xref: /netbsd-src/sys/external/isc/atheros_hal/dist/ar5212/ar2413.c (revision 2861b6deffafa422feb35c086aa694566a75d9d8)
1 /*
2  * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
3  * Copyright (c) 2002-2008 Atheros Communications, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  *
17  * $Id: ar2413.c,v 1.3 2013/09/12 12:04:37 martin Exp $
18  */
19 #include "opt_ah.h"
20 
21 #include "ah.h"
22 #include "ah_internal.h"
23 
24 #include "ar5212/ar5212.h"
25 #include "ar5212/ar5212reg.h"
26 #include "ar5212/ar5212phy.h"
27 
28 #include "ah_eeprom_v3.h"
29 
30 #define AH_5212_2413
31 #include "ar5212/ar5212.ini"
32 
33 #define	N(a)	(sizeof(a)/sizeof(a[0]))
34 
35 struct ar2413State {
36 	RF_HAL_FUNCS	base;		/* public state, must be first */
37 	uint16_t	pcdacTable[PWR_TABLE_SIZE_2413];
38 
39 	uint32_t	Bank1Data[N(ar5212Bank1_2413)];
40 	uint32_t	Bank2Data[N(ar5212Bank2_2413)];
41 	uint32_t	Bank3Data[N(ar5212Bank3_2413)];
42 	uint32_t	Bank6Data[N(ar5212Bank6_2413)];
43 	uint32_t	Bank7Data[N(ar5212Bank7_2413)];
44 
45 	/*
46 	 * Private state for reduced stack usage.
47 	 */
48 	/* filled out Vpd table for all pdGains (chanL) */
49 	uint16_t vpdTable_L[MAX_NUM_PDGAINS_PER_CHANNEL]
50 			    [MAX_PWR_RANGE_IN_HALF_DB];
51 	/* filled out Vpd table for all pdGains (chanR) */
52 	uint16_t vpdTable_R[MAX_NUM_PDGAINS_PER_CHANNEL]
53 			    [MAX_PWR_RANGE_IN_HALF_DB];
54 	/* filled out Vpd table for all pdGains (interpolated) */
55 	uint16_t vpdTable_I[MAX_NUM_PDGAINS_PER_CHANNEL]
56 			    [MAX_PWR_RANGE_IN_HALF_DB];
57 };
58 #define	AR2413(ah)	((struct ar2413State *) AH5212(ah)->ah_rfHal)
59 
60 extern	void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
61 		uint32_t numBits, uint32_t firstBit, uint32_t column);
62 
63 static void
ar2413WriteRegs(struct ath_hal * ah,u_int modesIndex,u_int freqIndex,int writes)64 ar2413WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
65 	int writes)
66 {
67 	HAL_INI_WRITE_ARRAY(ah, ar5212Modes_2413, modesIndex, writes);
68 	HAL_INI_WRITE_ARRAY(ah, ar5212Common_2413, 1, writes);
69 	HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_2413, freqIndex, writes);
70 }
71 
72 /*
73  * Take the MHz channel value and set the Channel value
74  *
75  * ASSUMES: Writes enabled to analog bus
76  */
77 static HAL_BOOL
ar2413SetChannel(struct ath_hal * ah,HAL_CHANNEL_INTERNAL * chan)78 ar2413SetChannel(struct ath_hal *ah,  HAL_CHANNEL_INTERNAL *chan)
79 {
80 	uint32_t channelSel  = 0;
81 	uint32_t bModeSynth  = 0;
82 	uint32_t aModeRefSel = 0;
83 	uint32_t reg32       = 0;
84 	uint16_t freq;
85 
86 	OS_MARK(ah, AH_MARK_SETCHANNEL, chan->channel);
87 
88 	if (chan->channel < 4800) {
89 		uint32_t txctl;
90 
91 		if (((chan->channel - 2192) % 5) == 0) {
92 			channelSel = ((chan->channel - 672) * 2 - 3040)/10;
93 			bModeSynth = 0;
94 		} else if (((chan->channel - 2224) % 5) == 0) {
95 			channelSel = ((chan->channel - 704) * 2 - 3040) / 10;
96 			bModeSynth = 1;
97 		} else {
98 			HALDEBUG(ah, HAL_DEBUG_ANY,
99 			    "%s: invalid channel %u MHz\n",
100 			    __func__, chan->channel);
101 			return AH_FALSE;
102 		}
103 
104 		channelSel = (channelSel << 2) & 0xff;
105 		channelSel = ath_hal_reverseBits(channelSel, 8);
106 
107 		txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
108 		if (chan->channel == 2484) {
109 			/* Enable channel spreading for channel 14 */
110 			OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
111 				txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
112 		} else {
113 			OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
114 				txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
115 		}
116 	} else if (((chan->channel % 5) == 2) && (chan->channel <= 5435)) {
117 		freq = chan->channel - 2; /* Align to even 5MHz raster */
118 		channelSel = ath_hal_reverseBits(
119 			(uint32_t)(((freq - 4800)*10)/25 + 1), 8);
120             	aModeRefSel = ath_hal_reverseBits(0, 2);
121 	} else if ((chan->channel % 20) == 0 && chan->channel >= 5120) {
122 		channelSel = ath_hal_reverseBits(
123 			((chan->channel - 4800) / 20 << 2), 8);
124 		aModeRefSel = ath_hal_reverseBits(3, 2);
125 	} else if ((chan->channel % 10) == 0) {
126 		channelSel = ath_hal_reverseBits(
127 			((chan->channel - 4800) / 10 << 1), 8);
128 		aModeRefSel = ath_hal_reverseBits(2, 2);
129 	} else if ((chan->channel % 5) == 0) {
130 		channelSel = ath_hal_reverseBits(
131 			(chan->channel - 4800) / 5, 8);
132 		aModeRefSel = ath_hal_reverseBits(1, 2);
133 	} else {
134 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n",
135 		    __func__, chan->channel);
136 		return AH_FALSE;
137 	}
138 
139 	reg32 = (channelSel << 4) | (aModeRefSel << 2) | (bModeSynth << 1) |
140 			(1 << 12) | 0x1;
141 	OS_REG_WRITE(ah, AR_PHY(0x27), reg32 & 0xff);
142 
143 	reg32 >>= 8;
144 	OS_REG_WRITE(ah, AR_PHY(0x36), reg32 & 0x7f);
145 
146 	AH_PRIVATE(ah)->ah_curchan = chan;
147 
148 	return AH_TRUE;
149 }
150 
151 /*
152  * Reads EEPROM header info from device structure and programs
153  * all rf registers
154  *
155  * REQUIRES: Access to the analog rf device
156  */
157 static HAL_BOOL
ar2413SetRfRegs(struct ath_hal * ah,HAL_CHANNEL_INTERNAL * chan,uint16_t modesIndex,uint16_t * rfXpdGain)158 ar2413SetRfRegs(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan, uint16_t modesIndex, uint16_t *rfXpdGain)
159 {
160 #define	RF_BANK_SETUP(_priv, _ix, _col) do {				    \
161 	int i;								    \
162 	for (i = 0; i < N(ar5212Bank##_ix##_2413); i++)			    \
163 		(_priv)->Bank##_ix##Data[i] = ar5212Bank##_ix##_2413[i][_col];\
164 } while (0)
165 	struct ath_hal_5212 *ahp = AH5212(ah);
166 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
167 	uint16_t ob2GHz = 0, db2GHz = 0;
168 	struct ar2413State *priv = AR2413(ah);
169 	int regWrites = 0;
170 
171 	HALDEBUG(ah, HAL_DEBUG_RFPARAM,
172 	    "%s: chan 0x%x flag 0x%x modesIndex 0x%x\n",
173 	    __func__, chan->channel, chan->channelFlags, modesIndex);
174 
175 	HALASSERT(priv);
176 
177 	/* Setup rf parameters */
178 	switch (chan->channelFlags & CHANNEL_ALL) {
179 	case CHANNEL_B:
180 		ob2GHz = ee->ee_obFor24;
181 		db2GHz = ee->ee_dbFor24;
182 		break;
183 	case CHANNEL_G:
184 	case CHANNEL_108G:
185 		ob2GHz = ee->ee_obFor24g;
186 		db2GHz = ee->ee_dbFor24g;
187 		break;
188 	default:
189 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
190 		    __func__, chan->channelFlags);
191 		return AH_FALSE;
192 	}
193 
194 	/* Bank 1 Write */
195 	RF_BANK_SETUP(priv, 1, 1);
196 
197 	/* Bank 2 Write */
198 	RF_BANK_SETUP(priv, 2, modesIndex);
199 
200 	/* Bank 3 Write */
201 	RF_BANK_SETUP(priv, 3, modesIndex);
202 
203 	/* Bank 6 Write */
204 	RF_BANK_SETUP(priv, 6, modesIndex);
205 
206 	ar5212ModifyRfBuffer(priv->Bank6Data, ob2GHz,   3, 168, 0);
207 	ar5212ModifyRfBuffer(priv->Bank6Data, db2GHz,   3, 165, 0);
208 
209 	/* Bank 7 Setup */
210 	RF_BANK_SETUP(priv, 7, modesIndex);
211 
212 	/* Write Analog registers */
213 	HAL_INI_WRITE_BANK(ah, ar5212Bank1_2413, priv->Bank1Data, regWrites);
214 	HAL_INI_WRITE_BANK(ah, ar5212Bank2_2413, priv->Bank2Data, regWrites);
215 	HAL_INI_WRITE_BANK(ah, ar5212Bank3_2413, priv->Bank3Data, regWrites);
216 	HAL_INI_WRITE_BANK(ah, ar5212Bank6_2413, priv->Bank6Data, regWrites);
217 	HAL_INI_WRITE_BANK(ah, ar5212Bank7_2413, priv->Bank7Data, regWrites);
218 
219 	/* Now that we have reprogrammed rfgain value, clear the flag. */
220 	ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;
221 
222 	return AH_TRUE;
223 #undef	RF_BANK_SETUP
224 }
225 
226 /*
227  * Return a reference to the requested RF Bank.
228  */
229 static uint32_t *
ar2413GetRfBank(struct ath_hal * ah,int bank)230 ar2413GetRfBank(struct ath_hal *ah, int bank)
231 {
232 	struct ar2413State *priv = AR2413(ah);
233 
234 	HALASSERT(priv != AH_NULL);
235 	switch (bank) {
236 	case 1: return priv->Bank1Data;
237 	case 2: return priv->Bank2Data;
238 	case 3: return priv->Bank3Data;
239 	case 6: return priv->Bank6Data;
240 	case 7: return priv->Bank7Data;
241 	}
242 	HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n",
243 	    __func__, bank);
244 	return AH_NULL;
245 }
246 
247 /*
248  * Return indices surrounding the value in sorted integer lists.
249  *
250  * NB: the input list is assumed to be sorted in ascending order
251  */
252 static void
GetLowerUpperIndex(int16_t v,const uint16_t * lp,uint16_t listSize,uint32_t * vlo,uint32_t * vhi)253 GetLowerUpperIndex(int16_t v, const uint16_t *lp, uint16_t listSize,
254                           uint32_t *vlo, uint32_t *vhi)
255 {
256 	int16_t target = v;
257 	const uint16_t *ep = lp+listSize;
258 	const uint16_t *tp;
259 
260 	/*
261 	 * Check first and last elements for out-of-bounds conditions.
262 	 */
263 	if (target < lp[0]) {
264 		*vlo = *vhi = 0;
265 		return;
266 	}
267 	if (target >= ep[-1]) {
268 		*vlo = *vhi = listSize - 1;
269 		return;
270 	}
271 
272 	/* look for value being near or between 2 values in list */
273 	for (tp = lp; tp < ep; tp++) {
274 		/*
275 		 * If value is close to the current value of the list
276 		 * then target is not between values, it is one of the values
277 		 */
278 		if (*tp == target) {
279 			*vlo = *vhi = tp - (const uint16_t *) lp;
280 			return;
281 		}
282 		/*
283 		 * Look for value being between current value and next value
284 		 * if so return these 2 values
285 		 */
286 		if (target < tp[1]) {
287 			*vlo = tp - (const uint16_t *) lp;
288 			*vhi = *vlo + 1;
289 			return;
290 		}
291 	}
292 }
293 
294 /*
295  * Fill the Vpdlist for indices Pmax-Pmin
296  */
297 static HAL_BOOL
ar2413FillVpdTable(uint32_t pdGainIdx,int16_t Pmin,int16_t Pmax,const int16_t * pwrList,const uint16_t * VpdList,uint16_t numIntercepts,uint16_t retVpdList[][64])298 ar2413FillVpdTable(uint32_t pdGainIdx, int16_t Pmin, int16_t  Pmax,
299 		   const int16_t *pwrList, const uint16_t *VpdList,
300 		   uint16_t numIntercepts, uint16_t retVpdList[][64])
301 {
302 	uint16_t ii, kk;
303 	int16_t currPwr = (int16_t)(2*Pmin);
304 	/* since Pmin is pwr*2 and pwrList is 4*pwr */
305 	uint32_t  idxL = 0, idxR = 0;
306 
307 	ii = 0;
308 
309 	if (numIntercepts < 2)
310 		return AH_FALSE;
311 
312 	while (ii <= (uint16_t)(Pmax - Pmin)) {
313 		GetLowerUpperIndex(currPwr, (const uint16_t *) pwrList,
314 				   numIntercepts, &(idxL), &(idxR));
315 		if (idxR < 1)
316 			idxR = 1;			/* extrapolate below */
317 		if (idxL == (uint32_t)(numIntercepts - 1))
318 			idxL = numIntercepts - 2;	/* extrapolate above */
319 		if (pwrList[idxL] == pwrList[idxR])
320 			kk = VpdList[idxL];
321 		else
322 			kk = (uint16_t)
323 				(((currPwr - pwrList[idxL])*VpdList[idxR]+
324 				  (pwrList[idxR] - currPwr)*VpdList[idxL])/
325 				 (pwrList[idxR] - pwrList[idxL]));
326 		retVpdList[pdGainIdx][ii] = kk;
327 		ii++;
328 		currPwr += 2;				/* half dB steps */
329 	}
330 
331 	return AH_TRUE;
332 }
333 
334 /*
335  * Returns interpolated or the scaled up interpolated value
336  */
337 static int16_t
interpolate_signed(uint16_t target,uint16_t srcLeft,uint16_t srcRight,int16_t targetLeft,int16_t targetRight)338 interpolate_signed(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
339 	int16_t targetLeft, int16_t targetRight)
340 {
341 	int16_t rv;
342 
343 	if (srcRight != srcLeft) {
344 		rv = ((target - srcLeft)*targetRight +
345 		      (srcRight - target)*targetLeft) / (srcRight - srcLeft);
346 	} else {
347 		rv = targetLeft;
348 	}
349 	return rv;
350 }
351 
352 /*
353  * Uses the data points read from EEPROM to reconstruct the pdadc power table
354  * Called by ar2413SetPowerTable()
355  */
356 static int
ar2413getGainBoundariesAndPdadcsForPowers(struct ath_hal * ah,uint16_t channel,const RAW_DATA_STRUCT_2413 * pRawDataset,uint16_t pdGainOverlap_t2,int16_t * pMinCalPower,uint16_t pPdGainBoundaries[],uint16_t pPdGainValues[],uint16_t pPDADCValues[])357 ar2413getGainBoundariesAndPdadcsForPowers(struct ath_hal *ah, uint16_t channel,
358 		const RAW_DATA_STRUCT_2413 *pRawDataset,
359 		uint16_t pdGainOverlap_t2,
360 		int16_t  *pMinCalPower, uint16_t pPdGainBoundaries[],
361 		uint16_t pPdGainValues[], uint16_t pPDADCValues[])
362 {
363 	struct ar2413State *priv = AR2413(ah);
364 #define	VpdTable_L	priv->vpdTable_L
365 #define	VpdTable_R	priv->vpdTable_R
366 #define	VpdTable_I	priv->vpdTable_I
367 	uint32_t ii, jj, kk;
368 	int32_t ss;/* potentially -ve index for taking care of pdGainOverlap */
369 	uint32_t idxL = 0, idxR = 0;
370 	uint32_t numPdGainsUsed = 0;
371 	/*
372 	 * If desired to support -ve power levels in future, just
373 	 * change pwr_I_0 to signed 5-bits.
374 	 */
375 	int16_t Pmin_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
376 	/* to accomodate -ve power levels later on. */
377 	int16_t Pmax_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
378 	/* to accomodate -ve power levels later on */
379 	uint16_t numVpd = 0;
380 	uint16_t Vpd_step;
381 	int16_t tmpVal ;
382 	uint32_t sizeCurrVpdTable, maxIndex, tgtIndex;
383 
384 	/* Get upper lower index */
385 	GetLowerUpperIndex(channel, pRawDataset->pChannels,
386 				 pRawDataset->numChannels, &(idxL), &(idxR));
387 
388 	for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
389 		jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
390 		/* work backwards 'cause highest pdGain for lowest power */
391 		numVpd = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].numVpd;
392 		if (numVpd > 0) {
393 			pPdGainValues[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pd_gain;
394 			Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0];
395 			if (Pmin_t2[numPdGainsUsed] >pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]) {
396 				Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0];
397 			}
398 			Pmin_t2[numPdGainsUsed] = (int16_t)
399 				(Pmin_t2[numPdGainsUsed] / 2);
400 			Pmax_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[numVpd-1];
401 			if (Pmax_t2[numPdGainsUsed] > pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1])
402 				Pmax_t2[numPdGainsUsed] =
403 					pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1];
404 			Pmax_t2[numPdGainsUsed] = (int16_t)(Pmax_t2[numPdGainsUsed] / 2);
405 			ar2413FillVpdTable(
406 					   numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
407 					   &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0]),
408 					   &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_L
409 					   );
410 			ar2413FillVpdTable(
411 					   numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
412 					   &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]),
413 					   &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_R
414 					   );
415 			for (kk = 0; kk < (uint16_t)(Pmax_t2[numPdGainsUsed] - Pmin_t2[numPdGainsUsed]); kk++) {
416 				VpdTable_I[numPdGainsUsed][kk] =
417 					interpolate_signed(
418 							   channel, pRawDataset->pChannels[idxL], pRawDataset->pChannels[idxR],
419 							   (int16_t)VpdTable_L[numPdGainsUsed][kk], (int16_t)VpdTable_R[numPdGainsUsed][kk]);
420 			}
421 			/* fill VpdTable_I for this pdGain */
422 			numPdGainsUsed++;
423 		}
424 		/* if this pdGain is used */
425 	}
426 
427 	*pMinCalPower = Pmin_t2[0];
428 	kk = 0; /* index for the final table */
429 	for (ii = 0; ii < numPdGainsUsed; ii++) {
430 		if (ii == (numPdGainsUsed - 1))
431 			pPdGainBoundaries[ii] = Pmax_t2[ii] +
432 				PD_GAIN_BOUNDARY_STRETCH_IN_HALF_DB;
433 		else
434 			pPdGainBoundaries[ii] = (uint16_t)
435 				((Pmax_t2[ii] + Pmin_t2[ii+1]) / 2 );
436 		if (pPdGainBoundaries[ii] > 63) {
437 			HALDEBUG(ah, HAL_DEBUG_ANY,
438 			    "%s: clamp pPdGainBoundaries[%d] %d\n",
439 			    __func__, ii, pPdGainBoundaries[ii]);/*XXX*/
440 			pPdGainBoundaries[ii] = 63;
441 		}
442 
443 		/* Find starting index for this pdGain */
444 		if (ii == 0)
445 			ss = 0; /* for the first pdGain, start from index 0 */
446 		else
447 			ss = (pPdGainBoundaries[ii-1] - Pmin_t2[ii]) -
448 				pdGainOverlap_t2;
449 		Vpd_step = (uint16_t)(VpdTable_I[ii][1] - VpdTable_I[ii][0]);
450 		Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
451 		/*
452 		 *-ve ss indicates need to extrapolate data below for this pdGain
453 		 */
454 		while (ss < 0) {
455 			tmpVal = (int16_t)(VpdTable_I[ii][0] + ss*Vpd_step);
456 			pPDADCValues[kk++] = (uint16_t)((tmpVal < 0) ? 0 : tmpVal);
457 			ss++;
458 		}
459 
460 		sizeCurrVpdTable = Pmax_t2[ii] - Pmin_t2[ii];
461 		tgtIndex = pPdGainBoundaries[ii] + pdGainOverlap_t2 - Pmin_t2[ii];
462 		maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
463 
464 		while (ss < (int16_t)maxIndex)
465 			pPDADCValues[kk++] = VpdTable_I[ii][ss++];
466 
467 		Vpd_step = (uint16_t)(VpdTable_I[ii][sizeCurrVpdTable-1] -
468 				       VpdTable_I[ii][sizeCurrVpdTable-2]);
469 		Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
470 		/*
471 		 * for last gain, pdGainBoundary == Pmax_t2, so will
472 		 * have to extrapolate
473 		 */
474 		if (tgtIndex > maxIndex) {	/* need to extrapolate above */
475 			while(ss < (int16_t)tgtIndex) {
476 				tmpVal = (uint16_t)
477 					(VpdTable_I[ii][sizeCurrVpdTable-1] +
478 					 (ss-maxIndex)*Vpd_step);
479 				pPDADCValues[kk++] = (tmpVal > 127) ?
480 					127 : tmpVal;
481 				ss++;
482 			}
483 		}				/* extrapolated above */
484 	}					/* for all pdGainUsed */
485 
486 	while (ii < MAX_NUM_PDGAINS_PER_CHANNEL) {
487 		pPdGainBoundaries[ii] = pPdGainBoundaries[ii-1];
488 		ii++;
489 	}
490 	while (kk < 128) {
491 		pPDADCValues[kk] = pPDADCValues[kk-1];
492 		kk++;
493 	}
494 
495 	return numPdGainsUsed;
496 #undef VpdTable_L
497 #undef VpdTable_R
498 #undef VpdTable_I
499 }
500 
501 static HAL_BOOL
ar2413SetPowerTable(struct ath_hal * ah,int16_t * minPower,int16_t * maxPower,HAL_CHANNEL_INTERNAL * chan,uint16_t * rfXpdGain)502 ar2413SetPowerTable(struct ath_hal *ah,
503 	int16_t *minPower, int16_t *maxPower, HAL_CHANNEL_INTERNAL *chan,
504 	uint16_t *rfXpdGain)
505 {
506 	struct ath_hal_5212 *ahp = AH5212(ah);
507 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
508 	const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL;
509 	uint16_t pdGainOverlap_t2;
510 	int16_t minCalPower2413_t2;
511 	uint16_t *pdadcValues = ahp->ah_pcdacTable;
512 	uint16_t gainBoundaries[4];
513 	uint32_t reg32, regoffset;
514 	int i, numPdGainsUsed;
515 #ifndef AH_USE_INIPDGAIN
516 	uint32_t tpcrg1;
517 #endif
518 
519 	HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan 0x%x flag 0x%x\n",
520 	    __func__, chan->channel,chan->channelFlags);
521 
522 	if (IS_CHAN_G(chan) || IS_CHAN_108G(chan))
523 		pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
524 	else if (IS_CHAN_B(chan))
525 		pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
526 	else {
527 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: illegal mode\n", __func__);
528 		return AH_FALSE;
529 	}
530 
531 	pdGainOverlap_t2 = (uint16_t) SM(OS_REG_READ(ah, AR_PHY_TPCRG5),
532 					  AR_PHY_TPCRG5_PD_GAIN_OVERLAP);
533 
534 	numPdGainsUsed = ar2413getGainBoundariesAndPdadcsForPowers(ah,
535 		chan->channel, pRawDataset, pdGainOverlap_t2,
536 		&minCalPower2413_t2,gainBoundaries, rfXpdGain, pdadcValues);
537 	HALASSERT(1 <= numPdGainsUsed && numPdGainsUsed <= 3);
538 
539 #ifdef AH_USE_INIPDGAIN
540 	/*
541 	 * Use pd_gains curve from eeprom; Atheros always uses
542 	 * the default curve from the ini file but some vendors
543 	 * (e.g. Zcomax) want to override this curve and not
544 	 * honoring their settings results in tx power 5dBm low.
545 	 */
546 	OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
547 			 (pRawDataset->pDataPerChannel[0].numPdGains - 1));
548 #else
549 	tpcrg1 = OS_REG_READ(ah, AR_PHY_TPCRG1);
550 	tpcrg1 = (tpcrg1 &~ AR_PHY_TPCRG1_NUM_PD_GAIN)
551 		  | SM(numPdGainsUsed-1, AR_PHY_TPCRG1_NUM_PD_GAIN);
552 	switch (numPdGainsUsed) {
553 	case 3:
554 		tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING3;
555 		tpcrg1 |= SM(rfXpdGain[2], AR_PHY_TPCRG1_PDGAIN_SETTING3);
556 		/* fall thru... */
557 	case 2:
558 		tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING2;
559 		tpcrg1 |= SM(rfXpdGain[1], AR_PHY_TPCRG1_PDGAIN_SETTING2);
560 		/* fall thru... */
561 	case 1:
562 		tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING1;
563 		tpcrg1 |= SM(rfXpdGain[0], AR_PHY_TPCRG1_PDGAIN_SETTING1);
564 		break;
565 	}
566 #ifdef AH_DEBUG
567 	if (tpcrg1 != OS_REG_READ(ah, AR_PHY_TPCRG1))
568 		HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: using non-default "
569 		    "pd_gains (default 0x%x, calculated 0x%x)\n",
570 		    __func__, OS_REG_READ(ah, AR_PHY_TPCRG1), tpcrg1);
571 #endif
572 	OS_REG_WRITE(ah, AR_PHY_TPCRG1, tpcrg1);
573 #endif
574 
575 	/*
576 	 * Note the pdadc table may not start at 0 dBm power, could be
577 	 * negative or greater than 0.  Need to offset the power
578 	 * values by the amount of minPower for griffin
579 	 */
580 	if (minCalPower2413_t2 != 0)
581 		ahp->ah_txPowerIndexOffset = (int16_t)(0 - minCalPower2413_t2);
582 	else
583 		ahp->ah_txPowerIndexOffset = 0;
584 
585 	/* Finally, write the power values into the baseband power table */
586 	regoffset = 0x9800 + (672 <<2); /* beginning of pdadc table in griffin */
587 	for (i = 0; i < 32; i++) {
588 		reg32 = ((pdadcValues[4*i + 0] & 0xFF) << 0)  |
589 			((pdadcValues[4*i + 1] & 0xFF) << 8)  |
590 			((pdadcValues[4*i + 2] & 0xFF) << 16) |
591 			((pdadcValues[4*i + 3] & 0xFF) << 24) ;
592 		OS_REG_WRITE(ah, regoffset, reg32);
593 		regoffset += 4;
594 	}
595 
596 	OS_REG_WRITE(ah, AR_PHY_TPCRG5,
597 		     SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
598 		     SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) |
599 		     SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) |
600 		     SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) |
601 		     SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
602 
603 	return AH_TRUE;
604 }
605 
606 static int16_t
ar2413GetMinPower(struct ath_hal * ah,const RAW_DATA_PER_CHANNEL_2413 * data)607 ar2413GetMinPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data)
608 {
609 	uint32_t ii,jj;
610 	uint16_t Pmin=0,numVpd;
611 
612 	for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
613 		jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
614 		/* work backwards 'cause highest pdGain for lowest power */
615 		numVpd = data->pDataPerPDGain[jj].numVpd;
616 		if (numVpd > 0) {
617 			Pmin = data->pDataPerPDGain[jj].pwr_t4[0];
618 			return(Pmin);
619 		}
620 	}
621 	return(Pmin);
622 }
623 
624 static int16_t
ar2413GetMaxPower(struct ath_hal * ah,const RAW_DATA_PER_CHANNEL_2413 * data)625 ar2413GetMaxPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data)
626 {
627 	uint32_t ii;
628 	uint16_t Pmax=0,numVpd;
629 
630 	for (ii=0; ii< MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
631 		/* work forwards cuase lowest pdGain for highest power */
632 		numVpd = data->pDataPerPDGain[ii].numVpd;
633 		if (numVpd > 0) {
634 			Pmax = data->pDataPerPDGain[ii].pwr_t4[numVpd-1];
635 			return(Pmax);
636 		}
637 	}
638 	return(Pmax);
639 }
640 
641 static HAL_BOOL
ar2413GetChannelMaxMinPower(struct ath_hal * ah,HAL_CHANNEL * chan,int16_t * maxPow,int16_t * minPow)642 ar2413GetChannelMaxMinPower(struct ath_hal *ah, HAL_CHANNEL *chan,
643 	int16_t *maxPow, int16_t *minPow)
644 {
645 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
646 	const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL;
647 	const RAW_DATA_PER_CHANNEL_2413 *data = AH_NULL;
648 	uint16_t numChannels;
649 	int totalD,totalF, totalMin,last, i;
650 
651 	*maxPow = 0;
652 
653 	if (IS_CHAN_G(chan) || IS_CHAN_108G(chan))
654 		pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
655 	else if (IS_CHAN_B(chan))
656 		pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
657 	else
658 		return(AH_FALSE);
659 
660 	numChannels = pRawDataset->numChannels;
661 	data = pRawDataset->pDataPerChannel;
662 
663 	/* Make sure the channel is in the range of the TP values
664 	 *  (freq piers)
665 	 */
666 	if (numChannels < 1)
667 		return(AH_FALSE);
668 
669 	if ((chan->channel < data[0].channelValue) ||
670 	    (chan->channel > data[numChannels-1].channelValue)) {
671 		if (chan->channel < data[0].channelValue) {
672 			*maxPow = ar2413GetMaxPower(ah, &data[0]);
673 			*minPow = ar2413GetMinPower(ah, &data[0]);
674 			return(AH_TRUE);
675 		} else {
676 			*maxPow = ar2413GetMaxPower(ah, &data[numChannels - 1]);
677 			*minPow = ar2413GetMinPower(ah, &data[numChannels - 1]);
678 			return(AH_TRUE);
679 		}
680 	}
681 
682 	/* Linearly interpolate the power value now */
683 	for (last=0,i=0; (i<numChannels) && (chan->channel > data[i].channelValue);
684 	     last = i++);
685 	totalD = data[i].channelValue - data[last].channelValue;
686 	if (totalD > 0) {
687 		totalF = ar2413GetMaxPower(ah, &data[i]) - ar2413GetMaxPower(ah, &data[last]);
688 		*maxPow = (int8_t) ((totalF*(chan->channel-data[last].channelValue) +
689 				     ar2413GetMaxPower(ah, &data[last])*totalD)/totalD);
690 		totalMin = ar2413GetMinPower(ah, &data[i]) - ar2413GetMinPower(ah, &data[last]);
691 		*minPow = (int8_t) ((totalMin*(chan->channel-data[last].channelValue) +
692 				     ar2413GetMinPower(ah, &data[last])*totalD)/totalD);
693 		return(AH_TRUE);
694 	} else {
695 		if (chan->channel == data[i].channelValue) {
696 			*maxPow = ar2413GetMaxPower(ah, &data[i]);
697 			*minPow = ar2413GetMinPower(ah, &data[i]);
698 			return(AH_TRUE);
699 		} else
700 			return(AH_FALSE);
701 	}
702 }
703 
704 /*
705  * Free memory for analog bank scratch buffers
706  */
707 static void
ar2413RfDetach(struct ath_hal * ah)708 ar2413RfDetach(struct ath_hal *ah)
709 {
710 	struct ath_hal_5212 *ahp = AH5212(ah);
711 
712 	HALASSERT(ahp->ah_rfHal != AH_NULL);
713 	ath_hal_free(ahp->ah_rfHal);
714 	ahp->ah_rfHal = AH_NULL;
715 }
716 
717 /*
718  * Allocate memory for analog bank scratch buffers
719  * Scratch Buffer will be reinitialized every reset so no need to zero now
720  */
721 static HAL_BOOL
ar2413RfAttach(struct ath_hal * ah,HAL_STATUS * status)722 ar2413RfAttach(struct ath_hal *ah, HAL_STATUS *status)
723 {
724 	struct ath_hal_5212 *ahp = AH5212(ah);
725 	struct ar2413State *priv;
726 
727 	HALASSERT(ah->ah_magic == AR5212_MAGIC);
728 
729 	HALASSERT(ahp->ah_rfHal == AH_NULL);
730 	priv = ath_hal_malloc(sizeof(struct ar2413State));
731 	if (priv == AH_NULL) {
732 		HALDEBUG(ah, HAL_DEBUG_ANY,
733 		    "%s: cannot allocate private state\n", __func__);
734 		*status = HAL_ENOMEM;		/* XXX */
735 		return AH_FALSE;
736 	}
737 	priv->base.rfDetach		= ar2413RfDetach;
738 	priv->base.writeRegs		= ar2413WriteRegs;
739 	priv->base.getRfBank		= ar2413GetRfBank;
740 	priv->base.setChannel		= ar2413SetChannel;
741 	priv->base.setRfRegs		= ar2413SetRfRegs;
742 	priv->base.setPowerTable	= ar2413SetPowerTable;
743 	priv->base.getChannelMaxMinPower = ar2413GetChannelMaxMinPower;
744 	priv->base.getNfAdjust		= ar5212GetNfAdjust;
745 
746 	ahp->ah_pcdacTable = priv->pcdacTable;
747 	ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable);
748 	ahp->ah_rfHal = &priv->base;
749 
750 	return AH_TRUE;
751 }
752 
753 static HAL_BOOL
ar2413Probe(struct ath_hal * ah)754 ar2413Probe(struct ath_hal *ah)
755 {
756 	return IS_2413(ah);
757 }
758 AH_RF(RF2413, ar2413Probe, ar2413RfAttach);
759