xref: /llvm-project/clang/lib/Headers/avxintrin.h (revision 03baa0ad6140789fc2851f655a4b88c938ec5e14)
1 /*===---- avxintrin.h - AVX intrinsics -------------------------------------===
2  *
3  * Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4  * See https://llvm.org/LICENSE.txt for license information.
5  * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6  *
7  *===-----------------------------------------------------------------------===
8  */
9 
10 #ifndef __IMMINTRIN_H
11 #error "Never use <avxintrin.h> directly; include <immintrin.h> instead."
12 #endif
13 
14 #ifndef __AVXINTRIN_H
15 #define __AVXINTRIN_H
16 
17 typedef double __v4df __attribute__ ((__vector_size__ (32)));
18 typedef float __v8sf __attribute__ ((__vector_size__ (32)));
19 typedef long long __v4di __attribute__ ((__vector_size__ (32)));
20 typedef int __v8si __attribute__ ((__vector_size__ (32)));
21 typedef short __v16hi __attribute__ ((__vector_size__ (32)));
22 typedef char __v32qi __attribute__ ((__vector_size__ (32)));
23 
24 /* Unsigned types */
25 typedef unsigned long long __v4du __attribute__ ((__vector_size__ (32)));
26 typedef unsigned int __v8su __attribute__ ((__vector_size__ (32)));
27 typedef unsigned short __v16hu __attribute__ ((__vector_size__ (32)));
28 typedef unsigned char __v32qu __attribute__ ((__vector_size__ (32)));
29 
30 /* We need an explicitly signed variant for char. Note that this shouldn't
31  * appear in the interface though. */
32 typedef signed char __v32qs __attribute__((__vector_size__(32)));
33 
34 typedef float __m256 __attribute__ ((__vector_size__ (32), __aligned__(32)));
35 typedef double __m256d __attribute__((__vector_size__(32), __aligned__(32)));
36 typedef long long __m256i __attribute__((__vector_size__(32), __aligned__(32)));
37 
38 typedef float __m256_u __attribute__ ((__vector_size__ (32), __aligned__(1)));
39 typedef double __m256d_u __attribute__((__vector_size__(32), __aligned__(1)));
40 typedef long long __m256i_u __attribute__((__vector_size__(32), __aligned__(1)));
41 
42 #ifdef __SSE2__
43 /* Both _Float16 and __bf16 require SSE2 being enabled. */
44 typedef _Float16 __v16hf __attribute__((__vector_size__(32), __aligned__(32)));
45 typedef _Float16 __m256h __attribute__((__vector_size__(32), __aligned__(32)));
46 typedef _Float16 __m256h_u __attribute__((__vector_size__(32), __aligned__(1)));
47 
48 typedef __bf16 __v16bf __attribute__((__vector_size__(32), __aligned__(32)));
49 typedef __bf16 __m256bh __attribute__((__vector_size__(32), __aligned__(32)));
50 #endif
51 
52 /* Define the default attributes for the functions in this file. */
53 #if defined(__EVEX512__) && !defined(__AVX10_1_512__)
54 #define __DEFAULT_FN_ATTRS                                                     \
55   __attribute__((__always_inline__, __nodebug__, __target__("avx,no-evex512"), \
56                  __min_vector_width__(256)))
57 #define __DEFAULT_FN_ATTRS128                                                  \
58   __attribute__((__always_inline__, __nodebug__, __target__("avx,no-evex512"), \
59                  __min_vector_width__(128)))
60 #else
61 #define __DEFAULT_FN_ATTRS                                                     \
62   __attribute__((__always_inline__, __nodebug__, __target__("avx"),            \
63                  __min_vector_width__(256)))
64 #define __DEFAULT_FN_ATTRS128                                                  \
65   __attribute__((__always_inline__, __nodebug__, __target__("avx"),            \
66                  __min_vector_width__(128)))
67 #endif
68 
69 #if defined(__cplusplus) && (__cplusplus >= 201103L)
70 #define __DEFAULT_FN_ATTRS_CONSTEXPR __DEFAULT_FN_ATTRS constexpr
71 #define __DEFAULT_FN_ATTRS128_CONSTEXPR __DEFAULT_FN_ATTRS128 constexpr
72 #else
73 #define __DEFAULT_FN_ATTRS_CONSTEXPR __DEFAULT_FN_ATTRS128
74 #define __DEFAULT_FN_ATTRS128_CONSTEXPR __DEFAULT_FN_ATTRS
75 #endif
76 
77 /* Arithmetic */
78 /// Adds two 256-bit vectors of [4 x double].
79 ///
80 /// \headerfile <x86intrin.h>
81 ///
82 /// This intrinsic corresponds to the <c> VADDPD </c> instruction.
83 ///
84 /// \param __a
85 ///    A 256-bit vector of [4 x double] containing one of the source operands.
86 /// \param __b
87 ///    A 256-bit vector of [4 x double] containing one of the source operands.
88 /// \returns A 256-bit vector of [4 x double] containing the sums of both
89 ///    operands.
90 static __inline __m256d __DEFAULT_FN_ATTRS
91 _mm256_add_pd(__m256d __a, __m256d __b)
92 {
93   return (__m256d)((__v4df)__a+(__v4df)__b);
94 }
95 
96 /// Adds two 256-bit vectors of [8 x float].
97 ///
98 /// \headerfile <x86intrin.h>
99 ///
100 /// This intrinsic corresponds to the <c> VADDPS </c> instruction.
101 ///
102 /// \param __a
103 ///    A 256-bit vector of [8 x float] containing one of the source operands.
104 /// \param __b
105 ///    A 256-bit vector of [8 x float] containing one of the source operands.
106 /// \returns A 256-bit vector of [8 x float] containing the sums of both
107 ///    operands.
108 static __inline __m256 __DEFAULT_FN_ATTRS
109 _mm256_add_ps(__m256 __a, __m256 __b)
110 {
111   return (__m256)((__v8sf)__a+(__v8sf)__b);
112 }
113 
114 /// Subtracts two 256-bit vectors of [4 x double].
115 ///
116 /// \headerfile <x86intrin.h>
117 ///
118 /// This intrinsic corresponds to the <c> VSUBPD </c> instruction.
119 ///
120 /// \param __a
121 ///    A 256-bit vector of [4 x double] containing the minuend.
122 /// \param __b
123 ///    A 256-bit vector of [4 x double] containing the subtrahend.
124 /// \returns A 256-bit vector of [4 x double] containing the differences between
125 ///    both operands.
126 static __inline __m256d __DEFAULT_FN_ATTRS
127 _mm256_sub_pd(__m256d __a, __m256d __b)
128 {
129   return (__m256d)((__v4df)__a-(__v4df)__b);
130 }
131 
132 /// Subtracts two 256-bit vectors of [8 x float].
133 ///
134 /// \headerfile <x86intrin.h>
135 ///
136 /// This intrinsic corresponds to the <c> VSUBPS </c> instruction.
137 ///
138 /// \param __a
139 ///    A 256-bit vector of [8 x float] containing the minuend.
140 /// \param __b
141 ///    A 256-bit vector of [8 x float] containing the subtrahend.
142 /// \returns A 256-bit vector of [8 x float] containing the differences between
143 ///    both operands.
144 static __inline __m256 __DEFAULT_FN_ATTRS
145 _mm256_sub_ps(__m256 __a, __m256 __b)
146 {
147   return (__m256)((__v8sf)__a-(__v8sf)__b);
148 }
149 
150 /// Adds the even-indexed values and subtracts the odd-indexed values of
151 ///    two 256-bit vectors of [4 x double].
152 ///
153 /// \headerfile <x86intrin.h>
154 ///
155 /// This intrinsic corresponds to the <c> VADDSUBPD </c> instruction.
156 ///
157 /// \param __a
158 ///    A 256-bit vector of [4 x double] containing the left source operand.
159 /// \param __b
160 ///    A 256-bit vector of [4 x double] containing the right source operand.
161 /// \returns A 256-bit vector of [4 x double] containing the alternating sums
162 ///    and differences between both operands.
163 static __inline __m256d __DEFAULT_FN_ATTRS
164 _mm256_addsub_pd(__m256d __a, __m256d __b)
165 {
166   return (__m256d)__builtin_ia32_addsubpd256((__v4df)__a, (__v4df)__b);
167 }
168 
169 /// Adds the even-indexed values and subtracts the odd-indexed values of
170 ///    two 256-bit vectors of [8 x float].
171 ///
172 /// \headerfile <x86intrin.h>
173 ///
174 /// This intrinsic corresponds to the <c> VADDSUBPS </c> instruction.
175 ///
176 /// \param __a
177 ///    A 256-bit vector of [8 x float] containing the left source operand.
178 /// \param __b
179 ///    A 256-bit vector of [8 x float] containing the right source operand.
180 /// \returns A 256-bit vector of [8 x float] containing the alternating sums and
181 ///    differences between both operands.
182 static __inline __m256 __DEFAULT_FN_ATTRS
183 _mm256_addsub_ps(__m256 __a, __m256 __b)
184 {
185   return (__m256)__builtin_ia32_addsubps256((__v8sf)__a, (__v8sf)__b);
186 }
187 
188 /// Divides two 256-bit vectors of [4 x double].
189 ///
190 /// \headerfile <x86intrin.h>
191 ///
192 /// This intrinsic corresponds to the <c> VDIVPD </c> instruction.
193 ///
194 /// \param __a
195 ///    A 256-bit vector of [4 x double] containing the dividend.
196 /// \param __b
197 ///    A 256-bit vector of [4 x double] containing the divisor.
198 /// \returns A 256-bit vector of [4 x double] containing the quotients of both
199 ///    operands.
200 static __inline __m256d __DEFAULT_FN_ATTRS
201 _mm256_div_pd(__m256d __a, __m256d __b)
202 {
203   return (__m256d)((__v4df)__a/(__v4df)__b);
204 }
205 
206 /// Divides two 256-bit vectors of [8 x float].
207 ///
208 /// \headerfile <x86intrin.h>
209 ///
210 /// This intrinsic corresponds to the <c> VDIVPS </c> instruction.
211 ///
212 /// \param __a
213 ///    A 256-bit vector of [8 x float] containing the dividend.
214 /// \param __b
215 ///    A 256-bit vector of [8 x float] containing the divisor.
216 /// \returns A 256-bit vector of [8 x float] containing the quotients of both
217 ///    operands.
218 static __inline __m256 __DEFAULT_FN_ATTRS
219 _mm256_div_ps(__m256 __a, __m256 __b)
220 {
221   return (__m256)((__v8sf)__a/(__v8sf)__b);
222 }
223 
224 /// Compares two 256-bit vectors of [4 x double] and returns the greater
225 ///    of each pair of values.
226 ///
227 ///    If either value in a comparison is NaN, returns the value from \a __b.
228 ///
229 /// \headerfile <x86intrin.h>
230 ///
231 /// This intrinsic corresponds to the <c> VMAXPD </c> instruction.
232 ///
233 /// \param __a
234 ///    A 256-bit vector of [4 x double] containing one of the operands.
235 /// \param __b
236 ///    A 256-bit vector of [4 x double] containing one of the operands.
237 /// \returns A 256-bit vector of [4 x double] containing the maximum values
238 ///    between both operands.
239 static __inline __m256d __DEFAULT_FN_ATTRS
240 _mm256_max_pd(__m256d __a, __m256d __b)
241 {
242   return (__m256d)__builtin_ia32_maxpd256((__v4df)__a, (__v4df)__b);
243 }
244 
245 /// Compares two 256-bit vectors of [8 x float] and returns the greater
246 ///    of each pair of values.
247 ///
248 ///    If either value in a comparison is NaN, returns the value from \a __b.
249 ///
250 /// \headerfile <x86intrin.h>
251 ///
252 /// This intrinsic corresponds to the <c> VMAXPS </c> instruction.
253 ///
254 /// \param __a
255 ///    A 256-bit vector of [8 x float] containing one of the operands.
256 /// \param __b
257 ///    A 256-bit vector of [8 x float] containing one of the operands.
258 /// \returns A 256-bit vector of [8 x float] containing the maximum values
259 ///    between both operands.
260 static __inline __m256 __DEFAULT_FN_ATTRS
261 _mm256_max_ps(__m256 __a, __m256 __b)
262 {
263   return (__m256)__builtin_ia32_maxps256((__v8sf)__a, (__v8sf)__b);
264 }
265 
266 /// Compares two 256-bit vectors of [4 x double] and returns the lesser
267 ///    of each pair of values.
268 ///
269 ///    If either value in a comparison is NaN, returns the value from \a __b.
270 ///
271 /// \headerfile <x86intrin.h>
272 ///
273 /// This intrinsic corresponds to the <c> VMINPD </c> instruction.
274 ///
275 /// \param __a
276 ///    A 256-bit vector of [4 x double] containing one of the operands.
277 /// \param __b
278 ///    A 256-bit vector of [4 x double] containing one of the operands.
279 /// \returns A 256-bit vector of [4 x double] containing the minimum values
280 ///    between both operands.
281 static __inline __m256d __DEFAULT_FN_ATTRS
282 _mm256_min_pd(__m256d __a, __m256d __b)
283 {
284   return (__m256d)__builtin_ia32_minpd256((__v4df)__a, (__v4df)__b);
285 }
286 
287 /// Compares two 256-bit vectors of [8 x float] and returns the lesser
288 ///    of each pair of values.
289 ///
290 ///    If either value in a comparison is NaN, returns the value from \a __b.
291 ///
292 /// \headerfile <x86intrin.h>
293 ///
294 /// This intrinsic corresponds to the <c> VMINPS </c> instruction.
295 ///
296 /// \param __a
297 ///    A 256-bit vector of [8 x float] containing one of the operands.
298 /// \param __b
299 ///    A 256-bit vector of [8 x float] containing one of the operands.
300 /// \returns A 256-bit vector of [8 x float] containing the minimum values
301 ///    between both operands.
302 static __inline __m256 __DEFAULT_FN_ATTRS
303 _mm256_min_ps(__m256 __a, __m256 __b)
304 {
305   return (__m256)__builtin_ia32_minps256((__v8sf)__a, (__v8sf)__b);
306 }
307 
308 /// Multiplies two 256-bit vectors of [4 x double].
309 ///
310 /// \headerfile <x86intrin.h>
311 ///
312 /// This intrinsic corresponds to the <c> VMULPD </c> instruction.
313 ///
314 /// \param __a
315 ///    A 256-bit vector of [4 x double] containing one of the operands.
316 /// \param __b
317 ///    A 256-bit vector of [4 x double] containing one of the operands.
318 /// \returns A 256-bit vector of [4 x double] containing the products of both
319 ///    operands.
320 static __inline __m256d __DEFAULT_FN_ATTRS
321 _mm256_mul_pd(__m256d __a, __m256d __b)
322 {
323   return (__m256d)((__v4df)__a * (__v4df)__b);
324 }
325 
326 /// Multiplies two 256-bit vectors of [8 x float].
327 ///
328 /// \headerfile <x86intrin.h>
329 ///
330 /// This intrinsic corresponds to the <c> VMULPS </c> instruction.
331 ///
332 /// \param __a
333 ///    A 256-bit vector of [8 x float] containing one of the operands.
334 /// \param __b
335 ///    A 256-bit vector of [8 x float] containing one of the operands.
336 /// \returns A 256-bit vector of [8 x float] containing the products of both
337 ///    operands.
338 static __inline __m256 __DEFAULT_FN_ATTRS
339 _mm256_mul_ps(__m256 __a, __m256 __b)
340 {
341   return (__m256)((__v8sf)__a * (__v8sf)__b);
342 }
343 
344 /// Calculates the square roots of the values in a 256-bit vector of
345 ///    [4 x double].
346 ///
347 /// \headerfile <x86intrin.h>
348 ///
349 /// This intrinsic corresponds to the <c> VSQRTPD </c> instruction.
350 ///
351 /// \param __a
352 ///    A 256-bit vector of [4 x double].
353 /// \returns A 256-bit vector of [4 x double] containing the square roots of the
354 ///    values in the operand.
355 static __inline __m256d __DEFAULT_FN_ATTRS
356 _mm256_sqrt_pd(__m256d __a)
357 {
358   return (__m256d)__builtin_ia32_sqrtpd256((__v4df)__a);
359 }
360 
361 /// Calculates the square roots of the values in a 256-bit vector of
362 ///    [8 x float].
363 ///
364 /// \headerfile <x86intrin.h>
365 ///
366 /// This intrinsic corresponds to the <c> VSQRTPS </c> instruction.
367 ///
368 /// \param __a
369 ///    A 256-bit vector of [8 x float].
370 /// \returns A 256-bit vector of [8 x float] containing the square roots of the
371 ///    values in the operand.
372 static __inline __m256 __DEFAULT_FN_ATTRS
373 _mm256_sqrt_ps(__m256 __a)
374 {
375   return (__m256)__builtin_ia32_sqrtps256((__v8sf)__a);
376 }
377 
378 /// Calculates the reciprocal square roots of the values in a 256-bit
379 ///    vector of [8 x float].
380 ///
381 /// \headerfile <x86intrin.h>
382 ///
383 /// This intrinsic corresponds to the <c> VRSQRTPS </c> instruction.
384 ///
385 /// \param __a
386 ///    A 256-bit vector of [8 x float].
387 /// \returns A 256-bit vector of [8 x float] containing the reciprocal square
388 ///    roots of the values in the operand.
389 static __inline __m256 __DEFAULT_FN_ATTRS
390 _mm256_rsqrt_ps(__m256 __a)
391 {
392   return (__m256)__builtin_ia32_rsqrtps256((__v8sf)__a);
393 }
394 
395 /// Calculates the reciprocals of the values in a 256-bit vector of
396 ///    [8 x float].
397 ///
398 /// \headerfile <x86intrin.h>
399 ///
400 /// This intrinsic corresponds to the <c> VRCPPS </c> instruction.
401 ///
402 /// \param __a
403 ///    A 256-bit vector of [8 x float].
404 /// \returns A 256-bit vector of [8 x float] containing the reciprocals of the
405 ///    values in the operand.
406 static __inline __m256 __DEFAULT_FN_ATTRS
407 _mm256_rcp_ps(__m256 __a)
408 {
409   return (__m256)__builtin_ia32_rcpps256((__v8sf)__a);
410 }
411 
412 /// Rounds the values in a 256-bit vector of [4 x double] as specified
413 ///    by the byte operand. The source values are rounded to integer values and
414 ///    returned as 64-bit double-precision floating-point values.
415 ///
416 /// \headerfile <x86intrin.h>
417 ///
418 /// \code
419 /// __m256d _mm256_round_pd(__m256d V, const int M);
420 /// \endcode
421 ///
422 /// This intrinsic corresponds to the <c> VROUNDPD </c> instruction.
423 ///
424 /// \param V
425 ///    A 256-bit vector of [4 x double].
426 /// \param M
427 ///    An integer value that specifies the rounding operation. \n
428 ///    Bits [7:4] are reserved. \n
429 ///    Bit [3] is a precision exception value: \n
430 ///      0: A normal PE exception is used. \n
431 ///      1: The PE field is not updated. \n
432 ///    Bit [2] is the rounding control source: \n
433 ///      0: Use bits [1:0] of \a M. \n
434 ///      1: Use the current MXCSR setting. \n
435 ///    Bits [1:0] contain the rounding control definition: \n
436 ///      00: Nearest. \n
437 ///      01: Downward (toward negative infinity). \n
438 ///      10: Upward (toward positive infinity). \n
439 ///      11: Truncated.
440 /// \returns A 256-bit vector of [4 x double] containing the rounded values.
441 #define _mm256_round_pd(V, M) \
442   ((__m256d)__builtin_ia32_roundpd256((__v4df)(__m256d)(V), (M)))
443 
444 /// Rounds the values stored in a 256-bit vector of [8 x float] as
445 ///    specified by the byte operand. The source values are rounded to integer
446 ///    values and returned as floating-point values.
447 ///
448 /// \headerfile <x86intrin.h>
449 ///
450 /// \code
451 /// __m256 _mm256_round_ps(__m256 V, const int M);
452 /// \endcode
453 ///
454 /// This intrinsic corresponds to the <c> VROUNDPS </c> instruction.
455 ///
456 /// \param V
457 ///    A 256-bit vector of [8 x float].
458 /// \param M
459 ///    An integer value that specifies the rounding operation. \n
460 ///    Bits [7:4] are reserved. \n
461 ///    Bit [3] is a precision exception value: \n
462 ///      0: A normal PE exception is used. \n
463 ///      1: The PE field is not updated. \n
464 ///    Bit [2] is the rounding control source: \n
465 ///      0: Use bits [1:0] of \a M. \n
466 ///      1: Use the current MXCSR setting. \n
467 ///    Bits [1:0] contain the rounding control definition: \n
468 ///      00: Nearest. \n
469 ///      01: Downward (toward negative infinity). \n
470 ///      10: Upward (toward positive infinity). \n
471 ///      11: Truncated.
472 /// \returns A 256-bit vector of [8 x float] containing the rounded values.
473 #define _mm256_round_ps(V, M) \
474   ((__m256)__builtin_ia32_roundps256((__v8sf)(__m256)(V), (M)))
475 
476 /// Rounds up the values stored in a 256-bit vector of [4 x double]. The
477 ///    source values are rounded up to integer values and returned as 64-bit
478 ///    double-precision floating-point values.
479 ///
480 /// \headerfile <x86intrin.h>
481 ///
482 /// \code
483 /// __m256d _mm256_ceil_pd(__m256d V);
484 /// \endcode
485 ///
486 /// This intrinsic corresponds to the <c> VROUNDPD </c> instruction.
487 ///
488 /// \param V
489 ///    A 256-bit vector of [4 x double].
490 /// \returns A 256-bit vector of [4 x double] containing the rounded up values.
491 #define _mm256_ceil_pd(V)  _mm256_round_pd((V), _MM_FROUND_CEIL)
492 
493 /// Rounds down the values stored in a 256-bit vector of [4 x double].
494 ///    The source values are rounded down to integer values and returned as
495 ///    64-bit double-precision floating-point values.
496 ///
497 /// \headerfile <x86intrin.h>
498 ///
499 /// \code
500 /// __m256d _mm256_floor_pd(__m256d V);
501 /// \endcode
502 ///
503 /// This intrinsic corresponds to the <c> VROUNDPD </c> instruction.
504 ///
505 /// \param V
506 ///    A 256-bit vector of [4 x double].
507 /// \returns A 256-bit vector of [4 x double] containing the rounded down
508 ///    values.
509 #define _mm256_floor_pd(V) _mm256_round_pd((V), _MM_FROUND_FLOOR)
510 
511 /// Rounds up the values stored in a 256-bit vector of [8 x float]. The
512 ///    source values are rounded up to integer values and returned as
513 ///    floating-point values.
514 ///
515 /// \headerfile <x86intrin.h>
516 ///
517 /// \code
518 /// __m256 _mm256_ceil_ps(__m256 V);
519 /// \endcode
520 ///
521 /// This intrinsic corresponds to the <c> VROUNDPS </c> instruction.
522 ///
523 /// \param V
524 ///    A 256-bit vector of [8 x float].
525 /// \returns A 256-bit vector of [8 x float] containing the rounded up values.
526 #define _mm256_ceil_ps(V)  _mm256_round_ps((V), _MM_FROUND_CEIL)
527 
528 /// Rounds down the values stored in a 256-bit vector of [8 x float]. The
529 ///    source values are rounded down to integer values and returned as
530 ///    floating-point values.
531 ///
532 /// \headerfile <x86intrin.h>
533 ///
534 /// \code
535 /// __m256 _mm256_floor_ps(__m256 V);
536 /// \endcode
537 ///
538 /// This intrinsic corresponds to the <c> VROUNDPS </c> instruction.
539 ///
540 /// \param V
541 ///    A 256-bit vector of [8 x float].
542 /// \returns A 256-bit vector of [8 x float] containing the rounded down values.
543 #define _mm256_floor_ps(V) _mm256_round_ps((V), _MM_FROUND_FLOOR)
544 
545 /* Logical */
546 /// Performs a bitwise AND of two 256-bit vectors of [4 x double].
547 ///
548 /// \headerfile <x86intrin.h>
549 ///
550 /// This intrinsic corresponds to the <c> VANDPD </c> instruction.
551 ///
552 /// \param __a
553 ///    A 256-bit vector of [4 x double] containing one of the source operands.
554 /// \param __b
555 ///    A 256-bit vector of [4 x double] containing one of the source operands.
556 /// \returns A 256-bit vector of [4 x double] containing the bitwise AND of the
557 ///    values between both operands.
558 static __inline __m256d __DEFAULT_FN_ATTRS
559 _mm256_and_pd(__m256d __a, __m256d __b)
560 {
561   return (__m256d)((__v4du)__a & (__v4du)__b);
562 }
563 
564 /// Performs a bitwise AND of two 256-bit vectors of [8 x float].
565 ///
566 /// \headerfile <x86intrin.h>
567 ///
568 /// This intrinsic corresponds to the <c> VANDPS </c> instruction.
569 ///
570 /// \param __a
571 ///    A 256-bit vector of [8 x float] containing one of the source operands.
572 /// \param __b
573 ///    A 256-bit vector of [8 x float] containing one of the source operands.
574 /// \returns A 256-bit vector of [8 x float] containing the bitwise AND of the
575 ///    values between both operands.
576 static __inline __m256 __DEFAULT_FN_ATTRS
577 _mm256_and_ps(__m256 __a, __m256 __b)
578 {
579   return (__m256)((__v8su)__a & (__v8su)__b);
580 }
581 
582 /// Performs a bitwise AND of two 256-bit vectors of [4 x double], using
583 ///    the one's complement of the values contained in the first source operand.
584 ///
585 /// \headerfile <x86intrin.h>
586 ///
587 /// This intrinsic corresponds to the <c> VANDNPD </c> instruction.
588 ///
589 /// \param __a
590 ///    A 256-bit vector of [4 x double] containing the left source operand. The
591 ///    one's complement of this value is used in the bitwise AND.
592 /// \param __b
593 ///    A 256-bit vector of [4 x double] containing the right source operand.
594 /// \returns A 256-bit vector of [4 x double] containing the bitwise AND of the
595 ///    values of the second operand and the one's complement of the first
596 ///    operand.
597 static __inline __m256d __DEFAULT_FN_ATTRS
598 _mm256_andnot_pd(__m256d __a, __m256d __b)
599 {
600   return (__m256d)(~(__v4du)__a & (__v4du)__b);
601 }
602 
603 /// Performs a bitwise AND of two 256-bit vectors of [8 x float], using
604 ///    the one's complement of the values contained in the first source operand.
605 ///
606 /// \headerfile <x86intrin.h>
607 ///
608 /// This intrinsic corresponds to the <c> VANDNPS </c> instruction.
609 ///
610 /// \param __a
611 ///    A 256-bit vector of [8 x float] containing the left source operand. The
612 ///    one's complement of this value is used in the bitwise AND.
613 /// \param __b
614 ///    A 256-bit vector of [8 x float] containing the right source operand.
615 /// \returns A 256-bit vector of [8 x float] containing the bitwise AND of the
616 ///    values of the second operand and the one's complement of the first
617 ///    operand.
618 static __inline __m256 __DEFAULT_FN_ATTRS
619 _mm256_andnot_ps(__m256 __a, __m256 __b)
620 {
621   return (__m256)(~(__v8su)__a & (__v8su)__b);
622 }
623 
624 /// Performs a bitwise OR of two 256-bit vectors of [4 x double].
625 ///
626 /// \headerfile <x86intrin.h>
627 ///
628 /// This intrinsic corresponds to the <c> VORPD </c> instruction.
629 ///
630 /// \param __a
631 ///    A 256-bit vector of [4 x double] containing one of the source operands.
632 /// \param __b
633 ///    A 256-bit vector of [4 x double] containing one of the source operands.
634 /// \returns A 256-bit vector of [4 x double] containing the bitwise OR of the
635 ///    values between both operands.
636 static __inline __m256d __DEFAULT_FN_ATTRS
637 _mm256_or_pd(__m256d __a, __m256d __b)
638 {
639   return (__m256d)((__v4du)__a | (__v4du)__b);
640 }
641 
642 /// Performs a bitwise OR of two 256-bit vectors of [8 x float].
643 ///
644 /// \headerfile <x86intrin.h>
645 ///
646 /// This intrinsic corresponds to the <c> VORPS </c> instruction.
647 ///
648 /// \param __a
649 ///    A 256-bit vector of [8 x float] containing one of the source operands.
650 /// \param __b
651 ///    A 256-bit vector of [8 x float] containing one of the source operands.
652 /// \returns A 256-bit vector of [8 x float] containing the bitwise OR of the
653 ///    values between both operands.
654 static __inline __m256 __DEFAULT_FN_ATTRS
655 _mm256_or_ps(__m256 __a, __m256 __b)
656 {
657   return (__m256)((__v8su)__a | (__v8su)__b);
658 }
659 
660 /// Performs a bitwise XOR of two 256-bit vectors of [4 x double].
661 ///
662 /// \headerfile <x86intrin.h>
663 ///
664 /// This intrinsic corresponds to the <c> VXORPD </c> instruction.
665 ///
666 /// \param __a
667 ///    A 256-bit vector of [4 x double] containing one of the source operands.
668 /// \param __b
669 ///    A 256-bit vector of [4 x double] containing one of the source operands.
670 /// \returns A 256-bit vector of [4 x double] containing the bitwise XOR of the
671 ///    values between both operands.
672 static __inline __m256d __DEFAULT_FN_ATTRS
673 _mm256_xor_pd(__m256d __a, __m256d __b)
674 {
675   return (__m256d)((__v4du)__a ^ (__v4du)__b);
676 }
677 
678 /// Performs a bitwise XOR of two 256-bit vectors of [8 x float].
679 ///
680 /// \headerfile <x86intrin.h>
681 ///
682 /// This intrinsic corresponds to the <c> VXORPS </c> instruction.
683 ///
684 /// \param __a
685 ///    A 256-bit vector of [8 x float] containing one of the source operands.
686 /// \param __b
687 ///    A 256-bit vector of [8 x float] containing one of the source operands.
688 /// \returns A 256-bit vector of [8 x float] containing the bitwise XOR of the
689 ///    values between both operands.
690 static __inline __m256 __DEFAULT_FN_ATTRS
691 _mm256_xor_ps(__m256 __a, __m256 __b)
692 {
693   return (__m256)((__v8su)__a ^ (__v8su)__b);
694 }
695 
696 /* Horizontal arithmetic */
697 /// Horizontally adds the adjacent pairs of values contained in two
698 ///    256-bit vectors of [4 x double].
699 ///
700 /// \headerfile <x86intrin.h>
701 ///
702 /// This intrinsic corresponds to the <c> VHADDPD </c> instruction.
703 ///
704 /// \param __a
705 ///    A 256-bit vector of [4 x double] containing one of the source operands.
706 ///    The horizontal sums of the values are returned in the even-indexed
707 ///    elements of a vector of [4 x double].
708 /// \param __b
709 ///    A 256-bit vector of [4 x double] containing one of the source operands.
710 ///    The horizontal sums of the values are returned in the odd-indexed
711 ///    elements of a vector of [4 x double].
712 /// \returns A 256-bit vector of [4 x double] containing the horizontal sums of
713 ///    both operands.
714 static __inline __m256d __DEFAULT_FN_ATTRS
715 _mm256_hadd_pd(__m256d __a, __m256d __b)
716 {
717   return (__m256d)__builtin_ia32_haddpd256((__v4df)__a, (__v4df)__b);
718 }
719 
720 /// Horizontally adds the adjacent pairs of values contained in two
721 ///    256-bit vectors of [8 x float].
722 ///
723 /// \headerfile <x86intrin.h>
724 ///
725 /// This intrinsic corresponds to the <c> VHADDPS </c> instruction.
726 ///
727 /// \param __a
728 ///    A 256-bit vector of [8 x float] containing one of the source operands.
729 ///    The horizontal sums of the values are returned in the elements with
730 ///    index 0, 1, 4, 5 of a vector of [8 x float].
731 /// \param __b
732 ///    A 256-bit vector of [8 x float] containing one of the source operands.
733 ///    The horizontal sums of the values are returned in the elements with
734 ///    index 2, 3, 6, 7 of a vector of [8 x float].
735 /// \returns A 256-bit vector of [8 x float] containing the horizontal sums of
736 ///    both operands.
737 static __inline __m256 __DEFAULT_FN_ATTRS
738 _mm256_hadd_ps(__m256 __a, __m256 __b)
739 {
740   return (__m256)__builtin_ia32_haddps256((__v8sf)__a, (__v8sf)__b);
741 }
742 
743 /// Horizontally subtracts the adjacent pairs of values contained in two
744 ///    256-bit vectors of [4 x double].
745 ///
746 /// \headerfile <x86intrin.h>
747 ///
748 /// This intrinsic corresponds to the <c> VHSUBPD </c> instruction.
749 ///
750 /// \param __a
751 ///    A 256-bit vector of [4 x double] containing one of the source operands.
752 ///    The horizontal differences between the values are returned in the
753 ///    even-indexed elements of a vector of [4 x double].
754 /// \param __b
755 ///    A 256-bit vector of [4 x double] containing one of the source operands.
756 ///    The horizontal differences between the values are returned in the
757 ///    odd-indexed elements of a vector of [4 x double].
758 /// \returns A 256-bit vector of [4 x double] containing the horizontal
759 ///    differences of both operands.
760 static __inline __m256d __DEFAULT_FN_ATTRS
761 _mm256_hsub_pd(__m256d __a, __m256d __b)
762 {
763   return (__m256d)__builtin_ia32_hsubpd256((__v4df)__a, (__v4df)__b);
764 }
765 
766 /// Horizontally subtracts the adjacent pairs of values contained in two
767 ///    256-bit vectors of [8 x float].
768 ///
769 /// \headerfile <x86intrin.h>
770 ///
771 /// This intrinsic corresponds to the <c> VHSUBPS </c> instruction.
772 ///
773 /// \param __a
774 ///    A 256-bit vector of [8 x float] containing one of the source operands.
775 ///    The horizontal differences between the values are returned in the
776 ///    elements with index 0, 1, 4, 5 of a vector of [8 x float].
777 /// \param __b
778 ///    A 256-bit vector of [8 x float] containing one of the source operands.
779 ///    The horizontal differences between the values are returned in the
780 ///    elements with index 2, 3, 6, 7 of a vector of [8 x float].
781 /// \returns A 256-bit vector of [8 x float] containing the horizontal
782 ///    differences of both operands.
783 static __inline __m256 __DEFAULT_FN_ATTRS
784 _mm256_hsub_ps(__m256 __a, __m256 __b)
785 {
786   return (__m256)__builtin_ia32_hsubps256((__v8sf)__a, (__v8sf)__b);
787 }
788 
789 /* Vector permutations */
790 /// Copies the values in a 128-bit vector of [2 x double] as specified
791 ///    by the 128-bit integer vector operand.
792 ///
793 /// \headerfile <x86intrin.h>
794 ///
795 /// This intrinsic corresponds to the <c> VPERMILPD </c> instruction.
796 ///
797 /// \param __a
798 ///    A 128-bit vector of [2 x double].
799 /// \param __c
800 ///    A 128-bit integer vector operand specifying how the values are to be
801 ///    copied. \n
802 ///    Bit [1]: \n
803 ///      0: Bits [63:0] of the source are copied to bits [63:0] of the returned
804 ///         vector. \n
805 ///      1: Bits [127:64] of the source are copied to bits [63:0] of the
806 ///         returned vector. \n
807 ///    Bit [65]: \n
808 ///      0: Bits [63:0] of the source are copied to bits [127:64] of the
809 ///         returned vector. \n
810 ///      1: Bits [127:64] of the source are copied to bits [127:64] of the
811 ///         returned vector.
812 /// \returns A 128-bit vector of [2 x double] containing the copied values.
813 static __inline __m128d __DEFAULT_FN_ATTRS128
814 _mm_permutevar_pd(__m128d __a, __m128i __c)
815 {
816   return (__m128d)__builtin_ia32_vpermilvarpd((__v2df)__a, (__v2di)__c);
817 }
818 
819 /// Copies the values in a 256-bit vector of [4 x double] as specified
820 ///    by the 256-bit integer vector operand.
821 ///
822 /// \headerfile <x86intrin.h>
823 ///
824 /// This intrinsic corresponds to the <c> VPERMILPD </c> instruction.
825 ///
826 /// \param __a
827 ///    A 256-bit vector of [4 x double].
828 /// \param __c
829 ///    A 256-bit integer vector operand specifying how the values are to be
830 ///    copied. \n
831 ///    Bit [1]: \n
832 ///      0: Bits [63:0] of the source are copied to bits [63:0] of the returned
833 ///         vector. \n
834 ///      1: Bits [127:64] of the source are copied to bits [63:0] of the
835 ///         returned vector. \n
836 ///    Bit [65]: \n
837 ///      0: Bits [63:0] of the source are copied to bits [127:64] of the
838 ///         returned vector. \n
839 ///      1: Bits [127:64] of the source are copied to bits [127:64] of the
840 ///         returned vector. \n
841 ///    Bit [129]: \n
842 ///      0: Bits [191:128] of the source are copied to bits [191:128] of the
843 ///         returned vector. \n
844 ///      1: Bits [255:192] of the source are copied to bits [191:128] of the
845 ///         returned vector. \n
846 ///    Bit [193]: \n
847 ///      0: Bits [191:128] of the source are copied to bits [255:192] of the
848 ///         returned vector. \n
849 ///      1: Bits [255:192] of the source are copied to bits [255:192] of the
850 ///    returned vector.
851 /// \returns A 256-bit vector of [4 x double] containing the copied values.
852 static __inline __m256d __DEFAULT_FN_ATTRS
853 _mm256_permutevar_pd(__m256d __a, __m256i __c)
854 {
855   return (__m256d)__builtin_ia32_vpermilvarpd256((__v4df)__a, (__v4di)__c);
856 }
857 
858 /// Copies the values stored in a 128-bit vector of [4 x float] as
859 ///    specified by the 128-bit integer vector operand.
860 ///
861 /// \headerfile <x86intrin.h>
862 ///
863 /// This intrinsic corresponds to the <c> VPERMILPS </c> instruction.
864 ///
865 /// \param __a
866 ///    A 128-bit vector of [4 x float].
867 /// \param __c
868 ///    A 128-bit integer vector operand specifying how the values are to be
869 ///    copied. \n
870 ///    Bits [1:0]: \n
871 ///      00: Bits [31:0] of the source are copied to bits [31:0] of the
872 ///          returned vector. \n
873 ///      01: Bits [63:32] of the source are copied to bits [31:0] of the
874 ///          returned vector. \n
875 ///      10: Bits [95:64] of the source are copied to bits [31:0] of the
876 ///          returned vector. \n
877 ///      11: Bits [127:96] of the source are copied to bits [31:0] of the
878 ///          returned vector. \n
879 ///    Bits [33:32]: \n
880 ///      00: Bits [31:0] of the source are copied to bits [63:32] of the
881 ///          returned vector. \n
882 ///      01: Bits [63:32] of the source are copied to bits [63:32] of the
883 ///          returned vector. \n
884 ///      10: Bits [95:64] of the source are copied to bits [63:32] of the
885 ///          returned vector. \n
886 ///      11: Bits [127:96] of the source are copied to bits [63:32] of the
887 ///          returned vector. \n
888 ///    Bits [65:64]: \n
889 ///      00: Bits [31:0] of the source are copied to bits [95:64] of the
890 ///          returned vector. \n
891 ///      01: Bits [63:32] of the source are copied to bits [95:64] of the
892 ///          returned vector. \n
893 ///      10: Bits [95:64] of the source are copied to bits [95:64] of the
894 ///          returned vector. \n
895 ///      11: Bits [127:96] of the source are copied to bits [95:64] of the
896 ///          returned vector. \n
897 ///    Bits [97:96]: \n
898 ///      00: Bits [31:0] of the source are copied to bits [127:96] of the
899 ///          returned vector. \n
900 ///      01: Bits [63:32] of the source are copied to bits [127:96] of the
901 ///          returned vector. \n
902 ///      10: Bits [95:64] of the source are copied to bits [127:96] of the
903 ///          returned vector. \n
904 ///      11: Bits [127:96] of the source are copied to bits [127:96] of the
905 ///          returned vector.
906 /// \returns A 128-bit vector of [4 x float] containing the copied values.
907 static __inline __m128 __DEFAULT_FN_ATTRS128
908 _mm_permutevar_ps(__m128 __a, __m128i __c)
909 {
910   return (__m128)__builtin_ia32_vpermilvarps((__v4sf)__a, (__v4si)__c);
911 }
912 
913 /// Copies the values stored in a 256-bit vector of [8 x float] as
914 ///    specified by the 256-bit integer vector operand.
915 ///
916 /// \headerfile <x86intrin.h>
917 ///
918 /// This intrinsic corresponds to the <c> VPERMILPS </c> instruction.
919 ///
920 /// \param __a
921 ///    A 256-bit vector of [8 x float].
922 /// \param __c
923 ///    A 256-bit integer vector operand specifying how the values are to be
924 ///    copied. \n
925 ///    Bits [1:0]: \n
926 ///      00: Bits [31:0] of the source are copied to bits [31:0] of the
927 ///          returned vector. \n
928 ///      01: Bits [63:32] of the source are copied to bits [31:0] of the
929 ///          returned vector. \n
930 ///      10: Bits [95:64] of the source are copied to bits [31:0] of the
931 ///          returned vector. \n
932 ///      11: Bits [127:96] of the source are copied to bits [31:0] of the
933 ///          returned vector. \n
934 ///    Bits [33:32]: \n
935 ///      00: Bits [31:0] of the source are copied to bits [63:32] of the
936 ///          returned vector. \n
937 ///      01: Bits [63:32] of the source are copied to bits [63:32] of the
938 ///          returned vector. \n
939 ///      10: Bits [95:64] of the source are copied to bits [63:32] of the
940 ///          returned vector. \n
941 ///      11: Bits [127:96] of the source are copied to bits [63:32] of the
942 ///          returned vector. \n
943 ///    Bits [65:64]: \n
944 ///      00: Bits [31:0] of the source are copied to bits [95:64] of the
945 ///          returned vector. \n
946 ///      01: Bits [63:32] of the source are copied to bits [95:64] of the
947 ///          returned vector. \n
948 ///      10: Bits [95:64] of the source are copied to bits [95:64] of the
949 ///          returned vector. \n
950 ///      11: Bits [127:96] of the source are copied to bits [95:64] of the
951 ///          returned vector. \n
952 ///    Bits [97:96]: \n
953 ///      00: Bits [31:0] of the source are copied to bits [127:96] of the
954 ///          returned vector. \n
955 ///      01: Bits [63:32] of the source are copied to bits [127:96] of the
956 ///          returned vector. \n
957 ///      10: Bits [95:64] of the source are copied to bits [127:96] of the
958 ///          returned vector. \n
959 ///      11: Bits [127:96] of the source are copied to bits [127:96] of the
960 ///          returned vector. \n
961 ///    Bits [129:128]: \n
962 ///      00: Bits [159:128] of the source are copied to bits [159:128] of the
963 ///          returned vector. \n
964 ///      01: Bits [191:160] of the source are copied to bits [159:128] of the
965 ///          returned vector. \n
966 ///      10: Bits [223:192] of the source are copied to bits [159:128] of the
967 ///          returned vector. \n
968 ///      11: Bits [255:224] of the source are copied to bits [159:128] of the
969 ///          returned vector. \n
970 ///    Bits [161:160]: \n
971 ///      00: Bits [159:128] of the source are copied to bits [191:160] of the
972 ///          returned vector. \n
973 ///      01: Bits [191:160] of the source are copied to bits [191:160] of the
974 ///          returned vector. \n
975 ///      10: Bits [223:192] of the source are copied to bits [191:160] of the
976 ///          returned vector. \n
977 ///      11: Bits [255:224] of the source are copied to bits [191:160] of the
978 ///          returned vector. \n
979 ///    Bits [193:192]: \n
980 ///      00: Bits [159:128] of the source are copied to bits [223:192] of the
981 ///          returned vector. \n
982 ///      01: Bits [191:160] of the source are copied to bits [223:192] of the
983 ///          returned vector. \n
984 ///      10: Bits [223:192] of the source are copied to bits [223:192] of the
985 ///          returned vector. \n
986 ///      11: Bits [255:224] of the source are copied to bits [223:192] of the
987 ///          returned vector. \n
988 ///    Bits [225:224]: \n
989 ///      00: Bits [159:128] of the source are copied to bits [255:224] of the
990 ///          returned vector. \n
991 ///      01: Bits [191:160] of the source are copied to bits [255:224] of the
992 ///          returned vector. \n
993 ///      10: Bits [223:192] of the source are copied to bits [255:224] of the
994 ///          returned vector. \n
995 ///      11: Bits [255:224] of the source are copied to bits [255:224] of the
996 ///          returned vector.
997 /// \returns A 256-bit vector of [8 x float] containing the copied values.
998 static __inline __m256 __DEFAULT_FN_ATTRS
999 _mm256_permutevar_ps(__m256 __a, __m256i __c)
1000 {
1001   return (__m256)__builtin_ia32_vpermilvarps256((__v8sf)__a, (__v8si)__c);
1002 }
1003 
1004 /// Copies the values in a 128-bit vector of [2 x double] as specified
1005 ///    by the immediate integer operand.
1006 ///
1007 /// \headerfile <x86intrin.h>
1008 ///
1009 /// \code
1010 /// __m128d _mm_permute_pd(__m128d A, const int C);
1011 /// \endcode
1012 ///
1013 /// This intrinsic corresponds to the <c> VPERMILPD </c> instruction.
1014 ///
1015 /// \param A
1016 ///    A 128-bit vector of [2 x double].
1017 /// \param C
1018 ///    An immediate integer operand specifying how the values are to be
1019 ///    copied. \n
1020 ///    Bit [0]: \n
1021 ///      0: Bits [63:0] of the source are copied to bits [63:0] of the returned
1022 ///         vector. \n
1023 ///      1: Bits [127:64] of the source are copied to bits [63:0] of the
1024 ///         returned vector. \n
1025 ///    Bit [1]: \n
1026 ///      0: Bits [63:0] of the source are copied to bits [127:64] of the
1027 ///         returned vector. \n
1028 ///      1: Bits [127:64] of the source are copied to bits [127:64] of the
1029 ///         returned vector.
1030 /// \returns A 128-bit vector of [2 x double] containing the copied values.
1031 #define _mm_permute_pd(A, C) \
1032   ((__m128d)__builtin_ia32_vpermilpd((__v2df)(__m128d)(A), (int)(C)))
1033 
1034 /// Copies the values in a 256-bit vector of [4 x double] as specified by
1035 ///    the immediate integer operand.
1036 ///
1037 /// \headerfile <x86intrin.h>
1038 ///
1039 /// \code
1040 /// __m256d _mm256_permute_pd(__m256d A, const int C);
1041 /// \endcode
1042 ///
1043 /// This intrinsic corresponds to the <c> VPERMILPD </c> instruction.
1044 ///
1045 /// \param A
1046 ///    A 256-bit vector of [4 x double].
1047 /// \param C
1048 ///    An immediate integer operand specifying how the values are to be
1049 ///    copied. \n
1050 ///    Bit [0]: \n
1051 ///      0: Bits [63:0] of the source are copied to bits [63:0] of the returned
1052 ///         vector. \n
1053 ///      1: Bits [127:64] of the source are copied to bits [63:0] of the
1054 ///         returned vector. \n
1055 ///    Bit [1]: \n
1056 ///      0: Bits [63:0] of the source are copied to bits [127:64] of the
1057 ///         returned vector. \n
1058 ///      1: Bits [127:64] of the source are copied to bits [127:64] of the
1059 ///         returned vector. \n
1060 ///    Bit [2]: \n
1061 ///      0: Bits [191:128] of the source are copied to bits [191:128] of the
1062 ///         returned vector. \n
1063 ///      1: Bits [255:192] of the source are copied to bits [191:128] of the
1064 ///         returned vector. \n
1065 ///    Bit [3]: \n
1066 ///      0: Bits [191:128] of the source are copied to bits [255:192] of the
1067 ///         returned vector. \n
1068 ///      1: Bits [255:192] of the source are copied to bits [255:192] of the
1069 ///         returned vector.
1070 /// \returns A 256-bit vector of [4 x double] containing the copied values.
1071 #define _mm256_permute_pd(A, C) \
1072   ((__m256d)__builtin_ia32_vpermilpd256((__v4df)(__m256d)(A), (int)(C)))
1073 
1074 /// Copies the values in a 128-bit vector of [4 x float] as specified by
1075 ///    the immediate integer operand.
1076 ///
1077 /// \headerfile <x86intrin.h>
1078 ///
1079 /// \code
1080 /// __m128 _mm_permute_ps(__m128 A, const int C);
1081 /// \endcode
1082 ///
1083 /// This intrinsic corresponds to the <c> VPERMILPS </c> instruction.
1084 ///
1085 /// \param A
1086 ///    A 128-bit vector of [4 x float].
1087 /// \param C
1088 ///    An immediate integer operand specifying how the values are to be
1089 ///    copied. \n
1090 ///    Bits [1:0]: \n
1091 ///      00: Bits [31:0] of the source are copied to bits [31:0] of the
1092 ///          returned vector. \n
1093 ///      01: Bits [63:32] of the source are copied to bits [31:0] of the
1094 ///          returned vector. \n
1095 ///      10: Bits [95:64] of the source are copied to bits [31:0] of the
1096 ///          returned vector. \n
1097 ///      11: Bits [127:96] of the source are copied to bits [31:0] of the
1098 ///          returned vector. \n
1099 ///    Bits [3:2]: \n
1100 ///      00: Bits [31:0] of the source are copied to bits [63:32] of the
1101 ///          returned vector. \n
1102 ///      01: Bits [63:32] of the source are copied to bits [63:32] of the
1103 ///          returned vector. \n
1104 ///      10: Bits [95:64] of the source are copied to bits [63:32] of the
1105 ///          returned vector. \n
1106 ///      11: Bits [127:96] of the source are copied to bits [63:32] of the
1107 ///          returned vector. \n
1108 ///    Bits [5:4]: \n
1109 ///      00: Bits [31:0] of the source are copied to bits [95:64] of the
1110 ///          returned vector. \n
1111 ///      01: Bits [63:32] of the source are copied to bits [95:64] of the
1112 ///          returned vector. \n
1113 ///      10: Bits [95:64] of the source are copied to bits [95:64] of the
1114 ///          returned vector. \n
1115 ///      11: Bits [127:96] of the source are copied to bits [95:64] of the
1116 ///          returned vector. \n
1117 ///    Bits [7:6]: \n
1118 ///      00: Bits [31:0] of the source are copied to bits [127:96] of the
1119 ///          returned vector. \n
1120 ///      01: Bits [63:32] of the source are copied to bits [127:96] of the
1121 ///          returned vector. \n
1122 ///      10: Bits [95:64] of the source are copied to bits [127:96] of the
1123 ///          returned vector. \n
1124 ///      11: Bits [127:96] of the source are copied to bits [127:96] of the
1125 ///          returned vector.
1126 /// \returns A 128-bit vector of [4 x float] containing the copied values.
1127 #define _mm_permute_ps(A, C) \
1128   ((__m128)__builtin_ia32_vpermilps((__v4sf)(__m128)(A), (int)(C)))
1129 
1130 /// Copies the values in a 256-bit vector of [8 x float] as specified by
1131 ///    the immediate integer operand.
1132 ///
1133 /// \headerfile <x86intrin.h>
1134 ///
1135 /// \code
1136 /// __m256 _mm256_permute_ps(__m256 A, const int C);
1137 /// \endcode
1138 ///
1139 /// This intrinsic corresponds to the <c> VPERMILPS </c> instruction.
1140 ///
1141 /// \param A
1142 ///    A 256-bit vector of [8 x float].
1143 /// \param C
1144 ///    An immediate integer operand specifying how the values are to be
1145 ///    copied. \n
1146 ///    Bits [1:0]: \n
1147 ///      00: Bits [31:0] of the source are copied to bits [31:0] of the
1148 ///          returned vector. \n
1149 ///      01: Bits [63:32] of the source are copied to bits [31:0] of the
1150 ///          returned vector. \n
1151 ///      10: Bits [95:64] of the source are copied to bits [31:0] of the
1152 ///          returned vector. \n
1153 ///      11: Bits [127:96] of the source are copied to bits [31:0] of the
1154 ///          returned vector. \n
1155 ///    Bits [3:2]: \n
1156 ///      00: Bits [31:0] of the source are copied to bits [63:32] of the
1157 ///          returned vector. \n
1158 ///      01: Bits [63:32] of the source are copied to bits [63:32] of the
1159 ///          returned vector. \n
1160 ///      10: Bits [95:64] of the source are copied to bits [63:32] of the
1161 ///          returned vector. \n
1162 ///      11: Bits [127:96] of the source are copied to bits [63:32] of the
1163 ///          returned vector. \n
1164 ///    Bits [5:4]: \n
1165 ///      00: Bits [31:0] of the source are copied to bits [95:64] of the
1166 ///          returned vector. \n
1167 ///      01: Bits [63:32] of the source are copied to bits [95:64] of the
1168 ///          returned vector. \n
1169 ///      10: Bits [95:64] of the source are copied to bits [95:64] of the
1170 ///          returned vector. \n
1171 ///      11: Bits [127:96] of the source are copied to bits [95:64] of the
1172 ///          returned vector. \n
1173 ///    Bits [7:6]: \n
1174 ///      00: Bits [31:0] of the source are copied to bits [127:96] of the
1175 ///          returned vector. \n
1176 ///      01: Bits [63:32] of the source are copied to bits [127:96] of the
1177 ///          returned vector. \n
1178 ///      10: Bits [95:64] of the source are copied to bits [127:96] of the
1179 ///          returned vector. \n
1180 ///      11: Bits [127:96] of the source are copied to bits [127:96] of the
1181 ///          returned vector. \n
1182 ///    Bits [1:0]: \n
1183 ///      00: Bits [159:128] of the source are copied to bits [159:128] of the
1184 ///          returned vector. \n
1185 ///      01: Bits [191:160] of the source are copied to bits [159:128] of the
1186 ///          returned vector. \n
1187 ///      10: Bits [223:192] of the source are copied to bits [159:128] of the
1188 ///          returned vector. \n
1189 ///      11: Bits [255:224] of the source are copied to bits [159:128] of the
1190 ///          returned vector. \n
1191 ///    Bits [3:2]: \n
1192 ///      00: Bits [159:128] of the source are copied to bits [191:160] of the
1193 ///          returned vector. \n
1194 ///      01: Bits [191:160] of the source are copied to bits [191:160] of the
1195 ///          returned vector. \n
1196 ///      10: Bits [223:192] of the source are copied to bits [191:160] of the
1197 ///          returned vector. \n
1198 ///      11: Bits [255:224] of the source are copied to bits [191:160] of the
1199 ///          returned vector. \n
1200 ///    Bits [5:4]: \n
1201 ///      00: Bits [159:128] of the source are copied to bits [223:192] of the
1202 ///          returned vector. \n
1203 ///      01: Bits [191:160] of the source are copied to bits [223:192] of the
1204 ///          returned vector. \n
1205 ///      10: Bits [223:192] of the source are copied to bits [223:192] of the
1206 ///          returned vector. \n
1207 ///      11: Bits [255:224] of the source are copied to bits [223:192] of the
1208 ///          returned vector. \n
1209 ///    Bits [7:6]: \n
1210 ///      00: Bits [159:128] of the source are copied to bits [255:224] of the
1211 ///          returned vector. \n
1212 ///      01: Bits [191:160] of the source are copied to bits [255:224] of the
1213 ///          returned vector. \n
1214 ///      10: Bits [223:192] of the source are copied to bits [255:224] of the
1215 ///          returned vector. \n
1216 ///      11: Bits [255:224] of the source are copied to bits [255:224] of the
1217 ///          returned vector.
1218 /// \returns A 256-bit vector of [8 x float] containing the copied values.
1219 #define _mm256_permute_ps(A, C) \
1220   ((__m256)__builtin_ia32_vpermilps256((__v8sf)(__m256)(A), (int)(C)))
1221 
1222 /// Permutes 128-bit data values stored in two 256-bit vectors of
1223 ///    [4 x double], as specified by the immediate integer operand.
1224 ///
1225 /// \headerfile <x86intrin.h>
1226 ///
1227 /// \code
1228 /// __m256d _mm256_permute2f128_pd(__m256d V1, __m256d V2, const int M);
1229 /// \endcode
1230 ///
1231 /// This intrinsic corresponds to the <c> VPERM2F128 </c> instruction.
1232 ///
1233 /// \param V1
1234 ///    A 256-bit vector of [4 x double].
1235 /// \param V2
1236 ///    A 256-bit vector of [4 x double.
1237 /// \param M
1238 ///    An immediate integer operand specifying how the values are to be
1239 ///    permuted. \n
1240 ///    Bits [1:0]: \n
1241 ///      00: Bits [127:0] of operand \a V1 are copied to bits [127:0] of the
1242 ///          destination. \n
1243 ///      01: Bits [255:128] of operand \a V1 are copied to bits [127:0] of the
1244 ///          destination. \n
1245 ///      10: Bits [127:0] of operand \a V2 are copied to bits [127:0] of the
1246 ///          destination. \n
1247 ///      11: Bits [255:128] of operand \a V2 are copied to bits [127:0] of the
1248 ///          destination. \n
1249 ///    Bits [5:4]: \n
1250 ///      00: Bits [127:0] of operand \a V1 are copied to bits [255:128] of the
1251 ///          destination. \n
1252 ///      01: Bits [255:128] of operand \a V1 are copied to bits [255:128] of the
1253 ///          destination. \n
1254 ///      10: Bits [127:0] of operand \a V2 are copied to bits [255:128] of the
1255 ///          destination. \n
1256 ///      11: Bits [255:128] of operand \a V2 are copied to bits [255:128] of the
1257 ///          destination.
1258 /// \returns A 256-bit vector of [4 x double] containing the copied values.
1259 #define _mm256_permute2f128_pd(V1, V2, M) \
1260   ((__m256d)__builtin_ia32_vperm2f128_pd256((__v4df)(__m256d)(V1), \
1261                                             (__v4df)(__m256d)(V2), (int)(M)))
1262 
1263 /// Permutes 128-bit data values stored in two 256-bit vectors of
1264 ///    [8 x float], as specified by the immediate integer operand.
1265 ///
1266 /// \headerfile <x86intrin.h>
1267 ///
1268 /// \code
1269 /// __m256 _mm256_permute2f128_ps(__m256 V1, __m256 V2, const int M);
1270 /// \endcode
1271 ///
1272 /// This intrinsic corresponds to the <c> VPERM2F128 </c> instruction.
1273 ///
1274 /// \param V1
1275 ///    A 256-bit vector of [8 x float].
1276 /// \param V2
1277 ///    A 256-bit vector of [8 x float].
1278 /// \param M
1279 ///    An immediate integer operand specifying how the values are to be
1280 ///    permuted. \n
1281 ///    Bits [1:0]: \n
1282 ///    00: Bits [127:0] of operand \a V1 are copied to bits [127:0] of the
1283 ///    destination. \n
1284 ///    01: Bits [255:128] of operand \a V1 are copied to bits [127:0] of the
1285 ///    destination. \n
1286 ///    10: Bits [127:0] of operand \a V2 are copied to bits [127:0] of the
1287 ///    destination. \n
1288 ///    11: Bits [255:128] of operand \a V2 are copied to bits [127:0] of the
1289 ///    destination. \n
1290 ///    Bits [5:4]: \n
1291 ///    00: Bits [127:0] of operand \a V1 are copied to bits [255:128] of the
1292 ///    destination. \n
1293 ///    01: Bits [255:128] of operand \a V1 are copied to bits [255:128] of the
1294 ///    destination. \n
1295 ///    10: Bits [127:0] of operand \a V2 are copied to bits [255:128] of the
1296 ///    destination. \n
1297 ///    11: Bits [255:128] of operand \a V2 are copied to bits [255:128] of the
1298 ///    destination.
1299 /// \returns A 256-bit vector of [8 x float] containing the copied values.
1300 #define _mm256_permute2f128_ps(V1, V2, M) \
1301   ((__m256)__builtin_ia32_vperm2f128_ps256((__v8sf)(__m256)(V1), \
1302                                            (__v8sf)(__m256)(V2), (int)(M)))
1303 
1304 /// Permutes 128-bit data values stored in two 256-bit integer vectors,
1305 ///    as specified by the immediate integer operand.
1306 ///
1307 /// \headerfile <x86intrin.h>
1308 ///
1309 /// \code
1310 /// __m256i _mm256_permute2f128_si256(__m256i V1, __m256i V2, const int M);
1311 /// \endcode
1312 ///
1313 /// This intrinsic corresponds to the <c> VPERM2F128 </c> instruction.
1314 ///
1315 /// \param V1
1316 ///    A 256-bit integer vector.
1317 /// \param V2
1318 ///    A 256-bit integer vector.
1319 /// \param M
1320 ///    An immediate integer operand specifying how the values are to be copied.
1321 ///    Bits [1:0]: \n
1322 ///    00: Bits [127:0] of operand \a V1 are copied to bits [127:0] of the
1323 ///    destination. \n
1324 ///    01: Bits [255:128] of operand \a V1 are copied to bits [127:0] of the
1325 ///    destination. \n
1326 ///    10: Bits [127:0] of operand \a V2 are copied to bits [127:0] of the
1327 ///    destination. \n
1328 ///    11: Bits [255:128] of operand \a V2 are copied to bits [127:0] of the
1329 ///    destination. \n
1330 ///    Bits [5:4]: \n
1331 ///    00: Bits [127:0] of operand \a V1 are copied to bits [255:128] of the
1332 ///    destination. \n
1333 ///    01: Bits [255:128] of operand \a V1 are copied to bits [255:128] of the
1334 ///    destination. \n
1335 ///    10: Bits [127:0] of operand \a V2 are copied to bits [255:128] of the
1336 ///    destination. \n
1337 ///    11: Bits [255:128] of operand \a V2 are copied to bits [255:128] of the
1338 ///    destination.
1339 /// \returns A 256-bit integer vector containing the copied values.
1340 #define _mm256_permute2f128_si256(V1, V2, M) \
1341   ((__m256i)__builtin_ia32_vperm2f128_si256((__v8si)(__m256i)(V1), \
1342                                             (__v8si)(__m256i)(V2), (int)(M)))
1343 
1344 /* Vector Blend */
1345 /// Merges 64-bit double-precision data values stored in either of the
1346 ///    two 256-bit vectors of [4 x double], as specified by the immediate
1347 ///    integer operand.
1348 ///
1349 /// \headerfile <x86intrin.h>
1350 ///
1351 /// \code
1352 /// __m256d _mm256_blend_pd(__m256d V1, __m256d V2, const int M);
1353 /// \endcode
1354 ///
1355 /// This intrinsic corresponds to the <c> VBLENDPD </c> instruction.
1356 ///
1357 /// \param V1
1358 ///    A 256-bit vector of [4 x double].
1359 /// \param V2
1360 ///    A 256-bit vector of [4 x double].
1361 /// \param M
1362 ///    An immediate integer operand, with mask bits [3:0] specifying how the
1363 ///    values are to be copied. The position of the mask bit corresponds to the
1364 ///    index of a copied value. When a mask bit is 0, the corresponding 64-bit
1365 ///    element in operand \a V1 is copied to the same position in the
1366 ///    destination. When a mask bit is 1, the corresponding 64-bit element in
1367 ///    operand \a V2 is copied to the same position in the destination.
1368 /// \returns A 256-bit vector of [4 x double] containing the copied values.
1369 #define _mm256_blend_pd(V1, V2, M) \
1370   ((__m256d)__builtin_ia32_blendpd256((__v4df)(__m256d)(V1), \
1371                                       (__v4df)(__m256d)(V2), (int)(M)))
1372 
1373 /// Merges 32-bit single-precision data values stored in either of the
1374 ///    two 256-bit vectors of [8 x float], as specified by the immediate
1375 ///    integer operand.
1376 ///
1377 /// \headerfile <x86intrin.h>
1378 ///
1379 /// \code
1380 /// __m256 _mm256_blend_ps(__m256 V1, __m256 V2, const int M);
1381 /// \endcode
1382 ///
1383 /// This intrinsic corresponds to the <c> VBLENDPS </c> instruction.
1384 ///
1385 /// \param V1
1386 ///    A 256-bit vector of [8 x float].
1387 /// \param V2
1388 ///    A 256-bit vector of [8 x float].
1389 /// \param M
1390 ///    An immediate integer operand, with mask bits [7:0] specifying how the
1391 ///    values are to be copied. The position of the mask bit corresponds to the
1392 ///    index of a copied value. When a mask bit is 0, the corresponding 32-bit
1393 ///    element in operand \a V1 is copied to the same position in the
1394 ///    destination. When a mask bit is 1, the corresponding 32-bit element in
1395 ///    operand \a V2 is copied to the same position in the destination.
1396 /// \returns A 256-bit vector of [8 x float] containing the copied values.
1397 #define _mm256_blend_ps(V1, V2, M) \
1398   ((__m256)__builtin_ia32_blendps256((__v8sf)(__m256)(V1), \
1399                                      (__v8sf)(__m256)(V2), (int)(M)))
1400 
1401 /// Merges 64-bit double-precision data values stored in either of the
1402 ///    two 256-bit vectors of [4 x double], as specified by the 256-bit vector
1403 ///    operand.
1404 ///
1405 /// \headerfile <x86intrin.h>
1406 ///
1407 /// This intrinsic corresponds to the <c> VBLENDVPD </c> instruction.
1408 ///
1409 /// \param __a
1410 ///    A 256-bit vector of [4 x double].
1411 /// \param __b
1412 ///    A 256-bit vector of [4 x double].
1413 /// \param __c
1414 ///    A 256-bit vector operand, with mask bits 255, 191, 127, and 63 specifying
1415 ///    how the values are to be copied. The position of the mask bit corresponds
1416 ///    to the most significant bit of a copied value. When a mask bit is 0, the
1417 ///    corresponding 64-bit element in operand \a __a is copied to the same
1418 ///    position in the destination. When a mask bit is 1, the corresponding
1419 ///    64-bit element in operand \a __b is copied to the same position in the
1420 ///    destination.
1421 /// \returns A 256-bit vector of [4 x double] containing the copied values.
1422 static __inline __m256d __DEFAULT_FN_ATTRS
1423 _mm256_blendv_pd(__m256d __a, __m256d __b, __m256d __c)
1424 {
1425   return (__m256d)__builtin_ia32_blendvpd256(
1426     (__v4df)__a, (__v4df)__b, (__v4df)__c);
1427 }
1428 
1429 /// Merges 32-bit single-precision data values stored in either of the
1430 ///    two 256-bit vectors of [8 x float], as specified by the 256-bit vector
1431 ///    operand.
1432 ///
1433 /// \headerfile <x86intrin.h>
1434 ///
1435 /// This intrinsic corresponds to the <c> VBLENDVPS </c> instruction.
1436 ///
1437 /// \param __a
1438 ///    A 256-bit vector of [8 x float].
1439 /// \param __b
1440 ///    A 256-bit vector of [8 x float].
1441 /// \param __c
1442 ///    A 256-bit vector operand, with mask bits 255, 223, 191, 159, 127, 95, 63,
1443 ///    and 31 specifying how the values are to be copied. The position of the
1444 ///    mask bit corresponds to the most significant bit of a copied value. When
1445 ///    a mask bit is 0, the corresponding 32-bit element in operand \a __a is
1446 ///    copied to the same position in the destination. When a mask bit is 1, the
1447 ///    corresponding 32-bit element in operand \a __b is copied to the same
1448 ///    position in the destination.
1449 /// \returns A 256-bit vector of [8 x float] containing the copied values.
1450 static __inline __m256 __DEFAULT_FN_ATTRS
1451 _mm256_blendv_ps(__m256 __a, __m256 __b, __m256 __c)
1452 {
1453   return (__m256)__builtin_ia32_blendvps256(
1454     (__v8sf)__a, (__v8sf)__b, (__v8sf)__c);
1455 }
1456 
1457 /* Vector Dot Product */
1458 /// Computes two dot products in parallel, using the lower and upper
1459 ///    halves of two [8 x float] vectors as input to the two computations, and
1460 ///    returning the two dot products in the lower and upper halves of the
1461 ///    [8 x float] result.
1462 ///
1463 ///    The immediate integer operand controls which input elements will
1464 ///    contribute to the dot product, and where the final results are returned.
1465 ///    In general, for each dot product, the four corresponding elements of the
1466 ///    input vectors are multiplied; the first two and second two products are
1467 ///    summed, then the two sums are added to form the final result.
1468 ///
1469 /// \headerfile <x86intrin.h>
1470 ///
1471 /// \code
1472 /// __m256 _mm256_dp_ps(__m256 V1, __m256 V2, const int M);
1473 /// \endcode
1474 ///
1475 /// This intrinsic corresponds to the <c> VDPPS </c> instruction.
1476 ///
1477 /// \param V1
1478 ///    A vector of [8 x float] values, treated as two [4 x float] vectors.
1479 /// \param V2
1480 ///    A vector of [8 x float] values, treated as two [4 x float] vectors.
1481 /// \param M
1482 ///    An immediate integer argument. Bits [7:4] determine which elements of
1483 ///    the input vectors are used, with bit [4] corresponding to the lowest
1484 ///    element and bit [7] corresponding to the highest element of each [4 x
1485 ///    float] subvector. If a bit is set, the corresponding elements from the
1486 ///    two input vectors are used as an input for dot product; otherwise that
1487 ///    input is treated as zero. Bits [3:0] determine which elements of the
1488 ///    result will receive a copy of the final dot product, with bit [0]
1489 ///    corresponding to the lowest element and bit [3] corresponding to the
1490 ///    highest element of each [4 x float] subvector. If a bit is set, the dot
1491 ///    product is returned in the corresponding element; otherwise that element
1492 ///    is set to zero. The bitmask is applied in the same way to each of the
1493 ///    two parallel dot product computations.
1494 /// \returns A 256-bit vector of [8 x float] containing the two dot products.
1495 #define _mm256_dp_ps(V1, V2, M) \
1496   ((__m256)__builtin_ia32_dpps256((__v8sf)(__m256)(V1), \
1497                                   (__v8sf)(__m256)(V2), (M)))
1498 
1499 /* Vector shuffle */
1500 /// Selects 8 float values from the 256-bit operands of [8 x float], as
1501 ///    specified by the immediate value operand.
1502 ///
1503 ///    The four selected elements in each operand are copied to the destination
1504 ///    according to the bits specified in the immediate operand. The selected
1505 ///    elements from the first 256-bit operand are copied to bits [63:0] and
1506 ///    bits [191:128] of the destination, and the selected elements from the
1507 ///    second 256-bit operand are copied to bits [127:64] and bits [255:192] of
1508 ///    the destination. For example, if bits [7:0] of the immediate operand
1509 ///    contain a value of 0xFF, the 256-bit destination vector would contain the
1510 ///    following values: b[7], b[7], a[7], a[7], b[3], b[3], a[3], a[3].
1511 ///
1512 /// \headerfile <x86intrin.h>
1513 ///
1514 /// \code
1515 /// __m256 _mm256_shuffle_ps(__m256 a, __m256 b, const int mask);
1516 /// \endcode
1517 ///
1518 /// This intrinsic corresponds to the <c> VSHUFPS </c> instruction.
1519 ///
1520 /// \param a
1521 ///    A 256-bit vector of [8 x float]. The four selected elements in this
1522 ///    operand are copied to bits [63:0] and bits [191:128] in the destination,
1523 ///    according to the bits specified in the immediate operand.
1524 /// \param b
1525 ///    A 256-bit vector of [8 x float]. The four selected elements in this
1526 ///    operand are copied to bits [127:64] and bits [255:192] in the
1527 ///    destination, according to the bits specified in the immediate operand.
1528 /// \param mask
1529 ///    An immediate value containing an 8-bit value specifying which elements to
1530 ///    copy from \a a and \a b \n.
1531 ///    Bits [3:0] specify the values copied from operand \a a. \n
1532 ///    Bits [7:4] specify the values copied from operand \a b. \n
1533 ///    The destinations within the 256-bit destination are assigned values as
1534 ///    follows, according to the bit value assignments described below: \n
1535 ///    Bits [1:0] are used to assign values to bits [31:0] and [159:128] in the
1536 ///    destination. \n
1537 ///    Bits [3:2] are used to assign values to bits [63:32] and [191:160] in the
1538 ///    destination. \n
1539 ///    Bits [5:4] are used to assign values to bits [95:64] and [223:192] in the
1540 ///    destination. \n
1541 ///    Bits [7:6] are used to assign values to bits [127:96] and [255:224] in
1542 ///    the destination. \n
1543 ///    Bit value assignments: \n
1544 ///    00: Bits [31:0] and [159:128] are copied from the selected operand. \n
1545 ///    01: Bits [63:32] and [191:160] are copied from the selected operand. \n
1546 ///    10: Bits [95:64] and [223:192] are copied from the selected operand. \n
1547 ///    11: Bits [127:96] and [255:224] are copied from the selected operand. \n
1548 ///    Note: To generate a mask, you can use the \c _MM_SHUFFLE macro.
1549 ///    <c>_MM_SHUFFLE(b6, b4, b2, b0)</c> can create an 8-bit mask of the form
1550 ///    <c>[b6, b4, b2, b0]</c>.
1551 /// \returns A 256-bit vector of [8 x float] containing the shuffled values.
1552 #define _mm256_shuffle_ps(a, b, mask) \
1553   ((__m256)__builtin_ia32_shufps256((__v8sf)(__m256)(a), \
1554                                     (__v8sf)(__m256)(b), (int)(mask)))
1555 
1556 /// Selects four double-precision values from the 256-bit operands of
1557 ///    [4 x double], as specified by the immediate value operand.
1558 ///
1559 ///    The selected elements from the first 256-bit operand are copied to bits
1560 ///    [63:0] and bits [191:128] in the destination, and the selected elements
1561 ///    from the second 256-bit operand are copied to bits [127:64] and bits
1562 ///    [255:192] in the destination. For example, if bits [3:0] of the immediate
1563 ///    operand contain a value of 0xF, the 256-bit destination vector would
1564 ///    contain the following values: b[3], a[3], b[1], a[1].
1565 ///
1566 /// \headerfile <x86intrin.h>
1567 ///
1568 /// \code
1569 /// __m256d _mm256_shuffle_pd(__m256d a, __m256d b, const int mask);
1570 /// \endcode
1571 ///
1572 /// This intrinsic corresponds to the <c> VSHUFPD </c> instruction.
1573 ///
1574 /// \param a
1575 ///    A 256-bit vector of [4 x double].
1576 /// \param b
1577 ///    A 256-bit vector of [4 x double].
1578 /// \param mask
1579 ///    An immediate value containing 8-bit values specifying which elements to
1580 ///    copy from \a a and \a b: \n
1581 ///    Bit [0]=0: Bits [63:0] are copied from \a a to bits [63:0] of the
1582 ///    destination. \n
1583 ///    Bit [0]=1: Bits [127:64] are copied from \a a to bits [63:0] of the
1584 ///    destination. \n
1585 ///    Bit [1]=0: Bits [63:0] are copied from \a b to bits [127:64] of the
1586 ///    destination. \n
1587 ///    Bit [1]=1: Bits [127:64] are copied from \a b to bits [127:64] of the
1588 ///    destination. \n
1589 ///    Bit [2]=0: Bits [191:128] are copied from \a a to bits [191:128] of the
1590 ///    destination. \n
1591 ///    Bit [2]=1: Bits [255:192] are copied from \a a to bits [191:128] of the
1592 ///    destination. \n
1593 ///    Bit [3]=0: Bits [191:128] are copied from \a b to bits [255:192] of the
1594 ///    destination. \n
1595 ///    Bit [3]=1: Bits [255:192] are copied from \a b to bits [255:192] of the
1596 ///    destination.
1597 /// \returns A 256-bit vector of [4 x double] containing the shuffled values.
1598 #define _mm256_shuffle_pd(a, b, mask) \
1599   ((__m256d)__builtin_ia32_shufpd256((__v4df)(__m256d)(a), \
1600                                      (__v4df)(__m256d)(b), (int)(mask)))
1601 
1602 /* Compare */
1603 #define _CMP_EQ_UQ    0x08 /* Equal (unordered, non-signaling)  */
1604 #define _CMP_NGE_US   0x09 /* Not-greater-than-or-equal (unordered, signaling)  */
1605 #define _CMP_NGT_US   0x0a /* Not-greater-than (unordered, signaling)  */
1606 #define _CMP_FALSE_OQ 0x0b /* False (ordered, non-signaling)  */
1607 #define _CMP_NEQ_OQ   0x0c /* Not-equal (ordered, non-signaling)  */
1608 #define _CMP_GE_OS    0x0d /* Greater-than-or-equal (ordered, signaling)  */
1609 #define _CMP_GT_OS    0x0e /* Greater-than (ordered, signaling)  */
1610 #define _CMP_TRUE_UQ  0x0f /* True (unordered, non-signaling)  */
1611 #define _CMP_EQ_OS    0x10 /* Equal (ordered, signaling)  */
1612 #define _CMP_LT_OQ    0x11 /* Less-than (ordered, non-signaling)  */
1613 #define _CMP_LE_OQ    0x12 /* Less-than-or-equal (ordered, non-signaling)  */
1614 #define _CMP_UNORD_S  0x13 /* Unordered (signaling)  */
1615 #define _CMP_NEQ_US   0x14 /* Not-equal (unordered, signaling)  */
1616 #define _CMP_NLT_UQ   0x15 /* Not-less-than (unordered, non-signaling)  */
1617 #define _CMP_NLE_UQ   0x16 /* Not-less-than-or-equal (unordered, non-signaling)  */
1618 #define _CMP_ORD_S    0x17 /* Ordered (signaling)  */
1619 #define _CMP_EQ_US    0x18 /* Equal (unordered, signaling)  */
1620 #define _CMP_NGE_UQ   0x19 /* Not-greater-than-or-equal (unordered, non-signaling)  */
1621 #define _CMP_NGT_UQ   0x1a /* Not-greater-than (unordered, non-signaling)  */
1622 #define _CMP_FALSE_OS 0x1b /* False (ordered, signaling)  */
1623 #define _CMP_NEQ_OS   0x1c /* Not-equal (ordered, signaling)  */
1624 #define _CMP_GE_OQ    0x1d /* Greater-than-or-equal (ordered, non-signaling)  */
1625 #define _CMP_GT_OQ    0x1e /* Greater-than (ordered, non-signaling)  */
1626 #define _CMP_TRUE_US  0x1f /* True (unordered, signaling)  */
1627 
1628 /* Below intrinsic defined in emmintrin.h can be used for AVX */
1629 /// Compares each of the corresponding double-precision values of two
1630 ///    128-bit vectors of [2 x double], using the operation specified by the
1631 ///    immediate integer operand.
1632 ///
1633 ///    Each comparison returns 0x0 for false, 0xFFFFFFFFFFFFFFFF for true.
1634 ///    If either value in a comparison is NaN, comparisons that are ordered
1635 ///    return false, and comparisons that are unordered return true.
1636 ///
1637 /// \headerfile <x86intrin.h>
1638 ///
1639 /// \code
1640 /// __m128d _mm_cmp_pd(__m128d a, __m128d b, const int c);
1641 /// \endcode
1642 ///
1643 /// This intrinsic corresponds to the <c> VCMPPD </c> instruction.
1644 ///
1645 /// \param a
1646 ///    A 128-bit vector of [2 x double].
1647 /// \param b
1648 ///    A 128-bit vector of [2 x double].
1649 /// \param c
1650 ///    An immediate integer operand, with bits [4:0] specifying which comparison
1651 ///    operation to use: \n
1652 ///    0x00: Equal (ordered, non-signaling) \n
1653 ///    0x01: Less-than (ordered, signaling) \n
1654 ///    0x02: Less-than-or-equal (ordered, signaling) \n
1655 ///    0x03: Unordered (non-signaling) \n
1656 ///    0x04: Not-equal (unordered, non-signaling) \n
1657 ///    0x05: Not-less-than (unordered, signaling) \n
1658 ///    0x06: Not-less-than-or-equal (unordered, signaling) \n
1659 ///    0x07: Ordered (non-signaling) \n
1660 ///    0x08: Equal (unordered, non-signaling) \n
1661 ///    0x09: Not-greater-than-or-equal (unordered, signaling) \n
1662 ///    0x0A: Not-greater-than (unordered, signaling) \n
1663 ///    0x0B: False (ordered, non-signaling) \n
1664 ///    0x0C: Not-equal (ordered, non-signaling) \n
1665 ///    0x0D: Greater-than-or-equal (ordered, signaling) \n
1666 ///    0x0E: Greater-than (ordered, signaling) \n
1667 ///    0x0F: True (unordered, non-signaling) \n
1668 ///    0x10: Equal (ordered, signaling) \n
1669 ///    0x11: Less-than (ordered, non-signaling) \n
1670 ///    0x12: Less-than-or-equal (ordered, non-signaling) \n
1671 ///    0x13: Unordered (signaling) \n
1672 ///    0x14: Not-equal (unordered, signaling) \n
1673 ///    0x15: Not-less-than (unordered, non-signaling) \n
1674 ///    0x16: Not-less-than-or-equal (unordered, non-signaling) \n
1675 ///    0x17: Ordered (signaling) \n
1676 ///    0x18: Equal (unordered, signaling) \n
1677 ///    0x19: Not-greater-than-or-equal (unordered, non-signaling) \n
1678 ///    0x1A: Not-greater-than (unordered, non-signaling) \n
1679 ///    0x1B: False (ordered, signaling) \n
1680 ///    0x1C: Not-equal (ordered, signaling) \n
1681 ///    0x1D: Greater-than-or-equal (ordered, non-signaling) \n
1682 ///    0x1E: Greater-than (ordered, non-signaling) \n
1683 ///    0x1F: True (unordered, signaling)
1684 /// \returns A 128-bit vector of [2 x double] containing the comparison results.
1685 /// \fn __m128d _mm_cmp_pd(__m128d a, __m128d b, const int c)
1686 
1687 /* Below intrinsic defined in xmmintrin.h can be used for AVX */
1688 /// Compares each of the corresponding values of two 128-bit vectors of
1689 ///    [4 x float], using the operation specified by the immediate integer
1690 ///    operand.
1691 ///
1692 ///    Each comparison returns 0x0 for false, 0xFFFFFFFF for true.
1693 ///    If either value in a comparison is NaN, comparisons that are ordered
1694 ///    return false, and comparisons that are unordered return true.
1695 ///
1696 /// \headerfile <x86intrin.h>
1697 ///
1698 /// \code
1699 /// __m128 _mm_cmp_ps(__m128 a, __m128 b, const int c);
1700 /// \endcode
1701 ///
1702 /// This intrinsic corresponds to the <c> VCMPPS </c> instruction.
1703 ///
1704 /// \param a
1705 ///    A 128-bit vector of [4 x float].
1706 /// \param b
1707 ///    A 128-bit vector of [4 x float].
1708 /// \param c
1709 ///    An immediate integer operand, with bits [4:0] specifying which comparison
1710 ///    operation to use: \n
1711 ///    0x00: Equal (ordered, non-signaling) \n
1712 ///    0x01: Less-than (ordered, signaling) \n
1713 ///    0x02: Less-than-or-equal (ordered, signaling) \n
1714 ///    0x03: Unordered (non-signaling) \n
1715 ///    0x04: Not-equal (unordered, non-signaling) \n
1716 ///    0x05: Not-less-than (unordered, signaling) \n
1717 ///    0x06: Not-less-than-or-equal (unordered, signaling) \n
1718 ///    0x07: Ordered (non-signaling) \n
1719 ///    0x08: Equal (unordered, non-signaling) \n
1720 ///    0x09: Not-greater-than-or-equal (unordered, signaling) \n
1721 ///    0x0A: Not-greater-than (unordered, signaling) \n
1722 ///    0x0B: False (ordered, non-signaling) \n
1723 ///    0x0C: Not-equal (ordered, non-signaling) \n
1724 ///    0x0D: Greater-than-or-equal (ordered, signaling) \n
1725 ///    0x0E: Greater-than (ordered, signaling) \n
1726 ///    0x0F: True (unordered, non-signaling) \n
1727 ///    0x10: Equal (ordered, signaling) \n
1728 ///    0x11: Less-than (ordered, non-signaling) \n
1729 ///    0x12: Less-than-or-equal (ordered, non-signaling) \n
1730 ///    0x13: Unordered (signaling) \n
1731 ///    0x14: Not-equal (unordered, signaling) \n
1732 ///    0x15: Not-less-than (unordered, non-signaling) \n
1733 ///    0x16: Not-less-than-or-equal (unordered, non-signaling) \n
1734 ///    0x17: Ordered (signaling) \n
1735 ///    0x18: Equal (unordered, signaling) \n
1736 ///    0x19: Not-greater-than-or-equal (unordered, non-signaling) \n
1737 ///    0x1A: Not-greater-than (unordered, non-signaling) \n
1738 ///    0x1B: False (ordered, signaling) \n
1739 ///    0x1C: Not-equal (ordered, signaling) \n
1740 ///    0x1D: Greater-than-or-equal (ordered, non-signaling) \n
1741 ///    0x1E: Greater-than (ordered, non-signaling) \n
1742 ///    0x1F: True (unordered, signaling)
1743 /// \returns A 128-bit vector of [4 x float] containing the comparison results.
1744 /// \fn __m128 _mm_cmp_ps(__m128 a, __m128 b, const int c)
1745 
1746 /// Compares each of the corresponding double-precision values of two
1747 ///    256-bit vectors of [4 x double], using the operation specified by the
1748 ///    immediate integer operand.
1749 ///
1750 ///    Each comparison returns 0x0 for false, 0xFFFFFFFFFFFFFFFF for true.
1751 ///    If either value in a comparison is NaN, comparisons that are ordered
1752 ///    return false, and comparisons that are unordered return true.
1753 ///
1754 /// \headerfile <x86intrin.h>
1755 ///
1756 /// \code
1757 /// __m256d _mm256_cmp_pd(__m256d a, __m256d b, const int c);
1758 /// \endcode
1759 ///
1760 /// This intrinsic corresponds to the <c> VCMPPD </c> instruction.
1761 ///
1762 /// \param a
1763 ///    A 256-bit vector of [4 x double].
1764 /// \param b
1765 ///    A 256-bit vector of [4 x double].
1766 /// \param c
1767 ///    An immediate integer operand, with bits [4:0] specifying which comparison
1768 ///    operation to use: \n
1769 ///    0x00: Equal (ordered, non-signaling) \n
1770 ///    0x01: Less-than (ordered, signaling) \n
1771 ///    0x02: Less-than-or-equal (ordered, signaling) \n
1772 ///    0x03: Unordered (non-signaling) \n
1773 ///    0x04: Not-equal (unordered, non-signaling) \n
1774 ///    0x05: Not-less-than (unordered, signaling) \n
1775 ///    0x06: Not-less-than-or-equal (unordered, signaling) \n
1776 ///    0x07: Ordered (non-signaling) \n
1777 ///    0x08: Equal (unordered, non-signaling) \n
1778 ///    0x09: Not-greater-than-or-equal (unordered, signaling) \n
1779 ///    0x0A: Not-greater-than (unordered, signaling) \n
1780 ///    0x0B: False (ordered, non-signaling) \n
1781 ///    0x0C: Not-equal (ordered, non-signaling) \n
1782 ///    0x0D: Greater-than-or-equal (ordered, signaling) \n
1783 ///    0x0E: Greater-than (ordered, signaling) \n
1784 ///    0x0F: True (unordered, non-signaling) \n
1785 ///    0x10: Equal (ordered, signaling) \n
1786 ///    0x11: Less-than (ordered, non-signaling) \n
1787 ///    0x12: Less-than-or-equal (ordered, non-signaling) \n
1788 ///    0x13: Unordered (signaling) \n
1789 ///    0x14: Not-equal (unordered, signaling) \n
1790 ///    0x15: Not-less-than (unordered, non-signaling) \n
1791 ///    0x16: Not-less-than-or-equal (unordered, non-signaling) \n
1792 ///    0x17: Ordered (signaling) \n
1793 ///    0x18: Equal (unordered, signaling) \n
1794 ///    0x19: Not-greater-than-or-equal (unordered, non-signaling) \n
1795 ///    0x1A: Not-greater-than (unordered, non-signaling) \n
1796 ///    0x1B: False (ordered, signaling) \n
1797 ///    0x1C: Not-equal (ordered, signaling) \n
1798 ///    0x1D: Greater-than-or-equal (ordered, non-signaling) \n
1799 ///    0x1E: Greater-than (ordered, non-signaling) \n
1800 ///    0x1F: True (unordered, signaling)
1801 /// \returns A 256-bit vector of [4 x double] containing the comparison results.
1802 #define _mm256_cmp_pd(a, b, c) \
1803   ((__m256d)__builtin_ia32_cmppd256((__v4df)(__m256d)(a), \
1804                                     (__v4df)(__m256d)(b), (c)))
1805 
1806 /// Compares each of the corresponding values of two 256-bit vectors of
1807 ///    [8 x float], using the operation specified by the immediate integer
1808 ///    operand.
1809 ///
1810 ///    Each comparison returns 0x0 for false, 0xFFFFFFFF for true.
1811 ///    If either value in a comparison is NaN, comparisons that are ordered
1812 ///    return false, and comparisons that are unordered return true.
1813 ///
1814 /// \headerfile <x86intrin.h>
1815 ///
1816 /// \code
1817 /// __m256 _mm256_cmp_ps(__m256 a, __m256 b, const int c);
1818 /// \endcode
1819 ///
1820 /// This intrinsic corresponds to the <c> VCMPPS </c> instruction.
1821 ///
1822 /// \param a
1823 ///    A 256-bit vector of [8 x float].
1824 /// \param b
1825 ///    A 256-bit vector of [8 x float].
1826 /// \param c
1827 ///    An immediate integer operand, with bits [4:0] specifying which comparison
1828 ///    operation to use: \n
1829 ///    0x00: Equal (ordered, non-signaling) \n
1830 ///    0x01: Less-than (ordered, signaling) \n
1831 ///    0x02: Less-than-or-equal (ordered, signaling) \n
1832 ///    0x03: Unordered (non-signaling) \n
1833 ///    0x04: Not-equal (unordered, non-signaling) \n
1834 ///    0x05: Not-less-than (unordered, signaling) \n
1835 ///    0x06: Not-less-than-or-equal (unordered, signaling) \n
1836 ///    0x07: Ordered (non-signaling) \n
1837 ///    0x08: Equal (unordered, non-signaling) \n
1838 ///    0x09: Not-greater-than-or-equal (unordered, signaling) \n
1839 ///    0x0A: Not-greater-than (unordered, signaling) \n
1840 ///    0x0B: False (ordered, non-signaling) \n
1841 ///    0x0C: Not-equal (ordered, non-signaling) \n
1842 ///    0x0D: Greater-than-or-equal (ordered, signaling) \n
1843 ///    0x0E: Greater-than (ordered, signaling) \n
1844 ///    0x0F: True (unordered, non-signaling) \n
1845 ///    0x10: Equal (ordered, signaling) \n
1846 ///    0x11: Less-than (ordered, non-signaling) \n
1847 ///    0x12: Less-than-or-equal (ordered, non-signaling) \n
1848 ///    0x13: Unordered (signaling) \n
1849 ///    0x14: Not-equal (unordered, signaling) \n
1850 ///    0x15: Not-less-than (unordered, non-signaling) \n
1851 ///    0x16: Not-less-than-or-equal (unordered, non-signaling) \n
1852 ///    0x17: Ordered (signaling) \n
1853 ///    0x18: Equal (unordered, signaling) \n
1854 ///    0x19: Not-greater-than-or-equal (unordered, non-signaling) \n
1855 ///    0x1A: Not-greater-than (unordered, non-signaling) \n
1856 ///    0x1B: False (ordered, signaling) \n
1857 ///    0x1C: Not-equal (ordered, signaling) \n
1858 ///    0x1D: Greater-than-or-equal (ordered, non-signaling) \n
1859 ///    0x1E: Greater-than (ordered, non-signaling) \n
1860 ///    0x1F: True (unordered, signaling)
1861 /// \returns A 256-bit vector of [8 x float] containing the comparison results.
1862 #define _mm256_cmp_ps(a, b, c) \
1863   ((__m256)__builtin_ia32_cmpps256((__v8sf)(__m256)(a), \
1864                                    (__v8sf)(__m256)(b), (c)))
1865 
1866 /* Below intrinsic defined in emmintrin.h can be used for AVX */
1867 /// Compares each of the corresponding scalar double-precision values of
1868 ///    two 128-bit vectors of [2 x double], using the operation specified by the
1869 ///    immediate integer operand.
1870 ///
1871 ///    Each comparison returns 0x0 for false, 0xFFFFFFFFFFFFFFFF for true.
1872 ///    If either value in a comparison is NaN, comparisons that are ordered
1873 ///    return false, and comparisons that are unordered return true.
1874 ///
1875 /// \headerfile <x86intrin.h>
1876 ///
1877 /// \code
1878 /// __m128d _mm_cmp_sd(__m128d a, __m128d b, const int c);
1879 /// \endcode
1880 ///
1881 /// This intrinsic corresponds to the <c> VCMPSD </c> instruction.
1882 ///
1883 /// \param a
1884 ///    A 128-bit vector of [2 x double].
1885 /// \param b
1886 ///    A 128-bit vector of [2 x double].
1887 /// \param c
1888 ///    An immediate integer operand, with bits [4:0] specifying which comparison
1889 ///    operation to use: \n
1890 ///    0x00: Equal (ordered, non-signaling) \n
1891 ///    0x01: Less-than (ordered, signaling) \n
1892 ///    0x02: Less-than-or-equal (ordered, signaling) \n
1893 ///    0x03: Unordered (non-signaling) \n
1894 ///    0x04: Not-equal (unordered, non-signaling) \n
1895 ///    0x05: Not-less-than (unordered, signaling) \n
1896 ///    0x06: Not-less-than-or-equal (unordered, signaling) \n
1897 ///    0x07: Ordered (non-signaling) \n
1898 ///    0x08: Equal (unordered, non-signaling) \n
1899 ///    0x09: Not-greater-than-or-equal (unordered, signaling) \n
1900 ///    0x0A: Not-greater-than (unordered, signaling) \n
1901 ///    0x0B: False (ordered, non-signaling) \n
1902 ///    0x0C: Not-equal (ordered, non-signaling) \n
1903 ///    0x0D: Greater-than-or-equal (ordered, signaling) \n
1904 ///    0x0E: Greater-than (ordered, signaling) \n
1905 ///    0x0F: True (unordered, non-signaling) \n
1906 ///    0x10: Equal (ordered, signaling) \n
1907 ///    0x11: Less-than (ordered, non-signaling) \n
1908 ///    0x12: Less-than-or-equal (ordered, non-signaling) \n
1909 ///    0x13: Unordered (signaling) \n
1910 ///    0x14: Not-equal (unordered, signaling) \n
1911 ///    0x15: Not-less-than (unordered, non-signaling) \n
1912 ///    0x16: Not-less-than-or-equal (unordered, non-signaling) \n
1913 ///    0x17: Ordered (signaling) \n
1914 ///    0x18: Equal (unordered, signaling) \n
1915 ///    0x19: Not-greater-than-or-equal (unordered, non-signaling) \n
1916 ///    0x1A: Not-greater-than (unordered, non-signaling) \n
1917 ///    0x1B: False (ordered, signaling) \n
1918 ///    0x1C: Not-equal (ordered, signaling) \n
1919 ///    0x1D: Greater-than-or-equal (ordered, non-signaling) \n
1920 ///    0x1E: Greater-than (ordered, non-signaling) \n
1921 ///    0x1F: True (unordered, signaling)
1922 /// \returns A 128-bit vector of [2 x double] containing the comparison results.
1923 /// \fn __m128d _mm_cmp_sd(__m128d a, __m128d b, const int c)
1924 
1925 /* Below intrinsic defined in xmmintrin.h can be used for AVX */
1926 /// Compares each of the corresponding scalar values of two 128-bit
1927 ///    vectors of [4 x float], using the operation specified by the immediate
1928 ///    integer operand.
1929 ///
1930 ///    Each comparison returns 0x0 for false, 0xFFFFFFFF for true.
1931 ///    If either value in a comparison is NaN, comparisons that are ordered
1932 ///    return false, and comparisons that are unordered return true.
1933 ///
1934 /// \headerfile <x86intrin.h>
1935 ///
1936 /// \code
1937 /// __m128 _mm_cmp_ss(__m128 a, __m128 b, const int c);
1938 /// \endcode
1939 ///
1940 /// This intrinsic corresponds to the <c> VCMPSS </c> instruction.
1941 ///
1942 /// \param a
1943 ///    A 128-bit vector of [4 x float].
1944 /// \param b
1945 ///    A 128-bit vector of [4 x float].
1946 /// \param c
1947 ///    An immediate integer operand, with bits [4:0] specifying which comparison
1948 ///    operation to use: \n
1949 ///    0x00: Equal (ordered, non-signaling) \n
1950 ///    0x01: Less-than (ordered, signaling) \n
1951 ///    0x02: Less-than-or-equal (ordered, signaling) \n
1952 ///    0x03: Unordered (non-signaling) \n
1953 ///    0x04: Not-equal (unordered, non-signaling) \n
1954 ///    0x05: Not-less-than (unordered, signaling) \n
1955 ///    0x06: Not-less-than-or-equal (unordered, signaling) \n
1956 ///    0x07: Ordered (non-signaling) \n
1957 ///    0x08: Equal (unordered, non-signaling) \n
1958 ///    0x09: Not-greater-than-or-equal (unordered, signaling) \n
1959 ///    0x0A: Not-greater-than (unordered, signaling) \n
1960 ///    0x0B: False (ordered, non-signaling) \n
1961 ///    0x0C: Not-equal (ordered, non-signaling) \n
1962 ///    0x0D: Greater-than-or-equal (ordered, signaling) \n
1963 ///    0x0E: Greater-than (ordered, signaling) \n
1964 ///    0x0F: True (unordered, non-signaling) \n
1965 ///    0x10: Equal (ordered, signaling) \n
1966 ///    0x11: Less-than (ordered, non-signaling) \n
1967 ///    0x12: Less-than-or-equal (ordered, non-signaling) \n
1968 ///    0x13: Unordered (signaling) \n
1969 ///    0x14: Not-equal (unordered, signaling) \n
1970 ///    0x15: Not-less-than (unordered, non-signaling) \n
1971 ///    0x16: Not-less-than-or-equal (unordered, non-signaling) \n
1972 ///    0x17: Ordered (signaling) \n
1973 ///    0x18: Equal (unordered, signaling) \n
1974 ///    0x19: Not-greater-than-or-equal (unordered, non-signaling) \n
1975 ///    0x1A: Not-greater-than (unordered, non-signaling) \n
1976 ///    0x1B: False (ordered, signaling) \n
1977 ///    0x1C: Not-equal (ordered, signaling) \n
1978 ///    0x1D: Greater-than-or-equal (ordered, non-signaling) \n
1979 ///    0x1E: Greater-than (ordered, non-signaling) \n
1980 ///    0x1F: True (unordered, signaling)
1981 /// \returns A 128-bit vector of [4 x float] containing the comparison results.
1982 /// \fn __m128 _mm_cmp_ss(__m128 a, __m128 b, const int c)
1983 
1984 /// Takes a [8 x i32] vector and returns the vector element value
1985 ///    indexed by the immediate constant operand.
1986 ///
1987 /// \headerfile <x86intrin.h>
1988 ///
1989 /// \code
1990 /// int _mm256_extract_epi32(__m256i X, const int N);
1991 /// \endcode
1992 ///
1993 /// This intrinsic corresponds to the <c> VEXTRACTF128+COMPOSITE </c>
1994 ///   instruction.
1995 ///
1996 /// \param X
1997 ///    A 256-bit vector of [8 x i32].
1998 /// \param N
1999 ///    An immediate integer operand with bits [2:0] determining which vector
2000 ///    element is extracted and returned.
2001 /// \returns A 32-bit integer containing the extracted 32 bits of extended
2002 ///    packed data.
2003 #define _mm256_extract_epi32(X, N) \
2004   ((int)__builtin_ia32_vec_ext_v8si((__v8si)(__m256i)(X), (int)(N)))
2005 
2006 /// Takes a [16 x i16] vector and returns the vector element value
2007 ///    indexed by the immediate constant operand.
2008 ///
2009 /// \headerfile <x86intrin.h>
2010 ///
2011 /// \code
2012 /// int _mm256_extract_epi16(__m256i X, const int N);
2013 /// \endcode
2014 ///
2015 /// This intrinsic corresponds to the <c> VEXTRACTF128+COMPOSITE </c>
2016 ///   instruction.
2017 ///
2018 /// \param X
2019 ///    A 256-bit integer vector of [16 x i16].
2020 /// \param N
2021 ///    An immediate integer operand with bits [3:0] determining which vector
2022 ///    element is extracted and returned.
2023 /// \returns A 32-bit integer containing the extracted 16 bits of zero extended
2024 ///    packed data.
2025 #define _mm256_extract_epi16(X, N) \
2026   ((int)(unsigned short)__builtin_ia32_vec_ext_v16hi((__v16hi)(__m256i)(X), \
2027                                                      (int)(N)))
2028 
2029 /// Takes a [32 x i8] vector and returns the vector element value
2030 ///    indexed by the immediate constant operand.
2031 ///
2032 /// \headerfile <x86intrin.h>
2033 ///
2034 /// \code
2035 /// int _mm256_extract_epi8(__m256i X, const int N);
2036 /// \endcode
2037 ///
2038 /// This intrinsic corresponds to the <c> VEXTRACTF128+COMPOSITE </c>
2039 ///   instruction.
2040 ///
2041 /// \param X
2042 ///    A 256-bit integer vector of [32 x i8].
2043 /// \param N
2044 ///    An immediate integer operand with bits [4:0] determining which vector
2045 ///    element is extracted and returned.
2046 /// \returns A 32-bit integer containing the extracted 8 bits of zero extended
2047 ///    packed data.
2048 #define _mm256_extract_epi8(X, N) \
2049   ((int)(unsigned char)__builtin_ia32_vec_ext_v32qi((__v32qi)(__m256i)(X), \
2050                                                     (int)(N)))
2051 
2052 #ifdef __x86_64__
2053 /// Takes a [4 x i64] vector and returns the vector element value
2054 ///    indexed by the immediate constant operand.
2055 ///
2056 /// \headerfile <x86intrin.h>
2057 ///
2058 /// \code
2059 /// long long _mm256_extract_epi64(__m256i X, const int N);
2060 /// \endcode
2061 ///
2062 /// This intrinsic corresponds to the <c> VEXTRACTF128+COMPOSITE </c>
2063 ///   instruction.
2064 ///
2065 /// \param X
2066 ///    A 256-bit integer vector of [4 x i64].
2067 /// \param N
2068 ///    An immediate integer operand with bits [1:0] determining which vector
2069 ///    element is extracted and returned.
2070 /// \returns A 64-bit integer containing the extracted 64 bits of extended
2071 ///    packed data.
2072 #define _mm256_extract_epi64(X, N) \
2073   ((long long)__builtin_ia32_vec_ext_v4di((__v4di)(__m256i)(X), (int)(N)))
2074 #endif
2075 
2076 /// Takes a [8 x i32] vector and replaces the vector element value
2077 ///    indexed by the immediate constant operand by a new value. Returns the
2078 ///    modified vector.
2079 ///
2080 /// \headerfile <x86intrin.h>
2081 ///
2082 /// \code
2083 /// __m256i _mm256_insert_epi32(__m256i X, int I, const int N);
2084 /// \endcode
2085 ///
2086 /// This intrinsic corresponds to the <c> VINSERTF128+COMPOSITE </c>
2087 ///   instruction.
2088 ///
2089 /// \param X
2090 ///    A vector of [8 x i32] to be used by the insert operation.
2091 /// \param I
2092 ///    An integer value. The replacement value for the insert operation.
2093 /// \param N
2094 ///    An immediate integer specifying the index of the vector element to be
2095 ///    replaced.
2096 /// \returns A copy of vector \a X, after replacing its element indexed by
2097 ///    \a N with \a I.
2098 #define _mm256_insert_epi32(X, I, N) \
2099   ((__m256i)__builtin_ia32_vec_set_v8si((__v8si)(__m256i)(X), \
2100                                         (int)(I), (int)(N)))
2101 
2102 
2103 /// Takes a [16 x i16] vector and replaces the vector element value
2104 ///    indexed by the immediate constant operand with a new value. Returns the
2105 ///    modified vector.
2106 ///
2107 /// \headerfile <x86intrin.h>
2108 ///
2109 /// \code
2110 /// __m256i _mm256_insert_epi16(__m256i X, int I, const int N);
2111 /// \endcode
2112 ///
2113 /// This intrinsic corresponds to the <c> VINSERTF128+COMPOSITE </c>
2114 ///   instruction.
2115 ///
2116 /// \param X
2117 ///    A vector of [16 x i16] to be used by the insert operation.
2118 /// \param I
2119 ///    An i16 integer value. The replacement value for the insert operation.
2120 /// \param N
2121 ///    An immediate integer specifying the index of the vector element to be
2122 ///    replaced.
2123 /// \returns A copy of vector \a X, after replacing its element indexed by
2124 ///    \a N with \a I.
2125 #define _mm256_insert_epi16(X, I, N) \
2126   ((__m256i)__builtin_ia32_vec_set_v16hi((__v16hi)(__m256i)(X), \
2127                                          (int)(I), (int)(N)))
2128 
2129 /// Takes a [32 x i8] vector and replaces the vector element value
2130 ///    indexed by the immediate constant operand with a new value. Returns the
2131 ///    modified vector.
2132 ///
2133 /// \headerfile <x86intrin.h>
2134 ///
2135 /// \code
2136 /// __m256i _mm256_insert_epi8(__m256i X, int I, const int N);
2137 /// \endcode
2138 ///
2139 /// This intrinsic corresponds to the <c> VINSERTF128+COMPOSITE </c>
2140 ///   instruction.
2141 ///
2142 /// \param X
2143 ///    A vector of [32 x i8] to be used by the insert operation.
2144 /// \param I
2145 ///    An i8 integer value. The replacement value for the insert operation.
2146 /// \param N
2147 ///    An immediate integer specifying the index of the vector element to be
2148 ///    replaced.
2149 /// \returns A copy of vector \a X, after replacing its element indexed by
2150 ///    \a N with \a I.
2151 #define _mm256_insert_epi8(X, I, N) \
2152   ((__m256i)__builtin_ia32_vec_set_v32qi((__v32qi)(__m256i)(X), \
2153                                          (int)(I), (int)(N)))
2154 
2155 #ifdef __x86_64__
2156 /// Takes a [4 x i64] vector and replaces the vector element value
2157 ///    indexed by the immediate constant operand with a new value. Returns the
2158 ///    modified vector.
2159 ///
2160 /// \headerfile <x86intrin.h>
2161 ///
2162 /// \code
2163 /// __m256i _mm256_insert_epi64(__m256i X, int I, const int N);
2164 /// \endcode
2165 ///
2166 /// This intrinsic corresponds to the <c> VINSERTF128+COMPOSITE </c>
2167 ///   instruction.
2168 ///
2169 /// \param X
2170 ///    A vector of [4 x i64] to be used by the insert operation.
2171 /// \param I
2172 ///    A 64-bit integer value. The replacement value for the insert operation.
2173 /// \param N
2174 ///    An immediate integer specifying the index of the vector element to be
2175 ///    replaced.
2176 /// \returns A copy of vector \a X, after replacing its element indexed by
2177 ///     \a N with \a I.
2178 #define _mm256_insert_epi64(X, I, N) \
2179   ((__m256i)__builtin_ia32_vec_set_v4di((__v4di)(__m256i)(X), \
2180                                         (long long)(I), (int)(N)))
2181 #endif
2182 
2183 /* Conversion */
2184 /// Converts a vector of [4 x i32] into a vector of [4 x double].
2185 ///
2186 /// \headerfile <x86intrin.h>
2187 ///
2188 /// This intrinsic corresponds to the <c> VCVTDQ2PD </c> instruction.
2189 ///
2190 /// \param __a
2191 ///    A 128-bit integer vector of [4 x i32].
2192 /// \returns A 256-bit vector of [4 x double] containing the converted values.
2193 static __inline __m256d __DEFAULT_FN_ATTRS
2194 _mm256_cvtepi32_pd(__m128i __a)
2195 {
2196   return (__m256d)__builtin_convertvector((__v4si)__a, __v4df);
2197 }
2198 
2199 /// Converts a vector of [8 x i32] into a vector of [8 x float].
2200 ///
2201 /// \headerfile <x86intrin.h>
2202 ///
2203 /// This intrinsic corresponds to the <c> VCVTDQ2PS </c> instruction.
2204 ///
2205 /// \param __a
2206 ///    A 256-bit integer vector.
2207 /// \returns A 256-bit vector of [8 x float] containing the converted values.
2208 static __inline __m256 __DEFAULT_FN_ATTRS
2209 _mm256_cvtepi32_ps(__m256i __a)
2210 {
2211   return (__m256)__builtin_convertvector((__v8si)__a, __v8sf);
2212 }
2213 
2214 /// Converts a 256-bit vector of [4 x double] into a 128-bit vector of
2215 ///    [4 x float].
2216 ///
2217 /// \headerfile <x86intrin.h>
2218 ///
2219 /// This intrinsic corresponds to the <c> VCVTPD2PS </c> instruction.
2220 ///
2221 /// \param __a
2222 ///    A 256-bit vector of [4 x double].
2223 /// \returns A 128-bit vector of [4 x float] containing the converted values.
2224 static __inline __m128 __DEFAULT_FN_ATTRS
2225 _mm256_cvtpd_ps(__m256d __a)
2226 {
2227   return (__m128)__builtin_ia32_cvtpd2ps256((__v4df) __a);
2228 }
2229 
2230 /// Converts a vector of [8 x float] into a vector of [8 x i32].
2231 ///
2232 ///    If a converted value does not fit in a 32-bit integer, raises a
2233 ///    floating-point invalid exception. If the exception is masked, returns
2234 ///    the most negative integer.
2235 ///
2236 /// \headerfile <x86intrin.h>
2237 ///
2238 /// This intrinsic corresponds to the <c> VCVTPS2DQ </c> instruction.
2239 ///
2240 /// \param __a
2241 ///    A 256-bit vector of [8 x float].
2242 /// \returns A 256-bit integer vector containing the converted values.
2243 static __inline __m256i __DEFAULT_FN_ATTRS
2244 _mm256_cvtps_epi32(__m256 __a)
2245 {
2246   return (__m256i)__builtin_ia32_cvtps2dq256((__v8sf) __a);
2247 }
2248 
2249 /// Converts a 128-bit vector of [4 x float] into a 256-bit vector of [4
2250 ///    x double].
2251 ///
2252 /// \headerfile <x86intrin.h>
2253 ///
2254 /// This intrinsic corresponds to the <c> VCVTPS2PD </c> instruction.
2255 ///
2256 /// \param __a
2257 ///    A 128-bit vector of [4 x float].
2258 /// \returns A 256-bit vector of [4 x double] containing the converted values.
2259 static __inline __m256d __DEFAULT_FN_ATTRS
2260 _mm256_cvtps_pd(__m128 __a)
2261 {
2262   return (__m256d)__builtin_convertvector((__v4sf)__a, __v4df);
2263 }
2264 
2265 /// Converts a 256-bit vector of [4 x double] into four signed truncated
2266 ///    (rounded toward zero) 32-bit integers returned in a 128-bit vector of
2267 ///    [4 x i32].
2268 ///
2269 ///    If a converted value does not fit in a 32-bit integer, raises a
2270 ///    floating-point invalid exception. If the exception is masked, returns
2271 ///    the most negative integer.
2272 ///
2273 /// \headerfile <x86intrin.h>
2274 ///
2275 /// This intrinsic corresponds to the <c> VCVTTPD2DQ </c> instruction.
2276 ///
2277 /// \param __a
2278 ///    A 256-bit vector of [4 x double].
2279 /// \returns A 128-bit integer vector containing the converted values.
2280 static __inline __m128i __DEFAULT_FN_ATTRS
2281 _mm256_cvttpd_epi32(__m256d __a)
2282 {
2283   return (__m128i)__builtin_ia32_cvttpd2dq256((__v4df) __a);
2284 }
2285 
2286 /// Converts a 256-bit vector of [4 x double] into a 128-bit vector of
2287 ///    [4 x i32].
2288 ///
2289 ///    If a converted value does not fit in a 32-bit integer, raises a
2290 ///    floating-point invalid exception. If the exception is masked, returns
2291 ///    the most negative integer.
2292 ///
2293 /// \headerfile <x86intrin.h>
2294 ///
2295 /// This intrinsic corresponds to the <c> VCVTPD2DQ </c> instruction.
2296 ///
2297 /// \param __a
2298 ///    A 256-bit vector of [4 x double].
2299 /// \returns A 128-bit integer vector containing the converted values.
2300 static __inline __m128i __DEFAULT_FN_ATTRS
2301 _mm256_cvtpd_epi32(__m256d __a)
2302 {
2303   return (__m128i)__builtin_ia32_cvtpd2dq256((__v4df) __a);
2304 }
2305 
2306 /// Converts a vector of [8 x float] into eight signed truncated (rounded
2307 ///    toward zero) 32-bit integers returned in a vector of [8 x i32].
2308 ///
2309 ///    If a converted value does not fit in a 32-bit integer, raises a
2310 ///    floating-point invalid exception. If the exception is masked, returns
2311 ///    the most negative integer.
2312 ///
2313 /// \headerfile <x86intrin.h>
2314 ///
2315 /// This intrinsic corresponds to the <c> VCVTTPS2DQ </c> instruction.
2316 ///
2317 /// \param __a
2318 ///    A 256-bit vector of [8 x float].
2319 /// \returns A 256-bit integer vector containing the converted values.
2320 static __inline __m256i __DEFAULT_FN_ATTRS
2321 _mm256_cvttps_epi32(__m256 __a)
2322 {
2323   return (__m256i)__builtin_ia32_cvttps2dq256((__v8sf) __a);
2324 }
2325 
2326 /// Returns the first element of the input vector of [4 x double].
2327 ///
2328 /// \headerfile <x86intrin.h>
2329 ///
2330 /// This intrinsic is a utility function and does not correspond to a specific
2331 ///    instruction.
2332 ///
2333 /// \param __a
2334 ///    A 256-bit vector of [4 x double].
2335 /// \returns A 64 bit double containing the first element of the input vector.
2336 static __inline double __DEFAULT_FN_ATTRS
2337 _mm256_cvtsd_f64(__m256d __a)
2338 {
2339  return __a[0];
2340 }
2341 
2342 /// Returns the first element of the input vector of [8 x i32].
2343 ///
2344 /// \headerfile <x86intrin.h>
2345 ///
2346 /// This intrinsic is a utility function and does not correspond to a specific
2347 ///    instruction.
2348 ///
2349 /// \param __a
2350 ///    A 256-bit vector of [8 x i32].
2351 /// \returns A 32 bit integer containing the first element of the input vector.
2352 static __inline int __DEFAULT_FN_ATTRS
2353 _mm256_cvtsi256_si32(__m256i __a)
2354 {
2355  __v8si __b = (__v8si)__a;
2356  return __b[0];
2357 }
2358 
2359 /// Returns the first element of the input vector of [8 x float].
2360 ///
2361 /// \headerfile <x86intrin.h>
2362 ///
2363 /// This intrinsic is a utility function and does not correspond to a specific
2364 ///    instruction.
2365 ///
2366 /// \param __a
2367 ///    A 256-bit vector of [8 x float].
2368 /// \returns A 32 bit float containing the first element of the input vector.
2369 static __inline float __DEFAULT_FN_ATTRS
2370 _mm256_cvtss_f32(__m256 __a)
2371 {
2372  return __a[0];
2373 }
2374 
2375 /* Vector replicate */
2376 /// Moves and duplicates odd-indexed values from a 256-bit vector of
2377 ///    [8 x float] to float values in a 256-bit vector of [8 x float].
2378 ///
2379 /// \headerfile <x86intrin.h>
2380 ///
2381 /// This intrinsic corresponds to the <c> VMOVSHDUP </c> instruction.
2382 ///
2383 /// \param __a
2384 ///    A 256-bit vector of [8 x float]. \n
2385 ///    Bits [255:224] of \a __a are written to bits [255:224] and [223:192] of
2386 ///    the return value. \n
2387 ///    Bits [191:160] of \a __a are written to bits [191:160] and [159:128] of
2388 ///    the return value. \n
2389 ///    Bits [127:96] of \a __a are written to bits [127:96] and [95:64] of the
2390 ///    return value. \n
2391 ///    Bits [63:32] of \a __a are written to bits [63:32] and [31:0] of the
2392 ///    return value.
2393 /// \returns A 256-bit vector of [8 x float] containing the moved and duplicated
2394 ///    values.
2395 static __inline __m256 __DEFAULT_FN_ATTRS
2396 _mm256_movehdup_ps(__m256 __a)
2397 {
2398   return __builtin_shufflevector((__v8sf)__a, (__v8sf)__a, 1, 1, 3, 3, 5, 5, 7, 7);
2399 }
2400 
2401 /// Moves and duplicates even-indexed values from a 256-bit vector of
2402 ///    [8 x float] to float values in a 256-bit vector of [8 x float].
2403 ///
2404 /// \headerfile <x86intrin.h>
2405 ///
2406 /// This intrinsic corresponds to the <c> VMOVSLDUP </c> instruction.
2407 ///
2408 /// \param __a
2409 ///    A 256-bit vector of [8 x float]. \n
2410 ///    Bits [223:192] of \a __a are written to bits [255:224] and [223:192] of
2411 ///    the return value. \n
2412 ///    Bits [159:128] of \a __a are written to bits [191:160] and [159:128] of
2413 ///    the return value. \n
2414 ///    Bits [95:64] of \a __a are written to bits [127:96] and [95:64] of the
2415 ///    return value. \n
2416 ///    Bits [31:0] of \a __a are written to bits [63:32] and [31:0] of the
2417 ///    return value.
2418 /// \returns A 256-bit vector of [8 x float] containing the moved and duplicated
2419 ///    values.
2420 static __inline __m256 __DEFAULT_FN_ATTRS
2421 _mm256_moveldup_ps(__m256 __a)
2422 {
2423   return __builtin_shufflevector((__v8sf)__a, (__v8sf)__a, 0, 0, 2, 2, 4, 4, 6, 6);
2424 }
2425 
2426 /// Moves and duplicates double-precision floating point values from a
2427 ///    256-bit vector of [4 x double] to double-precision values in a 256-bit
2428 ///    vector of [4 x double].
2429 ///
2430 /// \headerfile <x86intrin.h>
2431 ///
2432 /// This intrinsic corresponds to the <c> VMOVDDUP </c> instruction.
2433 ///
2434 /// \param __a
2435 ///    A 256-bit vector of [4 x double]. \n
2436 ///    Bits [63:0] of \a __a are written to bits [127:64] and [63:0] of the
2437 ///    return value. \n
2438 ///    Bits [191:128] of \a __a are written to bits [255:192] and [191:128] of
2439 ///    the return value.
2440 /// \returns A 256-bit vector of [4 x double] containing the moved and
2441 ///    duplicated values.
2442 static __inline __m256d __DEFAULT_FN_ATTRS
2443 _mm256_movedup_pd(__m256d __a)
2444 {
2445   return __builtin_shufflevector((__v4df)__a, (__v4df)__a, 0, 0, 2, 2);
2446 }
2447 
2448 /* Unpack and Interleave */
2449 /// Unpacks the odd-indexed vector elements from two 256-bit vectors of
2450 ///    [4 x double] and interleaves them into a 256-bit vector of [4 x double].
2451 ///
2452 /// \headerfile <x86intrin.h>
2453 ///
2454 /// This intrinsic corresponds to the <c> VUNPCKHPD </c> instruction.
2455 ///
2456 /// \param __a
2457 ///    A 256-bit floating-point vector of [4 x double]. \n
2458 ///    Bits [127:64] are written to bits [63:0] of the return value. \n
2459 ///    Bits [255:192] are written to bits [191:128] of the return value. \n
2460 /// \param __b
2461 ///    A 256-bit floating-point vector of [4 x double]. \n
2462 ///    Bits [127:64] are written to bits [127:64] of the return value. \n
2463 ///    Bits [255:192] are written to bits [255:192] of the return value. \n
2464 /// \returns A 256-bit vector of [4 x double] containing the interleaved values.
2465 static __inline __m256d __DEFAULT_FN_ATTRS
2466 _mm256_unpackhi_pd(__m256d __a, __m256d __b)
2467 {
2468   return __builtin_shufflevector((__v4df)__a, (__v4df)__b, 1, 5, 1+2, 5+2);
2469 }
2470 
2471 /// Unpacks the even-indexed vector elements from two 256-bit vectors of
2472 ///    [4 x double] and interleaves them into a 256-bit vector of [4 x double].
2473 ///
2474 /// \headerfile <x86intrin.h>
2475 ///
2476 /// This intrinsic corresponds to the <c> VUNPCKLPD </c> instruction.
2477 ///
2478 /// \param __a
2479 ///    A 256-bit floating-point vector of [4 x double]. \n
2480 ///    Bits [63:0] are written to bits [63:0] of the return value. \n
2481 ///    Bits [191:128] are written to bits [191:128] of the return value.
2482 /// \param __b
2483 ///    A 256-bit floating-point vector of [4 x double]. \n
2484 ///    Bits [63:0] are written to bits [127:64] of the return value. \n
2485 ///    Bits [191:128] are written to bits [255:192] of the return value. \n
2486 /// \returns A 256-bit vector of [4 x double] containing the interleaved values.
2487 static __inline __m256d __DEFAULT_FN_ATTRS
2488 _mm256_unpacklo_pd(__m256d __a, __m256d __b)
2489 {
2490   return __builtin_shufflevector((__v4df)__a, (__v4df)__b, 0, 4, 0+2, 4+2);
2491 }
2492 
2493 /// Unpacks the 32-bit vector elements 2, 3, 6 and 7 from each of the
2494 ///    two 256-bit vectors of [8 x float] and interleaves them into a 256-bit
2495 ///    vector of [8 x float].
2496 ///
2497 /// \headerfile <x86intrin.h>
2498 ///
2499 /// This intrinsic corresponds to the <c> VUNPCKHPS </c> instruction.
2500 ///
2501 /// \param __a
2502 ///    A 256-bit vector of [8 x float]. \n
2503 ///    Bits [95:64] are written to bits [31:0] of the return value. \n
2504 ///    Bits [127:96] are written to bits [95:64] of the return value. \n
2505 ///    Bits [223:192] are written to bits [159:128] of the return value. \n
2506 ///    Bits [255:224] are written to bits [223:192] of the return value.
2507 /// \param __b
2508 ///    A 256-bit vector of [8 x float]. \n
2509 ///    Bits [95:64] are written to bits [63:32] of the return value. \n
2510 ///    Bits [127:96] are written to bits [127:96] of the return value. \n
2511 ///    Bits [223:192] are written to bits [191:160] of the return value. \n
2512 ///    Bits [255:224] are written to bits [255:224] of the return value.
2513 /// \returns A 256-bit vector of [8 x float] containing the interleaved values.
2514 static __inline __m256 __DEFAULT_FN_ATTRS
2515 _mm256_unpackhi_ps(__m256 __a, __m256 __b)
2516 {
2517   return __builtin_shufflevector((__v8sf)__a, (__v8sf)__b, 2, 10, 2+1, 10+1, 6, 14, 6+1, 14+1);
2518 }
2519 
2520 /// Unpacks the 32-bit vector elements 0, 1, 4 and 5 from each of the
2521 ///    two 256-bit vectors of [8 x float] and interleaves them into a 256-bit
2522 ///    vector of [8 x float].
2523 ///
2524 /// \headerfile <x86intrin.h>
2525 ///
2526 /// This intrinsic corresponds to the <c> VUNPCKLPS </c> instruction.
2527 ///
2528 /// \param __a
2529 ///    A 256-bit vector of [8 x float]. \n
2530 ///    Bits [31:0] are written to bits [31:0] of the return value. \n
2531 ///    Bits [63:32] are written to bits [95:64] of the return value. \n
2532 ///    Bits [159:128] are written to bits [159:128] of the return value. \n
2533 ///    Bits [191:160] are written to bits [223:192] of the return value.
2534 /// \param __b
2535 ///    A 256-bit vector of [8 x float]. \n
2536 ///    Bits [31:0] are written to bits [63:32] of the return value. \n
2537 ///    Bits [63:32] are written to bits [127:96] of the return value. \n
2538 ///    Bits [159:128] are written to bits [191:160] of the return value. \n
2539 ///    Bits [191:160] are written to bits [255:224] of the return value.
2540 /// \returns A 256-bit vector of [8 x float] containing the interleaved values.
2541 static __inline __m256 __DEFAULT_FN_ATTRS
2542 _mm256_unpacklo_ps(__m256 __a, __m256 __b)
2543 {
2544   return __builtin_shufflevector((__v8sf)__a, (__v8sf)__b, 0, 8, 0+1, 8+1, 4, 12, 4+1, 12+1);
2545 }
2546 
2547 /* Bit Test */
2548 /// Given two 128-bit floating-point vectors of [2 x double], perform an
2549 ///    element-by-element comparison of the double-precision element in the
2550 ///    first source vector and the corresponding element in the second source
2551 ///    vector.
2552 ///
2553 ///    The EFLAGS register is updated as follows: \n
2554 ///    If there is at least one pair of double-precision elements where the
2555 ///    sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2556 ///    ZF flag is set to 1. \n
2557 ///    If there is at least one pair of double-precision elements where the
2558 ///    sign-bit of the first element is 0 and the sign-bit of the second element
2559 ///    is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2560 ///    This intrinsic returns the value of the ZF flag.
2561 ///
2562 /// \headerfile <x86intrin.h>
2563 ///
2564 /// This intrinsic corresponds to the <c> VTESTPD </c> instruction.
2565 ///
2566 /// \param __a
2567 ///    A 128-bit vector of [2 x double].
2568 /// \param __b
2569 ///    A 128-bit vector of [2 x double].
2570 /// \returns the ZF flag in the EFLAGS register.
2571 static __inline int __DEFAULT_FN_ATTRS128
2572 _mm_testz_pd(__m128d __a, __m128d __b)
2573 {
2574   return __builtin_ia32_vtestzpd((__v2df)__a, (__v2df)__b);
2575 }
2576 
2577 /// Given two 128-bit floating-point vectors of [2 x double], perform an
2578 ///    element-by-element comparison of the double-precision element in the
2579 ///    first source vector and the corresponding element in the second source
2580 ///    vector.
2581 ///
2582 ///    The EFLAGS register is updated as follows: \n
2583 ///    If there is at least one pair of double-precision elements where the
2584 ///    sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2585 ///    ZF flag is set to 1. \n
2586 ///    If there is at least one pair of double-precision elements where the
2587 ///    sign-bit of the first element is 0 and the sign-bit of the second element
2588 ///    is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2589 ///    This intrinsic returns the value of the CF flag.
2590 ///
2591 /// \headerfile <x86intrin.h>
2592 ///
2593 /// This intrinsic corresponds to the <c> VTESTPD </c> instruction.
2594 ///
2595 /// \param __a
2596 ///    A 128-bit vector of [2 x double].
2597 /// \param __b
2598 ///    A 128-bit vector of [2 x double].
2599 /// \returns the CF flag in the EFLAGS register.
2600 static __inline int __DEFAULT_FN_ATTRS128
2601 _mm_testc_pd(__m128d __a, __m128d __b)
2602 {
2603   return __builtin_ia32_vtestcpd((__v2df)__a, (__v2df)__b);
2604 }
2605 
2606 /// Given two 128-bit floating-point vectors of [2 x double], perform an
2607 ///    element-by-element comparison of the double-precision element in the
2608 ///    first source vector and the corresponding element in the second source
2609 ///    vector.
2610 ///
2611 ///    The EFLAGS register is updated as follows: \n
2612 ///    If there is at least one pair of double-precision elements where the
2613 ///    sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2614 ///    ZF flag is set to 1. \n
2615 ///    If there is at least one pair of double-precision elements where the
2616 ///    sign-bit of the first element is 0 and the sign-bit of the second element
2617 ///    is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2618 ///    This intrinsic returns 1 if both the ZF and CF flags are set to 0,
2619 ///    otherwise it returns 0.
2620 ///
2621 /// \headerfile <x86intrin.h>
2622 ///
2623 /// This intrinsic corresponds to the <c> VTESTPD </c> instruction.
2624 ///
2625 /// \param __a
2626 ///    A 128-bit vector of [2 x double].
2627 /// \param __b
2628 ///    A 128-bit vector of [2 x double].
2629 /// \returns 1 if both the ZF and CF flags are set to 0, otherwise returns 0.
2630 static __inline int __DEFAULT_FN_ATTRS128
2631 _mm_testnzc_pd(__m128d __a, __m128d __b)
2632 {
2633   return __builtin_ia32_vtestnzcpd((__v2df)__a, (__v2df)__b);
2634 }
2635 
2636 /// Given two 128-bit floating-point vectors of [4 x float], perform an
2637 ///    element-by-element comparison of the single-precision element in the
2638 ///    first source vector and the corresponding element in the second source
2639 ///    vector.
2640 ///
2641 ///    The EFLAGS register is updated as follows: \n
2642 ///    If there is at least one pair of single-precision elements where the
2643 ///    sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2644 ///    ZF flag is set to 1. \n
2645 ///    If there is at least one pair of single-precision elements where the
2646 ///    sign-bit of the first element is 0 and the sign-bit of the second element
2647 ///    is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2648 ///    This intrinsic returns the value of the ZF flag.
2649 ///
2650 /// \headerfile <x86intrin.h>
2651 ///
2652 /// This intrinsic corresponds to the <c> VTESTPS </c> instruction.
2653 ///
2654 /// \param __a
2655 ///    A 128-bit vector of [4 x float].
2656 /// \param __b
2657 ///    A 128-bit vector of [4 x float].
2658 /// \returns the ZF flag.
2659 static __inline int __DEFAULT_FN_ATTRS128
2660 _mm_testz_ps(__m128 __a, __m128 __b)
2661 {
2662   return __builtin_ia32_vtestzps((__v4sf)__a, (__v4sf)__b);
2663 }
2664 
2665 /// Given two 128-bit floating-point vectors of [4 x float], perform an
2666 ///    element-by-element comparison of the single-precision element in the
2667 ///    first source vector and the corresponding element in the second source
2668 ///    vector.
2669 ///
2670 ///    The EFLAGS register is updated as follows: \n
2671 ///    If there is at least one pair of single-precision elements where the
2672 ///    sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2673 ///    ZF flag is set to 1. \n
2674 ///    If there is at least one pair of single-precision elements where the
2675 ///    sign-bit of the first element is 0 and the sign-bit of the second element
2676 ///    is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2677 ///    This intrinsic returns the value of the CF flag.
2678 ///
2679 /// \headerfile <x86intrin.h>
2680 ///
2681 /// This intrinsic corresponds to the <c> VTESTPS </c> instruction.
2682 ///
2683 /// \param __a
2684 ///    A 128-bit vector of [4 x float].
2685 /// \param __b
2686 ///    A 128-bit vector of [4 x float].
2687 /// \returns the CF flag.
2688 static __inline int __DEFAULT_FN_ATTRS128
2689 _mm_testc_ps(__m128 __a, __m128 __b)
2690 {
2691   return __builtin_ia32_vtestcps((__v4sf)__a, (__v4sf)__b);
2692 }
2693 
2694 /// Given two 128-bit floating-point vectors of [4 x float], perform an
2695 ///    element-by-element comparison of the single-precision element in the
2696 ///    first source vector and the corresponding element in the second source
2697 ///    vector.
2698 ///
2699 ///    The EFLAGS register is updated as follows: \n
2700 ///    If there is at least one pair of single-precision elements where the
2701 ///    sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2702 ///    ZF flag is set to 1. \n
2703 ///    If there is at least one pair of single-precision elements where the
2704 ///    sign-bit of the first element is 0 and the sign-bit of the second element
2705 ///    is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2706 ///    This intrinsic returns 1 if both the ZF and CF flags are set to 0,
2707 ///    otherwise it returns 0.
2708 ///
2709 /// \headerfile <x86intrin.h>
2710 ///
2711 /// This intrinsic corresponds to the <c> VTESTPS </c> instruction.
2712 ///
2713 /// \param __a
2714 ///    A 128-bit vector of [4 x float].
2715 /// \param __b
2716 ///    A 128-bit vector of [4 x float].
2717 /// \returns 1 if both the ZF and CF flags are set to 0, otherwise returns 0.
2718 static __inline int __DEFAULT_FN_ATTRS128
2719 _mm_testnzc_ps(__m128 __a, __m128 __b)
2720 {
2721   return __builtin_ia32_vtestnzcps((__v4sf)__a, (__v4sf)__b);
2722 }
2723 
2724 /// Given two 256-bit floating-point vectors of [4 x double], perform an
2725 ///    element-by-element comparison of the double-precision elements in the
2726 ///    first source vector and the corresponding elements in the second source
2727 ///    vector.
2728 ///
2729 ///    The EFLAGS register is updated as follows: \n
2730 ///    If there is at least one pair of double-precision elements where the
2731 ///    sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2732 ///    ZF flag is set to 1. \n
2733 ///    If there is at least one pair of double-precision elements where the
2734 ///    sign-bit of the first element is 0 and the sign-bit of the second element
2735 ///    is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2736 ///    This intrinsic returns the value of the ZF flag.
2737 ///
2738 /// \headerfile <x86intrin.h>
2739 ///
2740 /// This intrinsic corresponds to the <c> VTESTPD </c> instruction.
2741 ///
2742 /// \param __a
2743 ///    A 256-bit vector of [4 x double].
2744 /// \param __b
2745 ///    A 256-bit vector of [4 x double].
2746 /// \returns the ZF flag.
2747 static __inline int __DEFAULT_FN_ATTRS
2748 _mm256_testz_pd(__m256d __a, __m256d __b)
2749 {
2750   return __builtin_ia32_vtestzpd256((__v4df)__a, (__v4df)__b);
2751 }
2752 
2753 /// Given two 256-bit floating-point vectors of [4 x double], perform an
2754 ///    element-by-element comparison of the double-precision elements in the
2755 ///    first source vector and the corresponding elements in the second source
2756 ///    vector.
2757 ///
2758 ///    The EFLAGS register is updated as follows: \n
2759 ///    If there is at least one pair of double-precision elements where the
2760 ///    sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2761 ///    ZF flag is set to 1. \n
2762 ///    If there is at least one pair of double-precision elements where the
2763 ///    sign-bit of the first element is 0 and the sign-bit of the second element
2764 ///    is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2765 ///    This intrinsic returns the value of the CF flag.
2766 ///
2767 /// \headerfile <x86intrin.h>
2768 ///
2769 /// This intrinsic corresponds to the <c> VTESTPD </c> instruction.
2770 ///
2771 /// \param __a
2772 ///    A 256-bit vector of [4 x double].
2773 /// \param __b
2774 ///    A 256-bit vector of [4 x double].
2775 /// \returns the CF flag.
2776 static __inline int __DEFAULT_FN_ATTRS
2777 _mm256_testc_pd(__m256d __a, __m256d __b)
2778 {
2779   return __builtin_ia32_vtestcpd256((__v4df)__a, (__v4df)__b);
2780 }
2781 
2782 /// Given two 256-bit floating-point vectors of [4 x double], perform an
2783 ///    element-by-element comparison of the double-precision elements in the
2784 ///    first source vector and the corresponding elements in the second source
2785 ///    vector.
2786 ///
2787 ///    The EFLAGS register is updated as follows: \n
2788 ///    If there is at least one pair of double-precision elements where the
2789 ///    sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2790 ///    ZF flag is set to 1. \n
2791 ///    If there is at least one pair of double-precision elements where the
2792 ///    sign-bit of the first element is 0 and the sign-bit of the second element
2793 ///    is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2794 ///    This intrinsic returns 1 if both the ZF and CF flags are set to 0,
2795 ///    otherwise it returns 0.
2796 ///
2797 /// \headerfile <x86intrin.h>
2798 ///
2799 /// This intrinsic corresponds to the <c> VTESTPD </c> instruction.
2800 ///
2801 /// \param __a
2802 ///    A 256-bit vector of [4 x double].
2803 /// \param __b
2804 ///    A 256-bit vector of [4 x double].
2805 /// \returns 1 if both the ZF and CF flags are set to 0, otherwise returns 0.
2806 static __inline int __DEFAULT_FN_ATTRS
2807 _mm256_testnzc_pd(__m256d __a, __m256d __b)
2808 {
2809   return __builtin_ia32_vtestnzcpd256((__v4df)__a, (__v4df)__b);
2810 }
2811 
2812 /// Given two 256-bit floating-point vectors of [8 x float], perform an
2813 ///    element-by-element comparison of the single-precision element in the
2814 ///    first source vector and the corresponding element in the second source
2815 ///    vector.
2816 ///
2817 ///    The EFLAGS register is updated as follows: \n
2818 ///    If there is at least one pair of single-precision elements where the
2819 ///    sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2820 ///    ZF flag is set to 1. \n
2821 ///    If there is at least one pair of single-precision elements where the
2822 ///    sign-bit of the first element is 0 and the sign-bit of the second element
2823 ///    is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2824 ///    This intrinsic returns the value of the ZF flag.
2825 ///
2826 /// \headerfile <x86intrin.h>
2827 ///
2828 /// This intrinsic corresponds to the <c> VTESTPS </c> instruction.
2829 ///
2830 /// \param __a
2831 ///    A 256-bit vector of [8 x float].
2832 /// \param __b
2833 ///    A 256-bit vector of [8 x float].
2834 /// \returns the ZF flag.
2835 static __inline int __DEFAULT_FN_ATTRS
2836 _mm256_testz_ps(__m256 __a, __m256 __b)
2837 {
2838   return __builtin_ia32_vtestzps256((__v8sf)__a, (__v8sf)__b);
2839 }
2840 
2841 /// Given two 256-bit floating-point vectors of [8 x float], perform an
2842 ///    element-by-element comparison of the single-precision element in the
2843 ///    first source vector and the corresponding element in the second source
2844 ///    vector.
2845 ///
2846 ///    The EFLAGS register is updated as follows: \n
2847 ///    If there is at least one pair of single-precision elements where the
2848 ///    sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2849 ///    ZF flag is set to 1. \n
2850 ///    If there is at least one pair of single-precision elements where the
2851 ///    sign-bit of the first element is 0 and the sign-bit of the second element
2852 ///    is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2853 ///    This intrinsic returns the value of the CF flag.
2854 ///
2855 /// \headerfile <x86intrin.h>
2856 ///
2857 /// This intrinsic corresponds to the <c> VTESTPS </c> instruction.
2858 ///
2859 /// \param __a
2860 ///    A 256-bit vector of [8 x float].
2861 /// \param __b
2862 ///    A 256-bit vector of [8 x float].
2863 /// \returns the CF flag.
2864 static __inline int __DEFAULT_FN_ATTRS
2865 _mm256_testc_ps(__m256 __a, __m256 __b)
2866 {
2867   return __builtin_ia32_vtestcps256((__v8sf)__a, (__v8sf)__b);
2868 }
2869 
2870 /// Given two 256-bit floating-point vectors of [8 x float], perform an
2871 ///    element-by-element comparison of the single-precision elements in the
2872 ///    first source vector and the corresponding elements in the second source
2873 ///    vector.
2874 ///
2875 ///    The EFLAGS register is updated as follows: \n
2876 ///    If there is at least one pair of single-precision elements where the
2877 ///    sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2878 ///    ZF flag is set to 1. \n
2879 ///    If there is at least one pair of single-precision elements where the
2880 ///    sign-bit of the first element is 0 and the sign-bit of the second element
2881 ///    is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2882 ///    This intrinsic returns 1 if both the ZF and CF flags are set to 0,
2883 ///    otherwise it returns 0.
2884 ///
2885 /// \headerfile <x86intrin.h>
2886 ///
2887 /// This intrinsic corresponds to the <c> VTESTPS </c> instruction.
2888 ///
2889 /// \param __a
2890 ///    A 256-bit vector of [8 x float].
2891 /// \param __b
2892 ///    A 256-bit vector of [8 x float].
2893 /// \returns 1 if both the ZF and CF flags are set to 0, otherwise returns 0.
2894 static __inline int __DEFAULT_FN_ATTRS
2895 _mm256_testnzc_ps(__m256 __a, __m256 __b)
2896 {
2897   return __builtin_ia32_vtestnzcps256((__v8sf)__a, (__v8sf)__b);
2898 }
2899 
2900 /// Given two 256-bit integer vectors, perform a bit-by-bit comparison
2901 ///    of the two source vectors.
2902 ///
2903 ///    The EFLAGS register is updated as follows: \n
2904 ///    If there is at least one pair of bits where both bits are 1, the ZF flag
2905 ///    is set to 0. Otherwise the ZF flag is set to 1. \n
2906 ///    If there is at least one pair of bits where the bit from the first source
2907 ///    vector is 0 and the bit from the second source vector is 1, the CF flag
2908 ///    is set to 0. Otherwise the CF flag is set to 1. \n
2909 ///    This intrinsic returns the value of the ZF flag.
2910 ///
2911 /// \headerfile <x86intrin.h>
2912 ///
2913 /// This intrinsic corresponds to the <c> VPTEST </c> instruction.
2914 ///
2915 /// \param __a
2916 ///    A 256-bit integer vector.
2917 /// \param __b
2918 ///    A 256-bit integer vector.
2919 /// \returns the ZF flag.
2920 static __inline int __DEFAULT_FN_ATTRS
2921 _mm256_testz_si256(__m256i __a, __m256i __b)
2922 {
2923   return __builtin_ia32_ptestz256((__v4di)__a, (__v4di)__b);
2924 }
2925 
2926 /// Given two 256-bit integer vectors, perform a bit-by-bit comparison
2927 ///    of the two source vectors.
2928 ///
2929 ///    The EFLAGS register is updated as follows: \n
2930 ///    If there is at least one pair of bits where both bits are 1, the ZF flag
2931 ///    is set to 0. Otherwise the ZF flag is set to 1. \n
2932 ///    If there is at least one pair of bits where the bit from the first source
2933 ///    vector is 0 and the bit from the second source vector is 1, the CF flag
2934 ///    is set to 0. Otherwise the CF flag is set to 1. \n
2935 ///    This intrinsic returns the value of the CF flag.
2936 ///
2937 /// \headerfile <x86intrin.h>
2938 ///
2939 /// This intrinsic corresponds to the <c> VPTEST </c> instruction.
2940 ///
2941 /// \param __a
2942 ///    A 256-bit integer vector.
2943 /// \param __b
2944 ///    A 256-bit integer vector.
2945 /// \returns the CF flag.
2946 static __inline int __DEFAULT_FN_ATTRS
2947 _mm256_testc_si256(__m256i __a, __m256i __b)
2948 {
2949   return __builtin_ia32_ptestc256((__v4di)__a, (__v4di)__b);
2950 }
2951 
2952 /// Given two 256-bit integer vectors, perform a bit-by-bit comparison
2953 ///    of the two source vectors.
2954 ///
2955 ///    The EFLAGS register is updated as follows: \n
2956 ///    If there is at least one pair of bits where both bits are 1, the ZF flag
2957 ///    is set to 0. Otherwise the ZF flag is set to 1. \n
2958 ///    If there is at least one pair of bits where the bit from the first source
2959 ///    vector is 0 and the bit from the second source vector is 1, the CF flag
2960 ///    is set to 0. Otherwise the CF flag is set to 1. \n
2961 ///    This intrinsic returns 1 if both the ZF and CF flags are set to 0,
2962 ///    otherwise it returns 0.
2963 ///
2964 /// \headerfile <x86intrin.h>
2965 ///
2966 /// This intrinsic corresponds to the <c> VPTEST </c> instruction.
2967 ///
2968 /// \param __a
2969 ///    A 256-bit integer vector.
2970 /// \param __b
2971 ///    A 256-bit integer vector.
2972 /// \returns 1 if both the ZF and CF flags are set to 0, otherwise returns 0.
2973 static __inline int __DEFAULT_FN_ATTRS
2974 _mm256_testnzc_si256(__m256i __a, __m256i __b)
2975 {
2976   return __builtin_ia32_ptestnzc256((__v4di)__a, (__v4di)__b);
2977 }
2978 
2979 /* Vector extract sign mask */
2980 /// Extracts the sign bits of double-precision floating point elements
2981 ///    in a 256-bit vector of [4 x double] and writes them to the lower order
2982 ///    bits of the return value.
2983 ///
2984 /// \headerfile <x86intrin.h>
2985 ///
2986 /// This intrinsic corresponds to the <c> VMOVMSKPD </c> instruction.
2987 ///
2988 /// \param __a
2989 ///    A 256-bit vector of [4 x double] containing the double-precision
2990 ///    floating point values with sign bits to be extracted.
2991 /// \returns The sign bits from the operand, written to bits [3:0].
2992 static __inline int __DEFAULT_FN_ATTRS
2993 _mm256_movemask_pd(__m256d __a)
2994 {
2995   return __builtin_ia32_movmskpd256((__v4df)__a);
2996 }
2997 
2998 /// Extracts the sign bits of single-precision floating point elements
2999 ///    in a 256-bit vector of [8 x float] and writes them to the lower order
3000 ///    bits of the return value.
3001 ///
3002 /// \headerfile <x86intrin.h>
3003 ///
3004 /// This intrinsic corresponds to the <c> VMOVMSKPS </c> instruction.
3005 ///
3006 /// \param __a
3007 ///    A 256-bit vector of [8 x float] containing the single-precision floating
3008 ///    point values with sign bits to be extracted.
3009 /// \returns The sign bits from the operand, written to bits [7:0].
3010 static __inline int __DEFAULT_FN_ATTRS
3011 _mm256_movemask_ps(__m256 __a)
3012 {
3013   return __builtin_ia32_movmskps256((__v8sf)__a);
3014 }
3015 
3016 /* Vector __zero */
3017 /// Zeroes the contents of all XMM or YMM registers.
3018 ///
3019 /// \headerfile <x86intrin.h>
3020 ///
3021 /// This intrinsic corresponds to the <c> VZEROALL </c> instruction.
3022 static __inline void __attribute__((__always_inline__, __nodebug__, __target__("avx")))
3023 _mm256_zeroall(void)
3024 {
3025   __builtin_ia32_vzeroall();
3026 }
3027 
3028 /// Zeroes the upper 128 bits (bits 255:128) of all YMM registers.
3029 ///
3030 /// \headerfile <x86intrin.h>
3031 ///
3032 /// This intrinsic corresponds to the <c> VZEROUPPER </c> instruction.
3033 static __inline void __attribute__((__always_inline__, __nodebug__, __target__("avx")))
3034 _mm256_zeroupper(void)
3035 {
3036   __builtin_ia32_vzeroupper();
3037 }
3038 
3039 /* Vector load with broadcast */
3040 /// Loads a scalar single-precision floating point value from the
3041 ///    specified address pointed to by \a __a and broadcasts it to the elements
3042 ///    of a [4 x float] vector.
3043 ///
3044 /// \headerfile <x86intrin.h>
3045 ///
3046 /// This intrinsic corresponds to the <c> VBROADCASTSS </c> instruction.
3047 ///
3048 /// \param __a
3049 ///    The single-precision floating point value to be broadcast.
3050 /// \returns A 128-bit vector of [4 x float] whose 32-bit elements are set
3051 ///    equal to the broadcast value.
3052 static __inline __m128 __DEFAULT_FN_ATTRS128
3053 _mm_broadcast_ss(float const *__a)
3054 {
3055   struct __mm_broadcast_ss_struct {
3056     float __f;
3057   } __attribute__((__packed__, __may_alias__));
3058   float __f = ((const struct __mm_broadcast_ss_struct*)__a)->__f;
3059   return __extension__ (__m128){ __f, __f, __f, __f };
3060 }
3061 
3062 /// Loads a scalar double-precision floating point value from the
3063 ///    specified address pointed to by \a __a and broadcasts it to the elements
3064 ///    of a [4 x double] vector.
3065 ///
3066 /// \headerfile <x86intrin.h>
3067 ///
3068 /// This intrinsic corresponds to the <c> VBROADCASTSD </c> instruction.
3069 ///
3070 /// \param __a
3071 ///    The double-precision floating point value to be broadcast.
3072 /// \returns A 256-bit vector of [4 x double] whose 64-bit elements are set
3073 ///    equal to the broadcast value.
3074 static __inline __m256d __DEFAULT_FN_ATTRS
3075 _mm256_broadcast_sd(double const *__a)
3076 {
3077   struct __mm256_broadcast_sd_struct {
3078     double __d;
3079   } __attribute__((__packed__, __may_alias__));
3080   double __d = ((const struct __mm256_broadcast_sd_struct*)__a)->__d;
3081   return __extension__ (__m256d)(__v4df){ __d, __d, __d, __d };
3082 }
3083 
3084 /// Loads a scalar single-precision floating point value from the
3085 ///    specified address pointed to by \a __a and broadcasts it to the elements
3086 ///    of a [8 x float] vector.
3087 ///
3088 /// \headerfile <x86intrin.h>
3089 ///
3090 /// This intrinsic corresponds to the <c> VBROADCASTSS </c> instruction.
3091 ///
3092 /// \param __a
3093 ///    The single-precision floating point value to be broadcast.
3094 /// \returns A 256-bit vector of [8 x float] whose 32-bit elements are set
3095 ///    equal to the broadcast value.
3096 static __inline __m256 __DEFAULT_FN_ATTRS
3097 _mm256_broadcast_ss(float const *__a)
3098 {
3099   struct __mm256_broadcast_ss_struct {
3100     float __f;
3101   } __attribute__((__packed__, __may_alias__));
3102   float __f = ((const struct __mm256_broadcast_ss_struct*)__a)->__f;
3103   return __extension__ (__m256)(__v8sf){ __f, __f, __f, __f, __f, __f, __f, __f };
3104 }
3105 
3106 /// Loads the data from a 128-bit vector of [2 x double] from the
3107 ///    specified address pointed to by \a __a and broadcasts it to 128-bit
3108 ///    elements in a 256-bit vector of [4 x double].
3109 ///
3110 /// \headerfile <x86intrin.h>
3111 ///
3112 /// This intrinsic corresponds to the <c> VBROADCASTF128 </c> instruction.
3113 ///
3114 /// \param __a
3115 ///    The 128-bit vector of [2 x double] to be broadcast.
3116 /// \returns A 256-bit vector of [4 x double] whose 128-bit elements are set
3117 ///    equal to the broadcast value.
3118 static __inline __m256d __DEFAULT_FN_ATTRS
3119 _mm256_broadcast_pd(__m128d const *__a)
3120 {
3121   __m128d __b = _mm_loadu_pd((const double *)__a);
3122   return (__m256d)__builtin_shufflevector((__v2df)__b, (__v2df)__b,
3123                                           0, 1, 0, 1);
3124 }
3125 
3126 /// Loads the data from a 128-bit vector of [4 x float] from the
3127 ///    specified address pointed to by \a __a and broadcasts it to 128-bit
3128 ///    elements in a 256-bit vector of [8 x float].
3129 ///
3130 /// \headerfile <x86intrin.h>
3131 ///
3132 /// This intrinsic corresponds to the <c> VBROADCASTF128 </c> instruction.
3133 ///
3134 /// \param __a
3135 ///    The 128-bit vector of [4 x float] to be broadcast.
3136 /// \returns A 256-bit vector of [8 x float] whose 128-bit elements are set
3137 ///    equal to the broadcast value.
3138 static __inline __m256 __DEFAULT_FN_ATTRS
3139 _mm256_broadcast_ps(__m128 const *__a)
3140 {
3141   __m128 __b = _mm_loadu_ps((const float *)__a);
3142   return (__m256)__builtin_shufflevector((__v4sf)__b, (__v4sf)__b,
3143                                          0, 1, 2, 3, 0, 1, 2, 3);
3144 }
3145 
3146 /* SIMD load ops */
3147 /// Loads 4 double-precision floating point values from a 32-byte aligned
3148 ///    memory location pointed to by \a __p into a vector of [4 x double].
3149 ///
3150 /// \headerfile <x86intrin.h>
3151 ///
3152 /// This intrinsic corresponds to the <c> VMOVAPD </c> instruction.
3153 ///
3154 /// \param __p
3155 ///    A 32-byte aligned pointer to a memory location containing
3156 ///    double-precision floating point values.
3157 /// \returns A 256-bit vector of [4 x double] containing the moved values.
3158 static __inline __m256d __DEFAULT_FN_ATTRS
3159 _mm256_load_pd(double const *__p)
3160 {
3161   return *(const __m256d *)__p;
3162 }
3163 
3164 /// Loads 8 single-precision floating point values from a 32-byte aligned
3165 ///    memory location pointed to by \a __p into a vector of [8 x float].
3166 ///
3167 /// \headerfile <x86intrin.h>
3168 ///
3169 /// This intrinsic corresponds to the <c> VMOVAPS </c> instruction.
3170 ///
3171 /// \param __p
3172 ///    A 32-byte aligned pointer to a memory location containing float values.
3173 /// \returns A 256-bit vector of [8 x float] containing the moved values.
3174 static __inline __m256 __DEFAULT_FN_ATTRS
3175 _mm256_load_ps(float const *__p)
3176 {
3177   return *(const __m256 *)__p;
3178 }
3179 
3180 /// Loads 4 double-precision floating point values from an unaligned
3181 ///    memory location pointed to by \a __p into a vector of [4 x double].
3182 ///
3183 /// \headerfile <x86intrin.h>
3184 ///
3185 /// This intrinsic corresponds to the <c> VMOVUPD </c> instruction.
3186 ///
3187 /// \param __p
3188 ///    A pointer to a memory location containing double-precision floating
3189 ///    point values.
3190 /// \returns A 256-bit vector of [4 x double] containing the moved values.
3191 static __inline __m256d __DEFAULT_FN_ATTRS
3192 _mm256_loadu_pd(double const *__p)
3193 {
3194   struct __loadu_pd {
3195     __m256d_u __v;
3196   } __attribute__((__packed__, __may_alias__));
3197   return ((const struct __loadu_pd*)__p)->__v;
3198 }
3199 
3200 /// Loads 8 single-precision floating point values from an unaligned
3201 ///    memory location pointed to by \a __p into a vector of [8 x float].
3202 ///
3203 /// \headerfile <x86intrin.h>
3204 ///
3205 /// This intrinsic corresponds to the <c> VMOVUPS </c> instruction.
3206 ///
3207 /// \param __p
3208 ///    A pointer to a memory location containing single-precision floating
3209 ///    point values.
3210 /// \returns A 256-bit vector of [8 x float] containing the moved values.
3211 static __inline __m256 __DEFAULT_FN_ATTRS
3212 _mm256_loadu_ps(float const *__p)
3213 {
3214   struct __loadu_ps {
3215     __m256_u __v;
3216   } __attribute__((__packed__, __may_alias__));
3217   return ((const struct __loadu_ps*)__p)->__v;
3218 }
3219 
3220 /// Loads 256 bits of integer data from a 32-byte aligned memory
3221 ///    location pointed to by \a __p into elements of a 256-bit integer vector.
3222 ///
3223 /// \headerfile <x86intrin.h>
3224 ///
3225 /// This intrinsic corresponds to the <c> VMOVDQA </c> instruction.
3226 ///
3227 /// \param __p
3228 ///    A 32-byte aligned pointer to a 256-bit integer vector containing integer
3229 ///    values.
3230 /// \returns A 256-bit integer vector containing the moved values.
3231 static __inline __m256i __DEFAULT_FN_ATTRS
3232 _mm256_load_si256(__m256i const *__p)
3233 {
3234   return *__p;
3235 }
3236 
3237 /// Loads 256 bits of integer data from an unaligned memory location
3238 ///    pointed to by \a __p into a 256-bit integer vector.
3239 ///
3240 /// \headerfile <x86intrin.h>
3241 ///
3242 /// This intrinsic corresponds to the <c> VMOVDQU </c> instruction.
3243 ///
3244 /// \param __p
3245 ///    A pointer to a 256-bit integer vector containing integer values.
3246 /// \returns A 256-bit integer vector containing the moved values.
3247 static __inline __m256i __DEFAULT_FN_ATTRS
3248 _mm256_loadu_si256(__m256i_u const *__p)
3249 {
3250   struct __loadu_si256 {
3251     __m256i_u __v;
3252   } __attribute__((__packed__, __may_alias__));
3253   return ((const struct __loadu_si256*)__p)->__v;
3254 }
3255 
3256 /// Loads 256 bits of integer data from an unaligned memory location
3257 ///    pointed to by \a __p into a 256-bit integer vector. This intrinsic may
3258 ///    perform better than \c _mm256_loadu_si256 when the data crosses a cache
3259 ///    line boundary.
3260 ///
3261 /// \headerfile <x86intrin.h>
3262 ///
3263 /// This intrinsic corresponds to the <c> VLDDQU </c> instruction.
3264 ///
3265 /// \param __p
3266 ///    A pointer to a 256-bit integer vector containing integer values.
3267 /// \returns A 256-bit integer vector containing the moved values.
3268 static __inline __m256i __DEFAULT_FN_ATTRS
3269 _mm256_lddqu_si256(__m256i_u const *__p)
3270 {
3271   return (__m256i)__builtin_ia32_lddqu256((char const *)__p);
3272 }
3273 
3274 /* SIMD store ops */
3275 /// Stores double-precision floating point values from a 256-bit vector
3276 ///    of [4 x double] to a 32-byte aligned memory location pointed to by
3277 ///    \a __p.
3278 ///
3279 /// \headerfile <x86intrin.h>
3280 ///
3281 /// This intrinsic corresponds to the <c> VMOVAPD </c> instruction.
3282 ///
3283 /// \param __p
3284 ///    A 32-byte aligned pointer to a memory location that will receive the
3285 ///    double-precision floaing point values.
3286 /// \param __a
3287 ///    A 256-bit vector of [4 x double] containing the values to be moved.
3288 static __inline void __DEFAULT_FN_ATTRS
3289 _mm256_store_pd(double *__p, __m256d __a)
3290 {
3291   *(__m256d *)__p = __a;
3292 }
3293 
3294 /// Stores single-precision floating point values from a 256-bit vector
3295 ///    of [8 x float] to a 32-byte aligned memory location pointed to by \a __p.
3296 ///
3297 /// \headerfile <x86intrin.h>
3298 ///
3299 /// This intrinsic corresponds to the <c> VMOVAPS </c> instruction.
3300 ///
3301 /// \param __p
3302 ///    A 32-byte aligned pointer to a memory location that will receive the
3303 ///    float values.
3304 /// \param __a
3305 ///    A 256-bit vector of [8 x float] containing the values to be moved.
3306 static __inline void __DEFAULT_FN_ATTRS
3307 _mm256_store_ps(float *__p, __m256 __a)
3308 {
3309   *(__m256 *)__p = __a;
3310 }
3311 
3312 /// Stores double-precision floating point values from a 256-bit vector
3313 ///    of [4 x double] to an unaligned memory location pointed to by \a __p.
3314 ///
3315 /// \headerfile <x86intrin.h>
3316 ///
3317 /// This intrinsic corresponds to the <c> VMOVUPD </c> instruction.
3318 ///
3319 /// \param __p
3320 ///    A pointer to a memory location that will receive the double-precision
3321 ///    floating point values.
3322 /// \param __a
3323 ///    A 256-bit vector of [4 x double] containing the values to be moved.
3324 static __inline void __DEFAULT_FN_ATTRS
3325 _mm256_storeu_pd(double *__p, __m256d __a)
3326 {
3327   struct __storeu_pd {
3328     __m256d_u __v;
3329   } __attribute__((__packed__, __may_alias__));
3330   ((struct __storeu_pd*)__p)->__v = __a;
3331 }
3332 
3333 /// Stores single-precision floating point values from a 256-bit vector
3334 ///    of [8 x float] to an unaligned memory location pointed to by \a __p.
3335 ///
3336 /// \headerfile <x86intrin.h>
3337 ///
3338 /// This intrinsic corresponds to the <c> VMOVUPS </c> instruction.
3339 ///
3340 /// \param __p
3341 ///    A pointer to a memory location that will receive the float values.
3342 /// \param __a
3343 ///    A 256-bit vector of [8 x float] containing the values to be moved.
3344 static __inline void __DEFAULT_FN_ATTRS
3345 _mm256_storeu_ps(float *__p, __m256 __a)
3346 {
3347   struct __storeu_ps {
3348     __m256_u __v;
3349   } __attribute__((__packed__, __may_alias__));
3350   ((struct __storeu_ps*)__p)->__v = __a;
3351 }
3352 
3353 /// Stores integer values from a 256-bit integer vector to a 32-byte
3354 ///    aligned memory location pointed to by \a __p.
3355 ///
3356 /// \headerfile <x86intrin.h>
3357 ///
3358 /// This intrinsic corresponds to the <c> VMOVDQA </c> instruction.
3359 ///
3360 /// \param __p
3361 ///    A 32-byte aligned pointer to a memory location that will receive the
3362 ///    integer values.
3363 /// \param __a
3364 ///    A 256-bit integer vector containing the values to be moved.
3365 static __inline void __DEFAULT_FN_ATTRS
3366 _mm256_store_si256(__m256i *__p, __m256i __a)
3367 {
3368   *__p = __a;
3369 }
3370 
3371 /// Stores integer values from a 256-bit integer vector to an unaligned
3372 ///    memory location pointed to by \a __p.
3373 ///
3374 /// \headerfile <x86intrin.h>
3375 ///
3376 /// This intrinsic corresponds to the <c> VMOVDQU </c> instruction.
3377 ///
3378 /// \param __p
3379 ///    A pointer to a memory location that will receive the integer values.
3380 /// \param __a
3381 ///    A 256-bit integer vector containing the values to be moved.
3382 static __inline void __DEFAULT_FN_ATTRS
3383 _mm256_storeu_si256(__m256i_u *__p, __m256i __a)
3384 {
3385   struct __storeu_si256 {
3386     __m256i_u __v;
3387   } __attribute__((__packed__, __may_alias__));
3388   ((struct __storeu_si256*)__p)->__v = __a;
3389 }
3390 
3391 /* Conditional load ops */
3392 /// Conditionally loads double-precision floating point elements from a
3393 ///    memory location pointed to by \a __p into a 128-bit vector of
3394 ///    [2 x double], depending on the mask bits associated with each data
3395 ///    element.
3396 ///
3397 /// \headerfile <x86intrin.h>
3398 ///
3399 /// This intrinsic corresponds to the <c> VMASKMOVPD </c> instruction.
3400 ///
3401 /// \param __p
3402 ///    A pointer to a memory location that contains the double-precision
3403 ///    floating point values.
3404 /// \param __m
3405 ///    A 128-bit integer vector containing the mask. The most significant bit of
3406 ///    each data element represents the mask bits. If a mask bit is zero, the
3407 ///    corresponding value in the memory location is not loaded and the
3408 ///    corresponding field in the return value is set to zero.
3409 /// \returns A 128-bit vector of [2 x double] containing the loaded values.
3410 static __inline __m128d __DEFAULT_FN_ATTRS128
3411 _mm_maskload_pd(double const *__p, __m128i __m)
3412 {
3413   return (__m128d)__builtin_ia32_maskloadpd((const __v2df *)__p, (__v2di)__m);
3414 }
3415 
3416 /// Conditionally loads double-precision floating point elements from a
3417 ///    memory location pointed to by \a __p into a 256-bit vector of
3418 ///    [4 x double], depending on the mask bits associated with each data
3419 ///    element.
3420 ///
3421 /// \headerfile <x86intrin.h>
3422 ///
3423 /// This intrinsic corresponds to the <c> VMASKMOVPD </c> instruction.
3424 ///
3425 /// \param __p
3426 ///    A pointer to a memory location that contains the double-precision
3427 ///    floating point values.
3428 /// \param __m
3429 ///    A 256-bit integer vector of [4 x quadword] containing the mask. The most
3430 ///    significant bit of each quadword element represents the mask bits. If a
3431 ///    mask bit is zero, the corresponding value in the memory location is not
3432 ///    loaded and the corresponding field in the return value is set to zero.
3433 /// \returns A 256-bit vector of [4 x double] containing the loaded values.
3434 static __inline __m256d __DEFAULT_FN_ATTRS
3435 _mm256_maskload_pd(double const *__p, __m256i __m)
3436 {
3437   return (__m256d)__builtin_ia32_maskloadpd256((const __v4df *)__p,
3438                                                (__v4di)__m);
3439 }
3440 
3441 /// Conditionally loads single-precision floating point elements from a
3442 ///    memory location pointed to by \a __p into a 128-bit vector of
3443 ///    [4 x float], depending on the mask bits associated with each data
3444 ///    element.
3445 ///
3446 /// \headerfile <x86intrin.h>
3447 ///
3448 /// This intrinsic corresponds to the <c> VMASKMOVPS </c> instruction.
3449 ///
3450 /// \param __p
3451 ///    A pointer to a memory location that contains the single-precision
3452 ///    floating point values.
3453 /// \param __m
3454 ///    A 128-bit integer vector containing the mask. The most significant bit of
3455 ///    each data element represents the mask bits. If a mask bit is zero, the
3456 ///    corresponding value in the memory location is not loaded and the
3457 ///    corresponding field in the return value is set to zero.
3458 /// \returns A 128-bit vector of [4 x float] containing the loaded values.
3459 static __inline __m128 __DEFAULT_FN_ATTRS128
3460 _mm_maskload_ps(float const *__p, __m128i __m)
3461 {
3462   return (__m128)__builtin_ia32_maskloadps((const __v4sf *)__p, (__v4si)__m);
3463 }
3464 
3465 /// Conditionally loads single-precision floating point elements from a
3466 ///    memory location pointed to by \a __p into a 256-bit vector of
3467 ///    [8 x float], depending on the mask bits associated with each data
3468 ///    element.
3469 ///
3470 /// \headerfile <x86intrin.h>
3471 ///
3472 /// This intrinsic corresponds to the <c> VMASKMOVPS </c> instruction.
3473 ///
3474 /// \param __p
3475 ///    A pointer to a memory location that contains the single-precision
3476 ///    floating point values.
3477 /// \param __m
3478 ///    A 256-bit integer vector of [8 x dword] containing the mask. The most
3479 ///    significant bit of each dword element represents the mask bits. If a mask
3480 ///    bit is zero, the corresponding value in the memory location is not loaded
3481 ///    and the corresponding field in the return value is set to zero.
3482 /// \returns A 256-bit vector of [8 x float] containing the loaded values.
3483 static __inline __m256 __DEFAULT_FN_ATTRS
3484 _mm256_maskload_ps(float const *__p, __m256i __m)
3485 {
3486   return (__m256)__builtin_ia32_maskloadps256((const __v8sf *)__p, (__v8si)__m);
3487 }
3488 
3489 /* Conditional store ops */
3490 /// Moves single-precision floating point values from a 256-bit vector
3491 ///    of [8 x float] to a memory location pointed to by \a __p, according to
3492 ///    the specified mask.
3493 ///
3494 /// \headerfile <x86intrin.h>
3495 ///
3496 /// This intrinsic corresponds to the <c> VMASKMOVPS </c> instruction.
3497 ///
3498 /// \param __p
3499 ///    A pointer to a memory location that will receive the float values.
3500 /// \param __m
3501 ///    A 256-bit integer vector of [8 x dword] containing the mask. The most
3502 ///    significant bit of each dword element in the mask vector represents the
3503 ///    mask bits. If a mask bit is zero, the corresponding value from vector
3504 ///    \a __a is not stored and the corresponding field in the memory location
3505 ///    pointed to by \a __p is not changed.
3506 /// \param __a
3507 ///    A 256-bit vector of [8 x float] containing the values to be stored.
3508 static __inline void __DEFAULT_FN_ATTRS
3509 _mm256_maskstore_ps(float *__p, __m256i __m, __m256 __a)
3510 {
3511   __builtin_ia32_maskstoreps256((__v8sf *)__p, (__v8si)__m, (__v8sf)__a);
3512 }
3513 
3514 /// Moves double-precision values from a 128-bit vector of [2 x double]
3515 ///    to a memory location pointed to by \a __p, according to the specified
3516 ///    mask.
3517 ///
3518 /// \headerfile <x86intrin.h>
3519 ///
3520 /// This intrinsic corresponds to the <c> VMASKMOVPD </c> instruction.
3521 ///
3522 /// \param __p
3523 ///    A pointer to a memory location that will receive the float values.
3524 /// \param __m
3525 ///    A 128-bit integer vector containing the mask. The most significant bit of
3526 ///    each field in the mask vector represents the mask bits. If a mask bit is
3527 ///    zero, the corresponding value from vector \a __a is not stored and the
3528 ///    corresponding field in the memory location pointed to by \a __p is not
3529 ///    changed.
3530 /// \param __a
3531 ///    A 128-bit vector of [2 x double] containing the values to be stored.
3532 static __inline void __DEFAULT_FN_ATTRS128
3533 _mm_maskstore_pd(double *__p, __m128i __m, __m128d __a)
3534 {
3535   __builtin_ia32_maskstorepd((__v2df *)__p, (__v2di)__m, (__v2df)__a);
3536 }
3537 
3538 /// Moves double-precision values from a 256-bit vector of [4 x double]
3539 ///    to a memory location pointed to by \a __p, according to the specified
3540 ///    mask.
3541 ///
3542 /// \headerfile <x86intrin.h>
3543 ///
3544 /// This intrinsic corresponds to the <c> VMASKMOVPD </c> instruction.
3545 ///
3546 /// \param __p
3547 ///    A pointer to a memory location that will receive the float values.
3548 /// \param __m
3549 ///    A 256-bit integer vector of [4 x quadword] containing the mask. The most
3550 ///    significant bit of each quadword element in the mask vector represents
3551 ///    the mask bits. If a mask bit is zero, the corresponding value from vector
3552 ///    __a is not stored and the corresponding field in the memory location
3553 ///    pointed to by \a __p is not changed.
3554 /// \param __a
3555 ///    A 256-bit vector of [4 x double] containing the values to be stored.
3556 static __inline void __DEFAULT_FN_ATTRS
3557 _mm256_maskstore_pd(double *__p, __m256i __m, __m256d __a)
3558 {
3559   __builtin_ia32_maskstorepd256((__v4df *)__p, (__v4di)__m, (__v4df)__a);
3560 }
3561 
3562 /// Moves single-precision floating point values from a 128-bit vector
3563 ///    of [4 x float] to a memory location pointed to by \a __p, according to
3564 ///    the specified mask.
3565 ///
3566 /// \headerfile <x86intrin.h>
3567 ///
3568 /// This intrinsic corresponds to the <c> VMASKMOVPS </c> instruction.
3569 ///
3570 /// \param __p
3571 ///    A pointer to a memory location that will receive the float values.
3572 /// \param __m
3573 ///    A 128-bit integer vector containing the mask. The most significant bit of
3574 ///    each field in the mask vector represents the mask bits. If a mask bit is
3575 ///    zero, the corresponding value from vector __a is not stored and the
3576 ///    corresponding field in the memory location pointed to by \a __p is not
3577 ///    changed.
3578 /// \param __a
3579 ///    A 128-bit vector of [4 x float] containing the values to be stored.
3580 static __inline void __DEFAULT_FN_ATTRS128
3581 _mm_maskstore_ps(float *__p, __m128i __m, __m128 __a)
3582 {
3583   __builtin_ia32_maskstoreps((__v4sf *)__p, (__v4si)__m, (__v4sf)__a);
3584 }
3585 
3586 /* Cacheability support ops */
3587 /// Moves integer data from a 256-bit integer vector to a 32-byte
3588 ///    aligned memory location. To minimize caching, the data is flagged as
3589 ///    non-temporal (unlikely to be used again soon).
3590 ///
3591 /// \headerfile <x86intrin.h>
3592 ///
3593 /// This intrinsic corresponds to the <c> VMOVNTDQ </c> instruction.
3594 ///
3595 /// \param __a
3596 ///    A pointer to a 32-byte aligned memory location that will receive the
3597 ///    integer values.
3598 /// \param __b
3599 ///    A 256-bit integer vector containing the values to be moved.
3600 static __inline void __DEFAULT_FN_ATTRS
3601 _mm256_stream_si256(void *__a, __m256i __b)
3602 {
3603   typedef __v4di __v4di_aligned __attribute__((aligned(32)));
3604   __builtin_nontemporal_store((__v4di_aligned)__b, (__v4di_aligned*)__a);
3605 }
3606 
3607 /// Moves double-precision values from a 256-bit vector of [4 x double]
3608 ///    to a 32-byte aligned memory location. To minimize caching, the data is
3609 ///    flagged as non-temporal (unlikely to be used again soon).
3610 ///
3611 /// \headerfile <x86intrin.h>
3612 ///
3613 /// This intrinsic corresponds to the <c> VMOVNTPD </c> instruction.
3614 ///
3615 /// \param __a
3616 ///    A pointer to a 32-byte aligned memory location that will receive the
3617 ///    double-precision floating-point values.
3618 /// \param __b
3619 ///    A 256-bit vector of [4 x double] containing the values to be moved.
3620 static __inline void __DEFAULT_FN_ATTRS
3621 _mm256_stream_pd(void *__a, __m256d __b)
3622 {
3623   typedef __v4df __v4df_aligned __attribute__((aligned(32)));
3624   __builtin_nontemporal_store((__v4df_aligned)__b, (__v4df_aligned*)__a);
3625 }
3626 
3627 /// Moves single-precision floating point values from a 256-bit vector
3628 ///    of [8 x float] to a 32-byte aligned memory location. To minimize
3629 ///    caching, the data is flagged as non-temporal (unlikely to be used again
3630 ///    soon).
3631 ///
3632 /// \headerfile <x86intrin.h>
3633 ///
3634 /// This intrinsic corresponds to the <c> VMOVNTPS </c> instruction.
3635 ///
3636 /// \param __p
3637 ///    A pointer to a 32-byte aligned memory location that will receive the
3638 ///    single-precision floating point values.
3639 /// \param __a
3640 ///    A 256-bit vector of [8 x float] containing the values to be moved.
3641 static __inline void __DEFAULT_FN_ATTRS
3642 _mm256_stream_ps(void *__p, __m256 __a)
3643 {
3644   typedef __v8sf __v8sf_aligned __attribute__((aligned(32)));
3645   __builtin_nontemporal_store((__v8sf_aligned)__a, (__v8sf_aligned*)__p);
3646 }
3647 
3648 /* Create vectors */
3649 /// Create a 256-bit vector of [4 x double] with undefined values.
3650 ///
3651 /// \headerfile <x86intrin.h>
3652 ///
3653 /// This intrinsic has no corresponding instruction.
3654 ///
3655 /// \returns A 256-bit vector of [4 x double] containing undefined values.
3656 static __inline__ __m256d __DEFAULT_FN_ATTRS
3657 _mm256_undefined_pd(void)
3658 {
3659   return (__m256d)__builtin_ia32_undef256();
3660 }
3661 
3662 /// Create a 256-bit vector of [8 x float] with undefined values.
3663 ///
3664 /// \headerfile <x86intrin.h>
3665 ///
3666 /// This intrinsic has no corresponding instruction.
3667 ///
3668 /// \returns A 256-bit vector of [8 x float] containing undefined values.
3669 static __inline__ __m256 __DEFAULT_FN_ATTRS
3670 _mm256_undefined_ps(void)
3671 {
3672   return (__m256)__builtin_ia32_undef256();
3673 }
3674 
3675 /// Create a 256-bit integer vector with undefined values.
3676 ///
3677 /// \headerfile <x86intrin.h>
3678 ///
3679 /// This intrinsic has no corresponding instruction.
3680 ///
3681 /// \returns A 256-bit integer vector containing undefined values.
3682 static __inline__ __m256i __DEFAULT_FN_ATTRS
3683 _mm256_undefined_si256(void)
3684 {
3685   return (__m256i)__builtin_ia32_undef256();
3686 }
3687 
3688 /// Constructs a 256-bit floating-point vector of [4 x double]
3689 ///    initialized with the specified double-precision floating-point values.
3690 ///
3691 /// \headerfile <x86intrin.h>
3692 ///
3693 /// This intrinsic corresponds to the <c> VUNPCKLPD+VINSERTF128 </c>
3694 ///   instruction.
3695 ///
3696 /// \param __a
3697 ///    A double-precision floating-point value used to initialize bits [255:192]
3698 ///    of the result.
3699 /// \param __b
3700 ///    A double-precision floating-point value used to initialize bits [191:128]
3701 ///    of the result.
3702 /// \param __c
3703 ///    A double-precision floating-point value used to initialize bits [127:64]
3704 ///    of the result.
3705 /// \param __d
3706 ///    A double-precision floating-point value used to initialize bits [63:0]
3707 ///    of the result.
3708 /// \returns An initialized 256-bit floating-point vector of [4 x double].
3709 static __inline __m256d __DEFAULT_FN_ATTRS_CONSTEXPR
3710 _mm256_set_pd(double __a, double __b, double __c, double __d)
3711 {
3712   return __extension__ (__m256d){ __d, __c, __b, __a };
3713 }
3714 
3715 /// Constructs a 256-bit floating-point vector of [8 x float] initialized
3716 ///    with the specified single-precision floating-point values.
3717 ///
3718 /// \headerfile <x86intrin.h>
3719 ///
3720 /// This intrinsic is a utility function and does not correspond to a specific
3721 ///   instruction.
3722 ///
3723 /// \param __a
3724 ///    A single-precision floating-point value used to initialize bits [255:224]
3725 ///    of the result.
3726 /// \param __b
3727 ///    A single-precision floating-point value used to initialize bits [223:192]
3728 ///    of the result.
3729 /// \param __c
3730 ///    A single-precision floating-point value used to initialize bits [191:160]
3731 ///    of the result.
3732 /// \param __d
3733 ///    A single-precision floating-point value used to initialize bits [159:128]
3734 ///    of the result.
3735 /// \param __e
3736 ///    A single-precision floating-point value used to initialize bits [127:96]
3737 ///    of the result.
3738 /// \param __f
3739 ///    A single-precision floating-point value used to initialize bits [95:64]
3740 ///    of the result.
3741 /// \param __g
3742 ///    A single-precision floating-point value used to initialize bits [63:32]
3743 ///    of the result.
3744 /// \param __h
3745 ///    A single-precision floating-point value used to initialize bits [31:0]
3746 ///    of the result.
3747 /// \returns An initialized 256-bit floating-point vector of [8 x float].
3748 static __inline __m256 __DEFAULT_FN_ATTRS_CONSTEXPR
3749 _mm256_set_ps(float __a, float __b, float __c, float __d,
3750               float __e, float __f, float __g, float __h)
3751 {
3752   return __extension__ (__m256){ __h, __g, __f, __e, __d, __c, __b, __a };
3753 }
3754 
3755 /// Constructs a 256-bit integer vector initialized with the specified
3756 ///    32-bit integral values.
3757 ///
3758 /// \headerfile <x86intrin.h>
3759 ///
3760 /// This intrinsic is a utility function and does not correspond to a specific
3761 ///   instruction.
3762 ///
3763 /// \param __i0
3764 ///    A 32-bit integral value used to initialize bits [255:224] of the result.
3765 /// \param __i1
3766 ///    A 32-bit integral value used to initialize bits [223:192] of the result.
3767 /// \param __i2
3768 ///    A 32-bit integral value used to initialize bits [191:160] of the result.
3769 /// \param __i3
3770 ///    A 32-bit integral value used to initialize bits [159:128] of the result.
3771 /// \param __i4
3772 ///    A 32-bit integral value used to initialize bits [127:96] of the result.
3773 /// \param __i5
3774 ///    A 32-bit integral value used to initialize bits [95:64] of the result.
3775 /// \param __i6
3776 ///    A 32-bit integral value used to initialize bits [63:32] of the result.
3777 /// \param __i7
3778 ///    A 32-bit integral value used to initialize bits [31:0] of the result.
3779 /// \returns An initialized 256-bit integer vector.
3780 static __inline __m256i __DEFAULT_FN_ATTRS
3781 _mm256_set_epi32(int __i0, int __i1, int __i2, int __i3,
3782                  int __i4, int __i5, int __i6, int __i7)
3783 {
3784   return __extension__ (__m256i)(__v8si){ __i7, __i6, __i5, __i4, __i3, __i2, __i1, __i0 };
3785 }
3786 
3787 /// Constructs a 256-bit integer vector initialized with the specified
3788 ///    16-bit integral values.
3789 ///
3790 /// \headerfile <x86intrin.h>
3791 ///
3792 /// This intrinsic is a utility function and does not correspond to a specific
3793 ///   instruction.
3794 ///
3795 /// \param __w15
3796 ///    A 16-bit integral value used to initialize bits [255:240] of the result.
3797 /// \param __w14
3798 ///    A 16-bit integral value used to initialize bits [239:224] of the result.
3799 /// \param __w13
3800 ///    A 16-bit integral value used to initialize bits [223:208] of the result.
3801 /// \param __w12
3802 ///    A 16-bit integral value used to initialize bits [207:192] of the result.
3803 /// \param __w11
3804 ///    A 16-bit integral value used to initialize bits [191:176] of the result.
3805 /// \param __w10
3806 ///    A 16-bit integral value used to initialize bits [175:160] of the result.
3807 /// \param __w09
3808 ///    A 16-bit integral value used to initialize bits [159:144] of the result.
3809 /// \param __w08
3810 ///    A 16-bit integral value used to initialize bits [143:128] of the result.
3811 /// \param __w07
3812 ///    A 16-bit integral value used to initialize bits [127:112] of the result.
3813 /// \param __w06
3814 ///    A 16-bit integral value used to initialize bits [111:96] of the result.
3815 /// \param __w05
3816 ///    A 16-bit integral value used to initialize bits [95:80] of the result.
3817 /// \param __w04
3818 ///    A 16-bit integral value used to initialize bits [79:64] of the result.
3819 /// \param __w03
3820 ///    A 16-bit integral value used to initialize bits [63:48] of the result.
3821 /// \param __w02
3822 ///    A 16-bit integral value used to initialize bits [47:32] of the result.
3823 /// \param __w01
3824 ///    A 16-bit integral value used to initialize bits [31:16] of the result.
3825 /// \param __w00
3826 ///    A 16-bit integral value used to initialize bits [15:0] of the result.
3827 /// \returns An initialized 256-bit integer vector.
3828 static __inline __m256i __DEFAULT_FN_ATTRS
3829 _mm256_set_epi16(short __w15, short __w14, short __w13, short __w12,
3830                  short __w11, short __w10, short __w09, short __w08,
3831                  short __w07, short __w06, short __w05, short __w04,
3832                  short __w03, short __w02, short __w01, short __w00)
3833 {
3834   return __extension__ (__m256i)(__v16hi){ __w00, __w01, __w02, __w03, __w04, __w05, __w06,
3835     __w07, __w08, __w09, __w10, __w11, __w12, __w13, __w14, __w15 };
3836 }
3837 
3838 /// Constructs a 256-bit integer vector initialized with the specified
3839 ///    8-bit integral values.
3840 ///
3841 /// \headerfile <x86intrin.h>
3842 ///
3843 /// This intrinsic is a utility function and does not correspond to a specific
3844 ///   instruction.
3845 ///
3846 /// \param __b31
3847 ///    An 8-bit integral value used to initialize bits [255:248] of the result.
3848 /// \param __b30
3849 ///    An 8-bit integral value used to initialize bits [247:240] of the result.
3850 /// \param __b29
3851 ///    An 8-bit integral value used to initialize bits [239:232] of the result.
3852 /// \param __b28
3853 ///    An 8-bit integral value used to initialize bits [231:224] of the result.
3854 /// \param __b27
3855 ///    An 8-bit integral value used to initialize bits [223:216] of the result.
3856 /// \param __b26
3857 ///    An 8-bit integral value used to initialize bits [215:208] of the result.
3858 /// \param __b25
3859 ///    An 8-bit integral value used to initialize bits [207:200] of the result.
3860 /// \param __b24
3861 ///    An 8-bit integral value used to initialize bits [199:192] of the result.
3862 /// \param __b23
3863 ///    An 8-bit integral value used to initialize bits [191:184] of the result.
3864 /// \param __b22
3865 ///    An 8-bit integral value used to initialize bits [183:176] of the result.
3866 /// \param __b21
3867 ///    An 8-bit integral value used to initialize bits [175:168] of the result.
3868 /// \param __b20
3869 ///    An 8-bit integral value used to initialize bits [167:160] of the result.
3870 /// \param __b19
3871 ///    An 8-bit integral value used to initialize bits [159:152] of the result.
3872 /// \param __b18
3873 ///    An 8-bit integral value used to initialize bits [151:144] of the result.
3874 /// \param __b17
3875 ///    An 8-bit integral value used to initialize bits [143:136] of the result.
3876 /// \param __b16
3877 ///    An 8-bit integral value used to initialize bits [135:128] of the result.
3878 /// \param __b15
3879 ///    An 8-bit integral value used to initialize bits [127:120] of the result.
3880 /// \param __b14
3881 ///    An 8-bit integral value used to initialize bits [119:112] of the result.
3882 /// \param __b13
3883 ///    An 8-bit integral value used to initialize bits [111:104] of the result.
3884 /// \param __b12
3885 ///    An 8-bit integral value used to initialize bits [103:96] of the result.
3886 /// \param __b11
3887 ///    An 8-bit integral value used to initialize bits [95:88] of the result.
3888 /// \param __b10
3889 ///    An 8-bit integral value used to initialize bits [87:80] of the result.
3890 /// \param __b09
3891 ///    An 8-bit integral value used to initialize bits [79:72] of the result.
3892 /// \param __b08
3893 ///    An 8-bit integral value used to initialize bits [71:64] of the result.
3894 /// \param __b07
3895 ///    An 8-bit integral value used to initialize bits [63:56] of the result.
3896 /// \param __b06
3897 ///    An 8-bit integral value used to initialize bits [55:48] of the result.
3898 /// \param __b05
3899 ///    An 8-bit integral value used to initialize bits [47:40] of the result.
3900 /// \param __b04
3901 ///    An 8-bit integral value used to initialize bits [39:32] of the result.
3902 /// \param __b03
3903 ///    An 8-bit integral value used to initialize bits [31:24] of the result.
3904 /// \param __b02
3905 ///    An 8-bit integral value used to initialize bits [23:16] of the result.
3906 /// \param __b01
3907 ///    An 8-bit integral value used to initialize bits [15:8] of the result.
3908 /// \param __b00
3909 ///    An 8-bit integral value used to initialize bits [7:0] of the result.
3910 /// \returns An initialized 256-bit integer vector.
3911 static __inline __m256i __DEFAULT_FN_ATTRS
3912 _mm256_set_epi8(char __b31, char __b30, char __b29, char __b28,
3913                 char __b27, char __b26, char __b25, char __b24,
3914                 char __b23, char __b22, char __b21, char __b20,
3915                 char __b19, char __b18, char __b17, char __b16,
3916                 char __b15, char __b14, char __b13, char __b12,
3917                 char __b11, char __b10, char __b09, char __b08,
3918                 char __b07, char __b06, char __b05, char __b04,
3919                 char __b03, char __b02, char __b01, char __b00)
3920 {
3921   return __extension__ (__m256i)(__v32qi){
3922     __b00, __b01, __b02, __b03, __b04, __b05, __b06, __b07,
3923     __b08, __b09, __b10, __b11, __b12, __b13, __b14, __b15,
3924     __b16, __b17, __b18, __b19, __b20, __b21, __b22, __b23,
3925     __b24, __b25, __b26, __b27, __b28, __b29, __b30, __b31
3926   };
3927 }
3928 
3929 /// Constructs a 256-bit integer vector initialized with the specified
3930 ///    64-bit integral values.
3931 ///
3932 /// \headerfile <x86intrin.h>
3933 ///
3934 /// This intrinsic corresponds to the <c> VPUNPCKLQDQ+VINSERTF128 </c>
3935 ///   instruction.
3936 ///
3937 /// \param __a
3938 ///    A 64-bit integral value used to initialize bits [255:192] of the result.
3939 /// \param __b
3940 ///    A 64-bit integral value used to initialize bits [191:128] of the result.
3941 /// \param __c
3942 ///    A 64-bit integral value used to initialize bits [127:64] of the result.
3943 /// \param __d
3944 ///    A 64-bit integral value used to initialize bits [63:0] of the result.
3945 /// \returns An initialized 256-bit integer vector.
3946 static __inline __m256i __DEFAULT_FN_ATTRS
3947 _mm256_set_epi64x(long long __a, long long __b, long long __c, long long __d)
3948 {
3949   return __extension__ (__m256i)(__v4di){ __d, __c, __b, __a };
3950 }
3951 
3952 /* Create vectors with elements in reverse order */
3953 /// Constructs a 256-bit floating-point vector of [4 x double],
3954 ///    initialized in reverse order with the specified double-precision
3955 ///    floating-point values.
3956 ///
3957 /// \headerfile <x86intrin.h>
3958 ///
3959 /// This intrinsic corresponds to the <c> VUNPCKLPD+VINSERTF128 </c>
3960 ///   instruction.
3961 ///
3962 /// \param __a
3963 ///    A double-precision floating-point value used to initialize bits [63:0]
3964 ///    of the result.
3965 /// \param __b
3966 ///    A double-precision floating-point value used to initialize bits [127:64]
3967 ///    of the result.
3968 /// \param __c
3969 ///    A double-precision floating-point value used to initialize bits [191:128]
3970 ///    of the result.
3971 /// \param __d
3972 ///    A double-precision floating-point value used to initialize bits [255:192]
3973 ///    of the result.
3974 /// \returns An initialized 256-bit floating-point vector of [4 x double].
3975 static __inline __m256d __DEFAULT_FN_ATTRS_CONSTEXPR
3976 _mm256_setr_pd(double __a, double __b, double __c, double __d)
3977 {
3978   return _mm256_set_pd(__d, __c, __b, __a);
3979 }
3980 
3981 /// Constructs a 256-bit floating-point vector of [8 x float],
3982 ///    initialized in reverse order with the specified single-precision
3983 ///    float-point values.
3984 ///
3985 /// \headerfile <x86intrin.h>
3986 ///
3987 /// This intrinsic is a utility function and does not correspond to a specific
3988 ///   instruction.
3989 ///
3990 /// \param __a
3991 ///    A single-precision floating-point value used to initialize bits [31:0]
3992 ///    of the result.
3993 /// \param __b
3994 ///    A single-precision floating-point value used to initialize bits [63:32]
3995 ///    of the result.
3996 /// \param __c
3997 ///    A single-precision floating-point value used to initialize bits [95:64]
3998 ///    of the result.
3999 /// \param __d
4000 ///    A single-precision floating-point value used to initialize bits [127:96]
4001 ///    of the result.
4002 /// \param __e
4003 ///    A single-precision floating-point value used to initialize bits [159:128]
4004 ///    of the result.
4005 /// \param __f
4006 ///    A single-precision floating-point value used to initialize bits [191:160]
4007 ///    of the result.
4008 /// \param __g
4009 ///    A single-precision floating-point value used to initialize bits [223:192]
4010 ///    of the result.
4011 /// \param __h
4012 ///    A single-precision floating-point value used to initialize bits [255:224]
4013 ///    of the result.
4014 /// \returns An initialized 256-bit floating-point vector of [8 x float].
4015 static __inline __m256 __DEFAULT_FN_ATTRS_CONSTEXPR
4016 _mm256_setr_ps(float __a, float __b, float __c, float __d,
4017                float __e, float __f, float __g, float __h)
4018 {
4019   return _mm256_set_ps(__h, __g, __f, __e, __d, __c, __b, __a);
4020 }
4021 
4022 /// Constructs a 256-bit integer vector, initialized in reverse order
4023 ///    with the specified 32-bit integral values.
4024 ///
4025 /// \headerfile <x86intrin.h>
4026 ///
4027 /// This intrinsic is a utility function and does not correspond to a specific
4028 ///   instruction.
4029 ///
4030 /// \param __i0
4031 ///    A 32-bit integral value used to initialize bits [31:0] of the result.
4032 /// \param __i1
4033 ///    A 32-bit integral value used to initialize bits [63:32] of the result.
4034 /// \param __i2
4035 ///    A 32-bit integral value used to initialize bits [95:64] of the result.
4036 /// \param __i3
4037 ///    A 32-bit integral value used to initialize bits [127:96] of the result.
4038 /// \param __i4
4039 ///    A 32-bit integral value used to initialize bits [159:128] of the result.
4040 /// \param __i5
4041 ///    A 32-bit integral value used to initialize bits [191:160] of the result.
4042 /// \param __i6
4043 ///    A 32-bit integral value used to initialize bits [223:192] of the result.
4044 /// \param __i7
4045 ///    A 32-bit integral value used to initialize bits [255:224] of the result.
4046 /// \returns An initialized 256-bit integer vector.
4047 static __inline __m256i __DEFAULT_FN_ATTRS
4048 _mm256_setr_epi32(int __i0, int __i1, int __i2, int __i3,
4049                   int __i4, int __i5, int __i6, int __i7)
4050 {
4051   return _mm256_set_epi32(__i7, __i6, __i5, __i4, __i3, __i2, __i1, __i0);
4052 }
4053 
4054 /// Constructs a 256-bit integer vector, initialized in reverse order
4055 ///    with the specified 16-bit integral values.
4056 ///
4057 /// \headerfile <x86intrin.h>
4058 ///
4059 /// This intrinsic is a utility function and does not correspond to a specific
4060 ///   instruction.
4061 ///
4062 /// \param __w15
4063 ///    A 16-bit integral value used to initialize bits [15:0] of the result.
4064 /// \param __w14
4065 ///    A 16-bit integral value used to initialize bits [31:16] of the result.
4066 /// \param __w13
4067 ///    A 16-bit integral value used to initialize bits [47:32] of the result.
4068 /// \param __w12
4069 ///    A 16-bit integral value used to initialize bits [63:48] of the result.
4070 /// \param __w11
4071 ///    A 16-bit integral value used to initialize bits [79:64] of the result.
4072 /// \param __w10
4073 ///    A 16-bit integral value used to initialize bits [95:80] of the result.
4074 /// \param __w09
4075 ///    A 16-bit integral value used to initialize bits [111:96] of the result.
4076 /// \param __w08
4077 ///    A 16-bit integral value used to initialize bits [127:112] of the result.
4078 /// \param __w07
4079 ///    A 16-bit integral value used to initialize bits [143:128] of the result.
4080 /// \param __w06
4081 ///    A 16-bit integral value used to initialize bits [159:144] of the result.
4082 /// \param __w05
4083 ///    A 16-bit integral value used to initialize bits [175:160] of the result.
4084 /// \param __w04
4085 ///    A 16-bit integral value used to initialize bits [191:176] of the result.
4086 /// \param __w03
4087 ///    A 16-bit integral value used to initialize bits [207:192] of the result.
4088 /// \param __w02
4089 ///    A 16-bit integral value used to initialize bits [223:208] of the result.
4090 /// \param __w01
4091 ///    A 16-bit integral value used to initialize bits [239:224] of the result.
4092 /// \param __w00
4093 ///    A 16-bit integral value used to initialize bits [255:240] of the result.
4094 /// \returns An initialized 256-bit integer vector.
4095 static __inline __m256i __DEFAULT_FN_ATTRS
4096 _mm256_setr_epi16(short __w15, short __w14, short __w13, short __w12,
4097        short __w11, short __w10, short __w09, short __w08,
4098        short __w07, short __w06, short __w05, short __w04,
4099        short __w03, short __w02, short __w01, short __w00)
4100 {
4101   return _mm256_set_epi16(__w00, __w01, __w02, __w03,
4102                           __w04, __w05, __w06, __w07,
4103                           __w08, __w09, __w10, __w11,
4104                           __w12, __w13, __w14, __w15);
4105 }
4106 
4107 /// Constructs a 256-bit integer vector, initialized in reverse order
4108 ///    with the specified 8-bit integral values.
4109 ///
4110 /// \headerfile <x86intrin.h>
4111 ///
4112 /// This intrinsic is a utility function and does not correspond to a specific
4113 ///   instruction.
4114 ///
4115 /// \param __b31
4116 ///    An 8-bit integral value used to initialize bits [7:0] of the result.
4117 /// \param __b30
4118 ///    An 8-bit integral value used to initialize bits [15:8] of the result.
4119 /// \param __b29
4120 ///    An 8-bit integral value used to initialize bits [23:16] of the result.
4121 /// \param __b28
4122 ///    An 8-bit integral value used to initialize bits [31:24] of the result.
4123 /// \param __b27
4124 ///    An 8-bit integral value used to initialize bits [39:32] of the result.
4125 /// \param __b26
4126 ///    An 8-bit integral value used to initialize bits [47:40] of the result.
4127 /// \param __b25
4128 ///    An 8-bit integral value used to initialize bits [55:48] of the result.
4129 /// \param __b24
4130 ///    An 8-bit integral value used to initialize bits [63:56] of the result.
4131 /// \param __b23
4132 ///    An 8-bit integral value used to initialize bits [71:64] of the result.
4133 /// \param __b22
4134 ///    An 8-bit integral value used to initialize bits [79:72] of the result.
4135 /// \param __b21
4136 ///    An 8-bit integral value used to initialize bits [87:80] of the result.
4137 /// \param __b20
4138 ///    An 8-bit integral value used to initialize bits [95:88] of the result.
4139 /// \param __b19
4140 ///    An 8-bit integral value used to initialize bits [103:96] of the result.
4141 /// \param __b18
4142 ///    An 8-bit integral value used to initialize bits [111:104] of the result.
4143 /// \param __b17
4144 ///    An 8-bit integral value used to initialize bits [119:112] of the result.
4145 /// \param __b16
4146 ///    An 8-bit integral value used to initialize bits [127:120] of the result.
4147 /// \param __b15
4148 ///    An 8-bit integral value used to initialize bits [135:128] of the result.
4149 /// \param __b14
4150 ///    An 8-bit integral value used to initialize bits [143:136] of the result.
4151 /// \param __b13
4152 ///    An 8-bit integral value used to initialize bits [151:144] of the result.
4153 /// \param __b12
4154 ///    An 8-bit integral value used to initialize bits [159:152] of the result.
4155 /// \param __b11
4156 ///    An 8-bit integral value used to initialize bits [167:160] of the result.
4157 /// \param __b10
4158 ///    An 8-bit integral value used to initialize bits [175:168] of the result.
4159 /// \param __b09
4160 ///    An 8-bit integral value used to initialize bits [183:176] of the result.
4161 /// \param __b08
4162 ///    An 8-bit integral value used to initialize bits [191:184] of the result.
4163 /// \param __b07
4164 ///    An 8-bit integral value used to initialize bits [199:192] of the result.
4165 /// \param __b06
4166 ///    An 8-bit integral value used to initialize bits [207:200] of the result.
4167 /// \param __b05
4168 ///    An 8-bit integral value used to initialize bits [215:208] of the result.
4169 /// \param __b04
4170 ///    An 8-bit integral value used to initialize bits [223:216] of the result.
4171 /// \param __b03
4172 ///    An 8-bit integral value used to initialize bits [231:224] of the result.
4173 /// \param __b02
4174 ///    An 8-bit integral value used to initialize bits [239:232] of the result.
4175 /// \param __b01
4176 ///    An 8-bit integral value used to initialize bits [247:240] of the result.
4177 /// \param __b00
4178 ///    An 8-bit integral value used to initialize bits [255:248] of the result.
4179 /// \returns An initialized 256-bit integer vector.
4180 static __inline __m256i __DEFAULT_FN_ATTRS
4181 _mm256_setr_epi8(char __b31, char __b30, char __b29, char __b28,
4182                  char __b27, char __b26, char __b25, char __b24,
4183                  char __b23, char __b22, char __b21, char __b20,
4184                  char __b19, char __b18, char __b17, char __b16,
4185                  char __b15, char __b14, char __b13, char __b12,
4186                  char __b11, char __b10, char __b09, char __b08,
4187                  char __b07, char __b06, char __b05, char __b04,
4188                  char __b03, char __b02, char __b01, char __b00)
4189 {
4190   return _mm256_set_epi8(__b00, __b01, __b02, __b03, __b04, __b05, __b06, __b07,
4191                          __b08, __b09, __b10, __b11, __b12, __b13, __b14, __b15,
4192                          __b16, __b17, __b18, __b19, __b20, __b21, __b22, __b23,
4193                          __b24, __b25, __b26, __b27, __b28, __b29, __b30, __b31);
4194 }
4195 
4196 /// Constructs a 256-bit integer vector, initialized in reverse order
4197 ///    with the specified 64-bit integral values.
4198 ///
4199 /// \headerfile <x86intrin.h>
4200 ///
4201 /// This intrinsic corresponds to the <c> VPUNPCKLQDQ+VINSERTF128 </c>
4202 ///   instruction.
4203 ///
4204 /// \param __a
4205 ///    A 64-bit integral value used to initialize bits [63:0] of the result.
4206 /// \param __b
4207 ///    A 64-bit integral value used to initialize bits [127:64] of the result.
4208 /// \param __c
4209 ///    A 64-bit integral value used to initialize bits [191:128] of the result.
4210 /// \param __d
4211 ///    A 64-bit integral value used to initialize bits [255:192] of the result.
4212 /// \returns An initialized 256-bit integer vector.
4213 static __inline __m256i __DEFAULT_FN_ATTRS
4214 _mm256_setr_epi64x(long long __a, long long __b, long long __c, long long __d)
4215 {
4216   return _mm256_set_epi64x(__d, __c, __b, __a);
4217 }
4218 
4219 /* Create vectors with repeated elements */
4220 /// Constructs a 256-bit floating-point vector of [4 x double], with each
4221 ///    of the four double-precision floating-point vector elements set to the
4222 ///    specified double-precision floating-point value.
4223 ///
4224 /// \headerfile <x86intrin.h>
4225 ///
4226 /// This intrinsic corresponds to the <c> VMOVDDUP+VINSERTF128 </c> instruction.
4227 ///
4228 /// \param __w
4229 ///    A double-precision floating-point value used to initialize each vector
4230 ///    element of the result.
4231 /// \returns An initialized 256-bit floating-point vector of [4 x double].
4232 static __inline __m256d __DEFAULT_FN_ATTRS_CONSTEXPR
4233 _mm256_set1_pd(double __w)
4234 {
4235   return _mm256_set_pd(__w, __w, __w, __w);
4236 }
4237 
4238 /// Constructs a 256-bit floating-point vector of [8 x float], with each
4239 ///    of the eight single-precision floating-point vector elements set to the
4240 ///    specified single-precision floating-point value.
4241 ///
4242 /// \headerfile <x86intrin.h>
4243 ///
4244 /// This intrinsic corresponds to the <c> VPERMILPS+VINSERTF128 </c>
4245 ///   instruction.
4246 ///
4247 /// \param __w
4248 ///    A single-precision floating-point value used to initialize each vector
4249 ///    element of the result.
4250 /// \returns An initialized 256-bit floating-point vector of [8 x float].
4251 static __inline __m256 __DEFAULT_FN_ATTRS_CONSTEXPR
4252 _mm256_set1_ps(float __w)
4253 {
4254   return _mm256_set_ps(__w, __w, __w, __w, __w, __w, __w, __w);
4255 }
4256 
4257 /// Constructs a 256-bit integer vector of [8 x i32], with each of the
4258 ///    32-bit integral vector elements set to the specified 32-bit integral
4259 ///    value.
4260 ///
4261 /// \headerfile <x86intrin.h>
4262 ///
4263 /// This intrinsic corresponds to the <c> VPERMILPS+VINSERTF128 </c>
4264 ///   instruction.
4265 ///
4266 /// \param __i
4267 ///    A 32-bit integral value used to initialize each vector element of the
4268 ///    result.
4269 /// \returns An initialized 256-bit integer vector of [8 x i32].
4270 static __inline __m256i __DEFAULT_FN_ATTRS
4271 _mm256_set1_epi32(int __i)
4272 {
4273   return _mm256_set_epi32(__i, __i, __i, __i, __i, __i, __i, __i);
4274 }
4275 
4276 /// Constructs a 256-bit integer vector of [16 x i16], with each of the
4277 ///    16-bit integral vector elements set to the specified 16-bit integral
4278 ///    value.
4279 ///
4280 /// \headerfile <x86intrin.h>
4281 ///
4282 /// This intrinsic corresponds to the <c> VPSHUFB+VINSERTF128 </c> instruction.
4283 ///
4284 /// \param __w
4285 ///    A 16-bit integral value used to initialize each vector element of the
4286 ///    result.
4287 /// \returns An initialized 256-bit integer vector of [16 x i16].
4288 static __inline __m256i __DEFAULT_FN_ATTRS
4289 _mm256_set1_epi16(short __w)
4290 {
4291   return _mm256_set_epi16(__w, __w, __w, __w, __w, __w, __w, __w,
4292                           __w, __w, __w, __w, __w, __w, __w, __w);
4293 }
4294 
4295 /// Constructs a 256-bit integer vector of [32 x i8], with each of the
4296 ///    8-bit integral vector elements set to the specified 8-bit integral value.
4297 ///
4298 /// \headerfile <x86intrin.h>
4299 ///
4300 /// This intrinsic corresponds to the <c> VPSHUFB+VINSERTF128 </c> instruction.
4301 ///
4302 /// \param __b
4303 ///    An 8-bit integral value used to initialize each vector element of the
4304 ///    result.
4305 /// \returns An initialized 256-bit integer vector of [32 x i8].
4306 static __inline __m256i __DEFAULT_FN_ATTRS
4307 _mm256_set1_epi8(char __b)
4308 {
4309   return _mm256_set_epi8(__b, __b, __b, __b, __b, __b, __b, __b,
4310                          __b, __b, __b, __b, __b, __b, __b, __b,
4311                          __b, __b, __b, __b, __b, __b, __b, __b,
4312                          __b, __b, __b, __b, __b, __b, __b, __b);
4313 }
4314 
4315 /// Constructs a 256-bit integer vector of [4 x i64], with each of the
4316 ///    64-bit integral vector elements set to the specified 64-bit integral
4317 ///    value.
4318 ///
4319 /// \headerfile <x86intrin.h>
4320 ///
4321 /// This intrinsic corresponds to the <c> VMOVDDUP+VINSERTF128 </c> instruction.
4322 ///
4323 /// \param __q
4324 ///    A 64-bit integral value used to initialize each vector element of the
4325 ///    result.
4326 /// \returns An initialized 256-bit integer vector of [4 x i64].
4327 static __inline __m256i __DEFAULT_FN_ATTRS
4328 _mm256_set1_epi64x(long long __q)
4329 {
4330   return _mm256_set_epi64x(__q, __q, __q, __q);
4331 }
4332 
4333 /* Create __zeroed vectors */
4334 /// Constructs a 256-bit floating-point vector of [4 x double] with all
4335 ///    vector elements initialized to zero.
4336 ///
4337 /// \headerfile <x86intrin.h>
4338 ///
4339 /// This intrinsic corresponds to the <c> VXORPS </c> instruction.
4340 ///
4341 /// \returns A 256-bit vector of [4 x double] with all elements set to zero.
4342 static __inline __m256d __DEFAULT_FN_ATTRS_CONSTEXPR _mm256_setzero_pd(void) {
4343   return __extension__(__m256d){0.0, 0.0, 0.0, 0.0};
4344 }
4345 
4346 /// Constructs a 256-bit floating-point vector of [8 x float] with all
4347 ///    vector elements initialized to zero.
4348 ///
4349 /// \headerfile <x86intrin.h>
4350 ///
4351 /// This intrinsic corresponds to the <c> VXORPS </c> instruction.
4352 ///
4353 /// \returns A 256-bit vector of [8 x float] with all elements set to zero.
4354 static __inline __m256 __DEFAULT_FN_ATTRS_CONSTEXPR _mm256_setzero_ps(void) {
4355   return __extension__ (__m256){ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f };
4356 }
4357 
4358 /// Constructs a 256-bit integer vector initialized to zero.
4359 ///
4360 /// \headerfile <x86intrin.h>
4361 ///
4362 /// This intrinsic corresponds to the <c> VXORPS </c> instruction.
4363 ///
4364 /// \returns A 256-bit integer vector initialized to zero.
4365 static __inline __m256i __DEFAULT_FN_ATTRS_CONSTEXPR
4366 _mm256_setzero_si256(void) {
4367   return __extension__ (__m256i)(__v4di){ 0, 0, 0, 0 };
4368 }
4369 
4370 /* Cast between vector types */
4371 /// Casts a 256-bit floating-point vector of [4 x double] into a 256-bit
4372 ///    floating-point vector of [8 x float].
4373 ///
4374 /// \headerfile <x86intrin.h>
4375 ///
4376 /// This intrinsic has no corresponding instruction.
4377 ///
4378 /// \param __a
4379 ///    A 256-bit floating-point vector of [4 x double].
4380 /// \returns A 256-bit floating-point vector of [8 x float] containing the same
4381 ///    bitwise pattern as the parameter.
4382 static __inline __m256 __DEFAULT_FN_ATTRS
4383 _mm256_castpd_ps(__m256d __a)
4384 {
4385   return (__m256)__a;
4386 }
4387 
4388 /// Casts a 256-bit floating-point vector of [4 x double] into a 256-bit
4389 ///    integer vector.
4390 ///
4391 /// \headerfile <x86intrin.h>
4392 ///
4393 /// This intrinsic has no corresponding instruction.
4394 ///
4395 /// \param __a
4396 ///    A 256-bit floating-point vector of [4 x double].
4397 /// \returns A 256-bit integer vector containing the same bitwise pattern as the
4398 ///    parameter.
4399 static __inline __m256i __DEFAULT_FN_ATTRS
4400 _mm256_castpd_si256(__m256d __a)
4401 {
4402   return (__m256i)__a;
4403 }
4404 
4405 /// Casts a 256-bit floating-point vector of [8 x float] into a 256-bit
4406 ///    floating-point vector of [4 x double].
4407 ///
4408 /// \headerfile <x86intrin.h>
4409 ///
4410 /// This intrinsic has no corresponding instruction.
4411 ///
4412 /// \param __a
4413 ///    A 256-bit floating-point vector of [8 x float].
4414 /// \returns A 256-bit floating-point vector of [4 x double] containing the same
4415 ///    bitwise pattern as the parameter.
4416 static __inline __m256d __DEFAULT_FN_ATTRS
4417 _mm256_castps_pd(__m256 __a)
4418 {
4419   return (__m256d)__a;
4420 }
4421 
4422 /// Casts a 256-bit floating-point vector of [8 x float] into a 256-bit
4423 ///    integer vector.
4424 ///
4425 /// \headerfile <x86intrin.h>
4426 ///
4427 /// This intrinsic has no corresponding instruction.
4428 ///
4429 /// \param __a
4430 ///    A 256-bit floating-point vector of [8 x float].
4431 /// \returns A 256-bit integer vector containing the same bitwise pattern as the
4432 ///    parameter.
4433 static __inline __m256i __DEFAULT_FN_ATTRS
4434 _mm256_castps_si256(__m256 __a)
4435 {
4436   return (__m256i)__a;
4437 }
4438 
4439 /// Casts a 256-bit integer vector into a 256-bit floating-point vector
4440 ///    of [8 x float].
4441 ///
4442 /// \headerfile <x86intrin.h>
4443 ///
4444 /// This intrinsic has no corresponding instruction.
4445 ///
4446 /// \param __a
4447 ///    A 256-bit integer vector.
4448 /// \returns A 256-bit floating-point vector of [8 x float] containing the same
4449 ///    bitwise pattern as the parameter.
4450 static __inline __m256 __DEFAULT_FN_ATTRS
4451 _mm256_castsi256_ps(__m256i __a)
4452 {
4453   return (__m256)__a;
4454 }
4455 
4456 /// Casts a 256-bit integer vector into a 256-bit floating-point vector
4457 ///    of [4 x double].
4458 ///
4459 /// \headerfile <x86intrin.h>
4460 ///
4461 /// This intrinsic has no corresponding instruction.
4462 ///
4463 /// \param __a
4464 ///    A 256-bit integer vector.
4465 /// \returns A 256-bit floating-point vector of [4 x double] containing the same
4466 ///    bitwise pattern as the parameter.
4467 static __inline __m256d __DEFAULT_FN_ATTRS
4468 _mm256_castsi256_pd(__m256i __a)
4469 {
4470   return (__m256d)__a;
4471 }
4472 
4473 /// Returns the lower 128 bits of a 256-bit floating-point vector of
4474 ///    [4 x double] as a 128-bit floating-point vector of [2 x double].
4475 ///
4476 /// \headerfile <x86intrin.h>
4477 ///
4478 /// This intrinsic has no corresponding instruction.
4479 ///
4480 /// \param __a
4481 ///    A 256-bit floating-point vector of [4 x double].
4482 /// \returns A 128-bit floating-point vector of [2 x double] containing the
4483 ///    lower 128 bits of the parameter.
4484 static __inline __m128d __DEFAULT_FN_ATTRS
4485 _mm256_castpd256_pd128(__m256d __a)
4486 {
4487   return __builtin_shufflevector((__v4df)__a, (__v4df)__a, 0, 1);
4488 }
4489 
4490 /// Returns the lower 128 bits of a 256-bit floating-point vector of
4491 ///    [8 x float] as a 128-bit floating-point vector of [4 x float].
4492 ///
4493 /// \headerfile <x86intrin.h>
4494 ///
4495 /// This intrinsic has no corresponding instruction.
4496 ///
4497 /// \param __a
4498 ///    A 256-bit floating-point vector of [8 x float].
4499 /// \returns A 128-bit floating-point vector of [4 x float] containing the
4500 ///    lower 128 bits of the parameter.
4501 static __inline __m128 __DEFAULT_FN_ATTRS
4502 _mm256_castps256_ps128(__m256 __a)
4503 {
4504   return __builtin_shufflevector((__v8sf)__a, (__v8sf)__a, 0, 1, 2, 3);
4505 }
4506 
4507 /// Truncates a 256-bit integer vector into a 128-bit integer vector.
4508 ///
4509 /// \headerfile <x86intrin.h>
4510 ///
4511 /// This intrinsic has no corresponding instruction.
4512 ///
4513 /// \param __a
4514 ///    A 256-bit integer vector.
4515 /// \returns A 128-bit integer vector containing the lower 128 bits of the
4516 ///    parameter.
4517 static __inline __m128i __DEFAULT_FN_ATTRS
4518 _mm256_castsi256_si128(__m256i __a)
4519 {
4520   return __builtin_shufflevector((__v4di)__a, (__v4di)__a, 0, 1);
4521 }
4522 
4523 /// Constructs a 256-bit floating-point vector of [4 x double] from a
4524 ///    128-bit floating-point vector of [2 x double].
4525 ///
4526 ///    The lower 128 bits contain the value of the source vector. The contents
4527 ///    of the upper 128 bits are undefined.
4528 ///
4529 /// \headerfile <x86intrin.h>
4530 ///
4531 /// This intrinsic has no corresponding instruction.
4532 ///
4533 /// \param __a
4534 ///    A 128-bit vector of [2 x double].
4535 /// \returns A 256-bit floating-point vector of [4 x double]. The lower 128 bits
4536 ///    contain the value of the parameter. The contents of the upper 128 bits
4537 ///    are undefined.
4538 static __inline __m256d __DEFAULT_FN_ATTRS
4539 _mm256_castpd128_pd256(__m128d __a)
4540 {
4541   return __builtin_shufflevector(
4542       (__v2df)__a, (__v2df)__builtin_nondeterministic_value(__a), 0, 1, 2, 3);
4543 }
4544 
4545 /// Constructs a 256-bit floating-point vector of [8 x float] from a
4546 ///    128-bit floating-point vector of [4 x float].
4547 ///
4548 ///    The lower 128 bits contain the value of the source vector. The contents
4549 ///    of the upper 128 bits are undefined.
4550 ///
4551 /// \headerfile <x86intrin.h>
4552 ///
4553 /// This intrinsic has no corresponding instruction.
4554 ///
4555 /// \param __a
4556 ///    A 128-bit vector of [4 x float].
4557 /// \returns A 256-bit floating-point vector of [8 x float]. The lower 128 bits
4558 ///    contain the value of the parameter. The contents of the upper 128 bits
4559 ///    are undefined.
4560 static __inline __m256 __DEFAULT_FN_ATTRS
4561 _mm256_castps128_ps256(__m128 __a)
4562 {
4563   return __builtin_shufflevector((__v4sf)__a,
4564                                  (__v4sf)__builtin_nondeterministic_value(__a),
4565                                  0, 1, 2, 3, 4, 5, 6, 7);
4566 }
4567 
4568 /// Constructs a 256-bit integer vector from a 128-bit integer vector.
4569 ///
4570 ///    The lower 128 bits contain the value of the source vector. The contents
4571 ///    of the upper 128 bits are undefined.
4572 ///
4573 /// \headerfile <x86intrin.h>
4574 ///
4575 /// This intrinsic has no corresponding instruction.
4576 ///
4577 /// \param __a
4578 ///    A 128-bit integer vector.
4579 /// \returns A 256-bit integer vector. The lower 128 bits contain the value of
4580 ///    the parameter. The contents of the upper 128 bits are undefined.
4581 static __inline __m256i __DEFAULT_FN_ATTRS
4582 _mm256_castsi128_si256(__m128i __a)
4583 {
4584   return __builtin_shufflevector(
4585       (__v2di)__a, (__v2di)__builtin_nondeterministic_value(__a), 0, 1, 2, 3);
4586 }
4587 
4588 /// Constructs a 256-bit floating-point vector of [4 x double] from a
4589 ///    128-bit floating-point vector of [2 x double]. The lower 128 bits
4590 ///    contain the value of the source vector. The upper 128 bits are set
4591 ///    to zero.
4592 ///
4593 /// \headerfile <x86intrin.h>
4594 ///
4595 /// This intrinsic has no corresponding instruction.
4596 ///
4597 /// \param __a
4598 ///    A 128-bit vector of [2 x double].
4599 /// \returns A 256-bit floating-point vector of [4 x double]. The lower 128 bits
4600 ///    contain the value of the parameter. The upper 128 bits are set to zero.
4601 static __inline __m256d __DEFAULT_FN_ATTRS
4602 _mm256_zextpd128_pd256(__m128d __a)
4603 {
4604   return __builtin_shufflevector((__v2df)__a, (__v2df)_mm_setzero_pd(), 0, 1, 2, 3);
4605 }
4606 
4607 /// Constructs a 256-bit floating-point vector of [8 x float] from a
4608 ///    128-bit floating-point vector of [4 x float]. The lower 128 bits contain
4609 ///    the value of the source vector. The upper 128 bits are set to zero.
4610 ///
4611 /// \headerfile <x86intrin.h>
4612 ///
4613 /// This intrinsic has no corresponding instruction.
4614 ///
4615 /// \param __a
4616 ///    A 128-bit vector of [4 x float].
4617 /// \returns A 256-bit floating-point vector of [8 x float]. The lower 128 bits
4618 ///    contain the value of the parameter. The upper 128 bits are set to zero.
4619 static __inline __m256 __DEFAULT_FN_ATTRS
4620 _mm256_zextps128_ps256(__m128 __a)
4621 {
4622   return __builtin_shufflevector((__v4sf)__a, (__v4sf)_mm_setzero_ps(), 0, 1, 2, 3, 4, 5, 6, 7);
4623 }
4624 
4625 /// Constructs a 256-bit integer vector from a 128-bit integer vector.
4626 ///    The lower 128 bits contain the value of the source vector. The upper
4627 ///    128 bits are set to zero.
4628 ///
4629 /// \headerfile <x86intrin.h>
4630 ///
4631 /// This intrinsic has no corresponding instruction.
4632 ///
4633 /// \param __a
4634 ///    A 128-bit integer vector.
4635 /// \returns A 256-bit integer vector. The lower 128 bits contain the value of
4636 ///    the parameter. The upper 128 bits are set to zero.
4637 static __inline __m256i __DEFAULT_FN_ATTRS
4638 _mm256_zextsi128_si256(__m128i __a)
4639 {
4640   return __builtin_shufflevector((__v2di)__a, (__v2di)_mm_setzero_si128(), 0, 1, 2, 3);
4641 }
4642 
4643 /*
4644    Vector insert.
4645    We use macros rather than inlines because we only want to accept
4646    invocations where the immediate M is a constant expression.
4647 */
4648 /// Constructs a new 256-bit vector of [8 x float] by first duplicating
4649 ///    a 256-bit vector of [8 x float] given in the first parameter, and then
4650 ///    replacing either the upper or the lower 128 bits with the contents of a
4651 ///    128-bit vector of [4 x float] in the second parameter.
4652 ///
4653 ///    The immediate integer parameter determines between the upper or the lower
4654 ///    128 bits.
4655 ///
4656 /// \headerfile <x86intrin.h>
4657 ///
4658 /// \code
4659 /// __m256 _mm256_insertf128_ps(__m256 V1, __m128 V2, const int M);
4660 /// \endcode
4661 ///
4662 /// This intrinsic corresponds to the <c> VINSERTF128 </c> instruction.
4663 ///
4664 /// \param V1
4665 ///    A 256-bit vector of [8 x float]. This vector is copied to the result
4666 ///    first, and then either the upper or the lower 128 bits of the result will
4667 ///    be replaced by the contents of \a V2.
4668 /// \param V2
4669 ///    A 128-bit vector of [4 x float]. The contents of this parameter are
4670 ///    written to either the upper or the lower 128 bits of the result depending
4671 ///    on the value of parameter \a M.
4672 /// \param M
4673 ///    An immediate integer. The least significant bit determines how the values
4674 ///    from the two parameters are interleaved: \n
4675 ///    If bit [0] of \a M is 0, \a V2 are copied to bits [127:0] of the result,
4676 ///    and bits [255:128] of \a V1 are copied to bits [255:128] of the
4677 ///    result. \n
4678 ///    If bit [0] of \a M is 1, \a V2 are copied to bits [255:128] of the
4679 ///    result, and bits [127:0] of \a V1 are copied to bits [127:0] of the
4680 ///    result.
4681 /// \returns A 256-bit vector of [8 x float] containing the interleaved values.
4682 #define _mm256_insertf128_ps(V1, V2, M) \
4683   ((__m256)__builtin_ia32_vinsertf128_ps256((__v8sf)(__m256)(V1), \
4684                                             (__v4sf)(__m128)(V2), (int)(M)))
4685 
4686 /// Constructs a new 256-bit vector of [4 x double] by first duplicating
4687 ///    a 256-bit vector of [4 x double] given in the first parameter, and then
4688 ///    replacing either the upper or the lower 128 bits with the contents of a
4689 ///    128-bit vector of [2 x double] in the second parameter.
4690 ///
4691 ///    The immediate integer parameter determines between the upper or the lower
4692 ///    128 bits.
4693 ///
4694 /// \headerfile <x86intrin.h>
4695 ///
4696 /// \code
4697 /// __m256d _mm256_insertf128_pd(__m256d V1, __m128d V2, const int M);
4698 /// \endcode
4699 ///
4700 /// This intrinsic corresponds to the <c> VINSERTF128 </c> instruction.
4701 ///
4702 /// \param V1
4703 ///    A 256-bit vector of [4 x double]. This vector is copied to the result
4704 ///    first, and then either the upper or the lower 128 bits of the result will
4705 ///    be replaced by the contents of \a V2.
4706 /// \param V2
4707 ///    A 128-bit vector of [2 x double]. The contents of this parameter are
4708 ///    written to either the upper or the lower 128 bits of the result depending
4709 ///    on the value of parameter \a M.
4710 /// \param M
4711 ///    An immediate integer. The least significant bit determines how the values
4712 ///    from the two parameters are interleaved: \n
4713 ///    If bit [0] of \a M is 0, \a V2 are copied to bits [127:0] of the result,
4714 ///    and bits [255:128] of \a V1 are copied to bits [255:128] of the
4715 ///    result. \n
4716 ///    If bit [0] of \a M is 1, \a V2 are copied to bits [255:128] of the
4717 ///    result, and bits [127:0] of \a V1 are copied to bits [127:0] of the
4718 ///    result.
4719 /// \returns A 256-bit vector of [4 x double] containing the interleaved values.
4720 #define _mm256_insertf128_pd(V1, V2, M) \
4721   ((__m256d)__builtin_ia32_vinsertf128_pd256((__v4df)(__m256d)(V1), \
4722                                              (__v2df)(__m128d)(V2), (int)(M)))
4723 
4724 /// Constructs a new 256-bit integer vector by first duplicating a
4725 ///    256-bit integer vector given in the first parameter, and then replacing
4726 ///    either the upper or the lower 128 bits with the contents of a 128-bit
4727 ///    integer vector in the second parameter.
4728 ///
4729 ///    The immediate integer parameter determines between the upper or the lower
4730 ///    128 bits.
4731 ///
4732 /// \headerfile <x86intrin.h>
4733 ///
4734 /// \code
4735 /// __m256i _mm256_insertf128_si256(__m256i V1, __m128i V2, const int M);
4736 /// \endcode
4737 ///
4738 /// This intrinsic corresponds to the <c> VINSERTF128 </c> instruction.
4739 ///
4740 /// \param V1
4741 ///    A 256-bit integer vector. This vector is copied to the result first, and
4742 ///    then either the upper or the lower 128 bits of the result will be
4743 ///    replaced by the contents of \a V2.
4744 /// \param V2
4745 ///    A 128-bit integer vector. The contents of this parameter are written to
4746 ///    either the upper or the lower 128 bits of the result depending on the
4747 ///     value of parameter \a M.
4748 /// \param M
4749 ///    An immediate integer. The least significant bit determines how the values
4750 ///    from the two parameters are interleaved: \n
4751 ///    If bit [0] of \a M is 0, \a V2 are copied to bits [127:0] of the result,
4752 ///    and bits [255:128] of \a V1 are copied to bits [255:128] of the
4753 ///    result. \n
4754 ///    If bit [0] of \a M is 1, \a V2 are copied to bits [255:128] of the
4755 ///    result, and bits [127:0] of \a V1 are copied to bits [127:0] of the
4756 ///    result.
4757 /// \returns A 256-bit integer vector containing the interleaved values.
4758 #define _mm256_insertf128_si256(V1, V2, M) \
4759   ((__m256i)__builtin_ia32_vinsertf128_si256((__v8si)(__m256i)(V1), \
4760                                              (__v4si)(__m128i)(V2), (int)(M)))
4761 
4762 /*
4763    Vector extract.
4764    We use macros rather than inlines because we only want to accept
4765    invocations where the immediate M is a constant expression.
4766 */
4767 /// Extracts either the upper or the lower 128 bits from a 256-bit vector
4768 ///    of [8 x float], as determined by the immediate integer parameter, and
4769 ///    returns the extracted bits as a 128-bit vector of [4 x float].
4770 ///
4771 /// \headerfile <x86intrin.h>
4772 ///
4773 /// \code
4774 /// __m128 _mm256_extractf128_ps(__m256 V, const int M);
4775 /// \endcode
4776 ///
4777 /// This intrinsic corresponds to the <c> VEXTRACTF128 </c> instruction.
4778 ///
4779 /// \param V
4780 ///    A 256-bit vector of [8 x float].
4781 /// \param M
4782 ///    An immediate integer. The least significant bit determines which bits are
4783 ///    extracted from the first parameter: \n
4784 ///    If bit [0] of \a M is 0, bits [127:0] of \a V are copied to the
4785 ///    result. \n
4786 ///    If bit [0] of \a M is 1, bits [255:128] of \a V are copied to the result.
4787 /// \returns A 128-bit vector of [4 x float] containing the extracted bits.
4788 #define _mm256_extractf128_ps(V, M) \
4789   ((__m128)__builtin_ia32_vextractf128_ps256((__v8sf)(__m256)(V), (int)(M)))
4790 
4791 /// Extracts either the upper or the lower 128 bits from a 256-bit vector
4792 ///    of [4 x double], as determined by the immediate integer parameter, and
4793 ///    returns the extracted bits as a 128-bit vector of [2 x double].
4794 ///
4795 /// \headerfile <x86intrin.h>
4796 ///
4797 /// \code
4798 /// __m128d _mm256_extractf128_pd(__m256d V, const int M);
4799 /// \endcode
4800 ///
4801 /// This intrinsic corresponds to the <c> VEXTRACTF128 </c> instruction.
4802 ///
4803 /// \param V
4804 ///    A 256-bit vector of [4 x double].
4805 /// \param M
4806 ///    An immediate integer. The least significant bit determines which bits are
4807 ///    extracted from the first parameter: \n
4808 ///    If bit [0] of \a M is 0, bits [127:0] of \a V are copied to the
4809 ///    result. \n
4810 ///    If bit [0] of \a M is 1, bits [255:128] of \a V are copied to the result.
4811 /// \returns A 128-bit vector of [2 x double] containing the extracted bits.
4812 #define _mm256_extractf128_pd(V, M) \
4813   ((__m128d)__builtin_ia32_vextractf128_pd256((__v4df)(__m256d)(V), (int)(M)))
4814 
4815 /// Extracts either the upper or the lower 128 bits from a 256-bit
4816 ///    integer vector, as determined by the immediate integer parameter, and
4817 ///    returns the extracted bits as a 128-bit integer vector.
4818 ///
4819 /// \headerfile <x86intrin.h>
4820 ///
4821 /// \code
4822 /// __m128i _mm256_extractf128_si256(__m256i V, const int M);
4823 /// \endcode
4824 ///
4825 /// This intrinsic corresponds to the <c> VEXTRACTF128 </c> instruction.
4826 ///
4827 /// \param V
4828 ///    A 256-bit integer vector.
4829 /// \param M
4830 ///    An immediate integer. The least significant bit determines which bits are
4831 ///    extracted from the first parameter:  \n
4832 ///    If bit [0] of \a M is 0, bits [127:0] of \a V are copied to the
4833 ///    result. \n
4834 ///    If bit [0] of \a M is 1, bits [255:128] of \a V are copied to the result.
4835 /// \returns A 128-bit integer vector containing the extracted bits.
4836 #define _mm256_extractf128_si256(V, M) \
4837   ((__m128i)__builtin_ia32_vextractf128_si256((__v8si)(__m256i)(V), (int)(M)))
4838 
4839 /// Constructs a 256-bit floating-point vector of [8 x float] by
4840 ///    concatenating two 128-bit floating-point vectors of [4 x float].
4841 ///
4842 /// \headerfile <x86intrin.h>
4843 ///
4844 /// This intrinsic corresponds to the <c> VINSERTF128 </c> instruction.
4845 ///
4846 /// \param __hi
4847 ///    A 128-bit floating-point vector of [4 x float] to be copied to the upper
4848 ///    128 bits of the result.
4849 /// \param __lo
4850 ///    A 128-bit floating-point vector of [4 x float] to be copied to the lower
4851 ///    128 bits of the result.
4852 /// \returns A 256-bit floating-point vector of [8 x float] containing the
4853 ///    concatenated result.
4854 static __inline __m256 __DEFAULT_FN_ATTRS
4855 _mm256_set_m128 (__m128 __hi, __m128 __lo)
4856 {
4857   return (__m256) __builtin_shufflevector((__v4sf)__lo, (__v4sf)__hi, 0, 1, 2, 3, 4, 5, 6, 7);
4858 }
4859 
4860 /// Constructs a 256-bit floating-point vector of [4 x double] by
4861 ///    concatenating two 128-bit floating-point vectors of [2 x double].
4862 ///
4863 /// \headerfile <x86intrin.h>
4864 ///
4865 /// This intrinsic corresponds to the <c> VINSERTF128 </c> instruction.
4866 ///
4867 /// \param __hi
4868 ///    A 128-bit floating-point vector of [2 x double] to be copied to the upper
4869 ///    128 bits of the result.
4870 /// \param __lo
4871 ///    A 128-bit floating-point vector of [2 x double] to be copied to the lower
4872 ///    128 bits of the result.
4873 /// \returns A 256-bit floating-point vector of [4 x double] containing the
4874 ///    concatenated result.
4875 static __inline __m256d __DEFAULT_FN_ATTRS
4876 _mm256_set_m128d (__m128d __hi, __m128d __lo)
4877 {
4878   return (__m256d) __builtin_shufflevector((__v2df)__lo, (__v2df)__hi, 0, 1, 2, 3);
4879 }
4880 
4881 /// Constructs a 256-bit integer vector by concatenating two 128-bit
4882 ///    integer vectors.
4883 ///
4884 /// \headerfile <x86intrin.h>
4885 ///
4886 /// This intrinsic corresponds to the <c> VINSERTF128 </c> instruction.
4887 ///
4888 /// \param __hi
4889 ///    A 128-bit integer vector to be copied to the upper 128 bits of the
4890 ///    result.
4891 /// \param __lo
4892 ///    A 128-bit integer vector to be copied to the lower 128 bits of the
4893 ///    result.
4894 /// \returns A 256-bit integer vector containing the concatenated result.
4895 static __inline __m256i __DEFAULT_FN_ATTRS
4896 _mm256_set_m128i (__m128i __hi, __m128i __lo)
4897 {
4898   return (__m256i) __builtin_shufflevector((__v2di)__lo, (__v2di)__hi, 0, 1, 2, 3);
4899 }
4900 
4901 /// Constructs a 256-bit floating-point vector of [8 x float] by
4902 ///    concatenating two 128-bit floating-point vectors of [4 x float]. This is
4903 ///    similar to _mm256_set_m128, but the order of the input parameters is
4904 ///    swapped.
4905 ///
4906 /// \headerfile <x86intrin.h>
4907 ///
4908 /// This intrinsic corresponds to the <c> VINSERTF128 </c> instruction.
4909 ///
4910 /// \param __lo
4911 ///    A 128-bit floating-point vector of [4 x float] to be copied to the lower
4912 ///    128 bits of the result.
4913 /// \param __hi
4914 ///    A 128-bit floating-point vector of [4 x float] to be copied to the upper
4915 ///    128 bits of the result.
4916 /// \returns A 256-bit floating-point vector of [8 x float] containing the
4917 ///    concatenated result.
4918 static __inline __m256 __DEFAULT_FN_ATTRS
4919 _mm256_setr_m128 (__m128 __lo, __m128 __hi)
4920 {
4921   return _mm256_set_m128(__hi, __lo);
4922 }
4923 
4924 /// Constructs a 256-bit floating-point vector of [4 x double] by
4925 ///    concatenating two 128-bit floating-point vectors of [2 x double]. This is
4926 ///    similar to _mm256_set_m128d, but the order of the input parameters is
4927 ///    swapped.
4928 ///
4929 /// \headerfile <x86intrin.h>
4930 ///
4931 /// This intrinsic corresponds to the <c> VINSERTF128 </c> instruction.
4932 ///
4933 /// \param __lo
4934 ///    A 128-bit floating-point vector of [2 x double] to be copied to the lower
4935 ///    128 bits of the result.
4936 /// \param __hi
4937 ///    A 128-bit floating-point vector of [2 x double] to be copied to the upper
4938 ///    128 bits of the result.
4939 /// \returns A 256-bit floating-point vector of [4 x double] containing the
4940 ///    concatenated result.
4941 static __inline __m256d __DEFAULT_FN_ATTRS
4942 _mm256_setr_m128d (__m128d __lo, __m128d __hi)
4943 {
4944   return (__m256d)_mm256_set_m128d(__hi, __lo);
4945 }
4946 
4947 /// Constructs a 256-bit integer vector by concatenating two 128-bit
4948 ///    integer vectors. This is similar to _mm256_set_m128i, but the order of
4949 ///    the input parameters is swapped.
4950 ///
4951 /// \headerfile <x86intrin.h>
4952 ///
4953 /// This intrinsic corresponds to the <c> VINSERTF128 </c> instruction.
4954 ///
4955 /// \param __lo
4956 ///    A 128-bit integer vector to be copied to the lower 128 bits of the
4957 ///    result.
4958 /// \param __hi
4959 ///    A 128-bit integer vector to be copied to the upper 128 bits of the
4960 ///    result.
4961 /// \returns A 256-bit integer vector containing the concatenated result.
4962 static __inline __m256i __DEFAULT_FN_ATTRS
4963 _mm256_setr_m128i (__m128i __lo, __m128i __hi)
4964 {
4965   return (__m256i)_mm256_set_m128i(__hi, __lo);
4966 }
4967 
4968 /* SIMD load ops (unaligned) */
4969 /// Loads two 128-bit floating-point vectors of [4 x float] from
4970 ///    unaligned memory locations and constructs a 256-bit floating-point vector
4971 ///    of [8 x float] by concatenating the two 128-bit vectors.
4972 ///
4973 /// \headerfile <x86intrin.h>
4974 ///
4975 /// This intrinsic corresponds to load instructions followed by the
4976 ///   <c> VINSERTF128 </c> instruction.
4977 ///
4978 /// \param __addr_hi
4979 ///    A pointer to a 128-bit memory location containing 4 consecutive
4980 ///    single-precision floating-point values. These values are to be copied to
4981 ///    bits[255:128] of the result. The address of the memory location does not
4982 ///    have to be aligned.
4983 /// \param __addr_lo
4984 ///    A pointer to a 128-bit memory location containing 4 consecutive
4985 ///    single-precision floating-point values. These values are to be copied to
4986 ///    bits[127:0] of the result. The address of the memory location does not
4987 ///    have to be aligned.
4988 /// \returns A 256-bit floating-point vector of [8 x float] containing the
4989 ///    concatenated result.
4990 static __inline __m256 __DEFAULT_FN_ATTRS
4991 _mm256_loadu2_m128(float const *__addr_hi, float const *__addr_lo)
4992 {
4993   return _mm256_set_m128(_mm_loadu_ps(__addr_hi), _mm_loadu_ps(__addr_lo));
4994 }
4995 
4996 /// Loads two 128-bit floating-point vectors of [2 x double] from
4997 ///    unaligned memory locations and constructs a 256-bit floating-point vector
4998 ///    of [4 x double] by concatenating the two 128-bit vectors.
4999 ///
5000 /// \headerfile <x86intrin.h>
5001 ///
5002 /// This intrinsic corresponds to load instructions followed by the
5003 ///   <c> VINSERTF128 </c> instruction.
5004 ///
5005 /// \param __addr_hi
5006 ///    A pointer to a 128-bit memory location containing two consecutive
5007 ///    double-precision floating-point values. These values are to be copied to
5008 ///    bits[255:128] of the result. The address of the memory location does not
5009 ///    have to be aligned.
5010 /// \param __addr_lo
5011 ///    A pointer to a 128-bit memory location containing two consecutive
5012 ///    double-precision floating-point values. These values are to be copied to
5013 ///    bits[127:0] of the result. The address of the memory location does not
5014 ///    have to be aligned.
5015 /// \returns A 256-bit floating-point vector of [4 x double] containing the
5016 ///    concatenated result.
5017 static __inline __m256d __DEFAULT_FN_ATTRS
5018 _mm256_loadu2_m128d(double const *__addr_hi, double const *__addr_lo)
5019 {
5020   return _mm256_set_m128d(_mm_loadu_pd(__addr_hi), _mm_loadu_pd(__addr_lo));
5021 }
5022 
5023 /// Loads two 128-bit integer vectors from unaligned memory locations and
5024 ///    constructs a 256-bit integer vector by concatenating the two 128-bit
5025 ///    vectors.
5026 ///
5027 /// \headerfile <x86intrin.h>
5028 ///
5029 /// This intrinsic corresponds to load instructions followed by the
5030 ///   <c> VINSERTF128 </c> instruction.
5031 ///
5032 /// \param __addr_hi
5033 ///    A pointer to a 128-bit memory location containing a 128-bit integer
5034 ///    vector. This vector is to be copied to bits[255:128] of the result. The
5035 ///    address of the memory location does not have to be aligned.
5036 /// \param __addr_lo
5037 ///    A pointer to a 128-bit memory location containing a 128-bit integer
5038 ///    vector. This vector is to be copied to bits[127:0] of the result. The
5039 ///    address of the memory location does not have to be aligned.
5040 /// \returns A 256-bit integer vector containing the concatenated result.
5041 static __inline __m256i __DEFAULT_FN_ATTRS
5042 _mm256_loadu2_m128i(__m128i_u const *__addr_hi, __m128i_u const *__addr_lo)
5043 {
5044    return _mm256_set_m128i(_mm_loadu_si128(__addr_hi), _mm_loadu_si128(__addr_lo));
5045 }
5046 
5047 /* SIMD store ops (unaligned) */
5048 /// Stores the upper and lower 128 bits of a 256-bit floating-point
5049 ///    vector of [8 x float] into two different unaligned memory locations.
5050 ///
5051 /// \headerfile <x86intrin.h>
5052 ///
5053 /// This intrinsic corresponds to the <c> VEXTRACTF128 </c> instruction and the
5054 ///   store instructions.
5055 ///
5056 /// \param __addr_hi
5057 ///    A pointer to a 128-bit memory location. Bits[255:128] of \a __a are to be
5058 ///    copied to this memory location. The address of this memory location does
5059 ///    not have to be aligned.
5060 /// \param __addr_lo
5061 ///    A pointer to a 128-bit memory location. Bits[127:0] of \a __a are to be
5062 ///    copied to this memory location. The address of this memory location does
5063 ///    not have to be aligned.
5064 /// \param __a
5065 ///    A 256-bit floating-point vector of [8 x float].
5066 static __inline void __DEFAULT_FN_ATTRS
5067 _mm256_storeu2_m128(float *__addr_hi, float *__addr_lo, __m256 __a)
5068 {
5069   __m128 __v128;
5070 
5071   __v128 = _mm256_castps256_ps128(__a);
5072   _mm_storeu_ps(__addr_lo, __v128);
5073   __v128 = _mm256_extractf128_ps(__a, 1);
5074   _mm_storeu_ps(__addr_hi, __v128);
5075 }
5076 
5077 /// Stores the upper and lower 128 bits of a 256-bit floating-point
5078 ///    vector of [4 x double] into two different unaligned memory locations.
5079 ///
5080 /// \headerfile <x86intrin.h>
5081 ///
5082 /// This intrinsic corresponds to the <c> VEXTRACTF128 </c> instruction and the
5083 ///   store instructions.
5084 ///
5085 /// \param __addr_hi
5086 ///    A pointer to a 128-bit memory location. Bits[255:128] of \a __a are to be
5087 ///    copied to this memory location. The address of this memory location does
5088 ///    not have to be aligned.
5089 /// \param __addr_lo
5090 ///    A pointer to a 128-bit memory location. Bits[127:0] of \a __a are to be
5091 ///    copied to this memory location. The address of this memory location does
5092 ///    not have to be aligned.
5093 /// \param __a
5094 ///    A 256-bit floating-point vector of [4 x double].
5095 static __inline void __DEFAULT_FN_ATTRS
5096 _mm256_storeu2_m128d(double *__addr_hi, double *__addr_lo, __m256d __a)
5097 {
5098   __m128d __v128;
5099 
5100   __v128 = _mm256_castpd256_pd128(__a);
5101   _mm_storeu_pd(__addr_lo, __v128);
5102   __v128 = _mm256_extractf128_pd(__a, 1);
5103   _mm_storeu_pd(__addr_hi, __v128);
5104 }
5105 
5106 /// Stores the upper and lower 128 bits of a 256-bit integer vector into
5107 ///    two different unaligned memory locations.
5108 ///
5109 /// \headerfile <x86intrin.h>
5110 ///
5111 /// This intrinsic corresponds to the <c> VEXTRACTF128 </c> instruction and the
5112 ///   store instructions.
5113 ///
5114 /// \param __addr_hi
5115 ///    A pointer to a 128-bit memory location. Bits[255:128] of \a __a are to be
5116 ///    copied to this memory location. The address of this memory location does
5117 ///    not have to be aligned.
5118 /// \param __addr_lo
5119 ///    A pointer to a 128-bit memory location. Bits[127:0] of \a __a are to be
5120 ///    copied to this memory location. The address of this memory location does
5121 ///    not have to be aligned.
5122 /// \param __a
5123 ///    A 256-bit integer vector.
5124 static __inline void __DEFAULT_FN_ATTRS
5125 _mm256_storeu2_m128i(__m128i_u *__addr_hi, __m128i_u *__addr_lo, __m256i __a)
5126 {
5127   __m128i __v128;
5128 
5129   __v128 = _mm256_castsi256_si128(__a);
5130   _mm_storeu_si128(__addr_lo, __v128);
5131   __v128 = _mm256_extractf128_si256(__a, 1);
5132   _mm_storeu_si128(__addr_hi, __v128);
5133 }
5134 
5135 #undef __DEFAULT_FN_ATTRS
5136 #undef __DEFAULT_FN_ATTRS_CONSTEXPR
5137 #undef __DEFAULT_FN_ATTRS128
5138 #undef __DEFAULT_FN_ATTRS128_CONSTEXPR
5139 
5140 #endif /* __AVXINTRIN_H */
5141