xref: /netbsd-src/sys/arch/virt68k/virt68k/pmap_bootstrap.c (revision 6e3da4dd3ef9ccf53e6b3e71e470579a485fd357)
1 /*	$NetBSD: pmap_bootstrap.c,v 1.4 2024/01/02 07:46:49 thorpej Exp $	*/
2 
3 /*
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * the Systems Programming Group of the University of Utah Computer
9  * Science Department.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *	@(#)pmap_bootstrap.c	8.1 (Berkeley) 6/10/93
36  */
37 
38 #include <sys/cdefs.h>
39 __KERNEL_RCSID(0, "$NetBSD: pmap_bootstrap.c,v 1.4 2024/01/02 07:46:49 thorpej Exp $");
40 
41 #include "opt_m68k_arch.h"
42 
43 #include <sys/param.h>
44 #include <sys/kcore.h>
45 #include <uvm/uvm_extern.h>
46 
47 #include <machine/bootinfo.h>
48 #include <machine/cpu.h>
49 #include <machine/pte.h>
50 #include <machine/vmparam.h>
51 
52 #define RELOC(v, t)	*((t*)((uintptr_t)&(v) + firstpa))
53 
54 extern char *kernel_text;
55 extern char *etext;
56 
57 extern paddr_t avail_start, avail_end;
58 extern paddr_t msgbufpa;
59 
60 /*
61  * Special purpose kernel virtual addresses, used for mapping
62  * physical pages for a variety of temporary or permanent purposes:
63  *
64  *	CADDR1, CADDR2:	pmap zero/copy operations
65  *	vmmap:		/dev/mem, crash dumps, parity error checking
66  *	msgbufaddr:	kernel message buffer
67  */
68 void *CADDR1, *CADDR2;
69 char *vmmap;
70 void *msgbufaddr;
71 
72 void pmap_bootstrap(paddr_t, paddr_t);
73 
74 /*
75  * Bootstrap the VM system.
76  *
77  * Called with MMU off so we must relocate all global references by `firstpa'
78  * (don't call any functions here!)  `nextpa' is the first available physical
79  * memory address.  Returns an updated first PA reflecting the memory we
80  * have allocated.  MMU is still off when we return.
81  *
82  * XXX On virt68k, the kernel is mapped VA==PA, so we can actually have to
83  * XXX worry about any of this RELOC() nonsense.
84  *
85  * XXX On virt68k, firstpa == 0, and firstpa != start of kernel text.
86  * XXX Same goes for KERNBASE.  We intentionally leave the area between
87  * XXX KERNBASE and the start of kernel text unmapped.
88  *
89  * XXX On virt68k, we use TT registers to map I/O space.
90  *
91  * XXX assumes sizeof(u_int) == sizeof(pt_entry_t)
92  * XXX a PIC compiler would make this much easier.
93  */
94 void
pmap_bootstrap(paddr_t nextpa,paddr_t firstpa)95 pmap_bootstrap(paddr_t nextpa, paddr_t firstpa)
96 {
97 	paddr_t lwp0upa, kstpa, kptmpa, kptpa;
98 	u_int nptpages, kstsize;
99 	st_entry_t protoste, *ste, *este;
100 	pt_entry_t protopte, *pte, *epte;
101 	int i;
102 #if defined(M68040) || defined(M68060)
103 	u_int stfree = 0;	/* XXX: gcc -Wuninitialized */
104 #endif
105 
106 	/*
107 	 * Calculate important physical addresses:
108 	 *
109 	 *	lwp0upa		lwp0 u-area		UPAGES pages
110 	 *
111 	 *	kstpa		kernel segment table	1 page (!040)
112 	 *						N pages (040)
113 	 *
114 	 *	kptmpa		kernel PT map		1 page
115 	 *
116 	 *	kptpa		statically allocated
117 	 *			kernel PT pages		Sysptsize+ pages
118 	 *
119 	 * The KVA corresponding to any of these PAs is:
120 	 *	(PA - firstpa + KERNBASE).
121 	 */
122 	lwp0upa = nextpa;
123 	nextpa += USPACE;
124 
125 #if defined(M68040) || defined(M68060)
126 	if (RELOC(mmutype, int) == MMU_68040)
127 		kstsize = MAXKL2SIZE / (NPTEPG/SG4_LEV2SIZE);
128 	else
129 #endif
130 		kstsize = 1;
131 	kstpa = nextpa;
132 	nextpa += kstsize * PAGE_SIZE;
133 
134 	kptmpa = nextpa;
135 	nextpa += PAGE_SIZE;
136 
137 	kptpa = nextpa;
138 	nptpages = RELOC(Sysptsize, int) + howmany(RELOC(physmem, int), NPTEPG);
139 	nextpa += nptpages * PAGE_SIZE;
140 
141 	/*
142 	 * Clear all PTEs to zero
143 	 */
144 	for (pte = (pt_entry_t *)kstpa; pte < (pt_entry_t *)nextpa; pte++)
145 		*pte = 0;
146 
147 	/*
148 	 * Initialize segment table and kernel page table map.
149 	 *
150 	 * On 68030s and earlier MMUs the two are identical except for
151 	 * the valid bits so both are initialized with essentially the
152 	 * same values.  On the 68040, which has a mandatory 3-level
153 	 * structure, the segment table holds the level 1 table and part
154 	 * (or all) of the level 2 table and hence is considerably
155 	 * different.  Here the first level consists of 128 descriptors
156 	 * (512 bytes) each mapping 32mb of address space.  Each of these
157 	 * points to blocks of 128 second level descriptors (512 bytes)
158 	 * each mapping 256kb.  Note that there may be additional "segment
159 	 * table" pages depending on how large MAXKL2SIZE is.
160 	 *
161 	 * Portions of the last segment of KVA space (see vmparam.h)
162 	 * are mapped for the kernel page tables.
163 	 *
164 	 * XXX cramming two levels of mapping into the single "segment"
165 	 * table on the 68040 is intended as a temporary hack to get things
166 	 * working.  The 224mb of address space that this allows will most
167 	 * likely be insufficient in the future (at least for the kernel).
168 	 */
169 #if defined(M68040) || defined(M68060)
170 	if (RELOC(mmutype, int) == MMU_68040) {
171 		int nl1desc, nl2desc;
172 
173 		/*
174 		 * First invalidate the entire "segment table" pages
175 		 * (levels 1 and 2 have the same "invalid" value).
176 		 */
177 		ste = (st_entry_t *)kstpa;
178 		este = &ste[kstsize * NPTEPG];
179 		while (ste < este)
180 			*ste++ = SG_NV;
181 		/*
182 		 * Initialize level 2 descriptors (which immediately
183 		 * follow the level 1 table).  We need:
184 		 *	NPTEPG / SG4_LEV3SIZE
185 		 * level 2 descriptors to map each of the nptpages
186 		 * pages of PTEs.  Note that we set the "used" bit
187 		 * now to save the HW the expense of doing it.
188 		 */
189 		nl2desc = nptpages * (NPTEPG / SG4_LEV3SIZE);
190 		ste = (st_entry_t *)kstpa;
191 		ste = &ste[SG4_LEV1SIZE];
192 		este = &ste[nl2desc];
193 		protoste = kptpa | SG_U | SG_RW | SG_V;
194 		while (ste < este) {
195 			*ste++ = protoste;
196 			protoste += (SG4_LEV3SIZE * sizeof(st_entry_t));
197 		}
198 		/*
199 		 * Initialize level 1 descriptors.  We need:
200 		 *	howmany(nl2desc, SG4_LEV2SIZE)
201 		 * level 1 descriptors to map the `nl2desc' level 2's.
202 		 */
203 		nl1desc = howmany(nl2desc, SG4_LEV2SIZE);
204 		ste = (st_entry_t *)kstpa;
205 		este = &ste[nl1desc];
206 		protoste = (paddr_t)&ste[SG4_LEV1SIZE] | SG_U | SG_RW | SG_V;
207 		while (ste < este) {
208 			*ste++ = protoste;
209 			protoste += (SG4_LEV2SIZE * sizeof(st_entry_t));
210 		}
211 		/*
212 		 * Initialize the final level 1 descriptor to map the next
213 		 * block of level 2 descriptors for Sysptmap.
214 		 */
215 		ste = (st_entry_t *)kstpa;
216 		ste = &ste[SG4_LEV1SIZE - 1];
217 		*ste = protoste;
218 		/*
219 		 * protoste contains the L2 table address that will
220 		 * map Sysmap.
221 		 */
222 		ste = (st_entry_t *)(vaddr_t)(protoste & UTE40_PTA);
223 		/*
224 		 * Get the offset into this table that will map
225 		 * Sysmap.
226 		 */
227 		ste = &ste[LA40_PI(SYSMAP_VA)];
228 		/*
229 		 * Now initialize this region.
230 		 */
231 		este = &ste[NPTEPG / SG4_LEV3SIZE];
232 		protoste = kptmpa | SG_U | SG_RW | SG_V;
233 		while (ste < este) {
234 			*ste++ = protoste;
235 			protoste += (SG4_LEV3SIZE * sizeof(st_entry_t));
236 		}
237 		/*
238 		 * Calculate the free level 2 descriptor mask
239 		 * noting that we have used:
240 		 *	0:		level 1 table
241 		 *	1 to nl1desc:	map page tables
242 		 *	nl1desc + 1:	maps kptmpa and last-page page table
243 		 */
244 		/* mark an entry for level 1 table */
245 		stfree = ~l2tobm(0);
246 		/* mark entries for map page tables */
247 		for (i = 1; i <= nl1desc; i++)
248 			stfree &= ~l2tobm(i);
249 		/* mark an entry for kptmpa and lkptpa */
250 		stfree &= ~l2tobm(i);
251 		/* mark entries not available */
252 		for (i = MAXKL2SIZE; i < sizeof(stfree) * NBBY; i++)
253 			stfree &= ~l2tobm(i);
254 
255 		/*
256 		 * Initialize Sysptmap
257 		 */
258 		pte = (pt_entry_t *)kptmpa;
259 		epte = &pte[nptpages];
260 		protopte = kptpa | PG_RW | PG_CI | PG_U | PG_V;
261 		while (pte < epte) {
262 			*pte++ = protopte;
263 			protopte += PAGE_SIZE;
264 		}
265 		/*
266 		 * Invalidate all remaining entries.
267 		 */
268 		epte = (pt_entry_t *)kptmpa;
269 		epte = &epte[TIB_SIZE];
270 		while (pte < epte) {
271 			*pte++ = PG_NV;
272 		}
273 		/*
274 		 * Initialize the last one to point to Sysptmap.
275 		 */
276 		pte = (pt_entry_t *)kptmpa;
277 		pte = &pte[SYSMAP_VA >> SEGSHIFT];
278 		*pte = kptmpa | PG_RW | PG_CI | PG_V;
279 	} else
280 #endif /* M68040 || M68060 */
281 	{
282 		/*
283 		 * Map the page table pages in both the HW segment table
284 		 * and the software Sysptmap.
285 		 */
286 		ste = (st_entry_t *)kstpa;
287 		pte = (pt_entry_t *)kptmpa;
288 		epte = &pte[nptpages];
289 		protoste = kptpa | SG_RW | SG_V;
290 		protopte = kptpa | PG_RW | PG_CI | PG_V;
291 		while (pte < epte) {
292 			*ste++ = protoste;
293 			*pte++ = protopte;
294 			protoste += PAGE_SIZE;
295 			protopte += PAGE_SIZE;
296 		}
297 		/*
298 		 * Invalidate all remaining entries in both.
299 		 */
300 		este = (st_entry_t *)kstpa;
301 		este = &este[TIA_SIZE];
302 		while (ste < este)
303 			*ste++ = SG_NV;
304 		epte = (pt_entry_t *)kptmpa;
305 		epte = &epte[TIB_SIZE];
306 		while (pte < epte)
307 			*pte++ = PG_NV;
308 		/*
309 		 * Initialize the last one to point to Sysptmap.
310 		 */
311 		ste = (st_entry_t *)kstpa;
312 		ste = &ste[SYSMAP_VA >> SEGSHIFT];
313 		pte = (pt_entry_t *)kptmpa;
314 		pte = &pte[SYSMAP_VA >> SEGSHIFT];
315 		*ste = kptmpa | SG_RW | SG_V;
316 		*pte = kptmpa | PG_RW | PG_CI | PG_V;
317 	}
318 
319 	/*
320 	 * Initialize kernel page table.
321 	 * Start by invalidating the `nptpages' that we have allocated.
322 	 */
323 	pte = (pt_entry_t *)kptpa;
324 	epte = &pte[nptpages * NPTEPG];
325 	while (pte < epte)
326 		*pte++ = PG_NV;
327 	/*
328 	 * Validate PTEs for kernel text (RO).
329 	 */
330 	pte = (pt_entry_t *)kptpa;
331 	epte = &pte[m68k_btop(m68k_trunc_page(&etext))];
332 	pte = &pte[m68k_btop(m68k_trunc_page(&kernel_text))];
333 	protopte = m68k_trunc_page(&kernel_text) | PG_RO | PG_U | PG_V;
334 	while (pte < epte) {
335 		*pte++ = protopte;
336 		protopte += PAGE_SIZE;
337 	}
338 	/*
339 	 * Validate PTEs for kernel data/bss, dynamic data allocated
340 	 * by us so far (right up to kstpa), and pages for lwp0
341 	 * u-area and page table allocated below (RW).
342 	 */
343 	epte = (pt_entry_t *)kptpa;
344 	epte = &epte[m68k_btop(kstpa - firstpa)];
345 	protopte = (protopte & ~PG_PROT) | PG_RW;
346 	/*
347 	 * Enable copy-back caching of data pages
348 	 */
349 	if (RELOC(mmutype, int) == MMU_68040)
350 		protopte |= PG_CCB;
351 	while (pte < epte) {
352 		*pte++ = protopte;
353 		protopte += PAGE_SIZE;
354 	}
355 	/*
356 	 * Map the kernel segment table cache invalidated for 68040/68060.
357 	 * (for the 68040 not strictly necessary, but recommended by Motorola;
358 	 *  for the 68060 mandatory)
359 	 */
360 	epte = (pt_entry_t *)kptpa;
361 	epte = &epte[m68k_btop(nextpa - firstpa)];
362 	protopte = (protopte & ~PG_PROT) | PG_RW;
363 	if (RELOC(mmutype, int) == MMU_68040) {
364 		protopte &= ~PG_CMASK;
365 		protopte |= PG_CI;
366 	}
367 	while (pte < epte) {
368 		*pte++ = protopte;
369 		protopte += PAGE_SIZE;
370 	}
371 
372 #define	PTE2VA(pte)	m68k_ptob(pte - ((pt_entry_t *)kptpa))
373 
374 	RELOC(virtual_avail, vaddr_t) = PTE2VA(pte);
375 
376 	/*
377 	 * Calculate important exported kernel addresses and related values.
378 	 */
379 	/*
380 	 * Sysseg: base of kernel segment table
381 	 */
382 	RELOC(Sysseg, st_entry_t *) = (st_entry_t *)(kstpa - firstpa);
383 	RELOC(Sysseg_pa, paddr_t) = kstpa;
384 #if defined(M68040) || defined(M68060)
385 	if (RELOC(mmutype, int) == MMU_68040)
386 		RELOC(protostfree, u_int) = stfree;
387 #endif
388 	/*
389 	 * Sysptmap: base of kernel page table map
390 	 */
391 	RELOC(Sysptmap, pt_entry_t *) = (pt_entry_t *)(kptmpa - firstpa);
392 	/*
393 	 * Sysmap: kernel page table (as mapped through Sysptmap)
394 	 * Allocated at the end of KVA space.
395 	 */
396 	RELOC(Sysmap, pt_entry_t *) = (pt_entry_t *)SYSMAP_VA;
397 
398 	/*
399 	 * Remember the u-area address so it can be loaded in the lwp0
400 	 * via uvm_lwp_setuarea() later in pmap_bootstrap_finalize().
401 	 */
402 	RELOC(lwp0uarea, vaddr_t) = lwp0upa - firstpa;
403 
404 	/*
405 	 * Scoot the start of available forward to account for:
406 	 *
407 	 *	(1) The kernel text, data, and bss.
408 	 *
409 	 *	(2) The pages we stole above for pmap data
410 	 *	    structures.
411 	 */
412 	RELOC(bootinfo_mem_segments_avail[0].mem_size, uint32_t) -=
413 	    nextpa - RELOC(bootinfo_mem_segments_avail[0].mem_addr, uint32_t);
414 	RELOC(bootinfo_mem_segments_avail[0].mem_addr, uint32_t) = nextpa;
415 
416 	/*
417 	 * The kernel is linked at 8K so that we can leave VA==0
418 	 * unmapped.  Use that space for the kernel message buffer.
419 	 */
420 	RELOC(msgbufpa, paddr_t) = firstpa;
421 
422 	/*
423 	 * Initialize avail_start and avail_end.
424 	 */
425 	i = RELOC(bootinfo_mem_nsegments, int) - 1;
426 	RELOC(avail_start, paddr_t) =
427 	    RELOC(bootinfo_mem_segments_avail[0].mem_addr, uint32_t);
428 	RELOC(avail_end, paddr_t) =
429 	    RELOC(bootinfo_mem_segments_avail[i].mem_addr, uint32_t) +
430 	    RELOC(bootinfo_mem_segments_avail[i].mem_size, uint32_t);
431 
432 	RELOC(mem_size, vsize_t) = m68k_ptob(RELOC(physmem, int));
433 
434 	RELOC(virtual_end, vaddr_t) = VM_MAX_KERNEL_ADDRESS;
435 
436 	/*
437 	 * Allocate some fixed, special purpose kernel virtual addresses
438 	 */
439 	{
440 		vaddr_t va = RELOC(virtual_avail, vaddr_t);
441 
442 		RELOC(CADDR1, void *) = (void *)va;
443 		va += PAGE_SIZE;
444 		RELOC(CADDR2, void *) = (void *)va;
445 		va += PAGE_SIZE;
446 		RELOC(vmmap, void *) = (void *)va;
447 		va += PAGE_SIZE;
448 		RELOC(msgbufaddr, void *) = (void *)va;
449 		va += m68k_round_page(MSGBUFSIZE);
450 		RELOC(virtual_avail, vaddr_t) = va;
451 	}
452 }
453