xref: /netbsd-src/sys/arch/evbarm/smdk2xx0/smdk2410_machdep.c (revision 5fdf9d1befdde982def6f1a6a9cd016f1b31fcee)
1 /*	$NetBSD: smdk2410_machdep.c,v 1.47 2024/02/20 23:36:01 andvar Exp $ */
2 
3 /*
4  * Copyright (c) 2002, 2003 Fujitsu Component Limited
5  * Copyright (c) 2002, 2003, 2005 Genetec Corporation
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The Fujitsu Component Limited nor the name of
17  *    Genetec corporation may not be used to endorse or promote products
18  *    derived from this software without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY FUJITSU COMPONENT LIMITED AND GENETEC
21  * CORPORATION ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
22  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
23  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
24  * DISCLAIMED.  IN NO EVENT SHALL FUJITSU COMPONENT LIMITED OR GENETEC
25  * CORPORATION BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
28  * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
29  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 /*
35  * Copyright (c) 2001,2002 ARM Ltd
36  * All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  * 3. The name of the company may not be used to endorse or promote
47  *    products derived from this software without specific prior written
48  *    permission.
49  *
50  * THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND
51  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
52  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
53  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL ARM LTD
54  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
55  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
56  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
57  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
58  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
59  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
60  * POSSIBILITY OF SUCH DAMAGE.
61  *
62  */
63 
64 /*
65  * Copyright (c) 1997,1998 Mark Brinicombe.
66  * Copyright (c) 1997,1998 Causality Limited.
67  * All rights reserved.
68  *
69  * Redistribution and use in source and binary forms, with or without
70  * modification, are permitted provided that the following conditions
71  * are met:
72  * 1. Redistributions of source code must retain the above copyright
73  *    notice, this list of conditions and the following disclaimer.
74  * 2. Redistributions in binary form must reproduce the above copyright
75  *    notice, this list of conditions and the following disclaimer in the
76  *    documentation and/or other materials provided with the distribution.
77  * 3. All advertising materials mentioning features or use of this software
78  *    must display the following acknowledgement:
79  *	This product includes software developed by Mark Brinicombe
80  *	for the NetBSD Project.
81  * 4. The name of the company nor the name of the author may be used to
82  *    endorse or promote products derived from this software without specific
83  *    prior written permission.
84  *
85  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
86  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
87  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
88  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
89  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
90  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
91  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
92  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
93  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
94  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
95  * SUCH DAMAGE.
96  *
97  * Machine dependent functions for kernel setup for integrator board
98  *
99  * Created      : 24/11/97
100  */
101 
102 /*
103  * Machine dependent functions for kernel setup for Samsung SMDK2410
104  * derived from integrator_machdep.c
105  */
106 
107 #include <sys/cdefs.h>
108 __KERNEL_RCSID(0, "$NetBSD: smdk2410_machdep.c,v 1.47 2024/02/20 23:36:01 andvar Exp $");
109 
110 #include "opt_arm_debug.h"
111 #include "opt_console.h"
112 #include "opt_ddb.h"
113 #include "opt_kgdb.h"
114 #include "opt_md.h"
115 
116 #include <sys/param.h>
117 #include <sys/device.h>
118 #include <sys/systm.h>
119 #include <sys/kernel.h>
120 #include <sys/exec.h>
121 #include <sys/proc.h>
122 #include <sys/msgbuf.h>
123 #include <sys/reboot.h>
124 #include <sys/termios.h>
125 #include <sys/ksyms.h>
126 #include <sys/bus.h>
127 #include <sys/cpu.h>
128 #include <sys/intr.h>
129 
130 #include <uvm/uvm_extern.h>
131 
132 #include <dev/cons.h>
133 #include <dev/md.h>
134 
135 #include <machine/db_machdep.h>
136 #include <ddb/db_sym.h>
137 #include <ddb/db_extern.h>
138 #ifdef KGDB
139 #include <sys/kgdb.h>
140 #endif
141 
142 #include <machine/bootconfig.h>
143 #include <arm/locore.h>
144 #include <arm/undefined.h>
145 
146 #include <arm/arm32/machdep.h>
147 
148 #include <arm/s3c2xx0/s3c2410reg.h>
149 #include <arm/s3c2xx0/s3c2410var.h>
150 
151 #include "ksyms.h"
152 
153 #ifndef	SDRAM_START
154 #define	SDRAM_START	S3C2410_SDRAM_START
155 #endif
156 #ifndef	SDRAM_SIZE
157 #define	SDRAM_SIZE	(32*1024*1024)
158 #endif
159 
160 /*
161  * Address to map I/O registers in early initialize stage.
162  */
163 #define SMDK2410_IO_VBASE	0xfd000000
164 
165 /* Kernel text starts 2MB in from the bottom of the kernel address space. */
166 #define	KERNEL_TEXT_BASE	(KERNEL_BASE + 0x00200000)
167 #define	KERNEL_VM_BASE		(KERNEL_BASE + 0x01000000)
168 
169 /*
170  * The range 0xc1000000 - 0xccffffff is available for kernel VM space
171  * Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff
172  */
173 #define KERNEL_VM_SIZE		0x0C000000
174 
175 /* Memory disk support */
176 #if defined(MEMORY_DISK_DYNAMIC) && defined(MEMORY_DISK_ROOT_ADDR)
177 #define DO_MEMORY_DISK
178 /* We have memory disk image outside of the kernel on ROM. */
179 #ifdef MEMORY_DISK_ROOT_ROM
180 /* map the image directory and use read-only */
181 #else
182 /* copy the image to RAM */
183 #endif
184 #endif
185 
186 BootConfig bootconfig;		/* Boot config storage */
187 char *boot_args = NULL;
188 char *boot_file = NULL;
189 
190 vaddr_t physical_start;
191 vaddr_t physical_freestart;
192 vaddr_t physical_freeend;
193 vaddr_t physical_end;
194 u_int free_pages;
195 
196 /*int debug_flags;*/
197 #ifndef PMAP_STATIC_L1S
198 int max_processes = 64;		/* Default number */
199 #endif				/* !PMAP_STATIC_L1S */
200 
201 paddr_t msgbufphys;
202 
203 #define KERNEL_PT_SYS		0	/* L2 table for mapping zero page */
204 #define KERNEL_PT_KERNEL	1	/* L2 table for mapping kernel */
205 #define	KERNEL_PT_KERNEL_NUM	2	/* L2 tables for mapping kernel VM */
206 
207 #define KERNEL_PT_VMDATA	(KERNEL_PT_KERNEL + KERNEL_PT_KERNEL_NUM)
208 
209 #define	KERNEL_PT_VMDATA_NUM	4	/* start with 16MB of KVM */
210 #define NUM_KERNEL_PTS		(KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
211 
212 pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
213 
214 /* Prototypes */
215 
216 void consinit(void);
217 void kgdb_port_init(void);
218 
219 
220 #include "com.h"
221 #if NCOM > 0
222 #include <dev/ic/comreg.h>
223 #include <dev/ic/comvar.h>
224 #endif
225 
226 #include "sscom.h"
227 #if NSSCOM > 0
228 #include "opt_sscom.h"
229 #include <arm/s3c2xx0/sscom_var.h>
230 #endif
231 
232 /*
233  * Define the default console speed for the board.  This is generally
234  * what the firmware provided with the board defaults to.
235  */
236 #ifndef CONSPEED
237 #define CONSPEED B115200	/* TTYDEF_SPEED */
238 #endif
239 #ifndef CONMODE
240 #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8)   /* 8N1 */
241 #endif
242 
243 int comcnspeed = CONSPEED;
244 int comcnmode = CONMODE;
245 
246 
247 /*
248  * void cpu_reboot(int howto, char *bootstr)
249  *
250  * Reboots the system
251  *
252  * Deal with any syncing, unmounting, dumping and shutdown hooks,
253  * then reset the CPU.
254  */
255 void
cpu_reboot(int howto,char * bootstr)256 cpu_reboot(int howto, char *bootstr)
257 {
258 #ifdef DIAGNOSTIC
259 	/* info */
260 	printf("boot: howto=%08x curproc=%p\n", howto, curproc);
261 #endif
262 
263 	cpu_reset_address_paddr = vtophys((u_int)s3c2410_softreset);
264 
265 	/*
266 	 * If we are still cold then hit the air brakes
267 	 * and crash to earth fast
268 	 */
269 	if (cold) {
270 		doshutdownhooks();
271 		pmf_system_shutdown(boothowto);
272 		printf("The operating system has halted.\n");
273 		printf("Please press any key to reboot.\n\n");
274 		cngetc();
275 		printf("rebooting...\n");
276 		cpu_reset();
277 		/* NOTREACHED */
278 	}
279 	/* Disable console buffering */
280 
281 	/*
282 	 * If RB_NOSYNC was not specified sync the discs.
283 	 * Note: Unless cold is set to 1 here, syslogd will die during the
284 	 * unmount.  It looks like syslogd is getting woken up only to find
285 	 * that it cannot page part of the binary in as the filesystem has
286 	 * been unmounted.
287 	 */
288 	if (!(howto & RB_NOSYNC))
289 		bootsync();
290 
291 	/* Say NO to interrupts */
292 	splhigh();
293 
294 	/* Do a dump if requested. */
295 	if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
296 		dumpsys();
297 
298 	/* Run any shutdown hooks */
299 	doshutdownhooks();
300 
301 	pmf_system_shutdown(boothowto);
302 
303 	/* Make sure IRQ's are disabled */
304 	IRQdisable;
305 
306 	if (howto & RB_HALT) {
307 		printf("The operating system has halted.\n");
308 		printf("Please press any key to reboot.\n\n");
309 		cngetc();
310 	}
311 	printf("rebooting...\n");
312 	cpu_reset();
313 	/* NOTREACHED */
314 }
315 
316 /*
317  * Static device mappings. These peripheral registers are mapped at
318  * fixed virtual addresses very early in initarm() so that we can use
319  * them while booting the kernel , and stay at the same address
320  * throughout whole kernel's life time.
321  *
322  * We use this table twice; once with bootstrap page table, and once
323  * with kernel's page table which we build up in initarm().
324  *
325  * Since we map these registers into the bootstrap page table using
326  * pmap_devmap_bootstrap() which calls pmap_map_chunk(), we map
327  * registers segment-aligned and segment-rounded in order to avoid
328  * using the 2nd page tables.
329  */
330 
331 #define	_V(n)	(SMDK2410_IO_VBASE + (n) * L1_S_SIZE)
332 
333 #define	GPIO_VBASE	_V(0)
334 #define	INTCTL_VBASE	_V(1)
335 #define	CLKMAN_VBASE	_V(2)
336 #define	UART_VBASE	_V(3)
337 #ifdef	MEMORY_DISK_DYNAMIC
338 #define	MEMORY_DISK_VADDR	_V(4)
339 #endif
340 
341 static const struct pmap_devmap smdk2410_devmap[] = {
342 	/* GPIO registers */
343 	DEVMAP_ENTRY(
344 		GPIO_VBASE,
345 		S3C2410_GPIO_BASE,
346 		S3C2410_GPIO_SIZE
347 	),
348 	DEVMAP_ENTRY(
349 		INTCTL_VBASE,
350 		S3C2410_INTCTL_BASE,
351 		S3C2410_INTCTL_SIZE
352 	),
353 	DEVMAP_ENTRY(
354 		CLKMAN_VBASE,
355 		S3C2410_CLKMAN_BASE,
356 		S3C24X0_CLKMAN_SIZE
357 	),
358 	/* UART registers for UART0, 1, 2. */
359 	DEVMAP_ENTRY(
360 		UART_VBASE,
361 		S3C2410_UART0_BASE,
362 		S3C2410_UART_BASE(3) - S3C2410_UART0_BASE
363 	),
364 
365 	DEVMAP_ENTRY_END
366 };
367 
368 static inline	pd_entry_t *
read_ttb(void)369 read_ttb(void)
370 {
371 	long ttb;
372 
373 	__asm volatile("mrc	p15, 0, %0, c2, c0, 0" : "=r"(ttb));
374 
375 
376 	return (pd_entry_t *)(ttb & ~((1 << 14) - 1));
377 }
378 
379 
380 #define	ioreg_read8(a)  	(*(volatile uint8_t *)(a))
381 #define	ioreg_write8(a,v)	(*(volatile uint8_t *)(a)=(v))
382 #define	ioreg_read32(a)  	(*(volatile uint32_t *)(a))
383 #define	ioreg_write32(a,v)  	(*(volatile uint32_t *)(a)=(v))
384 
385 /*
386  * vaddr_t initarm(...)
387  *
388  * Initial entry point on startup. This gets called before main() is
389  * entered.
390  * It should be responsible for setting up everything that must be
391  * in place when main is called.
392  * This includes
393  *   Taking a copy of the boot configuration structure.
394  *   Initialising the physical console so characters can be printed.
395  *   Setting up page tables for the kernel
396  *   Relocating the kernel to the bottom of physical memory
397  */
398 
399 vaddr_t
initarm(void * arg)400 initarm(void *arg)
401 {
402 	int loop;
403 	int loop1;
404 	u_int l1pagetable;
405 	extern int etext __asm("_etext");
406 	extern int end __asm("_end");
407 	int progress_counter = 0;
408 
409 #ifdef DO_MEMORY_DISK
410 	vaddr_t md_root_start;
411 #define MD_ROOT_SIZE (MEMORY_DISK_ROOT_SIZE * DEV_BSIZE)
412 #endif
413 
414 #define gpio_read8(reg) ioreg_read8(GPIO_VBASE + (reg))
415 
416 #define LEDSTEP()  __LED(progress_counter++)
417 
418 #define pdatf (*(volatile uint8_t *)(S3C2410_GPIO_BASE+GPIO_PFDAT))
419 #define __LED(x)  (pdatf = (pdatf & ~0xf0) | (~(x) & 0xf0))
420 
421 	LEDSTEP();
422 
423 	/* CS8900A on CS3 and CL-PD7610 need nBE1 signal. make sure
424 	 * memory controller is set correctly.  (USB download firmware
425 	 * doesn't do this right) Also, we use WAIT signal for them.
426 	 */
427 	ioreg_write32(S3C2410_MEMCTL_BASE + MEMCTL_BWSCON,
428 	    (BWSCON_ST|BWSCON_WS) << BWSCON_BANK_SHIFT(2) |
429 	    (BWSCON_ST|BWSCON_WS) << BWSCON_BANK_SHIFT(3) |
430 	    ioreg_read32(S3C2410_MEMCTL_BASE + MEMCTL_BWSCON));
431 	/* tweak access timing for CS8900A */
432 	ioreg_write32(S3C2410_MEMCTL_BASE + MEMCTL_BANKCON(3),
433 	    (0<<BANKCON_TACS_SHIFT)|(1<<BANKCON_TCOS_SHIFT)|
434 	    (7<<BANKCON_TACC_SHIFT)|(0<<BANKCON_TOCH_SHIFT)|
435 	    (0<<BANKCON_TCAH_SHIFT));
436 
437 	/*
438 	 * Heads up ... Setup the CPU / MMU / TLB functions
439 	 */
440 	if (set_cpufuncs())
441 		panic("cpu not recognized!");
442 
443 	LEDSTEP();
444 
445 	/*
446 	 * Map I/O registers that are used in startup.  Now we are
447 	 * still using page table prepared by bootloader.  Later we'll
448 	 * map those registers at the same address in the kernel page
449 	 * table.
450 	 */
451 	pmap_devmap_bootstrap((vaddr_t)read_ttb(), smdk2410_devmap);
452 
453 #undef	pdatf
454 #define pdatf (*(volatile uint8_t *)(GPIO_VBASE+GPIO_PFDAT))
455 
456 
457 	LEDSTEP();
458 
459 	/* Disable all peripheral interrupts */
460 	ioreg_write32(INTCTL_VBASE + INTCTL_INTMSK, ~0);
461 
462 	/* initialize some variables so that splfoo() doesn't
463 	   touch illegal address.  */
464 	s3c2xx0_intr_bootstrap(INTCTL_VBASE);
465 
466 	consinit();
467 #ifdef VERBOSE_INIT_ARM
468 	printf("consinit done\n");
469 #endif
470 
471 #ifdef KGDB
472 	LEDSTEP();
473 	kgdb_port_init();
474 #endif
475 	LEDSTEP();
476 
477 #ifdef VERBOSE_INIT_ARM
478 	/* Talk to the user */
479 	printf("\nNetBSD/evbarm (SMDK2410) booting ...\n");
480 #endif
481 	/*
482 	 * Ok we have the following memory map
483 	 *
484 	 * Physical Address Range     Description
485 	 * -----------------------    ----------------------------------
486 	 * 0x00000000 - 0x00ffffff    Intel flash Memory   (16MB)
487 	 * 0x02000000 - 0x020fffff    AMD flash Memory   (1MB)
488 	 * or 			       (depend on DIPSW setting)
489 	 * 0x00000000 - 0x000fffff    AMD flash Memory   (1MB)
490 	 * 0x02000000 - 0x02ffffff    Intel flash Memory   (16MB)
491 	 *
492 	 * 0x30000000 - 0x31ffffff    SDRAM (32MB)
493 	 *
494 	 * The initarm() has the responsibility for creating the kernel
495 	 * page tables.
496 	 * It must also set up various memory pointers that are used
497 	 * by pmap etc.
498 	 */
499 
500 	/* Fake bootconfig structure for the benefit of pmap.c */
501 	/* XXX must make the memory description h/w independent */
502 	bootconfig.dramblocks = 1;
503 	bootconfig.dram[0].address = SDRAM_START;
504 	bootconfig.dram[0].pages = SDRAM_SIZE / PAGE_SIZE;
505 
506 	/*
507 	 * Set up the variables that define the availability of
508 	 * physical memory.  For now, we're going to set
509 	 * physical_freestart to 0x08200000 (where the kernel
510 	 * was loaded), and allocate the memory we need downwards.
511 	 * If we get too close to the bottom of SDRAM, we
512 	 * will panic.  We will update physical_freestart and
513 	 * physical_freeend later to reflect what pmap_bootstrap()
514 	 * wants to see.
515 	 *
516 	 * XXX pmap_bootstrap() needs an enema.
517 	 */
518 	physical_start = bootconfig.dram[0].address;
519 	physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE);
520 
521 #ifdef DO_MEMORY_DISK
522 #ifdef MEMORY_DISK_ROOT_ROM
523 	md_root_start = MEMORY_DISK_ROOT_ADDR;
524 	boothowto |= RB_RDONLY;
525 #else
526 	/* Reserve physmem for ram disk */
527 	md_root_start = ((physical_end - MD_ROOT_SIZE) & ~(L1_S_SIZE-1));
528 	printf("Reserve %ld bytes for memory disk\n",
529 	    physical_end - md_root_start);
530 	/* copy fs contents */
531 	memcpy((void *)md_root_start, (void *)MEMORY_DISK_ROOT_ADDR,
532 	    MD_ROOT_SIZE);
533 	physical_end = md_root_start;
534 #endif
535 #endif
536 
537 	physical_freestart = SDRAM_START;	/* XXX */
538 	physical_freeend = SDRAM_START + 0x00200000;
539 
540 	physmem = (physical_end - physical_start) / PAGE_SIZE;
541 
542 #ifdef VERBOSE_INIT_ARM
543 	/* Tell the user about the memory */
544 	printf("physmemory: 0x%"PRIxPSIZE" pages at 0x%08lx -> 0x%08lx\n", physmem,
545 	    physical_start, physical_end - 1);
546 #endif
547 
548 	/*
549 	 * XXX
550 	 * Okay, the kernel starts 2MB in from the bottom of physical
551 	 * memory.  We are going to allocate our bootstrap pages downwards
552 	 * from there.
553 	 *
554 	 * We need to allocate some fixed page tables to get the kernel
555 	 * going.  We allocate one page directory and a number of page
556 	 * tables and store the physical addresses in the kernel_pt_table
557 	 * array.
558 	 *
559 	 * The kernel page directory must be on a 16K boundary.  The page
560 	 * tables must be on 4K boundaries.  What we do is allocate the
561 	 * page directory on the first 16K boundary that we encounter, and
562 	 * the page tables on 4K boundaries otherwise.  Since we allocate
563 	 * at least 3 L2 page tables, we are guaranteed to encounter at
564 	 * least one 16K aligned region.
565 	 */
566 
567 #ifdef VERBOSE_INIT_ARM
568 	printf("Allocating page tables\n");
569 #endif
570 
571 	free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;
572 
573 #ifdef VERBOSE_INIT_ARM
574 	printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n",
575 	    physical_freestart, free_pages, free_pages);
576 #endif
577 
578 	/* Define a macro to simplify memory allocation */
579 #define	valloc_pages(var, np)				\
580 	alloc_pages((var).pv_pa, (np));			\
581 	(var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
582 
583 #define alloc_pages(var, np)				\
584 	physical_freeend -= ((np) * PAGE_SIZE);		\
585 	if (physical_freeend < physical_freestart)	\
586 		panic("initarm: out of memory");	\
587 	(var) = physical_freeend;			\
588 	free_pages -= (np);				\
589 	memset((char *)(var), 0, ((np) * PAGE_SIZE));
590 
591 	loop1 = 0;
592 	for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
593 		/* Are we 16KB aligned for an L1 ? */
594 		if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0
595 		    && kernel_l1pt.pv_pa == 0) {
596 			valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
597 		} else {
598 			valloc_pages(kernel_pt_table[loop1],
599 			    L2_TABLE_SIZE / PAGE_SIZE);
600 			++loop1;
601 		}
602 	}
603 
604 	/* This should never be able to happen but better confirm that. */
605 	if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE - 1)) != 0)
606 		panic("initarm: Failed to align the kernel page directory\n");
607 
608 	/*
609 	 * Allocate a page for the system page mapped to V0x00000000
610 	 * This page will just contain the system vectors and can be
611 	 * shared by all processes.
612 	 */
613 	alloc_pages(systempage.pv_pa, 1);
614 
615 	/* Allocate stacks for all modes */
616 	valloc_pages(irqstack, IRQ_STACK_SIZE);
617 	valloc_pages(abtstack, ABT_STACK_SIZE);
618 	valloc_pages(undstack, UND_STACK_SIZE);
619 	valloc_pages(kernelstack, UPAGES);
620 
621 #ifdef VERBOSE_INIT_ARM
622 	printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
623 	    irqstack.pv_va);
624 	printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
625 	    abtstack.pv_va);
626 	printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
627 	    undstack.pv_va);
628 	printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
629 	    kernelstack.pv_va);
630 #endif
631 
632 	alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);
633 
634 	LEDSTEP();
635 
636 	/*
637 	 * Ok we have allocated physical pages for the primary kernel
638 	 * page tables
639 	 */
640 
641 #ifdef VERBOSE_INIT_ARM
642 	printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
643 #endif
644 
645 	/*
646 	 * Now we start construction of the L1 page table
647 	 * We start by mapping the L2 page tables into the L1.
648 	 * This means that we can replace L1 mappings later on if necessary
649 	 */
650 	l1pagetable = kernel_l1pt.pv_pa;
651 
652 	/* Map the L2 pages tables in the L1 page table */
653 	pmap_link_l2pt(l1pagetable, 0x00000000,
654 	    &kernel_pt_table[KERNEL_PT_SYS]);
655 	for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
656 		pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
657 		    &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
658 	for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
659 		pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
660 		    &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
661 
662 	/* update the top of the kernel VM */
663 	pmap_curmaxkvaddr =
664 	    KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
665 
666 #ifdef VERBOSE_INIT_ARM
667 	printf("Mapping kernel\n");
668 #endif
669 
670 	/* Now we fill in the L2 pagetable for the kernel static code/data */
671 	{
672 		size_t textsize = (uintptr_t)&etext - KERNEL_TEXT_BASE;
673 		size_t totalsize = (uintptr_t)&end - KERNEL_TEXT_BASE;
674 		u_int logical;
675 
676 		textsize = (textsize + PGOFSET) & ~PGOFSET;
677 		totalsize = (totalsize + PGOFSET) & ~PGOFSET;
678 
679 		logical = 0x00200000;	/* offset of kernel in RAM */
680 
681 		logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
682 		    physical_start + logical, textsize,
683 		    VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
684 		logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
685 		    physical_start + logical, totalsize - textsize,
686 		    VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
687 	}
688 
689 #ifdef VERBOSE_INIT_ARM
690 	printf("Constructing L2 page tables\n");
691 #endif
692 
693 	/* Map the stack pages */
694 	pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
695 	    IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE,
696 	    PTE_CACHE);
697 	pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
698 	    ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE,
699 	    PTE_CACHE);
700 	pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
701 	    UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE,
702 	    PTE_CACHE);
703 	pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
704 	    UPAGES * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
705 
706 	pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
707 	    L1_TABLE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE);
708 
709 	for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
710 		pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
711 		    kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
712 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
713 	}
714 
715 	/* Map the vector page. */
716 #if 1
717 	/* MULTI-ICE requires that page 0 is NC/NB so that it can download the
718 	 * cache-clean code there.  */
719 	pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
720 	    VM_PROT_READ | VM_PROT_WRITE, PTE_NOCACHE);
721 #else
722 	pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
723 	    VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
724 #endif
725 
726 #ifdef MEMORY_DISK_DYNAMIC
727 	/* map MD root image */
728 	pmap_map_chunk(l1pagetable, MEMORY_DISK_VADDR, md_root_start,
729 	    MD_ROOT_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
730 
731 	md_root_setconf((void *)md_root_start, MD_ROOT_SIZE);
732 #endif /* MEMORY_DISK_DYNAMIC */
733 	/*
734 	 * map integrated peripherals at same address in l1pagetable
735 	 * so that we can continue to use console.
736 	 */
737 	pmap_devmap_bootstrap(l1pagetable, smdk2410_devmap);
738 
739 	/*
740 	 * Now we have the real page tables in place so we can switch to them.
741 	 * Once this is done we will be running with the REAL kernel page
742 	 * tables.
743 	 */
744 
745 	/*
746 	 * Update the physical_freestart/physical_freeend/free_pages
747 	 * variables.
748 	 */
749 	{
750 		physical_freestart = physical_start +
751 		    (((((uintptr_t)&end) + PGOFSET) & ~PGOFSET) - KERNEL_BASE);
752 		physical_freeend = physical_end;
753 		free_pages =
754 		    (physical_freeend - physical_freestart) / PAGE_SIZE;
755 	}
756 
757 	/* Switch tables */
758 #ifdef VERBOSE_INIT_ARM
759 	printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n",
760 	    physical_freestart, free_pages, free_pages);
761 	printf("switching to new L1 page table  @%#lx...", kernel_l1pt.pv_pa);
762 #endif
763 	LEDSTEP();
764 	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
765 	cpu_setttb(kernel_l1pt.pv_pa, true);
766 	cpu_tlb_flushID();
767 	cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
768 
769 	/*
770 	 * Moved from cpu_startup() as data_abort_handler() references
771 	 * this during uvm init
772 	 */
773 	uvm_lwp_setuarea(&lwp0, kernelstack.pv_va);
774 
775 #ifdef VERBOSE_INIT_ARM
776 	printf("done!\n");
777 #endif
778 
779 	LEDSTEP();
780 #ifdef VERBOSE_INIT_ARM
781 	printf("bootstrap done.\n");
782 #endif
783 
784 	arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL);
785 
786 	/*
787 	 * Pages were allocated during the secondary bootstrap for the
788 	 * stacks for different CPU modes.
789 	 * We must now set the r13 registers in the different CPU modes to
790 	 * point to these stacks.
791 	 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
792 	 * of the stack memory.
793 	 */
794 #ifdef VERBOSE_INIT_ARM
795 	printf("init subsystems: stacks ");
796 #endif
797 
798 	set_stackptr(PSR_IRQ32_MODE,
799 	    irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
800 	set_stackptr(PSR_ABT32_MODE,
801 	    abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
802 	set_stackptr(PSR_UND32_MODE,
803 	    undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
804 
805 	LEDSTEP();
806 
807 	/*
808 	 * Well we should set a data abort handler.
809 	 * Once things get going this will change as we will need a proper
810 	 * handler.
811 	 * Until then we will use a handler that just panics but tells us
812 	 * why.
813 	 * Initialisation of the vectors will just panic on a data abort.
814 	 * This just fills in a slightly better one.
815 	 */
816 #ifdef VERBOSE_INIT_ARM
817 	printf("vectors ");
818 #endif
819 	data_abort_handler_address = (u_int)data_abort_handler;
820 	prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
821 	undefined_handler_address = (u_int)undefinedinstruction_bounce;
822 
823 	/* Initialise the undefined instruction handlers */
824 #ifdef VERBOSE_INIT_ARM
825 	printf("undefined ");
826 #endif
827 	undefined_init();
828 
829 	LEDSTEP();
830 
831 	/* Load memory into UVM. */
832 #ifdef VERBOSE_INIT_ARM
833 	printf("page ");
834 #endif
835 	uvm_md_init();
836 	uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
837 	    atop(physical_freestart), atop(physical_freeend),
838 	    VM_FREELIST_DEFAULT);
839 
840 	LEDSTEP();
841 	/* Boot strap pmap telling it where managed kernel virtual memory is */
842 #ifdef VERBOSE_INIT_ARM
843 	printf("pmap ");
844 #endif
845 	pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE);
846 
847 	LEDSTEP();
848 
849 	/* Setup the IRQ system */
850 #ifdef VERBOSE_INIT_ARM
851 	printf("irq ");
852 #endif
853 	/* XXX irq_init(); */
854 
855 #ifdef VERBOSE_INIT_ARM
856 	printf("done.\n");
857 #endif
858 
859 #ifdef BOOTHOWTO
860 	boothowto |= BOOTHOWTO;
861 #endif
862 	{
863 		uint8_t  gpio = ~gpio_read8(GPIO_PFDAT);
864 
865 		if (gpio & (1<<0)) /* SW1 (EINT0) */
866 			boothowto ^= RB_SINGLE;
867 		if (gpio & (1<<2)) /* SW2 (EINT2) */
868 			boothowto ^= RB_KDB;
869 #ifdef VERBOSE_INIT_ARM
870 		printf( "sw: %x boothowto: %x\n", gpio, boothowto );
871 #endif
872 	}
873 
874 #ifdef KGDB
875 	if (boothowto & RB_KDB) {
876 		kgdb_debug_init = 1;
877 		kgdb_connect(1);
878 	}
879 #endif
880 
881 #ifdef DDB
882 	db_machine_init();
883 	if (boothowto & RB_KDB)
884 		Debugger();
885 #endif
886 
887 	/* We return the new stack pointer address */
888 	return kernelstack.pv_va + USPACE_SVC_STACK_TOP;
889 }
890 
891 void
consinit(void)892 consinit(void)
893 {
894 	static int consinit_done = 0;
895 	bus_space_tag_t iot = &s3c2xx0_bs_tag;
896 	int pclk;
897 
898 	if (consinit_done != 0)
899 		return;
900 
901 	consinit_done = 1;
902 
903 	s3c24x0_clock_freq2(CLKMAN_VBASE, NULL, NULL, &pclk);
904 
905 #if NSSCOM > 0
906 #ifdef SSCOM0CONSOLE
907 	if (0 == s3c2410_sscom_cnattach(iot, 0, comcnspeed,
908 		pclk, comcnmode))
909 		return;
910 #endif
911 #ifdef SSCOM1CONSOLE
912 	if (0 == s3c2410_sscom_cnattach(iot, 1, comcnspeed,
913 		pclk, comcnmode))
914 		return;
915 #endif
916 #endif				/* NSSCOM */
917 #if NCOM>0 && defined(CONCOMADDR)
918 	if (comcnattach(&isa_io_bs_tag, CONCOMADDR, comcnspeed,
919 		COM_FREQ, COM_TYPE_NORMAL, comcnmode))
920 		panic("can't init serial console @%x", CONCOMADDR);
921 	return;
922 #endif
923 
924 	consinit_done = 0;
925 }
926 
927 
928 #ifdef KGDB
929 
930 #if (NSSCOM > 0)
931 
932 #ifdef KGDB_DEVNAME
933 const char kgdb_devname[] = KGDB_DEVNAME;
934 #else
935 const char kgdb_devname[] = "";
936 #endif
937 
938 #ifndef KGDB_DEVMODE
939 #define KGDB_DEVMODE ((TTYDEF_CFLAG & ~(CSIZE|CSTOPB|PARENB))|CS8) /* 8N1 */
940 #endif
941 int kgdb_sscom_mode = KGDB_DEVMODE;
942 
943 #endif				/* NSSCOM */
944 
945 void
kgdb_port_init(void)946 kgdb_port_init(void)
947 {
948 #if (NSSCOM > 0)
949 	int unit = -1;
950 	int pclk;
951 
952 	if (strcmp(kgdb_devname, "sscom0") == 0)
953 		unit = 0;
954 	else if (strcmp(kgdb_devname, "sscom1") == 0)
955 		unit = 1;
956 
957 	if (unit >= 0) {
958 		s3c24x0_clock_freq2(CLKMAN_VBASE, NULL, NULL, &pclk);
959 
960 		s3c2410_sscom_kgdb_attach(&s3c2xx0_bs_tag,
961 		    unit, kgdb_rate, pclk, kgdb_sscom_mode);
962 	}
963 #endif
964 }
965 #endif
966 
967 static struct arm32_dma_range smdk2410_dma_ranges[1];
968 
969 bus_dma_tag_t
s3c2xx0_bus_dma_init(struct arm32_bus_dma_tag * dma_tag_template)970 s3c2xx0_bus_dma_init(struct arm32_bus_dma_tag *dma_tag_template)
971 {
972 	extern paddr_t physical_start, physical_end;
973 	struct arm32_bus_dma_tag *dmat;
974 
975 	smdk2410_dma_ranges[0].dr_sysbase = physical_start;
976 	smdk2410_dma_ranges[0].dr_busbase = physical_start;
977 	smdk2410_dma_ranges[0].dr_len = physical_end - physical_start;
978 
979 #if 1
980 	dmat = dma_tag_template;
981 #else
982 	dmat = malloc(sizeof *dmat, M_DEVBUF, M_WAITOK);
983 	*dmat =  *dma_tag_template;
984 #endif
985 
986 	dmat->_ranges = smdk2410_dma_ranges;
987 	dmat->_nranges = 1;
988 
989 	return dmat;
990 }
991