xref: /netbsd-src/sys/arch/arm/broadcom/bcm53xx_board.c (revision 790f4cb583c0020fda66e309bd4009fc854bffa3)
1 /*	$NetBSD: bcm53xx_board.c,v 1.27 2024/02/16 16:28:49 skrll Exp $	*/
2 /*-
3  * Copyright (c) 2012 The NetBSD Foundation, Inc.
4  * All rights reserved.
5  *
6  * This code is derived from software contributed to The NetBSD Foundation
7  * by Matt Thomas of 3am Software Foundry.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
19  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
20  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
21  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
22  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28  * POSSIBILITY OF SUCH DAMAGE.
29  */
30 
31 #include "opt_arm_debug.h"
32 #include "opt_broadcom.h"
33 #include "arml2cc.h"
34 
35 #define	_ARM32_BUS_DMA_PRIVATE
36 
37 #include <sys/cdefs.h>
38 
39 __KERNEL_RCSID(1, "$NetBSD: bcm53xx_board.c,v 1.27 2024/02/16 16:28:49 skrll Exp $");
40 
41 #include <sys/param.h>
42 #include <sys/bus.h>
43 #include <sys/cpu.h>
44 #include <sys/device.h>
45 
46 #include <prop/proplib.h>
47 
48 #include <net/if.h>
49 #include <net/if_ether.h>
50 
51 #define CCA_PRIVATE
52 #define CRU_PRIVATE
53 #define DDR_PRIVATE
54 #define DMU_PRIVATE
55 #define ARMCORE_PRIVATE
56 #define SRAB_PRIVATE
57 
58 #include <arm/cortex/a9tmr_var.h>
59 #include <arm/cortex/pl310_var.h>
60 #include <arm/mainbus/mainbus.h>
61 
62 #include <arm/broadcom/bcm53xx_reg.h>
63 #include <arm/broadcom/bcm53xx_var.h>
64 
65 bus_space_tag_t bcm53xx_ioreg_bst = &bcmgen_bs_tag;
66 bus_space_handle_t bcm53xx_ioreg_bsh;
67 bus_space_tag_t bcm53xx_armcore_bst = &bcmgen_bs_tag;
68 bus_space_handle_t bcm53xx_armcore_bsh;
69 
70 static struct cpu_softc cpu_softc;
71 
72 struct arm32_dma_range bcm53xx_dma_ranges[] = {
73 #ifdef BCM5301X
74 	[0] = {
75 		.dr_sysbase = 0x80000000,
76 		.dr_busbase = 0x80000000,
77 		.dr_len = 0x10000000,
78 	}, [1] = {
79 		.dr_sysbase = 0x90000000,
80 		.dr_busbase = 0x90000000,
81 	},
82 #elif defined(BCM563XX)
83 	[0] = {
84 		.dr_sysbase = 0x60000000,
85 		.dr_busbase = 0x60000000,
86 		.dr_len = 0x20000000,
87 	}, [1] = {
88 		.dr_sysbase = 0x80000000,
89 		.dr_busbase = 0x80000000,
90 	},
91 #endif
92 };
93 
94 struct arm32_bus_dma_tag bcm53xx_dma_tag = {
95 	._ranges = bcm53xx_dma_ranges,
96 	._nranges = __arraycount(bcm53xx_dma_ranges),
97 	_BUS_DMAMAP_FUNCS,
98 	_BUS_DMAMEM_FUNCS,
99 	_BUS_DMATAG_FUNCS,
100 };
101 
102 struct arm32_dma_range bcm53xx_coherent_dma_ranges[] = {
103 #ifdef BCM5301X
104 	[0] = {
105 		.dr_sysbase = 0x80000000,
106 		.dr_busbase = 0x80000000,
107 		.dr_len = 0x10000000,
108 		.dr_flags = _BUS_DMAMAP_COHERENT,
109 	}, [1] = {
110 		.dr_sysbase = 0x90000000,
111 		.dr_busbase = 0x90000000,
112 	},
113 #elif defined(BCM563XX)
114 	[0] = {
115 		.dr_sysbase = 0x60000000,
116 		.dr_busbase = 0x60000000,
117 		.dr_len = 0x20000000,
118 		.dr_flags = _BUS_DMAMAP_COHERENT,
119 	}, [1] = {
120 		.dr_sysbase = 0x80000000,
121 		.dr_busbase = 0x80000000,
122 	},
123 #endif
124 };
125 
126 struct arm32_bus_dma_tag bcm53xx_coherent_dma_tag = {
127 	._ranges = bcm53xx_coherent_dma_ranges,
128 	._nranges = __arraycount(bcm53xx_coherent_dma_ranges),
129 	_BUS_DMAMAP_FUNCS,
130 	_BUS_DMAMEM_FUNCS,
131 	_BUS_DMATAG_FUNCS,
132 };
133 
134 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
135 struct arm32_bus_dma_tag bcm53xx_bounce_dma_tag = {
136 	._ranges = bcm53xx_coherent_dma_ranges,
137 	._nranges = 1,
138 	_BUS_DMAMAP_FUNCS,
139 	_BUS_DMAMEM_FUNCS,
140 	_BUS_DMATAG_FUNCS,
141 };
142 #endif
143 
144 psize_t
bcm53xx_memprobe(void)145 bcm53xx_memprobe(void)
146 {
147 	bus_space_tag_t bst = bcm53xx_ioreg_bst;
148 	bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
149 
150 	/*
151 	 * First, let's read the magic DDR registers!
152 	 */
153 	const uint32_t v01 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_01);
154 	const uint32_t v82 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_82);
155 	const uint32_t v86 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_86);
156 	const uint32_t v87 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_87);
157 
158 	/*
159 	 * Calculate chip parameters
160 	 * */
161 	const u_int rows = __SHIFTOUT(v01, CTL_01_MAX_ROW)
162 	    - __SHIFTOUT(v82, CTL_82_ROW_DIFF);
163 	const u_int cols = __SHIFTOUT(v01, CTL_01_MAX_COL)
164 	    - __SHIFTOUT(v82, CTL_82_COL_DIFF);
165 	const u_int banks_log2 = 3 - __SHIFTOUT(v82, CTL_82_BANK_DIFF);
166 
167 	/*
168 	 * For each chip select, increase the chip count if if is enabled.
169 	 */
170 	const u_int max_chips = __SHIFTOUT(v01, CTL_01_MAX_CHIP_SEL);
171 	u_int cs_map = __SHIFTOUT(v86, CTL_86_CS_MAP);
172 	u_int chips = 0;
173 
174 	for (u_int i = 0; cs_map != 0 && i < max_chips; i++, cs_map >>= 1) {
175 		chips += (cs_map & 1);
176 	}
177 
178 	/* get log2(ddr width) */
179 
180 	const u_int ddr_width_log2 = (v87 & CTL_87_REDUC) ? 1 : 2;
181 
182 	/*
183 	 * Let's add up all the things that contribute to the size of a chip.
184 	 */
185 	const u_int chip_size_log2 = cols + rows + banks_log2 + ddr_width_log2;
186 
187 	/*
188 	 * Now our memory size is simply the number of chip shifted by the
189 	 * log2(chip_size).
190 	 */
191 	return (psize_t) chips << chip_size_log2;
192 }
193 
194 static inline uint32_t
bcm53xx_freq_calc(struct bcm53xx_clock_info * clk,uint32_t pdiv,uint32_t ndiv_int,uint32_t ndiv_frac)195 bcm53xx_freq_calc(struct bcm53xx_clock_info *clk,
196 	uint32_t pdiv, uint32_t ndiv_int, uint32_t ndiv_frac)
197 {
198 	if (ndiv_frac == 0 && pdiv == 1)
199 		return ndiv_int * clk->clk_ref;
200 
201 	uint64_t freq64 = ((uint64_t)ndiv_int << 30) + ndiv_frac;
202 	freq64 *= clk->clk_ref;
203 	if (pdiv > 1)
204 		freq64 /= pdiv;
205 	return (uint32_t) (freq64 >> 30);
206 }
207 
208 static uint32_t
bcm53xx_value_wrap(uint32_t value,uint32_t mask)209 bcm53xx_value_wrap(uint32_t value, uint32_t mask)
210 {
211 	/*
212 	 * n is n except when n is 0 then n = mask + 1.
213 	 */
214 	return ((__SHIFTOUT(value, mask) - 1) &  __SHIFTOUT(mask, mask)) + 1;
215 }
216 
217 static void
bcm53xx_genpll_clock_init(struct bcm53xx_clock_info * clk,uint32_t control5,uint32_t control6,uint32_t control7)218 bcm53xx_genpll_clock_init(struct bcm53xx_clock_info *clk, uint32_t control5,
219 	uint32_t control6, uint32_t control7)
220 {
221 	const uint32_t pdiv = bcm53xx_value_wrap(control6,
222 	    GENPLL_CONTROL6_PDIV);
223 	const uint32_t ndiv_int = bcm53xx_value_wrap(control5,
224 	    GENPLL_CONTROL5_NDIV_INT);
225 	const uint32_t ndiv_frac = __SHIFTOUT(control5,
226 	    GENPLL_CONTROL5_NDIV_FRAC);
227 
228 	clk->clk_genpll = bcm53xx_freq_calc(clk, pdiv, ndiv_int, ndiv_frac);
229 
230 	const uint32_t ch0_mdiv = bcm53xx_value_wrap(control6,
231 	    GENPLL_CONTROL6_CH0_MDIV);
232 	const uint32_t ch1_mdiv = bcm53xx_value_wrap(control6,
233 	    GENPLL_CONTROL6_CH1_MDIV);
234 	const uint32_t ch2_mdiv = bcm53xx_value_wrap(control6,
235 	    GENPLL_CONTROL6_CH2_MDIV);
236 	const uint32_t ch3_mdiv = bcm53xx_value_wrap(control7,
237 	    GENPLL_CONTROL7_CH3_MDIV);
238 
239 	clk->clk_mac = clk->clk_genpll / ch0_mdiv;	// GENPLL CH0
240 	clk->clk_robo = clk->clk_genpll / ch1_mdiv;	// GENPLL CH1
241 	clk->clk_usb2 = clk->clk_genpll / ch2_mdiv;	// GENPLL CH2
242 	clk->clk_iproc = clk->clk_genpll / ch3_mdiv;	// GENPLL CH3
243 }
244 
245 static void
bcm53xx_lcpll_clock_init(struct bcm53xx_clock_info * clk,uint32_t control1,uint32_t control2)246 bcm53xx_lcpll_clock_init(struct bcm53xx_clock_info *clk, uint32_t control1,
247 	uint32_t control2)
248 {
249 	const uint32_t pdiv = bcm53xx_value_wrap(control1,
250 	    LCPLL_CONTROL1_PDIV);
251 	const uint32_t ndiv_int = bcm53xx_value_wrap(control1,
252 	    LCPLL_CONTROL1_NDIV_INT);
253 	const uint32_t ndiv_frac = __SHIFTOUT(control1,
254 	    LCPLL_CONTROL1_NDIV_FRAC);
255 
256 	clk->clk_lcpll = bcm53xx_freq_calc(clk, pdiv, ndiv_int, ndiv_frac);
257 
258 	const uint32_t ch0_mdiv = bcm53xx_value_wrap(control2,
259 	    LCPLL_CONTROL2_CH0_MDIV);
260 	const uint32_t ch1_mdiv = bcm53xx_value_wrap(control2,
261 	    LCPLL_CONTROL2_CH1_MDIV);
262 	const uint32_t ch2_mdiv = bcm53xx_value_wrap(control2,
263 	    LCPLL_CONTROL2_CH2_MDIV);
264 	const uint32_t ch3_mdiv = bcm53xx_value_wrap(control2,
265 	    LCPLL_CONTROL2_CH3_MDIV);
266 
267 	clk->clk_pcie_ref = clk->clk_lcpll / ch0_mdiv;	// LCPLL CH0
268 	clk->clk_sdio = clk->clk_lcpll / ch1_mdiv;	// LCPLL CH1
269 	clk->clk_ddr_ref = clk->clk_lcpll / ch2_mdiv;	// LCPLL CH2
270 	clk->clk_axi = clk->clk_lcpll / ch3_mdiv;	// LCPLL CH3
271 }
272 
273 static void
bcm53xx_usb_clock_init(struct bcm53xx_clock_info * clk,uint32_t usb2_control)274 bcm53xx_usb_clock_init(struct bcm53xx_clock_info *clk, uint32_t usb2_control)
275 {
276 	const uint32_t pdiv = bcm53xx_value_wrap(usb2_control,
277 	    USB2_CONTROL_PDIV);
278 	const uint32_t ndiv = bcm53xx_value_wrap(usb2_control,
279 	    USB2_CONTROL_NDIV_INT);
280 
281 	uint32_t usb_ref = (clk->clk_usb2 / pdiv) * ndiv;
282 	if (usb_ref != USB2_REF_CLK) {
283 		/*
284 		 * USB Reference Clock isn't 1.92GHz.  So we need to modify
285 		 * USB2_CONTROL to produce it.
286 		 */
287 		uint32_t new_ndiv = (USB2_REF_CLK / clk->clk_usb2) * pdiv;
288 		usb2_control &= ~USB2_CONTROL_NDIV_INT;
289 		usb2_control |= __SHIFTIN(new_ndiv, USB2_CONTROL_NDIV_INT);
290 
291 		// Allow Clocks to be modified
292 		bus_space_write_4(bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh,
293 		    CRU_BASE + CRU_CLKSET_KEY, CRU_CLKSET_KEY_MAGIC);
294 
295 		// Update USB2 clock generator
296 		bus_space_write_4(bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh,
297 		    CRU_BASE + CRU_USB2_CONTROL, usb2_control);
298 
299 		// Prevent Clock modification
300 		bus_space_write_4(bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh,
301 		    CRU_BASE + CRU_CLKSET_KEY, 0);
302 
303 		usb_ref = (clk->clk_usb2 / pdiv) * new_ndiv;
304 	}
305 
306 	clk->clk_usb_ref = usb_ref;
307 }
308 
309 
310 static void
bcm53xx_clock_init(struct bcm53xx_clock_info * clk)311 bcm53xx_clock_init(struct bcm53xx_clock_info *clk)
312 {
313 	clk->clk_ref = BCM53XX_REF_CLK;
314 	clk->clk_sys = 8*clk->clk_ref;
315 }
316 
317 /*
318  * F(ddr) = ((1 / pdiv) * ndiv * CH2) / (post_div * 2)
319  */
320 static void
bcm53xx_get_ddr_freq(struct bcm53xx_clock_info * clk,uint32_t pll_status,uint32_t pll_dividers)321 bcm53xx_get_ddr_freq(struct bcm53xx_clock_info *clk, uint32_t pll_status,
322     uint32_t pll_dividers)
323 {
324 	const bool clocking_4x = (pll_status & PLL_STATUS_CLOCKING_4X) != 0;
325 	u_int post_div = __SHIFTOUT(pll_dividers, PLL_DIVIDERS_POST_DIV);
326 	u_int pdiv = __SHIFTOUT(pll_dividers, PLL_DIVIDERS_PDIV);
327 	u_int ndiv = __SHIFTOUT(pll_dividers, PLL_DIVIDERS_NDIV);
328 
329 	pdiv = ((pdiv - (clocking_4x ? 1 : 5)) & 7) + 1;
330 
331 	clk->clk_ddr_mhz = __SHIFTOUT(pll_status, PLL_STATUS_MHZ);
332 	clk->clk_ddr = (clk->clk_ddr_ref / pdiv) * ndiv / (2 + post_div);
333 }
334 
335 /*
336  * CPU_CLK = (1 / pdiv) * (ndiv_int + (ndiv_frac / 0x40000000)) x F(ref)
337  */
338 static void
bcm53xx_get_cpu_freq(struct bcm53xx_clock_info * clk,uint32_t pllarma,uint32_t pllarmb,uint32_t policy)339 bcm53xx_get_cpu_freq(struct bcm53xx_clock_info *clk,
340 	uint32_t pllarma, uint32_t pllarmb, uint32_t policy)
341 {
342 	policy = __SHIFTOUT(policy, CLK_POLICY_FREQ_POLICY2);
343 
344 	if (policy == CLK_POLICY_REF_CLK) {
345 		clk->clk_cpu = clk->clk_ref;
346 		clk->clk_apb = clk->clk_cpu;
347 		return;
348 	}
349 
350 	if (policy == CLK_POLICY_SYS_CLK) {
351 		clk->clk_cpu = clk->clk_sys;
352 		clk->clk_apb = clk->clk_cpu / 4;
353 		return;
354 	}
355 
356 	const u_int pdiv = bcm53xx_value_wrap(pllarma, CLK_PLLARMA_PDIV);
357 	const u_int ndiv_int = bcm53xx_value_wrap(pllarma, CLK_PLLARMA_NDIV_INT);
358 	const u_int ndiv_frac = __SHIFTOUT(pllarmb, CLK_PLLARMB_NDIV_FRAC);
359 	// const u_int apb_clk_div = __SHIFTOUT(apb_clk_div, CLK_APB_DIV_VALUE)+1;
360 
361 	const u_int cpu_div = (policy == CLK_POLICY_ARM_PLL_CH0) ? 4 : 2;
362 
363 	clk->clk_cpu = bcm53xx_freq_calc(clk, pdiv, ndiv_int, ndiv_frac) / cpu_div;
364 	clk->clk_apb = clk->clk_cpu / 4;
365 }
366 
367 struct bcm53xx_chip_state {
368 	uint32_t bcs_lcpll_control1;
369 	uint32_t bcs_lcpll_control2;
370 
371 	uint32_t bcs_genpll_control5;
372 	uint32_t bcs_genpll_control6;
373 	uint32_t bcs_genpll_control7;
374 
375 	uint32_t bcs_usb2_control;
376 
377 	uint32_t bcs_ddr_phy_ctl_pll_status;
378 	uint32_t bcs_ddr_phy_ctl_pll_dividers;
379 
380 	uint32_t bcs_armcore_clk_policy;
381 	uint32_t bcs_armcore_clk_pllarma;
382 	uint32_t bcs_armcore_clk_pllarmb;
383 };
384 
385 static void
bcm53xx_get_chip_ioreg_state(struct bcm53xx_chip_state * bcs,bus_space_tag_t bst,bus_space_handle_t bsh)386 bcm53xx_get_chip_ioreg_state(struct bcm53xx_chip_state *bcs,
387 	bus_space_tag_t bst, bus_space_handle_t bsh)
388 {
389 	bcs->bcs_lcpll_control1 = bus_space_read_4(bst, bsh,
390 	    DMU_BASE + DMU_LCPLL_CONTROL1);
391 	bcs->bcs_lcpll_control2 = bus_space_read_4(bst, bsh,
392 	    DMU_BASE + DMU_LCPLL_CONTROL2);
393 
394 	bcs->bcs_genpll_control5 = bus_space_read_4(bst, bsh,
395 	    CRU_BASE + CRU_GENPLL_CONTROL5);
396 	bcs->bcs_genpll_control6 = bus_space_read_4(bst, bsh,
397 	    CRU_BASE + CRU_GENPLL_CONTROL6);
398 	bcs->bcs_genpll_control7 = bus_space_read_4(bst, bsh,
399 	    CRU_BASE + CRU_GENPLL_CONTROL7);
400 
401 	bcs->bcs_usb2_control = bus_space_read_4(bst, bsh,
402 	    CRU_BASE + CRU_USB2_CONTROL);
403 
404 	bcs->bcs_ddr_phy_ctl_pll_status = bus_space_read_4(bst, bsh,
405 	    DDR_BASE + DDR_PHY_CTL_PLL_STATUS);
406 	bcs->bcs_ddr_phy_ctl_pll_dividers = bus_space_read_4(bst, bsh,
407 	    DDR_BASE + DDR_PHY_CTL_PLL_DIVIDERS);
408 }
409 
410 static void
bcm53xx_get_chip_armcore_state(struct bcm53xx_chip_state * bcs,bus_space_tag_t bst,bus_space_handle_t bsh)411 bcm53xx_get_chip_armcore_state(struct bcm53xx_chip_state *bcs,
412 	bus_space_tag_t bst, bus_space_handle_t bsh)
413 {
414 	bcs->bcs_armcore_clk_policy = bus_space_read_4(bst, bsh,
415 	    ARMCORE_CLK_POLICY_FREQ);
416 	bcs->bcs_armcore_clk_pllarma = bus_space_read_4(bst, bsh,
417 	    ARMCORE_CLK_PLLARMA);
418 	bcs->bcs_armcore_clk_pllarmb = bus_space_read_4(bst, bsh,
419 	    ARMCORE_CLK_PLLARMB);
420 }
421 
422 void
bcm53xx_cpu_softc_init(struct cpu_info * ci)423 bcm53xx_cpu_softc_init(struct cpu_info *ci)
424 {
425 	struct cpu_softc * const cpu = ci->ci_softc;
426 
427 	cpu->cpu_ioreg_bst = bcm53xx_ioreg_bst;
428 	cpu->cpu_ioreg_bsh = bcm53xx_ioreg_bsh;
429 
430 	cpu->cpu_armcore_bst = bcm53xx_armcore_bst;
431 	cpu->cpu_armcore_bsh = bcm53xx_armcore_bsh;
432 
433 	const uint32_t chipid = bus_space_read_4(cpu->cpu_ioreg_bst,
434 	    cpu->cpu_ioreg_bsh, CCA_MISC_BASE + MISC_CHIPID);
435 
436 	cpu->cpu_chipid = __SHIFTOUT(chipid, CHIPID_ID);
437 }
438 
439 void
bcm53xx_print_clocks(void)440 bcm53xx_print_clocks(void)
441 {
442 #if defined(VERBOSE_INIT_ARM)
443 	const struct bcm53xx_clock_info * const clk = &cpu_softc.cpu_clk;
444 	printf("ref clk =	%u (%#x)\n", clk->clk_ref, clk->clk_ref);
445 	printf("sys clk =	%u (%#x)\n", clk->clk_sys, clk->clk_sys);
446 	printf("lcpll clk =	%u (%#x)\n", clk->clk_lcpll, clk->clk_lcpll);
447 	printf("pcie ref clk =	%u (%#x) [CH0]\n", clk->clk_pcie_ref, clk->clk_pcie_ref);
448 	printf("sdio clk =	%u (%#x) [CH1]\n", clk->clk_sdio, clk->clk_sdio);
449 	printf("ddr ref clk =	%u (%#x) [CH2]\n", clk->clk_ddr_ref, clk->clk_ddr_ref);
450 	printf("axi clk =	%u (%#x) [CH3]\n", clk->clk_axi, clk->clk_axi);
451 	printf("genpll clk =	%u (%#x)\n", clk->clk_genpll, clk->clk_genpll);
452 	printf("mac clk =	%u (%#x) [CH0]\n", clk->clk_mac, clk->clk_mac);
453 	printf("robo clk =	%u (%#x) [CH1]\n", clk->clk_robo, clk->clk_robo);
454 	printf("usb2 clk =	%u (%#x) [CH2]\n", clk->clk_usb2, clk->clk_usb2);
455 	printf("iproc clk =	%u (%#x) [CH3]\n", clk->clk_iproc, clk->clk_iproc);
456 	printf("ddr clk =	%u (%#x)\n", clk->clk_ddr, clk->clk_ddr);
457 	printf("ddr mhz =	%u (%#x)\n", clk->clk_ddr_mhz, clk->clk_ddr_mhz);
458 	printf("cpu clk =	%u (%#x)\n", clk->clk_cpu, clk->clk_cpu);
459 	printf("apb clk =	%u (%#x)\n", clk->clk_apb, clk->clk_apb);
460 	printf("usb ref clk =	%u (%#x)\n", clk->clk_usb_ref, clk->clk_usb_ref);
461 #endif
462 }
463 
464 void
bcm53xx_bootstrap(vaddr_t iobase)465 bcm53xx_bootstrap(vaddr_t iobase)
466 {
467 	struct bcm53xx_chip_state bcs;
468 	int error;
469 
470 	bcm53xx_ioreg_bsh = (bus_space_handle_t) iobase;
471 	error = bus_space_map(bcm53xx_ioreg_bst, BCM53XX_IOREG_PBASE,
472 	    BCM53XX_IOREG_SIZE, 0, &bcm53xx_ioreg_bsh);
473 	if (error)
474 		panic("%s: failed to map BCM53xx %s registers: %d",
475 		    __func__, "io", error);
476 
477 	bcm53xx_armcore_bsh = (bus_space_handle_t) iobase + BCM53XX_IOREG_SIZE;
478 	error = bus_space_map(bcm53xx_armcore_bst, BCM53XX_ARMCORE_PBASE,
479 	    BCM53XX_ARMCORE_SIZE, 0, &bcm53xx_armcore_bsh);
480 	if (error)
481 		panic("%s: failed to map BCM53xx %s registers: %d",
482 		    __func__, "armcore", error);
483 
484 	curcpu()->ci_softc = &cpu_softc;
485 
486 	bcm53xx_get_chip_ioreg_state(&bcs, bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh);
487 	bcm53xx_get_chip_armcore_state(&bcs, bcm53xx_armcore_bst, bcm53xx_armcore_bsh);
488 
489 	struct bcm53xx_clock_info * const clk = &cpu_softc.cpu_clk;
490 
491 	bcm53xx_clock_init(clk);
492 	bcm53xx_lcpll_clock_init(clk, bcs.bcs_lcpll_control1,
493 	    bcs.bcs_lcpll_control2);
494 	bcm53xx_genpll_clock_init(clk, bcs.bcs_genpll_control5,
495 	    bcs.bcs_genpll_control6, bcs.bcs_genpll_control7);
496 	bcm53xx_usb_clock_init(clk, bcs.bcs_usb2_control);
497 	bcm53xx_get_ddr_freq(clk, bcs.bcs_ddr_phy_ctl_pll_status,
498 	    bcs.bcs_ddr_phy_ctl_pll_dividers);
499 	bcm53xx_get_cpu_freq(clk, bcs.bcs_armcore_clk_pllarma,
500 	    bcs.bcs_armcore_clk_pllarmb, bcs.bcs_armcore_clk_policy);
501 
502 	curcpu()->ci_data.cpu_cc_freq = clk->clk_cpu;
503 
504 #if NARML2CC > 0
505 	arml2cc_init(bcm53xx_armcore_bst, bcm53xx_armcore_bsh,
506 	    ARMCORE_L2C_BASE);
507 #endif
508 }
509 
510 void
bcm53xx_dma_bootstrap(psize_t memsize)511 bcm53xx_dma_bootstrap(psize_t memsize)
512 {
513 	if (memsize <= 256*1024*1024) {
514 		bcm53xx_dma_ranges[0].dr_len = memsize;
515 		bcm53xx_coherent_dma_ranges[0].dr_len = memsize;
516 		bcm53xx_dma_tag._nranges = 1;
517 		bcm53xx_coherent_dma_tag._nranges = 1;
518 	} else {
519 		/*
520 		 * By setting up two ranges, bus_dmamem_alloc will always
521 		 * try to allocate from range 0 first resulting in allocations
522 		 * below 256MB which for PCI and GMAC are coherent.
523 		 */
524 		bcm53xx_dma_ranges[1].dr_len = memsize - 0x10000000;
525 		bcm53xx_coherent_dma_ranges[1].dr_len = memsize - 0x10000000;
526 	}
527 	KASSERT(bcm53xx_dma_tag._ranges[0].dr_flags == 0);
528 	KASSERT(bcm53xx_coherent_dma_tag._ranges[0].dr_flags == _BUS_DMAMAP_COHERENT);
529 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
530 	KASSERT(bcm53xx_bounce_dma_tag._ranges[0].dr_flags == _BUS_DMAMAP_COHERENT);
531 #endif
532 }
533 
534 #ifdef MULTIPROCESSOR
535 void
bcm53xx_cpu_hatch(struct cpu_info * ci)536 bcm53xx_cpu_hatch(struct cpu_info *ci)
537 {
538 	a9tmr_init_cpu_clock(ci);
539 }
540 #endif
541 
542 void
bcm53xx_device_register(device_t self,void * aux)543 bcm53xx_device_register(device_t self, void *aux)
544 {
545 	prop_dictionary_t dict = device_properties(self);
546 
547 	if (device_is_a(self, "armperiph")
548 	    && device_is_a(device_parent(self), "mainbus")) {
549 		/*
550 		 * XXX KLUDGE ALERT XXX
551 		 * The iot mainbus supplies is completely wrong since it scales
552 		 * addresses by 2.  The simplest remedy is to replace with our
553 		 * bus space used for the armcore registers (which armperiph uses).
554 		 */
555 		struct mainbus_attach_args * const mb = aux;
556 		mb->mb_iot = bcm53xx_armcore_bst;
557 		return;
558 	}
559 
560 	/*
561 	 * We need to tell the A9 Global/Watchdog Timer
562 	 * what frequency it runs at.
563 	 */
564 	if (device_is_a(self, "arma9tmr") || device_is_a(self, "a9wdt")) {
565 		/*
566 		 * This clock always runs at (arm_clk div 2) and only goes
567 		 * to timers that are part of the A9 MP core subsystem.
568 		 */
569                 prop_dictionary_set_uint32(dict, "frequency",
570 		    cpu_softc.cpu_clk.clk_cpu / 2);
571 		return;
572 	}
573 
574 	if (device_is_a(self, "bcmeth")) {
575 		const struct bcmccb_attach_args * const ccbaa = aux;
576 		const uint8_t enaddr[ETHER_ADDR_LEN] = {
577 			0x00, 0x01, 0x02, 0x03, 0x04,
578 			0x05 + 2 * ccbaa->ccbaa_loc.loc_port,
579 		};
580 		prop_data_t pd = prop_data_create_data(enaddr, ETHER_ADDR_LEN);
581 		KASSERT(pd != NULL);
582 		if (prop_dictionary_set(device_properties(self), "mac-address", pd) == false) {
583 			printf("WARNING: Unable to set mac-address property for %s\n", device_xname(self));
584 		}
585 		prop_object_release(pd);
586 	}
587 }
588 
589 #ifdef SRAB_BASE
590 static kmutex_t srab_lock __cacheline_aligned;
591 
592 void
bcm53xx_srab_init(void)593 bcm53xx_srab_init(void)
594 {
595 	mutex_init(&srab_lock, MUTEX_DEFAULT, IPL_VM);
596 
597 	bcm53xx_srab_write_4(0x0079, 0x90);	// reset switch
598 	for (u_int port = 0; port < 8; port++) {
599 		/* per port control: no stp */
600 		bcm53xx_srab_write_4(port, 0x00);
601 	}
602 	bcm53xx_srab_write_4(0x0008, 0x1c);	// IMP port (enab UC/MC/BC)
603 	bcm53xx_srab_write_4(0x000e, 0xbb);	// IMP port force-link 1G
604 	bcm53xx_srab_write_4(0x005d, 0x7b);	// port5 force-link 1G
605 	bcm53xx_srab_write_4(0x005f, 0x7b);	// port7 force-link 1G
606 	bcm53xx_srab_write_4(0x000b, 0x7);	// management mode
607 	bcm53xx_srab_write_4(0x0203, 0x0);	// disable BRCM tag
608 	bcm53xx_srab_write_4(0x0200, 0x80);	// enable IMP=port8
609 }
610 
611 static inline void
bcm53xx_srab_busywait(bus_space_tag_t bst,bus_space_handle_t bsh)612 bcm53xx_srab_busywait(bus_space_tag_t bst, bus_space_handle_t bsh)
613 {
614 	while (bus_space_read_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT) & SRA_GORDYN) {
615 		delay(10);
616 	}
617 }
618 
619 uint32_t
bcm53xx_srab_read_4(u_int pageoffset)620 bcm53xx_srab_read_4(u_int pageoffset)
621 {
622 	bus_space_tag_t bst = bcm53xx_ioreg_bst;
623 	bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
624 	uint32_t rv;
625 
626 	mutex_spin_enter(&srab_lock);
627 
628 	bcm53xx_srab_busywait(bst, bsh);
629 	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT,
630 	    __SHIFTIN(pageoffset, SRA_PAGEOFFSET) | SRA_GORDYN);
631 	bcm53xx_srab_busywait(bst, bsh);
632 	rv = bus_space_read_4(bst, bsh, SRAB_BASE + SRAB_RDL);
633 
634 	mutex_spin_exit(&srab_lock);
635 	return rv;
636 }
637 
638 uint64_t
bcm53xx_srab_read_8(u_int pageoffset)639 bcm53xx_srab_read_8(u_int pageoffset)
640 {
641 	bus_space_tag_t bst = bcm53xx_ioreg_bst;
642 	bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
643 	uint64_t rv;
644 
645 	mutex_spin_enter(&srab_lock);
646 
647 	bcm53xx_srab_busywait(bst, bsh);
648 	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT,
649 	    __SHIFTIN(pageoffset, SRA_PAGEOFFSET) | SRA_GORDYN);
650 	bcm53xx_srab_busywait(bst, bsh);
651 	rv = bus_space_read_4(bst, bsh, SRAB_BASE + SRAB_RDH);
652 	rv <<= 32;
653 	rv |= bus_space_read_4(bst, bsh, SRAB_BASE + SRAB_RDL);
654 
655 	mutex_spin_exit(&srab_lock);
656 	return rv;
657 }
658 
659 void
bcm53xx_srab_write_4(u_int pageoffset,uint32_t val)660 bcm53xx_srab_write_4(u_int pageoffset, uint32_t val)
661 {
662 	bus_space_tag_t bst = bcm53xx_ioreg_bst;
663 	bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
664 
665 	mutex_spin_enter(&srab_lock);
666 
667 	bcm53xx_srab_busywait(bst, bsh);
668 	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_WDL, val);
669 	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT,
670 	    __SHIFTIN(pageoffset, SRA_PAGEOFFSET) | SRA_WRITE | SRA_GORDYN);
671 	bcm53xx_srab_busywait(bst, bsh);
672 
673 	mutex_spin_exit(&srab_lock);
674 }
675 
676 void
bcm53xx_srab_write_8(u_int pageoffset,uint64_t val)677 bcm53xx_srab_write_8(u_int pageoffset, uint64_t val)
678 {
679 	bus_space_tag_t bst = bcm53xx_ioreg_bst;
680 	bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
681 
682 	mutex_spin_enter(&srab_lock);
683 
684 	bcm53xx_srab_busywait(bst, bsh);
685 	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_WDL, val);
686 	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_WDH, val >> 32);
687 	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT,
688 	    __SHIFTIN(pageoffset, SRA_PAGEOFFSET) | SRA_WRITE | SRA_GORDYN);
689 	bcm53xx_srab_busywait(bst, bsh);
690 	mutex_spin_exit(&srab_lock);
691 }
692 #endif
693