1 /*
2 * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
3 * Copyright (c) 2002-2008 Atheros Communications, Inc.
4 *
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 *
17 * $Id: ar2425.c,v 1.4 2013/09/12 12:05:52 martin Exp $
18 */
19 #include "opt_ah.h"
20
21 #include "ah.h"
22 #include "ah_internal.h"
23
24 #include "ar5212/ar5212.h"
25 #include "ar5212/ar5212reg.h"
26 #include "ar5212/ar5212phy.h"
27
28 #include "ah_eeprom_v3.h"
29
30 #define AH_5212_2425
31 #define AH_5212_2417
32 #include "ar5212/ar5212.ini"
33
34 #define N(a) (sizeof(a)/sizeof(a[0]))
35
36 struct ar2425State {
37 RF_HAL_FUNCS base; /* public state, must be first */
38 uint16_t pcdacTable[PWR_TABLE_SIZE_2413];
39
40 uint32_t Bank1Data[N(ar5212Bank1_2425)];
41 uint32_t Bank2Data[N(ar5212Bank2_2425)];
42 uint32_t Bank3Data[N(ar5212Bank3_2425)];
43 uint32_t Bank6Data[N(ar5212Bank6_2425)]; /* 2417 is same size */
44 uint32_t Bank7Data[N(ar5212Bank7_2425)];
45 };
46 #define AR2425(ah) ((struct ar2425State *) AH5212(ah)->ah_rfHal)
47
48 extern void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
49 uint32_t numBits, uint32_t firstBit, uint32_t column);
50
51 static void
ar2425WriteRegs(struct ath_hal * ah,u_int modesIndex,u_int freqIndex,int writes)52 ar2425WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
53 int writes)
54 {
55 HAL_INI_WRITE_ARRAY(ah, ar5212Modes_2425, modesIndex, writes);
56 HAL_INI_WRITE_ARRAY(ah, ar5212Common_2425, 1, writes);
57 HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_2425, freqIndex, writes);
58 #if 0
59 /*
60 * for SWAN similar to Condor
61 * Bit 0 enables link to go to L1 when MAC goes to sleep.
62 * Bit 3 enables the loop back the link down to reset.
63 */
64 if (AH_PRIVATE(ah)->ah_ispcie && && ath_hal_pcieL1SKPEnable) {
65 OS_REG_WRITE(ah, AR_PCIE_PMC,
66 AR_PCIE_PMC_ENA_L1 | AR_PCIE_PMC_ENA_RESET);
67 }
68 /*
69 * for Standby issue in Swan/Condor.
70 * Bit 9 (MAC_WOW_PWR_STATE_MASK_D2)to be set to avoid skips
71 * before last Training Sequence 2 (TS2)
72 * Bit 8 (MAC_WOW_PWR_STATE_MASK_D1)to be unset to assert
73 * Power Reset along with PCI Reset
74 */
75 OS_REG_SET_BIT(ah, AR_PCIE_PMC, MAC_WOW_PWR_STATE_MASK_D2);
76 #endif
77 }
78
79 /*
80 * Take the MHz channel value and set the Channel value
81 *
82 * ASSUMES: Writes enabled to analog bus
83 */
84 static HAL_BOOL
ar2425SetChannel(struct ath_hal * ah,HAL_CHANNEL_INTERNAL * chan)85 ar2425SetChannel(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan)
86 {
87 uint32_t channelSel = 0;
88 uint32_t bModeSynth = 0;
89 uint32_t aModeRefSel = 0;
90 uint32_t reg32 = 0;
91 uint16_t freq;
92
93 OS_MARK(ah, AH_MARK_SETCHANNEL, chan->channel);
94
95 if (chan->channel < 4800) {
96 uint32_t txctl;
97
98 channelSel = chan->channel - 2272;
99 channelSel = ath_hal_reverseBits(channelSel, 8);
100
101 txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
102 if (chan->channel == 2484) {
103 // Enable channel spreading for channel 14
104 OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
105 txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
106 } else {
107 OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
108 txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
109 }
110
111 } else if (((chan->channel % 5) == 2) && (chan->channel <= 5435)) {
112 freq = chan->channel - 2; /* Align to even 5MHz raster */
113 channelSel = ath_hal_reverseBits(
114 (uint32_t)(((freq - 4800)*10)/25 + 1), 8);
115 aModeRefSel = ath_hal_reverseBits(0, 2);
116 } else if ((chan->channel % 20) == 0 && chan->channel >= 5120) {
117 channelSel = ath_hal_reverseBits(
118 ((chan->channel - 4800) / 20 << 2), 8);
119 aModeRefSel = ath_hal_reverseBits(1, 2);
120 } else if ((chan->channel % 10) == 0) {
121 channelSel = ath_hal_reverseBits(
122 ((chan->channel - 4800) / 10 << 1), 8);
123 aModeRefSel = ath_hal_reverseBits(1, 2);
124 } else if ((chan->channel % 5) == 0) {
125 channelSel = ath_hal_reverseBits(
126 (chan->channel - 4800) / 5, 8);
127 aModeRefSel = ath_hal_reverseBits(1, 2);
128 } else {
129 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n",
130 __func__, chan->channel);
131 return AH_FALSE;
132 }
133
134 reg32 = (channelSel << 4) | (aModeRefSel << 2) | (bModeSynth << 1) |
135 (1 << 12) | 0x1;
136 OS_REG_WRITE(ah, AR_PHY(0x27), reg32 & 0xff);
137
138 reg32 >>= 8;
139 OS_REG_WRITE(ah, AR_PHY(0x36), reg32 & 0x7f);
140
141 AH_PRIVATE(ah)->ah_curchan = chan;
142 return AH_TRUE;
143 }
144
145 /*
146 * Reads EEPROM header info from device structure and programs
147 * all rf registers
148 *
149 * REQUIRES: Access to the analog rf device
150 */
151 static HAL_BOOL
ar2425SetRfRegs(struct ath_hal * ah,HAL_CHANNEL_INTERNAL * chan,uint16_t modesIndex,uint16_t * rfXpdGain)152 ar2425SetRfRegs(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan, uint16_t modesIndex, uint16_t *rfXpdGain)
153 {
154 #define RF_BANK_SETUP(_priv, _ix, _col) do { \
155 int i; \
156 for (i = 0; i < N(ar5212Bank##_ix##_2425); i++) \
157 (_priv)->Bank##_ix##Data[i] = ar5212Bank##_ix##_2425[i][_col];\
158 } while (0)
159 struct ath_hal_5212 *ahp = AH5212(ah);
160 const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
161 struct ar2425State *priv = AR2425(ah);
162 uint16_t ob2GHz = 0, db2GHz = 0;
163 int regWrites = 0;
164
165 HALDEBUG(ah, HAL_DEBUG_RFPARAM,
166 "==>%s:chan 0x%x flag 0x%x modesIndex 0x%x\n",
167 __func__, chan->channel, chan->channelFlags, modesIndex);
168
169 HALASSERT(priv);
170
171 /* Setup rf parameters */
172 switch (chan->channelFlags & CHANNEL_ALL) {
173 case CHANNEL_B:
174 ob2GHz = ee->ee_obFor24;
175 db2GHz = ee->ee_dbFor24;
176 break;
177 case CHANNEL_G:
178 case CHANNEL_108G:
179 ob2GHz = ee->ee_obFor24g;
180 db2GHz = ee->ee_dbFor24g;
181 break;
182 default:
183 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
184 __func__, chan->channelFlags);
185 return AH_FALSE;
186 }
187
188 /* Bank 1 Write */
189 RF_BANK_SETUP(priv, 1, 1);
190
191 /* Bank 2 Write */
192 RF_BANK_SETUP(priv, 2, modesIndex);
193
194 /* Bank 3 Write */
195 RF_BANK_SETUP(priv, 3, modesIndex);
196
197 /* Bank 6 Write */
198 RF_BANK_SETUP(priv, 6, modesIndex);
199
200 ar5212ModifyRfBuffer(priv->Bank6Data, ob2GHz, 3, 193, 0);
201 ar5212ModifyRfBuffer(priv->Bank6Data, db2GHz, 3, 190, 0);
202
203 /* Bank 7 Setup */
204 RF_BANK_SETUP(priv, 7, modesIndex);
205
206 /* Write Analog registers */
207 HAL_INI_WRITE_BANK(ah, ar5212Bank1_2425, priv->Bank1Data, regWrites);
208 HAL_INI_WRITE_BANK(ah, ar5212Bank2_2425, priv->Bank2Data, regWrites);
209 HAL_INI_WRITE_BANK(ah, ar5212Bank3_2425, priv->Bank3Data, regWrites);
210 if (IS_2417(ah)) {
211 HALASSERT(N(ar5212Bank6_2425) == N(ar5212Bank6_2417));
212 HAL_INI_WRITE_BANK(ah, ar5212Bank6_2417, priv->Bank6Data,
213 regWrites);
214 } else
215 HAL_INI_WRITE_BANK(ah, ar5212Bank6_2425, priv->Bank6Data,
216 regWrites);
217 HAL_INI_WRITE_BANK(ah, ar5212Bank7_2425, priv->Bank7Data, regWrites);
218
219 /* Now that we have reprogrammed rfgain value, clear the flag. */
220 ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;
221
222 HALDEBUG(ah, HAL_DEBUG_RFPARAM, "<==%s\n", __func__);
223 return AH_TRUE;
224 #undef RF_BANK_SETUP
225 }
226
227 /*
228 * Return a reference to the requested RF Bank.
229 */
230 static uint32_t *
ar2425GetRfBank(struct ath_hal * ah,int bank)231 ar2425GetRfBank(struct ath_hal *ah, int bank)
232 {
233 struct ar2425State *priv = AR2425(ah);
234
235 HALASSERT(priv != AH_NULL);
236 switch (bank) {
237 case 1: return priv->Bank1Data;
238 case 2: return priv->Bank2Data;
239 case 3: return priv->Bank3Data;
240 case 6: return priv->Bank6Data;
241 case 7: return priv->Bank7Data;
242 }
243 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n",
244 __func__, bank);
245 return AH_NULL;
246 }
247
248 /*
249 * Return indices surrounding the value in sorted integer lists.
250 *
251 * NB: the input list is assumed to be sorted in ascending order
252 */
253 static void
GetLowerUpperIndex(int16_t v,const uint16_t * lp,uint16_t listSize,uint32_t * vlo,uint32_t * vhi)254 GetLowerUpperIndex(int16_t v, const uint16_t *lp, uint16_t listSize,
255 uint32_t *vlo, uint32_t *vhi)
256 {
257 int16_t target = v;
258 const uint16_t *ep = lp+listSize;
259 const uint16_t *tp;
260
261 /*
262 * Check first and last elements for out-of-bounds conditions.
263 */
264 if (target < lp[0]) {
265 *vlo = *vhi = 0;
266 return;
267 }
268 if (target >= ep[-1]) {
269 *vlo = *vhi = listSize - 1;
270 return;
271 }
272
273 /* look for value being near or between 2 values in list */
274 for (tp = lp; tp < ep; tp++) {
275 /*
276 * If value is close to the current value of the list
277 * then target is not between values, it is one of the values
278 */
279 if (*tp == target) {
280 *vlo = *vhi = tp - (const uint16_t *) lp;
281 return;
282 }
283 /*
284 * Look for value being between current value and next value
285 * if so return these 2 values
286 */
287 if (target < tp[1]) {
288 *vlo = tp - (const uint16_t *) lp;
289 *vhi = *vlo + 1;
290 return;
291 }
292 }
293 }
294
295 /*
296 * Fill the Vpdlist for indices Pmax-Pmin
297 */
298 static HAL_BOOL
ar2425FillVpdTable(uint32_t pdGainIdx,int16_t Pmin,int16_t Pmax,const int16_t * pwrList,const uint16_t * VpdList,uint16_t numIntercepts,uint16_t retVpdList[][64])299 ar2425FillVpdTable(uint32_t pdGainIdx, int16_t Pmin, int16_t Pmax,
300 const int16_t *pwrList, const uint16_t *VpdList,
301 uint16_t numIntercepts,
302 uint16_t retVpdList[][64])
303 {
304 uint16_t ii, kk;
305 int16_t currPwr = (int16_t)(2*Pmin);
306 /* since Pmin is pwr*2 and pwrList is 4*pwr */
307 uint32_t idxL = 0, idxR = 0;
308
309 ii = 0;
310
311 if (numIntercepts < 2)
312 return AH_FALSE;
313
314 while (ii <= (uint16_t)(Pmax - Pmin)) {
315 GetLowerUpperIndex(currPwr, (const uint16_t *) pwrList,
316 numIntercepts, &(idxL), &(idxR));
317 if (idxR < 1)
318 idxR = 1; /* extrapolate below */
319 if (idxL == (uint32_t)(numIntercepts - 1))
320 idxL = numIntercepts - 2; /* extrapolate above */
321 if (pwrList[idxL] == pwrList[idxR])
322 kk = VpdList[idxL];
323 else
324 kk = (uint16_t)
325 (((currPwr - pwrList[idxL])*VpdList[idxR]+
326 (pwrList[idxR] - currPwr)*VpdList[idxL])/
327 (pwrList[idxR] - pwrList[idxL]));
328 retVpdList[pdGainIdx][ii] = kk;
329 ii++;
330 currPwr += 2; /* half dB steps */
331 }
332
333 return AH_TRUE;
334 }
335
336 /*
337 * Returns interpolated or the scaled up interpolated value
338 */
339 static int16_t
interpolate_signed(uint16_t target,uint16_t srcLeft,uint16_t srcRight,int16_t targetLeft,int16_t targetRight)340 interpolate_signed(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
341 int16_t targetLeft, int16_t targetRight)
342 {
343 int16_t rv;
344
345 if (srcRight != srcLeft) {
346 rv = ((target - srcLeft)*targetRight +
347 (srcRight - target)*targetLeft) / (srcRight - srcLeft);
348 } else {
349 rv = targetLeft;
350 }
351 return rv;
352 }
353
354 /*
355 * Uses the data points read from EEPROM to reconstruct the pdadc power table
356 * Called by ar2425SetPowerTable()
357 */
358 static void
ar2425getGainBoundariesAndPdadcsForPowers(struct ath_hal * ah,uint16_t channel,const RAW_DATA_STRUCT_2413 * pRawDataset,uint16_t pdGainOverlap_t2,int16_t * pMinCalPower,uint16_t pPdGainBoundaries[],uint16_t pPdGainValues[],uint16_t pPDADCValues[])359 ar2425getGainBoundariesAndPdadcsForPowers(struct ath_hal *ah, uint16_t channel,
360 const RAW_DATA_STRUCT_2413 *pRawDataset,
361 uint16_t pdGainOverlap_t2,
362 int16_t *pMinCalPower, uint16_t pPdGainBoundaries[],
363 uint16_t pPdGainValues[], uint16_t pPDADCValues[])
364 {
365 /* Note the items statically allocated below are to reduce stack usage */
366 uint32_t ii, jj, kk;
367 int32_t ss;/* potentially -ve index for taking care of pdGainOverlap */
368 uint32_t idxL = 0, idxR = 0;
369 uint32_t numPdGainsUsed = 0;
370 static uint16_t VpdTable_L[MAX_NUM_PDGAINS_PER_CHANNEL][MAX_PWR_RANGE_IN_HALF_DB];
371 /* filled out Vpd table for all pdGains (chanL) */
372 static uint16_t VpdTable_R[MAX_NUM_PDGAINS_PER_CHANNEL][MAX_PWR_RANGE_IN_HALF_DB];
373 /* filled out Vpd table for all pdGains (chanR) */
374 static uint16_t VpdTable_I[MAX_NUM_PDGAINS_PER_CHANNEL][MAX_PWR_RANGE_IN_HALF_DB];
375 /* filled out Vpd table for all pdGains (interpolated) */
376 /*
377 * If desired to support -ve power levels in future, just
378 * change pwr_I_0 to signed 5-bits.
379 */
380 static int16_t Pmin_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
381 /* to accomodate -ve power levels later on. */
382 static int16_t Pmax_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
383 /* to accomodate -ve power levels later on */
384 uint16_t numVpd = 0;
385 uint16_t Vpd_step;
386 int16_t tmpVal ;
387 uint32_t sizeCurrVpdTable, maxIndex, tgtIndex;
388
389 HALDEBUG(ah, HAL_DEBUG_RFPARAM, "==>%s:\n", __func__);
390
391 /* Get upper lower index */
392 GetLowerUpperIndex(channel, pRawDataset->pChannels,
393 pRawDataset->numChannels, &(idxL), &(idxR));
394
395 for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
396 jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
397 /* work backwards 'cause highest pdGain for lowest power */
398 numVpd = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].numVpd;
399 if (numVpd > 0) {
400 pPdGainValues[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pd_gain;
401 Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0];
402 if (Pmin_t2[numPdGainsUsed] >pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]) {
403 Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0];
404 }
405 Pmin_t2[numPdGainsUsed] = (int16_t)
406 (Pmin_t2[numPdGainsUsed] / 2);
407 Pmax_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[numVpd-1];
408 if (Pmax_t2[numPdGainsUsed] > pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1])
409 Pmax_t2[numPdGainsUsed] =
410 pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1];
411 Pmax_t2[numPdGainsUsed] = (int16_t)(Pmax_t2[numPdGainsUsed] / 2);
412 ar2425FillVpdTable(
413 numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
414 &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0]),
415 &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_L
416 );
417 ar2425FillVpdTable(
418 numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
419 &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]),
420 &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_R
421 );
422 for (kk = 0; kk < (uint16_t)(Pmax_t2[numPdGainsUsed] - Pmin_t2[numPdGainsUsed]); kk++) {
423 VpdTable_I[numPdGainsUsed][kk] =
424 interpolate_signed(
425 channel, pRawDataset->pChannels[idxL], pRawDataset->pChannels[idxR],
426 (int16_t)VpdTable_L[numPdGainsUsed][kk], (int16_t)VpdTable_R[numPdGainsUsed][kk]);
427 }
428 /* fill VpdTable_I for this pdGain */
429 numPdGainsUsed++;
430 }
431 /* if this pdGain is used */
432 }
433
434 *pMinCalPower = Pmin_t2[0];
435 kk = 0; /* index for the final table */
436 for (ii = 0; ii < numPdGainsUsed; ii++) {
437 if (ii == (numPdGainsUsed - 1))
438 pPdGainBoundaries[ii] = Pmax_t2[ii] +
439 PD_GAIN_BOUNDARY_STRETCH_IN_HALF_DB;
440 else
441 pPdGainBoundaries[ii] = (uint16_t)
442 ((Pmax_t2[ii] + Pmin_t2[ii+1]) / 2 );
443
444 /* Find starting index for this pdGain */
445 if (ii == 0)
446 ss = 0; /* for the first pdGain, start from index 0 */
447 else
448 ss = (pPdGainBoundaries[ii-1] - Pmin_t2[ii]) -
449 pdGainOverlap_t2;
450 Vpd_step = (uint16_t)(VpdTable_I[ii][1] - VpdTable_I[ii][0]);
451 Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
452 /*
453 *-ve ss indicates need to extrapolate data below for this pdGain
454 */
455 while (ss < 0) {
456 tmpVal = (int16_t)(VpdTable_I[ii][0] + ss*Vpd_step);
457 pPDADCValues[kk++] = (uint16_t)((tmpVal < 0) ? 0 : tmpVal);
458 ss++;
459 }
460
461 sizeCurrVpdTable = Pmax_t2[ii] - Pmin_t2[ii];
462 tgtIndex = pPdGainBoundaries[ii] + pdGainOverlap_t2 - Pmin_t2[ii];
463 maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
464
465 while (ss < (int16_t)maxIndex)
466 pPDADCValues[kk++] = VpdTable_I[ii][ss++];
467
468 Vpd_step = (uint16_t)(VpdTable_I[ii][sizeCurrVpdTable-1] -
469 VpdTable_I[ii][sizeCurrVpdTable-2]);
470 Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
471 /*
472 * for last gain, pdGainBoundary == Pmax_t2, so will
473 * have to extrapolate
474 */
475 if (tgtIndex > maxIndex) { /* need to extrapolate above */
476 while(ss < (int16_t)tgtIndex) {
477 tmpVal = (uint16_t)
478 (VpdTable_I[ii][sizeCurrVpdTable-1] +
479 (ss-maxIndex)*Vpd_step);
480 pPDADCValues[kk++] = (tmpVal > 127) ?
481 127 : tmpVal;
482 ss++;
483 }
484 } /* extrapolated above */
485 } /* for all pdGainUsed */
486
487 while (ii < MAX_NUM_PDGAINS_PER_CHANNEL) {
488 pPdGainBoundaries[ii] = pPdGainBoundaries[ii-1];
489 ii++;
490 }
491 while (kk < 128) {
492 pPDADCValues[kk] = pPDADCValues[kk-1];
493 kk++;
494 }
495
496 HALDEBUG(ah, HAL_DEBUG_RFPARAM, "<==%s\n", __func__);
497 }
498
499
500 /* Same as 2413 set power table */
501 static HAL_BOOL
ar2425SetPowerTable(struct ath_hal * ah,int16_t * minPower,int16_t * maxPower,HAL_CHANNEL_INTERNAL * chan,uint16_t * rfXpdGain)502 ar2425SetPowerTable(struct ath_hal *ah,
503 int16_t *minPower, int16_t *maxPower, HAL_CHANNEL_INTERNAL *chan,
504 uint16_t *rfXpdGain)
505 {
506 struct ath_hal_5212 *ahp = AH5212(ah);
507 const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
508 const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL;
509 uint16_t pdGainOverlap_t2;
510 int16_t minCalPower2413_t2;
511 uint16_t *pdadcValues = ahp->ah_pcdacTable;
512 uint16_t gainBoundaries[4];
513 uint32_t i, reg32, regoffset;
514
515 HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s:chan 0x%x flag 0x%x\n",
516 __func__, chan->channel,chan->channelFlags);
517
518 if (IS_CHAN_G(chan) || IS_CHAN_108G(chan))
519 pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
520 else if (IS_CHAN_B(chan))
521 pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
522 else {
523 HALDEBUG(ah, HAL_DEBUG_ANY, "%s:illegal mode\n", __func__);
524 return AH_FALSE;
525 }
526
527 pdGainOverlap_t2 = (uint16_t) SM(OS_REG_READ(ah, AR_PHY_TPCRG5),
528 AR_PHY_TPCRG5_PD_GAIN_OVERLAP);
529
530 ar2425getGainBoundariesAndPdadcsForPowers(ah, chan->channel,
531 pRawDataset, pdGainOverlap_t2,&minCalPower2413_t2,gainBoundaries,
532 rfXpdGain, pdadcValues);
533
534 OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
535 (pRawDataset->pDataPerChannel[0].numPdGains - 1));
536
537 /*
538 * Note the pdadc table may not start at 0 dBm power, could be
539 * negative or greater than 0. Need to offset the power
540 * values by the amount of minPower for griffin
541 */
542 if (minCalPower2413_t2 != 0)
543 ahp->ah_txPowerIndexOffset = (int16_t)(0 - minCalPower2413_t2);
544 else
545 ahp->ah_txPowerIndexOffset = 0;
546
547 /* Finally, write the power values into the baseband power table */
548 regoffset = 0x9800 + (672 <<2); /* beginning of pdadc table in griffin */
549 for (i = 0; i < 32; i++) {
550 reg32 = ((pdadcValues[4*i + 0] & 0xFF) << 0) |
551 ((pdadcValues[4*i + 1] & 0xFF) << 8) |
552 ((pdadcValues[4*i + 2] & 0xFF) << 16) |
553 ((pdadcValues[4*i + 3] & 0xFF) << 24) ;
554 OS_REG_WRITE(ah, regoffset, reg32);
555 regoffset += 4;
556 }
557
558 OS_REG_WRITE(ah, AR_PHY_TPCRG5,
559 SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
560 SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) |
561 SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) |
562 SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) |
563 SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
564
565 return AH_TRUE;
566 }
567
568 static int16_t
ar2425GetMinPower(struct ath_hal * ah,const RAW_DATA_PER_CHANNEL_2413 * data)569 ar2425GetMinPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data)
570 {
571 uint32_t ii,jj;
572 uint16_t Pmin=0,numVpd;
573
574 for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
575 jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
576 /* work backwards 'cause highest pdGain for lowest power */
577 numVpd = data->pDataPerPDGain[jj].numVpd;
578 if (numVpd > 0) {
579 Pmin = data->pDataPerPDGain[jj].pwr_t4[0];
580 return(Pmin);
581 }
582 }
583 return(Pmin);
584 }
585
586 static int16_t
ar2425GetMaxPower(struct ath_hal * ah,const RAW_DATA_PER_CHANNEL_2413 * data)587 ar2425GetMaxPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data)
588 {
589 uint32_t ii;
590 uint16_t Pmax=0,numVpd;
591
592 for (ii=0; ii< MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
593 /* work forwards cuase lowest pdGain for highest power */
594 numVpd = data->pDataPerPDGain[ii].numVpd;
595 if (numVpd > 0) {
596 Pmax = data->pDataPerPDGain[ii].pwr_t4[numVpd-1];
597 return(Pmax);
598 }
599 }
600 return(Pmax);
601 }
602
603 static
604 HAL_BOOL
ar2425GetChannelMaxMinPower(struct ath_hal * ah,HAL_CHANNEL * chan,int16_t * maxPow,int16_t * minPow)605 ar2425GetChannelMaxMinPower(struct ath_hal *ah, HAL_CHANNEL *chan,
606 int16_t *maxPow, int16_t *minPow)
607 {
608 const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
609 const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL;
610 const RAW_DATA_PER_CHANNEL_2413 *data = AH_NULL;
611 uint16_t numChannels;
612 int totalD,totalF, totalMin,last, i;
613
614 *maxPow = 0;
615
616 if (IS_CHAN_G(chan) || IS_CHAN_108G(chan))
617 pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
618 else if (IS_CHAN_B(chan))
619 pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
620 else
621 return(AH_FALSE);
622
623 numChannels = pRawDataset->numChannels;
624 data = pRawDataset->pDataPerChannel;
625
626 /* Make sure the channel is in the range of the TP values
627 * (freq piers)
628 */
629 if (numChannels < 1)
630 return(AH_FALSE);
631
632 if ((chan->channel < data[0].channelValue) ||
633 (chan->channel > data[numChannels-1].channelValue)) {
634 if (chan->channel < data[0].channelValue) {
635 *maxPow = ar2425GetMaxPower(ah, &data[0]);
636 *minPow = ar2425GetMinPower(ah, &data[0]);
637 return(AH_TRUE);
638 } else {
639 *maxPow = ar2425GetMaxPower(ah, &data[numChannels - 1]);
640 *minPow = ar2425GetMinPower(ah, &data[numChannels - 1]);
641 return(AH_TRUE);
642 }
643 }
644
645 /* Linearly interpolate the power value now */
646 for (last=0,i=0; (i<numChannels) && (chan->channel > data[i].channelValue);
647 last = i++);
648 totalD = data[i].channelValue - data[last].channelValue;
649 if (totalD > 0) {
650 totalF = ar2425GetMaxPower(ah, &data[i]) - ar2425GetMaxPower(ah, &data[last]);
651 *maxPow = (int8_t) ((totalF*(chan->channel-data[last].channelValue) +
652 ar2425GetMaxPower(ah, &data[last])*totalD)/totalD);
653 totalMin = ar2425GetMinPower(ah, &data[i]) - ar2425GetMinPower(ah, &data[last]);
654 *minPow = (int8_t) ((totalMin*(chan->channel-data[last].channelValue) +
655 ar2425GetMinPower(ah, &data[last])*totalD)/totalD);
656 return(AH_TRUE);
657 } else {
658 if (chan->channel == data[i].channelValue) {
659 *maxPow = ar2425GetMaxPower(ah, &data[i]);
660 *minPow = ar2425GetMinPower(ah, &data[i]);
661 return(AH_TRUE);
662 } else
663 return(AH_FALSE);
664 }
665 }
666
667 /*
668 * Free memory for analog bank scratch buffers
669 */
670 static void
ar2425RfDetach(struct ath_hal * ah)671 ar2425RfDetach(struct ath_hal *ah)
672 {
673 struct ath_hal_5212 *ahp = AH5212(ah);
674
675 HALASSERT(ahp->ah_rfHal != AH_NULL);
676 ath_hal_free(ahp->ah_rfHal);
677 ahp->ah_rfHal = AH_NULL;
678 }
679
680 /*
681 * Allocate memory for analog bank scratch buffers
682 * Scratch Buffer will be reinitialized every reset so no need to zero now
683 */
684 static HAL_BOOL
ar2425RfAttach(struct ath_hal * ah,HAL_STATUS * status)685 ar2425RfAttach(struct ath_hal *ah, HAL_STATUS *status)
686 {
687 struct ath_hal_5212 *ahp = AH5212(ah);
688 struct ar2425State *priv;
689
690 HALASSERT(ah->ah_magic == AR5212_MAGIC);
691
692 HALASSERT(ahp->ah_rfHal == AH_NULL);
693 priv = ath_hal_malloc(sizeof(struct ar2425State));
694 if (priv == AH_NULL) {
695 HALDEBUG(ah, HAL_DEBUG_ANY,
696 "%s: cannot allocate private state\n", __func__);
697 *status = HAL_ENOMEM; /* XXX */
698 return AH_FALSE;
699 }
700 priv->base.rfDetach = ar2425RfDetach;
701 priv->base.writeRegs = ar2425WriteRegs;
702 priv->base.getRfBank = ar2425GetRfBank;
703 priv->base.setChannel = ar2425SetChannel;
704 priv->base.setRfRegs = ar2425SetRfRegs;
705 priv->base.setPowerTable = ar2425SetPowerTable;
706 priv->base.getChannelMaxMinPower = ar2425GetChannelMaxMinPower;
707 priv->base.getNfAdjust = ar5212GetNfAdjust;
708
709 ahp->ah_pcdacTable = priv->pcdacTable;
710 ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable);
711 ahp->ah_rfHal = &priv->base;
712
713 return AH_TRUE;
714 }
715
716 static HAL_BOOL
ar2425Probe(struct ath_hal * ah)717 ar2425Probe(struct ath_hal *ah)
718 {
719 return IS_2425(ah) || IS_2417(ah);
720 }
721 AH_RF(RF2425, ar2425Probe, ar2425RfAttach);
722