059 	exit->u.insn.npc = vmcb->ctrl.nrip;
1060 	exit->reason = reason;
1061 }
1062 
1063 static void
svm_exit_cpuid(struct nvmm_machine * mach,struct nvmm_cpu * vcpu,struct nvmm_vcpu_exit * exit)1064 svm_exit_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1065     struct nvmm_vcpu_exit *exit)
1066 {
1067 	struct svm_cpudata *cpudata = vcpu->cpudata;
1068 	struct nvmm_vcpu_conf_cpuid *cpuid;
1069 	uint64_t eax, ecx;
1070 	size_t i;
1071 
1072 	eax = cpudata->vmcb->state.rax;
1073 	ecx = cpudata->gprs[NVMM_X64_GPR_RCX];
1074 	svm_inkernel_exec_cpuid(cpudata, eax, ecx);
1075 	svm_inkernel_handle_cpuid(vcpu, eax, ecx);
1076 
1077 	for (i = 0; i < SVM_NCPUIDS; i++) {
1078 		if (!cpudata->cpuidpresent[i]) {
1079 			continue;
1080 		}
1081 		cpuid = &cpudata->cpuid[i];
1082 		if (cpuid->leaf != eax) {
1083 			continue;
1084 		}
1085 
1086 		if (cpuid->exit) {
1087 			svm_exit_insn(cpudata->vmcb, exit, NVMM_VCPU_EXIT_CPUID);
1088 			return;
1089 		}
1090 		KASSERT(cpuid->mask);
1091 
1092 		/* del */
1093 		cpudata->vmcb->state.rax &= ~cpuid->u.mask.del.eax;
1094 		cpudata->gprs[NVMM_X64_GPR_RBX] &= ~cpuid->u.mask.del.ebx;
1095 		cpudata->gprs[NVMM_X64_GPR_RCX] &= ~cpuid->u.mask.del.ecx;
1096 		cpudata->gprs[NVMM_X64_GPR_RDX] &= ~cpuid->u.mask.del.edx;
1097 
1098 		/* set */
1099 		cpudata->vmcb->state.rax |= cpuid->u.mask.set.eax;
1100 		cpudata->gprs[NVMM_X64_GPR_RBX] |= cpuid->u.mask.set.ebx;
1101 		cpudata->gprs[NVMM_X64_GPR_RCX] |= cpuid->u.mask.set.ecx;
1102 		cpudata->gprs[NVMM_X64_GPR_RDX] |= cpuid->u.mask.set.edx;
1103 
1104 		break;
1105 	}
1106 
1107 	svm_inkernel_advance(cpudata->vmcb);
1108 	exit->reason = NVMM_VCPU_EXIT_NONE;
1109 }
1110 
1111 static void
svm_exit_hlt(struct nvmm_machine * mach,struct nvmm_cpu * vcpu,struct nvmm_vcpu_exit * exit)1112 svm_exit_hlt(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1113     struct nvmm_vcpu_exit *exit)
1114 {
1115 	struct svm_cpudata *cpudata = vcpu->cpudata;
1116 	struct vmcb *vmcb = cpudata->vmcb;
1117 
1118 	if (cpudata->int_window_exit && (vmcb->state.rflags & PSL_I)) {
1119 		svm_event_waitexit_disable(vcpu, false);
1120 	}
1121 
1122 	svm_inkernel_advance(cpudata->vmcb);
1123 	exit->reason = NVMM_VCPU_EXIT_HALTED;
1124 }
1125 
1126 #define SVM_EXIT_IO_PORT	__BITS(31,16)
1127 #define SVM_EXIT_IO_SEG		__BITS(12,10)
1128 #define SVM_EXIT_IO_A64		__BIT(9)
1129 #define SVM_EXIT_IO_A32		__BIT(8)
1130 #define SVM_EXIT_IO_A16		__BIT(7)
1131 #define SVM_EXIT_IO_SZ32	__BIT(6)
1132 #define SVM_EXIT_IO_SZ16	__BIT(5)
1133 #define SVM_EXIT_IO_SZ8		__BIT(4)
1134 #define SVM_EXIT_IO_REP		__BIT(3)
1135 #define SVM_EXIT_IO_STR		__BIT(2)
1136 #define SVM_EXIT_IO_IN		__BIT(0)
1137 
1138 static void
svm_exit_io(struct nvmm_machine * mach,struct nvmm_cpu * vcpu,struct nvmm_vcpu_exit * exit)1139 svm_exit_io(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1140     struct nvmm_vcpu_exit *exit)
1141 {
1142 	struct svm_cpudata *cpudata = vcpu->cpudata;
1143 	uint64_t info = cpudata->vmcb->ctrl.exitinfo1;
1144 	uint64_t nextpc = cpudata->vmcb->ctrl.exitinfo2;
1145 
1146 	exit->reason = NVMM_VCPU_EXIT_IO;
1147 
1148 	exit->u.io.in = (info & SVM_EXIT_IO_IN) != 0;
1149 	exit->u.io.port = __SHIFTOUT(info, SVM_EXIT_IO_PORT);
1150 
1151 	if (svm_decode_assist) {
1152 		KASSERT(__SHIFTOUT(info, SVM_EXIT_IO_SEG) < 6);
1153 		exit->u.io.seg = __SHIFTOUT(info, SVM_EXIT_IO_SEG);
1154 	} else {
1155 		exit->u.io.seg = -1;
1156 	}
1157 
1158 	if (info & SVM_EXIT_IO_A64) {
1159 		exit->u.io.address_size = 8;
1160 	} else if (info & SVM_EXIT_IO_A32) {
1161 		exit->u.io.address_size = 4;
1162 	} else if (info & SVM_EXIT_IO_A16) {
1163 		exit->u.io.address_size = 2;
1164 	}
1165 
1166 	if (info & SVM_EXIT_IO_SZ32) {
1167 		exit->u.io.operand_size = 4;
1168 	} else if (info & SVM_EXIT_IO_SZ16) {
1169 		exit->u.io.operand_size = 2;
1170 	} else if (info & SVM_EXIT_IO_SZ8) {
1171 		exit->u.io.operand_size = 1;
1172 	}
1173 
1174 	exit->u.io.rep = (info & SVM_EXIT_IO_REP) != 0;
1175 	exit->u.io.str = (info & SVM_EXIT_IO_STR) != 0;
1176 	exit->u.io.npc = nextpc;
1177 
1178 	svm_vcpu_state_provide(vcpu,
1179 	    NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
1180 	    NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
1181 }
1182 
1183 static const uint64_t msr_ignore_list[] = {
1184 	0xc0010055, /* MSR_CMPHALT */
1185 	MSR_DE_CFG,
1186 	MSR_IC_CFG,
1187 	MSR_UCODE_AMD_PATCHLEVEL
1188 };
1189 
1190 static bool
svm_inkernel_handle_msr(struct nvmm_machine * mach,struct nvmm_cpu * vcpu,struct nvmm_vcpu_exit * exit)1191 svm_inkernel_handle_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1192     struct nvmm_vcpu_exit *exit)
1193 {
1194 	struct svm_cpudata *cpudata = vcpu->cpudata;
1195 	struct vmcb *vmcb = cpudata->vmcb;
1196 	uint64_t val;
1197 	size_t i;
1198 
1199 	if (exit->reason == NVMM_VCPU_EXIT_RDMSR) {
1200 		if (exit->u.rdmsr.msr == MSR_EFER) {
1201 			val = vmcb->state.efer & ~EFER_SVME;
1202 			vmcb->state.rax = (val & 0xFFFFFFFF);
1203 			cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1204 			goto handled;
1205 		}
1206 		if (exit->u.rdmsr.msr == MSR_NB_CFG) {
1207 			val = NB_CFG_INITAPICCPUIDLO;
1208 			vmcb->state.rax = (val & 0xFFFFFFFF);
1209 			cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1210 			goto handled;
1211 		}
1212 		for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1213 			if (msr_ignore_list[i] != exit->u.rdmsr.msr)
1214 				continue;
1215 			val = 0;
1216 			vmcb->state.rax = (val & 0xFFFFFFFF);
1217 			cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1218 			goto handled;
1219 		}
1220 	} else {
1221 		if (exit->u.wrmsr.msr == MSR_EFER) {
1222 			if (__predict_false(exit->u.wrmsr.val & ~EFER_VALID)) {
1223 				goto error;
1224 			}
1225 			if ((vmcb->state.efer ^ exit->u.wrmsr.val) &
1226 			     EFER_TLB_FLUSH) {
1227 				cpudata->gtlb_want_flush = true;
1228 			}
1229 			vmcb->state.efer = exit->u.wrmsr.val | EFER_SVME;
1230 			svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_CR);
1231 			goto handled;
1232 		}
1233 		if (exit->u.wrmsr.msr == MSR_TSC) {
1234 			cpudata->gtsc = exit->u.wrmsr.val;
1235 			cpudata->gtsc_want_update = true;
1236 			goto handled;
1237 		}
1238 		for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1239 			if (msr_ignore_list[i] != exit->u.wrmsr.msr)
1240 				continue;
1241 			goto handled;
1242 		}
1243 	}
1244 
1245 	return false;
1246 
1247 handled:
1248 	svm_inkernel_advance(cpudata->vmcb);
1249 	return true;
1250 
1251 error:
1252 	svm_inject_gp(vcpu);
1253 	return true;
1254 }
1255 
1256 static inline void
svm_exit_rdmsr(struct nvmm_machine * mach,struct nvmm_cpu * vcpu,struct nvmm_vcpu_exit * exit)1257 svm_exit_rdmsr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1258     struct nvmm_vcpu_exit *exit)
1259 {
1260 	struct svm_cpudata *cpudata = vcpu->cpudata;
1261 
1262 	exit->reason = NVMM_VCPU_EXIT_RDMSR;
1263 	exit->u.rdmsr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1264 	exit->u.rdmsr.npc = cpudata->vmcb->ctrl.nrip;
1265 
1266 	if (svm_inkernel_handle_msr(mach, vcpu, exit)) {
1267 		exit->reason = NVMM_VCPU_EXIT_NONE;
1268 		return;
1269 	}
1270 
1271 	svm_vcpu_state_provide(vcpu, NVMM_X64_STATE_GPRS);
1272 }
1273 
1274 static inline void
svm_exit_wrmsr(struct nvmm_machine * mach,struct nvmm_cpu * vcpu,struct nvmm_vcpu_exit * exit)1275 svm_exit_wrmsr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1276     struct nvmm_vcpu_exit *exit)
1277 {
1278 	struct svm_cpudata *cpudata = vcpu->cpudata;
1279 	uint64_t rdx, rax;
1280 
1281 	rdx = cpudata->gprs[NVMM_X64_GPR_RDX];
1282 	rax = cpudata->vmcb->state.rax;
1283 
1284 	exit->reason = NVMM_VCPU_EXIT_WRMSR;
1285 	exit->u.wrmsr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1286 	exit->u.wrmsr.val = (rdx << 32) | (rax & 0xFFFFFFFF);
1287 	exit->u.wrmsr.npc = cpudata->vmcb->ctrl.nrip;
1288 
1289 	if (svm_inkernel_handle_msr(mach, vcpu, exit)) {
1290 		exit->reason = NVMM_VCPU_EXIT_NONE;
1291 		return;
1292 	}
1293 
1294 	svm_vcpu_state_provide(vcpu, NVMM_X64_STATE_GPRS);
1295 }
1296 
1297 static void
svm_exit_msr(struct nvmm_machine * mach,struct nvmm_cpu * vcpu,struct nvmm_vcpu_exit * exit)1298 svm_exit_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1299     struct nvmm_vcpu_exit *exit)
1300 {
1301 	struct svm_cpudata *cpudata = vcpu->cpudata;
1302 	uint64_t info = cpudata->vmcb->ctrl.exitinfo1;
1303 
1304 	if (info == 0) {
1305 		svm_exit_rdmsr(mach, vcpu, exit);
1306 	} else {
1307 		svm_exit_wrmsr(mach, vcpu, exit);
1308 	}
1309 }
1310 
1311 static void
svm_exit_npf(struct nvmm_machine * mach,struct nvmm_cpu * vcpu,struct nvmm_vcpu_exit * exit)1312 svm_exit_npf(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1313     struct nvmm_vcpu_exit *exit)
1314 {
1315 	struct svm_cpudata *cpudata = vcpu->cpudata;
1316 	gpaddr_t gpa = cpudata->vmcb->ctrl.exitinfo2;
1317 
1318 	exit->reason = NVMM_VCPU_EXIT_MEMORY;
1319 	if (cpudata->vmcb->ctrl.exitinfo1 & PGEX_W)
1320 		exit->u.mem.prot = PROT_WRITE;
1321 	else if (cpudata->vmcb->ctrl.exitinfo1 & PGEX_I)
1322 		exit->u.mem.prot = PROT_EXEC;
1323 	else
1324 		exit->u.mem.prot = PROT_READ;
1325 	exit->u.mem.gpa = gpa;
1326 	exit->u.mem.inst_len = cpudata->vmcb->ctrl.inst_len;
1327 	memcpy(exit->u.mem.inst_bytes, cpudata->vmcb->ctrl.inst_bytes,
1328 	    sizeof(exit->u.mem.inst_bytes));
1329 
1330 	svm_vcpu_state_provide(vcpu,
1331 	    NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
1332 	    NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
1333 }
1334 
1335 static void
svm_exit_xsetbv(struct nvmm_machine * mach,struct nvmm_cpu * vcpu,struct nvmm_vcpu_exit * exit)1336 svm_exit_xsetbv(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1337     struct nvmm_vcpu_exit *exit)
1338 {
1339 	struct svm_cpudata *cpudata = vcpu->cpudata;
1340 	struct vmcb *vmcb = cpudata->vmcb;
1341 	uint64_t val;
1342 
1343 	exit->reason = NVMM_VCPU_EXIT_NONE;
1344 
1345 	val = (cpudata->gprs[NVMM_X64_GPR_RDX] << 32) |
1346 	    (vmcb->state.rax & 0xFFFFFFFF);
1347 
1348 	if (__predict_false(cpudata->gprs[NVMM_X64_GPR_RCX] != 0)) {
1349 		goto error;
1350 	} else if (__predict_false(vmcb->state.cpl != 0)) {
1351 		goto error;
1352 	} else if (__predict_false((val & ~svm_xcr0_mask) != 0)) {
1353 		goto error;
1354 	} else if (__predict_false((val & XCR0_X87) == 0)) {
1355 		goto error;
1356 	}
1357 
1358 	cpudata->gxcr0 = val;
1359 
1360 	svm_inkernel_advance(cpudata->vmcb);
1361 	return;
1362 
1363 error:
1364 	svm_inject_gp(vcpu);
1365 }
1366 
1367 static void
svm_exit_invalid(struct nvmm_vcpu_exit * exit,uint64_t code)1368 svm_exit_invalid(struct nvmm_vcpu_exit *exit, uint64_t code)
1369 {
1370 	exit->u.inv.hwcode = code;
1371 	exit->reason = NVMM_VCPU_EXIT_INVALID;
1372 }
1373 
1374 /* -------------------------------------------------------------------------- */
1375 
1376 static void
svm_vcpu_guest_fpu_enter(struct nvmm_cpu * vcpu)1377 svm_vcpu_guest_fpu_enter(struct nvmm_cpu *vcpu)
1378 {
1379 	struct svm_cpudata *cpudata = vcpu->cpudata;
1380 
1381 	fpu_kern_enter();
1382 	/* TODO: should we use *XSAVE64 here? */
1383 	fpu_area_restore(&cpudata->gfpu, svm_xcr0_mask, false);
1384 
1385 	if (svm_xcr0_mask != 0) {
1386 		cpudata->hxcr0 = rdxcr(0);
1387 		wrxcr(0, cpudata->gxcr0);
1388 	}
1389 }
1390 
1391 static void
svm_vcpu_guest_fpu_leave(struct nvmm_cpu * vcpu)1392 svm_vcpu_guest_fpu_leave(struct nvmm_cpu *vcpu)
1393 {
1394 	struct svm_cpudata *cpudata = vcpu->cpudata;
1395 
1396 	if (svm_xcr0_mask != 0) {
1397 		cpudata->gxcr0 = rdxcr(0);
1398 		wrxcr(0, cpudata->hxcr0);
1399 	}
1400 
1401 	/* TODO: should we use *XSAVE64 here? */
1402 	fpu_area_save(&cpudata->gfpu, svm_xcr0_mask, false);
1403 	fpu_kern_leave();
1404 }
1405 
1406 static void
svm_vcpu_guest_dbregs_enter(struct nvmm_cpu * vcpu)1407 svm_vcpu_guest_dbregs_enter(struct nvmm_cpu *vcpu)
1408 {
1409 	struct svm_cpudata *cpudata = vcpu->cpudata;
1410 
1411 	x86_dbregs_save(curlwp);
1412 
1413 	ldr7(0);
1414 
1415 	ldr0(cpudata->drs[NVMM_X64_DR_DR0]);
1416 	ldr1(cpudata->drs[NVMM_X64_DR_DR1]);
1417 	ldr2(cpudata->drs[NVMM_X64_DR_DR2]);
1418 	ldr3(cpudata->drs[NVMM_X64_DR_DR3]);
1419 }
1420 
1421 static void
svm_vcpu_guest_dbregs_leave(struct nvmm_cpu * vcpu)1422 svm_vcpu_guest_dbregs_leave(struct nvmm_cpu *vcpu)
1423 {
1424 	struct svm_cpudata *cpudata = vcpu->cpudata;
1425 
1426 	cpudata->drs[NVMM_X64_DR_DR0] = rdr0();
1427 	cpudata->drs[NVMM_X64_DR_DR1] = rdr1();
1428 	cpudata->drs[NVMM_X64_DR_DR2] = rdr2();
1429 	cpudata->drs[NVMM_X64_DR_DR3] = rdr3();
1430 
1431 	x86_dbregs_restore(curlwp);
1432 }
1433 
1434 static void
svm_vcpu_guest_misc_enter(struct nvmm_cpu * vcpu)1435 svm_vcpu_guest_misc_enter(struct nvmm_cpu *vcpu)
1436 {
1437 	struct svm_cpudata *cpudata = vcpu->cpudata;
1438 
1439 	cpudata->fsbase = rdmsr(MSR_FSBASE);
1440 	cpudata->kernelgsbase = rdmsr(MSR_KERNELGSBASE);
1441 }
1442 
1443 static void
svm_vcpu_guest_misc_leave(struct nvmm_cpu * vcpu)1444 svm_vcpu_guest_misc_leave(struct nvmm_cpu *vcpu)
1445 {
1446 	struct svm_cpudata *cpudata = vcpu->cpudata;
1447 
1448 	wrmsr(MSR_STAR, cpudata->star);
1449 	wrmsr(MSR_LSTAR, cpudata->lstar);
1450 	wrmsr(MSR_CSTAR, cpudata->cstar);
1451 	wrmsr(MSR_SFMASK, cpudata->sfmask);
1452 	wrmsr(MSR_FSBASE, cpudata->fsbase);
1453 	wrmsr(MSR_KERNELGSBASE, cpudata->kernelgsbase);
1454 }
1455 
1456 /* -------------------------------------------------------------------------- */
1457 
1458 static inline void
svm_gtlb_catchup(struct nvmm_cpu * vcpu,int hcpu)1459 svm_gtlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1460 {
1461 	struct svm_cpudata *cpudata = vcpu->cpudata;
1462 
1463 	if (vcpu->hcpu_last != hcpu || cpudata->shared_asid) {
1464 		cpudata->gtlb_want_flush = true;
1465 	}
1466 }
1467 
1468 static inline void
svm_htlb_catchup(struct nvmm_cpu * vcpu,int hcpu)1469 svm_htlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1470 {
1471 	/*
1472 	 * Nothing to do. If an hTLB flush was needed, either the VCPU was
1473 	 * executing on this hCPU and the hTLB already got flushed, or it
1474 	 * was executing on another hCPU in which case the catchup is done
1475 	 * in svm_gtlb_catchup().
1476 	 */
1477 }
1478 
1479 static inline uint64_t
svm_htlb_flush(struct svm_machdata * machdata,struct svm_cpudata * cpudata)1480 svm_htlb_flush(struct svm_machdata *machdata, struct svm_cpudata *cpudata)
1481 {
1482 	struct vmcb *vmcb = cpudata->vmcb;
1483 	uint64_t machgen;
1484 
1485 	machgen = machdata->mach_htlb_gen;
1486 	if (__predict_true(machgen == cpudata->vcpu_htlb_gen)) {
1487 		return machgen;
1488 	}
1489 
1490 	vmcb->ctrl.tlb_ctrl = svm_ctrl_tlb_flush;
1491 	return machgen;
1492 }
1493 
1494 static inline void
svm_htlb_flush_ack(struct svm_cpudata * cpudata,uint64_t machgen)1495 svm_htlb_flush_ack(struct svm_cpudata *cpudata, uint64_t machgen)
1496 {
1497 	struct vmcb *vmcb = cpudata->vmcb;
1498 
1499 	if (__predict_true(vmcb->ctrl.exitcode != VMCB_EXITCODE_INVALID)) {
1500 		cpudata->vcpu_htlb_gen = machgen;
1501 	}
1502 }
1503 
1504 static inline void
svm_exit_evt(struct svm_cpudata * cpudata,struct vmcb * vmcb)1505 svm_exit_evt(struct svm_cpudata *cpudata, struct vmcb *vmcb)
1506 {
1507 	cpudata->evt_pending = false;
1508 
1509 	if (__predict_false(vmcb->ctrl.exitintinfo & VMCB_CTRL_EXITINTINFO_V)) {
1510 		vmcb->ctrl.eventinj = vmcb->ctrl.exitintinfo;
1511 		cpudata->evt_pending = true;
1512 	}
1513 }
1514 
1515 static int
svm_vcpu_run(struct nvmm_machine * mach,struct nvmm_cpu * vcpu,struct nvmm_vcpu_exit * exit)1516 svm_vcpu_run(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1517     struct nvmm_vcpu_exit *exit)
1518 {
1519 	struct nvmm_comm_page *comm = vcpu->comm;
1520 	struct svm_machdata *machdata = mach->machdata;
1521 	struct svm_cpudata *cpudata = vcpu->cpudata;
1522 	struct vmcb *vmcb = cpudata->vmcb;
1523 	uint64_t machgen;
1524 	int hcpu;
1525 
1526 	svm_vcpu_state_commit(vcpu);
1527 	comm->state_cached = 0;
1528 
1529 	if (__predict_false(svm_vcpu_event_commit(vcpu) != 0)) {
1530 		return EINVAL;
1531 	}
1532 
1533 	kpreempt_disable();
1534 	hcpu = cpu_number();
1535 
1536 	svm_gtlb_catchup(vcpu, hcpu);
1537 	svm_htlb_catchup(vcpu, hcpu);
1538 
1539 	if (vcpu->hcpu_last != hcpu) {
1540 		svm_vmcb_cache_flush_all(vmcb);
1541 		cpudata->gtsc_want_update = true;
1542 	}
1543 
1544 	svm_vcpu_guest_dbregs_enter(vcpu);
1545 	svm_vcpu_guest_misc_enter(vcpu);
1546 
1547 	while (1) {
1548 		if (cpudata->gtlb_want_flush) {
1549 			vmcb->ctrl.tlb_ctrl = svm_ctrl_tlb_flush;
1550 		} else {
1551 			vmcb->ctrl.tlb_ctrl = 0;
1552 		}
1553 
1554 		if (__predict_false(cpudata->gtsc_want_update)) {
1555 			vmcb->ctrl.tsc_offset = cpudata->gtsc - rdtsc();
1556 			svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
1557 		}
1558 
1559 		svm_vcpu_guest_fpu_enter(vcpu);
1560 		svm_clgi();
1561 		machgen = svm_htlb_flush(machdata, cpudata);
1562 		svm_vmrun(cpudata->vmcb_pa, cpudata->gprs);
1563 		svm_htlb_flush_ack(cpudata, machgen);
1564 		svm_stgi();
1565 		svm_vcpu_guest_fpu_leave(vcpu);
1566 
1567 		svm_vmcb_cache_default(vmcb);
1568 
1569 		if (vmcb->ctrl.exitcode != VMCB_EXITCODE_INVALID) {
1570 			cpudata->gtlb_want_flush = false;
1571 			cpudata->gtsc_want_update = false;
1572 			vcpu->hcpu_last = hcpu;
1573 		}
1574 		svm_exit_evt(cpudata, vmcb);
1575 
1576 		switch (vmcb->ctrl.exitcode) {
1577 		case VMCB_EXITCODE_INTR:
1578 		case VMCB_EXITCODE_NMI:
1579 			exit->reason = NVMM_VCPU_EXIT_NONE;
1580 			break;
1581 		case VMCB_EXITCODE_VINTR:
1582 			svm_event_waitexit_disable(vcpu, false);
1583 			exit->reason = NVMM_VCPU_EXIT_INT_READY;
1584 			break;
1585 		case VMCB_EXITCODE_IRET:
1586 			svm_event_waitexit_disable(vcpu, true);
1587 			exit->reason = NVMM_VCPU_EXIT_NMI_READY;
1588 			break;
1589 		case VMCB_EXITCODE_CPUID:
1590 			svm_exit_cpuid(mach, vcpu, exit);
1591 			break;
1592 		case VMCB_EXITCODE_HLT:
1593 			svm_exit_hlt(mach, vcpu, exit);
1594 			break;
1595 		case VMCB_EXITCODE_IOIO:
1596 			svm_exit_io(mach, vcpu, exit);
1597 			break;
1598 		case VMCB_EXITCODE_MSR:
1599 			svm_exit_msr(mach, vcpu, exit);
1600 			break;
1601 		case VMCB_EXITCODE_SHUTDOWN:
1602 			exit->reason = NVMM_VCPU_EXIT_SHUTDOWN;
1603 			break;
1604 		case VMCB_EXITCODE_RDPMC:
1605 		case VMCB_EXITCODE_RSM:
1606 		case VMCB_EXITCODE_INVLPGA:
1607 		case VMCB_EXITCODE_VMRUN:
1608 		case VMCB_EXITCODE_VMMCALL:
1609 		case VMCB_EXITCODE_VMLOAD:
1610 		case VMCB_EXITCODE_VMSAVE:
1611 		case VMCB_EXITCODE_STGI:
1612 		case VMCB_EXITCODE_CLGI:
1613 		case VMCB_EXITCODE_SKINIT:
1614 		case VMCB_EXITCODE_RDTSCP:
1615 		case VMCB_EXITCODE_RDPRU:
1616 		case VMCB_EXITCODE_INVLPGB:
1617 		case VMCB_EXITCODE_INVPCID:
1618 		case VMCB_EXITCODE_MCOMMIT:
1619 		case VMCB_EXITCODE_TLBSYNC:
1620 			svm_inject_ud(vcpu);
1621 			exit->reason = NVMM_VCPU_EXIT_NONE;
1622 			break;
1623 		case VMCB_EXITCODE_MONITOR:
1624 			svm_exit_insn(vmcb, exit, NVMM_VCPU_EXIT_MONITOR);
1625 			break;
1626 		case VMCB_EXITCODE_MWAIT:
1627 		case VMCB_EXITCODE_MWAIT_CONDITIONAL:
1628 			svm_exit_insn(vmcb, exit, NVMM_VCPU_EXIT_MWAIT);
1629 			break;
1630 		case VMCB_EXITCODE_XSETBV:
1631 			svm_exit_xsetbv(mach, vcpu, exit);
1632 			break;
1633 		case VMCB_EXITCODE_NPF:
1634 			svm_exit_npf(mach, vcpu, exit);
1635 			break;
1636 		case VMCB_EXITCODE_FERR_FREEZE: /* ? */
1637 		default:
1638 			svm_exit_invalid(exit, vmcb->ctrl.exitcode);
1639 			break;
1640 		}
1641 
1642 		/* If no reason to return to userland, keep rolling. */
1643 		if (nvmm_return_needed(vcpu, exit)) {
1644 			break;
1645 		}
1646 		if (exit->reason != NVMM_VCPU_EXIT_NONE) {
1647 			break;
1648 		}
1649 	}
1650 
1651 	cpudata->gtsc = rdtsc() + vmcb->ctrl.tsc_offset;
1652 
1653 	svm_vcpu_guest_misc_leave(vcpu);
1654 	svm_vcpu_guest_dbregs_leave(vcpu);
1655 
1656 	kpreempt_enable();
1657 
1658 	exit->exitstate.rflags = vmcb->state.rflags;
1659 	exit->exitstate.cr8 = __SHIFTOUT(vmcb->ctrl.v, VMCB_CTRL_V_TPR);
1660 	exit->exitstate.int_shadow =
1661 	    ((vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0);
1662 	exit->exitstate.int_window_exiting = cpudata->int_window_exit;
1663 	exit->exitstate.nmi_window_exiting = cpudata->nmi_window_exit;
1664 	exit->exitstate.evt_pending = cpudata->evt_pending;
1665 
1666 	return 0;
1667 }
1668 
1669 /* -------------------------------------------------------------------------- */
1670 
1671 static int
svm_memalloc(paddr_t * pa,vaddr_t * va,size_t npages)1672 svm_memalloc(paddr_t *pa, vaddr_t *va, size_t npages)
1673 {
1674 	struct pglist pglist;
1675 	paddr_t _pa;
1676 	vaddr_t _va;
1677 	size_t i;
1678 	int ret;
1679 
1680 	ret = uvm_pglistalloc(npages * PAGE_SIZE, 0, ~0UL, PAGE_SIZE, 0,
1681 	    &pglist, 1, 0);
1682 	if (ret != 0)
1683 		return ENOMEM;
1684 	_pa = VM_PAGE_TO_PHYS(TAILQ_FIRST(&pglist));
1685 	_va = uvm_km_alloc(kernel_map, npages * PAGE_SIZE, 0,
1686 	    UVM_KMF_VAONLY | UVM_KMF_NOWAIT);
1687 	if (_va == 0)
1688 		goto error;
1689 
1690 	for (i = 0; i < npages; i++) {
1691 		pmap_kenter_pa(_va + i * PAGE_SIZE, _pa + i * PAGE_SIZE,
1692 		    VM_PROT_READ | VM_PROT_WRITE, PMAP_WRITE_BACK);
1693 	}
1694 	pmap_update(pmap_kernel());
1695 
1696 	memset((void *)_va, 0, npages * PAGE_SIZE);
1697 
1698 	*pa = _pa;
1699 	*va = _va;
1700 	return 0;
1701 
1702 error:
1703 	for (i = 0; i < npages; i++) {
1704 		uvm_pagefree(PHYS_TO_VM_PAGE(_pa + i * PAGE_SIZE));
1705 	}
1706 	return ENOMEM;
1707 }
1708 
1709 static void
svm_memfree(paddr_t pa,vaddr_t va,size_t npages)1710 svm_memfree(paddr_t pa, vaddr_t va, size_t npages)
1711 {
1712 	size_t i;
1713 
1714 	pmap_kremove(va, npages * PAGE_SIZE);
1715 	pmap_update(pmap_kernel());
1716 	uvm_km_free(kernel_map, va, npages * PAGE_SIZE, UVM_KMF_VAONLY);
1717 	for (i = 0; i < npages; i++) {
1718 		uvm_pagefree(PHYS_TO_VM_PAGE(pa + i * PAGE_SIZE));
1719 	}
1720 }
1721 
1722 /* -------------------------------------------------------------------------- */
1723 
1724 #define SVM_MSRBM_READ	__BIT(0)
1725 #define SVM_MSRBM_WRITE	__BIT(1)
1726 
1727 static void
svm_vcpu_msr_allow(uint8_t * bitmap,uint64_t msr,bool read,bool write)1728 svm_vcpu_msr_allow(uint8_t *bitmap, uint64_t msr, bool read, bool write)
1729 {
1730 	uint64_t byte;
1731 	uint8_t bitoff;
1732 
1733 	if (msr < 0x00002000) {
1734 		/* Range 1 */
1735 		byte = ((msr - 0x00000000) >> 2UL) + 0x0000;
1736 	} else if (msr >= 0xC0000000 && msr < 0xC0002000) {
1737 		/* Range 2 */
1738 		byte = ((msr - 0xC0000000) >> 2UL) + 0x0800;
1739 	} else if (msr >= 0xC0010000 && msr < 0xC0012000) {
1740 		/* Range 3 */
1741 		byte = ((msr - 0xC0010000) >> 2UL) + 0x1000;
1742 	} else {
1743 		panic("%s: wrong range", __func__);
1744 	}
1745 
1746 	bitoff = (msr & 0x3) << 1;
1747 
1748 	if (read) {
1749 		bitmap[byte] &= ~(SVM_MSRBM_READ << bitoff);
1750 	}
1751 	if (write) {
1752 		bitmap[byte] &= ~(SVM_MSRBM_WRITE << bitoff);
1753 	}
1754 }
1755 
1756 #define SVM_SEG_ATTRIB_TYPE		__BITS(3,0)
1757 #define SVM_SEG_ATTRIB_S		__BIT(4)
1758 #define SVM_SEG_ATTRIB_DPL		__BITS(6,5)
1759 #define SVM_SEG_ATTRIB_P		__BIT(7)
1760 #define SVM_SEG_ATTRIB_AVL		__BIT(8)
1761 #define SVM_SEG_ATTRIB_L		__BIT(9)
1762 #define SVM_SEG_ATTRIB_DEF		__BIT(10)
1763 #define SVM_SEG_ATTRIB_G		__BIT(11)
1764 
1765 static void
svm_vcpu_setstate_seg(const struct nvmm_x64_state_seg * seg,struct vmcb_segment * vseg)1766 svm_vcpu_setstate_seg(const struct nvmm_x64_state_seg *seg,
1767     struct vmcb_segment *vseg)
1768 {
1769 	vseg->selector = seg->selector;
1770 	vseg->attrib =
1771 	    __SHIFTIN(seg->attrib.type, SVM_SEG_ATTRIB_TYPE) |
1772 	    __SHIFTIN(seg->attrib.s, SVM_SEG_ATTRIB_S) |
1773 	    __SHIFTIN(seg->attrib.dpl, SVM_SEG_ATTRIB_DPL) |
1774 	    __SHIFTIN(seg->attrib.p, SVM_SEG_ATTRIB_P) |
1775 	    __SHIFTIN(seg->attrib.avl, SVM_SEG_ATTRIB_AVL) |
1776 	    __SHIFTIN(seg->attrib.l, SVM_SEG_ATTRIB_L) |
1777 	    __SHIFTIN(seg->attrib.def, SVM_SEG_ATTRIB_DEF) |
1778 	    __SHIFTIN(seg->attrib.g, SVM_SEG_ATTRIB_G);
1779 	vseg->limit = seg->limit;
1780 	vseg->base = seg->base;
1781 }
1782 
1783 static void
svm_vcpu_getstate_seg(struct nvmm_x64_state_seg * seg,struct vmcb_segment * vseg)1784 svm_vcpu_getstate_seg(struct nvmm_x64_state_seg *seg, struct vmcb_segment *vseg)
1785 {
1786 	seg->selector = vseg->selector;
1787 	seg->attrib.type = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_TYPE);
1788 	seg->attrib.s = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_S);
1789 	seg->attrib.dpl = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_DPL);
1790 	seg->attrib.p = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_P);
1791 	seg->attrib.avl = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_AVL);
1792 	seg->attrib.l = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_L);
1793 	seg->attrib.def = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_DEF);
1794 	seg->attrib.g = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_G);
1795 	seg->limit = vseg->limit;
1796 	seg->base = vseg->base;
1797 }
1798 
1799 static inline bool
svm_state_tlb_flush(const struct vmcb * vmcb,const struct nvmm_x64_state * state,uint64_t flags)1800 svm_state_tlb_flush(const struct vmcb *vmcb, const struct nvmm_x64_state *state,
1801     uint64_t flags)
1802 {
1803 	if (flags & NVMM_X64_STATE_CRS) {
1804 		if ((vmcb->state.cr0 ^
1805 		     state->crs[NVMM_X64_CR_CR0]) & CR0_TLB_FLUSH) {
1806 			return true;
1807 		}
1808 		if (vmcb->state.cr3 != state->crs[NVMM_X64_CR_CR3]) {
1809 			return true;
1810 		}
1811 		if ((vmcb->state.cr4 ^
1812 		     state->crs[NVMM_X64_CR_CR4]) & CR4_TLB_FLUSH) {
1813 			return true;
1814 		}
1815 	}
1816 
1817 	if (flags & NVMM_X64_STATE_MSRS) {
1818 		if ((vmcb->state.efer ^
1819 		     state->msrs[NVMM_X64_MSR_EFER]) & EFER_TLB_FLUSH) {
1820 			return true;
1821 		}
1822 	}
1823 
1824 	return false;
1825 }
1826 
1827 static void
svm_vcpu_setstate(struct nvmm_cpu * vcpu)1828 svm_vcpu_setstate(struct nvmm_cpu *vcpu)
1829 {
1830 	struct nvmm_comm_page *comm = vcpu->comm;
1831 	const struct nvmm_x64_state *state = &comm->state;
1832 	struct svm_cpudata *cpudata = vcpu->cpudata;
1833 	struct vmcb *vmcb = cpudata->vmcb;
1834 	struct fxsave *fpustate;
1835 	uint64_t flags;
1836 
1837 	flags = comm->state_wanted;
1838 
1839 	if (svm_state_tlb_flush(vmcb, state, flags)) {
1840 		cpudata->gtlb_want_flush = true;
1841 	}
1842 
1843 	if (flags & NVMM_X64_STATE_SEGS) {
1844 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_CS],
1845 		    &vmcb->state.cs);
1846 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_DS],
1847 		    &vmcb->state.ds);
1848 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_ES],
1849 		    &vmcb->state.es);
1850 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_FS],
1851 		    &vmcb->state.fs);
1852 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_GS],
1853 		    &vmcb->state.gs);
1854 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_SS],
1855 		    &vmcb->state.ss);
1856 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_GDT],
1857 		    &vmcb->state.gdt);
1858 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_IDT],
1859 		    &vmcb->state.idt);
1860 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_LDT],
1861 		    &vmcb->state.ldt);
1862 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_TR],
1863 		    &vmcb->state.tr);
1864 
1865 		vmcb->state.cpl = state->segs[NVMM_X64_SEG_SS].attrib.dpl;
1866 	}
1867 
1868 	CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
1869 	if (flags & NVMM_X64_STATE_GPRS) {
1870 		memcpy(cpudata->gprs, state->gprs, sizeof(state->gprs));
1871 
1872 		vmcb->state.rip = state->gprs[NVMM_X64_GPR_RIP];
1873 		vmcb->state.rsp = state->gprs[NVMM_X64_GPR_RSP];
1874 		vmcb->state.rax = state->gprs[NVMM_X64_GPR_RAX];
1875 		vmcb->state.rflags = state->gprs[NVMM_X64_GPR_RFLAGS];
1876 	}
1877 
1878 	if (flags & NVMM_X64_STATE_CRS) {
1879 		vmcb->state.cr0 = state->crs[NVMM_X64_CR_CR0];
1880 		vmcb->state.cr2 = state->crs[NVMM_X64_CR_CR2];
1881 		vmcb->state.cr3 = state->crs[NVMM_X64_CR_CR3];
1882 		vmcb->state.cr4 = state->crs[NVMM_X64_CR_CR4];
1883 		vmcb->state.cr4 &= CR4_VALID;
1884 
1885 		vmcb->ctrl.v &= ~VMCB_CTRL_V_TPR;
1886 		vmcb->ctrl.v |= __SHIFTIN(state->crs[NVMM_X64_CR_CR8],
1887 		    VMCB_CTRL_V_TPR);
1888 
1889 		if (svm_xcr0_mask != 0) {
1890 			/* Clear illegal XCR0 bits, set mandatory X87 bit. */
1891 			cpudata->gxcr0 = state->crs[NVMM_X64_CR_XCR0];
1892 			cpudata->gxcr0 &= svm_xcr0_mask;
1893 			cpudata->gxcr0 |= XCR0_X87;
1894 		}
1895 	}
1896 
1897 	CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
1898 	if (flags & NVMM_X64_STATE_DRS) {
1899 		memcpy(cpudata->drs, state->drs, sizeof(state->drs));
1900 
1901 		vmcb->state.dr6 = state->drs[NVMM_X64_DR_DR6];
1902 		vmcb->state.dr7 = state->drs[NVMM_X64_DR_DR7];
1903 	}
1904 
1905 	if (flags & NVMM_X64_STATE_MSRS) {
1906 		/*
1907 		 * EFER_SVME is mandatory.
1908 		 */
1909 		vmcb->state.efer = state->msrs[NVMM_X64_MSR_EFER] | EFER_SVME;
1910 		vmcb->state.star = state->msrs[NVMM_X64_MSR_STAR];
1911 		vmcb->state.lstar = state->msrs[NVMM_X64_MSR_LSTAR];
1912 		vmcb->state.cstar = state->msrs[NVMM_X64_MSR_CSTAR];
1913 		vmcb->state.sfmask = state->msrs[NVMM_X64_MSR_SFMASK];
1914 		vmcb->state.kernelgsbase =
1915 		    state->msrs[NVMM_X64_MSR_KERNELGSBASE];
1916 		vmcb->state.sysenter_cs =
1917 		    state->msrs[NVMM_X64_MSR_SYSENTER_CS];
1918 		vmcb->state.sysenter_esp =
1919 		    state->msrs[NVMM_X64_MSR_SYSENTER_ESP];
1920 		vmcb->state.sysenter_eip =
1921 		    state->msrs[NVMM_X64_MSR_SYSENTER_EIP];
1922 		vmcb->state.g_pat = state->msrs[NVMM_X64_MSR_PAT];
1923 
1924 		cpudata->gtsc = state->msrs[NVMM_X64_MSR_TSC];
1925 		cpudata->gtsc_want_update = true;
1926 	}
1927 
1928 	if (flags & NVMM_X64_STATE_INTR) {
1929 		if (state->intr.int_shadow) {
1930 			vmcb->ctrl.intr |= VMCB_CTRL_INTR_SHADOW;
1931 		} else {
1932 			vmcb->ctrl.intr &= ~VMCB_CTRL_INTR_SHADOW;
1933 		}
1934 
1935 		if (state->intr.int_window_exiting) {
1936 			svm_event_waitexit_enable(vcpu, false);
1937 		} else {
1938 			svm_event_waitexit_disable(vcpu, false);
1939 		}
1940 
1941 		if (state->intr.nmi_window_exiting) {
1942 			svm_event_waitexit_enable(vcpu, true);
1943 		} else {
1944 			svm_event_waitexit_disable(vcpu, true);
1945 		}
1946 	}
1947 
1948 	CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
1949 	if (flags & NVMM_X64_STATE_FPU) {
1950 		memcpy(cpudata->gfpu.xsh_fxsave, &state->fpu,
1951 		    sizeof(state->fpu));
1952 
1953 		fpustate = (struct fxsave *)cpudata->gfpu.xsh_fxsave;
1954 		fpustate->fx_mxcsr_mask &= x86_fpu_mxcsr_mask;
1955 		fpustate->fx_mxcsr &= fpustate->fx_mxcsr_mask;
1956 
1957 		if (svm_xcr0_mask != 0) {
1958 			/* Reset XSTATE_BV, to force a reload. */
1959 			cpudata->gfpu.xsh_xstate_bv = svm_xcr0_mask;
1960 		}
1961 	}
1962 
1963 	svm_vmcb_cache_update(vmcb, flags);
1964 
1965 	comm->state_wanted = 0;
1966 	comm->state_cached |= flags;
1967 }
1968 
1969 static void
svm_vcpu_getstate(struct nvmm_cpu * vcpu)1970 svm_vcpu_getstate(struct nvmm_cpu *vcpu)
1971 {
1972 	struct nvmm_comm_page *comm = vcpu->comm;
1973 	struct nvmm_x64_state *state = &comm->state;
1974 	struct svm_cpudata *cpudata = vcpu->cpudata;
1975 	struct vmcb *vmcb = cpudata->vmcb;
1976 	uint64_t flags;
1977 
1978 	flags = comm->state_wanted;
1979 
1980 	if (flags & NVMM_X64_STATE_SEGS) {
1981 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_CS],
1982 		    &vmcb->state.cs);
1983 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_DS],
1984 		    &vmcb->state.ds);
1985 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_ES],
1986 		    &vmcb->state.es);
1987 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_FS],
1988 		    &vmcb->state.fs);
1989 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_GS],
1990 		    &vmcb->state.gs);
1991 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_SS],
1992 		    &vmcb->state.ss);
1993 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_GDT],
1994 		    &vmcb->state.gdt);
1995 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_IDT],
1996 		    &vmcb->state.idt);
1997 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_LDT],
1998 		    &vmcb->state.ldt);
1999 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_TR],
2000 		    &vmcb->state.tr);
2001 
2002 		state->segs[NVMM_X64_SEG_SS].attrib.dpl = vmcb->state.cpl;
2003 	}
2004 
2005 	CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
2006 	if (flags & NVMM_X64_STATE_GPRS) {
2007 		memcpy(state->gprs, cpudata->gprs, sizeof(state->gprs));
2008 
2009 		state->gprs[NVMM_X64_GPR_RIP] = vmcb->state.rip;
2010 		state->gprs[NVMM_X64_GPR_RSP] = vmcb->state.rsp;
2011 		state->gprs[NVMM_X64_GPR_RAX] = vmcb->state.rax;
2012 		state->gprs[NVMM_X64_GPR_RFLAGS] = vmcb->state.rflags;
2013 	}
2014 
2015 	if (flags & NVMM_X64_STATE_CRS) {
2016 		state->crs[NVMM_X64_CR_CR0] = vmcb->state.cr0;
2017 		state->crs[NVMM_X64_CR_CR2] = vmcb->state.cr2;
2018 		state->crs[NVMM_X64_CR_CR3] = vmcb->state.cr3;
2019 		state->crs[NVMM_X64_CR_CR4] = vmcb->state.cr4;
2020 		state->crs[NVMM_X64_CR_CR8] = __SHIFTOUT(vmcb->ctrl.v,
2021 		    VMCB_CTRL_V_TPR);
2022 		state->crs[NVMM_X64_CR_XCR0] = cpudata->gxcr0;
2023 	}
2024 
2025 	CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
2026 	if (flags & NVMM_X64_STATE_DRS) {
2027 		memcpy(state->drs, cpudata->drs, sizeof(state->drs));
2028 
2029 		state->drs[NVMM_X64_DR_DR6] = vmcb->state.dr6;
2030 		state->drs[NVMM_X64_DR_DR7] = vmcb->state.dr7;
2031 	}
2032 
2033 	if (flags & NVMM_X64_STATE_MSRS) {
2034 		state->msrs[NVMM_X64_MSR_EFER] = vmcb->state.efer;
2035 		state->msrs[NVMM_X64_MSR_STAR] = vmcb->state.star;
2036 		state->msrs[NVMM_X64_MSR_LSTAR] = vmcb->state.lstar;
2037 		state->msrs[NVMM_X64_MSR_CSTAR] = vmcb->state.cstar;
2038 		state->msrs[NVMM_X64_MSR_SFMASK] = vmcb->state.sfmask;
2039 		state->msrs[NVMM_X64_MSR_KERNELGSBASE] =
2040 		    vmcb->state.kernelgsbase;
2041 		state->msrs[NVMM_X64_MSR_SYSENTER_CS] =
2042 		    vmcb->state.sysenter_cs;
2043 		state->msrs[NVMM_X64_MSR_SYSENTER_ESP] =
2044 		    vmcb->state.sysenter_esp;
2045 		state->msrs[NVMM_X64_MSR_SYSENTER_EIP] =
2046 		    vmcb->state.sysenter_eip;
2047 		state->msrs[NVMM_X64_MSR_PAT] = vmcb->state.g_pat;
2048 		state->msrs[NVMM_X64_MSR_TSC] = cpudata->gtsc;
2049 
2050 		/* Hide SVME. */
2051 		state->msrs[NVMM_X64_MSR_EFER] &= ~EFER_SVME;
2052 	}
2053 
2054 	if (flags & NVMM_X64_STATE_INTR) {
2055 		state->intr.int_shadow =
2056 		    (vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0;
2057 		state->intr.int_window_exiting = cpudata->int_window_exit;
2058 		state->intr.nmi_window_exiting = cpudata->nmi_window_exit;
2059 		state->intr.evt_pending = cpudata->evt_pending;
2060 	}
2061 
2062 	CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
2063 	if (flags & NVMM_X64_STATE_FPU) {
2064 		memcpy(&state->fpu, cpudata->gfpu.xsh_fxsave,
2065 		    sizeof(state->fpu));
2066 	}
2067 
2068 	comm->state_wanted = 0;
2069 	comm->state_cached |= flags;
2070 }
2071 
2072 static void
svm_vcpu_state_provide(struct nvmm_cpu * vcpu,uint64_t flags)2073 svm_vcpu_state_provide(struct nvmm_cpu *vcpu, uint64_t flags)
2074 {
2075 	vcpu->comm->state_wanted = flags;
2076 	svm_vcpu_getstate(vcpu);
2077 }
2078 
2079 static void
svm_vcpu_state_commit(struct nvmm_cpu * vcpu)2080 svm_vcpu_state_commit(struct nvmm_cpu *vcpu)
2081 {
2082 	vcpu->comm->state_wanted = vcpu->comm->state_commit;
2083 	vcpu->comm->state_commit = 0;
2084 	svm_vcpu_setstate(vcpu);
2085 }
2086 
2087 /* -------------------------------------------------------------------------- */
2088 
2089 static void
svm_asid_alloc(struct nvmm_cpu * vcpu)2090 svm_asid_alloc(struct nvmm_cpu *vcpu)
2091 {
2092 	struct svm_cpudata *cpudata = vcpu->cpudata;
2093 	struct vmcb *vmcb = cpudata->vmcb;
2094 	size_t i, oct, bit;
2095 
2096 	mutex_enter(&svm_asidlock);
2097 
2098 	for (i = 0; i < svm_maxasid; i++) {
2099 		oct = i / 8;
2100 		bit = i % 8;
2101 
2102 		if (svm_asidmap[oct] & __BIT(bit)) {
2103 			continue;
2104 		}
2105 
2106 		svm_asidmap[oct] |= __BIT(bit);
2107 		vmcb->ctrl.guest_asid = i;
2108 		mutex_exit(&svm_asidlock);
2109 		return;
2110 	}
2111 
2112 	/*
2113 	 * No free ASID. Use the last one, which is shared and requires
2114 	 * special TLB handling.
2115 	 */
2116 	cpudata->shared_asid = true;
2117 	vmcb->ctrl.guest_asid = svm_maxasid - 1;
2118 	mutex_exit(&svm_asidlock);
2119 }
2120 
2121 static void
svm_asid_free(struct nvmm_cpu * vcpu)2122 svm_asid_free(struct nvmm_cpu *vcpu)
2123 {
2124 	struct svm_cpudata *cpudata = vcpu->cpudata;
2125 	struct vmcb *vmcb = cpudata->vmcb;
2126 	size_t oct, bit;
2127 
2128 	if (cpudata->shared_asid) {
2129 		return;
2130 	}
2131 
2132 	oct = vmcb->ctrl.guest_asid / 8;
2133 	bit = vmcb->ctrl.guest_asid % 8;
2134 
2135 	mutex_enter(&svm_asidlock);
2136 	svm_asidmap[oct] &= ~__BIT(bit);
2137 	mutex_exit(&svm_asidlock);
2138 }
2139 
2140 static void
svm_vcpu_init(struct nvmm_machine * mach,struct nvmm_cpu * vcpu)2141 svm_vcpu_init(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2142 {
2143 	struct svm_cpudata *cpudata = vcpu->cpudata;
2144 	struct vmcb *vmcb = cpudata->vmcb;
2145 
2146 	/* Allow reads/writes of Control Registers. */
2147 	vmcb->ctrl.intercept_cr = 0;
2148 
2149 	/* Allow reads/writes of Debug Registers. */
2150 	vmcb->ctrl.intercept_dr = 0;
2151 
2152 	/* Allow exceptions 0 to 31. */
2153 	vmcb->ctrl.intercept_vec = 0;
2154 
2155 	/*
2156 	 * Allow:
2157 	 *  - SMI [smm interrupts]
2158 	 *  - VINTR [virtual interrupts]
2159 	 *  - CR0_SPEC [CR0 writes changing other fields than CR0.TS or CR0.MP]
2160 	 *  - RIDTR [reads of IDTR]
2161 	 *  - RGDTR [reads of GDTR]
2162 	 *  - RLDTR [reads of LDTR]
2163 	 *  - RTR [reads of TR]
2164 	 *  - WIDTR [writes of IDTR]
2165 	 *  - WGDTR [writes of GDTR]
2166 	 *  - WLDTR [writes of LDTR]
2167 	 *  - WTR [writes of TR]
2168 	 *  - RDTSC [rdtsc instruction]
2169 	 *  - PUSHF [pushf instruction]
2170 	 *  - POPF [popf instruction]
2171 	 *  - IRET [iret instruction]
2172 	 *  - INTN [int $n instructions]
2173 	 *  - PAUSE [pause instruction]
2174 	 *  - INVLPG [invplg instruction]
2175 	 *  - TASKSW [task switches]
2176 	 *
2177 	 * Intercept the rest below.
2178 	 */
2179 	vmcb->ctrl.intercept_misc1 =
2180 	    VMCB_CTRL_INTERCEPT_INTR |
2181 	    VMCB_CTRL_INTERCEPT_NMI |
2182 	    VMCB_CTRL_INTERCEPT_INIT |
2183 	    VMCB_CTRL_INTERCEPT_RDPMC |
2184 	    VMCB_CTRL_INTERCEPT_CPUID |
2185 	    VMCB_CTRL_INTERCEPT_RSM |
2186 	    VMCB_CTRL_INTERCEPT_INVD |
2187 	    VMCB_CTRL_INTERCEPT_HLT |
2188 	    VMCB_CTRL_INTERCEPT_INVLPGA |
2189 	    VMCB_CTRL_INTERCEPT_IOIO_PROT |
2190 	    VMCB_CTRL_INTERCEPT_MSR_PROT |
2191 	    VMCB_CTRL_INTERCEPT_FERR_FREEZE |
2192 	    VMCB_CTRL_INTERCEPT_SHUTDOWN;
2193 
2194 	/*
2195 	 * Allow:
2196 	 *  - ICEBP [icebp instruction]
2197 	 *  - WBINVD [wbinvd instruction]
2198 	 *  - WCR_SPEC(0..15) [writes of CR0-15, received after instruction]
2199 	 *
2200 	 * Intercept the rest below.
2201 	 */
2202 	vmcb->ctrl.intercept_misc2 =
2203 	    VMCB_CTRL_INTERCEPT_VMRUN |
2204 	    VMCB_CTRL_INTERCEPT_VMMCALL |
2205 	    VMCB_CTRL_INTERCEPT_VMLOAD |
2206 	    VMCB_CTRL_INTERCEPT_VMSAVE |
2207 	    VMCB_CTRL_INTERCEPT_STGI |
2208 	    VMCB_CTRL_INTERCEPT_CLGI |
2209 	    VMCB_CTRL_INTERCEPT_SKINIT |
2210 	    VMCB_CTRL_INTERCEPT_RDTSCP |
2211 	    VMCB_CTRL_INTERCEPT_MONITOR |
2212 	    VMCB_CTRL_INTERCEPT_MWAIT |
2213 	    VMCB_CTRL_INTERCEPT_XSETBV |
2214 	    VMCB_CTRL_INTERCEPT_RDPRU;
2215 
2216 	/*
2217 	 * Intercept everything.
2218 	 */
2219 	vmcb->ctrl.intercept_misc3 =
2220 	    VMCB_CTRL_INTERCEPT_INVLPGB_ALL |
2221 	    VMCB_CTRL_INTERCEPT_PCID |
2222 	    VMCB_CTRL_INTERCEPT_MCOMMIT |
2223 	    VMCB_CTRL_INTERCEPT_TLBSYNC;
2224 
2225 	/* Intercept all I/O accesses. */
2226 	memset(cpudata->iobm, 0xFF, IOBM_SIZE);
2227 	vmcb->ctrl.iopm_base_pa = cpudata->iobm_pa;
2228 
2229 	/* Allow direct access to certain MSRs. */
2230 	memset(cpudata->msrbm, 0xFF, MSRBM_SIZE);
2231 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_STAR, true, true);
2232 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_LSTAR, true, true);
2233 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_CSTAR, true, true);
2234 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_SFMASK, true, true);
2235 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_KERNELGSBASE, true, true);
2236 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_CS, true, true);
2237 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_ESP, true, true);
2238 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_EIP, true, true);
2239 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_FSBASE, true, true);
2240 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_GSBASE, true, true);
2241 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_CR_PAT, true, true);
2242 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_TSC, true, false);
2243 	vmcb->ctrl.msrpm_base_pa = cpudata->msrbm_pa;
2244 
2245 	/* Generate ASID. */
2246 	svm_asid_alloc(vcpu);
2247 
2248 	/* Virtual TPR. */
2249 	vmcb->ctrl.v = VMCB_CTRL_V_INTR_MASKING;
2250 
2251 	/* Enable Nested Paging. */
2252 	vmcb->ctrl.enable1 = VMCB_CTRL_ENABLE_NP;
2253 	vmcb->ctrl.n_cr3 = mach->vm->vm_map.pmap->pm_pdirpa[0];
2254 
2255 	/* Init XSAVE header. */
2256 	cpudata->gfpu.xsh_xstate_bv = svm_xcr0_mask;
2257 	cpudata->gfpu.xsh_xcomp_bv = 0;
2258 
2259 	/* These MSRs are static. */
2260 	cpudata->star = rdmsr(MSR_STAR);
2261 	cpudata->lstar = rdmsr(MSR_LSTAR);
2262 	cpudata->cstar = rdmsr(MSR_CSTAR);
2263 	cpudata->sfmask = rdmsr(MSR_SFMASK);
2264 
2265 	/* Install the RESET state. */
2266 	memcpy(&vcpu->comm->state, &nvmm_x86_reset_state,
2267 	    sizeof(nvmm_x86_reset_state));
2268 	vcpu->comm->state_wanted = NVMM_X64_STATE_ALL;
2269 	vcpu->comm->state_cached = 0;
2270 	svm_vcpu_setstate(vcpu);
2271 }
2272 
2273 static int
svm_vcpu_create(struct nvmm_machine * mach,struct nvmm_cpu * vcpu)2274 svm_vcpu_create(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2275 {
2276 	struct svm_cpudata *cpudata;
2277 	int error;
2278 
2279 	/* Allocate the SVM cpudata. */
2280 	cpudata = (struct svm_cpudata *)uvm_km_alloc(kernel_map,
2281 	    roundup(sizeof(*cpudata), PAGE_SIZE), 0,
2282 	    UVM_KMF_WIRED|UVM_KMF_ZERO);
2283 	vcpu->cpudata = cpudata;
2284 
2285 	/* VMCB */
2286 	error = svm_memalloc(&cpudata->vmcb_pa, (vaddr_t *)&cpudata->vmcb,
2287 	    VMCB_NPAGES);
2288 	if (error)
2289 		goto error;
2290 
2291 	/* I/O Bitmap */
2292 	error = svm_memalloc(&cpudata->iobm_pa, (vaddr_t *)&cpudata->iobm,
2293 	    IOBM_NPAGES);
2294 	if (error)
2295 		goto error;
2296 
2297 	/* MSR Bitmap */
2298 	error = svm_memalloc(&cpudata->msrbm_pa, (vaddr_t *)&cpudata->msrbm,
2299 	    MSRBM_NPAGES);
2300 	if (error)
2301 		goto error;
2302 
2303 	/* Init the VCPU info. */
2304 	svm_vcpu_init(mach, vcpu);
2305 
2306 	return 0;
2307 
2308 error:
2309 	if (cpudata->vmcb_pa) {
2310 		svm_memfree(cpudata->vmcb_pa, (vaddr_t)cpudata->vmcb,
2311 		    VMCB_NPAGES);
2312 	}
2313 	if (cpudata->iobm_pa) {
2314 		svm_memfree(cpudata->iobm_pa, (vaddr_t)cpudata->iobm,
2315 		    IOBM_NPAGES);
2316 	}
2317 	if (cpudata->msrbm_pa) {
2318 		svm_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm,
2319 		    MSRBM_NPAGES);
2320 	}
2321 	uvm_km_free(kernel_map, (vaddr_t)cpudata,
2322 	    roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
2323 	return error;
2324 }
2325 
2326 static void
svm_vcpu_destroy(struct nvmm_machine * mach,struct nvmm_cpu * vcpu)2327 svm_vcpu_destroy(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2328 {
2329 	struct svm_cpudata *cpudata = vcpu->cpudata;
2330 
2331 	svm_asid_free(vcpu);
2332 
2333 	svm_memfree(cpudata->vmcb_pa, (vaddr_t)cpudata->vmcb, VMCB_NPAGES);
2334 	svm_memfree(cpudata->iobm_pa, (vaddr_t)cpudata->iobm, IOBM_NPAGES);
2335 	svm_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm, MSRBM_NPAGES);
2336 
2337 	uvm_km_free(kernel_map, (vaddr_t)cpudata,
2338 	    roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
2339 }
2340 
2341 /* -------------------------------------------------------------------------- */
2342 
2343 static int
svm_vcpu_configure_cpuid(struct svm_cpudata * cpudata,void * data)2344 svm_vcpu_configure_cpuid(struct svm_cpudata *cpudata, void *data)
2345 {
2346 	struct nvmm_vcpu_conf_cpuid *cpuid = data;
2347 	size_t i;
2348 
2349 	if (__predict_false(cpuid->mask && cpuid->exit)) {
2350 		return EINVAL;
2351 	}
2352 	if (__predict_false(cpuid->mask &&
2353 	    ((cpuid->u.mask.set.eax & cpuid->u.mask.del.eax) ||
2354 	     (cpuid->u.mask.set.ebx & cpuid->u.mask.del.ebx) ||
2355 	     (cpuid->u.mask.set.ecx & cpuid->u.mask.del.ecx) ||
2356 	     (cpuid->u.mask.set.edx & cpuid->u.mask.del.edx)))) {
2357 		return EINVAL;
2358 	}
2359 
2360 	/* If unset, delete, to restore the default behavior. */
2361 	if (!cpuid->mask && !cpuid->exit) {
2362 		for (i = 0; i < SVM_NCPUIDS; i++) {
2363 			if (!cpudata->cpuidpresent[i]) {
2364 				continue;
2365 			}
2366 			if (cpudata->cpuid[i].leaf == cpuid->leaf) {
2367 				cpudata->cpuidpresent[i] = false;
2368 			}
2369 		}
2370 		return 0;
2371 	}
2372 
2373 	/* If already here, replace. */
2374 	for (i = 0; i < SVM_NCPUIDS; i++) {
2375 		if (!cpudata->cpuidpresent[i]) {
2376 			continue;
2377 		}
2378 		if (cpudata->cpuid[i].leaf == cpuid->leaf) {
2379 			memcpy(&cpudata->cpuid[i], cpuid,
2380 			    sizeof(struct nvmm_vcpu_conf_cpuid));
2381 			return 0;
2382 		}
2383 	}
2384 
2385 	/* Not here, insert. */
2386 	for (i = 0; i < SVM_NCPUIDS; i++) {
2387 		if (!cpudata->cpuidpresent[i]) {
2388 			cpudata->cpuidpresent[i] = true;
2389 			memcpy(&cpudata->cpuid[i], cpuid,
2390 			    sizeof(struct nvmm_vcpu_conf_cpuid));
2391 			return 0;
2392 		}
2393 	}
2394 
2395 	return ENOBUFS;
2396 }
2397 
2398 static int
svm_vcpu_configure(struct nvmm_cpu * vcpu,uint64_t op,void * data)2399 svm_vcpu_configure(struct nvmm_cpu *vcpu, uint64_t op, void *data)
2400 {
2401 	struct svm_cpudata *cpudata = vcpu->cpudata;
2402 
2403 	switch (op) {
2404 	case NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_CPUID):
2405 		return svm_vcpu_configure_cpuid(cpudata, data);
2406 	default:
2407 		return EINVAL;
2408 	}
2409 }
2410 
2411 /* -------------------------------------------------------------------------- */
2412 
2413 static void
svm_tlb_flush(struct pmap * pm)2414 svm_tlb_flush(struct pmap *pm)
2415 {
2416 	struct nvmm_machine *mach = pm->pm_data;
2417 	struct svm_machdata *machdata = mach->machdata;
2418 
2419 	atomic_inc_64(&machdata->mach_htlb_gen);
2420 
2421 	/* Generates IPIs, which cause #VMEXITs. */
2422 	pmap_tlb_shootdown(pmap_kernel(), -1, PTE_G, TLBSHOOT_NVMM);
2423 }
2424 
2425 static void
svm_machine_create(struct nvmm_machine * mach)2426 svm_machine_create(struct nvmm_machine *mach)
2427 {
2428 	struct svm_machdata *machdata;
2429 
2430 	/* Fill in pmap info. */
2431 	mach->vm->vm_map.pmap->pm_data = (void *)mach;
2432 	mach->vm->vm_map.pmap->pm_tlb_flush = svm_tlb_flush;
2433 
2434 	machdata = kmem_zalloc(sizeof(struct svm_machdata), KM_SLEEP);
2435 	mach->machdata = machdata;
2436 
2437 	/* Start with an hTLB flush everywhere. */
2438 	machdata->mach_htlb_gen = 1;
2439 }
2440 
2441 static void
svm_machine_destroy(struct nvmm_machine * mach)2442 svm_machine_destroy(struct nvmm_machine *mach)
2443 {
2444 	kmem_free(mach->machdata, sizeof(struct svm_machdata));
2445 }
2446 
2447 static int
svm_machine_configure(struct nvmm_machine * mach,uint64_t op,void * data)2448 svm_machine_configure(struct nvmm_machine *mach, uint64_t op, void *data)
2449 {
2450 	panic("%s: impossible", __func__);
2451 }
2452 
2453 /* -------------------------------------------------------------------------- */
2454 
2455 static bool
svm_ident(void)2456 svm_ident(void)
2457 {
2458 	u_int descs[4];
2459 	uint64_t msr;
2460 
2461 	if (cpu_vendor != CPUVENDOR_AMD) {
2462 		return false;
2463 	}
2464 	if (!(cpu_feature[3] & CPUID_SVM)) {
2465 		printf("NVMM: SVM not supported\n");
2466 		return false;
2467 	}
2468 
2469 	if (curcpu()->ci_max_ext_cpuid < 0x8000000a) {
2470 		printf("NVMM: CPUID leaf not available\n");
2471 		return false;
2472 	}
2473 	x86_cpuid(0x8000000a, descs);
2474 
2475 	/* Expect revision 1. */
2476 	if (__SHIFTOUT(descs[0], CPUID_AMD_SVM_REV) != 1) {
2477 		printf("NVMM: SVM revision not supported\n");
2478 		return false;
2479 	}
2480 
2481 	/* Want Nested Paging. */
2482 	if (!(descs[3] & CPUID_AMD_SVM_NP)) {
2483 		printf("NVMM: SVM-NP not supported\n");
2484 		return false;
2485 	}
2486 
2487 	/* Want nRIP. */
2488 	if (!(descs[3] & CPUID_AMD_SVM_NRIPS)) {
2489 		printf("NVMM: SVM-NRIPS not supported\n");
2490 		return false;
2491 	}
2492 
2493 	svm_decode_assist = (descs[3] & CPUID_AMD_SVM_DecodeAssist) != 0;
2494 
2495 	msr = rdmsr(MSR_VMCR);
2496 	if ((msr & VMCR_SVMED) && (msr & VMCR_LOCK)) {
2497 		printf("NVMM: SVM disabled in BIOS\n");
2498 		return false;
2499 	}
2500 
2501 	return true;
2502 }
2503 
2504 static void
svm_init_asid(uint32_t maxasid)2505 svm_init_asid(uint32_t maxasid)
2506 {
2507 	size_t i, j, allocsz;
2508 
2509 	mutex_init(&svm_asidlock, MUTEX_DEFAULT, IPL_NONE);
2510 
2511 	/* Arbitrarily limit. */
2512 	maxasid = uimin(maxasid, 8192);
2513 
2514 	svm_maxasid = maxasid;
2515 	allocsz = roundup(maxasid, 8) / 8;
2516 	svm_asidmap = kmem_zalloc(allocsz, KM_SLEEP);
2517 
2518 	/* ASID 0 is reserved for the host. */
2519 	svm_asidmap[0] |= __BIT(0);
2520 
2521 	/* ASID n-1 is special, we share it. */
2522 	i = (maxasid - 1) / 8;
2523 	j = (maxasid - 1) % 8;
2524 	svm_asidmap[i] |= __BIT(j);
2525 }
2526 
2527 static void
svm_change_cpu(void * arg1,void * arg2)2528 svm_change_cpu(void *arg1, void *arg2)
2529 {
2530 	bool enable = arg1 != NULL;
2531 	uint64_t msr;
2532 
2533 	msr = rdmsr(MSR_VMCR);
2534 	if (msr & VMCR_SVMED) {
2535 		wrmsr(MSR_VMCR, msr & ~VMCR_SVMED);
2536 	}
2537 
2538 	if (!enable) {
2539 		wrmsr(MSR_VM_HSAVE_PA, 0);
2540 	}
2541 
2542 	msr = rdmsr(MSR_EFER);
2543 	if (enable) {
2544 		msr |= EFER_SVME;
2545 	} else {
2546 		msr &= ~EFER_SVME;
2547 	}
2548 	wrmsr(MSR_EFER, msr);
2549 
2550 	if (enable) {
2551 		wrmsr(MSR_VM_HSAVE_PA, hsave[cpu_index(curcpu())].pa);
2552 	}
2553 }
2554 
2555 static void
svm_init(void)2556 svm_init(void)
2557 {
2558 	CPU_INFO_ITERATOR cii;
2559 	struct cpu_info *ci;
2560 	struct vm_page *pg;
2561 	u_int descs[4];
2562 	uint64_t xc;
2563 
2564 	x86_cpuid(0x8000000a, descs);
2565 
2566 	/* The guest TLB flush command. */
2567 	if (descs[3] & CPUID_AMD_SVM_FlushByASID) {
2568 		svm_ctrl_tlb_flush = VMCB_CTRL_TLB_CTRL_FLUSH_GUEST;
2569 	} else {
2570 		svm_ctrl_tlb_flush = VMCB_CTRL_TLB_CTRL_FLUSH_ALL;
2571 	}
2572 
2573 	/* Init the ASID. */
2574 	svm_init_asid(descs[1]);
2575 
2576 	/* Init the XCR0 mask. */
2577 	svm_xcr0_mask = SVM_XCR0_MASK_DEFAULT & x86_xsave_features;
2578 
2579 	/* Init the max basic CPUID leaf. */
2580 	svm_cpuid_max_basic = uimin(cpuid_level, SVM_CPUID_MAX_BASIC);
2581 
2582 	/* Init the max extended CPUID leaf. */
2583 	x86_cpuid(0x80000000, descs);
2584 	svm_cpuid_max_extended = uimin(descs[0], SVM_CPUID_MAX_EXTENDED);
2585 
2586 	memset(hsave, 0, sizeof(hsave));
2587 	for (CPU_INFO_FOREACH(cii, ci)) {
2588 		pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
2589 		hsave[cpu_index(ci)].pa = VM_PAGE_TO_PHYS(pg);
2590 	}
2591 
2592 	xc = xc_broadcast(0, svm_change_cpu, (void *)true, NULL);
2593 	xc_wait(xc);
2594 }
2595 
2596 static void
svm_fini_asid(void)2597 svm_fini_asid(void)
2598 {
2599 	size_t allocsz;
2600 
2601 	allocsz = roundup(svm_maxasid, 8) / 8;
2602 	kmem_free(svm_asidmap, allocsz);
2603 
2604 	mutex_destroy(&svm_asidlock);
2605 }
2606 
2607 static void
svm_fini(void)2608 svm_fini(void)
2609 {
2610 	uint64_t xc;
2611 	size_t i;
2612 
2613 	xc = xc_broadcast(0, svm_change_cpu, (void *)false, NULL);
2614 	xc_wait(xc);
2615 
2616 	for (i = 0; i < MAXCPUS; i++) {
2617 		if (hsave[i].pa != 0)
2618 			uvm_pagefree(PHYS_TO_VM_PAGE(hsave[i].pa));
2619 	}
2620 
2621 	svm_fini_asid();
2622 }
2623 
2624 static void
svm_capability(struct nvmm_capability * cap)2625 svm_capability(struct nvmm_capability *cap)
2626 {
2627 	cap->arch.mach_conf_support = 0;
2628 	cap->arch.vcpu_conf_support =
2629 	    NVMM_CAP_ARCH_VCPU_CONF_CPUID;
2630 	cap->arch.xcr0_mask = svm_xcr0_mask;
2631 	cap->arch.mxcsr_mask = x86_fpu_mxcsr_mask;
2632 	cap->arch.conf_cpuid_maxops = SVM_NCPUIDS;
2633 }
2634 
2635 const struct nvmm_impl nvmm_x86_svm = {
2636 	.name = "x86-svm",
2637 	.ident = svm_ident,
2638 	.init = svm_init,
2639 	.fini = svm_fini,
2640 	.capability = svm_capability,
2641 	.mach_conf_max = NVMM_X86_MACH_NCONF,
2642 	.mach_conf_sizes = NULL,
2643 	.vcpu_conf_max = NVMM_X86_VCPU_NCONF,
2644 	.vcpu_conf_sizes = svm_vcpu_conf_sizes,
2645 	.state_size = sizeof(struct nvmm_x64_state),
2646 	.machine_create = svm_machine_create,
2647 	.machine_destroy = svm_machine_destroy,
2648 	.machine_configure = svm_machine_configure,
2649 	.vcpu_create = svm_vcpu_create,
2650 	.vcpu_destroy = svm_vcpu_destroy,
2651 	.vcpu_configure = svm_vcpu_configure,
2652 	.vcpu_setstate = svm_vcpu_setstate,
2653 	.vcpu_getstate = svm_vcpu_getstate,
2654 	.vcpu_inject = svm_vcpu_inject,
2655 	.vcpu_run = svm_vcpu_run
2656 };
2657