xref: /netbsd-src/sys/arch/hp300/hp300/pmap_bootstrap.c (revision 7991f5a7b8fc83a3d55dc2a1767cca3b84103969)
1 /*	$NetBSD: pmap_bootstrap.c,v 1.60 2021/07/24 21:31:33 andvar Exp $	*/
2 
3 /*
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * the Systems Programming Group of the University of Utah Computer
9  * Science Department.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *	@(#)pmap_bootstrap.c	8.1 (Berkeley) 6/10/93
36  */
37 
38 #include <sys/cdefs.h>
39 __KERNEL_RCSID(0, "$NetBSD: pmap_bootstrap.c,v 1.60 2021/07/24 21:31:33 andvar Exp $");
40 
41 #include <sys/param.h>
42 #include <uvm/uvm_extern.h>
43 
44 #include <machine/cpu.h>
45 #include <machine/hp300spu.h>
46 #include <machine/pte.h>
47 #include <machine/vmparam.h>
48 
49 #include <hp300/hp300/clockreg.h>
50 
51 #define RELOC(v, t)	*((t*)((uintptr_t)&(v) + firstpa))
52 
53 extern char *etext;
54 extern vaddr_t CLKbase, MMUbase;
55 
56 extern int maxmem;
57 extern paddr_t avail_start, avail_end;
58 
59 /*
60  * Special purpose kernel virtual addresses, used for mapping
61  * physical pages for a variety of temporary or permanent purposes:
62  *
63  *	CADDR1, CADDR2:	pmap zero/copy operations
64  *	vmmap:		/dev/mem, crash dumps, parity error checking
65  *	msgbufaddr:	kernel message buffer
66  */
67 void *CADDR1, *CADDR2;
68 char *vmmap;
69 void *msgbufaddr;
70 
71 void pmap_bootstrap(paddr_t, paddr_t);
72 
73 /*
74  * Bootstrap the VM system.
75  *
76  * Called with MMU off so we must relocate all global references by `firstpa'
77  * (don't call any functions here!)  `nextpa' is the first available physical
78  * memory address.  Returns an updated first PA reflecting the memory we
79  * have allocated.  MMU is still off when we return.
80  *
81  * XXX assumes sizeof(u_int) == sizeof(pt_entry_t)
82  * XXX a PIC compiler would make this much easier.
83  */
84 void
pmap_bootstrap(paddr_t nextpa,paddr_t firstpa)85 pmap_bootstrap(paddr_t nextpa, paddr_t firstpa)
86 {
87 	paddr_t lwp0upa, kstpa, kptmpa, kptpa;
88 	paddr_t lkptpa;
89 	u_int nptpages, kstsize;
90 	st_entry_t protoste, *ste, *este;
91 	pt_entry_t protopte, *pte, *epte;
92 	u_int stfree = 0;	/* XXX: gcc -Wuninitialized */
93 
94 	/*
95 	 * Calculate important physical addresses:
96 	 *
97 	 *	lwp0upa		lwp0 u-area		UPAGES pages
98 	 *
99 	 *	kstpa		kernel segment table	1 page (!040)
100 	 *						N pages (040)
101 	 *
102 	 *	kptmpa		kernel PT map		1 page
103 	 *
104 	 *	lkptpa		last kernel PT page	1 page
105 	 *
106 	 *	kptpa		statically allocated
107 	 *			kernel PT pages		Sysptsize+ pages
108 	 *
109 	 * [ Sysptsize is the number of pages of PT, and IIOMAPSIZE and
110 	 *   EIOMAPSIZE are the number of PTEs, hence we need to round
111 	 *   the total to a page boundary with IO maps at the end. ]
112 	 *
113 	 * The KVA corresponding to any of these PAs is:
114 	 *	(PA - firstpa + KERNBASE).
115 	 */
116 	lwp0upa = nextpa;
117 	nextpa += USPACE;
118 	if (RELOC(mmutype, int) == MMU_68040)
119 		kstsize = MAXKL2SIZE / (NPTEPG/SG4_LEV2SIZE);
120 	else
121 		kstsize = 1;
122 	kstpa = nextpa;
123 	nextpa += kstsize * PAGE_SIZE;
124 	kptmpa = nextpa;
125 	nextpa += PAGE_SIZE;
126 	lkptpa = nextpa;
127 	nextpa += PAGE_SIZE;
128 	kptpa = nextpa;
129 	nptpages = RELOC(Sysptsize, int) + howmany(RELOC(physmem, int), NPTEPG) +
130 		(IIOMAPSIZE + EIOMAPSIZE + NPTEPG - 1) / NPTEPG;
131 	nextpa += nptpages * PAGE_SIZE;
132 
133 	/*
134 	 * Initialize segment table and kernel page table map.
135 	 *
136 	 * On 68030s and earlier MMUs the two are identical except for
137 	 * the valid bits so both are initialized with essentially the
138 	 * same values.  On the 68040, which has a mandatory 3-level
139 	 * structure, the segment table holds the level 1 table and part
140 	 * (or all) of the level 2 table and hence is considerably
141 	 * different.  Here the first level consists of 128 descriptors
142 	 * (512 bytes) each mapping 32mb of address space.  Each of these
143 	 * points to blocks of 128 second level descriptors (512 bytes)
144 	 * each mapping 256kb.  Note that there may be additional "segment
145 	 * table" pages depending on how large MAXKL2SIZE is.
146 	 *
147 	 * Portions of the last two segment of KVA space (0xFF800000 -
148 	 * 0xFFFFFFFF) are mapped for a couple of purposes.
149 	 * The first segment (0xFF800000 - 0xFFBFFFFF) is mapped
150 	 * for the kernel page tables.
151 	 * The very last page (0xFFFFF000) in the second segment is mapped
152 	 * to the last physical page of RAM to give us a region in which
153 	 * PA == VA.  We use the first part of this page for enabling
154 	 * and disabling mapping.  The last part of this page also contains
155 	 * info left by the boot ROM.
156 	 *
157 	 * XXX cramming two levels of mapping into the single "segment"
158 	 * table on the 68040 is intended as a temporary hack to get things
159 	 * working.  The 224mb of address space that this allows will most
160 	 * likely be insufficient in the future (at least for the kernel).
161 	 */
162 	if (RELOC(mmutype, int) == MMU_68040) {
163 		int nl1desc, nl2desc, i;
164 
165 		/*
166 		 * First invalidate the entire "segment table" pages
167 		 * (levels 1 and 2 have the same "invalid" value).
168 		 */
169 		ste = (st_entry_t *)kstpa;
170 		este = &ste[kstsize * NPTEPG];
171 		while (ste < este)
172 			*ste++ = SG_NV;
173 		/*
174 		 * Initialize level 2 descriptors (which immediately
175 		 * follow the level 1 table).  We need:
176 		 *	NPTEPG / SG4_LEV3SIZE
177 		 * level 2 descriptors to map each of the nptpages
178 		 * pages of PTEs.  Note that we set the "used" bit
179 		 * now to save the HW the expense of doing it.
180 		 */
181 		nl2desc = nptpages * (NPTEPG / SG4_LEV3SIZE);
182 		ste = (st_entry_t *)kstpa;
183 		ste = &ste[SG4_LEV1SIZE];
184 		este = &ste[nl2desc];
185 		protoste = kptpa | SG_U | SG_RW | SG_V;
186 		while (ste < este) {
187 			*ste++ = protoste;
188 			protoste += (SG4_LEV3SIZE * sizeof(st_entry_t));
189 		}
190 		/*
191 		 * Initialize level 1 descriptors.  We need:
192 		 *	howmany(nl2desc, SG4_LEV2SIZE)
193 		 * level 1 descriptors to map the `nl2desc' level 2's.
194 		 */
195 		nl1desc = howmany(nl2desc, SG4_LEV2SIZE);
196 		ste = (st_entry_t *)kstpa;
197 		este = &ste[nl1desc];
198 		protoste = (paddr_t)&ste[SG4_LEV1SIZE] | SG_U | SG_RW | SG_V;
199 		while (ste < este) {
200 			*ste++ = protoste;
201 			protoste += (SG4_LEV2SIZE * sizeof(st_entry_t));
202 		}
203 		/*
204 		 * Initialize the final level 1 descriptor to map the next
205 		 * block of level 2 descriptors for Sysptmap.
206 		 */
207 		ste = (st_entry_t *)kstpa;
208 		ste = &ste[SG4_LEV1SIZE - 1];
209 		*ste = protoste;
210 		/*
211 		 * Now initialize the final portion of that block of
212 		 * descriptors to map Sysmap and the "last PT page".
213 		 */
214 		i = SG4_LEV1SIZE + (nl1desc * SG4_LEV2SIZE);
215 		ste = (st_entry_t *)kstpa;
216 		ste = &ste[i + SG4_LEV2SIZE - (NPTEPG / SG4_LEV3SIZE) * 2];
217 		este = &ste[NPTEPG / SG4_LEV3SIZE];
218 		protoste = kptmpa | SG_U | SG_RW | SG_V;
219 		while (ste < este) {
220 			*ste++ = protoste;
221 			protoste += (SG4_LEV3SIZE * sizeof(st_entry_t));
222 		}
223 		este = &ste[NPTEPG / SG4_LEV3SIZE];
224 		protoste = lkptpa | SG_U | SG_RW | SG_V;
225 		while (ste < este) {
226 			*ste++ = protoste;
227 			protoste += (SG4_LEV3SIZE * sizeof(st_entry_t));
228 		}
229 		/*
230 		 * Calculate the free level 2 descriptor mask
231 		 * noting that we have used:
232 		 *	0:		level 1 table
233 		 *	1 to nl1desc:	map page tables
234 		 *	nl1desc + 1:	maps kptmpa and last-page page table
235 		 */
236 		/* mark an entry for level 1 table */
237 		stfree = ~l2tobm(0);
238 		/* mark entries for map page tables */
239 		for (i = 1; i <= nl1desc; i++)
240 			stfree &= ~l2tobm(i);
241 		/* mark an entry for kptmpa and lkptpa */
242 		stfree &= ~l2tobm(i);
243 		/* mark entries not available */
244 		for (i = MAXKL2SIZE; i < sizeof(stfree) * NBBY; i++)
245 			stfree &= ~l2tobm(i);
246 
247 		/*
248 		 * Initialize Sysptmap
249 		 */
250 		pte = (pt_entry_t *)kptmpa;
251 		epte = &pte[nptpages];
252 		protopte = kptpa | PG_RW | PG_CI | PG_V;
253 		while (pte < epte) {
254 			*pte++ = protopte;
255 			protopte += PAGE_SIZE;
256 		}
257 		/*
258 		 * Invalidate all remaining entries.
259 		 */
260 		epte = (pt_entry_t *)kptmpa;
261 		epte = &epte[TIB_SIZE];
262 		while (pte < epte) {
263 			*pte++ = PG_NV;
264 		}
265 		/*
266 		 * Initialize the last ones to point to Sysptmap and the page
267 		 * table page allocated earlier.
268 		 */
269 		pte = (pt_entry_t *)kptmpa;
270 		pte = &pte[SYSMAP_VA >> SEGSHIFT];
271 		*pte = kptmpa | PG_RW | PG_CI | PG_V;
272 		pte = (pt_entry_t *)kptmpa;
273 		pte = &pte[MAXADDR >> SEGSHIFT];
274 		*pte = lkptpa | PG_RW | PG_CI | PG_V;
275 	} else {
276 		/*
277 		 * Map the page table pages in both the HW segment table
278 		 * and the software Sysptmap.
279 		 */
280 		ste = (st_entry_t *)kstpa;
281 		pte = (pt_entry_t *)kptmpa;
282 		epte = &pte[nptpages];
283 		protoste = kptpa | SG_RW | SG_V;
284 		protopte = kptpa | PG_RW | PG_CI | PG_V;
285 		while (pte < epte) {
286 			*ste++ = protoste;
287 			*pte++ = protopte;
288 			protoste += PAGE_SIZE;
289 			protopte += PAGE_SIZE;
290 		}
291 		/*
292 		 * Invalidate all remaining entries in both.
293 		 */
294 		este = (st_entry_t *)kstpa;
295 		este = &este[TIA_SIZE];
296 		while (ste < este)
297 			*ste++ = SG_NV;
298 		epte = (pt_entry_t *)kptmpa;
299 		epte = &epte[TIB_SIZE];
300 		while (pte < epte)
301 			*pte++ = PG_NV;
302 		/*
303 		 * Initialize the last ones to point to Sysptmap and the page
304 		 * table page allocated earlier.
305 		 */
306 		ste = (st_entry_t *)kstpa;
307 		ste = &ste[SYSMAP_VA >> SEGSHIFT];
308 		pte = (pt_entry_t *)kptmpa;
309 		pte = &pte[SYSMAP_VA >> SEGSHIFT];
310 		*ste = kptmpa | SG_RW | SG_V;
311 		*pte = kptmpa | PG_RW | PG_CI | PG_V;
312 		ste = (st_entry_t *)kstpa;
313 		ste = &ste[MAXADDR >> SEGSHIFT];
314 		pte = (pt_entry_t *)kptmpa;
315 		pte = &pte[MAXADDR >> SEGSHIFT];
316 		*ste = lkptpa | SG_RW | SG_V;
317 		*pte = lkptpa | PG_RW | PG_CI | PG_V;
318 	}
319 
320 	/*
321 	 * Invalidate all but the final entry in the last kernel PT page.
322 	 * The final entry maps the last page of physical memory to
323 	 * prepare a page that is PA == VA to turn on the MMU.
324 	 */
325 	pte = (pt_entry_t *)lkptpa;
326 	epte = &pte[NPTEPG - 1];
327 	while (pte < epte)
328 		*pte++ = PG_NV;
329 	*pte = MAXADDR | PG_RW | PG_CI | PG_V;
330 	/*
331 	 * Initialize kernel page table.
332 	 * Start by invalidating the `nptpages' that we have allocated.
333 	 */
334 	pte = (pt_entry_t *)kptpa;
335 	epte = &pte[nptpages * NPTEPG];
336 	while (pte < epte)
337 		*pte++ = PG_NV;
338 	/*
339 	 * Validate PTEs for kernel text (RO).
340 	 * The first page of kernel text remains invalid; see locore.s
341 	 */
342 	pte = (pt_entry_t *)kptpa;
343 	pte = &pte[m68k_btop(KERNBASE + PAGE_SIZE)];
344 	epte = &pte[m68k_btop(m68k_trunc_page(&etext))];
345 	protopte = (firstpa + PAGE_SIZE) | PG_RO | PG_V;
346 	while (pte < epte) {
347 		*pte++ = protopte;
348 		protopte += PAGE_SIZE;
349 	}
350 	/*
351 	 * Validate PTEs for kernel data/bss, dynamic data allocated
352 	 * by us so far (kstpa - firstpa bytes), and pages for lwp0
353 	 * u-area and page table allocated below (RW).
354 	 */
355 	epte = (pt_entry_t *)kptpa;
356 	epte = &epte[m68k_btop(kstpa - firstpa)];
357 	protopte = (protopte & ~PG_PROT) | PG_RW;
358 	/*
359 	 * Enable copy-back caching of data pages
360 	 */
361 	if (RELOC(mmutype, int) == MMU_68040)
362 		protopte |= PG_CCB;
363 	while (pte < epte) {
364 		*pte++ = protopte;
365 		protopte += PAGE_SIZE;
366 	}
367 	/*
368 	 * Map the kernel segment table cache invalidated for 68040/68060.
369 	 * (for the 68040 not strictly necessary, but recommended by Motorola;
370 	 *  for the 68060 mandatory)
371 	 */
372 	epte = (pt_entry_t *)kptpa;
373 	epte = &epte[m68k_btop(nextpa - firstpa)];
374 	protopte = (protopte & ~PG_PROT) | PG_RW;
375 	if (RELOC(mmutype, int) == MMU_68040) {
376 		protopte &= ~PG_CCB;
377 		protopte |= PG_CIN;
378 	}
379 	while (pte < epte) {
380 		*pte++ = protopte;
381 		protopte += PAGE_SIZE;
382 	}
383 
384 	/*
385 	 * Finally, validate the internal IO space PTEs (RW+CI).
386 	 * We do this here since the 320/350 MMU registers (also
387 	 * used, but to a lesser extent, on other models) are mapped
388 	 * in this range and it would be nice to be able to access
389 	 * them after the MMU is turned on.
390 	 */
391 
392 #define	PTE2VA(pte)	m68k_ptob(pte - ((pt_entry_t *)kptpa))
393 
394 	protopte = INTIOBASE | PG_RW | PG_CI | PG_V;
395 	epte = &pte[IIOMAPSIZE];
396 	RELOC(intiobase, uint8_t *) = (uint8_t *)PTE2VA(pte);
397 	RELOC(intiolimit, uint8_t *) = (uint8_t *)PTE2VA(epte);
398 	while (pte < epte) {
399 		*pte++ = protopte;
400 		protopte += PAGE_SIZE;
401 	}
402 	RELOC(extiobase, uint8_t *) = (uint8_t *)PTE2VA(pte);
403 	pte += EIOMAPSIZE;
404 	RELOC(virtual_avail, vaddr_t) = PTE2VA(pte);
405 
406 	/*
407 	 * Calculate important exported kernel addresses and related values.
408 	 */
409 	/*
410 	 * Sysseg: base of kernel segment table
411 	 */
412 	RELOC(Sysseg, st_entry_t *) = (st_entry_t *)(kstpa - firstpa);
413 	RELOC(Sysseg_pa, paddr_t) = kstpa;
414 #if defined(M68040)
415 	if (RELOC(mmutype, int) == MMU_68040)
416 		RELOC(protostfree, u_int) = stfree;
417 #endif
418 	/*
419 	 * Sysptmap: base of kernel page table map
420 	 */
421 	RELOC(Sysptmap, pt_entry_t *) = (pt_entry_t *)(kptmpa - firstpa);
422 	/*
423 	 * Sysmap: kernel page table (as mapped through Sysptmap)
424 	 * Allocated at the end of KVA space.
425 	 */
426 	RELOC(Sysmap, pt_entry_t *) = (pt_entry_t *)SYSMAP_VA;
427 	/*
428 	 * CLKbase, MMUbase: important registers in internal IO space
429 	 * accessed from assembly language.
430 	 */
431 	RELOC(CLKbase, vaddr_t) =
432 		(vaddr_t)RELOC(intiobase, char *) + CLKBASE;
433 	RELOC(MMUbase, vaddr_t) =
434 		(vaddr_t)RELOC(intiobase, char *) + MMUBASE;
435 
436 	/*
437 	 * Remember the u-area address so it can be loaded in the lwp0
438 	 * via uvm_lwp_setuarea() later in pmap_bootstrap_finalize().
439 	 */
440 	RELOC(lwp0uarea, vaddr_t) = lwp0upa - firstpa;
441 
442 	/*
443 	 * VM data structures are now initialized, set up data for
444 	 * the pmap module.
445 	 *
446 	 * Note about avail_end: msgbuf is initialized just after
447 	 * avail_end in machdep.c.
448 	 * Since the last page is used for rebooting the system
449 	 * (code is copied there and execution continues from copied code
450 	 * before the MMU is disabled), the msgbuf will get trounced
451 	 * between reboots if it's placed in the last physical page.
452 	 * To work around this, we move avail_end back one more
453 	 * page so the msgbuf can be preserved.
454 	 */
455 	RELOC(avail_start, paddr_t) = nextpa;
456 	RELOC(avail_end, paddr_t) = m68k_ptob(RELOC(maxmem, int)) -
457 	    (m68k_round_page(MSGBUFSIZE) + m68k_ptob(1));
458 	RELOC(mem_size, vsize_t) = m68k_ptob(RELOC(physmem, int));
459 
460 	RELOC(virtual_end, vaddr_t) = VM_MAX_KERNEL_ADDRESS;
461 
462 	/*
463 	 * Allocate some fixed, special purpose kernel virtual addresses
464 	 */
465 	{
466 		vaddr_t va = RELOC(virtual_avail, vaddr_t);
467 
468 		RELOC(CADDR1, void *) = (void *)va;
469 		va += PAGE_SIZE;
470 		RELOC(CADDR2, void *) = (void *)va;
471 		va += PAGE_SIZE;
472 		RELOC(vmmap, void *) = (void *)va;
473 		va += PAGE_SIZE;
474 		RELOC(msgbufaddr, void *) = (void *)va;
475 		va += m68k_round_page(MSGBUFSIZE);
476 		RELOC(virtual_avail, vaddr_t) = va;
477 	}
478 }
479