xref: /netbsd-src/sys/arch/hpcarm/hpcarm/pxa2x0_hpc_machdep.c (revision 10468976faed43bfb6791764325d6bc693da8196)
1 /*	$NetBSD: pxa2x0_hpc_machdep.c,v 1.33 2023/10/12 11:33:39 skrll Exp $	*/
2 
3 /*
4  * Copyright (c) 1994-1998 Mark Brinicombe.
5  * Copyright (c) 1994 Brini.
6  * All rights reserved.
7  *
8  * This code is derived from software written for Brini by Mark Brinicombe
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *      This product includes software developed by Brini.
21  * 4. The name of the company nor the name of the author may be used to
22  *    endorse or promote products derived from this software without specific
23  *    prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
26  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
27  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
28  * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
29  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
30  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
31  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  */
37 
38 /*
39  * Machine dependent functions for kernel setup.
40  */
41 
42 #include <sys/cdefs.h>
43 __KERNEL_RCSID(0, "$NetBSD: pxa2x0_hpc_machdep.c,v 1.33 2023/10/12 11:33:39 skrll Exp $");
44 
45 #include "opt_ddb.h"
46 #include "opt_dram_pages.h"
47 #include "opt_modular.h"
48 #include "ksyms.h"
49 
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/kernel.h>
53 #include <sys/reboot.h>
54 #include <sys/proc.h>
55 #include <sys/msgbuf.h>
56 #include <sys/exec.h>
57 #include <sys/ksyms.h>
58 #include <sys/conf.h>	/* XXX for consinit related hacks */
59 #include <sys/device.h>
60 #include <sys/bus.h>
61 
62 #if NKSYMS || defined(DDB) || defined(MODULAR)
63 #include <machine/db_machdep.h>
64 #include <ddb/db_sym.h>
65 #include <ddb/db_extern.h>
66 #include <sys/exec_elf.h>
67 #endif
68 
69 #include <uvm/uvm.h>
70 
71 #include <arm/xscale/pxa2x0cpu.h>
72 #include <arm/xscale/pxa2x0reg.h>
73 #include <arm/xscale/pxa2x0var.h>
74 #include <arm/xscale/pxa2x0_gpio.h>
75 #include <arm/locore.h>
76 #include <arm/undefined.h>
77 #include <arm/arm32/machdep.h>
78 
79 #include <machine/bootconfig.h>
80 #include <machine/bootinfo.h>
81 #include <machine/cpu.h>
82 #include <machine/frame.h>
83 #include <machine/intr.h>
84 #include <machine/io.h>
85 #include <machine/platid.h>
86 #include <machine/rtc.h>
87 #include <machine/signal.h>
88 
89 #include <dev/hpc/apm/apmvar.h>
90 #include <dev/ic/comreg.h>
91 
92 /* Kernel text starts 2MB in from the bottom of the kernel address space. */
93 #define	KERNEL_TEXT_BASE	(KERNEL_BASE + 0x00200000)
94 #ifndef	KERNEL_VM_BASE
95 #define	KERNEL_VM_BASE		(KERNEL_BASE + 0x01000000)
96 #endif
97 
98 /*
99  * The range 0xc1000000 - 0xccffffff is available for kernel VM space
100  * Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff
101  */
102 #define	KERNEL_VM_SIZE		0x0c000000
103 
104 extern BootConfig bootconfig;		/* Boot config storage */
105 
106 extern paddr_t physical_start;
107 extern paddr_t physical_freestart;
108 extern paddr_t physical_freeend;
109 extern paddr_t physical_end;
110 
111 extern paddr_t msgbufphys;
112 
113 extern int end;
114 
115 #define	KERNEL_PT_SYS		0	/* Page table for mapping proc0 zero page */
116 #define	KERNEL_PT_KERNEL	1	/* Page table for mapping kernel */
117 #define	KERNEL_PT_KERNEL_NUM	4
118 #define	KERNEL_PT_VMDATA	(KERNEL_PT_KERNEL + KERNEL_PT_KERNEL_NUM)
119 					/* Page tables for mapping kernel VM */
120 #define	KERNEL_PT_VMDATA_NUM	4	/* start with 16MB of KVM */
121 #define	NUM_KERNEL_PTS		(KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
122 
123 pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
124 
125 pv_addr_t minidataclean;
126 
127 /* Prototypes */
128 void data_abort_handler(trapframe_t *);
129 void prefetch_abort_handler(trapframe_t *);
130 void undefinedinstruction_bounce(trapframe_t *);
131 u_int cpu_get_control(void);
132 
133 vaddr_t init_pxa2x0(int, char **, struct bootinfo *);
134 
135 /* Machine dependent initialize function */
136 extern void pxa2x0_machdep_init(void);
137 
138 /* Mode dependent sleep function holder */
139 extern void (*__sleep_func)(void *);
140 extern void *__sleep_ctx;
141 
142 #ifdef DEBUG_BEFOREMMU
143 static void	fakecninit(void);
144 #endif
145 
146 /* Number of DRAM pages which are installed */
147 /* Units are 4K pages, so 8192 is 32 MB of memory */
148 #ifndef DRAM_PAGES
149 #define DRAM_PAGES	8192
150 #endif
151 
152 /*
153  * Static device mappings. These peripheral registers are mapped at
154  * fixed virtual addresses very early in initarm() so that we can use
155  * them while booting the kernel and stay at the same address
156  * throughout whole kernel's life time.
157  */
158 #define	PXA2X0_GPIO_VBASE	0xfd000000
159 #define	PXA2X0_CLKMAN_VBASE	0xfd100000
160 #define	PXA2X0_INTCTL_VBASE	0xfd200000
161 #define	PXA2X0_MEMCTL_VBASE	0xfd300000
162 #define	PXA2X0_FFUART_VBASE	0xfd400000
163 #define	PXA2X0_BTUART_VBASE	0xfd500000
164 #define	PXA2X0_STUART_VBASE	0xfd600000
165 
166 const struct pmap_devmap pxa2x0_devmap[] = {
167     DEVMAP_ENTRY(
168 	    PXA2X0_GPIO_VBASE,
169 	    PXA2X0_GPIO_BASE,
170 	    PXA2X0_GPIO_SIZE
171     ),
172     DEVMAP_ENTRY(
173 	    PXA2X0_CLKMAN_VBASE,
174 	    PXA2X0_CLKMAN_BASE,
175 	    PXA2X0_CLKMAN_SIZE
176     ),
177     DEVMAP_ENTRY(
178 	    PXA2X0_INTCTL_VBASE,
179 	    PXA2X0_INTCTL_BASE,
180 	    PXA2X0_INTCTL_SIZE
181     ),
182     DEVMAP_ENTRY(
183 	    PXA2X0_MEMCTL_VBASE,
184 	    PXA2X0_MEMCTL_BASE,
185 	    PXA2X0_MEMCTL_SIZE
186     ),
187     DEVMAP_ENTRY(
188 	    PXA2X0_FFUART_VBASE,
189 	    PXA2X0_FFUART_BASE,
190 	    4 * COM_NPORTS
191     ),
192     DEVMAP_ENTRY(
193 	    PXA2X0_BTUART_VBASE,
194 	    PXA2X0_BTUART_BASE,
195 	    4 * COM_NPORTS
196     ),
197     DEVMAP_ENTRY(
198 	    PXA2X0_STUART_VBASE,
199 	    PXA2X0_STUART_BASE,
200 	    4 * COM_NPORTS
201     ),
202 
203     DEVMAP_ENTRY_END
204 };
205 extern const struct pmap_devmap machdep_devmap[];
206 
207 
208 static inline pd_entry_t *
read_ttb(void)209 read_ttb(void)
210 {
211 	u_long ttb;
212 
213 	__asm volatile("mrc p15, 0, %0, c2, c0, 0" : "=r" (ttb));
214 
215 	return (pd_entry_t *)(ttb & ~((1 << 14) - 1));
216 }
217 
218 /*
219  * It should be responsible for setting up everything that must be
220  * in place when main is called.
221  * This includes:
222  *   Initializing the physical console so characters can be printed.
223  *   Setting up page tables for the kernel.
224  */
225 vaddr_t
init_pxa2x0(int argc,char ** argv,struct bootinfo * bi)226 init_pxa2x0(int argc, char **argv, struct bootinfo *bi)
227 {
228 	u_int kerneldatasize, symbolsize;
229 	u_int l1pagetable;
230 	vaddr_t freemempos;
231 	int loop;
232 #if NKSYMS || defined(DDB) || defined(MODULAR)
233 	Elf_Shdr *sh;
234 #endif
235 
236 	pmap_devmap_bootstrap((vaddr_t)read_ttb(), pxa2x0_devmap);
237 	pxa2x0_memctl_bootstrap(PXA2X0_MEMCTL_VBASE);
238 	pxa2x0_intr_bootstrap(PXA2X0_INTCTL_VBASE);
239 	pxa2x0_clkman_bootstrap(PXA2X0_CLKMAN_VBASE);
240 	pxa2x0_gpio_bootstrap(PXA2X0_GPIO_VBASE);
241 
242 	/*
243 	 * XXX for now, overwrite bootconfig to hardcoded values in
244 	 * XXX pxa2x0_machdep_init().
245 	 * XXX kill bootconfig and directly call uvm_physload
246 	 */
247 	bootconfig.dram[0].address = 0xa0000000;
248 	bootconfig.dram[0].pages = DRAM_PAGES;
249 	bootconfig.dramblocks = 1;
250 
251 	pxa2x0_machdep_init();
252 
253 #ifdef DEBUG_BEFOREMMU
254 	/*
255 	 * At this point, we cannot call real consinit().
256 	 * Just call a faked up version of consinit(), which does the thing
257 	 * with MMU disabled.
258 	 */
259 	fakecninit();
260 #endif
261 
262 	kerneldatasize = (uint32_t)&end - (uint32_t)KERNEL_TEXT_BASE;
263 	symbolsize = 0;
264 #if NKSYMS || defined(DDB) || defined(MODULAR)
265 	if (!memcmp(&end, "\177ELF", 4)) {
266 /*
267  * XXXGCC12.
268  * This accesses beyond what "int end" technically supplies.
269  */
270 #pragma GCC push_options
271 #pragma GCC diagnostic ignored "-Warray-bounds"
272 		sh = (Elf_Shdr *)((char *)&end + ((Elf_Ehdr *)&end)->e_shoff);
273 		loop = ((Elf_Ehdr *)&end)->e_shnum;
274 #pragma GCC pop_options
275 		for (; loop; loop--, sh++)
276 			if (sh->sh_offset > 0 &&
277 			    (sh->sh_offset + sh->sh_size) > symbolsize)
278 				symbolsize = sh->sh_offset + sh->sh_size;
279 	}
280 #endif
281 
282 	printf("kernsize=0x%x\n", kerneldatasize);
283 	kerneldatasize += symbolsize;
284 	kerneldatasize = ((kerneldatasize - 1) & ~(PAGE_SIZE * 4 - 1)) +
285 	    PAGE_SIZE * 8;
286 
287 	/*
288 	 * hpcboot has loaded me with MMU disabled.
289 	 * So create kernel page tables and enable MMU.
290 	 */
291 
292 	/*
293 	 * Set up the variables that define the availability of physical
294 	 * memory.
295 	 */
296 	physical_start = bootconfig.dram[0].address;
297 	physical_freestart = physical_start
298 	    + (KERNEL_TEXT_BASE - KERNEL_BASE) + kerneldatasize;
299 	physical_end = bootconfig.dram[bootconfig.dramblocks - 1].address
300 	    + bootconfig.dram[bootconfig.dramblocks - 1].pages * PAGE_SIZE;
301 	physical_freeend = physical_end;
302 
303 	for (loop = 0; loop < bootconfig.dramblocks; ++loop)
304 		physmem += bootconfig.dram[loop].pages;
305 
306 	/* XXX handle UMA framebuffer memory */
307 
308 	freemempos = 0xa0009000UL;
309 	memset((void *)freemempos, 0, KERNEL_TEXT_BASE - KERNEL_BASE - 0x9000);
310 
311 	/*
312 	 * Right. We have the bottom meg of memory mapped to 0x00000000
313 	 * so was can get at it. The kernel will occupy the start of it.
314 	 * After the kernel/args we allocate some of the fixed page tables
315 	 * we need to get the system going.
316 	 * We allocate one page directory and NUM_KERNEL_PTS page tables
317 	 * and store the physical addresses in the kernel_pt_table array.
318 	 * Must remember that neither the page L1 or L2 page tables are the
319 	 * same size as a page !
320 	 *
321 	 * Ok, the next bit of physical allocate may look complex but it is
322 	 * simple really. I have done it like this so that no memory gets
323 	 * wasted during the allocate of various pages and tables that are
324 	 * all different sizes.
325 	 * The start address will be page aligned.
326 	 * We allocate the kernel page directory on the first free 16KB
327 	 * boundary we find.
328 	 * We allocate the kernel page tables on the first 1KB boundary we
329 	 * find.  We allocate at least 9 PT's (12 currently).  This means
330 	 * that in the process we KNOW that we will encounter at least one
331 	 * 16KB boundary.
332 	 *
333 	 * Eventually if the top end of the memory gets used for process L1
334 	 * page tables the kernel L1 page table may be moved up there.
335 	 */
336 
337 #ifdef VERBOSE_INIT_ARM
338 	printf("Allocating page tables\n");
339 #endif
340 
341 	/* Define a macro to simplify memory allocation */
342 #define	valloc_pages(var, np)			\
343 	alloc_pages((var).pv_pa, (np));		\
344 	(var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
345 #define	alloc_pages(var, np)			\
346 	(var) = freemempos;			\
347 	freemempos += (np) * PAGE_SIZE;
348 
349 	{
350 		int loop1 = 0;
351 		kernel_l1pt.pv_pa = 0;
352 		kernel_l1pt.pv_va = 0;
353 		for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
354 			/* Are we 16KB aligned for an L1 ? */
355 			if (((freemempos - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0
356 			    && kernel_l1pt.pv_pa == 0) {
357 				valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
358 			} else {
359 				valloc_pages(kernel_pt_table[loop1],
360 				    L2_TABLE_SIZE / PAGE_SIZE);
361 				++loop1;
362 			}
363 		}
364 	}
365 
366 	/* This should never be able to happen but better confirm that. */
367 	if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
368 		panic("initarm: Failed to align the kernel page directory");
369 
370 	/*
371 	 * Allocate a page for the system page mapped to V0x00000000
372 	 * This page will just contain the system vectors and can be
373 	 * shared by all processes.
374 	 */
375 	valloc_pages(systempage, 1);
376 
377 	/* Allocate stacks for all modes */
378 	valloc_pages(irqstack, IRQ_STACK_SIZE);
379 	valloc_pages(abtstack, ABT_STACK_SIZE);
380 	valloc_pages(undstack, UND_STACK_SIZE);
381 	valloc_pages(kernelstack, UPAGES);
382 
383 #ifdef VERBOSE_INIT_ARM
384 	printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
385 	    irqstack.pv_va);
386 	printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
387 	    abtstack.pv_va);
388 	printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
389 	    undstack.pv_va);
390 	printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
391 	    kernelstack.pv_va);
392 #endif
393 
394 	alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);
395 
396 	/* Allocate enough pages for cleaning the Mini-Data cache. */
397 	KASSERT(xscale_minidata_clean_size <= PAGE_SIZE);
398 	valloc_pages(minidataclean, 1);
399 #ifdef VERBOSE_INIT_ARM
400 	printf("minidataclean: p0x%08lx v0x%08lx, size = %ld\n",
401 	    minidataclean.pv_pa, minidataclean.pv_va,
402 	    xscale_minidata_clean_size);
403 #endif
404 
405 	/*
406 	 * Ok, we have allocated physical pages for the primary kernel
407 	 * page tables.
408 	 */
409 
410 #ifdef VERBOSE_INIT_ARM
411 	printf("Creating L1 page table\n");
412 #endif
413 
414 	/*
415 	 * Now we start construction of the L1 page table.
416 	 * We start by mapping the L2 page tables into the L1.
417 	 * This means that we can replace L1 mappings later on if necessary.
418 	 */
419 	l1pagetable = kernel_l1pt.pv_pa;
420 
421 	/* Map the L2 pages tables in the L1 page table */
422 	pmap_link_l2pt(l1pagetable, 0x00000000,
423 	    &kernel_pt_table[KERNEL_PT_SYS]);
424 	for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; ++loop)
425 		pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
426 		    &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
427 	for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; ++loop)
428 		pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
429 		    &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
430 
431 	/* update the top of the kernel VM */
432 	pmap_curmaxkvaddr =
433 	    KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
434 
435 #ifdef VERBOSE_INIT_ARM
436 	printf("Mapping kernel\n");
437 #endif
438 
439 	/* Now we fill in the L2 pagetable for the kernel code/data */
440 
441 	/*
442 	 * XXX there is no ELF header to find RO region.
443 	 * XXX What should we do?
444 	 */
445 #if 0
446 	if (N_GETMAGIC(kernexec[0]) == ZMAGIC) {
447 		logical = pmap_map_chunk(l1pagetable, KERNEL_TEXT_BASE,
448 		    physical_start, kernexec->a_text,
449 		    VM_PROT_READ, PTE_CACHE);
450 		logical += pmap_map_chunk(l1pagetable,
451 		    KERNEL_TEXT_BASE + logical, physical_start + logical,
452 		    kerneldatasize - kernexec->a_text,
453 		    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
454 	} else
455 #endif
456 		pmap_map_chunk(l1pagetable, KERNEL_TEXT_BASE,
457 		    KERNEL_TEXT_BASE - KERNEL_BASE + physical_start,
458 		    kerneldatasize, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
459 
460 #ifdef VERBOSE_INIT_ARM
461 	printf("Constructing L2 page tables\n");
462 #endif
463 
464 	/* Map the stack pages */
465 	pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
466 	    IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
467 	pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
468 	    ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
469 	pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
470 	    UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
471 	pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
472 	    UPAGES * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
473 
474 	pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
475 	    L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
476 
477 	/* Map page tables */
478 	for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
479 		pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
480 		    kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
481 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
482 	}
483 
484 	/* Map the Mini-Data cache clean area. */
485 	xscale_setup_minidata(l1pagetable, minidataclean.pv_va,
486 	    minidataclean.pv_pa);
487 
488 	/* Map the vector page. */
489 	pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
490 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
491 
492 	/*
493 	 * map integrated peripherals at same address in l1pagetable
494 	 * so that we can continue to use console.
495 	 */
496 	pmap_devmap_bootstrap(l1pagetable, pxa2x0_devmap);
497 	pmap_devmap_bootstrap(l1pagetable, machdep_devmap);
498 
499 	/*
500 	 * Give the XScale global cache clean code an appropriately
501 	 * sized chunk of unmapped VA space starting at 0xff000000
502 	 * (our device mappings end before this address).
503 	 */
504 	xscale_cache_clean_addr = 0xff000000U;
505 
506 	/*
507 	 * Now we have the real page tables in place so we can switch to them.
508 	 * Once this is done we will be running with the REAL kernel page
509 	 * tables.
510 	 */
511 
512 #ifdef VERBOSE_INIT_ARM
513 	printf("done.\n");
514 #endif
515 
516 	/*
517 	 * Pages were allocated during the secondary bootstrap for the
518 	 * stacks for different CPU modes.
519 	 * We must now set the r13 registers in the different CPU modes to
520 	 * point to these stacks.
521 	 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
522 	 * of the stack memory.
523 	 */
524 #ifdef VERBOSE_INIT_ARM
525 	printf("init subsystems: stacks ");
526 #endif
527 
528 	set_stackptr(PSR_IRQ32_MODE,
529 	    irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
530 	set_stackptr(PSR_ABT32_MODE,
531 	    abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
532 	set_stackptr(PSR_UND32_MODE,
533 	    undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
534 #ifdef VERBOSE_INIT_ARM
535 	printf("kstack V%08lx P%08lx\n", kernelstack.pv_va,
536 	    kernelstack.pv_pa);
537 #endif /* VERBOSE_INIT_ARM */
538 
539 	/*
540 	 * Well we should set a data abort handler.
541 	 * Once things get going this will change as we will need a proper
542 	 * handler. Until then we will use a handler that just panics but
543 	 * tells us why.
544 	 * Initialization of the vectors will just panic on a data abort.
545 	 * This just fills in a slightly better one.
546 	 */
547 #ifdef VERBOSE_INIT_ARM
548 	printf("vectors ");
549 #endif
550 	data_abort_handler_address = (u_int)data_abort_handler;
551 	prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
552 	undefined_handler_address = (u_int)undefinedinstruction_bounce;
553 #ifdef DEBUG
554 	printf("%08x %08x %08x\n", data_abort_handler_address,
555 	    prefetch_abort_handler_address, undefined_handler_address);
556 #endif
557 
558 	/* Initialize the undefined instruction handlers */
559 #ifdef VERBOSE_INIT_ARM
560 	printf("undefined\n");
561 #endif
562 	undefined_init();
563 
564 	/* Set the page table address. */
565 #ifdef VERBOSE_INIT_ARM
566 	printf("switching to new L1 page table  @%#lx...\n", kernel_l1pt.pv_pa);
567 #endif
568 	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
569 	cpu_setttb(kernel_l1pt.pv_pa, true);
570 	cpu_tlb_flushID();
571 	cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
572 
573 	/*
574 	 * Moved from cpu_startup() as data_abort_handler() references
575 	 * this during uvm init.
576 	 */
577 	uvm_lwp_setuarea(&lwp0, kernelstack.pv_va);
578 
579 	arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL);
580 
581 	consinit();
582 
583 #ifdef VERBOSE_INIT_ARM
584 	printf("bootstrap done.\n");
585 #endif
586 
587 #ifdef VERBOSE_INIT_ARM
588 	printf("freemempos=%08lx\n", freemempos);
589 	printf("MMU enabled. control=%08x\n", cpu_get_control());
590 #endif
591 
592 	/* Load memory into UVM. */
593 	uvm_md_init();
594 	for (loop = 0; loop < bootconfig.dramblocks; loop++) {
595 		paddr_t dblk_start = (paddr_t)bootconfig.dram[loop].address;
596 		paddr_t dblk_end = dblk_start
597 			+ (bootconfig.dram[loop].pages * PAGE_SIZE);
598 
599 		if (dblk_start < physical_freestart)
600 			dblk_start = physical_freestart;
601 		if (dblk_end > physical_freeend)
602 			dblk_end = physical_freeend;
603 
604 		uvm_page_physload(atop(dblk_start), atop(dblk_end),
605 		    atop(dblk_start), atop(dblk_end), VM_FREELIST_DEFAULT);
606 	}
607 
608 	/* Boot strap pmap telling it where managed kernel virtual memory is */
609 	pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE);
610 
611 #ifdef DDB
612 	db_machine_init();
613 #endif
614 #if NKSYMS || defined(DDB) || defined(MODULAR)
615 	ksyms_addsyms_elf(symbolsize, ((int *)&end), ((char *)&end) + symbolsize);
616 #endif
617 
618 	printf("kernsize=0x%x", kerneldatasize);
619 	printf(" (including 0x%x symbols)\n", symbolsize);
620 
621 #ifdef DDB
622 	if (boothowto & RB_KDB)
623 		Debugger();
624 #endif /* DDB */
625 
626 	/* We return the new stack pointer address */
627 	return kernelstack.pv_va + USPACE_SVC_STACK_TOP;
628 }
629 
630 #ifdef DEBUG_BEFOREMMU
631 static void
fakecninit(void)632 fakecninit(void)
633 {
634 #if (NCOM > 0) && defined(COM_PXA2X0)
635 	comcnattach(&pxa2x0_a4x_bs_tag, comcnaddr, comcnspeed,
636 	    PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comcnmode);
637 #endif
638 }
639 #endif
640