xref: /netbsd-src/sys/arch/evbmips/sbmips/sb1250_icu.c (revision aa3d1fe6ec3c7d927c11c03446382b1565528338)
1 /* $NetBSD: sb1250_icu.c,v 1.4 2023/12/05 19:16:48 andvar Exp $ */
2 
3 /*
4  * Copyright 2000, 2001
5  * Broadcom Corporation. All rights reserved.
6  *
7  * This software is furnished under license and may be used and copied only
8  * in accordance with the following terms and conditions.  Subject to these
9  * conditions, you may download, copy, install, use, modify and distribute
10  * modified or unmodified copies of this software in source and/or binary
11  * form. No title or ownership is transferred hereby.
12  *
13  * 1) Any source code used, modified or distributed must reproduce and
14  *    retain this copyright notice and list of conditions as they appear in
15  *    the source file.
16  *
17  * 2) No right is granted to use any trade name, trademark, or logo of
18  *    Broadcom Corporation.  The "Broadcom Corporation" name may not be
19  *    used to endorse or promote products derived from this software
20  *    without the prior written permission of Broadcom Corporation.
21  *
22  * 3) THIS SOFTWARE IS PROVIDED "AS-IS" AND ANY EXPRESS OR IMPLIED
23  *    WARRANTIES, INCLUDING BUT NOT LIMITED TO, ANY IMPLIED WARRANTIES OF
24  *    MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR
25  *    NON-INFRINGEMENT ARE DISCLAIMED. IN NO EVENT SHALL BROADCOM BE LIABLE
26  *    FOR ANY DAMAGES WHATSOEVER, AND IN PARTICULAR, BROADCOM SHALL NOT BE
27  *    LIABLE FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  *    CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  *    SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
30  *    BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
31  *    WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
32  *    OR OTHERWISE), EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: sb1250_icu.c,v 1.4 2023/12/05 19:16:48 andvar Exp $");
37 
38 #define	__INTR_PRIVATE
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/cpu.h>
43 #include <sys/device.h>
44 #include <sys/evcnt.h>
45 #include <sys/kmem.h>
46 
47 /* XXX for uvmexp */
48 #include <uvm/uvm_extern.h>
49 
50 #include <mips/locore.h>
51 
52 #include <evbmips/sbmips/cpuvar.h>
53 #include <evbmips/sbmips/systemsw.h>
54 
55 #include <mips/sibyte/include/sb1250_regs.h>
56 #include <mips/sibyte/include/sb1250_int.h>
57 #include <mips/sibyte/include/sb1250_scd.h>
58 
59 static const struct ipl_sr_map sb1250_ipl_sr_map = {
60     .sr_bits = {
61 	[IPL_NONE]	=	MIPS_INT_MASK_5,
62 	[IPL_SOFTCLOCK]	=	MIPS_SOFT_INT_MASK_0 | MIPS_INT_MASK_5,
63 	[IPL_SOFTBIO]	=	MIPS_SOFT_INT_MASK_0 | MIPS_INT_MASK_5,
64 	[IPL_SOFTNET]	=	MIPS_SOFT_INT_MASK | MIPS_INT_MASK_5,
65 	[IPL_SOFTSERIAL] =	MIPS_SOFT_INT_MASK | MIPS_INT_MASK_5,
66 	[IPL_VM]	=	MIPS_SOFT_INT_MASK | MIPS_INT_MASK_0
67 				    | MIPS_INT_MASK_5,
68 	[IPL_SCHED]	=	MIPS_SOFT_INT_MASK | MIPS_INT_MASK_0
69 			  	    | MIPS_INT_MASK_1 | MIPS_INT_MASK_5,
70 	[IPL_DDB]	=	MIPS_SOFT_INT_MASK | MIPS_INT_MASK_0
71 			  	    | MIPS_INT_MASK_1 | MIPS_INT_MASK_4
72 			  	    | MIPS_INT_MASK_5,
73 	[IPL_HIGH]	=	MIPS_INT_MASK,
74     },
75 };
76 
77 /* imr values corresponding to each pin */
78 static uint64_t ints_for_ipl[_IPL_N];
79 
80 struct sb1250_ihand {
81 	void	(*ih_fun)(void *, uint32_t, vaddr_t);
82 	void	*ih_arg;
83 	int	ih_ipl;
84 };
85 
86 static struct sb1250_ihand sb1250_ihands[K_INT_SOURCES];
87 
88 #ifdef MULTIPROCESSOR
89 static void sb1250_ipi_intr(void *, uint32_t, vaddr_t);
90 #endif
91 #define	SB1250_I_MAP(x)		(R_IMR_INTERRUPT_MAP_BASE + (x) * 8)
92 
93 #define	READ_REG(rp)		mips3_ld((register_t)(rp))
94 #define	WRITE_REG(rp, val)	mips3_sd((register_t)(rp), (val))
95 
96 static void	sb1250_cpu_intr(int, vaddr_t, uint32_t);
97 static void	*sb1250_intr_establish(u_int, u_int,
98 		    void (*fun)(void *, uint32_t, vaddr_t), void *);
99 
100 static const char sb1250_intr_names[K_INT_SOURCES][16] = {
101 	[K_INT_WATCHDOG_TIMER_0]	= "wdog0",
102 	[K_INT_WATCHDOG_TIMER_1]	= "wdog1",
103 	[K_INT_TIMER_0]			= "timer0",
104 	[K_INT_TIMER_1]			= "timer1",
105 	[K_INT_TIMER_2]			= "timer2",
106 	[K_INT_TIMER_3]			= "timer3",
107 	[K_INT_SMB_0]			= "smb0",
108 	[K_INT_SMB_1]			= "smb1",
109 	[K_INT_UART_0]			= "uart0",
110 	[K_INT_UART_1]			= "uart1",
111 	[K_INT_SER_0]			= "syncser0",
112 	[K_INT_SER_1]			= "syncser1",
113 	[K_INT_PCMCIA]			= "pcmcia",
114 	[K_INT_ADDR_TRAP]		= "addrtrap",
115 	[K_INT_PERF_CNT]		= "perfcnt",
116 	[K_INT_TRACE_FREEZE]		= "tracefreeze",
117 	[K_INT_BAD_ECC]			= "bad ECC",
118 	[K_INT_COR_ECC]			= "corrected ECC",
119 	[K_INT_IO_BUS]			= "iobus",
120 	[K_INT_MAC_0]			= "mac0",
121 	[K_INT_MAC_1]			= "mac1",
122 	[K_INT_MAC_2]			= "mac2",
123 	[K_INT_DM_CH_0]			= "dmover0",
124 	[K_INT_DM_CH_1]			= "dmover1",
125 	[K_INT_DM_CH_2]			= "dmover2",
126 	[K_INT_DM_CH_3]			= "dmover3",
127 	[K_INT_MBOX_0]			= "mbox0",
128 	[K_INT_MBOX_1]			= "mbox1",
129 	[K_INT_MBOX_2]			= "mbox2",
130 	[K_INT_MBOX_3]			= "mbox3",
131 	[K_INT_CYCLE_CP0_INT]		= "zbccp0",
132 	[K_INT_CYCLE_CP1_INT]		= "zbccp1",
133 	[K_INT_GPIO_0]			= "gpio0",
134 	[K_INT_GPIO_1]			= "gpio1",
135 	[K_INT_GPIO_2]			= "gpio2",
136 	[K_INT_GPIO_3]			= "gpio3",
137 	[K_INT_GPIO_4]			= "gpio4",
138 	[K_INT_GPIO_5]			= "gpio5",
139 	[K_INT_GPIO_6]			= "gpio6",
140 	[K_INT_GPIO_7]			= "gpio7",
141 	[K_INT_GPIO_8]			= "gpio8",
142 	[K_INT_GPIO_9]			= "gpio9",
143 	[K_INT_GPIO_10]			= "gpio10",
144 	[K_INT_GPIO_11]			= "gpio11",
145 	[K_INT_GPIO_12]			= "gpio12",
146 	[K_INT_GPIO_13]			= "gpio13",
147 	[K_INT_GPIO_14]			= "gpio14",
148 	[K_INT_GPIO_15]			= "gpio15",
149 	[K_INT_LDT_FATAL]		= "ldt fatal",
150 	[K_INT_LDT_NONFATAL]		= "ldt nonfatal",
151 	[K_INT_LDT_SMI]			= "ldt smi",
152 	[K_INT_LDT_NMI]			= "ldt nmi",
153 	[K_INT_LDT_INIT]		= "ldt init",
154 	[K_INT_LDT_STARTUP]		= "ldt startup",
155 	[K_INT_LDT_EXT]			= "ldt ext",
156 	[K_INT_PCI_ERROR]		= "pci error",
157 	[K_INT_PCI_INTA]		= "pci inta",
158 	[K_INT_PCI_INTB]		= "pci intb",
159 	[K_INT_PCI_INTC]		= "pci intc",
160 	[K_INT_PCI_INTD]		= "pci intd",
161 	[K_INT_SPARE_2]			= "spare2",
162 	[K_INT_MAC_0_CH1]		= "mac0 ch1",
163 	[K_INT_MAC_1_CH1]		= "mac1 ch1",
164 	[K_INT_MAC_2_CH1]		= "mac2 ch1",
165 };
166 
167 #ifdef MULTIPROCESSOR
168 static void
sb1250_lsw_cpu_init(struct cpu_info * ci)169 sb1250_lsw_cpu_init(struct cpu_info *ci)
170 {
171 	struct cpu_softc * const cpu = ci->ci_softc;
172 
173 	WRITE_REG(cpu->sb1cpu_imr_base + R_IMR_INTERRUPT_MASK, cpu->sb1cpu_imr_all);
174 }
175 
176 static int
sb1250_lsw_send_ipi(struct cpu_info * ci,int tag)177 sb1250_lsw_send_ipi(struct cpu_info *ci, int tag)
178 {
179 	struct cpu_softc * const cpu = ci->ci_softc;
180 	const uint64_t mbox_mask = 1LLU << tag;
181 
182 	if (kcpuset_isset(cpus_running, cpu_index(ci)))
183 		WRITE_REG(cpu->sb1cpu_imr_base + R_IMR_MAILBOX_SET_CPU, mbox_mask);
184 
185 	return 0;
186 }
187 
188 static void
sb1250_ipi_intr(void * arg,uint32_t status,vaddr_t pc)189 sb1250_ipi_intr(void *arg, uint32_t status, vaddr_t pc)
190 {
191 	struct cpu_info * const ci = curcpu();
192 	struct cpu_softc * const cpu = ci->ci_softc;
193 	uint64_t mbox_mask;
194 
195 	ci->ci_data.cpu_nintr++;
196 
197 	mbox_mask = READ_REG(cpu->sb1cpu_imr_base + R_IMR_MAILBOX_CPU);
198 	WRITE_REG(cpu->sb1cpu_imr_base + R_IMR_MAILBOX_CLR_CPU, mbox_mask);
199 
200 	ipi_process(ci, mbox_mask);
201 }
202 #endif /* MULTIPROCESSOR */
203 
204 void
sb1250_cpu_init(struct cpu_softc * cpu)205 sb1250_cpu_init(struct cpu_softc *cpu)
206 {
207 	const char * const xname = device_xname(cpu->sb1cpu_dev);
208 	struct evcnt * evcnts = cpu->sb1cpu_intr_evcnts;
209 
210 	cpu->sb1cpu_imr_base =
211 	    MIPS_PHYS_TO_KSEG1(A_IMR_MAPPER(cpu->sb1cpu_ci->ci_cpuid));
212 #ifdef MULTIPROCESSOR
213 	cpu->sb1cpu_imr_all =
214 	    ~(M_INT_MBOX_0|M_INT_MBOX_1|M_INT_MBOX_2|M_INT_MBOX_3
215 	      |M_INT_WATCHDOG_TIMER_0|M_INT_WATCHDOG_TIMER_1);
216 #else
217 	cpu->sb1cpu_imr_all = ~(M_INT_WATCHDOG_TIMER_0|M_INT_WATCHDOG_TIMER_1);
218 #endif
219 
220 	for (u_int i = 0; i < K_INT_SOURCES; i++, evcnts++) {
221 		WRITE_REG(cpu->sb1cpu_imr_base + SB1250_I_MAP(i), K_INT_MAP_I0);
222 		evcnt_attach_dynamic(evcnts, EVCNT_TYPE_INTR, NULL,
223 		    xname, sb1250_intr_names[i]);
224 	}
225 #if 0
226 	WRITE_REG(cpu->sb1cpu_imr_base + SB1250_I_MAP(K_INT_WATCHDOG_TIMER_0), K_INT_MAP_NMI);
227 	WRITE_REG(cpu->sb1cpu_imr_base + SB1250_I_MAP(K_INT_WATCHDOG_TIMER_1), K_INT_MAP_NMI);
228 #endif
229 
230 	WRITE_REG(cpu->sb1cpu_imr_base + R_IMR_INTERRUPT_MASK, cpu->sb1cpu_imr_all);
231 #ifdef MULTIPROCESSOR
232 	if (sb1250_ihands[K_INT_MBOX_0].ih_fun == NULL) {
233 		/*
234 		 * For now, deliver all IPIs at IPL_SCHED.  Eventually
235 		 * some will be at IPL_VM.
236 		 */
237 		for (int irq = K_INT_MBOX_0; irq <= K_INT_MBOX_3; irq++)
238 			sb1250_intr_establish(irq, IPL_SCHED,
239 			    sb1250_ipi_intr, NULL);
240 	}
241 #endif /* MULTIPROCESSOR */
242 }
243 
244 void
sb1250_ipl_map_init(void)245 sb1250_ipl_map_init(void)
246 {
247 	ipl_sr_map = sb1250_ipl_sr_map;
248 }
249 
250 void
sb1250_icu_init(void)251 sb1250_icu_init(void)
252 {
253 	const uint64_t imr_all = 0xffffffffffffffffULL;
254 
255 	KASSERT(memcmp((const void *)&ipl_sr_map, (const void *)&sb1250_ipl_sr_map, sizeof(ipl_sr_map)) == 0);
256 
257 	/* zero out the list of used interrupts/lines */
258 	memset(ints_for_ipl, 0, sizeof ints_for_ipl);
259 	memset(sb1250_ihands, 0, sizeof sb1250_ihands);
260 
261 	systemsw.s_cpu_intr = sb1250_cpu_intr;
262 	systemsw.s_intr_establish = sb1250_intr_establish;
263 
264 #ifdef MULTIPROCESSOR
265 	/*
266 	 * Bits 27:24 (11:8 of G_SYS_PART) encode the number of CPUs present.
267 	 */
268 	u_int sys_part = G_SYS_PART(READ_REG(MIPS_PHYS_TO_KSEG1(A_SCD_SYSTEM_REVISION)));
269 	const u_int cpus = (sys_part >> 8) & 0xf;
270 
271 	/*
272 	 * Allocate an evcnt structure for every possible interrupt on
273 	 * every possible CPU.
274 	 */
275 	vaddr_t imr = MIPS_PHYS_TO_KSEG1(A_IMR_CPU0_BASE + R_IMR_INTERRUPT_MASK);
276 	for (u_int i = 1; imr += IMR_REGISTER_SPACING, i < cpus; i++) {
277 		WRITE_REG(imr, imr_all);
278 	}
279 #endif /* MULTIPROCESSOR */
280 	WRITE_REG(MIPS_PHYS_TO_KSEG1(A_IMR_CPU0_BASE + R_IMR_INTERRUPT_MASK),
281 	    imr_all);
282 
283 #ifdef MULTIPROCESSOR
284 	mips_locoresw.lsw_send_ipi = sb1250_lsw_send_ipi;
285 	mips_locoresw.lsw_cpu_init = sb1250_lsw_cpu_init;
286 #endif /* MULTIPROCESSOR */
287 }
288 
289 static void
sb1250_cpu_intr(int ppl,vaddr_t pc,uint32_t status)290 sb1250_cpu_intr(int ppl, vaddr_t pc, uint32_t status)
291 {
292 	struct cpu_info * const ci = curcpu();
293 	struct cpu_softc * const cpu = ci->ci_softc;
294 	const vaddr_t imr_base = cpu->sb1cpu_imr_base;
295 	struct evcnt * const evcnts = cpu->sb1cpu_intr_evcnts;
296 	uint32_t pending;
297 	int ipl;
298 
299 	ci->ci_data.cpu_nintr++;
300 
301 	while (ppl < (ipl = splintr(&pending))) {
302 		splx(ipl);
303 
304 		/* XXX do something if 5? */
305 		if (pending & MIPS_INT_MASK_5) {
306 			uint32_t cycles = mips3_cp0_count_read();
307 			mips3_cp0_compare_write(cycles - 1);
308 			/* just leave the bugger disabled */
309 		}
310 
311 		uint64_t sstatus = ints_for_ipl[ipl];
312 		sstatus &= READ_REG(imr_base + R_IMR_INTERRUPT_SOURCE_STATUS);
313 		while (sstatus != 0) {
314 #ifndef __mips_o32
315 			u_int n;
316 			__asm("dclz %0,%1" : "=r"(n) : "r"(sstatus));
317 #else
318 			u_int n = (sstatus >> 32)
319 			    ?  0 + __builtin_clz(sstatus >> 32)
320 			    : 32 + __builtin_clz((uint32_t)sstatus);
321 #endif
322 			u_int j = 63 - n;
323 			KASSERT(sstatus & (1ULL << j));
324 			sstatus ^= (1ULL << j);
325 			struct sb1250_ihand *ihp = &sb1250_ihands[j];
326 			KASSERT(ihp->ih_fun);
327 			(*ihp->ih_fun)(ihp->ih_arg, status, pc);
328 			evcnts[j].ev_count++;
329 		}
330 		(void) splhigh();
331 	}
332 }
333 
334 static void *
sb1250_intr_establish(u_int num,u_int ipl,void (* fun)(void *,uint32_t,vaddr_t),void * arg)335 sb1250_intr_establish(u_int num, u_int ipl,
336     void (*fun)(void *, uint32_t, vaddr_t), void *arg)
337 {
338 	struct cpu_softc * const cpu = curcpu()->ci_softc;
339 	struct sb1250_ihand * const ih = &sb1250_ihands[num];
340 	const int s = splhigh();
341 
342 	/*
343 	 * XXX simonb
344 	 * The swarm wedges hard on first serial interrupt when
345 	 * we try to map IPL_SERIAL at a higher priority than
346 	 * other device interrupts.  For now, just force all
347 	 * devices to interrupt at IPL_VM.
348 	 *
349 	 */
350 	ipl = IPL_VM;	/* XXX */
351 
352 	if (num >= K_INT_SOURCES)
353 		panic("%s: invalid interrupt number (0x%x)", __func__, num);
354 	if (ipl >= _IPL_N || ipl < IPL_VM)
355 		panic("%s: invalid ipl %d", __func__, ipl);
356 	if (ih->ih_fun != NULL)
357 		panic("%s: cannot share sb1250 interrupts", __func__);
358 
359 	ints_for_ipl[ipl] |= (1ULL << num);
360 	cpu->sb1cpu_imr_all &= ~(1ULL << num);
361 
362 	ih->ih_fun = fun;
363 	ih->ih_arg = arg;
364 	ih->ih_ipl = ipl;
365 
366 	if (num <= K_INT_WATCHDOG_TIMER_1)
367 		WRITE_REG(cpu->sb1cpu_imr_base + SB1250_I_MAP(num), K_INT_MAP_I4);
368 	else if (ipl > IPL_VM)
369 		WRITE_REG(cpu->sb1cpu_imr_base + SB1250_I_MAP(num), K_INT_MAP_I1);
370 
371 	WRITE_REG(cpu->sb1cpu_imr_base + R_IMR_INTERRUPT_MASK, cpu->sb1cpu_imr_all);
372 
373 	splx(s);
374 
375 	return ih;
376 }
377