xref: /netbsd-src/sys/external/bsd/drm2/dist/drm/amd/powerplay/smumgr/amdgpu_vegam_smumgr.c (revision 41ec02673d281bbb3d38e6c78504ce6e30c228c1)
1 /*	$NetBSD: amdgpu_vegam_smumgr.c,v 1.2 2021/12/18 23:45:27 riastradh Exp $	*/
2 
3 /*
4  * Copyright 2017 Advanced Micro Devices, Inc.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  *
24  */
25 #include <sys/cdefs.h>
26 __KERNEL_RCSID(0, "$NetBSD: amdgpu_vegam_smumgr.c,v 1.2 2021/12/18 23:45:27 riastradh Exp $");
27 
28 #include "pp_debug.h"
29 #include "smumgr.h"
30 #include "smu_ucode_xfer_vi.h"
31 #include "vegam_smumgr.h"
32 #include "smu/smu_7_1_3_d.h"
33 #include "smu/smu_7_1_3_sh_mask.h"
34 #include "gmc/gmc_8_1_d.h"
35 #include "gmc/gmc_8_1_sh_mask.h"
36 #include "oss/oss_3_0_d.h"
37 #include "gca/gfx_8_0_d.h"
38 #include "bif/bif_5_0_d.h"
39 #include "bif/bif_5_0_sh_mask.h"
40 #include "ppatomctrl.h"
41 #include "cgs_common.h"
42 #include "smu7_ppsmc.h"
43 
44 #include "smu7_dyn_defaults.h"
45 
46 #include "smu7_hwmgr.h"
47 #include "hardwaremanager.h"
48 #include "atombios.h"
49 #include "pppcielanes.h"
50 
51 #include "dce/dce_11_2_d.h"
52 #include "dce/dce_11_2_sh_mask.h"
53 
54 #define PPVEGAM_TARGETACTIVITY_DFLT                     50
55 
56 #define VOLTAGE_VID_OFFSET_SCALE1   625
57 #define VOLTAGE_VID_OFFSET_SCALE2   100
58 #define POWERTUNE_DEFAULT_SET_MAX    1
59 #define VDDC_VDDCI_DELTA            200
60 #define MC_CG_ARB_FREQ_F1           0x0b
61 
62 #define STRAP_ASIC_RO_LSB    2168
63 #define STRAP_ASIC_RO_MSB    2175
64 
65 #define PPSMC_MSG_ApplyAvfsCksOffVoltage      ((uint16_t) 0x415)
66 #define PPSMC_MSG_EnableModeSwitchRLCNotification  ((uint16_t) 0x305)
67 
68 static const struct vegam_pt_defaults
69 vegam_power_tune_data_set_array[POWERTUNE_DEFAULT_SET_MAX] = {
70 	/* sviLoadLIneEn, SviLoadLineVddC, TDC_VDDC_ThrottleReleaseLimitPerc, TDC_MAWt,
71 	 * TdcWaterfallCtl, DTEAmbientTempBase, DisplayCac, BAPM_TEMP_GRADIENT */
72 	{ 1, 0xF, 0xFD, 0x19, 5, 45, 0, 0xB0000,
73 	{ 0x79, 0x253, 0x25D, 0xAE, 0x72, 0x80, 0x83, 0x86, 0x6F, 0xC8, 0xC9, 0xC9, 0x2F, 0x4D, 0x61},
74 	{ 0x17C, 0x172, 0x180, 0x1BC, 0x1B3, 0x1BD, 0x206, 0x200, 0x203, 0x25D, 0x25A, 0x255, 0x2C3, 0x2C5, 0x2B4 } },
75 };
76 
77 static const sclkFcwRange_t Range_Table[NUM_SCLK_RANGE] = {
78 			{VCO_2_4, POSTDIV_DIV_BY_16,  75, 160, 112},
79 			{VCO_3_6, POSTDIV_DIV_BY_16, 112, 224, 160},
80 			{VCO_2_4, POSTDIV_DIV_BY_8,   75, 160, 112},
81 			{VCO_3_6, POSTDIV_DIV_BY_8,  112, 224, 160},
82 			{VCO_2_4, POSTDIV_DIV_BY_4,   75, 160, 112},
83 			{VCO_3_6, POSTDIV_DIV_BY_4,  112, 216, 160},
84 			{VCO_2_4, POSTDIV_DIV_BY_2,   75, 160, 108},
85 			{VCO_3_6, POSTDIV_DIV_BY_2,  112, 216, 160} };
86 
vegam_smu_init(struct pp_hwmgr * hwmgr)87 static int vegam_smu_init(struct pp_hwmgr *hwmgr)
88 {
89 	struct vegam_smumgr *smu_data;
90 
91 	smu_data = kzalloc(sizeof(struct vegam_smumgr), GFP_KERNEL);
92 	if (smu_data == NULL)
93 		return -ENOMEM;
94 
95 	hwmgr->smu_backend = smu_data;
96 
97 	if (smu7_init(hwmgr)) {
98 		kfree(smu_data);
99 		return -EINVAL;
100 	}
101 
102 	return 0;
103 }
104 
vegam_start_smu_in_protection_mode(struct pp_hwmgr * hwmgr)105 static int vegam_start_smu_in_protection_mode(struct pp_hwmgr *hwmgr)
106 {
107 	int result = 0;
108 
109 	/* Wait for smc boot up */
110 	/* PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(smumgr, SMC_IND, RCU_UC_EVENTS, boot_seq_done, 0) */
111 
112 	/* Assert reset */
113 	PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
114 					SMC_SYSCON_RESET_CNTL, rst_reg, 1);
115 
116 	result = smu7_upload_smu_firmware_image(hwmgr);
117 	if (result != 0)
118 		return result;
119 
120 	/* Clear status */
121 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixSMU_STATUS, 0);
122 
123 	PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
124 					SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0);
125 
126 	/* De-assert reset */
127 	PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
128 					SMC_SYSCON_RESET_CNTL, rst_reg, 0);
129 
130 
131 	PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND, RCU_UC_EVENTS, INTERRUPTS_ENABLED, 1);
132 
133 
134 	/* Call Test SMU message with 0x20000 offset to trigger SMU start */
135 	smu7_send_msg_to_smc_offset(hwmgr);
136 
137 	/* Wait done bit to be set */
138 	/* Check pass/failed indicator */
139 
140 	PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND, SMU_STATUS, SMU_DONE, 0);
141 
142 	if (1 != PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
143 						SMU_STATUS, SMU_PASS))
144 		PP_ASSERT_WITH_CODE(false, "SMU Firmware start failed!", return -1);
145 
146 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixFIRMWARE_FLAGS, 0);
147 
148 	PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
149 					SMC_SYSCON_RESET_CNTL, rst_reg, 1);
150 
151 	PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
152 					SMC_SYSCON_RESET_CNTL, rst_reg, 0);
153 
154 	/* Wait for firmware to initialize */
155 	PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND, FIRMWARE_FLAGS, INTERRUPTS_ENABLED, 1);
156 
157 	return result;
158 }
159 
vegam_start_smu_in_non_protection_mode(struct pp_hwmgr * hwmgr)160 static int vegam_start_smu_in_non_protection_mode(struct pp_hwmgr *hwmgr)
161 {
162 	int result = 0;
163 
164 	/* wait for smc boot up */
165 	PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND, RCU_UC_EVENTS, boot_seq_done, 0);
166 
167 	/* Clear firmware interrupt enable flag */
168 	/* PHM_WRITE_VFPF_INDIRECT_FIELD(pSmuMgr, SMC_IND, SMC_SYSCON_MISC_CNTL, pre_fetcher_en, 1); */
169 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
170 				ixFIRMWARE_FLAGS, 0);
171 
172 	PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
173 					SMC_SYSCON_RESET_CNTL,
174 					rst_reg, 1);
175 
176 	result = smu7_upload_smu_firmware_image(hwmgr);
177 	if (result != 0)
178 		return result;
179 
180 	/* Set smc instruct start point at 0x0 */
181 	smu7_program_jump_on_start(hwmgr);
182 
183 	PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
184 					SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0);
185 
186 	PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
187 					SMC_SYSCON_RESET_CNTL, rst_reg, 0);
188 
189 	/* Wait for firmware to initialize */
190 
191 	PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND,
192 					FIRMWARE_FLAGS, INTERRUPTS_ENABLED, 1);
193 
194 	return result;
195 }
196 
vegam_start_smu(struct pp_hwmgr * hwmgr)197 static int vegam_start_smu(struct pp_hwmgr *hwmgr)
198 {
199 	int result = 0;
200 	struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
201 
202 	/* Only start SMC if SMC RAM is not running */
203 	if (!smu7_is_smc_ram_running(hwmgr) && hwmgr->not_vf) {
204 		smu_data->protected_mode = (uint8_t)(PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device,
205 				CGS_IND_REG__SMC, SMU_FIRMWARE, SMU_MODE));
206 		smu_data->smu7_data.security_hard_key = (uint8_t)(PHM_READ_VFPF_INDIRECT_FIELD(
207 				hwmgr->device, CGS_IND_REG__SMC, SMU_FIRMWARE, SMU_SEL));
208 
209 		/* Check if SMU is running in protected mode */
210 		if (smu_data->protected_mode == 0)
211 			result = vegam_start_smu_in_non_protection_mode(hwmgr);
212 		else
213 			result = vegam_start_smu_in_protection_mode(hwmgr);
214 
215 		if (result != 0)
216 			PP_ASSERT_WITH_CODE(0, "Failed to load SMU ucode.", return result);
217 	}
218 
219 	/* Setup SoftRegsStart here for register lookup in case DummyBackEnd is used and ProcessFirmwareHeader is not executed */
220 	smu7_read_smc_sram_dword(hwmgr,
221 			SMU7_FIRMWARE_HEADER_LOCATION + offsetof(SMU75_Firmware_Header, SoftRegisters),
222 			&(smu_data->smu7_data.soft_regs_start),
223 			0x40000);
224 
225 	result = smu7_request_smu_load_fw(hwmgr);
226 
227 	return result;
228 }
229 
vegam_process_firmware_header(struct pp_hwmgr * hwmgr)230 static int vegam_process_firmware_header(struct pp_hwmgr *hwmgr)
231 {
232 	struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
233 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
234 	uint32_t tmp;
235 	int result;
236 	bool error = false;
237 
238 	result = smu7_read_smc_sram_dword(hwmgr,
239 			SMU7_FIRMWARE_HEADER_LOCATION +
240 			offsetof(SMU75_Firmware_Header, DpmTable),
241 			&tmp, SMC_RAM_END);
242 
243 	if (0 == result)
244 		smu_data->smu7_data.dpm_table_start = tmp;
245 
246 	error |= (0 != result);
247 
248 	result = smu7_read_smc_sram_dword(hwmgr,
249 			SMU7_FIRMWARE_HEADER_LOCATION +
250 			offsetof(SMU75_Firmware_Header, SoftRegisters),
251 			&tmp, SMC_RAM_END);
252 
253 	if (!result) {
254 		data->soft_regs_start = tmp;
255 		smu_data->smu7_data.soft_regs_start = tmp;
256 	}
257 
258 	error |= (0 != result);
259 
260 	result = smu7_read_smc_sram_dword(hwmgr,
261 			SMU7_FIRMWARE_HEADER_LOCATION +
262 			offsetof(SMU75_Firmware_Header, mcRegisterTable),
263 			&tmp, SMC_RAM_END);
264 
265 	if (!result)
266 		smu_data->smu7_data.mc_reg_table_start = tmp;
267 
268 	result = smu7_read_smc_sram_dword(hwmgr,
269 			SMU7_FIRMWARE_HEADER_LOCATION +
270 			offsetof(SMU75_Firmware_Header, FanTable),
271 			&tmp, SMC_RAM_END);
272 
273 	if (!result)
274 		smu_data->smu7_data.fan_table_start = tmp;
275 
276 	error |= (0 != result);
277 
278 	result = smu7_read_smc_sram_dword(hwmgr,
279 			SMU7_FIRMWARE_HEADER_LOCATION +
280 			offsetof(SMU75_Firmware_Header, mcArbDramTimingTable),
281 			&tmp, SMC_RAM_END);
282 
283 	if (!result)
284 		smu_data->smu7_data.arb_table_start = tmp;
285 
286 	error |= (0 != result);
287 
288 	result = smu7_read_smc_sram_dword(hwmgr,
289 			SMU7_FIRMWARE_HEADER_LOCATION +
290 			offsetof(SMU75_Firmware_Header, Version),
291 			&tmp, SMC_RAM_END);
292 
293 	if (!result)
294 		hwmgr->microcode_version_info.SMC = tmp;
295 
296 	error |= (0 != result);
297 
298 	return error ? -1 : 0;
299 }
300 
vegam_is_dpm_running(struct pp_hwmgr * hwmgr)301 static bool vegam_is_dpm_running(struct pp_hwmgr *hwmgr)
302 {
303 	return (1 == PHM_READ_INDIRECT_FIELD(hwmgr->device,
304 			CGS_IND_REG__SMC, FEATURE_STATUS, VOLTAGE_CONTROLLER_ON))
305 			? true : false;
306 }
307 
vegam_get_mac_definition(uint32_t value)308 static uint32_t vegam_get_mac_definition(uint32_t value)
309 {
310 	switch (value) {
311 	case SMU_MAX_LEVELS_GRAPHICS:
312 		return SMU75_MAX_LEVELS_GRAPHICS;
313 	case SMU_MAX_LEVELS_MEMORY:
314 		return SMU75_MAX_LEVELS_MEMORY;
315 	case SMU_MAX_LEVELS_LINK:
316 		return SMU75_MAX_LEVELS_LINK;
317 	case SMU_MAX_ENTRIES_SMIO:
318 		return SMU75_MAX_ENTRIES_SMIO;
319 	case SMU_MAX_LEVELS_VDDC:
320 		return SMU75_MAX_LEVELS_VDDC;
321 	case SMU_MAX_LEVELS_VDDGFX:
322 		return SMU75_MAX_LEVELS_VDDGFX;
323 	case SMU_MAX_LEVELS_VDDCI:
324 		return SMU75_MAX_LEVELS_VDDCI;
325 	case SMU_MAX_LEVELS_MVDD:
326 		return SMU75_MAX_LEVELS_MVDD;
327 	case SMU_UVD_MCLK_HANDSHAKE_DISABLE:
328 		return SMU7_UVD_MCLK_HANDSHAKE_DISABLE |
329 				SMU7_VCE_MCLK_HANDSHAKE_DISABLE;
330 	}
331 
332 	pr_warn("can't get the mac of %x\n", value);
333 	return 0;
334 }
335 
vegam_update_uvd_smc_table(struct pp_hwmgr * hwmgr)336 static int vegam_update_uvd_smc_table(struct pp_hwmgr *hwmgr)
337 {
338 	struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
339 	uint32_t mm_boot_level_offset, mm_boot_level_value;
340 	struct phm_ppt_v1_information *table_info =
341 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
342 
343 	smu_data->smc_state_table.UvdBootLevel = 0;
344 	if (table_info->mm_dep_table->count > 0)
345 		smu_data->smc_state_table.UvdBootLevel =
346 				(uint8_t) (table_info->mm_dep_table->count - 1);
347 	mm_boot_level_offset = smu_data->smu7_data.dpm_table_start + offsetof(SMU75_Discrete_DpmTable,
348 						UvdBootLevel);
349 	mm_boot_level_offset /= 4;
350 	mm_boot_level_offset *= 4;
351 	mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
352 			CGS_IND_REG__SMC, mm_boot_level_offset);
353 	mm_boot_level_value &= 0x00FFFFFF;
354 	mm_boot_level_value |= smu_data->smc_state_table.UvdBootLevel << 24;
355 	cgs_write_ind_register(hwmgr->device,
356 			CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
357 
358 	if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
359 			PHM_PlatformCaps_UVDDPM) ||
360 		phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
361 			PHM_PlatformCaps_StablePState))
362 		smum_send_msg_to_smc_with_parameter(hwmgr,
363 				PPSMC_MSG_UVDDPM_SetEnabledMask,
364 				(uint32_t)(1 << smu_data->smc_state_table.UvdBootLevel));
365 	return 0;
366 }
367 
vegam_update_vce_smc_table(struct pp_hwmgr * hwmgr)368 static int vegam_update_vce_smc_table(struct pp_hwmgr *hwmgr)
369 {
370 	struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
371 	uint32_t mm_boot_level_offset, mm_boot_level_value;
372 	struct phm_ppt_v1_information *table_info =
373 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
374 
375 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
376 					PHM_PlatformCaps_StablePState))
377 		smu_data->smc_state_table.VceBootLevel =
378 			(uint8_t) (table_info->mm_dep_table->count - 1);
379 	else
380 		smu_data->smc_state_table.VceBootLevel = 0;
381 
382 	mm_boot_level_offset = smu_data->smu7_data.dpm_table_start +
383 					offsetof(SMU75_Discrete_DpmTable, VceBootLevel);
384 	mm_boot_level_offset /= 4;
385 	mm_boot_level_offset *= 4;
386 	mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
387 			CGS_IND_REG__SMC, mm_boot_level_offset);
388 	mm_boot_level_value &= 0xFF00FFFF;
389 	mm_boot_level_value |= smu_data->smc_state_table.VceBootLevel << 16;
390 	cgs_write_ind_register(hwmgr->device,
391 			CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
392 
393 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState))
394 		smum_send_msg_to_smc_with_parameter(hwmgr,
395 				PPSMC_MSG_VCEDPM_SetEnabledMask,
396 				(uint32_t)1 << smu_data->smc_state_table.VceBootLevel);
397 	return 0;
398 }
399 
vegam_update_bif_smc_table(struct pp_hwmgr * hwmgr)400 static int vegam_update_bif_smc_table(struct pp_hwmgr *hwmgr)
401 {
402 	struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
403 	struct phm_ppt_v1_information *table_info =
404 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
405 	struct phm_ppt_v1_pcie_table *pcie_table = table_info->pcie_table;
406 	int max_entry, i;
407 
408 	max_entry = (SMU75_MAX_LEVELS_LINK < pcie_table->count) ?
409 						SMU75_MAX_LEVELS_LINK :
410 						pcie_table->count;
411 	/* Setup BIF_SCLK levels */
412 	for (i = 0; i < max_entry; i++)
413 		smu_data->bif_sclk_table[i] = pcie_table->entries[i].pcie_sclk;
414 	return 0;
415 }
416 
vegam_update_smc_table(struct pp_hwmgr * hwmgr,uint32_t type)417 static int vegam_update_smc_table(struct pp_hwmgr *hwmgr, uint32_t type)
418 {
419 	switch (type) {
420 	case SMU_UVD_TABLE:
421 		vegam_update_uvd_smc_table(hwmgr);
422 		break;
423 	case SMU_VCE_TABLE:
424 		vegam_update_vce_smc_table(hwmgr);
425 		break;
426 	case SMU_BIF_TABLE:
427 		vegam_update_bif_smc_table(hwmgr);
428 		break;
429 	default:
430 		break;
431 	}
432 	return 0;
433 }
434 
vegam_initialize_power_tune_defaults(struct pp_hwmgr * hwmgr)435 static void vegam_initialize_power_tune_defaults(struct pp_hwmgr *hwmgr)
436 {
437 	struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
438 	struct  phm_ppt_v1_information *table_info =
439 			(struct  phm_ppt_v1_information *)(hwmgr->pptable);
440 
441 	if (table_info &&
442 			table_info->cac_dtp_table->usPowerTuneDataSetID <= POWERTUNE_DEFAULT_SET_MAX &&
443 			table_info->cac_dtp_table->usPowerTuneDataSetID)
444 		smu_data->power_tune_defaults =
445 				&vegam_power_tune_data_set_array
446 				[table_info->cac_dtp_table->usPowerTuneDataSetID - 1];
447 	else
448 		smu_data->power_tune_defaults = &vegam_power_tune_data_set_array[0];
449 
450 }
451 
vegam_populate_smc_mvdd_table(struct pp_hwmgr * hwmgr,SMU75_Discrete_DpmTable * table)452 static int vegam_populate_smc_mvdd_table(struct pp_hwmgr *hwmgr,
453 			SMU75_Discrete_DpmTable *table)
454 {
455 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
456 	uint32_t count, level;
457 
458 	if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
459 		count = data->mvdd_voltage_table.count;
460 		if (count > SMU_MAX_SMIO_LEVELS)
461 			count = SMU_MAX_SMIO_LEVELS;
462 		for (level = 0; level < count; level++) {
463 			table->SmioTable2.Pattern[level].Voltage = PP_HOST_TO_SMC_US(
464 					data->mvdd_voltage_table.entries[level].value * VOLTAGE_SCALE);
465 			/* Index into DpmTable.Smio. Drive bits from Smio entry to get this voltage level.*/
466 			table->SmioTable2.Pattern[level].Smio =
467 				(uint8_t) level;
468 			table->Smio[level] |=
469 				data->mvdd_voltage_table.entries[level].smio_low;
470 		}
471 		table->SmioMask2 = data->mvdd_voltage_table.mask_low;
472 
473 		table->MvddLevelCount = (uint32_t) PP_HOST_TO_SMC_UL(count);
474 	}
475 
476 	return 0;
477 }
478 
vegam_populate_smc_vddci_table(struct pp_hwmgr * hwmgr,struct SMU75_Discrete_DpmTable * table)479 static int vegam_populate_smc_vddci_table(struct pp_hwmgr *hwmgr,
480 					struct SMU75_Discrete_DpmTable *table)
481 {
482 	uint32_t count, level;
483 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
484 
485 	count = data->vddci_voltage_table.count;
486 
487 	if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
488 		if (count > SMU_MAX_SMIO_LEVELS)
489 			count = SMU_MAX_SMIO_LEVELS;
490 		for (level = 0; level < count; ++level) {
491 			table->SmioTable1.Pattern[level].Voltage = PP_HOST_TO_SMC_US(
492 					data->vddci_voltage_table.entries[level].value * VOLTAGE_SCALE);
493 			table->SmioTable1.Pattern[level].Smio = (uint8_t) level;
494 
495 			table->Smio[level] |= data->vddci_voltage_table.entries[level].smio_low;
496 		}
497 	}
498 
499 	table->SmioMask1 = data->vddci_voltage_table.mask_low;
500 
501 	return 0;
502 }
503 
vegam_populate_cac_table(struct pp_hwmgr * hwmgr,struct SMU75_Discrete_DpmTable * table)504 static int vegam_populate_cac_table(struct pp_hwmgr *hwmgr,
505 		struct SMU75_Discrete_DpmTable *table)
506 {
507 	uint32_t count;
508 	uint8_t index;
509 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
510 	struct phm_ppt_v1_information *table_info =
511 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
512 	struct phm_ppt_v1_voltage_lookup_table *lookup_table =
513 			table_info->vddc_lookup_table;
514 	/* tables is already swapped, so in order to use the value from it,
515 	 * we need to swap it back.
516 	 * We are populating vddc CAC data to BapmVddc table
517 	 * in split and merged mode
518 	 */
519 	for (count = 0; count < lookup_table->count; count++) {
520 		index = phm_get_voltage_index(lookup_table,
521 				data->vddc_voltage_table.entries[count].value);
522 		table->BapmVddcVidLoSidd[count] =
523 				convert_to_vid(lookup_table->entries[index].us_cac_low);
524 		table->BapmVddcVidHiSidd[count] =
525 				convert_to_vid(lookup_table->entries[index].us_cac_mid);
526 		table->BapmVddcVidHiSidd2[count] =
527 				convert_to_vid(lookup_table->entries[index].us_cac_high);
528 	}
529 
530 	return 0;
531 }
532 
vegam_populate_smc_voltage_tables(struct pp_hwmgr * hwmgr,struct SMU75_Discrete_DpmTable * table)533 static int vegam_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr,
534 		struct SMU75_Discrete_DpmTable *table)
535 {
536 	vegam_populate_smc_vddci_table(hwmgr, table);
537 	vegam_populate_smc_mvdd_table(hwmgr, table);
538 	vegam_populate_cac_table(hwmgr, table);
539 
540 	return 0;
541 }
542 
vegam_populate_ulv_level(struct pp_hwmgr * hwmgr,struct SMU75_Discrete_Ulv * state)543 static int vegam_populate_ulv_level(struct pp_hwmgr *hwmgr,
544 		struct SMU75_Discrete_Ulv *state)
545 {
546 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
547 	struct phm_ppt_v1_information *table_info =
548 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
549 
550 	state->CcPwrDynRm = 0;
551 	state->CcPwrDynRm1 = 0;
552 
553 	state->VddcOffset = (uint16_t) table_info->us_ulv_voltage_offset;
554 	state->VddcOffsetVid = (uint8_t)(table_info->us_ulv_voltage_offset *
555 			VOLTAGE_VID_OFFSET_SCALE2 / VOLTAGE_VID_OFFSET_SCALE1);
556 
557 	state->VddcPhase = data->vddc_phase_shed_control ^ 0x3;
558 
559 	CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm);
560 	CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1);
561 	CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset);
562 
563 	return 0;
564 }
565 
vegam_populate_ulv_state(struct pp_hwmgr * hwmgr,struct SMU75_Discrete_DpmTable * table)566 static int vegam_populate_ulv_state(struct pp_hwmgr *hwmgr,
567 		struct SMU75_Discrete_DpmTable *table)
568 {
569 	return vegam_populate_ulv_level(hwmgr, &table->Ulv);
570 }
571 
vegam_populate_smc_link_level(struct pp_hwmgr * hwmgr,struct SMU75_Discrete_DpmTable * table)572 static int vegam_populate_smc_link_level(struct pp_hwmgr *hwmgr,
573 		struct SMU75_Discrete_DpmTable *table)
574 {
575 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
576 	struct vegam_smumgr *smu_data =
577 			(struct vegam_smumgr *)(hwmgr->smu_backend);
578 	struct smu7_dpm_table *dpm_table = &data->dpm_table;
579 	int i;
580 
581 	/* Index (dpm_table->pcie_speed_table.count)
582 	 * is reserved for PCIE boot level. */
583 	for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) {
584 		table->LinkLevel[i].PcieGenSpeed  =
585 				(uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value;
586 		table->LinkLevel[i].PcieLaneCount = (uint8_t)encode_pcie_lane_width(
587 				dpm_table->pcie_speed_table.dpm_levels[i].param1);
588 		table->LinkLevel[i].EnabledForActivity = 1;
589 		table->LinkLevel[i].SPC = (uint8_t)(data->pcie_spc_cap & 0xff);
590 		table->LinkLevel[i].DownThreshold = PP_HOST_TO_SMC_UL(5);
591 		table->LinkLevel[i].UpThreshold = PP_HOST_TO_SMC_UL(30);
592 	}
593 
594 	smu_data->smc_state_table.LinkLevelCount =
595 			(uint8_t)dpm_table->pcie_speed_table.count;
596 
597 /* To Do move to hwmgr */
598 	data->dpm_level_enable_mask.pcie_dpm_enable_mask =
599 			phm_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table);
600 
601 	return 0;
602 }
603 
vegam_get_dependency_volt_by_clk(struct pp_hwmgr * hwmgr,struct phm_ppt_v1_clock_voltage_dependency_table * dep_table,uint32_t clock,SMU_VoltageLevel * voltage,uint32_t * mvdd)604 static int vegam_get_dependency_volt_by_clk(struct pp_hwmgr *hwmgr,
605 		struct phm_ppt_v1_clock_voltage_dependency_table *dep_table,
606 		uint32_t clock, SMU_VoltageLevel *voltage, uint32_t *mvdd)
607 {
608 	uint32_t i;
609 	uint16_t vddci;
610 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
611 
612 	*voltage = *mvdd = 0;
613 
614 	/* clock - voltage dependency table is empty table */
615 	if (dep_table->count == 0)
616 		return -EINVAL;
617 
618 	for (i = 0; i < dep_table->count; i++) {
619 		/* find first sclk bigger than request */
620 		if (dep_table->entries[i].clk >= clock) {
621 			*voltage |= (dep_table->entries[i].vddc *
622 					VOLTAGE_SCALE) << VDDC_SHIFT;
623 			if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control)
624 				*voltage |= (data->vbios_boot_state.vddci_bootup_value *
625 						VOLTAGE_SCALE) << VDDCI_SHIFT;
626 			else if (dep_table->entries[i].vddci)
627 				*voltage |= (dep_table->entries[i].vddci *
628 						VOLTAGE_SCALE) << VDDCI_SHIFT;
629 			else {
630 				vddci = phm_find_closest_vddci(&(data->vddci_voltage_table),
631 						(dep_table->entries[i].vddc -
632 								(uint16_t)VDDC_VDDCI_DELTA));
633 				*voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
634 			}
635 
636 			if (SMU7_VOLTAGE_CONTROL_NONE == data->mvdd_control)
637 				*mvdd = data->vbios_boot_state.mvdd_bootup_value *
638 					VOLTAGE_SCALE;
639 			else if (dep_table->entries[i].mvdd)
640 				*mvdd = (uint32_t) dep_table->entries[i].mvdd *
641 					VOLTAGE_SCALE;
642 
643 			*voltage |= 1 << PHASES_SHIFT;
644 			return 0;
645 		}
646 	}
647 
648 	/* sclk is bigger than max sclk in the dependence table */
649 	*voltage |= (dep_table->entries[i - 1].vddc * VOLTAGE_SCALE) << VDDC_SHIFT;
650 	vddci = phm_find_closest_vddci(&(data->vddci_voltage_table),
651 			(dep_table->entries[i - 1].vddc -
652 					(uint16_t)VDDC_VDDCI_DELTA));
653 
654 	if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control)
655 		*voltage |= (data->vbios_boot_state.vddci_bootup_value *
656 				VOLTAGE_SCALE) << VDDCI_SHIFT;
657 	else if (dep_table->entries[i - 1].vddci)
658 		*voltage |= (dep_table->entries[i - 1].vddci *
659 				VOLTAGE_SCALE) << VDDC_SHIFT;
660 	else
661 		*voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
662 
663 	if (SMU7_VOLTAGE_CONTROL_NONE == data->mvdd_control)
664 		*mvdd = data->vbios_boot_state.mvdd_bootup_value * VOLTAGE_SCALE;
665 	else if (dep_table->entries[i].mvdd)
666 		*mvdd = (uint32_t) dep_table->entries[i - 1].mvdd * VOLTAGE_SCALE;
667 
668 	return 0;
669 }
670 
vegam_get_sclk_range_table(struct pp_hwmgr * hwmgr,SMU75_Discrete_DpmTable * table)671 static void vegam_get_sclk_range_table(struct pp_hwmgr *hwmgr,
672 				   SMU75_Discrete_DpmTable  *table)
673 {
674 	struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
675 	uint32_t i, ref_clk;
676 
677 	struct pp_atom_ctrl_sclk_range_table range_table_from_vbios = { { {0} } };
678 
679 	ref_clk = amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev);
680 
681 	if (0 == atomctrl_get_smc_sclk_range_table(hwmgr, &range_table_from_vbios)) {
682 		for (i = 0; i < NUM_SCLK_RANGE; i++) {
683 			table->SclkFcwRangeTable[i].vco_setting =
684 					range_table_from_vbios.entry[i].ucVco_setting;
685 			table->SclkFcwRangeTable[i].postdiv =
686 					range_table_from_vbios.entry[i].ucPostdiv;
687 			table->SclkFcwRangeTable[i].fcw_pcc =
688 					range_table_from_vbios.entry[i].usFcw_pcc;
689 
690 			table->SclkFcwRangeTable[i].fcw_trans_upper =
691 					range_table_from_vbios.entry[i].usFcw_trans_upper;
692 			table->SclkFcwRangeTable[i].fcw_trans_lower =
693 					range_table_from_vbios.entry[i].usRcw_trans_lower;
694 
695 			CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_pcc);
696 			CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_upper);
697 			CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_lower);
698 		}
699 		return;
700 	}
701 
702 	for (i = 0; i < NUM_SCLK_RANGE; i++) {
703 		smu_data->range_table[i].trans_lower_frequency =
704 				(ref_clk * Range_Table[i].fcw_trans_lower) >> Range_Table[i].postdiv;
705 		smu_data->range_table[i].trans_upper_frequency =
706 				(ref_clk * Range_Table[i].fcw_trans_upper) >> Range_Table[i].postdiv;
707 
708 		table->SclkFcwRangeTable[i].vco_setting = Range_Table[i].vco_setting;
709 		table->SclkFcwRangeTable[i].postdiv = Range_Table[i].postdiv;
710 		table->SclkFcwRangeTable[i].fcw_pcc = Range_Table[i].fcw_pcc;
711 
712 		table->SclkFcwRangeTable[i].fcw_trans_upper = Range_Table[i].fcw_trans_upper;
713 		table->SclkFcwRangeTable[i].fcw_trans_lower = Range_Table[i].fcw_trans_lower;
714 
715 		CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_pcc);
716 		CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_upper);
717 		CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_lower);
718 	}
719 }
720 
vegam_calculate_sclk_params(struct pp_hwmgr * hwmgr,uint32_t clock,SMU_SclkSetting * sclk_setting)721 static int vegam_calculate_sclk_params(struct pp_hwmgr *hwmgr,
722 		uint32_t clock, SMU_SclkSetting *sclk_setting)
723 {
724 	struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
725 	const SMU75_Discrete_DpmTable *table = &(smu_data->smc_state_table);
726 	struct pp_atomctrl_clock_dividers_ai dividers;
727 	uint32_t ref_clock;
728 	uint32_t pcc_target_percent, pcc_target_freq, ss_target_percent, ss_target_freq;
729 	uint8_t i;
730 	int result;
731 	uint64_t temp;
732 
733 	sclk_setting->SclkFrequency = clock;
734 	/* get the engine clock dividers for this clock value */
735 	result = atomctrl_get_engine_pll_dividers_ai(hwmgr, clock,  &dividers);
736 	if (result == 0) {
737 		sclk_setting->Fcw_int = dividers.usSclk_fcw_int;
738 		sclk_setting->Fcw_frac = dividers.usSclk_fcw_frac;
739 		sclk_setting->Pcc_fcw_int = dividers.usPcc_fcw_int;
740 		sclk_setting->PllRange = dividers.ucSclkPllRange;
741 		sclk_setting->Sclk_slew_rate = 0x400;
742 		sclk_setting->Pcc_up_slew_rate = dividers.usPcc_fcw_slew_frac;
743 		sclk_setting->Pcc_down_slew_rate = 0xffff;
744 		sclk_setting->SSc_En = dividers.ucSscEnable;
745 		sclk_setting->Fcw1_int = dividers.usSsc_fcw1_int;
746 		sclk_setting->Fcw1_frac = dividers.usSsc_fcw1_frac;
747 		sclk_setting->Sclk_ss_slew_rate = dividers.usSsc_fcw_slew_frac;
748 		return result;
749 	}
750 
751 	ref_clock = amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev);
752 
753 	for (i = 0; i < NUM_SCLK_RANGE; i++) {
754 		if (clock > smu_data->range_table[i].trans_lower_frequency
755 		&& clock <= smu_data->range_table[i].trans_upper_frequency) {
756 			sclk_setting->PllRange = i;
757 			break;
758 		}
759 	}
760 
761 	sclk_setting->Fcw_int = (uint16_t)
762 			((clock << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv) /
763 					ref_clock);
764 	temp = clock << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv;
765 	temp <<= 0x10;
766 	do_div(temp, ref_clock);
767 	sclk_setting->Fcw_frac = temp & 0xffff;
768 
769 	pcc_target_percent = 10; /*  Hardcode 10% for now. */
770 	pcc_target_freq = clock - (clock * pcc_target_percent / 100);
771 	sclk_setting->Pcc_fcw_int = (uint16_t)
772 			((pcc_target_freq << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv) /
773 					ref_clock);
774 
775 	ss_target_percent = 2; /*  Hardcode 2% for now. */
776 	sclk_setting->SSc_En = 0;
777 	if (ss_target_percent) {
778 		sclk_setting->SSc_En = 1;
779 		ss_target_freq = clock - (clock * ss_target_percent / 100);
780 		sclk_setting->Fcw1_int = (uint16_t)
781 				((ss_target_freq << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv) /
782 						ref_clock);
783 		temp = ss_target_freq << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv;
784 		temp <<= 0x10;
785 		do_div(temp, ref_clock);
786 		sclk_setting->Fcw1_frac = temp & 0xffff;
787 	}
788 
789 	return 0;
790 }
791 
vegam_get_sleep_divider_id_from_clock(uint32_t clock,uint32_t clock_insr)792 static uint8_t vegam_get_sleep_divider_id_from_clock(uint32_t clock,
793 		uint32_t clock_insr)
794 {
795 	uint8_t i;
796 	uint32_t temp;
797 	uint32_t min = max(clock_insr, (uint32_t)SMU7_MINIMUM_ENGINE_CLOCK);
798 
799 	PP_ASSERT_WITH_CODE((clock >= min),
800 			"Engine clock can't satisfy stutter requirement!",
801 			return 0);
802 	for (i = 31;  ; i--) {
803 		temp = clock / (i + 1);
804 
805 		if (temp >= min || i == 0)
806 			break;
807 	}
808 	return i;
809 }
810 
vegam_populate_single_graphic_level(struct pp_hwmgr * hwmgr,uint32_t clock,struct SMU75_Discrete_GraphicsLevel * level)811 static int vegam_populate_single_graphic_level(struct pp_hwmgr *hwmgr,
812 		uint32_t clock, struct SMU75_Discrete_GraphicsLevel *level)
813 {
814 	int result;
815 	/* PP_Clocks minClocks; */
816 	uint32_t mvdd;
817 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
818 	struct phm_ppt_v1_information *table_info =
819 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
820 	SMU_SclkSetting curr_sclk_setting = { 0 };
821 
822 	result = vegam_calculate_sclk_params(hwmgr, clock, &curr_sclk_setting);
823 
824 	/* populate graphics levels */
825 	result = vegam_get_dependency_volt_by_clk(hwmgr,
826 			table_info->vdd_dep_on_sclk, clock,
827 			&level->MinVoltage, &mvdd);
828 
829 	PP_ASSERT_WITH_CODE((0 == result),
830 			"can not find VDDC voltage value for "
831 			"VDDC engine clock dependency table",
832 			return result);
833 	level->ActivityLevel = (uint16_t)(SclkDPMTuning_VEGAM >> DPMTuning_Activity_Shift);
834 
835 	level->CcPwrDynRm = 0;
836 	level->CcPwrDynRm1 = 0;
837 	level->EnabledForActivity = 0;
838 	level->EnabledForThrottle = 1;
839 	level->VoltageDownHyst = 0;
840 	level->PowerThrottle = 0;
841 	data->display_timing.min_clock_in_sr = hwmgr->display_config->min_core_set_clock_in_sr;
842 
843 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep))
844 		level->DeepSleepDivId = vegam_get_sleep_divider_id_from_clock(clock,
845 								hwmgr->display_config->min_core_set_clock_in_sr);
846 
847 	level->SclkSetting = curr_sclk_setting;
848 
849 	CONVERT_FROM_HOST_TO_SMC_UL(level->MinVoltage);
850 	CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm);
851 	CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm1);
852 	CONVERT_FROM_HOST_TO_SMC_US(level->ActivityLevel);
853 	CONVERT_FROM_HOST_TO_SMC_UL(level->SclkSetting.SclkFrequency);
854 	CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw_int);
855 	CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw_frac);
856 	CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Pcc_fcw_int);
857 	CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Sclk_slew_rate);
858 	CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Pcc_up_slew_rate);
859 	CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Pcc_down_slew_rate);
860 	CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw1_int);
861 	CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw1_frac);
862 	CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Sclk_ss_slew_rate);
863 	return 0;
864 }
865 
vegam_populate_all_graphic_levels(struct pp_hwmgr * hwmgr)866 static int vegam_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
867 {
868 	struct smu7_hwmgr *hw_data = (struct smu7_hwmgr *)(hwmgr->backend);
869 	struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
870 	struct smu7_dpm_table *dpm_table = &hw_data->dpm_table;
871 	struct phm_ppt_v1_information *table_info =
872 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
873 	struct phm_ppt_v1_pcie_table *pcie_table = table_info->pcie_table;
874 	uint8_t pcie_entry_cnt = (uint8_t) hw_data->dpm_table.pcie_speed_table.count;
875 	int result = 0;
876 	uint32_t array = smu_data->smu7_data.dpm_table_start +
877 			offsetof(SMU75_Discrete_DpmTable, GraphicsLevel);
878 	uint32_t array_size = sizeof(struct SMU75_Discrete_GraphicsLevel) *
879 			SMU75_MAX_LEVELS_GRAPHICS;
880 	struct SMU75_Discrete_GraphicsLevel *levels =
881 			smu_data->smc_state_table.GraphicsLevel;
882 	uint32_t i, max_entry;
883 	uint8_t hightest_pcie_level_enabled = 0,
884 		lowest_pcie_level_enabled = 0,
885 		mid_pcie_level_enabled = 0,
886 		count = 0;
887 
888 	vegam_get_sclk_range_table(hwmgr, &(smu_data->smc_state_table));
889 
890 	for (i = 0; i < dpm_table->sclk_table.count; i++) {
891 
892 		result = vegam_populate_single_graphic_level(hwmgr,
893 				dpm_table->sclk_table.dpm_levels[i].value,
894 				&(smu_data->smc_state_table.GraphicsLevel[i]));
895 		if (result)
896 			return result;
897 
898 		levels[i].UpHyst = (uint8_t)
899 				(SclkDPMTuning_VEGAM >> DPMTuning_Uphyst_Shift);
900 		levels[i].DownHyst = (uint8_t)
901 				(SclkDPMTuning_VEGAM >> DPMTuning_Downhyst_Shift);
902 		/* Making sure only DPM level 0-1 have Deep Sleep Div ID populated. */
903 		if (i > 1)
904 			levels[i].DeepSleepDivId = 0;
905 	}
906 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
907 					PHM_PlatformCaps_SPLLShutdownSupport))
908 		smu_data->smc_state_table.GraphicsLevel[0].SclkSetting.SSc_En = 0;
909 
910 	smu_data->smc_state_table.GraphicsDpmLevelCount =
911 			(uint8_t)dpm_table->sclk_table.count;
912 	hw_data->dpm_level_enable_mask.sclk_dpm_enable_mask =
913 			phm_get_dpm_level_enable_mask_value(&dpm_table->sclk_table);
914 
915 	for (i = 0; i < dpm_table->sclk_table.count; i++)
916 		levels[i].EnabledForActivity =
917 				(hw_data->dpm_level_enable_mask.sclk_dpm_enable_mask >> i) & 0x1;
918 
919 	if (pcie_table != NULL) {
920 		PP_ASSERT_WITH_CODE((1 <= pcie_entry_cnt),
921 				"There must be 1 or more PCIE levels defined in PPTable.",
922 				return -EINVAL);
923 		max_entry = pcie_entry_cnt - 1;
924 		for (i = 0; i < dpm_table->sclk_table.count; i++)
925 			levels[i].pcieDpmLevel =
926 					(uint8_t) ((i < max_entry) ? i : max_entry);
927 	} else {
928 		while (hw_data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
929 				((hw_data->dpm_level_enable_mask.pcie_dpm_enable_mask &
930 						(1 << (hightest_pcie_level_enabled + 1))) != 0))
931 			hightest_pcie_level_enabled++;
932 
933 		while (hw_data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
934 				((hw_data->dpm_level_enable_mask.pcie_dpm_enable_mask &
935 						(1 << lowest_pcie_level_enabled)) == 0))
936 			lowest_pcie_level_enabled++;
937 
938 		while ((count < hightest_pcie_level_enabled) &&
939 				((hw_data->dpm_level_enable_mask.pcie_dpm_enable_mask &
940 						(1 << (lowest_pcie_level_enabled + 1 + count))) == 0))
941 			count++;
942 
943 		mid_pcie_level_enabled = (lowest_pcie_level_enabled + 1 + count) <
944 				hightest_pcie_level_enabled ?
945 						(lowest_pcie_level_enabled + 1 + count) :
946 						hightest_pcie_level_enabled;
947 
948 		/* set pcieDpmLevel to hightest_pcie_level_enabled */
949 		for (i = 2; i < dpm_table->sclk_table.count; i++)
950 			levels[i].pcieDpmLevel = hightest_pcie_level_enabled;
951 
952 		/* set pcieDpmLevel to lowest_pcie_level_enabled */
953 		levels[0].pcieDpmLevel = lowest_pcie_level_enabled;
954 
955 		/* set pcieDpmLevel to mid_pcie_level_enabled */
956 		levels[1].pcieDpmLevel = mid_pcie_level_enabled;
957 	}
958 	/* level count will send to smc once at init smc table and never change */
959 	result = smu7_copy_bytes_to_smc(hwmgr, array, (uint8_t *)levels,
960 			(uint32_t)array_size, SMC_RAM_END);
961 
962 	return result;
963 }
964 
vegam_calculate_mclk_params(struct pp_hwmgr * hwmgr,uint32_t clock,struct SMU75_Discrete_MemoryLevel * mem_level)965 static int vegam_calculate_mclk_params(struct pp_hwmgr *hwmgr,
966 		uint32_t clock, struct SMU75_Discrete_MemoryLevel *mem_level)
967 {
968 	struct pp_atomctrl_memory_clock_param_ai mpll_param;
969 
970 	PP_ASSERT_WITH_CODE(!atomctrl_get_memory_pll_dividers_ai(hwmgr,
971 			clock, &mpll_param),
972 			"Failed to retrieve memory pll parameter.",
973 			return -EINVAL);
974 
975 	mem_level->MclkFrequency = (uint32_t)mpll_param.ulClock;
976 	mem_level->Fcw_int = (uint16_t)mpll_param.ulMclk_fcw_int;
977 	mem_level->Fcw_frac = (uint16_t)mpll_param.ulMclk_fcw_frac;
978 	mem_level->Postdiv = (uint8_t)mpll_param.ulPostDiv;
979 
980 	return 0;
981 }
982 
vegam_populate_single_memory_level(struct pp_hwmgr * hwmgr,uint32_t clock,struct SMU75_Discrete_MemoryLevel * mem_level)983 static int vegam_populate_single_memory_level(struct pp_hwmgr *hwmgr,
984 		uint32_t clock, struct SMU75_Discrete_MemoryLevel *mem_level)
985 {
986 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
987 	struct phm_ppt_v1_information *table_info =
988 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
989 	int result = 0;
990 	uint32_t mclk_stutter_mode_threshold = 60000;
991 
992 
993 	if (table_info->vdd_dep_on_mclk) {
994 		result = vegam_get_dependency_volt_by_clk(hwmgr,
995 				table_info->vdd_dep_on_mclk, clock,
996 				&mem_level->MinVoltage, &mem_level->MinMvdd);
997 		PP_ASSERT_WITH_CODE(!result,
998 				"can not find MinVddc voltage value from memory "
999 				"VDDC voltage dependency table", return result);
1000 	}
1001 
1002 	result = vegam_calculate_mclk_params(hwmgr, clock, mem_level);
1003 	PP_ASSERT_WITH_CODE(!result,
1004 			"Failed to calculate mclk params.",
1005 			return -EINVAL);
1006 
1007 	mem_level->EnabledForThrottle = 1;
1008 	mem_level->EnabledForActivity = 0;
1009 	mem_level->VoltageDownHyst = 0;
1010 	mem_level->ActivityLevel = (uint16_t)
1011 			(MemoryDPMTuning_VEGAM >> DPMTuning_Activity_Shift);
1012 	mem_level->StutterEnable = false;
1013 	mem_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
1014 
1015 	data->display_timing.num_existing_displays = hwmgr->display_config->num_display;
1016 	data->display_timing.vrefresh = hwmgr->display_config->vrefresh;
1017 
1018 	if (mclk_stutter_mode_threshold &&
1019 		(clock <= mclk_stutter_mode_threshold) &&
1020 		(PHM_READ_FIELD(hwmgr->device, DPG_PIPE_STUTTER_CONTROL,
1021 				STUTTER_ENABLE) & 0x1))
1022 		mem_level->StutterEnable = true;
1023 
1024 	if (!result) {
1025 		CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinMvdd);
1026 		CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MclkFrequency);
1027 		CONVERT_FROM_HOST_TO_SMC_US(mem_level->Fcw_int);
1028 		CONVERT_FROM_HOST_TO_SMC_US(mem_level->Fcw_frac);
1029 		CONVERT_FROM_HOST_TO_SMC_US(mem_level->ActivityLevel);
1030 		CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinVoltage);
1031 	}
1032 
1033 	return result;
1034 }
1035 
vegam_populate_all_memory_levels(struct pp_hwmgr * hwmgr)1036 static int vegam_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
1037 {
1038 	struct smu7_hwmgr *hw_data = (struct smu7_hwmgr *)(hwmgr->backend);
1039 	struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1040 	struct smu7_dpm_table *dpm_table = &hw_data->dpm_table;
1041 	int result;
1042 	/* populate MCLK dpm table to SMU7 */
1043 	uint32_t array = smu_data->smu7_data.dpm_table_start +
1044 			offsetof(SMU75_Discrete_DpmTable, MemoryLevel);
1045 	uint32_t array_size = sizeof(SMU75_Discrete_MemoryLevel) *
1046 			SMU75_MAX_LEVELS_MEMORY;
1047 	struct SMU75_Discrete_MemoryLevel *levels =
1048 			smu_data->smc_state_table.MemoryLevel;
1049 	uint32_t i;
1050 
1051 	for (i = 0; i < dpm_table->mclk_table.count; i++) {
1052 		PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value),
1053 				"can not populate memory level as memory clock is zero",
1054 				return -EINVAL);
1055 		result = vegam_populate_single_memory_level(hwmgr,
1056 				dpm_table->mclk_table.dpm_levels[i].value,
1057 				&levels[i]);
1058 
1059 		if (result)
1060 			return result;
1061 
1062 		levels[i].UpHyst = (uint8_t)
1063 				(MemoryDPMTuning_VEGAM >> DPMTuning_Uphyst_Shift);
1064 		levels[i].DownHyst = (uint8_t)
1065 				(MemoryDPMTuning_VEGAM >> DPMTuning_Downhyst_Shift);
1066 	}
1067 
1068 	smu_data->smc_state_table.MemoryDpmLevelCount =
1069 			(uint8_t)dpm_table->mclk_table.count;
1070 	hw_data->dpm_level_enable_mask.mclk_dpm_enable_mask =
1071 			phm_get_dpm_level_enable_mask_value(&dpm_table->mclk_table);
1072 
1073 	for (i = 0; i < dpm_table->mclk_table.count; i++)
1074 		levels[i].EnabledForActivity =
1075 				(hw_data->dpm_level_enable_mask.mclk_dpm_enable_mask >> i) & 0x1;
1076 
1077 	levels[dpm_table->mclk_table.count - 1].DisplayWatermark =
1078 			PPSMC_DISPLAY_WATERMARK_HIGH;
1079 
1080 	/* level count will send to smc once at init smc table and never change */
1081 	result = smu7_copy_bytes_to_smc(hwmgr, array, (uint8_t *)levels,
1082 			(uint32_t)array_size, SMC_RAM_END);
1083 
1084 	return result;
1085 }
1086 
vegam_populate_mvdd_value(struct pp_hwmgr * hwmgr,uint32_t mclk,SMIO_Pattern * smio_pat)1087 static int vegam_populate_mvdd_value(struct pp_hwmgr *hwmgr,
1088 		uint32_t mclk, SMIO_Pattern *smio_pat)
1089 {
1090 	const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1091 	struct phm_ppt_v1_information *table_info =
1092 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
1093 	uint32_t i = 0;
1094 
1095 	if (SMU7_VOLTAGE_CONTROL_NONE != data->mvdd_control) {
1096 		/* find mvdd value which clock is more than request */
1097 		for (i = 0; i < table_info->vdd_dep_on_mclk->count; i++) {
1098 			if (mclk <= table_info->vdd_dep_on_mclk->entries[i].clk) {
1099 				smio_pat->Voltage = data->mvdd_voltage_table.entries[i].value;
1100 				break;
1101 			}
1102 		}
1103 		PP_ASSERT_WITH_CODE(i < table_info->vdd_dep_on_mclk->count,
1104 				"MVDD Voltage is outside the supported range.",
1105 				return -EINVAL);
1106 	} else
1107 		return -EINVAL;
1108 
1109 	return 0;
1110 }
1111 
vegam_populate_smc_acpi_level(struct pp_hwmgr * hwmgr,SMU75_Discrete_DpmTable * table)1112 static int vegam_populate_smc_acpi_level(struct pp_hwmgr *hwmgr,
1113 		SMU75_Discrete_DpmTable *table)
1114 {
1115 	int result = 0;
1116 	uint32_t sclk_frequency;
1117 	const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1118 	struct phm_ppt_v1_information *table_info =
1119 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
1120 	SMIO_Pattern vol_level;
1121 	uint32_t mvdd;
1122 
1123 	table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC;
1124 
1125 	/* Get MinVoltage and Frequency from DPM0,
1126 	 * already converted to SMC_UL */
1127 	sclk_frequency = data->vbios_boot_state.sclk_bootup_value;
1128 	result = vegam_get_dependency_volt_by_clk(hwmgr,
1129 			table_info->vdd_dep_on_sclk,
1130 			sclk_frequency,
1131 			&table->ACPILevel.MinVoltage, &mvdd);
1132 	PP_ASSERT_WITH_CODE(!result,
1133 			"Cannot find ACPI VDDC voltage value "
1134 			"in Clock Dependency Table",
1135 			);
1136 
1137 	result = vegam_calculate_sclk_params(hwmgr, sclk_frequency,
1138 			&(table->ACPILevel.SclkSetting));
1139 	PP_ASSERT_WITH_CODE(!result,
1140 			"Error retrieving Engine Clock dividers from VBIOS.",
1141 			return result);
1142 
1143 	table->ACPILevel.DeepSleepDivId = 0;
1144 	table->ACPILevel.CcPwrDynRm = 0;
1145 	table->ACPILevel.CcPwrDynRm1 = 0;
1146 
1147 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags);
1148 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.MinVoltage);
1149 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm);
1150 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1);
1151 
1152 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkSetting.SclkFrequency);
1153 	CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw_int);
1154 	CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw_frac);
1155 	CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Pcc_fcw_int);
1156 	CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Sclk_slew_rate);
1157 	CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Pcc_up_slew_rate);
1158 	CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Pcc_down_slew_rate);
1159 	CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw1_int);
1160 	CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw1_frac);
1161 	CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Sclk_ss_slew_rate);
1162 
1163 
1164 	/* Get MinVoltage and Frequency from DPM0, already converted to SMC_UL */
1165 	table->MemoryACPILevel.MclkFrequency = data->vbios_boot_state.mclk_bootup_value;
1166 	result = vegam_get_dependency_volt_by_clk(hwmgr,
1167 			table_info->vdd_dep_on_mclk,
1168 			table->MemoryACPILevel.MclkFrequency,
1169 			&table->MemoryACPILevel.MinVoltage, &mvdd);
1170 	PP_ASSERT_WITH_CODE((0 == result),
1171 			"Cannot find ACPI VDDCI voltage value "
1172 			"in Clock Dependency Table",
1173 			);
1174 
1175 	if (!vegam_populate_mvdd_value(hwmgr, 0, &vol_level))
1176 		table->MemoryACPILevel.MinMvdd = PP_HOST_TO_SMC_UL(vol_level.Voltage);
1177 	else
1178 		table->MemoryACPILevel.MinMvdd = 0;
1179 
1180 	table->MemoryACPILevel.StutterEnable = false;
1181 
1182 	table->MemoryACPILevel.EnabledForThrottle = 0;
1183 	table->MemoryACPILevel.EnabledForActivity = 0;
1184 	table->MemoryACPILevel.UpHyst = 0;
1185 	table->MemoryACPILevel.DownHyst = 100;
1186 	table->MemoryACPILevel.VoltageDownHyst = 0;
1187 	table->MemoryACPILevel.ActivityLevel =
1188 		PP_HOST_TO_SMC_US(data->current_profile_setting.mclk_activity);
1189 
1190 	CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MclkFrequency);
1191 	CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MinVoltage);
1192 
1193 	return result;
1194 }
1195 
vegam_populate_smc_vce_level(struct pp_hwmgr * hwmgr,SMU75_Discrete_DpmTable * table)1196 static int vegam_populate_smc_vce_level(struct pp_hwmgr *hwmgr,
1197 		SMU75_Discrete_DpmTable *table)
1198 {
1199 	int result = -EINVAL;
1200 	uint8_t count;
1201 	struct pp_atomctrl_clock_dividers_vi dividers;
1202 	struct phm_ppt_v1_information *table_info =
1203 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
1204 	struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
1205 			table_info->mm_dep_table;
1206 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1207 	uint32_t vddci;
1208 
1209 	table->VceLevelCount = (uint8_t)(mm_table->count);
1210 	table->VceBootLevel = 0;
1211 
1212 	for (count = 0; count < table->VceLevelCount; count++) {
1213 		table->VceLevel[count].Frequency = mm_table->entries[count].eclk;
1214 		table->VceLevel[count].MinVoltage = 0;
1215 		table->VceLevel[count].MinVoltage |=
1216 				(mm_table->entries[count].vddc * VOLTAGE_SCALE) << VDDC_SHIFT;
1217 
1218 		if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control)
1219 			vddci = (uint32_t)phm_find_closest_vddci(&(data->vddci_voltage_table),
1220 						mm_table->entries[count].vddc - VDDC_VDDCI_DELTA);
1221 		else if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control)
1222 			vddci = mm_table->entries[count].vddc - VDDC_VDDCI_DELTA;
1223 		else
1224 			vddci = (data->vbios_boot_state.vddci_bootup_value * VOLTAGE_SCALE) << VDDCI_SHIFT;
1225 
1226 
1227 		table->VceLevel[count].MinVoltage |=
1228 				(vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
1229 		table->VceLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
1230 
1231 		/*retrieve divider value for VBIOS */
1232 		result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1233 				table->VceLevel[count].Frequency, &dividers);
1234 		PP_ASSERT_WITH_CODE((0 == result),
1235 				"can not find divide id for VCE engine clock",
1236 				return result);
1237 
1238 		table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
1239 
1240 		CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency);
1241 		CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].MinVoltage);
1242 	}
1243 	return result;
1244 }
1245 
vegam_populate_memory_timing_parameters(struct pp_hwmgr * hwmgr,int32_t eng_clock,int32_t mem_clock,SMU75_Discrete_MCArbDramTimingTableEntry * arb_regs)1246 static int vegam_populate_memory_timing_parameters(struct pp_hwmgr *hwmgr,
1247 		int32_t eng_clock, int32_t mem_clock,
1248 		SMU75_Discrete_MCArbDramTimingTableEntry *arb_regs)
1249 {
1250 	uint32_t dram_timing;
1251 	uint32_t dram_timing2;
1252 	uint32_t burst_time;
1253 	uint32_t rfsh_rate;
1254 	uint32_t misc3;
1255 
1256 	int result;
1257 
1258 	result = atomctrl_set_engine_dram_timings_rv770(hwmgr,
1259 			eng_clock, mem_clock);
1260 	PP_ASSERT_WITH_CODE(result == 0,
1261 			"Error calling VBIOS to set DRAM_TIMING.",
1262 			return result);
1263 
1264 	dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
1265 	dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
1266 	burst_time = cgs_read_register(hwmgr->device, mmMC_ARB_BURST_TIME);
1267 	rfsh_rate = cgs_read_register(hwmgr->device, mmMC_ARB_RFSH_RATE);
1268 	misc3 = cgs_read_register(hwmgr->device, mmMC_ARB_MISC3);
1269 
1270 	arb_regs->McArbDramTiming  = PP_HOST_TO_SMC_UL(dram_timing);
1271 	arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dram_timing2);
1272 	arb_regs->McArbBurstTime   = PP_HOST_TO_SMC_UL(burst_time);
1273 	arb_regs->McArbRfshRate = PP_HOST_TO_SMC_UL(rfsh_rate);
1274 	arb_regs->McArbMisc3 = PP_HOST_TO_SMC_UL(misc3);
1275 
1276 	return 0;
1277 }
1278 
vegam_program_memory_timing_parameters(struct pp_hwmgr * hwmgr)1279 static int vegam_program_memory_timing_parameters(struct pp_hwmgr *hwmgr)
1280 {
1281 	struct smu7_hwmgr *hw_data = (struct smu7_hwmgr *)(hwmgr->backend);
1282 	struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1283 	struct SMU75_Discrete_MCArbDramTimingTable arb_regs;
1284 	uint32_t i, j;
1285 	int result = 0;
1286 
1287 	memset(&arb_regs, 0, sizeof(SMU75_Discrete_MCArbDramTimingTable));
1288 
1289 	for (i = 0; i < hw_data->dpm_table.sclk_table.count; i++) {
1290 		for (j = 0; j < hw_data->dpm_table.mclk_table.count; j++) {
1291 			result = vegam_populate_memory_timing_parameters(hwmgr,
1292 					hw_data->dpm_table.sclk_table.dpm_levels[i].value,
1293 					hw_data->dpm_table.mclk_table.dpm_levels[j].value,
1294 					&arb_regs.entries[i][j]);
1295 			if (result)
1296 				return result;
1297 		}
1298 	}
1299 
1300 	result = smu7_copy_bytes_to_smc(
1301 			hwmgr,
1302 			smu_data->smu7_data.arb_table_start,
1303 			(uint8_t *)&arb_regs,
1304 			sizeof(SMU75_Discrete_MCArbDramTimingTable),
1305 			SMC_RAM_END);
1306 	return result;
1307 }
1308 
vegam_populate_smc_uvd_level(struct pp_hwmgr * hwmgr,struct SMU75_Discrete_DpmTable * table)1309 static int vegam_populate_smc_uvd_level(struct pp_hwmgr *hwmgr,
1310 		struct SMU75_Discrete_DpmTable *table)
1311 {
1312 	int result = -EINVAL;
1313 	uint8_t count;
1314 	struct pp_atomctrl_clock_dividers_vi dividers;
1315 	struct phm_ppt_v1_information *table_info =
1316 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
1317 	struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
1318 			table_info->mm_dep_table;
1319 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1320 	uint32_t vddci;
1321 
1322 	table->UvdLevelCount = (uint8_t)(mm_table->count);
1323 	table->UvdBootLevel = 0;
1324 
1325 	for (count = 0; count < table->UvdLevelCount; count++) {
1326 		table->UvdLevel[count].MinVoltage = 0;
1327 		table->UvdLevel[count].VclkFrequency = mm_table->entries[count].vclk;
1328 		table->UvdLevel[count].DclkFrequency = mm_table->entries[count].dclk;
1329 		table->UvdLevel[count].MinVoltage |=
1330 				(mm_table->entries[count].vddc * VOLTAGE_SCALE) << VDDC_SHIFT;
1331 
1332 		if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control)
1333 			vddci = (uint32_t)phm_find_closest_vddci(&(data->vddci_voltage_table),
1334 						mm_table->entries[count].vddc - VDDC_VDDCI_DELTA);
1335 		else if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control)
1336 			vddci = mm_table->entries[count].vddc - VDDC_VDDCI_DELTA;
1337 		else
1338 			vddci = (data->vbios_boot_state.vddci_bootup_value * VOLTAGE_SCALE) << VDDCI_SHIFT;
1339 
1340 		table->UvdLevel[count].MinVoltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
1341 		table->UvdLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
1342 
1343 		/* retrieve divider value for VBIOS */
1344 		result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1345 				table->UvdLevel[count].VclkFrequency, &dividers);
1346 		PP_ASSERT_WITH_CODE((0 == result),
1347 				"can not find divide id for Vclk clock", return result);
1348 
1349 		table->UvdLevel[count].VclkDivider = (uint8_t)dividers.pll_post_divider;
1350 
1351 		result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1352 				table->UvdLevel[count].DclkFrequency, &dividers);
1353 		PP_ASSERT_WITH_CODE((0 == result),
1354 				"can not find divide id for Dclk clock", return result);
1355 
1356 		table->UvdLevel[count].DclkDivider = (uint8_t)dividers.pll_post_divider;
1357 
1358 		CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].VclkFrequency);
1359 		CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].DclkFrequency);
1360 		CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].MinVoltage);
1361 	}
1362 
1363 	return result;
1364 }
1365 
vegam_populate_smc_boot_level(struct pp_hwmgr * hwmgr,struct SMU75_Discrete_DpmTable * table)1366 static int vegam_populate_smc_boot_level(struct pp_hwmgr *hwmgr,
1367 		struct SMU75_Discrete_DpmTable *table)
1368 {
1369 	int result = 0;
1370 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1371 
1372 	table->GraphicsBootLevel = 0;
1373 	table->MemoryBootLevel = 0;
1374 
1375 	/* find boot level from dpm table */
1376 	result = phm_find_boot_level(&(data->dpm_table.sclk_table),
1377 			data->vbios_boot_state.sclk_bootup_value,
1378 			(uint32_t *)&(table->GraphicsBootLevel));
1379 	if (result)
1380 		return result;
1381 
1382 	result = phm_find_boot_level(&(data->dpm_table.mclk_table),
1383 			data->vbios_boot_state.mclk_bootup_value,
1384 			(uint32_t *)&(table->MemoryBootLevel));
1385 
1386 	if (result)
1387 		return result;
1388 
1389 	table->BootVddc  = data->vbios_boot_state.vddc_bootup_value *
1390 			VOLTAGE_SCALE;
1391 	table->BootVddci = data->vbios_boot_state.vddci_bootup_value *
1392 			VOLTAGE_SCALE;
1393 	table->BootMVdd  = data->vbios_boot_state.mvdd_bootup_value *
1394 			VOLTAGE_SCALE;
1395 
1396 	CONVERT_FROM_HOST_TO_SMC_US(table->BootVddc);
1397 	CONVERT_FROM_HOST_TO_SMC_US(table->BootVddci);
1398 	CONVERT_FROM_HOST_TO_SMC_US(table->BootMVdd);
1399 
1400 	return 0;
1401 }
1402 
vegam_populate_smc_initial_state(struct pp_hwmgr * hwmgr)1403 static int vegam_populate_smc_initial_state(struct pp_hwmgr *hwmgr)
1404 {
1405 	struct smu7_hwmgr *hw_data = (struct smu7_hwmgr *)(hwmgr->backend);
1406 	struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1407 	struct phm_ppt_v1_information *table_info =
1408 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
1409 	uint8_t count, level;
1410 
1411 	count = (uint8_t)(table_info->vdd_dep_on_sclk->count);
1412 
1413 	for (level = 0; level < count; level++) {
1414 		if (table_info->vdd_dep_on_sclk->entries[level].clk >=
1415 				hw_data->vbios_boot_state.sclk_bootup_value) {
1416 			smu_data->smc_state_table.GraphicsBootLevel = level;
1417 			break;
1418 		}
1419 	}
1420 
1421 	count = (uint8_t)(table_info->vdd_dep_on_mclk->count);
1422 	for (level = 0; level < count; level++) {
1423 		if (table_info->vdd_dep_on_mclk->entries[level].clk >=
1424 				hw_data->vbios_boot_state.mclk_bootup_value) {
1425 			smu_data->smc_state_table.MemoryBootLevel = level;
1426 			break;
1427 		}
1428 	}
1429 
1430 	return 0;
1431 }
1432 
scale_fan_gain_settings(uint16_t raw_setting)1433 static uint16_t scale_fan_gain_settings(uint16_t raw_setting)
1434 {
1435 	uint32_t tmp;
1436 	tmp = raw_setting * 4096 / 100;
1437 	return (uint16_t)tmp;
1438 }
1439 
vegam_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr * hwmgr)1440 static int vegam_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr *hwmgr)
1441 {
1442 	struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1443 
1444 	const struct vegam_pt_defaults *defaults = smu_data->power_tune_defaults;
1445 	SMU75_Discrete_DpmTable  *table = &(smu_data->smc_state_table);
1446 	struct phm_ppt_v1_information *table_info =
1447 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
1448 	struct phm_cac_tdp_table *cac_dtp_table = table_info->cac_dtp_table;
1449 	struct pp_advance_fan_control_parameters *fan_table =
1450 			&hwmgr->thermal_controller.advanceFanControlParameters;
1451 	int i, j, k;
1452 	const uint16_t *pdef1;
1453 	const uint16_t *pdef2;
1454 
1455 	table->DefaultTdp = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usTDP * 128));
1456 	table->TargetTdp  = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usTDP * 128));
1457 
1458 	PP_ASSERT_WITH_CODE(cac_dtp_table->usTargetOperatingTemp <= 255,
1459 				"Target Operating Temp is out of Range!",
1460 				);
1461 
1462 	table->TemperatureLimitEdge = PP_HOST_TO_SMC_US(
1463 			cac_dtp_table->usTargetOperatingTemp * 256);
1464 	table->TemperatureLimitHotspot = PP_HOST_TO_SMC_US(
1465 			cac_dtp_table->usTemperatureLimitHotspot * 256);
1466 	table->FanGainEdge = PP_HOST_TO_SMC_US(
1467 			scale_fan_gain_settings(fan_table->usFanGainEdge));
1468 	table->FanGainHotspot = PP_HOST_TO_SMC_US(
1469 			scale_fan_gain_settings(fan_table->usFanGainHotspot));
1470 
1471 	pdef1 = defaults->BAPMTI_R;
1472 	pdef2 = defaults->BAPMTI_RC;
1473 
1474 	for (i = 0; i < SMU75_DTE_ITERATIONS; i++) {
1475 		for (j = 0; j < SMU75_DTE_SOURCES; j++) {
1476 			for (k = 0; k < SMU75_DTE_SINKS; k++) {
1477 				table->BAPMTI_R[i][j][k] = PP_HOST_TO_SMC_US(*pdef1);
1478 				table->BAPMTI_RC[i][j][k] = PP_HOST_TO_SMC_US(*pdef2);
1479 				pdef1++;
1480 				pdef2++;
1481 			}
1482 		}
1483 	}
1484 
1485 	return 0;
1486 }
1487 
vegam_populate_clock_stretcher_data_table(struct pp_hwmgr * hwmgr)1488 static int vegam_populate_clock_stretcher_data_table(struct pp_hwmgr *hwmgr)
1489 {
1490 	uint32_t ro, efuse, volt_without_cks, volt_with_cks, value, max, min;
1491 	struct vegam_smumgr *smu_data =
1492 			(struct vegam_smumgr *)(hwmgr->smu_backend);
1493 
1494 	uint8_t i, stretch_amount, volt_offset = 0;
1495 	struct phm_ppt_v1_information *table_info =
1496 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
1497 	struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
1498 			table_info->vdd_dep_on_sclk;
1499 	uint32_t mask = (1 << ((STRAP_ASIC_RO_MSB - STRAP_ASIC_RO_LSB) + 1)) - 1;
1500 
1501 	stretch_amount = (uint8_t)table_info->cac_dtp_table->usClockStretchAmount;
1502 
1503 	atomctrl_read_efuse(hwmgr, STRAP_ASIC_RO_LSB, STRAP_ASIC_RO_MSB,
1504 			mask, &efuse);
1505 
1506 	min = 1200;
1507 	max = 2500;
1508 
1509 	ro = efuse * (max - min) / 255 + min;
1510 
1511 	/* Populate Sclk_CKS_masterEn0_7 and Sclk_voltageOffset */
1512 	for (i = 0; i < sclk_table->count; i++) {
1513 		smu_data->smc_state_table.Sclk_CKS_masterEn0_7 |=
1514 				sclk_table->entries[i].cks_enable << i;
1515 		volt_without_cks = (uint32_t)((2753594000U + (sclk_table->entries[i].clk/100) *
1516 				136418 - (ro - 70) * 1000000) /
1517 				(2424180 - (sclk_table->entries[i].clk/100) * 1132925/1000));
1518 		volt_with_cks = (uint32_t)((2797202000U + sclk_table->entries[i].clk/100 *
1519 				3232 - (ro - 65) * 1000000) /
1520 				(2522480 - sclk_table->entries[i].clk/100 * 115764/100));
1521 
1522 		if (volt_without_cks >= volt_with_cks)
1523 			volt_offset = (uint8_t)(((volt_without_cks - volt_with_cks +
1524 					sclk_table->entries[i].cks_voffset) * 100 + 624) / 625);
1525 
1526 		smu_data->smc_state_table.Sclk_voltageOffset[i] = volt_offset;
1527 	}
1528 
1529 	smu_data->smc_state_table.LdoRefSel =
1530 			(table_info->cac_dtp_table->ucCKS_LDO_REFSEL != 0) ?
1531 			table_info->cac_dtp_table->ucCKS_LDO_REFSEL : 5;
1532 	/* Populate CKS Lookup Table */
1533 	if (!(stretch_amount == 1 || stretch_amount == 2 ||
1534 	      stretch_amount == 5 || stretch_amount == 3 ||
1535 	      stretch_amount == 4)) {
1536 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
1537 				PHM_PlatformCaps_ClockStretcher);
1538 		PP_ASSERT_WITH_CODE(false,
1539 				"Stretch Amount in PPTable not supported\n",
1540 				return -EINVAL);
1541 	}
1542 
1543 	value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL);
1544 	value &= 0xFFFFFFFE;
1545 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL, value);
1546 
1547 	return 0;
1548 }
1549 
vegam_is_hw_avfs_present(struct pp_hwmgr * hwmgr)1550 static bool vegam_is_hw_avfs_present(struct pp_hwmgr *hwmgr)
1551 {
1552 	uint32_t efuse;
1553 
1554 	efuse = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1555 			ixSMU_EFUSE_0 + (49 * 4));
1556 	efuse &= 0x00000001;
1557 
1558 	if (efuse)
1559 		return true;
1560 
1561 	return false;
1562 }
1563 
vegam_populate_avfs_parameters(struct pp_hwmgr * hwmgr)1564 static int vegam_populate_avfs_parameters(struct pp_hwmgr *hwmgr)
1565 {
1566 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1567 	struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1568 
1569 	SMU75_Discrete_DpmTable  *table = &(smu_data->smc_state_table);
1570 	int result = 0;
1571 	struct pp_atom_ctrl__avfs_parameters avfs_params = {0};
1572 	AVFS_meanNsigma_t AVFS_meanNsigma = { {0} };
1573 	AVFS_Sclk_Offset_t AVFS_SclkOffset = { {0} };
1574 	uint32_t tmp, i;
1575 
1576 	struct phm_ppt_v1_information *table_info =
1577 			(struct phm_ppt_v1_information *)hwmgr->pptable;
1578 	struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
1579 			table_info->vdd_dep_on_sclk;
1580 
1581 	if (!hwmgr->avfs_supported)
1582 		return 0;
1583 
1584 	result = atomctrl_get_avfs_information(hwmgr, &avfs_params);
1585 
1586 	if (0 == result) {
1587 		table->BTCGB_VDROOP_TABLE[0].a0 =
1588 				PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSON_a0);
1589 		table->BTCGB_VDROOP_TABLE[0].a1 =
1590 				PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSON_a1);
1591 		table->BTCGB_VDROOP_TABLE[0].a2 =
1592 				PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSON_a2);
1593 		table->BTCGB_VDROOP_TABLE[1].a0 =
1594 				PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a0);
1595 		table->BTCGB_VDROOP_TABLE[1].a1 =
1596 				PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a1);
1597 		table->BTCGB_VDROOP_TABLE[1].a2 =
1598 				PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a2);
1599 		table->AVFSGB_FUSE_TABLE[0].m1 =
1600 				PP_HOST_TO_SMC_UL(avfs_params.ulAVFSGB_FUSE_TABLE_CKSON_m1);
1601 		table->AVFSGB_FUSE_TABLE[0].m2 =
1602 				PP_HOST_TO_SMC_US(avfs_params.usAVFSGB_FUSE_TABLE_CKSON_m2);
1603 		table->AVFSGB_FUSE_TABLE[0].b =
1604 				PP_HOST_TO_SMC_UL(avfs_params.ulAVFSGB_FUSE_TABLE_CKSON_b);
1605 		table->AVFSGB_FUSE_TABLE[0].m1_shift = 24;
1606 		table->AVFSGB_FUSE_TABLE[0].m2_shift = 12;
1607 		table->AVFSGB_FUSE_TABLE[1].m1 =
1608 				PP_HOST_TO_SMC_UL(avfs_params.ulAVFSGB_FUSE_TABLE_CKSOFF_m1);
1609 		table->AVFSGB_FUSE_TABLE[1].m2 =
1610 				PP_HOST_TO_SMC_US(avfs_params.usAVFSGB_FUSE_TABLE_CKSOFF_m2);
1611 		table->AVFSGB_FUSE_TABLE[1].b =
1612 				PP_HOST_TO_SMC_UL(avfs_params.ulAVFSGB_FUSE_TABLE_CKSOFF_b);
1613 		table->AVFSGB_FUSE_TABLE[1].m1_shift = 24;
1614 		table->AVFSGB_FUSE_TABLE[1].m2_shift = 12;
1615 		table->MaxVoltage = PP_HOST_TO_SMC_US(avfs_params.usMaxVoltage_0_25mv);
1616 		AVFS_meanNsigma.Aconstant[0] =
1617 				PP_HOST_TO_SMC_UL(avfs_params.ulAVFS_meanNsigma_Acontant0);
1618 		AVFS_meanNsigma.Aconstant[1] =
1619 				PP_HOST_TO_SMC_UL(avfs_params.ulAVFS_meanNsigma_Acontant1);
1620 		AVFS_meanNsigma.Aconstant[2] =
1621 				PP_HOST_TO_SMC_UL(avfs_params.ulAVFS_meanNsigma_Acontant2);
1622 		AVFS_meanNsigma.DC_tol_sigma =
1623 				PP_HOST_TO_SMC_US(avfs_params.usAVFS_meanNsigma_DC_tol_sigma);
1624 		AVFS_meanNsigma.Platform_mean =
1625 				PP_HOST_TO_SMC_US(avfs_params.usAVFS_meanNsigma_Platform_mean);
1626 		AVFS_meanNsigma.PSM_Age_CompFactor =
1627 				PP_HOST_TO_SMC_US(avfs_params.usPSM_Age_ComFactor);
1628 		AVFS_meanNsigma.Platform_sigma =
1629 				PP_HOST_TO_SMC_US(avfs_params.usAVFS_meanNsigma_Platform_sigma);
1630 
1631 		for (i = 0; i < sclk_table->count; i++) {
1632 			AVFS_meanNsigma.Static_Voltage_Offset[i] =
1633 					(uint8_t)(sclk_table->entries[i].cks_voffset * 100 / 625);
1634 			AVFS_SclkOffset.Sclk_Offset[i] =
1635 					PP_HOST_TO_SMC_US((uint16_t)
1636 							(sclk_table->entries[i].sclk_offset) / 100);
1637 		}
1638 
1639 		result = smu7_read_smc_sram_dword(hwmgr,
1640 				SMU7_FIRMWARE_HEADER_LOCATION +
1641 				offsetof(SMU75_Firmware_Header, AvfsMeanNSigma),
1642 				&tmp, SMC_RAM_END);
1643 		smu7_copy_bytes_to_smc(hwmgr,
1644 					tmp,
1645 					(uint8_t *)&AVFS_meanNsigma,
1646 					sizeof(AVFS_meanNsigma_t),
1647 					SMC_RAM_END);
1648 
1649 		result = smu7_read_smc_sram_dword(hwmgr,
1650 				SMU7_FIRMWARE_HEADER_LOCATION +
1651 				offsetof(SMU75_Firmware_Header, AvfsSclkOffsetTable),
1652 				&tmp, SMC_RAM_END);
1653 		smu7_copy_bytes_to_smc(hwmgr,
1654 					tmp,
1655 					(uint8_t *)&AVFS_SclkOffset,
1656 					sizeof(AVFS_Sclk_Offset_t),
1657 					SMC_RAM_END);
1658 
1659 		data->avfs_vdroop_override_setting =
1660 				(avfs_params.ucEnableGB_VDROOP_TABLE_CKSON << BTCGB0_Vdroop_Enable_SHIFT) |
1661 				(avfs_params.ucEnableGB_VDROOP_TABLE_CKSOFF << BTCGB1_Vdroop_Enable_SHIFT) |
1662 				(avfs_params.ucEnableGB_FUSE_TABLE_CKSON << AVFSGB0_Vdroop_Enable_SHIFT) |
1663 				(avfs_params.ucEnableGB_FUSE_TABLE_CKSOFF << AVFSGB1_Vdroop_Enable_SHIFT);
1664 		data->apply_avfs_cks_off_voltage =
1665 				(avfs_params.ucEnableApplyAVFS_CKS_OFF_Voltage == 1) ? true : false;
1666 	}
1667 	return result;
1668 }
1669 
vegam_populate_vr_config(struct pp_hwmgr * hwmgr,struct SMU75_Discrete_DpmTable * table)1670 static int vegam_populate_vr_config(struct pp_hwmgr *hwmgr,
1671 		struct SMU75_Discrete_DpmTable *table)
1672 {
1673 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1674 	struct vegam_smumgr *smu_data =
1675 			(struct vegam_smumgr *)(hwmgr->smu_backend);
1676 	uint16_t config;
1677 
1678 	config = VR_MERGED_WITH_VDDC;
1679 	table->VRConfig |= (config << VRCONF_VDDGFX_SHIFT);
1680 
1681 	/* Set Vddc Voltage Controller */
1682 	if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
1683 		config = VR_SVI2_PLANE_1;
1684 		table->VRConfig |= config;
1685 	} else {
1686 		PP_ASSERT_WITH_CODE(false,
1687 				"VDDC should be on SVI2 control in merged mode!",
1688 				);
1689 	}
1690 	/* Set Vddci Voltage Controller */
1691 	if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) {
1692 		config = VR_SVI2_PLANE_2;  /* only in merged mode */
1693 		table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
1694 	} else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
1695 		config = VR_SMIO_PATTERN_1;
1696 		table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
1697 	} else {
1698 		config = VR_STATIC_VOLTAGE;
1699 		table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
1700 	}
1701 	/* Set Mvdd Voltage Controller */
1702 	if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control) {
1703 		if (config != VR_SVI2_PLANE_2) {
1704 			config = VR_SVI2_PLANE_2;
1705 			table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
1706 			cgs_write_ind_register(hwmgr->device,
1707 					CGS_IND_REG__SMC,
1708 					smu_data->smu7_data.soft_regs_start +
1709 					offsetof(SMU75_SoftRegisters, AllowMvddSwitch),
1710 					0x1);
1711 		} else {
1712 			PP_ASSERT_WITH_CODE(false,
1713 					"SVI2 Plane 2 is already taken, set MVDD as Static",);
1714 			config = VR_STATIC_VOLTAGE;
1715 			table->VRConfig = (config << VRCONF_MVDD_SHIFT);
1716 		}
1717 	} else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
1718 		config = VR_SMIO_PATTERN_2;
1719 		table->VRConfig = (config << VRCONF_MVDD_SHIFT);
1720 		cgs_write_ind_register(hwmgr->device,
1721 				CGS_IND_REG__SMC,
1722 				smu_data->smu7_data.soft_regs_start +
1723 				offsetof(SMU75_SoftRegisters, AllowMvddSwitch),
1724 				0x1);
1725 	} else {
1726 		config = VR_STATIC_VOLTAGE;
1727 		table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
1728 	}
1729 
1730 	return 0;
1731 }
1732 
vegam_populate_svi_load_line(struct pp_hwmgr * hwmgr)1733 static int vegam_populate_svi_load_line(struct pp_hwmgr *hwmgr)
1734 {
1735 	struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1736 	const struct vegam_pt_defaults *defaults = smu_data->power_tune_defaults;
1737 
1738 	smu_data->power_tune_table.SviLoadLineEn = defaults->SviLoadLineEn;
1739 	smu_data->power_tune_table.SviLoadLineVddC = defaults->SviLoadLineVddC;
1740 	smu_data->power_tune_table.SviLoadLineTrimVddC = 3;
1741 	smu_data->power_tune_table.SviLoadLineOffsetVddC = 0;
1742 
1743 	return 0;
1744 }
1745 
vegam_populate_tdc_limit(struct pp_hwmgr * hwmgr)1746 static int vegam_populate_tdc_limit(struct pp_hwmgr *hwmgr)
1747 {
1748 	uint16_t tdc_limit;
1749 	struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1750 	struct phm_ppt_v1_information *table_info =
1751 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
1752 	const struct vegam_pt_defaults *defaults = smu_data->power_tune_defaults;
1753 
1754 	tdc_limit = (uint16_t)(table_info->cac_dtp_table->usTDC * 128);
1755 	smu_data->power_tune_table.TDC_VDDC_PkgLimit =
1756 			CONVERT_FROM_HOST_TO_SMC_US(tdc_limit);
1757 	smu_data->power_tune_table.TDC_VDDC_ThrottleReleaseLimitPerc =
1758 			defaults->TDC_VDDC_ThrottleReleaseLimitPerc;
1759 	smu_data->power_tune_table.TDC_MAWt = defaults->TDC_MAWt;
1760 
1761 	return 0;
1762 }
1763 
vegam_populate_dw8(struct pp_hwmgr * hwmgr,uint32_t fuse_table_offset)1764 static int vegam_populate_dw8(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset)
1765 {
1766 	struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1767 	const struct vegam_pt_defaults *defaults = smu_data->power_tune_defaults;
1768 	uint32_t temp;
1769 
1770 	if (smu7_read_smc_sram_dword(hwmgr,
1771 			fuse_table_offset +
1772 			offsetof(SMU75_Discrete_PmFuses, TdcWaterfallCtl),
1773 			(uint32_t *)&temp, SMC_RAM_END))
1774 		PP_ASSERT_WITH_CODE(false,
1775 				"Attempt to read PmFuses.DW6 (SviLoadLineEn) from SMC Failed!",
1776 				return -EINVAL);
1777 	else {
1778 		smu_data->power_tune_table.TdcWaterfallCtl = defaults->TdcWaterfallCtl;
1779 		smu_data->power_tune_table.LPMLTemperatureMin =
1780 				(uint8_t)((temp >> 16) & 0xff);
1781 		smu_data->power_tune_table.LPMLTemperatureMax =
1782 				(uint8_t)((temp >> 8) & 0xff);
1783 		smu_data->power_tune_table.Reserved = (uint8_t)(temp & 0xff);
1784 	}
1785 	return 0;
1786 }
1787 
vegam_populate_temperature_scaler(struct pp_hwmgr * hwmgr)1788 static int vegam_populate_temperature_scaler(struct pp_hwmgr *hwmgr)
1789 {
1790 	int i;
1791 	struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1792 
1793 	/* Currently not used. Set all to zero. */
1794 	for (i = 0; i < 16; i++)
1795 		smu_data->power_tune_table.LPMLTemperatureScaler[i] = 0;
1796 
1797 	return 0;
1798 }
1799 
vegam_populate_fuzzy_fan(struct pp_hwmgr * hwmgr)1800 static int vegam_populate_fuzzy_fan(struct pp_hwmgr *hwmgr)
1801 {
1802 	struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1803 
1804 /* TO DO move to hwmgr */
1805 	if ((hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity & (1 << 15))
1806 		|| 0 == hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity)
1807 		hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity =
1808 			hwmgr->thermal_controller.advanceFanControlParameters.usDefaultFanOutputSensitivity;
1809 
1810 	smu_data->power_tune_table.FuzzyFan_PwmSetDelta = PP_HOST_TO_SMC_US(
1811 				hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity);
1812 	return 0;
1813 }
1814 
vegam_populate_gnb_lpml(struct pp_hwmgr * hwmgr)1815 static int vegam_populate_gnb_lpml(struct pp_hwmgr *hwmgr)
1816 {
1817 	int i;
1818 	struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1819 
1820 	/* Currently not used. Set all to zero. */
1821 	for (i = 0; i < 16; i++)
1822 		smu_data->power_tune_table.GnbLPML[i] = 0;
1823 
1824 	return 0;
1825 }
1826 
vegam_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr * hwmgr)1827 static int vegam_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr *hwmgr)
1828 {
1829 	struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1830 	struct phm_ppt_v1_information *table_info =
1831 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
1832 	uint16_t hi_sidd = smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd;
1833 	uint16_t lo_sidd = smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd;
1834 	struct phm_cac_tdp_table *cac_table = table_info->cac_dtp_table;
1835 
1836 	hi_sidd = (uint16_t)(cac_table->usHighCACLeakage / 100 * 256);
1837 	lo_sidd = (uint16_t)(cac_table->usLowCACLeakage / 100 * 256);
1838 
1839 	smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd =
1840 			CONVERT_FROM_HOST_TO_SMC_US(hi_sidd);
1841 	smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd =
1842 			CONVERT_FROM_HOST_TO_SMC_US(lo_sidd);
1843 
1844 	return 0;
1845 }
1846 
vegam_populate_pm_fuses(struct pp_hwmgr * hwmgr)1847 static int vegam_populate_pm_fuses(struct pp_hwmgr *hwmgr)
1848 {
1849 	struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1850 	uint32_t pm_fuse_table_offset;
1851 
1852 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1853 			PHM_PlatformCaps_PowerContainment)) {
1854 		if (smu7_read_smc_sram_dword(hwmgr,
1855 				SMU7_FIRMWARE_HEADER_LOCATION +
1856 				offsetof(SMU75_Firmware_Header, PmFuseTable),
1857 				&pm_fuse_table_offset, SMC_RAM_END))
1858 			PP_ASSERT_WITH_CODE(false,
1859 					"Attempt to get pm_fuse_table_offset Failed!",
1860 					return -EINVAL);
1861 
1862 		if (vegam_populate_svi_load_line(hwmgr))
1863 			PP_ASSERT_WITH_CODE(false,
1864 					"Attempt to populate SviLoadLine Failed!",
1865 					return -EINVAL);
1866 
1867 		if (vegam_populate_tdc_limit(hwmgr))
1868 			PP_ASSERT_WITH_CODE(false,
1869 					"Attempt to populate TDCLimit Failed!", return -EINVAL);
1870 
1871 		if (vegam_populate_dw8(hwmgr, pm_fuse_table_offset))
1872 			PP_ASSERT_WITH_CODE(false,
1873 					"Attempt to populate TdcWaterfallCtl, "
1874 					"LPMLTemperature Min and Max Failed!",
1875 					return -EINVAL);
1876 
1877 		if (0 != vegam_populate_temperature_scaler(hwmgr))
1878 			PP_ASSERT_WITH_CODE(false,
1879 					"Attempt to populate LPMLTemperatureScaler Failed!",
1880 					return -EINVAL);
1881 
1882 		if (vegam_populate_fuzzy_fan(hwmgr))
1883 			PP_ASSERT_WITH_CODE(false,
1884 					"Attempt to populate Fuzzy Fan Control parameters Failed!",
1885 					return -EINVAL);
1886 
1887 		if (vegam_populate_gnb_lpml(hwmgr))
1888 			PP_ASSERT_WITH_CODE(false,
1889 					"Attempt to populate GnbLPML Failed!",
1890 					return -EINVAL);
1891 
1892 		if (vegam_populate_bapm_vddc_base_leakage_sidd(hwmgr))
1893 			PP_ASSERT_WITH_CODE(false,
1894 					"Attempt to populate BapmVddCBaseLeakage Hi and Lo "
1895 					"Sidd Failed!", return -EINVAL);
1896 
1897 		if (smu7_copy_bytes_to_smc(hwmgr, pm_fuse_table_offset,
1898 				(uint8_t *)&smu_data->power_tune_table,
1899 				(sizeof(struct SMU75_Discrete_PmFuses) - PMFUSES_AVFSSIZE),
1900 				SMC_RAM_END))
1901 			PP_ASSERT_WITH_CODE(false,
1902 					"Attempt to download PmFuseTable Failed!",
1903 					return -EINVAL);
1904 	}
1905 	return 0;
1906 }
1907 
vegam_enable_reconfig_cus(struct pp_hwmgr * hwmgr)1908 static int vegam_enable_reconfig_cus(struct pp_hwmgr *hwmgr)
1909 {
1910 	struct amdgpu_device *adev = hwmgr->adev;
1911 
1912 	smum_send_msg_to_smc_with_parameter(hwmgr,
1913 					    PPSMC_MSG_EnableModeSwitchRLCNotification,
1914 					    adev->gfx.cu_info.number);
1915 
1916 	return 0;
1917 }
1918 
vegam_init_smc_table(struct pp_hwmgr * hwmgr)1919 static int vegam_init_smc_table(struct pp_hwmgr *hwmgr)
1920 {
1921 	int result;
1922 	struct smu7_hwmgr *hw_data = (struct smu7_hwmgr *)(hwmgr->backend);
1923 	struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1924 
1925 	struct phm_ppt_v1_information *table_info =
1926 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
1927 	struct SMU75_Discrete_DpmTable *table = &(smu_data->smc_state_table);
1928 	uint8_t i;
1929 	struct pp_atomctrl_gpio_pin_assignment gpio_pin;
1930 	struct phm_ppt_v1_gpio_table *gpio_table =
1931 			(struct phm_ppt_v1_gpio_table *)table_info->gpio_table;
1932 	pp_atomctrl_clock_dividers_vi dividers;
1933 
1934 	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
1935 			PHM_PlatformCaps_AutomaticDCTransition);
1936 
1937 	vegam_initialize_power_tune_defaults(hwmgr);
1938 
1939 	if (SMU7_VOLTAGE_CONTROL_NONE != hw_data->voltage_control)
1940 		vegam_populate_smc_voltage_tables(hwmgr, table);
1941 
1942 	table->SystemFlags = 0;
1943 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1944 			PHM_PlatformCaps_AutomaticDCTransition))
1945 		table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC;
1946 
1947 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1948 			PHM_PlatformCaps_StepVddc))
1949 		table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC;
1950 
1951 	if (hw_data->is_memory_gddr5)
1952 		table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5;
1953 
1954 	if (hw_data->ulv_supported && table_info->us_ulv_voltage_offset) {
1955 		result = vegam_populate_ulv_state(hwmgr, table);
1956 		PP_ASSERT_WITH_CODE(!result,
1957 				"Failed to initialize ULV state!", return result);
1958 		cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1959 				ixCG_ULV_PARAMETER, SMU7_CGULVPARAMETER_DFLT);
1960 	}
1961 
1962 	result = vegam_populate_smc_link_level(hwmgr, table);
1963 	PP_ASSERT_WITH_CODE(!result,
1964 			"Failed to initialize Link Level!", return result);
1965 
1966 	result = vegam_populate_all_graphic_levels(hwmgr);
1967 	PP_ASSERT_WITH_CODE(!result,
1968 			"Failed to initialize Graphics Level!", return result);
1969 
1970 	result = vegam_populate_all_memory_levels(hwmgr);
1971 	PP_ASSERT_WITH_CODE(!result,
1972 			"Failed to initialize Memory Level!", return result);
1973 
1974 	result = vegam_populate_smc_acpi_level(hwmgr, table);
1975 	PP_ASSERT_WITH_CODE(!result,
1976 			"Failed to initialize ACPI Level!", return result);
1977 
1978 	result = vegam_populate_smc_vce_level(hwmgr, table);
1979 	PP_ASSERT_WITH_CODE(!result,
1980 			"Failed to initialize VCE Level!", return result);
1981 
1982 	/* Since only the initial state is completely set up at this point
1983 	 * (the other states are just copies of the boot state) we only
1984 	 * need to populate the  ARB settings for the initial state.
1985 	 */
1986 	result = vegam_program_memory_timing_parameters(hwmgr);
1987 	PP_ASSERT_WITH_CODE(!result,
1988 			"Failed to Write ARB settings for the initial state.", return result);
1989 
1990 	result = vegam_populate_smc_uvd_level(hwmgr, table);
1991 	PP_ASSERT_WITH_CODE(!result,
1992 			"Failed to initialize UVD Level!", return result);
1993 
1994 	result = vegam_populate_smc_boot_level(hwmgr, table);
1995 	PP_ASSERT_WITH_CODE(!result,
1996 			"Failed to initialize Boot Level!", return result);
1997 
1998 	result = vegam_populate_smc_initial_state(hwmgr);
1999 	PP_ASSERT_WITH_CODE(!result,
2000 			"Failed to initialize Boot State!", return result);
2001 
2002 	result = vegam_populate_bapm_parameters_in_dpm_table(hwmgr);
2003 	PP_ASSERT_WITH_CODE(!result,
2004 			"Failed to populate BAPM Parameters!", return result);
2005 
2006 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2007 			PHM_PlatformCaps_ClockStretcher)) {
2008 		result = vegam_populate_clock_stretcher_data_table(hwmgr);
2009 		PP_ASSERT_WITH_CODE(!result,
2010 				"Failed to populate Clock Stretcher Data Table!",
2011 				return result);
2012 	}
2013 
2014 	result = vegam_populate_avfs_parameters(hwmgr);
2015 	PP_ASSERT_WITH_CODE(!result,
2016 			"Failed to populate AVFS Parameters!", return result;);
2017 
2018 	table->CurrSclkPllRange = 0xff;
2019 	table->GraphicsVoltageChangeEnable  = 1;
2020 	table->GraphicsThermThrottleEnable  = 1;
2021 	table->GraphicsInterval = 1;
2022 	table->VoltageInterval  = 1;
2023 	table->ThermalInterval  = 1;
2024 	table->TemperatureLimitHigh =
2025 			table_info->cac_dtp_table->usTargetOperatingTemp *
2026 			SMU7_Q88_FORMAT_CONVERSION_UNIT;
2027 	table->TemperatureLimitLow  =
2028 			(table_info->cac_dtp_table->usTargetOperatingTemp - 1) *
2029 			SMU7_Q88_FORMAT_CONVERSION_UNIT;
2030 	table->MemoryVoltageChangeEnable = 1;
2031 	table->MemoryInterval = 1;
2032 	table->VoltageResponseTime = 0;
2033 	table->PhaseResponseTime = 0;
2034 	table->MemoryThermThrottleEnable = 1;
2035 
2036 	PP_ASSERT_WITH_CODE(hw_data->dpm_table.pcie_speed_table.count >= 1,
2037 			"There must be 1 or more PCIE levels defined in PPTable.",
2038 			return -EINVAL);
2039 	table->PCIeBootLinkLevel =
2040 			hw_data->dpm_table.pcie_speed_table.count;
2041 	table->PCIeGenInterval = 1;
2042 	table->VRConfig = 0;
2043 
2044 	result = vegam_populate_vr_config(hwmgr, table);
2045 	PP_ASSERT_WITH_CODE(!result,
2046 			"Failed to populate VRConfig setting!", return result);
2047 
2048 	table->ThermGpio = 17;
2049 	table->SclkStepSize = 0x4000;
2050 
2051 	if (atomctrl_get_pp_assign_pin(hwmgr,
2052 			VDDC_VRHOT_GPIO_PINID, &gpio_pin)) {
2053 		table->VRHotGpio = gpio_pin.uc_gpio_pin_bit_shift;
2054 		if (gpio_table)
2055 			table->VRHotLevel =
2056 					table_info->gpio_table->vrhot_triggered_sclk_dpm_index;
2057 	} else {
2058 		table->VRHotGpio = SMU7_UNUSED_GPIO_PIN;
2059 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2060 				PHM_PlatformCaps_RegulatorHot);
2061 	}
2062 
2063 	if (atomctrl_get_pp_assign_pin(hwmgr,
2064 			PP_AC_DC_SWITCH_GPIO_PINID,	&gpio_pin)) {
2065 		table->AcDcGpio = gpio_pin.uc_gpio_pin_bit_shift;
2066 		if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2067 				PHM_PlatformCaps_AutomaticDCTransition) &&
2068 				!smum_send_msg_to_smc(hwmgr, PPSMC_MSG_UseNewGPIOScheme))
2069 			phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2070 					PHM_PlatformCaps_SMCtoPPLIBAcdcGpioScheme);
2071 	} else {
2072 		table->AcDcGpio = SMU7_UNUSED_GPIO_PIN;
2073 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2074 				PHM_PlatformCaps_AutomaticDCTransition);
2075 	}
2076 
2077 	/* Thermal Output GPIO */
2078 	if (atomctrl_get_pp_assign_pin(hwmgr,
2079 			THERMAL_INT_OUTPUT_GPIO_PINID, &gpio_pin)) {
2080 		table->ThermOutGpio = gpio_pin.uc_gpio_pin_bit_shift;
2081 
2082 		/* For porlarity read GPIOPAD_A with assigned Gpio pin
2083 		 * since VBIOS will program this register to set 'inactive state',
2084 		 * driver can then determine 'active state' from this and
2085 		 * program SMU with correct polarity
2086 		 */
2087 		table->ThermOutPolarity =
2088 				(0 == (cgs_read_register(hwmgr->device, mmGPIOPAD_A) &
2089 				(1 << gpio_pin.uc_gpio_pin_bit_shift))) ? 1:0;
2090 		table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_ONLY;
2091 
2092 		/* if required, combine VRHot/PCC with thermal out GPIO */
2093 		if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2094 				PHM_PlatformCaps_RegulatorHot) &&
2095 			phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2096 				PHM_PlatformCaps_CombinePCCWithThermalSignal))
2097 			table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_VRHOT;
2098 	} else {
2099 		table->ThermOutGpio = 17;
2100 		table->ThermOutPolarity = 1;
2101 		table->ThermOutMode = SMU7_THERM_OUT_MODE_DISABLE;
2102 	}
2103 
2104 	/* Populate BIF_SCLK levels into SMC DPM table */
2105 	for (i = 0; i <= hw_data->dpm_table.pcie_speed_table.count; i++) {
2106 		result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
2107 				smu_data->bif_sclk_table[i], &dividers);
2108 		PP_ASSERT_WITH_CODE(!result,
2109 				"Can not find DFS divide id for Sclk",
2110 				return result);
2111 
2112 		if (i == 0)
2113 			table->Ulv.BifSclkDfs =
2114 					PP_HOST_TO_SMC_US((uint16_t)(dividers.pll_post_divider));
2115 		else
2116 			table->LinkLevel[i - 1].BifSclkDfs =
2117 					PP_HOST_TO_SMC_US((uint16_t)(dividers.pll_post_divider));
2118 	}
2119 
2120 	for (i = 0; i < SMU75_MAX_ENTRIES_SMIO; i++)
2121 		table->Smio[i] = PP_HOST_TO_SMC_UL(table->Smio[i]);
2122 
2123 	CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags);
2124 	CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig);
2125 	CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask1);
2126 	CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask2);
2127 	CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize);
2128 	CONVERT_FROM_HOST_TO_SMC_UL(table->CurrSclkPllRange);
2129 	CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh);
2130 	CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow);
2131 	CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime);
2132 	CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime);
2133 
2134 	/* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */
2135 	result = smu7_copy_bytes_to_smc(hwmgr,
2136 			smu_data->smu7_data.dpm_table_start +
2137 			offsetof(SMU75_Discrete_DpmTable, SystemFlags),
2138 			(uint8_t *)&(table->SystemFlags),
2139 			sizeof(SMU75_Discrete_DpmTable) - 3 * sizeof(SMU75_PIDController),
2140 			SMC_RAM_END);
2141 	PP_ASSERT_WITH_CODE(!result,
2142 			"Failed to upload dpm data to SMC memory!", return result);
2143 
2144 	result = vegam_populate_pm_fuses(hwmgr);
2145 	PP_ASSERT_WITH_CODE(!result,
2146 			"Failed to  populate PM fuses to SMC memory!", return result);
2147 
2148 	result = vegam_enable_reconfig_cus(hwmgr);
2149 	PP_ASSERT_WITH_CODE(!result,
2150 			"Failed to enable reconfigurable CUs!", return result);
2151 
2152 	return 0;
2153 }
2154 
vegam_get_offsetof(uint32_t type,uint32_t member)2155 static uint32_t vegam_get_offsetof(uint32_t type, uint32_t member)
2156 {
2157 	switch (type) {
2158 	case SMU_SoftRegisters:
2159 		switch (member) {
2160 		case HandshakeDisables:
2161 			return offsetof(SMU75_SoftRegisters, HandshakeDisables);
2162 		case VoltageChangeTimeout:
2163 			return offsetof(SMU75_SoftRegisters, VoltageChangeTimeout);
2164 		case AverageGraphicsActivity:
2165 			return offsetof(SMU75_SoftRegisters, AverageGraphicsActivity);
2166 		case AverageMemoryActivity:
2167 			return offsetof(SMU75_SoftRegisters, AverageMemoryActivity);
2168 		case PreVBlankGap:
2169 			return offsetof(SMU75_SoftRegisters, PreVBlankGap);
2170 		case VBlankTimeout:
2171 			return offsetof(SMU75_SoftRegisters, VBlankTimeout);
2172 		case UcodeLoadStatus:
2173 			return offsetof(SMU75_SoftRegisters, UcodeLoadStatus);
2174 		case DRAM_LOG_ADDR_H:
2175 			return offsetof(SMU75_SoftRegisters, DRAM_LOG_ADDR_H);
2176 		case DRAM_LOG_ADDR_L:
2177 			return offsetof(SMU75_SoftRegisters, DRAM_LOG_ADDR_L);
2178 		case DRAM_LOG_PHY_ADDR_H:
2179 			return offsetof(SMU75_SoftRegisters, DRAM_LOG_PHY_ADDR_H);
2180 		case DRAM_LOG_PHY_ADDR_L:
2181 			return offsetof(SMU75_SoftRegisters, DRAM_LOG_PHY_ADDR_L);
2182 		case DRAM_LOG_BUFF_SIZE:
2183 			return offsetof(SMU75_SoftRegisters, DRAM_LOG_BUFF_SIZE);
2184 		}
2185 		break;
2186 	case SMU_Discrete_DpmTable:
2187 		switch (member) {
2188 		case UvdBootLevel:
2189 			return offsetof(SMU75_Discrete_DpmTable, UvdBootLevel);
2190 		case VceBootLevel:
2191 			return offsetof(SMU75_Discrete_DpmTable, VceBootLevel);
2192 		case LowSclkInterruptThreshold:
2193 			return offsetof(SMU75_Discrete_DpmTable, LowSclkInterruptThreshold);
2194 		}
2195 		break;
2196 	}
2197 	pr_warn("can't get the offset of type %x member %x\n", type, member);
2198 	return 0;
2199 }
2200 
vegam_program_mem_timing_parameters(struct pp_hwmgr * hwmgr)2201 static int vegam_program_mem_timing_parameters(struct pp_hwmgr *hwmgr)
2202 {
2203 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2204 
2205 	if (data->need_update_smu7_dpm_table &
2206 		(DPMTABLE_OD_UPDATE_SCLK +
2207 		DPMTABLE_UPDATE_SCLK +
2208 		DPMTABLE_UPDATE_MCLK))
2209 		return vegam_program_memory_timing_parameters(hwmgr);
2210 
2211 	return 0;
2212 }
2213 
vegam_update_sclk_threshold(struct pp_hwmgr * hwmgr)2214 static int vegam_update_sclk_threshold(struct pp_hwmgr *hwmgr)
2215 {
2216 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2217 	struct vegam_smumgr *smu_data =
2218 			(struct vegam_smumgr *)(hwmgr->smu_backend);
2219 	int result = 0;
2220 	uint32_t low_sclk_interrupt_threshold = 0;
2221 
2222 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2223 			PHM_PlatformCaps_SclkThrottleLowNotification)
2224 	    && (data->low_sclk_interrupt_threshold != 0)) {
2225 		low_sclk_interrupt_threshold =
2226 				data->low_sclk_interrupt_threshold;
2227 
2228 		CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold);
2229 
2230 		result = smu7_copy_bytes_to_smc(
2231 				hwmgr,
2232 				smu_data->smu7_data.dpm_table_start +
2233 				offsetof(SMU75_Discrete_DpmTable,
2234 					LowSclkInterruptThreshold),
2235 				(uint8_t *)&low_sclk_interrupt_threshold,
2236 				sizeof(uint32_t),
2237 				SMC_RAM_END);
2238 	}
2239 	PP_ASSERT_WITH_CODE((result == 0),
2240 			"Failed to update SCLK threshold!", return result);
2241 
2242 	result = vegam_program_mem_timing_parameters(hwmgr);
2243 	PP_ASSERT_WITH_CODE((result == 0),
2244 			"Failed to program memory timing parameters!",
2245 			);
2246 
2247 	return result;
2248 }
2249 
vegam_thermal_avfs_enable(struct pp_hwmgr * hwmgr)2250 int vegam_thermal_avfs_enable(struct pp_hwmgr *hwmgr)
2251 {
2252 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2253 	int ret;
2254 
2255 	if (!hwmgr->avfs_supported)
2256 		return 0;
2257 
2258 	ret = smum_send_msg_to_smc(hwmgr, PPSMC_MSG_EnableAvfs);
2259 	if (!ret) {
2260 		if (data->apply_avfs_cks_off_voltage)
2261 			ret = smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ApplyAvfsCksOffVoltage);
2262 	}
2263 
2264 	return ret;
2265 }
2266 
vegam_thermal_setup_fan_table(struct pp_hwmgr * hwmgr)2267 static int vegam_thermal_setup_fan_table(struct pp_hwmgr *hwmgr)
2268 {
2269 	PP_ASSERT_WITH_CODE(hwmgr->thermal_controller.fanInfo.bNoFan,
2270 			"VBIOS fan info is not correct!",
2271 			);
2272 	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2273 			PHM_PlatformCaps_MicrocodeFanControl);
2274 	return 0;
2275 }
2276 
2277 const struct pp_smumgr_func vegam_smu_funcs = {
2278 	.name = "vegam_smu",
2279 	.smu_init = vegam_smu_init,
2280 	.smu_fini = smu7_smu_fini,
2281 	.start_smu = vegam_start_smu,
2282 	.check_fw_load_finish = smu7_check_fw_load_finish,
2283 	.request_smu_load_fw = smu7_reload_firmware,
2284 	.request_smu_load_specific_fw = NULL,
2285 	.send_msg_to_smc = smu7_send_msg_to_smc,
2286 	.send_msg_to_smc_with_parameter = smu7_send_msg_to_smc_with_parameter,
2287 	.process_firmware_header = vegam_process_firmware_header,
2288 	.is_dpm_running = vegam_is_dpm_running,
2289 	.get_mac_definition = vegam_get_mac_definition,
2290 	.update_smc_table = vegam_update_smc_table,
2291 	.init_smc_table = vegam_init_smc_table,
2292 	.get_offsetof = vegam_get_offsetof,
2293 	.populate_all_graphic_levels = vegam_populate_all_graphic_levels,
2294 	.populate_all_memory_levels = vegam_populate_all_memory_levels,
2295 	.update_sclk_threshold = vegam_update_sclk_threshold,
2296 	.is_hw_avfs_present = vegam_is_hw_avfs_present,
2297 	.thermal_avfs_enable = vegam_thermal_avfs_enable,
2298 	.thermal_setup_fan_table = vegam_thermal_setup_fan_table,
2299 };
2300