1 /*
2 * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
3 * Copyright (c) 2002-2008 Atheros Communications, Inc.
4 *
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 *
17 * $Id: ar2317.c,v 1.4 2013/09/12 12:03:33 martin Exp $
18 */
19 #include "opt_ah.h"
20
21 #include "ah.h"
22 #include "ah_devid.h"
23 #include "ah_internal.h"
24
25 #include "ar5212/ar5212.h"
26 #include "ar5212/ar5212reg.h"
27 #include "ar5212/ar5212phy.h"
28
29 #include "ah_eeprom_v3.h"
30
31 #define AH_5212_2317
32 #include "ar5212/ar5212.ini"
33
34 #define N(a) (sizeof(a)/sizeof(a[0]))
35
36 typedef RAW_DATA_STRUCT_2413 RAW_DATA_STRUCT_2317;
37 typedef RAW_DATA_PER_CHANNEL_2413 RAW_DATA_PER_CHANNEL_2317;
38 #define PWR_TABLE_SIZE_2317 PWR_TABLE_SIZE_2413
39
40 struct ar2317State {
41 RF_HAL_FUNCS base; /* public state, must be first */
42 uint16_t pcdacTable[PWR_TABLE_SIZE_2317];
43
44 uint32_t Bank1Data[N(ar5212Bank1_2317)];
45 uint32_t Bank2Data[N(ar5212Bank2_2317)];
46 uint32_t Bank3Data[N(ar5212Bank3_2317)];
47 uint32_t Bank6Data[N(ar5212Bank6_2317)];
48 uint32_t Bank7Data[N(ar5212Bank7_2317)];
49
50 /*
51 * Private state for reduced stack usage.
52 */
53 /* filled out Vpd table for all pdGains (chanL) */
54 uint16_t vpdTable_L[MAX_NUM_PDGAINS_PER_CHANNEL]
55 [MAX_PWR_RANGE_IN_HALF_DB];
56 /* filled out Vpd table for all pdGains (chanR) */
57 uint16_t vpdTable_R[MAX_NUM_PDGAINS_PER_CHANNEL]
58 [MAX_PWR_RANGE_IN_HALF_DB];
59 /* filled out Vpd table for all pdGains (interpolated) */
60 uint16_t vpdTable_I[MAX_NUM_PDGAINS_PER_CHANNEL]
61 [MAX_PWR_RANGE_IN_HALF_DB];
62 };
63 #define AR2317(ah) ((struct ar2317State *) AH5212(ah)->ah_rfHal)
64
65 extern void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
66 uint32_t numBits, uint32_t firstBit, uint32_t column);
67
68 static void
ar2317WriteRegs(struct ath_hal * ah,u_int modesIndex,u_int freqIndex,int writes)69 ar2317WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
70 int writes)
71 {
72 HAL_INI_WRITE_ARRAY(ah, ar5212Modes_2317, modesIndex, writes);
73 HAL_INI_WRITE_ARRAY(ah, ar5212Common_2317, 1, writes);
74 HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_2317, freqIndex, writes);
75 }
76
77 /*
78 * Take the MHz channel value and set the Channel value
79 *
80 * ASSUMES: Writes enabled to analog bus
81 */
82 static HAL_BOOL
ar2317SetChannel(struct ath_hal * ah,HAL_CHANNEL_INTERNAL * chan)83 ar2317SetChannel(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan)
84 {
85 uint32_t channelSel = 0;
86 uint32_t bModeSynth = 0;
87 uint32_t aModeRefSel = 0;
88 uint32_t reg32 = 0;
89
90 OS_MARK(ah, AH_MARK_SETCHANNEL, chan->channel);
91
92 if (chan->channel < 4800) {
93 uint32_t txctl;
94 channelSel = chan->channel - 2272 ;
95 channelSel = ath_hal_reverseBits(channelSel, 8);
96
97 txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
98 if (chan->channel == 2484) {
99 /* Enable channel spreading for channel 14 */
100 OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
101 txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
102 } else {
103 OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
104 txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
105 }
106 } else if ((chan->channel % 20) == 0 && chan->channel >= 5120) {
107 channelSel = ath_hal_reverseBits(
108 ((chan->channel - 4800) / 20 << 2), 8);
109 aModeRefSel = ath_hal_reverseBits(3, 2);
110 } else if ((chan->channel % 10) == 0) {
111 channelSel = ath_hal_reverseBits(
112 ((chan->channel - 4800) / 10 << 1), 8);
113 aModeRefSel = ath_hal_reverseBits(2, 2);
114 } else if ((chan->channel % 5) == 0) {
115 channelSel = ath_hal_reverseBits(
116 (chan->channel - 4800) / 5, 8);
117 aModeRefSel = ath_hal_reverseBits(1, 2);
118 } else {
119 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n",
120 __func__, chan->channel);
121 return AH_FALSE;
122 }
123
124 reg32 = (channelSel << 4) | (aModeRefSel << 2) | (bModeSynth << 1) |
125 (1 << 12) | 0x1;
126 OS_REG_WRITE(ah, AR_PHY(0x27), reg32 & 0xff);
127
128 reg32 >>= 8;
129 OS_REG_WRITE(ah, AR_PHY(0x36), reg32 & 0x7f);
130
131 AH_PRIVATE(ah)->ah_curchan = chan;
132 return AH_TRUE;
133 }
134
135 /*
136 * Reads EEPROM header info from device structure and programs
137 * all rf registers
138 *
139 * REQUIRES: Access to the analog rf device
140 */
141 static HAL_BOOL
ar2317SetRfRegs(struct ath_hal * ah,HAL_CHANNEL_INTERNAL * chan,uint16_t modesIndex,uint16_t * rfXpdGain)142 ar2317SetRfRegs(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan, uint16_t modesIndex, uint16_t *rfXpdGain)
143 {
144 #define RF_BANK_SETUP(_priv, _ix, _col) do { \
145 int i; \
146 for (i = 0; i < N(ar5212Bank##_ix##_2317); i++) \
147 (_priv)->Bank##_ix##Data[i] = ar5212Bank##_ix##_2317[i][_col];\
148 } while (0)
149 struct ath_hal_5212 *ahp = AH5212(ah);
150 const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
151 uint16_t ob2GHz = 0, db2GHz = 0;
152 struct ar2317State *priv = AR2317(ah);
153 int regWrites = 0;
154
155 HALDEBUG(ah, HAL_DEBUG_RFPARAM,
156 "%s: chan 0x%x flag 0x%x modesIndex 0x%x\n",
157 __func__, chan->channel, chan->channelFlags, modesIndex);
158
159 HALASSERT(priv);
160
161 /* Setup rf parameters */
162 switch (chan->channelFlags & CHANNEL_ALL) {
163 case CHANNEL_B:
164 ob2GHz = ee->ee_obFor24;
165 db2GHz = ee->ee_dbFor24;
166 break;
167 case CHANNEL_G:
168 case CHANNEL_108G:
169 ob2GHz = ee->ee_obFor24g;
170 db2GHz = ee->ee_dbFor24g;
171 break;
172 default:
173 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
174 __func__, chan->channelFlags);
175 return AH_FALSE;
176 }
177
178 /* Bank 1 Write */
179 RF_BANK_SETUP(priv, 1, 1);
180
181 /* Bank 2 Write */
182 RF_BANK_SETUP(priv, 2, modesIndex);
183
184 /* Bank 3 Write */
185 RF_BANK_SETUP(priv, 3, modesIndex);
186
187 /* Bank 6 Write */
188 RF_BANK_SETUP(priv, 6, modesIndex);
189
190 ar5212ModifyRfBuffer(priv->Bank6Data, ob2GHz, 3, 193, 0);
191 ar5212ModifyRfBuffer(priv->Bank6Data, db2GHz, 3, 190, 0);
192
193 /* Bank 7 Setup */
194 RF_BANK_SETUP(priv, 7, modesIndex);
195
196 /* Write Analog registers */
197 HAL_INI_WRITE_BANK(ah, ar5212Bank1_2317, priv->Bank1Data, regWrites);
198 HAL_INI_WRITE_BANK(ah, ar5212Bank2_2317, priv->Bank2Data, regWrites);
199 HAL_INI_WRITE_BANK(ah, ar5212Bank3_2317, priv->Bank3Data, regWrites);
200 HAL_INI_WRITE_BANK(ah, ar5212Bank6_2317, priv->Bank6Data, regWrites);
201 HAL_INI_WRITE_BANK(ah, ar5212Bank7_2317, priv->Bank7Data, regWrites);
202 /* Now that we have reprogrammed rfgain value, clear the flag. */
203 ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;
204
205 return AH_TRUE;
206 #undef RF_BANK_SETUP
207 }
208
209 /*
210 * Return a reference to the requested RF Bank.
211 */
212 static uint32_t *
ar2317GetRfBank(struct ath_hal * ah,int bank)213 ar2317GetRfBank(struct ath_hal *ah, int bank)
214 {
215 struct ar2317State *priv = AR2317(ah);
216
217 HALASSERT(priv != AH_NULL);
218 switch (bank) {
219 case 1: return priv->Bank1Data;
220 case 2: return priv->Bank2Data;
221 case 3: return priv->Bank3Data;
222 case 6: return priv->Bank6Data;
223 case 7: return priv->Bank7Data;
224 }
225 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n",
226 __func__, bank);
227 return AH_NULL;
228 }
229
230 /*
231 * Return indices surrounding the value in sorted integer lists.
232 *
233 * NB: the input list is assumed to be sorted in ascending order
234 */
235 static void
GetLowerUpperIndex(int16_t v,const uint16_t * lp,uint16_t listSize,uint32_t * vlo,uint32_t * vhi)236 GetLowerUpperIndex(int16_t v, const uint16_t *lp, uint16_t listSize,
237 uint32_t *vlo, uint32_t *vhi)
238 {
239 int16_t target = v;
240 const int16_t *ep = lp+listSize;
241 const int16_t *tp;
242
243 /*
244 * Check first and last elements for out-of-bounds conditions.
245 */
246 if (target < lp[0]) {
247 *vlo = *vhi = 0;
248 return;
249 }
250 if (target >= ep[-1]) {
251 *vlo = *vhi = listSize - 1;
252 return;
253 }
254
255 /* look for value being near or between 2 values in list */
256 for (tp = lp; tp < ep; tp++) {
257 /*
258 * If value is close to the current value of the list
259 * then target is not between values, it is one of the values
260 */
261 if (*tp == target) {
262 *vlo = *vhi = tp - (const int16_t *) lp;
263 return;
264 }
265 /*
266 * Look for value being between current value and next value
267 * if so return these 2 values
268 */
269 if (target < tp[1]) {
270 *vlo = tp - (const int16_t *) lp;
271 *vhi = *vlo + 1;
272 return;
273 }
274 }
275 }
276
277 /*
278 * Fill the Vpdlist for indices Pmax-Pmin
279 */
280 static HAL_BOOL
ar2317FillVpdTable(uint32_t pdGainIdx,int16_t Pmin,int16_t Pmax,const int16_t * pwrList,const int16_t * VpdList,uint16_t numIntercepts,uint16_t retVpdList[][64])281 ar2317FillVpdTable(uint32_t pdGainIdx, int16_t Pmin, int16_t Pmax,
282 const int16_t *pwrList, const int16_t *VpdList,
283 uint16_t numIntercepts, uint16_t retVpdList[][64])
284 {
285 uint16_t ii, kk;
286 int16_t currPwr = (int16_t)(2*Pmin);
287 /* since Pmin is pwr*2 and pwrList is 4*pwr */
288 uint32_t idxL = 0, idxR = 0;
289
290 ii = 0;
291
292 if (numIntercepts < 2)
293 return AH_FALSE;
294
295 while (ii <= (uint16_t)(Pmax - Pmin)) {
296 GetLowerUpperIndex(currPwr, pwrList, numIntercepts,
297 &(idxL), &(idxR));
298 if (idxR < 1)
299 idxR = 1; /* extrapolate below */
300 if (idxL == (uint32_t)(numIntercepts - 1))
301 idxL = numIntercepts - 2; /* extrapolate above */
302 if (pwrList[idxL] == pwrList[idxR])
303 kk = VpdList[idxL];
304 else
305 kk = (uint16_t)
306 (((currPwr - pwrList[idxL])*VpdList[idxR]+
307 (pwrList[idxR] - currPwr)*VpdList[idxL])/
308 (pwrList[idxR] - pwrList[idxL]));
309 retVpdList[pdGainIdx][ii] = kk;
310 ii++;
311 currPwr += 2; /* half dB steps */
312 }
313
314 return AH_TRUE;
315 }
316
317 /*
318 * Returns interpolated or the scaled up interpolated value
319 */
320 static int16_t
interpolate_signed(uint16_t target,uint16_t srcLeft,uint16_t srcRight,int16_t targetLeft,int16_t targetRight)321 interpolate_signed(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
322 int16_t targetLeft, int16_t targetRight)
323 {
324 int16_t rv;
325
326 if (srcRight != srcLeft) {
327 rv = ((target - srcLeft)*targetRight +
328 (srcRight - target)*targetLeft) / (srcRight - srcLeft);
329 } else {
330 rv = targetLeft;
331 }
332 return rv;
333 }
334
335 /*
336 * Uses the data points read from EEPROM to reconstruct the pdadc power table
337 * Called by ar2317SetPowerTable()
338 */
339 static int
ar2317getGainBoundariesAndPdadcsForPowers(struct ath_hal * ah,uint16_t channel,const RAW_DATA_STRUCT_2317 * pRawDataset,uint16_t pdGainOverlap_t2,int16_t * pMinCalPower,uint16_t pPdGainBoundaries[],uint16_t pPdGainValues[],uint16_t pPDADCValues[])340 ar2317getGainBoundariesAndPdadcsForPowers(struct ath_hal *ah, uint16_t channel,
341 const RAW_DATA_STRUCT_2317 *pRawDataset,
342 uint16_t pdGainOverlap_t2,
343 int16_t *pMinCalPower, uint16_t pPdGainBoundaries[],
344 uint16_t pPdGainValues[], uint16_t pPDADCValues[])
345 {
346 struct ar2317State *priv = AR2317(ah);
347 #define VpdTable_L priv->vpdTable_L
348 #define VpdTable_R priv->vpdTable_R
349 #define VpdTable_I priv->vpdTable_I
350 /* XXX excessive stack usage? */
351 uint32_t ii, jj, kk;
352 int32_t ss;/* potentially -ve index for taking care of pdGainOverlap */
353 uint32_t idxL = 0, idxR = 0;
354 uint32_t numPdGainsUsed = 0;
355 /*
356 * If desired to support -ve power levels in future, just
357 * change pwr_I_0 to signed 5-bits.
358 */
359 int16_t Pmin_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
360 /* to accomodate -ve power levels later on. */
361 int16_t Pmax_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
362 /* to accomodate -ve power levels later on */
363 uint16_t numVpd = 0;
364 uint16_t Vpd_step;
365 int16_t tmpVal ;
366 uint32_t sizeCurrVpdTable, maxIndex, tgtIndex;
367
368 /* Get upper lower index */
369 GetLowerUpperIndex(channel, pRawDataset->pChannels,
370 pRawDataset->numChannels, &(idxL), &(idxR));
371
372 for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
373 jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
374 /* work backwards 'cause highest pdGain for lowest power */
375 numVpd = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].numVpd;
376 if (numVpd > 0) {
377 pPdGainValues[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pd_gain;
378 Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0];
379 if (Pmin_t2[numPdGainsUsed] >pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]) {
380 Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0];
381 }
382 Pmin_t2[numPdGainsUsed] = (int16_t)
383 (Pmin_t2[numPdGainsUsed] / 2);
384 Pmax_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[numVpd-1];
385 if (Pmax_t2[numPdGainsUsed] > pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1])
386 Pmax_t2[numPdGainsUsed] =
387 pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1];
388 Pmax_t2[numPdGainsUsed] = (int16_t)(Pmax_t2[numPdGainsUsed] / 2);
389 ar2317FillVpdTable(
390 numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
391 &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0]),
392 &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_L
393 );
394 ar2317FillVpdTable(
395 numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
396 &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]),
397 &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_R
398 );
399 for (kk = 0; kk < (uint16_t)(Pmax_t2[numPdGainsUsed] - Pmin_t2[numPdGainsUsed]); kk++) {
400 VpdTable_I[numPdGainsUsed][kk] =
401 interpolate_signed(
402 channel, pRawDataset->pChannels[idxL], pRawDataset->pChannels[idxR],
403 (int16_t)VpdTable_L[numPdGainsUsed][kk], (int16_t)VpdTable_R[numPdGainsUsed][kk]);
404 }
405 /* fill VpdTable_I for this pdGain */
406 numPdGainsUsed++;
407 }
408 /* if this pdGain is used */
409 }
410
411 *pMinCalPower = Pmin_t2[0];
412 kk = 0; /* index for the final table */
413 for (ii = 0; ii < numPdGainsUsed; ii++) {
414 if (ii == (numPdGainsUsed - 1))
415 pPdGainBoundaries[ii] = Pmax_t2[ii] +
416 PD_GAIN_BOUNDARY_STRETCH_IN_HALF_DB;
417 else
418 pPdGainBoundaries[ii] = (uint16_t)
419 ((Pmax_t2[ii] + Pmin_t2[ii+1]) / 2 );
420 if (pPdGainBoundaries[ii] > 63) {
421 HALDEBUG(ah, HAL_DEBUG_ANY,
422 "%s: clamp pPdGainBoundaries[%d] %d\n",
423 __func__, ii, pPdGainBoundaries[ii]);/*XXX*/
424 pPdGainBoundaries[ii] = 63;
425 }
426
427 /* Find starting index for this pdGain */
428 if (ii == 0)
429 ss = 0; /* for the first pdGain, start from index 0 */
430 else
431 ss = (pPdGainBoundaries[ii-1] - Pmin_t2[ii]) -
432 pdGainOverlap_t2;
433 Vpd_step = (uint16_t)(VpdTable_I[ii][1] - VpdTable_I[ii][0]);
434 Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
435 /*
436 *-ve ss indicates need to extrapolate data below for this pdGain
437 */
438 while (ss < 0) {
439 tmpVal = (int16_t)(VpdTable_I[ii][0] + ss*Vpd_step);
440 pPDADCValues[kk++] = (uint16_t)((tmpVal < 0) ? 0 : tmpVal);
441 ss++;
442 }
443
444 sizeCurrVpdTable = Pmax_t2[ii] - Pmin_t2[ii];
445 tgtIndex = pPdGainBoundaries[ii] + pdGainOverlap_t2 - Pmin_t2[ii];
446 maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
447
448 while (ss < (int16_t)maxIndex)
449 pPDADCValues[kk++] = VpdTable_I[ii][ss++];
450
451 Vpd_step = (uint16_t)(VpdTable_I[ii][sizeCurrVpdTable-1] -
452 VpdTable_I[ii][sizeCurrVpdTable-2]);
453 Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
454 /*
455 * for last gain, pdGainBoundary == Pmax_t2, so will
456 * have to extrapolate
457 */
458 if (tgtIndex > maxIndex) { /* need to extrapolate above */
459 while(ss < (int16_t)tgtIndex) {
460 tmpVal = (uint16_t)
461 (VpdTable_I[ii][sizeCurrVpdTable-1] +
462 (ss-maxIndex)*Vpd_step);
463 pPDADCValues[kk++] = (tmpVal > 127) ?
464 127 : tmpVal;
465 ss++;
466 }
467 } /* extrapolated above */
468 } /* for all pdGainUsed */
469
470 while (ii < MAX_NUM_PDGAINS_PER_CHANNEL) {
471 pPdGainBoundaries[ii] = pPdGainBoundaries[ii-1];
472 ii++;
473 }
474 while (kk < 128) {
475 pPDADCValues[kk] = pPDADCValues[kk-1];
476 kk++;
477 }
478
479 return numPdGainsUsed;
480 #undef VpdTable_L
481 #undef VpdTable_R
482 #undef VpdTable_I
483 }
484
485 static HAL_BOOL
ar2317SetPowerTable(struct ath_hal * ah,int16_t * minPower,int16_t * maxPower,HAL_CHANNEL_INTERNAL * chan,uint16_t * rfXpdGain)486 ar2317SetPowerTable(struct ath_hal *ah,
487 int16_t *minPower, int16_t *maxPower, HAL_CHANNEL_INTERNAL *chan,
488 uint16_t *rfXpdGain)
489 {
490 struct ath_hal_5212 *ahp = AH5212(ah);
491 const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
492 const RAW_DATA_STRUCT_2317 *pRawDataset = AH_NULL;
493 uint16_t pdGainOverlap_t2;
494 int16_t minCalPower2317_t2;
495 uint16_t *pdadcValues = ahp->ah_pcdacTable;
496 uint16_t gainBoundaries[4];
497 uint32_t reg32, regoffset;
498 int i, numPdGainsUsed;
499 #ifndef AH_USE_INIPDGAIN
500 uint32_t tpcrg1;
501 #endif
502
503 HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan 0x%x flag 0x%x\n",
504 __func__, chan->channel,chan->channelFlags);
505
506 if (IS_CHAN_G(chan) || IS_CHAN_108G(chan))
507 pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
508 else if (IS_CHAN_B(chan))
509 pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
510 else {
511 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: illegal mode\n", __func__);
512 return AH_FALSE;
513 }
514
515 pdGainOverlap_t2 = (uint16_t) SM(OS_REG_READ(ah, AR_PHY_TPCRG5),
516 AR_PHY_TPCRG5_PD_GAIN_OVERLAP);
517
518 numPdGainsUsed = ar2317getGainBoundariesAndPdadcsForPowers(ah,
519 chan->channel, pRawDataset, pdGainOverlap_t2,
520 &minCalPower2317_t2,gainBoundaries, rfXpdGain, pdadcValues);
521 HALASSERT(1 <= numPdGainsUsed && numPdGainsUsed <= 3);
522
523 #ifdef AH_USE_INIPDGAIN
524 /*
525 * Use pd_gains curve from eeprom; Atheros always uses
526 * the default curve from the ini file but some vendors
527 * (e.g. Zcomax) want to override this curve and not
528 * honoring their settings results in tx power 5dBm low.
529 */
530 OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
531 (pRawDataset->pDataPerChannel[0].numPdGains - 1));
532 #else
533 tpcrg1 = OS_REG_READ(ah, AR_PHY_TPCRG1);
534 tpcrg1 = (tpcrg1 &~ AR_PHY_TPCRG1_NUM_PD_GAIN)
535 | SM(numPdGainsUsed-1, AR_PHY_TPCRG1_NUM_PD_GAIN);
536 switch (numPdGainsUsed) {
537 case 3:
538 tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING3;
539 tpcrg1 |= SM(rfXpdGain[2], AR_PHY_TPCRG1_PDGAIN_SETTING3);
540 /* fall thru... */
541 case 2:
542 tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING2;
543 tpcrg1 |= SM(rfXpdGain[1], AR_PHY_TPCRG1_PDGAIN_SETTING2);
544 /* fall thru... */
545 case 1:
546 tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING1;
547 tpcrg1 |= SM(rfXpdGain[0], AR_PHY_TPCRG1_PDGAIN_SETTING1);
548 break;
549 }
550 #ifdef AH_DEBUG
551 if (tpcrg1 != OS_REG_READ(ah, AR_PHY_TPCRG1))
552 HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: using non-default "
553 "pd_gains (default 0x%x, calculated 0x%x)\n",
554 __func__, OS_REG_READ(ah, AR_PHY_TPCRG1), tpcrg1);
555 #endif
556 OS_REG_WRITE(ah, AR_PHY_TPCRG1, tpcrg1);
557 #endif
558
559 /*
560 * Note the pdadc table may not start at 0 dBm power, could be
561 * negative or greater than 0. Need to offset the power
562 * values by the amount of minPower for griffin
563 */
564 if (minCalPower2317_t2 != 0)
565 ahp->ah_txPowerIndexOffset = (int16_t)(0 - minCalPower2317_t2);
566 else
567 ahp->ah_txPowerIndexOffset = 0;
568
569 /* Finally, write the power values into the baseband power table */
570 regoffset = 0x9800 + (672 <<2); /* beginning of pdadc table in griffin */
571 for (i = 0; i < 32; i++) {
572 reg32 = ((pdadcValues[4*i + 0] & 0xFF) << 0) |
573 ((pdadcValues[4*i + 1] & 0xFF) << 8) |
574 ((pdadcValues[4*i + 2] & 0xFF) << 16) |
575 ((pdadcValues[4*i + 3] & 0xFF) << 24) ;
576 OS_REG_WRITE(ah, regoffset, reg32);
577 regoffset += 4;
578 }
579
580 OS_REG_WRITE(ah, AR_PHY_TPCRG5,
581 SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
582 SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) |
583 SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) |
584 SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) |
585 SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
586
587 return AH_TRUE;
588 }
589
590 static int16_t
ar2317GetMinPower(struct ath_hal * ah,const RAW_DATA_PER_CHANNEL_2317 * data)591 ar2317GetMinPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2317 *data)
592 {
593 uint32_t ii,jj;
594 uint16_t Pmin=0,numVpd;
595
596 for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
597 jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
598 /* work backwards 'cause highest pdGain for lowest power */
599 numVpd = data->pDataPerPDGain[jj].numVpd;
600 if (numVpd > 0) {
601 Pmin = data->pDataPerPDGain[jj].pwr_t4[0];
602 return(Pmin);
603 }
604 }
605 return(Pmin);
606 }
607
608 static int16_t
ar2317GetMaxPower(struct ath_hal * ah,const RAW_DATA_PER_CHANNEL_2317 * data)609 ar2317GetMaxPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2317 *data)
610 {
611 uint32_t ii;
612 uint16_t Pmax=0,numVpd;
613
614 for (ii=0; ii< MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
615 /* work forwards cuase lowest pdGain for highest power */
616 numVpd = data->pDataPerPDGain[ii].numVpd;
617 if (numVpd > 0) {
618 Pmax = data->pDataPerPDGain[ii].pwr_t4[numVpd-1];
619 return(Pmax);
620 }
621 }
622 return(Pmax);
623 }
624
625 static HAL_BOOL
ar2317GetChannelMaxMinPower(struct ath_hal * ah,HAL_CHANNEL * chan,int16_t * maxPow,int16_t * minPow)626 ar2317GetChannelMaxMinPower(struct ath_hal *ah, HAL_CHANNEL *chan,
627 int16_t *maxPow, int16_t *minPow)
628 {
629 const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
630 const RAW_DATA_STRUCT_2317 *pRawDataset = AH_NULL;
631 const RAW_DATA_PER_CHANNEL_2317 *data=AH_NULL;
632 uint16_t numChannels;
633 int totalD,totalF, totalMin,last, i;
634
635 *maxPow = 0;
636
637 if (IS_CHAN_G(chan) || IS_CHAN_108G(chan))
638 pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
639 else if (IS_CHAN_B(chan))
640 pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
641 else
642 return(AH_FALSE);
643
644 numChannels = pRawDataset->numChannels;
645 data = pRawDataset->pDataPerChannel;
646
647 /* Make sure the channel is in the range of the TP values
648 * (freq piers)
649 */
650 if (numChannels < 1)
651 return(AH_FALSE);
652
653 if ((chan->channel < data[0].channelValue) ||
654 (chan->channel > data[numChannels-1].channelValue)) {
655 if (chan->channel < data[0].channelValue) {
656 *maxPow = ar2317GetMaxPower(ah, &data[0]);
657 *minPow = ar2317GetMinPower(ah, &data[0]);
658 return(AH_TRUE);
659 } else {
660 *maxPow = ar2317GetMaxPower(ah, &data[numChannels - 1]);
661 *minPow = ar2317GetMinPower(ah, &data[numChannels - 1]);
662 return(AH_TRUE);
663 }
664 }
665
666 /* Linearly interpolate the power value now */
667 for (last=0,i=0; (i<numChannels) && (chan->channel > data[i].channelValue);
668 last = i++);
669 totalD = data[i].channelValue - data[last].channelValue;
670 if (totalD > 0) {
671 totalF = ar2317GetMaxPower(ah, &data[i]) - ar2317GetMaxPower(ah, &data[last]);
672 *maxPow = (int8_t) ((totalF*(chan->channel-data[last].channelValue) +
673 ar2317GetMaxPower(ah, &data[last])*totalD)/totalD);
674 totalMin = ar2317GetMinPower(ah, &data[i]) - ar2317GetMinPower(ah, &data[last]);
675 *minPow = (int8_t) ((totalMin*(chan->channel-data[last].channelValue) +
676 ar2317GetMinPower(ah, &data[last])*totalD)/totalD);
677 return(AH_TRUE);
678 } else {
679 if (chan->channel == data[i].channelValue) {
680 *maxPow = ar2317GetMaxPower(ah, &data[i]);
681 *minPow = ar2317GetMinPower(ah, &data[i]);
682 return(AH_TRUE);
683 } else
684 return(AH_FALSE);
685 }
686 }
687
688 /*
689 * Free memory for analog bank scratch buffers
690 */
691 static void
ar2317RfDetach(struct ath_hal * ah)692 ar2317RfDetach(struct ath_hal *ah)
693 {
694 struct ath_hal_5212 *ahp = AH5212(ah);
695
696 HALASSERT(ahp->ah_rfHal != AH_NULL);
697 ath_hal_free(ahp->ah_rfHal);
698 ahp->ah_rfHal = AH_NULL;
699 }
700
701 /*
702 * Allocate memory for analog bank scratch buffers
703 * Scratch Buffer will be reinitialized every reset so no need to zero now
704 */
705 static HAL_BOOL
ar2317RfAttach(struct ath_hal * ah,HAL_STATUS * status)706 ar2317RfAttach(struct ath_hal *ah, HAL_STATUS *status)
707 {
708 struct ath_hal_5212 *ahp = AH5212(ah);
709 struct ar2317State *priv;
710
711 HALASSERT(ah->ah_magic == AR5212_MAGIC);
712
713 HALASSERT(ahp->ah_rfHal == AH_NULL);
714 priv = ath_hal_malloc(sizeof(struct ar2317State));
715 if (priv == AH_NULL) {
716 HALDEBUG(ah, HAL_DEBUG_ANY,
717 "%s: cannot allocate private state\n", __func__);
718 *status = HAL_ENOMEM; /* XXX */
719 return AH_FALSE;
720 }
721 priv->base.rfDetach = ar2317RfDetach;
722 priv->base.writeRegs = ar2317WriteRegs;
723 priv->base.getRfBank = ar2317GetRfBank;
724 priv->base.setChannel = ar2317SetChannel;
725 priv->base.setRfRegs = ar2317SetRfRegs;
726 priv->base.setPowerTable = ar2317SetPowerTable;
727 priv->base.getChannelMaxMinPower = ar2317GetChannelMaxMinPower;
728 priv->base.getNfAdjust = ar5212GetNfAdjust;
729
730 ahp->ah_pcdacTable = priv->pcdacTable;
731 ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable);
732 ahp->ah_rfHal = &priv->base;
733
734 return AH_TRUE;
735 }
736
737 static HAL_BOOL
ar2317Probe(struct ath_hal * ah)738 ar2317Probe(struct ath_hal *ah)
739 {
740 return IS_2317(ah);
741 }
742 AH_RF(RF2317, ar2317Probe, ar2317RfAttach);
743