1 /*
2 * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
3 * Copyright (c) 2002-2008 Atheros Communications, Inc.
4 *
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 *
17 * $Id: ar2413.c,v 1.3 2013/09/12 12:04:37 martin Exp $
18 */
19 #include "opt_ah.h"
20
21 #include "ah.h"
22 #include "ah_internal.h"
23
24 #include "ar5212/ar5212.h"
25 #include "ar5212/ar5212reg.h"
26 #include "ar5212/ar5212phy.h"
27
28 #include "ah_eeprom_v3.h"
29
30 #define AH_5212_2413
31 #include "ar5212/ar5212.ini"
32
33 #define N(a) (sizeof(a)/sizeof(a[0]))
34
35 struct ar2413State {
36 RF_HAL_FUNCS base; /* public state, must be first */
37 uint16_t pcdacTable[PWR_TABLE_SIZE_2413];
38
39 uint32_t Bank1Data[N(ar5212Bank1_2413)];
40 uint32_t Bank2Data[N(ar5212Bank2_2413)];
41 uint32_t Bank3Data[N(ar5212Bank3_2413)];
42 uint32_t Bank6Data[N(ar5212Bank6_2413)];
43 uint32_t Bank7Data[N(ar5212Bank7_2413)];
44
45 /*
46 * Private state for reduced stack usage.
47 */
48 /* filled out Vpd table for all pdGains (chanL) */
49 uint16_t vpdTable_L[MAX_NUM_PDGAINS_PER_CHANNEL]
50 [MAX_PWR_RANGE_IN_HALF_DB];
51 /* filled out Vpd table for all pdGains (chanR) */
52 uint16_t vpdTable_R[MAX_NUM_PDGAINS_PER_CHANNEL]
53 [MAX_PWR_RANGE_IN_HALF_DB];
54 /* filled out Vpd table for all pdGains (interpolated) */
55 uint16_t vpdTable_I[MAX_NUM_PDGAINS_PER_CHANNEL]
56 [MAX_PWR_RANGE_IN_HALF_DB];
57 };
58 #define AR2413(ah) ((struct ar2413State *) AH5212(ah)->ah_rfHal)
59
60 extern void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
61 uint32_t numBits, uint32_t firstBit, uint32_t column);
62
63 static void
ar2413WriteRegs(struct ath_hal * ah,u_int modesIndex,u_int freqIndex,int writes)64 ar2413WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
65 int writes)
66 {
67 HAL_INI_WRITE_ARRAY(ah, ar5212Modes_2413, modesIndex, writes);
68 HAL_INI_WRITE_ARRAY(ah, ar5212Common_2413, 1, writes);
69 HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_2413, freqIndex, writes);
70 }
71
72 /*
73 * Take the MHz channel value and set the Channel value
74 *
75 * ASSUMES: Writes enabled to analog bus
76 */
77 static HAL_BOOL
ar2413SetChannel(struct ath_hal * ah,HAL_CHANNEL_INTERNAL * chan)78 ar2413SetChannel(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan)
79 {
80 uint32_t channelSel = 0;
81 uint32_t bModeSynth = 0;
82 uint32_t aModeRefSel = 0;
83 uint32_t reg32 = 0;
84 uint16_t freq;
85
86 OS_MARK(ah, AH_MARK_SETCHANNEL, chan->channel);
87
88 if (chan->channel < 4800) {
89 uint32_t txctl;
90
91 if (((chan->channel - 2192) % 5) == 0) {
92 channelSel = ((chan->channel - 672) * 2 - 3040)/10;
93 bModeSynth = 0;
94 } else if (((chan->channel - 2224) % 5) == 0) {
95 channelSel = ((chan->channel - 704) * 2 - 3040) / 10;
96 bModeSynth = 1;
97 } else {
98 HALDEBUG(ah, HAL_DEBUG_ANY,
99 "%s: invalid channel %u MHz\n",
100 __func__, chan->channel);
101 return AH_FALSE;
102 }
103
104 channelSel = (channelSel << 2) & 0xff;
105 channelSel = ath_hal_reverseBits(channelSel, 8);
106
107 txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
108 if (chan->channel == 2484) {
109 /* Enable channel spreading for channel 14 */
110 OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
111 txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
112 } else {
113 OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
114 txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
115 }
116 } else if (((chan->channel % 5) == 2) && (chan->channel <= 5435)) {
117 freq = chan->channel - 2; /* Align to even 5MHz raster */
118 channelSel = ath_hal_reverseBits(
119 (uint32_t)(((freq - 4800)*10)/25 + 1), 8);
120 aModeRefSel = ath_hal_reverseBits(0, 2);
121 } else if ((chan->channel % 20) == 0 && chan->channel >= 5120) {
122 channelSel = ath_hal_reverseBits(
123 ((chan->channel - 4800) / 20 << 2), 8);
124 aModeRefSel = ath_hal_reverseBits(3, 2);
125 } else if ((chan->channel % 10) == 0) {
126 channelSel = ath_hal_reverseBits(
127 ((chan->channel - 4800) / 10 << 1), 8);
128 aModeRefSel = ath_hal_reverseBits(2, 2);
129 } else if ((chan->channel % 5) == 0) {
130 channelSel = ath_hal_reverseBits(
131 (chan->channel - 4800) / 5, 8);
132 aModeRefSel = ath_hal_reverseBits(1, 2);
133 } else {
134 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n",
135 __func__, chan->channel);
136 return AH_FALSE;
137 }
138
139 reg32 = (channelSel << 4) | (aModeRefSel << 2) | (bModeSynth << 1) |
140 (1 << 12) | 0x1;
141 OS_REG_WRITE(ah, AR_PHY(0x27), reg32 & 0xff);
142
143 reg32 >>= 8;
144 OS_REG_WRITE(ah, AR_PHY(0x36), reg32 & 0x7f);
145
146 AH_PRIVATE(ah)->ah_curchan = chan;
147
148 return AH_TRUE;
149 }
150
151 /*
152 * Reads EEPROM header info from device structure and programs
153 * all rf registers
154 *
155 * REQUIRES: Access to the analog rf device
156 */
157 static HAL_BOOL
ar2413SetRfRegs(struct ath_hal * ah,HAL_CHANNEL_INTERNAL * chan,uint16_t modesIndex,uint16_t * rfXpdGain)158 ar2413SetRfRegs(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan, uint16_t modesIndex, uint16_t *rfXpdGain)
159 {
160 #define RF_BANK_SETUP(_priv, _ix, _col) do { \
161 int i; \
162 for (i = 0; i < N(ar5212Bank##_ix##_2413); i++) \
163 (_priv)->Bank##_ix##Data[i] = ar5212Bank##_ix##_2413[i][_col];\
164 } while (0)
165 struct ath_hal_5212 *ahp = AH5212(ah);
166 const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
167 uint16_t ob2GHz = 0, db2GHz = 0;
168 struct ar2413State *priv = AR2413(ah);
169 int regWrites = 0;
170
171 HALDEBUG(ah, HAL_DEBUG_RFPARAM,
172 "%s: chan 0x%x flag 0x%x modesIndex 0x%x\n",
173 __func__, chan->channel, chan->channelFlags, modesIndex);
174
175 HALASSERT(priv);
176
177 /* Setup rf parameters */
178 switch (chan->channelFlags & CHANNEL_ALL) {
179 case CHANNEL_B:
180 ob2GHz = ee->ee_obFor24;
181 db2GHz = ee->ee_dbFor24;
182 break;
183 case CHANNEL_G:
184 case CHANNEL_108G:
185 ob2GHz = ee->ee_obFor24g;
186 db2GHz = ee->ee_dbFor24g;
187 break;
188 default:
189 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
190 __func__, chan->channelFlags);
191 return AH_FALSE;
192 }
193
194 /* Bank 1 Write */
195 RF_BANK_SETUP(priv, 1, 1);
196
197 /* Bank 2 Write */
198 RF_BANK_SETUP(priv, 2, modesIndex);
199
200 /* Bank 3 Write */
201 RF_BANK_SETUP(priv, 3, modesIndex);
202
203 /* Bank 6 Write */
204 RF_BANK_SETUP(priv, 6, modesIndex);
205
206 ar5212ModifyRfBuffer(priv->Bank6Data, ob2GHz, 3, 168, 0);
207 ar5212ModifyRfBuffer(priv->Bank6Data, db2GHz, 3, 165, 0);
208
209 /* Bank 7 Setup */
210 RF_BANK_SETUP(priv, 7, modesIndex);
211
212 /* Write Analog registers */
213 HAL_INI_WRITE_BANK(ah, ar5212Bank1_2413, priv->Bank1Data, regWrites);
214 HAL_INI_WRITE_BANK(ah, ar5212Bank2_2413, priv->Bank2Data, regWrites);
215 HAL_INI_WRITE_BANK(ah, ar5212Bank3_2413, priv->Bank3Data, regWrites);
216 HAL_INI_WRITE_BANK(ah, ar5212Bank6_2413, priv->Bank6Data, regWrites);
217 HAL_INI_WRITE_BANK(ah, ar5212Bank7_2413, priv->Bank7Data, regWrites);
218
219 /* Now that we have reprogrammed rfgain value, clear the flag. */
220 ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;
221
222 return AH_TRUE;
223 #undef RF_BANK_SETUP
224 }
225
226 /*
227 * Return a reference to the requested RF Bank.
228 */
229 static uint32_t *
ar2413GetRfBank(struct ath_hal * ah,int bank)230 ar2413GetRfBank(struct ath_hal *ah, int bank)
231 {
232 struct ar2413State *priv = AR2413(ah);
233
234 HALASSERT(priv != AH_NULL);
235 switch (bank) {
236 case 1: return priv->Bank1Data;
237 case 2: return priv->Bank2Data;
238 case 3: return priv->Bank3Data;
239 case 6: return priv->Bank6Data;
240 case 7: return priv->Bank7Data;
241 }
242 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n",
243 __func__, bank);
244 return AH_NULL;
245 }
246
247 /*
248 * Return indices surrounding the value in sorted integer lists.
249 *
250 * NB: the input list is assumed to be sorted in ascending order
251 */
252 static void
GetLowerUpperIndex(int16_t v,const uint16_t * lp,uint16_t listSize,uint32_t * vlo,uint32_t * vhi)253 GetLowerUpperIndex(int16_t v, const uint16_t *lp, uint16_t listSize,
254 uint32_t *vlo, uint32_t *vhi)
255 {
256 int16_t target = v;
257 const uint16_t *ep = lp+listSize;
258 const uint16_t *tp;
259
260 /*
261 * Check first and last elements for out-of-bounds conditions.
262 */
263 if (target < lp[0]) {
264 *vlo = *vhi = 0;
265 return;
266 }
267 if (target >= ep[-1]) {
268 *vlo = *vhi = listSize - 1;
269 return;
270 }
271
272 /* look for value being near or between 2 values in list */
273 for (tp = lp; tp < ep; tp++) {
274 /*
275 * If value is close to the current value of the list
276 * then target is not between values, it is one of the values
277 */
278 if (*tp == target) {
279 *vlo = *vhi = tp - (const uint16_t *) lp;
280 return;
281 }
282 /*
283 * Look for value being between current value and next value
284 * if so return these 2 values
285 */
286 if (target < tp[1]) {
287 *vlo = tp - (const uint16_t *) lp;
288 *vhi = *vlo + 1;
289 return;
290 }
291 }
292 }
293
294 /*
295 * Fill the Vpdlist for indices Pmax-Pmin
296 */
297 static HAL_BOOL
ar2413FillVpdTable(uint32_t pdGainIdx,int16_t Pmin,int16_t Pmax,const int16_t * pwrList,const uint16_t * VpdList,uint16_t numIntercepts,uint16_t retVpdList[][64])298 ar2413FillVpdTable(uint32_t pdGainIdx, int16_t Pmin, int16_t Pmax,
299 const int16_t *pwrList, const uint16_t *VpdList,
300 uint16_t numIntercepts, uint16_t retVpdList[][64])
301 {
302 uint16_t ii, kk;
303 int16_t currPwr = (int16_t)(2*Pmin);
304 /* since Pmin is pwr*2 and pwrList is 4*pwr */
305 uint32_t idxL = 0, idxR = 0;
306
307 ii = 0;
308
309 if (numIntercepts < 2)
310 return AH_FALSE;
311
312 while (ii <= (uint16_t)(Pmax - Pmin)) {
313 GetLowerUpperIndex(currPwr, (const uint16_t *) pwrList,
314 numIntercepts, &(idxL), &(idxR));
315 if (idxR < 1)
316 idxR = 1; /* extrapolate below */
317 if (idxL == (uint32_t)(numIntercepts - 1))
318 idxL = numIntercepts - 2; /* extrapolate above */
319 if (pwrList[idxL] == pwrList[idxR])
320 kk = VpdList[idxL];
321 else
322 kk = (uint16_t)
323 (((currPwr - pwrList[idxL])*VpdList[idxR]+
324 (pwrList[idxR] - currPwr)*VpdList[idxL])/
325 (pwrList[idxR] - pwrList[idxL]));
326 retVpdList[pdGainIdx][ii] = kk;
327 ii++;
328 currPwr += 2; /* half dB steps */
329 }
330
331 return AH_TRUE;
332 }
333
334 /*
335 * Returns interpolated or the scaled up interpolated value
336 */
337 static int16_t
interpolate_signed(uint16_t target,uint16_t srcLeft,uint16_t srcRight,int16_t targetLeft,int16_t targetRight)338 interpolate_signed(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
339 int16_t targetLeft, int16_t targetRight)
340 {
341 int16_t rv;
342
343 if (srcRight != srcLeft) {
344 rv = ((target - srcLeft)*targetRight +
345 (srcRight - target)*targetLeft) / (srcRight - srcLeft);
346 } else {
347 rv = targetLeft;
348 }
349 return rv;
350 }
351
352 /*
353 * Uses the data points read from EEPROM to reconstruct the pdadc power table
354 * Called by ar2413SetPowerTable()
355 */
356 static int
ar2413getGainBoundariesAndPdadcsForPowers(struct ath_hal * ah,uint16_t channel,const RAW_DATA_STRUCT_2413 * pRawDataset,uint16_t pdGainOverlap_t2,int16_t * pMinCalPower,uint16_t pPdGainBoundaries[],uint16_t pPdGainValues[],uint16_t pPDADCValues[])357 ar2413getGainBoundariesAndPdadcsForPowers(struct ath_hal *ah, uint16_t channel,
358 const RAW_DATA_STRUCT_2413 *pRawDataset,
359 uint16_t pdGainOverlap_t2,
360 int16_t *pMinCalPower, uint16_t pPdGainBoundaries[],
361 uint16_t pPdGainValues[], uint16_t pPDADCValues[])
362 {
363 struct ar2413State *priv = AR2413(ah);
364 #define VpdTable_L priv->vpdTable_L
365 #define VpdTable_R priv->vpdTable_R
366 #define VpdTable_I priv->vpdTable_I
367 uint32_t ii, jj, kk;
368 int32_t ss;/* potentially -ve index for taking care of pdGainOverlap */
369 uint32_t idxL = 0, idxR = 0;
370 uint32_t numPdGainsUsed = 0;
371 /*
372 * If desired to support -ve power levels in future, just
373 * change pwr_I_0 to signed 5-bits.
374 */
375 int16_t Pmin_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
376 /* to accomodate -ve power levels later on. */
377 int16_t Pmax_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
378 /* to accomodate -ve power levels later on */
379 uint16_t numVpd = 0;
380 uint16_t Vpd_step;
381 int16_t tmpVal ;
382 uint32_t sizeCurrVpdTable, maxIndex, tgtIndex;
383
384 /* Get upper lower index */
385 GetLowerUpperIndex(channel, pRawDataset->pChannels,
386 pRawDataset->numChannels, &(idxL), &(idxR));
387
388 for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
389 jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
390 /* work backwards 'cause highest pdGain for lowest power */
391 numVpd = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].numVpd;
392 if (numVpd > 0) {
393 pPdGainValues[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pd_gain;
394 Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0];
395 if (Pmin_t2[numPdGainsUsed] >pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]) {
396 Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0];
397 }
398 Pmin_t2[numPdGainsUsed] = (int16_t)
399 (Pmin_t2[numPdGainsUsed] / 2);
400 Pmax_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[numVpd-1];
401 if (Pmax_t2[numPdGainsUsed] > pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1])
402 Pmax_t2[numPdGainsUsed] =
403 pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1];
404 Pmax_t2[numPdGainsUsed] = (int16_t)(Pmax_t2[numPdGainsUsed] / 2);
405 ar2413FillVpdTable(
406 numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
407 &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0]),
408 &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_L
409 );
410 ar2413FillVpdTable(
411 numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
412 &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]),
413 &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_R
414 );
415 for (kk = 0; kk < (uint16_t)(Pmax_t2[numPdGainsUsed] - Pmin_t2[numPdGainsUsed]); kk++) {
416 VpdTable_I[numPdGainsUsed][kk] =
417 interpolate_signed(
418 channel, pRawDataset->pChannels[idxL], pRawDataset->pChannels[idxR],
419 (int16_t)VpdTable_L[numPdGainsUsed][kk], (int16_t)VpdTable_R[numPdGainsUsed][kk]);
420 }
421 /* fill VpdTable_I for this pdGain */
422 numPdGainsUsed++;
423 }
424 /* if this pdGain is used */
425 }
426
427 *pMinCalPower = Pmin_t2[0];
428 kk = 0; /* index for the final table */
429 for (ii = 0; ii < numPdGainsUsed; ii++) {
430 if (ii == (numPdGainsUsed - 1))
431 pPdGainBoundaries[ii] = Pmax_t2[ii] +
432 PD_GAIN_BOUNDARY_STRETCH_IN_HALF_DB;
433 else
434 pPdGainBoundaries[ii] = (uint16_t)
435 ((Pmax_t2[ii] + Pmin_t2[ii+1]) / 2 );
436 if (pPdGainBoundaries[ii] > 63) {
437 HALDEBUG(ah, HAL_DEBUG_ANY,
438 "%s: clamp pPdGainBoundaries[%d] %d\n",
439 __func__, ii, pPdGainBoundaries[ii]);/*XXX*/
440 pPdGainBoundaries[ii] = 63;
441 }
442
443 /* Find starting index for this pdGain */
444 if (ii == 0)
445 ss = 0; /* for the first pdGain, start from index 0 */
446 else
447 ss = (pPdGainBoundaries[ii-1] - Pmin_t2[ii]) -
448 pdGainOverlap_t2;
449 Vpd_step = (uint16_t)(VpdTable_I[ii][1] - VpdTable_I[ii][0]);
450 Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
451 /*
452 *-ve ss indicates need to extrapolate data below for this pdGain
453 */
454 while (ss < 0) {
455 tmpVal = (int16_t)(VpdTable_I[ii][0] + ss*Vpd_step);
456 pPDADCValues[kk++] = (uint16_t)((tmpVal < 0) ? 0 : tmpVal);
457 ss++;
458 }
459
460 sizeCurrVpdTable = Pmax_t2[ii] - Pmin_t2[ii];
461 tgtIndex = pPdGainBoundaries[ii] + pdGainOverlap_t2 - Pmin_t2[ii];
462 maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
463
464 while (ss < (int16_t)maxIndex)
465 pPDADCValues[kk++] = VpdTable_I[ii][ss++];
466
467 Vpd_step = (uint16_t)(VpdTable_I[ii][sizeCurrVpdTable-1] -
468 VpdTable_I[ii][sizeCurrVpdTable-2]);
469 Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
470 /*
471 * for last gain, pdGainBoundary == Pmax_t2, so will
472 * have to extrapolate
473 */
474 if (tgtIndex > maxIndex) { /* need to extrapolate above */
475 while(ss < (int16_t)tgtIndex) {
476 tmpVal = (uint16_t)
477 (VpdTable_I[ii][sizeCurrVpdTable-1] +
478 (ss-maxIndex)*Vpd_step);
479 pPDADCValues[kk++] = (tmpVal > 127) ?
480 127 : tmpVal;
481 ss++;
482 }
483 } /* extrapolated above */
484 } /* for all pdGainUsed */
485
486 while (ii < MAX_NUM_PDGAINS_PER_CHANNEL) {
487 pPdGainBoundaries[ii] = pPdGainBoundaries[ii-1];
488 ii++;
489 }
490 while (kk < 128) {
491 pPDADCValues[kk] = pPDADCValues[kk-1];
492 kk++;
493 }
494
495 return numPdGainsUsed;
496 #undef VpdTable_L
497 #undef VpdTable_R
498 #undef VpdTable_I
499 }
500
501 static HAL_BOOL
ar2413SetPowerTable(struct ath_hal * ah,int16_t * minPower,int16_t * maxPower,HAL_CHANNEL_INTERNAL * chan,uint16_t * rfXpdGain)502 ar2413SetPowerTable(struct ath_hal *ah,
503 int16_t *minPower, int16_t *maxPower, HAL_CHANNEL_INTERNAL *chan,
504 uint16_t *rfXpdGain)
505 {
506 struct ath_hal_5212 *ahp = AH5212(ah);
507 const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
508 const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL;
509 uint16_t pdGainOverlap_t2;
510 int16_t minCalPower2413_t2;
511 uint16_t *pdadcValues = ahp->ah_pcdacTable;
512 uint16_t gainBoundaries[4];
513 uint32_t reg32, regoffset;
514 int i, numPdGainsUsed;
515 #ifndef AH_USE_INIPDGAIN
516 uint32_t tpcrg1;
517 #endif
518
519 HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan 0x%x flag 0x%x\n",
520 __func__, chan->channel,chan->channelFlags);
521
522 if (IS_CHAN_G(chan) || IS_CHAN_108G(chan))
523 pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
524 else if (IS_CHAN_B(chan))
525 pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
526 else {
527 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: illegal mode\n", __func__);
528 return AH_FALSE;
529 }
530
531 pdGainOverlap_t2 = (uint16_t) SM(OS_REG_READ(ah, AR_PHY_TPCRG5),
532 AR_PHY_TPCRG5_PD_GAIN_OVERLAP);
533
534 numPdGainsUsed = ar2413getGainBoundariesAndPdadcsForPowers(ah,
535 chan->channel, pRawDataset, pdGainOverlap_t2,
536 &minCalPower2413_t2,gainBoundaries, rfXpdGain, pdadcValues);
537 HALASSERT(1 <= numPdGainsUsed && numPdGainsUsed <= 3);
538
539 #ifdef AH_USE_INIPDGAIN
540 /*
541 * Use pd_gains curve from eeprom; Atheros always uses
542 * the default curve from the ini file but some vendors
543 * (e.g. Zcomax) want to override this curve and not
544 * honoring their settings results in tx power 5dBm low.
545 */
546 OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
547 (pRawDataset->pDataPerChannel[0].numPdGains - 1));
548 #else
549 tpcrg1 = OS_REG_READ(ah, AR_PHY_TPCRG1);
550 tpcrg1 = (tpcrg1 &~ AR_PHY_TPCRG1_NUM_PD_GAIN)
551 | SM(numPdGainsUsed-1, AR_PHY_TPCRG1_NUM_PD_GAIN);
552 switch (numPdGainsUsed) {
553 case 3:
554 tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING3;
555 tpcrg1 |= SM(rfXpdGain[2], AR_PHY_TPCRG1_PDGAIN_SETTING3);
556 /* fall thru... */
557 case 2:
558 tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING2;
559 tpcrg1 |= SM(rfXpdGain[1], AR_PHY_TPCRG1_PDGAIN_SETTING2);
560 /* fall thru... */
561 case 1:
562 tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING1;
563 tpcrg1 |= SM(rfXpdGain[0], AR_PHY_TPCRG1_PDGAIN_SETTING1);
564 break;
565 }
566 #ifdef AH_DEBUG
567 if (tpcrg1 != OS_REG_READ(ah, AR_PHY_TPCRG1))
568 HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: using non-default "
569 "pd_gains (default 0x%x, calculated 0x%x)\n",
570 __func__, OS_REG_READ(ah, AR_PHY_TPCRG1), tpcrg1);
571 #endif
572 OS_REG_WRITE(ah, AR_PHY_TPCRG1, tpcrg1);
573 #endif
574
575 /*
576 * Note the pdadc table may not start at 0 dBm power, could be
577 * negative or greater than 0. Need to offset the power
578 * values by the amount of minPower for griffin
579 */
580 if (minCalPower2413_t2 != 0)
581 ahp->ah_txPowerIndexOffset = (int16_t)(0 - minCalPower2413_t2);
582 else
583 ahp->ah_txPowerIndexOffset = 0;
584
585 /* Finally, write the power values into the baseband power table */
586 regoffset = 0x9800 + (672 <<2); /* beginning of pdadc table in griffin */
587 for (i = 0; i < 32; i++) {
588 reg32 = ((pdadcValues[4*i + 0] & 0xFF) << 0) |
589 ((pdadcValues[4*i + 1] & 0xFF) << 8) |
590 ((pdadcValues[4*i + 2] & 0xFF) << 16) |
591 ((pdadcValues[4*i + 3] & 0xFF) << 24) ;
592 OS_REG_WRITE(ah, regoffset, reg32);
593 regoffset += 4;
594 }
595
596 OS_REG_WRITE(ah, AR_PHY_TPCRG5,
597 SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
598 SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) |
599 SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) |
600 SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) |
601 SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
602
603 return AH_TRUE;
604 }
605
606 static int16_t
ar2413GetMinPower(struct ath_hal * ah,const RAW_DATA_PER_CHANNEL_2413 * data)607 ar2413GetMinPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data)
608 {
609 uint32_t ii,jj;
610 uint16_t Pmin=0,numVpd;
611
612 for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
613 jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
614 /* work backwards 'cause highest pdGain for lowest power */
615 numVpd = data->pDataPerPDGain[jj].numVpd;
616 if (numVpd > 0) {
617 Pmin = data->pDataPerPDGain[jj].pwr_t4[0];
618 return(Pmin);
619 }
620 }
621 return(Pmin);
622 }
623
624 static int16_t
ar2413GetMaxPower(struct ath_hal * ah,const RAW_DATA_PER_CHANNEL_2413 * data)625 ar2413GetMaxPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data)
626 {
627 uint32_t ii;
628 uint16_t Pmax=0,numVpd;
629
630 for (ii=0; ii< MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
631 /* work forwards cuase lowest pdGain for highest power */
632 numVpd = data->pDataPerPDGain[ii].numVpd;
633 if (numVpd > 0) {
634 Pmax = data->pDataPerPDGain[ii].pwr_t4[numVpd-1];
635 return(Pmax);
636 }
637 }
638 return(Pmax);
639 }
640
641 static HAL_BOOL
ar2413GetChannelMaxMinPower(struct ath_hal * ah,HAL_CHANNEL * chan,int16_t * maxPow,int16_t * minPow)642 ar2413GetChannelMaxMinPower(struct ath_hal *ah, HAL_CHANNEL *chan,
643 int16_t *maxPow, int16_t *minPow)
644 {
645 const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
646 const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL;
647 const RAW_DATA_PER_CHANNEL_2413 *data = AH_NULL;
648 uint16_t numChannels;
649 int totalD,totalF, totalMin,last, i;
650
651 *maxPow = 0;
652
653 if (IS_CHAN_G(chan) || IS_CHAN_108G(chan))
654 pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
655 else if (IS_CHAN_B(chan))
656 pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
657 else
658 return(AH_FALSE);
659
660 numChannels = pRawDataset->numChannels;
661 data = pRawDataset->pDataPerChannel;
662
663 /* Make sure the channel is in the range of the TP values
664 * (freq piers)
665 */
666 if (numChannels < 1)
667 return(AH_FALSE);
668
669 if ((chan->channel < data[0].channelValue) ||
670 (chan->channel > data[numChannels-1].channelValue)) {
671 if (chan->channel < data[0].channelValue) {
672 *maxPow = ar2413GetMaxPower(ah, &data[0]);
673 *minPow = ar2413GetMinPower(ah, &data[0]);
674 return(AH_TRUE);
675 } else {
676 *maxPow = ar2413GetMaxPower(ah, &data[numChannels - 1]);
677 *minPow = ar2413GetMinPower(ah, &data[numChannels - 1]);
678 return(AH_TRUE);
679 }
680 }
681
682 /* Linearly interpolate the power value now */
683 for (last=0,i=0; (i<numChannels) && (chan->channel > data[i].channelValue);
684 last = i++);
685 totalD = data[i].channelValue - data[last].channelValue;
686 if (totalD > 0) {
687 totalF = ar2413GetMaxPower(ah, &data[i]) - ar2413GetMaxPower(ah, &data[last]);
688 *maxPow = (int8_t) ((totalF*(chan->channel-data[last].channelValue) +
689 ar2413GetMaxPower(ah, &data[last])*totalD)/totalD);
690 totalMin = ar2413GetMinPower(ah, &data[i]) - ar2413GetMinPower(ah, &data[last]);
691 *minPow = (int8_t) ((totalMin*(chan->channel-data[last].channelValue) +
692 ar2413GetMinPower(ah, &data[last])*totalD)/totalD);
693 return(AH_TRUE);
694 } else {
695 if (chan->channel == data[i].channelValue) {
696 *maxPow = ar2413GetMaxPower(ah, &data[i]);
697 *minPow = ar2413GetMinPower(ah, &data[i]);
698 return(AH_TRUE);
699 } else
700 return(AH_FALSE);
701 }
702 }
703
704 /*
705 * Free memory for analog bank scratch buffers
706 */
707 static void
ar2413RfDetach(struct ath_hal * ah)708 ar2413RfDetach(struct ath_hal *ah)
709 {
710 struct ath_hal_5212 *ahp = AH5212(ah);
711
712 HALASSERT(ahp->ah_rfHal != AH_NULL);
713 ath_hal_free(ahp->ah_rfHal);
714 ahp->ah_rfHal = AH_NULL;
715 }
716
717 /*
718 * Allocate memory for analog bank scratch buffers
719 * Scratch Buffer will be reinitialized every reset so no need to zero now
720 */
721 static HAL_BOOL
ar2413RfAttach(struct ath_hal * ah,HAL_STATUS * status)722 ar2413RfAttach(struct ath_hal *ah, HAL_STATUS *status)
723 {
724 struct ath_hal_5212 *ahp = AH5212(ah);
725 struct ar2413State *priv;
726
727 HALASSERT(ah->ah_magic == AR5212_MAGIC);
728
729 HALASSERT(ahp->ah_rfHal == AH_NULL);
730 priv = ath_hal_malloc(sizeof(struct ar2413State));
731 if (priv == AH_NULL) {
732 HALDEBUG(ah, HAL_DEBUG_ANY,
733 "%s: cannot allocate private state\n", __func__);
734 *status = HAL_ENOMEM; /* XXX */
735 return AH_FALSE;
736 }
737 priv->base.rfDetach = ar2413RfDetach;
738 priv->base.writeRegs = ar2413WriteRegs;
739 priv->base.getRfBank = ar2413GetRfBank;
740 priv->base.setChannel = ar2413SetChannel;
741 priv->base.setRfRegs = ar2413SetRfRegs;
742 priv->base.setPowerTable = ar2413SetPowerTable;
743 priv->base.getChannelMaxMinPower = ar2413GetChannelMaxMinPower;
744 priv->base.getNfAdjust = ar5212GetNfAdjust;
745
746 ahp->ah_pcdacTable = priv->pcdacTable;
747 ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable);
748 ahp->ah_rfHal = &priv->base;
749
750 return AH_TRUE;
751 }
752
753 static HAL_BOOL
ar2413Probe(struct ath_hal * ah)754 ar2413Probe(struct ath_hal *ah)
755 {
756 return IS_2413(ah);
757 }
758 AH_RF(RF2413, ar2413Probe, ar2413RfAttach);
759