1 /*
2 * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
3 * Copyright (c) 2002-2008 Atheros Communications, Inc.
4 *
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 *
17 * $Id: ar5413.c,v 1.4 2013/09/12 12:07:01 martin Exp $
18 */
19 #include "opt_ah.h"
20
21 #include "ah.h"
22 #include "ah_internal.h"
23
24 #include "ah_eeprom_v3.h"
25
26 #include "ar5212/ar5212.h"
27 #include "ar5212/ar5212reg.h"
28 #include "ar5212/ar5212phy.h"
29
30 #define AH_5212_5413
31 #include "ar5212/ar5212.ini"
32
33 #define N(a) (sizeof(a)/sizeof(a[0]))
34
35 struct ar5413State {
36 RF_HAL_FUNCS base; /* public state, must be first */
37 uint16_t pcdacTable[PWR_TABLE_SIZE_2413];
38
39 uint32_t Bank1Data[N(ar5212Bank1_5413)];
40 uint32_t Bank2Data[N(ar5212Bank2_5413)];
41 uint32_t Bank3Data[N(ar5212Bank3_5413)];
42 uint32_t Bank6Data[N(ar5212Bank6_5413)];
43 uint32_t Bank7Data[N(ar5212Bank7_5413)];
44
45 /*
46 * Private state for reduced stack usage.
47 */
48 /* filled out Vpd table for all pdGains (chanL) */
49 uint16_t vpdTable_L[MAX_NUM_PDGAINS_PER_CHANNEL]
50 [MAX_PWR_RANGE_IN_HALF_DB];
51 /* filled out Vpd table for all pdGains (chanR) */
52 uint16_t vpdTable_R[MAX_NUM_PDGAINS_PER_CHANNEL]
53 [MAX_PWR_RANGE_IN_HALF_DB];
54 /* filled out Vpd table for all pdGains (interpolated) */
55 uint16_t vpdTable_I[MAX_NUM_PDGAINS_PER_CHANNEL]
56 [MAX_PWR_RANGE_IN_HALF_DB];
57 };
58 #define AR5413(ah) ((struct ar5413State *) AH5212(ah)->ah_rfHal)
59
60 extern void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
61 uint32_t numBits, uint32_t firstBit, uint32_t column);
62
63 static void
ar5413WriteRegs(struct ath_hal * ah,u_int modesIndex,u_int freqIndex,int writes)64 ar5413WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
65 int writes)
66 {
67 HAL_INI_WRITE_ARRAY(ah, ar5212Modes_5413, modesIndex, writes);
68 HAL_INI_WRITE_ARRAY(ah, ar5212Common_5413, 1, writes);
69 HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_5413, freqIndex, writes);
70 }
71
72 /*
73 * Take the MHz channel value and set the Channel value
74 *
75 * ASSUMES: Writes enabled to analog bus
76 */
77 static HAL_BOOL
ar5413SetChannel(struct ath_hal * ah,HAL_CHANNEL_INTERNAL * chan)78 ar5413SetChannel(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan)
79 {
80 uint32_t channelSel = 0;
81 uint32_t bModeSynth = 0;
82 uint32_t aModeRefSel = 0;
83 uint32_t reg32 = 0;
84 uint16_t freq;
85
86 OS_MARK(ah, AH_MARK_SETCHANNEL, chan->channel);
87
88 if (chan->channel < 4800) {
89 uint32_t txctl;
90
91 if (((chan->channel - 2192) % 5) == 0) {
92 channelSel = ((chan->channel - 672) * 2 - 3040)/10;
93 bModeSynth = 0;
94 } else if (((chan->channel - 2224) % 5) == 0) {
95 channelSel = ((chan->channel - 704) * 2 - 3040) / 10;
96 bModeSynth = 1;
97 } else {
98 HALDEBUG(ah, HAL_DEBUG_ANY,
99 "%s: invalid channel %u MHz\n",
100 __func__, chan->channel);
101 return AH_FALSE;
102 }
103
104 channelSel = (channelSel << 2) & 0xff;
105 channelSel = ath_hal_reverseBits(channelSel, 8);
106
107 txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
108 if (chan->channel == 2484) {
109 /* Enable channel spreading for channel 14 */
110 OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
111 txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
112 } else {
113 OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
114 txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
115 }
116 } else if (((chan->channel % 5) == 2) && (chan->channel <= 5435)) {
117 freq = chan->channel - 2; /* Align to even 5MHz raster */
118 channelSel = ath_hal_reverseBits(
119 (uint32_t)(((freq - 4800)*10)/25 + 1), 8);
120 aModeRefSel = ath_hal_reverseBits(0, 2);
121 } else if ((chan->channel % 20) == 0 && chan->channel >= 5120) {
122 channelSel = ath_hal_reverseBits(
123 ((chan->channel - 4800) / 20 << 2), 8);
124 aModeRefSel = ath_hal_reverseBits(1, 2);
125 } else if ((chan->channel % 10) == 0) {
126 channelSel = ath_hal_reverseBits(
127 ((chan->channel - 4800) / 10 << 1), 8);
128 aModeRefSel = ath_hal_reverseBits(1, 2);
129 } else if ((chan->channel % 5) == 0) {
130 channelSel = ath_hal_reverseBits(
131 (chan->channel - 4800) / 5, 8);
132 aModeRefSel = ath_hal_reverseBits(1, 2);
133 } else {
134 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n",
135 __func__, chan->channel);
136 return AH_FALSE;
137 }
138
139 reg32 = (channelSel << 4) | (aModeRefSel << 2) | (bModeSynth << 1) |
140 (1 << 12) | 0x1;
141 OS_REG_WRITE(ah, AR_PHY(0x27), reg32 & 0xff);
142
143 reg32 >>= 8;
144 OS_REG_WRITE(ah, AR_PHY(0x36), reg32 & 0x7f);
145
146 AH_PRIVATE(ah)->ah_curchan = chan;
147 return AH_TRUE;
148 }
149
150 /*
151 * Reads EEPROM header info from device structure and programs
152 * all rf registers
153 *
154 * REQUIRES: Access to the analog rf device
155 */
156 static HAL_BOOL
ar5413SetRfRegs(struct ath_hal * ah,HAL_CHANNEL_INTERNAL * chan,uint16_t modesIndex,uint16_t * rfXpdGain)157 ar5413SetRfRegs(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan, uint16_t modesIndex, uint16_t *rfXpdGain)
158 {
159 #define RF_BANK_SETUP(_priv, _ix, _col) do { \
160 int i; \
161 for (i = 0; i < N(ar5212Bank##_ix##_5413); i++) \
162 (_priv)->Bank##_ix##Data[i] = ar5212Bank##_ix##_5413[i][_col];\
163 } while (0)
164 struct ath_hal_5212 *ahp = AH5212(ah);
165 const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
166 uint16_t ob5GHz = 0, db5GHz = 0;
167 uint16_t ob2GHz = 0, db2GHz = 0;
168 struct ar5413State *priv = AR5413(ah);
169 int regWrites = 0;
170
171 HALDEBUG(ah, HAL_DEBUG_RFPARAM,
172 "%s: chan 0x%x flag 0x%x modesIndex 0x%x\n",
173 __func__, chan->channel, chan->channelFlags, modesIndex);
174
175 HALASSERT(priv != AH_NULL);
176
177 /* Setup rf parameters */
178 switch (chan->channelFlags & CHANNEL_ALL) {
179 case CHANNEL_A:
180 case CHANNEL_T:
181 if (chan->channel > 4000 && chan->channel < 5260) {
182 ob5GHz = ee->ee_ob1;
183 db5GHz = ee->ee_db1;
184 } else if (chan->channel >= 5260 && chan->channel < 5500) {
185 ob5GHz = ee->ee_ob2;
186 db5GHz = ee->ee_db2;
187 } else if (chan->channel >= 5500 && chan->channel < 5725) {
188 ob5GHz = ee->ee_ob3;
189 db5GHz = ee->ee_db3;
190 } else if (chan->channel >= 5725) {
191 ob5GHz = ee->ee_ob4;
192 db5GHz = ee->ee_db4;
193 } else {
194 /* XXX else */
195 }
196 break;
197 case CHANNEL_B:
198 ob2GHz = ee->ee_obFor24;
199 db2GHz = ee->ee_dbFor24;
200 break;
201 case CHANNEL_G:
202 case CHANNEL_108G:
203 ob2GHz = ee->ee_obFor24g;
204 db2GHz = ee->ee_dbFor24g;
205 break;
206 default:
207 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
208 __func__, chan->channelFlags);
209 return AH_FALSE;
210 }
211
212 /* Bank 1 Write */
213 RF_BANK_SETUP(priv, 1, 1);
214
215 /* Bank 2 Write */
216 RF_BANK_SETUP(priv, 2, modesIndex);
217
218 /* Bank 3 Write */
219 RF_BANK_SETUP(priv, 3, modesIndex);
220
221 /* Bank 6 Write */
222 RF_BANK_SETUP(priv, 6, modesIndex);
223
224 /* Only the 5 or 2 GHz OB/DB need to be set for a mode */
225 if (IS_CHAN_2GHZ(chan)) {
226 ar5212ModifyRfBuffer(priv->Bank6Data, ob2GHz, 3, 241, 0);
227 ar5212ModifyRfBuffer(priv->Bank6Data, db2GHz, 3, 238, 0);
228
229 /* TODO - only for Eagle 1.0 2GHz - remove for production */
230 /* XXX: but without this bit G doesn't work. */
231 ar5212ModifyRfBuffer(priv->Bank6Data, 1 , 1, 291, 2);
232
233 /* Optimum value for rf_pwd_iclobuf2G for PCIe chips only */
234 if (AH_PRIVATE(ah)->ah_ispcie) {
235 ar5212ModifyRfBuffer(priv->Bank6Data, ath_hal_reverseBits(6, 3),
236 3, 131, 3);
237 }
238 } else {
239 ar5212ModifyRfBuffer(priv->Bank6Data, ob5GHz, 3, 247, 0);
240 ar5212ModifyRfBuffer(priv->Bank6Data, db5GHz, 3, 244, 0);
241
242 }
243
244 /* Bank 7 Setup */
245 RF_BANK_SETUP(priv, 7, modesIndex);
246
247 /* Write Analog registers */
248 HAL_INI_WRITE_BANK(ah, ar5212Bank1_5413, priv->Bank1Data, regWrites);
249 HAL_INI_WRITE_BANK(ah, ar5212Bank2_5413, priv->Bank2Data, regWrites);
250 HAL_INI_WRITE_BANK(ah, ar5212Bank3_5413, priv->Bank3Data, regWrites);
251 HAL_INI_WRITE_BANK(ah, ar5212Bank6_5413, priv->Bank6Data, regWrites);
252 HAL_INI_WRITE_BANK(ah, ar5212Bank7_5413, priv->Bank7Data, regWrites);
253
254 /* Now that we have reprogrammed rfgain value, clear the flag. */
255 ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;
256
257 return AH_TRUE;
258 #undef RF_BANK_SETUP
259 }
260
261 /*
262 * Return a reference to the requested RF Bank.
263 */
264 static uint32_t *
ar5413GetRfBank(struct ath_hal * ah,int bank)265 ar5413GetRfBank(struct ath_hal *ah, int bank)
266 {
267 struct ar5413State *priv = AR5413(ah);
268
269 HALASSERT(priv != AH_NULL);
270 switch (bank) {
271 case 1: return priv->Bank1Data;
272 case 2: return priv->Bank2Data;
273 case 3: return priv->Bank3Data;
274 case 6: return priv->Bank6Data;
275 case 7: return priv->Bank7Data;
276 }
277 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n",
278 __func__, bank);
279 return AH_NULL;
280 }
281
282 /*
283 * Return indices surrounding the value in sorted integer lists.
284 *
285 * NB: the input list is assumed to be sorted in ascending order
286 */
287 static void
GetLowerUpperIndex(int16_t v,const uint16_t * lp,uint16_t listSize,uint32_t * vlo,uint32_t * vhi)288 GetLowerUpperIndex(int16_t v, const uint16_t *lp, uint16_t listSize,
289 uint32_t *vlo, uint32_t *vhi)
290 {
291 int16_t target = v;
292 const uint16_t *ep = lp+listSize;
293 const uint16_t *tp;
294
295 /*
296 * Check first and last elements for out-of-bounds conditions.
297 */
298 if (target < lp[0]) {
299 *vlo = *vhi = 0;
300 return;
301 }
302 if (target >= ep[-1]) {
303 *vlo = *vhi = listSize - 1;
304 return;
305 }
306
307 /* look for value being near or between 2 values in list */
308 for (tp = lp; tp < ep; tp++) {
309 /*
310 * If value is close to the current value of the list
311 * then target is not between values, it is one of the values
312 */
313 if (*tp == target) {
314 *vlo = *vhi = tp - (const uint16_t *) lp;
315 return;
316 }
317 /*
318 * Look for value being between current value and next value
319 * if so return these 2 values
320 */
321 if (target < tp[1]) {
322 *vlo = tp - (const uint16_t *) lp;
323 *vhi = *vlo + 1;
324 return;
325 }
326 }
327 }
328
329 /*
330 * Fill the Vpdlist for indices Pmax-Pmin
331 */
332 static HAL_BOOL
ar5413FillVpdTable(uint32_t pdGainIdx,int16_t Pmin,int16_t Pmax,const int16_t * pwrList,const uint16_t * VpdList,uint16_t numIntercepts,uint16_t retVpdList[][64])333 ar5413FillVpdTable(uint32_t pdGainIdx, int16_t Pmin, int16_t Pmax,
334 const int16_t *pwrList, const uint16_t *VpdList,
335 uint16_t numIntercepts,
336 uint16_t retVpdList[][64])
337 {
338 uint16_t ii, kk;
339 int16_t currPwr = (int16_t)(2*Pmin);
340 /* since Pmin is pwr*2 and pwrList is 4*pwr */
341 uint32_t idxL = 0, idxR = 0;
342
343 ii = 0;
344
345 if (numIntercepts < 2)
346 return AH_FALSE;
347
348 while (ii <= (uint16_t)(Pmax - Pmin)) {
349 GetLowerUpperIndex(currPwr, (const uint16_t *) pwrList,
350 numIntercepts, &(idxL), &(idxR));
351 if (idxR < 1)
352 idxR = 1; /* extrapolate below */
353 if (idxL == (uint32_t)(numIntercepts - 1))
354 idxL = numIntercepts - 2; /* extrapolate above */
355 if (pwrList[idxL] == pwrList[idxR])
356 kk = VpdList[idxL];
357 else
358 kk = (uint16_t)
359 (((currPwr - pwrList[idxL])*VpdList[idxR]+
360 (pwrList[idxR] - currPwr)*VpdList[idxL])/
361 (pwrList[idxR] - pwrList[idxL]));
362 retVpdList[pdGainIdx][ii] = kk;
363 ii++;
364 currPwr += 2; /* half dB steps */
365 }
366
367 return AH_TRUE;
368 }
369
370 /*
371 * Returns interpolated or the scaled up interpolated value
372 */
373 static int16_t
interpolate_signed(uint16_t target,uint16_t srcLeft,uint16_t srcRight,int16_t targetLeft,int16_t targetRight)374 interpolate_signed(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
375 int16_t targetLeft, int16_t targetRight)
376 {
377 int16_t rv;
378
379 if (srcRight != srcLeft) {
380 rv = ((target - srcLeft)*targetRight +
381 (srcRight - target)*targetLeft) / (srcRight - srcLeft);
382 } else {
383 rv = targetLeft;
384 }
385 return rv;
386 }
387
388 /*
389 * Uses the data points read from EEPROM to reconstruct the pdadc power table
390 * Called by ar5413SetPowerTable()
391 */
392 static int
ar5413getGainBoundariesAndPdadcsForPowers(struct ath_hal * ah,uint16_t channel,const RAW_DATA_STRUCT_2413 * pRawDataset,uint16_t pdGainOverlap_t2,int16_t * pMinCalPower,uint16_t pPdGainBoundaries[],uint16_t pPdGainValues[],uint16_t pPDADCValues[])393 ar5413getGainBoundariesAndPdadcsForPowers(struct ath_hal *ah, uint16_t channel,
394 const RAW_DATA_STRUCT_2413 *pRawDataset,
395 uint16_t pdGainOverlap_t2,
396 int16_t *pMinCalPower, uint16_t pPdGainBoundaries[],
397 uint16_t pPdGainValues[], uint16_t pPDADCValues[])
398 {
399 struct ar5413State *priv = AR5413(ah);
400 #define VpdTable_L priv->vpdTable_L
401 #define VpdTable_R priv->vpdTable_R
402 #define VpdTable_I priv->vpdTable_I
403 uint32_t ii, jj, kk;
404 int32_t ss;/* potentially -ve index for taking care of pdGainOverlap */
405 uint32_t idxL = 0, idxR = 0;
406 uint32_t numPdGainsUsed = 0;
407 /*
408 * If desired to support -ve power levels in future, just
409 * change pwr_I_0 to signed 5-bits.
410 */
411 int16_t Pmin_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
412 /* to accomodate -ve power levels later on. */
413 int16_t Pmax_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
414 /* to accomodate -ve power levels later on */
415 uint16_t numVpd = 0;
416 uint16_t Vpd_step;
417 int16_t tmpVal ;
418 uint32_t sizeCurrVpdTable, maxIndex, tgtIndex;
419
420 /* Get upper lower index */
421 GetLowerUpperIndex(channel, pRawDataset->pChannels,
422 pRawDataset->numChannels, &(idxL), &(idxR));
423
424 for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
425 jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
426 /* work backwards 'cause highest pdGain for lowest power */
427 numVpd = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].numVpd;
428 if (numVpd > 0) {
429 pPdGainValues[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pd_gain;
430 Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0];
431 if (Pmin_t2[numPdGainsUsed] >pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]) {
432 Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0];
433 }
434 Pmin_t2[numPdGainsUsed] = (int16_t)
435 (Pmin_t2[numPdGainsUsed] / 2);
436 Pmax_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[numVpd-1];
437 if (Pmax_t2[numPdGainsUsed] > pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1])
438 Pmax_t2[numPdGainsUsed] =
439 pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1];
440 Pmax_t2[numPdGainsUsed] = (int16_t)(Pmax_t2[numPdGainsUsed] / 2);
441 ar5413FillVpdTable(
442 numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
443 &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0]),
444 &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_L
445 );
446 ar5413FillVpdTable(
447 numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
448 &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]),
449 &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_R
450 );
451 for (kk = 0; kk < (uint16_t)(Pmax_t2[numPdGainsUsed] - Pmin_t2[numPdGainsUsed]); kk++) {
452 VpdTable_I[numPdGainsUsed][kk] =
453 interpolate_signed(
454 channel, pRawDataset->pChannels[idxL], pRawDataset->pChannels[idxR],
455 (int16_t)VpdTable_L[numPdGainsUsed][kk], (int16_t)VpdTable_R[numPdGainsUsed][kk]);
456 }
457 /* fill VpdTable_I for this pdGain */
458 numPdGainsUsed++;
459 }
460 /* if this pdGain is used */
461 }
462
463 *pMinCalPower = Pmin_t2[0];
464 kk = 0; /* index for the final table */
465 for (ii = 0; ii < numPdGainsUsed; ii++) {
466 if (ii == (numPdGainsUsed - 1))
467 pPdGainBoundaries[ii] = Pmax_t2[ii] +
468 PD_GAIN_BOUNDARY_STRETCH_IN_HALF_DB;
469 else
470 pPdGainBoundaries[ii] = (uint16_t)
471 ((Pmax_t2[ii] + Pmin_t2[ii+1]) / 2 );
472 if (pPdGainBoundaries[ii] > 63) {
473 HALDEBUG(ah, HAL_DEBUG_ANY,
474 "%s: clamp pPdGainBoundaries[%d] %d\n",
475 __func__, ii, pPdGainBoundaries[ii]);/*XXX*/
476 pPdGainBoundaries[ii] = 63;
477 }
478
479 /* Find starting index for this pdGain */
480 if (ii == 0)
481 ss = 0; /* for the first pdGain, start from index 0 */
482 else
483 ss = (pPdGainBoundaries[ii-1] - Pmin_t2[ii]) -
484 pdGainOverlap_t2;
485 Vpd_step = (uint16_t)(VpdTable_I[ii][1] - VpdTable_I[ii][0]);
486 Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
487 /*
488 *-ve ss indicates need to extrapolate data below for this pdGain
489 */
490 while (ss < 0) {
491 tmpVal = (int16_t)(VpdTable_I[ii][0] + ss*Vpd_step);
492 pPDADCValues[kk++] = (uint16_t)((tmpVal < 0) ? 0 : tmpVal);
493 ss++;
494 }
495
496 sizeCurrVpdTable = Pmax_t2[ii] - Pmin_t2[ii];
497 tgtIndex = pPdGainBoundaries[ii] + pdGainOverlap_t2 - Pmin_t2[ii];
498 maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
499
500 while (ss < (int16_t)maxIndex)
501 pPDADCValues[kk++] = VpdTable_I[ii][ss++];
502
503 Vpd_step = (uint16_t)(VpdTable_I[ii][sizeCurrVpdTable-1] -
504 VpdTable_I[ii][sizeCurrVpdTable-2]);
505 Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
506 /*
507 * for last gain, pdGainBoundary == Pmax_t2, so will
508 * have to extrapolate
509 */
510 if (tgtIndex > maxIndex) { /* need to extrapolate above */
511 while(ss < (int16_t)tgtIndex) {
512 tmpVal = (uint16_t)
513 (VpdTable_I[ii][sizeCurrVpdTable-1] +
514 (ss-maxIndex)*Vpd_step);
515 pPDADCValues[kk++] = (tmpVal > 127) ?
516 127 : tmpVal;
517 ss++;
518 }
519 } /* extrapolated above */
520 } /* for all pdGainUsed */
521
522 while (ii < MAX_NUM_PDGAINS_PER_CHANNEL) {
523 pPdGainBoundaries[ii] = pPdGainBoundaries[ii-1];
524 ii++;
525 }
526 while (kk < 128) {
527 pPDADCValues[kk] = pPDADCValues[kk-1];
528 kk++;
529 }
530
531 return numPdGainsUsed;
532 #undef VpdTable_L
533 #undef VpdTable_R
534 #undef VpdTable_I
535 }
536
537 static HAL_BOOL
ar5413SetPowerTable(struct ath_hal * ah,int16_t * minPower,int16_t * maxPower,HAL_CHANNEL_INTERNAL * chan,uint16_t * rfXpdGain)538 ar5413SetPowerTable(struct ath_hal *ah,
539 int16_t *minPower, int16_t *maxPower, HAL_CHANNEL_INTERNAL *chan,
540 uint16_t *rfXpdGain)
541 {
542 struct ath_hal_5212 *ahp = AH5212(ah);
543 const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
544 const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL;
545 uint16_t pdGainOverlap_t2;
546 int16_t minCalPower5413_t2;
547 uint16_t *pdadcValues = ahp->ah_pcdacTable;
548 uint16_t gainBoundaries[4];
549 uint32_t reg32, regoffset;
550 int i, numPdGainsUsed;
551 #ifndef AH_USE_INIPDGAIN
552 uint32_t tpcrg1;
553 #endif
554
555 HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan 0x%x flag 0x%x\n",
556 __func__, chan->channel,chan->channelFlags);
557
558 if (IS_CHAN_G(chan) || IS_CHAN_108G(chan))
559 pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
560 else if (IS_CHAN_B(chan))
561 pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
562 else {
563 HALASSERT(IS_CHAN_5GHZ(chan));
564 pRawDataset = &ee->ee_rawDataset2413[headerInfo11A];
565 }
566
567 pdGainOverlap_t2 = (uint16_t) SM(OS_REG_READ(ah, AR_PHY_TPCRG5),
568 AR_PHY_TPCRG5_PD_GAIN_OVERLAP);
569
570 numPdGainsUsed = ar5413getGainBoundariesAndPdadcsForPowers(ah,
571 chan->channel, pRawDataset, pdGainOverlap_t2,
572 &minCalPower5413_t2,gainBoundaries, rfXpdGain, pdadcValues);
573 HALASSERT(1 <= numPdGainsUsed && numPdGainsUsed <= 3);
574
575 #ifdef AH_USE_INIPDGAIN
576 /*
577 * Use pd_gains curve from eeprom; Atheros always uses
578 * the default curve from the ini file but some vendors
579 * (e.g. Zcomax) want to override this curve and not
580 * honoring their settings results in tx power 5dBm low.
581 */
582 OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
583 (pRawDataset->pDataPerChannel[0].numPdGains - 1));
584 #else
585 tpcrg1 = OS_REG_READ(ah, AR_PHY_TPCRG1);
586 tpcrg1 = (tpcrg1 &~ AR_PHY_TPCRG1_NUM_PD_GAIN)
587 | SM(numPdGainsUsed-1, AR_PHY_TPCRG1_NUM_PD_GAIN);
588 switch (numPdGainsUsed) {
589 case 3:
590 tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING3;
591 tpcrg1 |= SM(rfXpdGain[2], AR_PHY_TPCRG1_PDGAIN_SETTING3);
592 /* fall thru... */
593 case 2:
594 tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING2;
595 tpcrg1 |= SM(rfXpdGain[1], AR_PHY_TPCRG1_PDGAIN_SETTING2);
596 /* fall thru... */
597 case 1:
598 tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING1;
599 tpcrg1 |= SM(rfXpdGain[0], AR_PHY_TPCRG1_PDGAIN_SETTING1);
600 break;
601 }
602 #ifdef AH_DEBUG
603 if (tpcrg1 != OS_REG_READ(ah, AR_PHY_TPCRG1))
604 HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: using non-default "
605 "pd_gains (default 0x%x, calculated 0x%x)\n",
606 __func__, OS_REG_READ(ah, AR_PHY_TPCRG1), tpcrg1);
607 #endif
608 OS_REG_WRITE(ah, AR_PHY_TPCRG1, tpcrg1);
609 #endif
610
611 /*
612 * Note the pdadc table may not start at 0 dBm power, could be
613 * negative or greater than 0. Need to offset the power
614 * values by the amount of minPower for griffin
615 */
616 if (minCalPower5413_t2 != 0)
617 ahp->ah_txPowerIndexOffset = (int16_t)(0 - minCalPower5413_t2);
618 else
619 ahp->ah_txPowerIndexOffset = 0;
620
621 /* Finally, write the power values into the baseband power table */
622 regoffset = 0x9800 + (672 <<2); /* beginning of pdadc table in griffin */
623 for (i = 0; i < 32; i++) {
624 reg32 = ((pdadcValues[4*i + 0] & 0xFF) << 0) |
625 ((pdadcValues[4*i + 1] & 0xFF) << 8) |
626 ((pdadcValues[4*i + 2] & 0xFF) << 16) |
627 ((pdadcValues[4*i + 3] & 0xFF) << 24) ;
628 OS_REG_WRITE(ah, regoffset, reg32);
629 regoffset += 4;
630 }
631
632 OS_REG_WRITE(ah, AR_PHY_TPCRG5,
633 SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
634 SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) |
635 SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) |
636 SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) |
637 SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
638
639 return AH_TRUE;
640 }
641
642 static int16_t
ar5413GetMinPower(struct ath_hal * ah,const RAW_DATA_PER_CHANNEL_2413 * data)643 ar5413GetMinPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data)
644 {
645 uint32_t ii,jj;
646 uint16_t Pmin=0,numVpd;
647
648 for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
649 jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
650 /* work backwards 'cause highest pdGain for lowest power */
651 numVpd = data->pDataPerPDGain[jj].numVpd;
652 if (numVpd > 0) {
653 Pmin = data->pDataPerPDGain[jj].pwr_t4[0];
654 return(Pmin);
655 }
656 }
657 return(Pmin);
658 }
659
660 static int16_t
ar5413GetMaxPower(struct ath_hal * ah,const RAW_DATA_PER_CHANNEL_2413 * data)661 ar5413GetMaxPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data)
662 {
663 uint32_t ii;
664 uint16_t Pmax=0,numVpd;
665
666 for (ii=0; ii< MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
667 /* work forwards cuase lowest pdGain for highest power */
668 numVpd = data->pDataPerPDGain[ii].numVpd;
669 if (numVpd > 0) {
670 Pmax = data->pDataPerPDGain[ii].pwr_t4[numVpd-1];
671 return(Pmax);
672 }
673 }
674 return(Pmax);
675 }
676
677 static HAL_BOOL
ar5413GetChannelMaxMinPower(struct ath_hal * ah,HAL_CHANNEL * chan,int16_t * maxPow,int16_t * minPow)678 ar5413GetChannelMaxMinPower(struct ath_hal *ah, HAL_CHANNEL *chan,
679 int16_t *maxPow, int16_t *minPow)
680 {
681 const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
682 const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL;
683 const RAW_DATA_PER_CHANNEL_2413 *data=AH_NULL;
684 uint16_t numChannels;
685 int totalD,totalF, totalMin,last, i;
686
687 *maxPow = 0;
688
689 if (IS_CHAN_G(chan) || IS_CHAN_108G(chan))
690 pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
691 else if (IS_CHAN_B(chan))
692 pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
693 else {
694 HALASSERT(IS_CHAN_5GHZ(chan));
695 pRawDataset = &ee->ee_rawDataset2413[headerInfo11A];
696 }
697
698 numChannels = pRawDataset->numChannels;
699 data = pRawDataset->pDataPerChannel;
700
701 /* Make sure the channel is in the range of the TP values
702 * (freq piers)
703 */
704 if (numChannels < 1)
705 return(AH_FALSE);
706
707 if ((chan->channel < data[0].channelValue) ||
708 (chan->channel > data[numChannels-1].channelValue)) {
709 if (chan->channel < data[0].channelValue) {
710 *maxPow = ar5413GetMaxPower(ah, &data[0]);
711 *minPow = ar5413GetMinPower(ah, &data[0]);
712 return(AH_TRUE);
713 } else {
714 *maxPow = ar5413GetMaxPower(ah, &data[numChannels - 1]);
715 *minPow = ar5413GetMinPower(ah, &data[numChannels - 1]);
716 return(AH_TRUE);
717 }
718 }
719
720 /* Linearly interpolate the power value now */
721 for (last=0,i=0; (i<numChannels) && (chan->channel > data[i].channelValue);
722 last = i++);
723 totalD = data[i].channelValue - data[last].channelValue;
724 if (totalD > 0) {
725 totalF = ar5413GetMaxPower(ah, &data[i]) - ar5413GetMaxPower(ah, &data[last]);
726 *maxPow = (int8_t) ((totalF*(chan->channel-data[last].channelValue) +
727 ar5413GetMaxPower(ah, &data[last])*totalD)/totalD);
728 totalMin = ar5413GetMinPower(ah, &data[i]) - ar5413GetMinPower(ah, &data[last]);
729 *minPow = (int8_t) ((totalMin*(chan->channel-data[last].channelValue) +
730 ar5413GetMinPower(ah, &data[last])*totalD)/totalD);
731 return(AH_TRUE);
732 } else {
733 if (chan->channel == data[i].channelValue) {
734 *maxPow = ar5413GetMaxPower(ah, &data[i]);
735 *minPow = ar5413GetMinPower(ah, &data[i]);
736 return(AH_TRUE);
737 } else
738 return(AH_FALSE);
739 }
740 }
741
742 /*
743 * Free memory for analog bank scratch buffers
744 */
745 static void
ar5413RfDetach(struct ath_hal * ah)746 ar5413RfDetach(struct ath_hal *ah)
747 {
748 struct ath_hal_5212 *ahp = AH5212(ah);
749
750 HALASSERT(ahp->ah_rfHal != AH_NULL);
751 ath_hal_free(ahp->ah_rfHal);
752 ahp->ah_rfHal = AH_NULL;
753 }
754
755 /*
756 * Allocate memory for analog bank scratch buffers
757 * Scratch Buffer will be reinitialized every reset so no need to zero now
758 */
759 static HAL_BOOL
ar5413RfAttach(struct ath_hal * ah,HAL_STATUS * status)760 ar5413RfAttach(struct ath_hal *ah, HAL_STATUS *status)
761 {
762 struct ath_hal_5212 *ahp = AH5212(ah);
763 struct ar5413State *priv;
764
765 HALASSERT(ah->ah_magic == AR5212_MAGIC);
766
767 HALASSERT(ahp->ah_rfHal == AH_NULL);
768 priv = ath_hal_malloc(sizeof(struct ar5413State));
769 if (priv == AH_NULL) {
770 HALDEBUG(ah, HAL_DEBUG_ANY,
771 "%s: cannot allocate private state\n", __func__);
772 *status = HAL_ENOMEM; /* XXX */
773 return AH_FALSE;
774 }
775 priv->base.rfDetach = ar5413RfDetach;
776 priv->base.writeRegs = ar5413WriteRegs;
777 priv->base.getRfBank = ar5413GetRfBank;
778 priv->base.setChannel = ar5413SetChannel;
779 priv->base.setRfRegs = ar5413SetRfRegs;
780 priv->base.setPowerTable = ar5413SetPowerTable;
781 priv->base.getChannelMaxMinPower = ar5413GetChannelMaxMinPower;
782 priv->base.getNfAdjust = ar5212GetNfAdjust;
783
784 ahp->ah_pcdacTable = priv->pcdacTable;
785 ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable);
786 ahp->ah_rfHal = &priv->base;
787
788 return AH_TRUE;
789 }
790
791 static HAL_BOOL
ar5413Probe(struct ath_hal * ah)792 ar5413Probe(struct ath_hal *ah)
793 {
794 return IS_5413(ah);
795 }
796 AH_RF(RF5413, ar5413Probe, ar5413RfAttach);
797