xref: /netbsd-src/sys/external/bsd/drm2/dist/drm/amd/powerplay/smumgr/amdgpu_tonga_smumgr.c (revision 2b73d18af7a98bc9907041875c671f63165f1d3e)
1 /*	$NetBSD: amdgpu_tonga_smumgr.c,v 1.3 2021/12/19 12:21:30 riastradh Exp $	*/
2 
3 /*
4  * Copyright 2015 Advanced Micro Devices, Inc.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  *
24  */
25 #include <sys/cdefs.h>
26 __KERNEL_RCSID(0, "$NetBSD: amdgpu_tonga_smumgr.c,v 1.3 2021/12/19 12:21:30 riastradh Exp $");
27 
28 #include "pp_debug.h"
29 #include <linux/types.h>
30 #include <linux/kernel.h>
31 #include <linux/pci.h>
32 #include <linux/slab.h>
33 #include <linux/gfp.h>
34 
35 #include "smumgr.h"
36 #include "tonga_smumgr.h"
37 #include "smu_ucode_xfer_vi.h"
38 #include "tonga_ppsmc.h"
39 #include "smu/smu_7_1_2_d.h"
40 #include "smu/smu_7_1_2_sh_mask.h"
41 #include "cgs_common.h"
42 #include "smu7_smumgr.h"
43 
44 #include "smu7_dyn_defaults.h"
45 
46 #include "smu7_hwmgr.h"
47 #include "hardwaremanager.h"
48 #include "ppatomctrl.h"
49 
50 #include "atombios.h"
51 
52 #include "pppcielanes.h"
53 #include "pp_endian.h"
54 
55 #include "gmc/gmc_8_1_d.h"
56 #include "gmc/gmc_8_1_sh_mask.h"
57 
58 #include "bif/bif_5_0_d.h"
59 #include "bif/bif_5_0_sh_mask.h"
60 
61 #include "dce/dce_10_0_d.h"
62 #include "dce/dce_10_0_sh_mask.h"
63 
64 #define POWERTUNE_DEFAULT_SET_MAX    1
65 #define MC_CG_ARB_FREQ_F1           0x0b
66 #define VDDC_VDDCI_DELTA            200
67 
68 
69 static const struct tonga_pt_defaults tonga_power_tune_data_set_array[POWERTUNE_DEFAULT_SET_MAX] = {
70 /* sviLoadLIneEn, SviLoadLineVddC, TDC_VDDC_ThrottleReleaseLimitPerc,  TDC_MAWt,
71  * TdcWaterfallCtl, DTEAmbientTempBase, DisplayCac,        BAPM_TEMP_GRADIENT
72  */
73 	{1,               0xF,             0xFD,                0x19,
74 	 5,               45,                 0,              0xB0000,
75 	 {0x79, 0x253, 0x25D, 0xAE, 0x72, 0x80, 0x83, 0x86, 0x6F, 0xC8,
76 		0xC9, 0xC9, 0x2F, 0x4D, 0x61},
77 	 {0x17C, 0x172, 0x180, 0x1BC, 0x1B3, 0x1BD, 0x206, 0x200, 0x203,
78 		0x25D, 0x25A, 0x255, 0x2C3, 0x2C5, 0x2B4}
79 	},
80 };
81 
82 /* [Fmin, Fmax, LDO_REFSEL, USE_FOR_LOW_FREQ] */
83 static const uint16_t tonga_clock_stretcher_lookup_table[2][4] = {
84 	{600, 1050, 3, 0},
85 	{600, 1050, 6, 1}
86 };
87 
88 /* [FF, SS] type, [] 4 voltage ranges,
89  * and [Floor Freq, Boundary Freq, VID min , VID max]
90  */
91 static const uint32_t tonga_clock_stretcher_ddt_table[2][4][4] = {
92 	{ {265, 529, 120, 128}, {325, 650, 96, 119}, {430, 860, 32, 95}, {0, 0, 0, 31} },
93 	{ {275, 550, 104, 112}, {319, 638, 96, 103}, {360, 720, 64, 95}, {384, 768, 32, 63} }
94 };
95 
96 /* [Use_For_Low_freq] value, [0%, 5%, 10%, 7.14%, 14.28%, 20%] */
97 static const uint8_t tonga_clock_stretch_amount_conversion[2][6] = {
98 	{0, 1, 3, 2, 4, 5},
99 	{0, 2, 4, 5, 6, 5}
100 };
101 
tonga_start_in_protection_mode(struct pp_hwmgr * hwmgr)102 static int tonga_start_in_protection_mode(struct pp_hwmgr *hwmgr)
103 {
104 	int result;
105 
106 	/* Assert reset */
107 	PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
108 		SMC_SYSCON_RESET_CNTL, rst_reg, 1);
109 
110 	result = smu7_upload_smu_firmware_image(hwmgr);
111 	if (result)
112 		return result;
113 
114 	/* Clear status */
115 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
116 		ixSMU_STATUS, 0);
117 
118 	/* Enable clock */
119 	PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
120 		SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0);
121 
122 	/* De-assert reset */
123 	PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
124 		SMC_SYSCON_RESET_CNTL, rst_reg, 0);
125 
126 	/* Set SMU Auto Start */
127 	PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
128 		SMU_INPUT_DATA, AUTO_START, 1);
129 
130 	/* Clear firmware interrupt enable flag */
131 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
132 		ixFIRMWARE_FLAGS, 0);
133 
134 	PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND,
135 		RCU_UC_EVENTS, INTERRUPTS_ENABLED, 1);
136 
137 	/**
138 	 * Call Test SMU message with 0x20000 offset to trigger SMU start
139 	 */
140 	smu7_send_msg_to_smc_offset(hwmgr);
141 
142 	/* Wait for done bit to be set */
143 	PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND,
144 		SMU_STATUS, SMU_DONE, 0);
145 
146 	/* Check pass/failed indicator */
147 	if (1 != PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device,
148 				CGS_IND_REG__SMC, SMU_STATUS, SMU_PASS)) {
149 		pr_err("SMU Firmware start failed\n");
150 		return -EINVAL;
151 	}
152 
153 	/* Wait for firmware to initialize */
154 	PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND,
155 		FIRMWARE_FLAGS, INTERRUPTS_ENABLED, 1);
156 
157 	return 0;
158 }
159 
tonga_start_in_non_protection_mode(struct pp_hwmgr * hwmgr)160 static int tonga_start_in_non_protection_mode(struct pp_hwmgr *hwmgr)
161 {
162 	int result = 0;
163 
164 	/* wait for smc boot up */
165 	PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND,
166 		RCU_UC_EVENTS, boot_seq_done, 0);
167 
168 	/*Clear firmware interrupt enable flag*/
169 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
170 		ixFIRMWARE_FLAGS, 0);
171 
172 
173 	PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
174 		SMC_SYSCON_RESET_CNTL, rst_reg, 1);
175 
176 	result = smu7_upload_smu_firmware_image(hwmgr);
177 
178 	if (result != 0)
179 		return result;
180 
181 	/* Set smc instruct start point at 0x0 */
182 	smu7_program_jump_on_start(hwmgr);
183 
184 
185 	PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
186 		SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0);
187 
188 	/*De-assert reset*/
189 	PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
190 		SMC_SYSCON_RESET_CNTL, rst_reg, 0);
191 
192 	/* Wait for firmware to initialize */
193 	PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND,
194 		FIRMWARE_FLAGS, INTERRUPTS_ENABLED, 1);
195 
196 	return result;
197 }
198 
tonga_start_smu(struct pp_hwmgr * hwmgr)199 static int tonga_start_smu(struct pp_hwmgr *hwmgr)
200 {
201 	struct tonga_smumgr *priv = hwmgr->smu_backend;
202 	int result;
203 
204 	/* Only start SMC if SMC RAM is not running */
205 	if (!smu7_is_smc_ram_running(hwmgr) && hwmgr->not_vf) {
206 		/*Check if SMU is running in protected mode*/
207 		if (0 == PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
208 					SMU_FIRMWARE, SMU_MODE)) {
209 			result = tonga_start_in_non_protection_mode(hwmgr);
210 			if (result)
211 				return result;
212 		} else {
213 			result = tonga_start_in_protection_mode(hwmgr);
214 			if (result)
215 				return result;
216 		}
217 	}
218 
219 	/* Setup SoftRegsStart here to visit the register UcodeLoadStatus
220 	 * to check fw loading state
221 	 */
222 	smu7_read_smc_sram_dword(hwmgr,
223 			SMU72_FIRMWARE_HEADER_LOCATION +
224 			offsetof(SMU72_Firmware_Header, SoftRegisters),
225 			&(priv->smu7_data.soft_regs_start), 0x40000);
226 
227 	result = smu7_request_smu_load_fw(hwmgr);
228 
229 	return result;
230 }
231 
tonga_smu_init(struct pp_hwmgr * hwmgr)232 static int tonga_smu_init(struct pp_hwmgr *hwmgr)
233 {
234 	struct tonga_smumgr *tonga_priv = NULL;
235 
236 	tonga_priv = kzalloc(sizeof(struct tonga_smumgr), GFP_KERNEL);
237 	if (tonga_priv == NULL)
238 		return -ENOMEM;
239 
240 	hwmgr->smu_backend = tonga_priv;
241 
242 	if (smu7_init(hwmgr)) {
243 		kfree(tonga_priv);
244 		return -EINVAL;
245 	}
246 
247 	return 0;
248 }
249 
250 
tonga_get_dependency_volt_by_clk(struct pp_hwmgr * hwmgr,phm_ppt_v1_clock_voltage_dependency_table * allowed_clock_voltage_table,uint32_t clock,SMU_VoltageLevel * voltage,uint32_t * mvdd)251 static int tonga_get_dependency_volt_by_clk(struct pp_hwmgr *hwmgr,
252 	phm_ppt_v1_clock_voltage_dependency_table *allowed_clock_voltage_table,
253 	uint32_t clock, SMU_VoltageLevel *voltage, uint32_t *mvdd)
254 {
255 	uint32_t i = 0;
256 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
257 	struct phm_ppt_v1_information *pptable_info =
258 			   (struct phm_ppt_v1_information *)(hwmgr->pptable);
259 
260 	/* clock - voltage dependency table is empty table */
261 	if (allowed_clock_voltage_table->count == 0)
262 		return -EINVAL;
263 
264 	for (i = 0; i < allowed_clock_voltage_table->count; i++) {
265 		/* find first sclk bigger than request */
266 		if (allowed_clock_voltage_table->entries[i].clk >= clock) {
267 			voltage->VddGfx = phm_get_voltage_index(
268 					pptable_info->vddgfx_lookup_table,
269 				allowed_clock_voltage_table->entries[i].vddgfx);
270 			voltage->Vddc = phm_get_voltage_index(
271 						pptable_info->vddc_lookup_table,
272 				  allowed_clock_voltage_table->entries[i].vddc);
273 
274 			if (allowed_clock_voltage_table->entries[i].vddci)
275 				voltage->Vddci =
276 					phm_get_voltage_id(&data->vddci_voltage_table, allowed_clock_voltage_table->entries[i].vddci);
277 			else
278 				voltage->Vddci =
279 					phm_get_voltage_id(&data->vddci_voltage_table,
280 						allowed_clock_voltage_table->entries[i].vddc - VDDC_VDDCI_DELTA);
281 
282 
283 			if (allowed_clock_voltage_table->entries[i].mvdd)
284 				*mvdd = (uint32_t) allowed_clock_voltage_table->entries[i].mvdd;
285 
286 			voltage->Phases = 1;
287 			return 0;
288 		}
289 	}
290 
291 	/* sclk is bigger than max sclk in the dependence table */
292 	voltage->VddGfx = phm_get_voltage_index(pptable_info->vddgfx_lookup_table,
293 		allowed_clock_voltage_table->entries[i-1].vddgfx);
294 	voltage->Vddc = phm_get_voltage_index(pptable_info->vddc_lookup_table,
295 		allowed_clock_voltage_table->entries[i-1].vddc);
296 
297 	if (allowed_clock_voltage_table->entries[i-1].vddci)
298 		voltage->Vddci = phm_get_voltage_id(&data->vddci_voltage_table,
299 			allowed_clock_voltage_table->entries[i-1].vddci);
300 
301 	if (allowed_clock_voltage_table->entries[i-1].mvdd)
302 		*mvdd = (uint32_t) allowed_clock_voltage_table->entries[i-1].mvdd;
303 
304 	return 0;
305 }
306 
tonga_populate_smc_vddc_table(struct pp_hwmgr * hwmgr,SMU72_Discrete_DpmTable * table)307 static int tonga_populate_smc_vddc_table(struct pp_hwmgr *hwmgr,
308 			SMU72_Discrete_DpmTable *table)
309 {
310 	unsigned int count;
311 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
312 
313 	if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
314 		table->VddcLevelCount = data->vddc_voltage_table.count;
315 		for (count = 0; count < table->VddcLevelCount; count++) {
316 			table->VddcTable[count] =
317 				PP_HOST_TO_SMC_US(data->vddc_voltage_table.entries[count].value * VOLTAGE_SCALE);
318 		}
319 		CONVERT_FROM_HOST_TO_SMC_UL(table->VddcLevelCount);
320 	}
321 	return 0;
322 }
323 
tonga_populate_smc_vdd_gfx_table(struct pp_hwmgr * hwmgr,SMU72_Discrete_DpmTable * table)324 static int tonga_populate_smc_vdd_gfx_table(struct pp_hwmgr *hwmgr,
325 			SMU72_Discrete_DpmTable *table)
326 {
327 	unsigned int count;
328 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
329 
330 	if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_gfx_control) {
331 		table->VddGfxLevelCount = data->vddgfx_voltage_table.count;
332 		for (count = 0; count < data->vddgfx_voltage_table.count; count++) {
333 			table->VddGfxTable[count] =
334 				PP_HOST_TO_SMC_US(data->vddgfx_voltage_table.entries[count].value * VOLTAGE_SCALE);
335 		}
336 		CONVERT_FROM_HOST_TO_SMC_UL(table->VddGfxLevelCount);
337 	}
338 	return 0;
339 }
340 
tonga_populate_smc_vdd_ci_table(struct pp_hwmgr * hwmgr,SMU72_Discrete_DpmTable * table)341 static int tonga_populate_smc_vdd_ci_table(struct pp_hwmgr *hwmgr,
342 			SMU72_Discrete_DpmTable *table)
343 {
344 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
345 	uint32_t count;
346 
347 	table->VddciLevelCount = data->vddci_voltage_table.count;
348 	for (count = 0; count < table->VddciLevelCount; count++) {
349 		if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) {
350 			table->VddciTable[count] =
351 				PP_HOST_TO_SMC_US(data->vddci_voltage_table.entries[count].value * VOLTAGE_SCALE);
352 		} else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
353 			table->SmioTable1.Pattern[count].Voltage =
354 				PP_HOST_TO_SMC_US(data->vddci_voltage_table.entries[count].value * VOLTAGE_SCALE);
355 			/* Index into DpmTable.Smio. Drive bits from Smio entry to get this voltage level. */
356 			table->SmioTable1.Pattern[count].Smio =
357 				(uint8_t) count;
358 			table->Smio[count] |=
359 				data->vddci_voltage_table.entries[count].smio_low;
360 			table->VddciTable[count] =
361 				PP_HOST_TO_SMC_US(data->vddci_voltage_table.entries[count].value * VOLTAGE_SCALE);
362 		}
363 	}
364 
365 	table->SmioMask1 = data->vddci_voltage_table.mask_low;
366 	CONVERT_FROM_HOST_TO_SMC_UL(table->VddciLevelCount);
367 
368 	return 0;
369 }
370 
tonga_populate_smc_mvdd_table(struct pp_hwmgr * hwmgr,SMU72_Discrete_DpmTable * table)371 static int tonga_populate_smc_mvdd_table(struct pp_hwmgr *hwmgr,
372 			SMU72_Discrete_DpmTable *table)
373 {
374 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
375 	uint32_t count;
376 
377 	if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
378 		table->MvddLevelCount = data->mvdd_voltage_table.count;
379 		for (count = 0; count < table->MvddLevelCount; count++) {
380 			table->SmioTable2.Pattern[count].Voltage =
381 				PP_HOST_TO_SMC_US(data->mvdd_voltage_table.entries[count].value * VOLTAGE_SCALE);
382 			/* Index into DpmTable.Smio. Drive bits from Smio entry to get this voltage level.*/
383 			table->SmioTable2.Pattern[count].Smio =
384 				(uint8_t) count;
385 			table->Smio[count] |=
386 				data->mvdd_voltage_table.entries[count].smio_low;
387 		}
388 		table->SmioMask2 = data->mvdd_voltage_table.mask_low;
389 
390 		CONVERT_FROM_HOST_TO_SMC_UL(table->MvddLevelCount);
391 	}
392 
393 	return 0;
394 }
395 
tonga_populate_cac_tables(struct pp_hwmgr * hwmgr,SMU72_Discrete_DpmTable * table)396 static int tonga_populate_cac_tables(struct pp_hwmgr *hwmgr,
397 			SMU72_Discrete_DpmTable *table)
398 {
399 	uint32_t count;
400 	uint8_t index = 0;
401 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
402 	struct phm_ppt_v1_information *pptable_info =
403 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
404 	struct phm_ppt_v1_voltage_lookup_table *vddgfx_lookup_table =
405 					   pptable_info->vddgfx_lookup_table;
406 	struct phm_ppt_v1_voltage_lookup_table *vddc_lookup_table =
407 						pptable_info->vddc_lookup_table;
408 
409 	/* table is already swapped, so in order to use the value from it
410 	 * we need to swap it back.
411 	 */
412 	uint32_t vddc_level_count = PP_SMC_TO_HOST_UL(table->VddcLevelCount);
413 	uint32_t vddgfx_level_count = PP_SMC_TO_HOST_UL(table->VddGfxLevelCount);
414 
415 	for (count = 0; count < vddc_level_count; count++) {
416 		/* We are populating vddc CAC data to BapmVddc table in split and merged mode */
417 		index = phm_get_voltage_index(vddc_lookup_table,
418 			data->vddc_voltage_table.entries[count].value);
419 		table->BapmVddcVidLoSidd[count] =
420 			convert_to_vid(vddc_lookup_table->entries[index].us_cac_low);
421 		table->BapmVddcVidHiSidd[count] =
422 			convert_to_vid(vddc_lookup_table->entries[index].us_cac_mid);
423 		table->BapmVddcVidHiSidd2[count] =
424 			convert_to_vid(vddc_lookup_table->entries[index].us_cac_high);
425 	}
426 
427 	if (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) {
428 		/* We are populating vddgfx CAC data to BapmVddgfx table in split mode */
429 		for (count = 0; count < vddgfx_level_count; count++) {
430 			index = phm_get_voltage_index(vddgfx_lookup_table,
431 				convert_to_vid(vddgfx_lookup_table->entries[index].us_cac_mid));
432 			table->BapmVddGfxVidHiSidd2[count] =
433 				convert_to_vid(vddgfx_lookup_table->entries[index].us_cac_high);
434 		}
435 	} else {
436 		for (count = 0; count < vddc_level_count; count++) {
437 			index = phm_get_voltage_index(vddc_lookup_table,
438 				data->vddc_voltage_table.entries[count].value);
439 			table->BapmVddGfxVidLoSidd[count] =
440 				convert_to_vid(vddc_lookup_table->entries[index].us_cac_low);
441 			table->BapmVddGfxVidHiSidd[count] =
442 				convert_to_vid(vddc_lookup_table->entries[index].us_cac_mid);
443 			table->BapmVddGfxVidHiSidd2[count] =
444 				convert_to_vid(vddc_lookup_table->entries[index].us_cac_high);
445 		}
446 	}
447 
448 	return 0;
449 }
450 
tonga_populate_smc_voltage_tables(struct pp_hwmgr * hwmgr,SMU72_Discrete_DpmTable * table)451 static int tonga_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr,
452 	SMU72_Discrete_DpmTable *table)
453 {
454 	int result;
455 
456 	result = tonga_populate_smc_vddc_table(hwmgr, table);
457 	PP_ASSERT_WITH_CODE(!result,
458 			"can not populate VDDC voltage table to SMC",
459 			return -EINVAL);
460 
461 	result = tonga_populate_smc_vdd_ci_table(hwmgr, table);
462 	PP_ASSERT_WITH_CODE(!result,
463 			"can not populate VDDCI voltage table to SMC",
464 			return -EINVAL);
465 
466 	result = tonga_populate_smc_vdd_gfx_table(hwmgr, table);
467 	PP_ASSERT_WITH_CODE(!result,
468 			"can not populate VDDGFX voltage table to SMC",
469 			return -EINVAL);
470 
471 	result = tonga_populate_smc_mvdd_table(hwmgr, table);
472 	PP_ASSERT_WITH_CODE(!result,
473 			"can not populate MVDD voltage table to SMC",
474 			return -EINVAL);
475 
476 	result = tonga_populate_cac_tables(hwmgr, table);
477 	PP_ASSERT_WITH_CODE(!result,
478 			"can not populate CAC voltage tables to SMC",
479 			return -EINVAL);
480 
481 	return 0;
482 }
483 
tonga_populate_ulv_level(struct pp_hwmgr * hwmgr,struct SMU72_Discrete_Ulv * state)484 static int tonga_populate_ulv_level(struct pp_hwmgr *hwmgr,
485 		struct SMU72_Discrete_Ulv *state)
486 {
487 	struct phm_ppt_v1_information *table_info =
488 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
489 
490 	state->CcPwrDynRm = 0;
491 	state->CcPwrDynRm1 = 0;
492 
493 	state->VddcOffset = (uint16_t) table_info->us_ulv_voltage_offset;
494 	state->VddcOffsetVid = (uint8_t)(table_info->us_ulv_voltage_offset *
495 			VOLTAGE_VID_OFFSET_SCALE2 / VOLTAGE_VID_OFFSET_SCALE1);
496 
497 	state->VddcPhase = 1;
498 
499 	CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm);
500 	CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1);
501 	CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset);
502 
503 	return 0;
504 }
505 
tonga_populate_ulv_state(struct pp_hwmgr * hwmgr,struct SMU72_Discrete_DpmTable * table)506 static int tonga_populate_ulv_state(struct pp_hwmgr *hwmgr,
507 		struct SMU72_Discrete_DpmTable *table)
508 {
509 	return tonga_populate_ulv_level(hwmgr, &table->Ulv);
510 }
511 
tonga_populate_smc_link_level(struct pp_hwmgr * hwmgr,SMU72_Discrete_DpmTable * table)512 static int tonga_populate_smc_link_level(struct pp_hwmgr *hwmgr, SMU72_Discrete_DpmTable *table)
513 {
514 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
515 	struct smu7_dpm_table *dpm_table = &data->dpm_table;
516 	struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smu_backend);
517 	uint32_t i;
518 
519 	/* Index (dpm_table->pcie_speed_table.count) is reserved for PCIE boot level. */
520 	for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) {
521 		table->LinkLevel[i].PcieGenSpeed  =
522 			(uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value;
523 		table->LinkLevel[i].PcieLaneCount =
524 			(uint8_t)encode_pcie_lane_width(dpm_table->pcie_speed_table.dpm_levels[i].param1);
525 		table->LinkLevel[i].EnabledForActivity =
526 			1;
527 		table->LinkLevel[i].SPC =
528 			(uint8_t)(data->pcie_spc_cap & 0xff);
529 		table->LinkLevel[i].DownThreshold =
530 			PP_HOST_TO_SMC_UL(5);
531 		table->LinkLevel[i].UpThreshold =
532 			PP_HOST_TO_SMC_UL(30);
533 	}
534 
535 	smu_data->smc_state_table.LinkLevelCount =
536 		(uint8_t)dpm_table->pcie_speed_table.count;
537 	data->dpm_level_enable_mask.pcie_dpm_enable_mask =
538 		phm_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table);
539 
540 	return 0;
541 }
542 
tonga_calculate_sclk_params(struct pp_hwmgr * hwmgr,uint32_t engine_clock,SMU72_Discrete_GraphicsLevel * sclk)543 static int tonga_calculate_sclk_params(struct pp_hwmgr *hwmgr,
544 		uint32_t engine_clock, SMU72_Discrete_GraphicsLevel *sclk)
545 {
546 	const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
547 	pp_atomctrl_clock_dividers_vi dividers;
548 	uint32_t spll_func_cntl            = data->clock_registers.vCG_SPLL_FUNC_CNTL;
549 	uint32_t spll_func_cntl_3          = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
550 	uint32_t spll_func_cntl_4          = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
551 	uint32_t cg_spll_spread_spectrum   = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
552 	uint32_t cg_spll_spread_spectrum_2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
553 	uint32_t    reference_clock;
554 	uint32_t reference_divider;
555 	uint32_t fbdiv;
556 	int result;
557 
558 	/* get the engine clock dividers for this clock value*/
559 	result = atomctrl_get_engine_pll_dividers_vi(hwmgr, engine_clock,  &dividers);
560 
561 	PP_ASSERT_WITH_CODE(result == 0,
562 		"Error retrieving Engine Clock dividers from VBIOS.", return result);
563 
564 	/* To get FBDIV we need to multiply this by 16384 and divide it by Fref.*/
565 	reference_clock = atomctrl_get_reference_clock(hwmgr);
566 
567 	reference_divider = 1 + dividers.uc_pll_ref_div;
568 
569 	/* low 14 bits is fraction and high 12 bits is divider*/
570 	fbdiv = dividers.ul_fb_div.ul_fb_divider & 0x3FFFFFF;
571 
572 	/* SPLL_FUNC_CNTL setup*/
573 	spll_func_cntl = PHM_SET_FIELD(spll_func_cntl,
574 		CG_SPLL_FUNC_CNTL, SPLL_REF_DIV, dividers.uc_pll_ref_div);
575 	spll_func_cntl = PHM_SET_FIELD(spll_func_cntl,
576 		CG_SPLL_FUNC_CNTL, SPLL_PDIV_A,  dividers.uc_pll_post_div);
577 
578 	/* SPLL_FUNC_CNTL_3 setup*/
579 	spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3,
580 		CG_SPLL_FUNC_CNTL_3, SPLL_FB_DIV, fbdiv);
581 
582 	/* set to use fractional accumulation*/
583 	spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3,
584 		CG_SPLL_FUNC_CNTL_3, SPLL_DITHEN, 1);
585 
586 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
587 			PHM_PlatformCaps_EngineSpreadSpectrumSupport)) {
588 		pp_atomctrl_internal_ss_info ss_info;
589 
590 		uint32_t vcoFreq = engine_clock * dividers.uc_pll_post_div;
591 		if (0 == atomctrl_get_engine_clock_spread_spectrum(hwmgr, vcoFreq, &ss_info)) {
592 			/*
593 			* ss_info.speed_spectrum_percentage -- in unit of 0.01%
594 			* ss_info.speed_spectrum_rate -- in unit of khz
595 			*/
596 			/* clks = reference_clock * 10 / (REFDIV + 1) / speed_spectrum_rate / 2 */
597 			uint32_t clkS = reference_clock * 5 / (reference_divider * ss_info.speed_spectrum_rate);
598 
599 			/* clkv = 2 * D * fbdiv / NS */
600 			uint32_t clkV = 4 * ss_info.speed_spectrum_percentage * fbdiv / (clkS * 10000);
601 
602 			cg_spll_spread_spectrum =
603 				PHM_SET_FIELD(cg_spll_spread_spectrum, CG_SPLL_SPREAD_SPECTRUM, CLKS, clkS);
604 			cg_spll_spread_spectrum =
605 				PHM_SET_FIELD(cg_spll_spread_spectrum, CG_SPLL_SPREAD_SPECTRUM, SSEN, 1);
606 			cg_spll_spread_spectrum_2 =
607 				PHM_SET_FIELD(cg_spll_spread_spectrum_2, CG_SPLL_SPREAD_SPECTRUM_2, CLKV, clkV);
608 		}
609 	}
610 
611 	sclk->SclkFrequency        = engine_clock;
612 	sclk->CgSpllFuncCntl3      = spll_func_cntl_3;
613 	sclk->CgSpllFuncCntl4      = spll_func_cntl_4;
614 	sclk->SpllSpreadSpectrum   = cg_spll_spread_spectrum;
615 	sclk->SpllSpreadSpectrum2  = cg_spll_spread_spectrum_2;
616 	sclk->SclkDid              = (uint8_t)dividers.pll_post_divider;
617 
618 	return 0;
619 }
620 
tonga_populate_single_graphic_level(struct pp_hwmgr * hwmgr,uint32_t engine_clock,SMU72_Discrete_GraphicsLevel * graphic_level)621 static int tonga_populate_single_graphic_level(struct pp_hwmgr *hwmgr,
622 						uint32_t engine_clock,
623 				SMU72_Discrete_GraphicsLevel *graphic_level)
624 {
625 	int result;
626 	uint32_t mvdd;
627 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
628 	struct phm_ppt_v1_information *pptable_info =
629 			    (struct phm_ppt_v1_information *)(hwmgr->pptable);
630 	phm_ppt_v1_clock_voltage_dependency_table *vdd_dep_table = NULL;
631 
632 	result = tonga_calculate_sclk_params(hwmgr, engine_clock, graphic_level);
633 
634 	if (hwmgr->od_enabled)
635 		vdd_dep_table = (phm_ppt_v1_clock_voltage_dependency_table *)&data->odn_dpm_table.vdd_dependency_on_sclk;
636 	else
637 		vdd_dep_table = pptable_info->vdd_dep_on_sclk;
638 
639 	/* populate graphics levels*/
640 	result = tonga_get_dependency_volt_by_clk(hwmgr,
641 		vdd_dep_table, engine_clock,
642 		&graphic_level->MinVoltage, &mvdd);
643 	PP_ASSERT_WITH_CODE((!result),
644 		"can not find VDDC voltage value for VDDC "
645 		"engine clock dependency table", return result);
646 
647 	/* SCLK frequency in units of 10KHz*/
648 	graphic_level->SclkFrequency = engine_clock;
649 	/* Indicates maximum activity level for this performance level. 50% for now*/
650 	graphic_level->ActivityLevel = data->current_profile_setting.sclk_activity;
651 
652 	graphic_level->CcPwrDynRm = 0;
653 	graphic_level->CcPwrDynRm1 = 0;
654 	/* this level can be used if activity is high enough.*/
655 	graphic_level->EnabledForActivity = 0;
656 	/* this level can be used for throttling.*/
657 	graphic_level->EnabledForThrottle = 1;
658 	graphic_level->UpHyst = data->current_profile_setting.sclk_up_hyst;
659 	graphic_level->DownHyst = data->current_profile_setting.sclk_down_hyst;
660 	graphic_level->VoltageDownHyst = 0;
661 	graphic_level->PowerThrottle = 0;
662 
663 	data->display_timing.min_clock_in_sr =
664 			hwmgr->display_config->min_core_set_clock_in_sr;
665 
666 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
667 			PHM_PlatformCaps_SclkDeepSleep))
668 		graphic_level->DeepSleepDivId =
669 				smu7_get_sleep_divider_id_from_clock(engine_clock,
670 						data->display_timing.min_clock_in_sr);
671 
672 	/* Default to slow, highest DPM level will be set to PPSMC_DISPLAY_WATERMARK_LOW later.*/
673 	graphic_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
674 
675 	if (!result) {
676 		/* CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->MinVoltage);*/
677 		/* CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->MinVddcPhases);*/
678 		CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SclkFrequency);
679 		CONVERT_FROM_HOST_TO_SMC_US(graphic_level->ActivityLevel);
680 		CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CgSpllFuncCntl3);
681 		CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CgSpllFuncCntl4);
682 		CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SpllSpreadSpectrum);
683 		CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SpllSpreadSpectrum2);
684 		CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CcPwrDynRm);
685 		CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CcPwrDynRm1);
686 	}
687 
688 	return result;
689 }
690 
tonga_populate_all_graphic_levels(struct pp_hwmgr * hwmgr)691 static int tonga_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
692 {
693 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
694 	struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smu_backend);
695 	struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
696 	struct smu7_dpm_table *dpm_table = &data->dpm_table;
697 	struct phm_ppt_v1_pcie_table *pcie_table = pptable_info->pcie_table;
698 	uint8_t pcie_entry_count = (uint8_t) data->dpm_table.pcie_speed_table.count;
699 	uint32_t level_array_address = smu_data->smu7_data.dpm_table_start +
700 				offsetof(SMU72_Discrete_DpmTable, GraphicsLevel);
701 
702 	uint32_t level_array_size = sizeof(SMU72_Discrete_GraphicsLevel) *
703 						SMU72_MAX_LEVELS_GRAPHICS;
704 
705 	SMU72_Discrete_GraphicsLevel *levels = smu_data->smc_state_table.GraphicsLevel;
706 
707 	uint32_t i, max_entry;
708 	uint8_t highest_pcie_level_enabled = 0;
709 	uint8_t lowest_pcie_level_enabled = 0, mid_pcie_level_enabled = 0;
710 	uint8_t count = 0;
711 	int result = 0;
712 
713 	memset(levels, 0x00, level_array_size);
714 
715 	for (i = 0; i < dpm_table->sclk_table.count; i++) {
716 		result = tonga_populate_single_graphic_level(hwmgr,
717 					dpm_table->sclk_table.dpm_levels[i].value,
718 					&(smu_data->smc_state_table.GraphicsLevel[i]));
719 		if (result != 0)
720 			return result;
721 
722 		/* Making sure only DPM level 0-1 have Deep Sleep Div ID populated. */
723 		if (i > 1)
724 			smu_data->smc_state_table.GraphicsLevel[i].DeepSleepDivId = 0;
725 	}
726 
727 	/* Only enable level 0 for now. */
728 	smu_data->smc_state_table.GraphicsLevel[0].EnabledForActivity = 1;
729 
730 	/* set highest level watermark to high */
731 	if (dpm_table->sclk_table.count > 1)
732 		smu_data->smc_state_table.GraphicsLevel[dpm_table->sclk_table.count-1].DisplayWatermark =
733 			PPSMC_DISPLAY_WATERMARK_HIGH;
734 
735 	smu_data->smc_state_table.GraphicsDpmLevelCount =
736 		(uint8_t)dpm_table->sclk_table.count;
737 	data->dpm_level_enable_mask.sclk_dpm_enable_mask =
738 		phm_get_dpm_level_enable_mask_value(&dpm_table->sclk_table);
739 
740 	if (pcie_table != NULL) {
741 		PP_ASSERT_WITH_CODE((pcie_entry_count >= 1),
742 			"There must be 1 or more PCIE levels defined in PPTable.",
743 			return -EINVAL);
744 		max_entry = pcie_entry_count - 1; /* for indexing, we need to decrement by 1.*/
745 		for (i = 0; i < dpm_table->sclk_table.count; i++) {
746 			smu_data->smc_state_table.GraphicsLevel[i].pcieDpmLevel =
747 				(uint8_t) ((i < max_entry) ? i : max_entry);
748 		}
749 	} else {
750 		if (0 == data->dpm_level_enable_mask.pcie_dpm_enable_mask)
751 			pr_err("Pcie Dpm Enablemask is 0 !");
752 
753 		while (data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
754 				((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
755 					(1<<(highest_pcie_level_enabled+1))) != 0)) {
756 			highest_pcie_level_enabled++;
757 		}
758 
759 		while (data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
760 				((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
761 					(1<<lowest_pcie_level_enabled)) == 0)) {
762 			lowest_pcie_level_enabled++;
763 		}
764 
765 		while ((count < highest_pcie_level_enabled) &&
766 				((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
767 					(1<<(lowest_pcie_level_enabled+1+count))) == 0)) {
768 			count++;
769 		}
770 		mid_pcie_level_enabled = (lowest_pcie_level_enabled+1+count) < highest_pcie_level_enabled ?
771 			(lowest_pcie_level_enabled+1+count) : highest_pcie_level_enabled;
772 
773 
774 		/* set pcieDpmLevel to highest_pcie_level_enabled*/
775 		for (i = 2; i < dpm_table->sclk_table.count; i++)
776 			smu_data->smc_state_table.GraphicsLevel[i].pcieDpmLevel = highest_pcie_level_enabled;
777 
778 		/* set pcieDpmLevel to lowest_pcie_level_enabled*/
779 		smu_data->smc_state_table.GraphicsLevel[0].pcieDpmLevel = lowest_pcie_level_enabled;
780 
781 		/* set pcieDpmLevel to mid_pcie_level_enabled*/
782 		smu_data->smc_state_table.GraphicsLevel[1].pcieDpmLevel = mid_pcie_level_enabled;
783 	}
784 	/* level count will send to smc once at init smc table and never change*/
785 	result = smu7_copy_bytes_to_smc(hwmgr, level_array_address,
786 				(uint8_t *)levels, (uint32_t)level_array_size,
787 								SMC_RAM_END);
788 
789 	return result;
790 }
791 
tonga_calculate_mclk_params(struct pp_hwmgr * hwmgr,uint32_t memory_clock,SMU72_Discrete_MemoryLevel * mclk,bool strobe_mode,bool dllStateOn)792 static int tonga_calculate_mclk_params(
793 		struct pp_hwmgr *hwmgr,
794 		uint32_t memory_clock,
795 		SMU72_Discrete_MemoryLevel *mclk,
796 		bool strobe_mode,
797 		bool dllStateOn
798 		)
799 {
800 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
801 
802 	uint32_t dll_cntl = data->clock_registers.vDLL_CNTL;
803 	uint32_t mclk_pwrmgt_cntl = data->clock_registers.vMCLK_PWRMGT_CNTL;
804 	uint32_t mpll_ad_func_cntl = data->clock_registers.vMPLL_AD_FUNC_CNTL;
805 	uint32_t mpll_dq_func_cntl = data->clock_registers.vMPLL_DQ_FUNC_CNTL;
806 	uint32_t mpll_func_cntl = data->clock_registers.vMPLL_FUNC_CNTL;
807 	uint32_t mpll_func_cntl_1 = data->clock_registers.vMPLL_FUNC_CNTL_1;
808 	uint32_t mpll_func_cntl_2 = data->clock_registers.vMPLL_FUNC_CNTL_2;
809 	uint32_t mpll_ss1 = data->clock_registers.vMPLL_SS1;
810 	uint32_t mpll_ss2 = data->clock_registers.vMPLL_SS2;
811 
812 	pp_atomctrl_memory_clock_param mpll_param;
813 	int result;
814 
815 	result = atomctrl_get_memory_pll_dividers_si(hwmgr,
816 				memory_clock, &mpll_param, strobe_mode);
817 	PP_ASSERT_WITH_CODE(
818 			!result,
819 			"Error retrieving Memory Clock Parameters from VBIOS.",
820 			return result);
821 
822 	/* MPLL_FUNC_CNTL setup*/
823 	mpll_func_cntl = PHM_SET_FIELD(mpll_func_cntl, MPLL_FUNC_CNTL, BWCTRL,
824 					mpll_param.bw_ctrl);
825 
826 	/* MPLL_FUNC_CNTL_1 setup*/
827 	mpll_func_cntl_1  = PHM_SET_FIELD(mpll_func_cntl_1,
828 					MPLL_FUNC_CNTL_1, CLKF,
829 					mpll_param.mpll_fb_divider.cl_kf);
830 	mpll_func_cntl_1  = PHM_SET_FIELD(mpll_func_cntl_1,
831 					MPLL_FUNC_CNTL_1, CLKFRAC,
832 					mpll_param.mpll_fb_divider.clk_frac);
833 	mpll_func_cntl_1  = PHM_SET_FIELD(mpll_func_cntl_1,
834 						MPLL_FUNC_CNTL_1, VCO_MODE,
835 						mpll_param.vco_mode);
836 
837 	/* MPLL_AD_FUNC_CNTL setup*/
838 	mpll_ad_func_cntl = PHM_SET_FIELD(mpll_ad_func_cntl,
839 					MPLL_AD_FUNC_CNTL, YCLK_POST_DIV,
840 					mpll_param.mpll_post_divider);
841 
842 	if (data->is_memory_gddr5) {
843 		/* MPLL_DQ_FUNC_CNTL setup*/
844 		mpll_dq_func_cntl  = PHM_SET_FIELD(mpll_dq_func_cntl,
845 						MPLL_DQ_FUNC_CNTL, YCLK_SEL,
846 						mpll_param.yclk_sel);
847 		mpll_dq_func_cntl  = PHM_SET_FIELD(mpll_dq_func_cntl,
848 						MPLL_DQ_FUNC_CNTL, YCLK_POST_DIV,
849 						mpll_param.mpll_post_divider);
850 	}
851 
852 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
853 			PHM_PlatformCaps_MemorySpreadSpectrumSupport)) {
854 		/*
855 		 ************************************
856 		 Fref = Reference Frequency
857 		 NF = Feedback divider ratio
858 		 NR = Reference divider ratio
859 		 Fnom = Nominal VCO output frequency = Fref * NF / NR
860 		 Fs = Spreading Rate
861 		 D = Percentage down-spread / 2
862 		 Fint = Reference input frequency to PFD = Fref / NR
863 		 NS = Spreading rate divider ratio = int(Fint / (2 * Fs))
864 		 CLKS = NS - 1 = ISS_STEP_NUM[11:0]
865 		 NV = D * Fs / Fnom * 4 * ((Fnom/Fref * NR) ^ 2)
866 		 CLKV = 65536 * NV = ISS_STEP_SIZE[25:0]
867 		 *************************************
868 		 */
869 		pp_atomctrl_internal_ss_info ss_info;
870 		uint32_t freq_nom;
871 		uint32_t tmp;
872 		uint32_t reference_clock = atomctrl_get_mpll_reference_clock(hwmgr);
873 
874 		/* for GDDR5 for all modes and DDR3 */
875 		if (1 == mpll_param.qdr)
876 			freq_nom = memory_clock * 4 * (1 << mpll_param.mpll_post_divider);
877 		else
878 			freq_nom = memory_clock * 2 * (1 << mpll_param.mpll_post_divider);
879 
880 		/* tmp = (freq_nom / reference_clock * reference_divider) ^ 2  Note: S.I. reference_divider = 1*/
881 		tmp = (freq_nom / reference_clock);
882 		tmp = tmp * tmp;
883 
884 		if (0 == atomctrl_get_memory_clock_spread_spectrum(hwmgr, freq_nom, &ss_info)) {
885 			/* ss_info.speed_spectrum_percentage -- in unit of 0.01% */
886 			/* ss.Info.speed_spectrum_rate -- in unit of khz */
887 			/* CLKS = reference_clock / (2 * speed_spectrum_rate * reference_divider) * 10 */
888 			/*     = reference_clock * 5 / speed_spectrum_rate */
889 			uint32_t clks = reference_clock * 5 / ss_info.speed_spectrum_rate;
890 
891 			/* CLKV = 65536 * speed_spectrum_percentage / 2 * spreadSpecrumRate / freq_nom * 4 / 100000 * ((freq_nom / reference_clock) ^ 2) */
892 			/*     = 131 * speed_spectrum_percentage * speed_spectrum_rate / 100 * ((freq_nom / reference_clock) ^ 2) / freq_nom */
893 			uint32_t clkv =
894 				(uint32_t)((((131 * ss_info.speed_spectrum_percentage *
895 							ss_info.speed_spectrum_rate) / 100) * tmp) / freq_nom);
896 
897 			mpll_ss1 = PHM_SET_FIELD(mpll_ss1, MPLL_SS1, CLKV, clkv);
898 			mpll_ss2 = PHM_SET_FIELD(mpll_ss2, MPLL_SS2, CLKS, clks);
899 		}
900 	}
901 
902 	/* MCLK_PWRMGT_CNTL setup */
903 	mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
904 		MCLK_PWRMGT_CNTL, DLL_SPEED, mpll_param.dll_speed);
905 	mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
906 		MCLK_PWRMGT_CNTL, MRDCK0_PDNB, dllStateOn);
907 	mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
908 		MCLK_PWRMGT_CNTL, MRDCK1_PDNB, dllStateOn);
909 
910 	/* Save the result data to outpupt memory level structure */
911 	mclk->MclkFrequency   = memory_clock;
912 	mclk->MpllFuncCntl    = mpll_func_cntl;
913 	mclk->MpllFuncCntl_1  = mpll_func_cntl_1;
914 	mclk->MpllFuncCntl_2  = mpll_func_cntl_2;
915 	mclk->MpllAdFuncCntl  = mpll_ad_func_cntl;
916 	mclk->MpllDqFuncCntl  = mpll_dq_func_cntl;
917 	mclk->MclkPwrmgtCntl  = mclk_pwrmgt_cntl;
918 	mclk->DllCntl         = dll_cntl;
919 	mclk->MpllSs1         = mpll_ss1;
920 	mclk->MpllSs2         = mpll_ss2;
921 
922 	return 0;
923 }
924 
tonga_get_mclk_frequency_ratio(uint32_t memory_clock,bool strobe_mode)925 static uint8_t tonga_get_mclk_frequency_ratio(uint32_t memory_clock,
926 		bool strobe_mode)
927 {
928 	uint8_t mc_para_index;
929 
930 	if (strobe_mode) {
931 		if (memory_clock < 12500)
932 			mc_para_index = 0x00;
933 		else if (memory_clock > 47500)
934 			mc_para_index = 0x0f;
935 		else
936 			mc_para_index = (uint8_t)((memory_clock - 10000) / 2500);
937 	} else {
938 		if (memory_clock < 65000)
939 			mc_para_index = 0x00;
940 		else if (memory_clock > 135000)
941 			mc_para_index = 0x0f;
942 		else
943 			mc_para_index = (uint8_t)((memory_clock - 60000) / 5000);
944 	}
945 
946 	return mc_para_index;
947 }
948 
tonga_get_ddr3_mclk_frequency_ratio(uint32_t memory_clock)949 static uint8_t tonga_get_ddr3_mclk_frequency_ratio(uint32_t memory_clock)
950 {
951 	uint8_t mc_para_index;
952 
953 	if (memory_clock < 10000)
954 		mc_para_index = 0;
955 	else if (memory_clock >= 80000)
956 		mc_para_index = 0x0f;
957 	else
958 		mc_para_index = (uint8_t)((memory_clock - 10000) / 5000 + 1);
959 
960 	return mc_para_index;
961 }
962 
963 
tonga_populate_single_memory_level(struct pp_hwmgr * hwmgr,uint32_t memory_clock,SMU72_Discrete_MemoryLevel * memory_level)964 static int tonga_populate_single_memory_level(
965 		struct pp_hwmgr *hwmgr,
966 		uint32_t memory_clock,
967 		SMU72_Discrete_MemoryLevel *memory_level
968 		)
969 {
970 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
971 	struct phm_ppt_v1_information *pptable_info =
972 			  (struct phm_ppt_v1_information *)(hwmgr->pptable);
973 	uint32_t mclk_edc_wr_enable_threshold = 40000;
974 	uint32_t mclk_stutter_mode_threshold = 30000;
975 	uint32_t mclk_edc_enable_threshold = 40000;
976 	uint32_t mclk_strobe_mode_threshold = 40000;
977 	phm_ppt_v1_clock_voltage_dependency_table *vdd_dep_table = NULL;
978 	int result = 0;
979 	bool dll_state_on;
980 	uint32_t mvdd = 0;
981 
982 	if (hwmgr->od_enabled)
983 		vdd_dep_table = (phm_ppt_v1_clock_voltage_dependency_table *)&data->odn_dpm_table.vdd_dependency_on_mclk;
984 	else
985 		vdd_dep_table = pptable_info->vdd_dep_on_mclk;
986 
987 	if (NULL != vdd_dep_table) {
988 		result = tonga_get_dependency_volt_by_clk(hwmgr,
989 				vdd_dep_table,
990 				memory_clock,
991 				&memory_level->MinVoltage, &mvdd);
992 		PP_ASSERT_WITH_CODE(
993 			!result,
994 			"can not find MinVddc voltage value from memory VDDC "
995 			"voltage dependency table",
996 			return result);
997 	}
998 
999 	if (data->mvdd_control == SMU7_VOLTAGE_CONTROL_NONE)
1000 		memory_level->MinMvdd = data->vbios_boot_state.mvdd_bootup_value;
1001 	else
1002 		memory_level->MinMvdd = mvdd;
1003 
1004 	memory_level->EnabledForThrottle = 1;
1005 	memory_level->EnabledForActivity = 0;
1006 	memory_level->UpHyst = data->current_profile_setting.mclk_up_hyst;
1007 	memory_level->DownHyst = data->current_profile_setting.mclk_down_hyst;
1008 	memory_level->VoltageDownHyst = 0;
1009 
1010 	/* Indicates maximum activity level for this performance level.*/
1011 	memory_level->ActivityLevel = data->current_profile_setting.mclk_activity;
1012 	memory_level->StutterEnable = 0;
1013 	memory_level->StrobeEnable = 0;
1014 	memory_level->EdcReadEnable = 0;
1015 	memory_level->EdcWriteEnable = 0;
1016 	memory_level->RttEnable = 0;
1017 
1018 	/* default set to low watermark. Highest level will be set to high later.*/
1019 	memory_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
1020 
1021 	data->display_timing.num_existing_displays = hwmgr->display_config->num_display;
1022 	data->display_timing.vrefresh = hwmgr->display_config->vrefresh;
1023 
1024 	if ((mclk_stutter_mode_threshold != 0) &&
1025 	    (memory_clock <= mclk_stutter_mode_threshold) &&
1026 	    (!data->is_uvd_enabled)
1027 	    && (PHM_READ_FIELD(hwmgr->device, DPG_PIPE_STUTTER_CONTROL, STUTTER_ENABLE) & 0x1)
1028 	    && (data->display_timing.num_existing_displays <= 2)
1029 	    && (data->display_timing.num_existing_displays != 0))
1030 		memory_level->StutterEnable = 1;
1031 
1032 	/* decide strobe mode*/
1033 	memory_level->StrobeEnable = (mclk_strobe_mode_threshold != 0) &&
1034 		(memory_clock <= mclk_strobe_mode_threshold);
1035 
1036 	/* decide EDC mode and memory clock ratio*/
1037 	if (data->is_memory_gddr5) {
1038 		memory_level->StrobeRatio = tonga_get_mclk_frequency_ratio(memory_clock,
1039 					memory_level->StrobeEnable);
1040 
1041 		if ((mclk_edc_enable_threshold != 0) &&
1042 				(memory_clock > mclk_edc_enable_threshold)) {
1043 			memory_level->EdcReadEnable = 1;
1044 		}
1045 
1046 		if ((mclk_edc_wr_enable_threshold != 0) &&
1047 				(memory_clock > mclk_edc_wr_enable_threshold)) {
1048 			memory_level->EdcWriteEnable = 1;
1049 		}
1050 
1051 		if (memory_level->StrobeEnable) {
1052 			if (tonga_get_mclk_frequency_ratio(memory_clock, 1) >=
1053 					((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC7) >> 16) & 0xf)) {
1054 				dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0;
1055 			} else {
1056 				dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC6) >> 1) & 0x1) ? 1 : 0;
1057 			}
1058 
1059 		} else {
1060 			dll_state_on = data->dll_default_on;
1061 		}
1062 	} else {
1063 		memory_level->StrobeRatio =
1064 			tonga_get_ddr3_mclk_frequency_ratio(memory_clock);
1065 		dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0;
1066 	}
1067 
1068 	result = tonga_calculate_mclk_params(hwmgr,
1069 		memory_clock, memory_level, memory_level->StrobeEnable, dll_state_on);
1070 
1071 	if (!result) {
1072 		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MinMvdd);
1073 		/* MCLK frequency in units of 10KHz*/
1074 		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkFrequency);
1075 		/* Indicates maximum activity level for this performance level.*/
1076 		CONVERT_FROM_HOST_TO_SMC_US(memory_level->ActivityLevel);
1077 		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl);
1078 		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_1);
1079 		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_2);
1080 		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllAdFuncCntl);
1081 		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllDqFuncCntl);
1082 		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkPwrmgtCntl);
1083 		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->DllCntl);
1084 		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs1);
1085 		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs2);
1086 	}
1087 
1088 	return result;
1089 }
1090 
tonga_populate_all_memory_levels(struct pp_hwmgr * hwmgr)1091 int tonga_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
1092 {
1093 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1094 	struct tonga_smumgr *smu_data =
1095 			(struct tonga_smumgr *)(hwmgr->smu_backend);
1096 	struct smu7_dpm_table *dpm_table = &data->dpm_table;
1097 	int result;
1098 
1099 	/* populate MCLK dpm table to SMU7 */
1100 	uint32_t level_array_address =
1101 				smu_data->smu7_data.dpm_table_start +
1102 				offsetof(SMU72_Discrete_DpmTable, MemoryLevel);
1103 	uint32_t level_array_size =
1104 				sizeof(SMU72_Discrete_MemoryLevel) *
1105 				SMU72_MAX_LEVELS_MEMORY;
1106 	SMU72_Discrete_MemoryLevel *levels =
1107 				smu_data->smc_state_table.MemoryLevel;
1108 	uint32_t i;
1109 
1110 	memset(levels, 0x00, level_array_size);
1111 
1112 	for (i = 0; i < dpm_table->mclk_table.count; i++) {
1113 		PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value),
1114 			"can not populate memory level as memory clock is zero",
1115 			return -EINVAL);
1116 		result = tonga_populate_single_memory_level(
1117 				hwmgr,
1118 				dpm_table->mclk_table.dpm_levels[i].value,
1119 				&(smu_data->smc_state_table.MemoryLevel[i]));
1120 		if (result)
1121 			return result;
1122 	}
1123 
1124 	/* Only enable level 0 for now.*/
1125 	smu_data->smc_state_table.MemoryLevel[0].EnabledForActivity = 1;
1126 
1127 	/*
1128 	* in order to prevent MC activity from stutter mode to push DPM up.
1129 	* the UVD change complements this by putting the MCLK in a higher state
1130 	* by default such that we are not effected by up threshold or and MCLK DPM latency.
1131 	*/
1132 	smu_data->smc_state_table.MemoryLevel[0].ActivityLevel = 0x1F;
1133 	CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.MemoryLevel[0].ActivityLevel);
1134 
1135 	smu_data->smc_state_table.MemoryDpmLevelCount = (uint8_t)dpm_table->mclk_table.count;
1136 	data->dpm_level_enable_mask.mclk_dpm_enable_mask = phm_get_dpm_level_enable_mask_value(&dpm_table->mclk_table);
1137 	/* set highest level watermark to high*/
1138 	smu_data->smc_state_table.MemoryLevel[dpm_table->mclk_table.count-1].DisplayWatermark = PPSMC_DISPLAY_WATERMARK_HIGH;
1139 
1140 	/* level count will send to smc once at init smc table and never change*/
1141 	result = smu7_copy_bytes_to_smc(hwmgr,
1142 		level_array_address, (uint8_t *)levels, (uint32_t)level_array_size,
1143 		SMC_RAM_END);
1144 
1145 	return result;
1146 }
1147 
tonga_populate_mvdd_value(struct pp_hwmgr * hwmgr,uint32_t mclk,SMIO_Pattern * smio_pattern)1148 static int tonga_populate_mvdd_value(struct pp_hwmgr *hwmgr,
1149 				uint32_t mclk, SMIO_Pattern *smio_pattern)
1150 {
1151 	const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1152 	struct phm_ppt_v1_information *table_info =
1153 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
1154 	uint32_t i = 0;
1155 
1156 	if (SMU7_VOLTAGE_CONTROL_NONE != data->mvdd_control) {
1157 		/* find mvdd value which clock is more than request */
1158 		for (i = 0; i < table_info->vdd_dep_on_mclk->count; i++) {
1159 			if (mclk <= table_info->vdd_dep_on_mclk->entries[i].clk) {
1160 				/* Always round to higher voltage. */
1161 				smio_pattern->Voltage =
1162 				      data->mvdd_voltage_table.entries[i].value;
1163 				break;
1164 			}
1165 		}
1166 
1167 		PP_ASSERT_WITH_CODE(i < table_info->vdd_dep_on_mclk->count,
1168 			"MVDD Voltage is outside the supported range.",
1169 			return -EINVAL);
1170 	} else {
1171 		return -EINVAL;
1172 	}
1173 
1174 	return 0;
1175 }
1176 
1177 
tonga_populate_smc_acpi_level(struct pp_hwmgr * hwmgr,SMU72_Discrete_DpmTable * table)1178 static int tonga_populate_smc_acpi_level(struct pp_hwmgr *hwmgr,
1179 	SMU72_Discrete_DpmTable *table)
1180 {
1181 	int result = 0;
1182 	struct tonga_smumgr *smu_data =
1183 				(struct tonga_smumgr *)(hwmgr->smu_backend);
1184 	const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1185 	struct pp_atomctrl_clock_dividers_vi dividers;
1186 
1187 	SMIO_Pattern voltage_level;
1188 	uint32_t spll_func_cntl    = data->clock_registers.vCG_SPLL_FUNC_CNTL;
1189 	uint32_t spll_func_cntl_2  = data->clock_registers.vCG_SPLL_FUNC_CNTL_2;
1190 	uint32_t dll_cntl          = data->clock_registers.vDLL_CNTL;
1191 	uint32_t mclk_pwrmgt_cntl  = data->clock_registers.vMCLK_PWRMGT_CNTL;
1192 
1193 	/* The ACPI state should not do DPM on DC (or ever).*/
1194 	table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC;
1195 
1196 	table->ACPILevel.MinVoltage =
1197 			smu_data->smc_state_table.GraphicsLevel[0].MinVoltage;
1198 
1199 	/* assign zero for now*/
1200 	table->ACPILevel.SclkFrequency = atomctrl_get_reference_clock(hwmgr);
1201 
1202 	/* get the engine clock dividers for this clock value*/
1203 	result = atomctrl_get_engine_pll_dividers_vi(hwmgr,
1204 		table->ACPILevel.SclkFrequency,  &dividers);
1205 
1206 	PP_ASSERT_WITH_CODE(result == 0,
1207 		"Error retrieving Engine Clock dividers from VBIOS.",
1208 		return result);
1209 
1210 	/* divider ID for required SCLK*/
1211 	table->ACPILevel.SclkDid = (uint8_t)dividers.pll_post_divider;
1212 	table->ACPILevel.DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
1213 	table->ACPILevel.DeepSleepDivId = 0;
1214 
1215 	spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
1216 					SPLL_PWRON, 0);
1217 	spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
1218 						SPLL_RESET, 1);
1219 	spll_func_cntl_2 = PHM_SET_FIELD(spll_func_cntl_2, CG_SPLL_FUNC_CNTL_2,
1220 						SCLK_MUX_SEL, 4);
1221 
1222 	table->ACPILevel.CgSpllFuncCntl = spll_func_cntl;
1223 	table->ACPILevel.CgSpllFuncCntl2 = spll_func_cntl_2;
1224 	table->ACPILevel.CgSpllFuncCntl3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
1225 	table->ACPILevel.CgSpllFuncCntl4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
1226 	table->ACPILevel.SpllSpreadSpectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
1227 	table->ACPILevel.SpllSpreadSpectrum2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
1228 	table->ACPILevel.CcPwrDynRm = 0;
1229 	table->ACPILevel.CcPwrDynRm1 = 0;
1230 
1231 
1232 	/* For various features to be enabled/disabled while this level is active.*/
1233 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags);
1234 	/* SCLK frequency in units of 10KHz*/
1235 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkFrequency);
1236 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl);
1237 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl2);
1238 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl3);
1239 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl4);
1240 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum);
1241 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum2);
1242 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm);
1243 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1);
1244 
1245 	/* table->MemoryACPILevel.MinVddcPhases = table->ACPILevel.MinVddcPhases;*/
1246 	table->MemoryACPILevel.MinVoltage =
1247 			    smu_data->smc_state_table.MemoryLevel[0].MinVoltage;
1248 
1249 	/*  CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MinVoltage);*/
1250 
1251 	if (0 == tonga_populate_mvdd_value(hwmgr, 0, &voltage_level))
1252 		table->MemoryACPILevel.MinMvdd =
1253 			PP_HOST_TO_SMC_UL(voltage_level.Voltage * VOLTAGE_SCALE);
1254 	else
1255 		table->MemoryACPILevel.MinMvdd = 0;
1256 
1257 	/* Force reset on DLL*/
1258 	mclk_pwrmgt_cntl    = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1259 		MCLK_PWRMGT_CNTL, MRDCK0_RESET, 0x1);
1260 	mclk_pwrmgt_cntl    = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1261 		MCLK_PWRMGT_CNTL, MRDCK1_RESET, 0x1);
1262 
1263 	/* Disable DLL in ACPIState*/
1264 	mclk_pwrmgt_cntl    = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1265 		MCLK_PWRMGT_CNTL, MRDCK0_PDNB, 0);
1266 	mclk_pwrmgt_cntl    = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1267 		MCLK_PWRMGT_CNTL, MRDCK1_PDNB, 0);
1268 
1269 	/* Enable DLL bypass signal*/
1270 	dll_cntl            = PHM_SET_FIELD(dll_cntl,
1271 		DLL_CNTL, MRDCK0_BYPASS, 0);
1272 	dll_cntl            = PHM_SET_FIELD(dll_cntl,
1273 		DLL_CNTL, MRDCK1_BYPASS, 0);
1274 
1275 	table->MemoryACPILevel.DllCntl            =
1276 		PP_HOST_TO_SMC_UL(dll_cntl);
1277 	table->MemoryACPILevel.MclkPwrmgtCntl     =
1278 		PP_HOST_TO_SMC_UL(mclk_pwrmgt_cntl);
1279 	table->MemoryACPILevel.MpllAdFuncCntl     =
1280 		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_AD_FUNC_CNTL);
1281 	table->MemoryACPILevel.MpllDqFuncCntl     =
1282 		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_DQ_FUNC_CNTL);
1283 	table->MemoryACPILevel.MpllFuncCntl       =
1284 		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL);
1285 	table->MemoryACPILevel.MpllFuncCntl_1     =
1286 		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_1);
1287 	table->MemoryACPILevel.MpllFuncCntl_2     =
1288 		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_2);
1289 	table->MemoryACPILevel.MpllSs1            =
1290 		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS1);
1291 	table->MemoryACPILevel.MpllSs2            =
1292 		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS2);
1293 
1294 	table->MemoryACPILevel.EnabledForThrottle = 0;
1295 	table->MemoryACPILevel.EnabledForActivity = 0;
1296 	table->MemoryACPILevel.UpHyst = 0;
1297 	table->MemoryACPILevel.DownHyst = 100;
1298 	table->MemoryACPILevel.VoltageDownHyst = 0;
1299 	/* Indicates maximum activity level for this performance level.*/
1300 	table->MemoryACPILevel.ActivityLevel =
1301 			PP_HOST_TO_SMC_US(data->current_profile_setting.mclk_activity);
1302 
1303 	table->MemoryACPILevel.StutterEnable = 0;
1304 	table->MemoryACPILevel.StrobeEnable = 0;
1305 	table->MemoryACPILevel.EdcReadEnable = 0;
1306 	table->MemoryACPILevel.EdcWriteEnable = 0;
1307 	table->MemoryACPILevel.RttEnable = 0;
1308 
1309 	return result;
1310 }
1311 
tonga_populate_smc_uvd_level(struct pp_hwmgr * hwmgr,SMU72_Discrete_DpmTable * table)1312 static int tonga_populate_smc_uvd_level(struct pp_hwmgr *hwmgr,
1313 					SMU72_Discrete_DpmTable *table)
1314 {
1315 	int result = 0;
1316 
1317 	uint8_t count;
1318 	pp_atomctrl_clock_dividers_vi dividers;
1319 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1320 	struct phm_ppt_v1_information *pptable_info =
1321 				(struct phm_ppt_v1_information *)(hwmgr->pptable);
1322 	phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
1323 						pptable_info->mm_dep_table;
1324 
1325 	table->UvdLevelCount = (uint8_t) (mm_table->count);
1326 	table->UvdBootLevel = 0;
1327 
1328 	for (count = 0; count < table->UvdLevelCount; count++) {
1329 		table->UvdLevel[count].VclkFrequency = mm_table->entries[count].vclk;
1330 		table->UvdLevel[count].DclkFrequency = mm_table->entries[count].dclk;
1331 		table->UvdLevel[count].MinVoltage.Vddc =
1332 			phm_get_voltage_index(pptable_info->vddc_lookup_table,
1333 						mm_table->entries[count].vddc);
1334 		table->UvdLevel[count].MinVoltage.VddGfx =
1335 			(data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) ?
1336 			phm_get_voltage_index(pptable_info->vddgfx_lookup_table,
1337 						mm_table->entries[count].vddgfx) : 0;
1338 		table->UvdLevel[count].MinVoltage.Vddci =
1339 			phm_get_voltage_id(&data->vddci_voltage_table,
1340 					     mm_table->entries[count].vddc - VDDC_VDDCI_DELTA);
1341 		table->UvdLevel[count].MinVoltage.Phases = 1;
1342 
1343 		/* retrieve divider value for VBIOS */
1344 		result = atomctrl_get_dfs_pll_dividers_vi(
1345 					hwmgr,
1346 					table->UvdLevel[count].VclkFrequency,
1347 					&dividers);
1348 
1349 		PP_ASSERT_WITH_CODE((!result),
1350 				    "can not find divide id for Vclk clock",
1351 					return result);
1352 
1353 		table->UvdLevel[count].VclkDivider = (uint8_t)dividers.pll_post_divider;
1354 
1355 		result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1356 							  table->UvdLevel[count].DclkFrequency, &dividers);
1357 		PP_ASSERT_WITH_CODE((!result),
1358 				    "can not find divide id for Dclk clock",
1359 					return result);
1360 
1361 		table->UvdLevel[count].DclkDivider =
1362 					(uint8_t)dividers.pll_post_divider;
1363 
1364 		CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].VclkFrequency);
1365 		CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].DclkFrequency);
1366 	}
1367 
1368 	return result;
1369 
1370 }
1371 
tonga_populate_smc_vce_level(struct pp_hwmgr * hwmgr,SMU72_Discrete_DpmTable * table)1372 static int tonga_populate_smc_vce_level(struct pp_hwmgr *hwmgr,
1373 		SMU72_Discrete_DpmTable *table)
1374 {
1375 	int result = 0;
1376 
1377 	uint8_t count;
1378 	pp_atomctrl_clock_dividers_vi dividers;
1379 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1380 	struct phm_ppt_v1_information *pptable_info =
1381 			      (struct phm_ppt_v1_information *)(hwmgr->pptable);
1382 	phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
1383 						     pptable_info->mm_dep_table;
1384 
1385 	table->VceLevelCount = (uint8_t) (mm_table->count);
1386 	table->VceBootLevel = 0;
1387 
1388 	for (count = 0; count < table->VceLevelCount; count++) {
1389 		table->VceLevel[count].Frequency =
1390 			mm_table->entries[count].eclk;
1391 		table->VceLevel[count].MinVoltage.Vddc =
1392 			phm_get_voltage_index(pptable_info->vddc_lookup_table,
1393 				mm_table->entries[count].vddc);
1394 		table->VceLevel[count].MinVoltage.VddGfx =
1395 			(data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) ?
1396 			phm_get_voltage_index(pptable_info->vddgfx_lookup_table,
1397 				mm_table->entries[count].vddgfx) : 0;
1398 		table->VceLevel[count].MinVoltage.Vddci =
1399 			phm_get_voltage_id(&data->vddci_voltage_table,
1400 				mm_table->entries[count].vddc - VDDC_VDDCI_DELTA);
1401 		table->VceLevel[count].MinVoltage.Phases = 1;
1402 
1403 		/* retrieve divider value for VBIOS */
1404 		result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1405 					table->VceLevel[count].Frequency, &dividers);
1406 		PP_ASSERT_WITH_CODE((!result),
1407 				"can not find divide id for VCE engine clock",
1408 				return result);
1409 
1410 		table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
1411 
1412 		CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency);
1413 	}
1414 
1415 	return result;
1416 }
1417 
tonga_populate_smc_acp_level(struct pp_hwmgr * hwmgr,SMU72_Discrete_DpmTable * table)1418 static int tonga_populate_smc_acp_level(struct pp_hwmgr *hwmgr,
1419 		SMU72_Discrete_DpmTable *table)
1420 {
1421 	int result = 0;
1422 	uint8_t count;
1423 	pp_atomctrl_clock_dividers_vi dividers;
1424 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1425 	struct phm_ppt_v1_information *pptable_info =
1426 			     (struct phm_ppt_v1_information *)(hwmgr->pptable);
1427 	phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
1428 						    pptable_info->mm_dep_table;
1429 
1430 	table->AcpLevelCount = (uint8_t) (mm_table->count);
1431 	table->AcpBootLevel = 0;
1432 
1433 	for (count = 0; count < table->AcpLevelCount; count++) {
1434 		table->AcpLevel[count].Frequency =
1435 			pptable_info->mm_dep_table->entries[count].aclk;
1436 		table->AcpLevel[count].MinVoltage.Vddc =
1437 			phm_get_voltage_index(pptable_info->vddc_lookup_table,
1438 			mm_table->entries[count].vddc);
1439 		table->AcpLevel[count].MinVoltage.VddGfx =
1440 			(data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) ?
1441 			phm_get_voltage_index(pptable_info->vddgfx_lookup_table,
1442 				mm_table->entries[count].vddgfx) : 0;
1443 		table->AcpLevel[count].MinVoltage.Vddci =
1444 			phm_get_voltage_id(&data->vddci_voltage_table,
1445 				mm_table->entries[count].vddc - VDDC_VDDCI_DELTA);
1446 		table->AcpLevel[count].MinVoltage.Phases = 1;
1447 
1448 		/* retrieve divider value for VBIOS */
1449 		result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1450 			table->AcpLevel[count].Frequency, &dividers);
1451 		PP_ASSERT_WITH_CODE((!result),
1452 			"can not find divide id for engine clock", return result);
1453 
1454 		table->AcpLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
1455 
1456 		CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].Frequency);
1457 	}
1458 
1459 	return result;
1460 }
1461 
tonga_populate_memory_timing_parameters(struct pp_hwmgr * hwmgr,uint32_t engine_clock,uint32_t memory_clock,struct SMU72_Discrete_MCArbDramTimingTableEntry * arb_regs)1462 static int tonga_populate_memory_timing_parameters(
1463 		struct pp_hwmgr *hwmgr,
1464 		uint32_t engine_clock,
1465 		uint32_t memory_clock,
1466 		struct SMU72_Discrete_MCArbDramTimingTableEntry *arb_regs
1467 		)
1468 {
1469 	uint32_t dramTiming;
1470 	uint32_t dramTiming2;
1471 	uint32_t burstTime;
1472 	int result;
1473 
1474 	result = atomctrl_set_engine_dram_timings_rv770(hwmgr,
1475 				engine_clock, memory_clock);
1476 
1477 	PP_ASSERT_WITH_CODE(result == 0,
1478 		"Error calling VBIOS to set DRAM_TIMING.", return result);
1479 
1480 	dramTiming  = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
1481 	dramTiming2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
1482 	burstTime = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0);
1483 
1484 	arb_regs->McArbDramTiming  = PP_HOST_TO_SMC_UL(dramTiming);
1485 	arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dramTiming2);
1486 	arb_regs->McArbBurstTime = (uint8_t)burstTime;
1487 
1488 	return 0;
1489 }
1490 
tonga_program_memory_timing_parameters(struct pp_hwmgr * hwmgr)1491 static int tonga_program_memory_timing_parameters(struct pp_hwmgr *hwmgr)
1492 {
1493 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1494 	struct tonga_smumgr *smu_data =
1495 				(struct tonga_smumgr *)(hwmgr->smu_backend);
1496 	int result = 0;
1497 	SMU72_Discrete_MCArbDramTimingTable  arb_regs;
1498 	uint32_t i, j;
1499 
1500 	memset(&arb_regs, 0x00, sizeof(SMU72_Discrete_MCArbDramTimingTable));
1501 
1502 	for (i = 0; i < data->dpm_table.sclk_table.count; i++) {
1503 		for (j = 0; j < data->dpm_table.mclk_table.count; j++) {
1504 			result = tonga_populate_memory_timing_parameters
1505 				(hwmgr, data->dpm_table.sclk_table.dpm_levels[i].value,
1506 				 data->dpm_table.mclk_table.dpm_levels[j].value,
1507 				 &arb_regs.entries[i][j]);
1508 
1509 			if (result)
1510 				break;
1511 		}
1512 	}
1513 
1514 	if (!result) {
1515 		result = smu7_copy_bytes_to_smc(
1516 				hwmgr,
1517 				smu_data->smu7_data.arb_table_start,
1518 				(uint8_t *)&arb_regs,
1519 				sizeof(SMU72_Discrete_MCArbDramTimingTable),
1520 				SMC_RAM_END
1521 				);
1522 	}
1523 
1524 	return result;
1525 }
1526 
tonga_populate_smc_boot_level(struct pp_hwmgr * hwmgr,SMU72_Discrete_DpmTable * table)1527 static int tonga_populate_smc_boot_level(struct pp_hwmgr *hwmgr,
1528 			SMU72_Discrete_DpmTable *table)
1529 {
1530 	int result = 0;
1531 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1532 	struct tonga_smumgr *smu_data =
1533 				(struct tonga_smumgr *)(hwmgr->smu_backend);
1534 	table->GraphicsBootLevel = 0;
1535 	table->MemoryBootLevel = 0;
1536 
1537 	/* find boot level from dpm table*/
1538 	result = phm_find_boot_level(&(data->dpm_table.sclk_table),
1539 	data->vbios_boot_state.sclk_bootup_value,
1540 	(uint32_t *)&(smu_data->smc_state_table.GraphicsBootLevel));
1541 
1542 	if (result != 0) {
1543 		smu_data->smc_state_table.GraphicsBootLevel = 0;
1544 		pr_err("[powerplay] VBIOS did not find boot engine "
1545 				"clock value in dependency table. "
1546 				"Using Graphics DPM level 0 !");
1547 		result = 0;
1548 	}
1549 
1550 	result = phm_find_boot_level(&(data->dpm_table.mclk_table),
1551 		data->vbios_boot_state.mclk_bootup_value,
1552 		(uint32_t *)&(smu_data->smc_state_table.MemoryBootLevel));
1553 
1554 	if (result != 0) {
1555 		smu_data->smc_state_table.MemoryBootLevel = 0;
1556 		pr_err("[powerplay] VBIOS did not find boot "
1557 				"engine clock value in dependency table."
1558 				"Using Memory DPM level 0 !");
1559 		result = 0;
1560 	}
1561 
1562 	table->BootVoltage.Vddc =
1563 		phm_get_voltage_id(&(data->vddc_voltage_table),
1564 			data->vbios_boot_state.vddc_bootup_value);
1565 	table->BootVoltage.VddGfx =
1566 		phm_get_voltage_id(&(data->vddgfx_voltage_table),
1567 			data->vbios_boot_state.vddgfx_bootup_value);
1568 	table->BootVoltage.Vddci =
1569 		phm_get_voltage_id(&(data->vddci_voltage_table),
1570 			data->vbios_boot_state.vddci_bootup_value);
1571 	table->BootMVdd = data->vbios_boot_state.mvdd_bootup_value;
1572 
1573 	CONVERT_FROM_HOST_TO_SMC_US(table->BootMVdd);
1574 
1575 	return result;
1576 }
1577 
tonga_populate_clock_stretcher_data_table(struct pp_hwmgr * hwmgr)1578 static int tonga_populate_clock_stretcher_data_table(struct pp_hwmgr *hwmgr)
1579 {
1580 	uint32_t ro, efuse, efuse2, clock_freq, volt_without_cks,
1581 			volt_with_cks, value;
1582 	uint16_t clock_freq_u16;
1583 	struct tonga_smumgr *smu_data =
1584 				(struct tonga_smumgr *)(hwmgr->smu_backend);
1585 	uint8_t type, i, j, cks_setting, stretch_amount, stretch_amount2,
1586 			volt_offset = 0;
1587 	struct phm_ppt_v1_information *table_info =
1588 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
1589 	struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
1590 			table_info->vdd_dep_on_sclk;
1591 	uint32_t hw_revision, dev_id;
1592 	struct amdgpu_device *adev = hwmgr->adev;
1593 
1594 	stretch_amount = (uint8_t)table_info->cac_dtp_table->usClockStretchAmount;
1595 
1596 	hw_revision = adev->pdev->revision;
1597 	dev_id = adev->pdev->device;
1598 
1599 	/* Read SMU_Eefuse to read and calculate RO and determine
1600 	 * if the part is SS or FF. if RO >= 1660MHz, part is FF.
1601 	 */
1602 	efuse = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1603 			ixSMU_EFUSE_0 + (146 * 4));
1604 	efuse2 = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1605 			ixSMU_EFUSE_0 + (148 * 4));
1606 	efuse &= 0xFF000000;
1607 	efuse = efuse >> 24;
1608 	efuse2 &= 0xF;
1609 
1610 	if (efuse2 == 1)
1611 		ro = (2300 - 1350) * efuse / 255 + 1350;
1612 	else
1613 		ro = (2500 - 1000) * efuse / 255 + 1000;
1614 
1615 	if (ro >= 1660)
1616 		type = 0;
1617 	else
1618 		type = 1;
1619 
1620 	/* Populate Stretch amount */
1621 	smu_data->smc_state_table.ClockStretcherAmount = stretch_amount;
1622 
1623 
1624 	/* Populate Sclk_CKS_masterEn0_7 and Sclk_voltageOffset */
1625 	for (i = 0; i < sclk_table->count; i++) {
1626 		smu_data->smc_state_table.Sclk_CKS_masterEn0_7 |=
1627 				sclk_table->entries[i].cks_enable << i;
1628 		if (ASICID_IS_TONGA_P(dev_id, hw_revision)) {
1629 			volt_without_cks = (uint32_t)((7732 + 60 - ro - 20838 *
1630 				(sclk_table->entries[i].clk/100) / 10000) * 1000 /
1631 				(8730 - (5301 * (sclk_table->entries[i].clk/100) / 1000)));
1632 			volt_with_cks = (uint32_t)((5250 + 51 - ro - 2404 *
1633 				(sclk_table->entries[i].clk/100) / 100000) * 1000 /
1634 				(6146 - (3193 * (sclk_table->entries[i].clk/100) / 1000)));
1635 		} else {
1636 			volt_without_cks = (uint32_t)((14041 *
1637 				(sclk_table->entries[i].clk/100) / 10000 + 3571 + 75 - ro) * 1000 /
1638 				(4026 - (13924 * (sclk_table->entries[i].clk/100) / 10000)));
1639 			volt_with_cks = (uint32_t)((13946 *
1640 				(sclk_table->entries[i].clk/100) / 10000 + 3320 + 45 - ro) * 1000 /
1641 				(3664 - (11454 * (sclk_table->entries[i].clk/100) / 10000)));
1642 		}
1643 		if (volt_without_cks >= volt_with_cks)
1644 			volt_offset = (uint8_t)(((volt_without_cks - volt_with_cks +
1645 					sclk_table->entries[i].cks_voffset) * 100 / 625) + 1);
1646 		smu_data->smc_state_table.Sclk_voltageOffset[i] = volt_offset;
1647 	}
1648 
1649 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
1650 			STRETCH_ENABLE, 0x0);
1651 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
1652 			masterReset, 0x1);
1653 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
1654 			staticEnable, 0x1);
1655 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
1656 			masterReset, 0x0);
1657 
1658 	/* Populate CKS Lookup Table */
1659 	if (stretch_amount == 1 || stretch_amount == 2 || stretch_amount == 5)
1660 		stretch_amount2 = 0;
1661 	else if (stretch_amount == 3 || stretch_amount == 4)
1662 		stretch_amount2 = 1;
1663 	else {
1664 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
1665 				PHM_PlatformCaps_ClockStretcher);
1666 		PP_ASSERT_WITH_CODE(false,
1667 				"Stretch Amount in PPTable not supported",
1668 				return -EINVAL);
1669 	}
1670 
1671 	value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1672 			ixPWR_CKS_CNTL);
1673 	value &= 0xFFC2FF87;
1674 	smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].minFreq =
1675 			tonga_clock_stretcher_lookup_table[stretch_amount2][0];
1676 	smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].maxFreq =
1677 			tonga_clock_stretcher_lookup_table[stretch_amount2][1];
1678 	clock_freq_u16 = (uint16_t)(PP_SMC_TO_HOST_UL(smu_data->smc_state_table.
1679 			GraphicsLevel[smu_data->smc_state_table.GraphicsDpmLevelCount - 1].
1680 			SclkFrequency) / 100);
1681 	if (tonga_clock_stretcher_lookup_table[stretch_amount2][0] <
1682 			clock_freq_u16 &&
1683 	    tonga_clock_stretcher_lookup_table[stretch_amount2][1] >
1684 			clock_freq_u16) {
1685 		/* Program PWR_CKS_CNTL. CKS_USE_FOR_LOW_FREQ */
1686 		value |= (tonga_clock_stretcher_lookup_table[stretch_amount2][3]) << 16;
1687 		/* Program PWR_CKS_CNTL. CKS_LDO_REFSEL */
1688 		value |= (tonga_clock_stretcher_lookup_table[stretch_amount2][2]) << 18;
1689 		/* Program PWR_CKS_CNTL. CKS_STRETCH_AMOUNT */
1690 		value |= (tonga_clock_stretch_amount_conversion
1691 				[tonga_clock_stretcher_lookup_table[stretch_amount2][3]]
1692 				 [stretch_amount]) << 3;
1693 	}
1694 	CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.CKS_LOOKUPTable.
1695 			CKS_LOOKUPTableEntry[0].minFreq);
1696 	CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.CKS_LOOKUPTable.
1697 			CKS_LOOKUPTableEntry[0].maxFreq);
1698 	smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting =
1699 			tonga_clock_stretcher_lookup_table[stretch_amount2][2] & 0x7F;
1700 	smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting |=
1701 			(tonga_clock_stretcher_lookup_table[stretch_amount2][3]) << 7;
1702 
1703 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1704 			ixPWR_CKS_CNTL, value);
1705 
1706 	/* Populate DDT Lookup Table */
1707 	for (i = 0; i < 4; i++) {
1708 		/* Assign the minimum and maximum VID stored
1709 		 * in the last row of Clock Stretcher Voltage Table.
1710 		 */
1711 		smu_data->smc_state_table.ClockStretcherDataTable.
1712 		ClockStretcherDataTableEntry[i].minVID =
1713 				(uint8_t) tonga_clock_stretcher_ddt_table[type][i][2];
1714 		smu_data->smc_state_table.ClockStretcherDataTable.
1715 		ClockStretcherDataTableEntry[i].maxVID =
1716 				(uint8_t) tonga_clock_stretcher_ddt_table[type][i][3];
1717 		/* Loop through each SCLK and check the frequency
1718 		 * to see if it lies within the frequency for clock stretcher.
1719 		 */
1720 		for (j = 0; j < smu_data->smc_state_table.GraphicsDpmLevelCount; j++) {
1721 			cks_setting = 0;
1722 			clock_freq = PP_SMC_TO_HOST_UL(
1723 					smu_data->smc_state_table.GraphicsLevel[j].SclkFrequency);
1724 			/* Check the allowed frequency against the sclk level[j].
1725 			 *  Sclk's endianness has already been converted,
1726 			 *  and it's in 10Khz unit,
1727 			 *  as opposed to Data table, which is in Mhz unit.
1728 			 */
1729 			if (clock_freq >= tonga_clock_stretcher_ddt_table[type][i][0] * 100) {
1730 				cks_setting |= 0x2;
1731 				if (clock_freq < tonga_clock_stretcher_ddt_table[type][i][1] * 100)
1732 					cks_setting |= 0x1;
1733 			}
1734 			smu_data->smc_state_table.ClockStretcherDataTable.
1735 			ClockStretcherDataTableEntry[i].setting |= cks_setting << (j * 2);
1736 		}
1737 		CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.
1738 				ClockStretcherDataTable.
1739 				ClockStretcherDataTableEntry[i].setting);
1740 	}
1741 
1742 	value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1743 					ixPWR_CKS_CNTL);
1744 	value &= 0xFFFFFFFE;
1745 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1746 					ixPWR_CKS_CNTL, value);
1747 
1748 	return 0;
1749 }
1750 
tonga_populate_vr_config(struct pp_hwmgr * hwmgr,SMU72_Discrete_DpmTable * table)1751 static int tonga_populate_vr_config(struct pp_hwmgr *hwmgr,
1752 			SMU72_Discrete_DpmTable *table)
1753 {
1754 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1755 	uint16_t config;
1756 
1757 	if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_gfx_control) {
1758 		/*  Splitted mode */
1759 		config = VR_SVI2_PLANE_1;
1760 		table->VRConfig |= (config<<VRCONF_VDDGFX_SHIFT);
1761 
1762 		if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
1763 			config = VR_SVI2_PLANE_2;
1764 			table->VRConfig |= config;
1765 		} else {
1766 			pr_err("VDDC and VDDGFX should "
1767 				"be both on SVI2 control in splitted mode !\n");
1768 		}
1769 	} else {
1770 		/* Merged mode  */
1771 		config = VR_MERGED_WITH_VDDC;
1772 		table->VRConfig |= (config<<VRCONF_VDDGFX_SHIFT);
1773 
1774 		/* Set Vddc Voltage Controller  */
1775 		if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
1776 			config = VR_SVI2_PLANE_1;
1777 			table->VRConfig |= config;
1778 		} else {
1779 			pr_err("VDDC should be on "
1780 					"SVI2 control in merged mode !\n");
1781 		}
1782 	}
1783 
1784 	/* Set Vddci Voltage Controller  */
1785 	if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) {
1786 		config = VR_SVI2_PLANE_2;  /* only in merged mode */
1787 		table->VRConfig |= (config<<VRCONF_VDDCI_SHIFT);
1788 	} else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
1789 		config = VR_SMIO_PATTERN_1;
1790 		table->VRConfig |= (config<<VRCONF_VDDCI_SHIFT);
1791 	}
1792 
1793 	/* Set Mvdd Voltage Controller */
1794 	if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
1795 		config = VR_SMIO_PATTERN_2;
1796 		table->VRConfig |= (config<<VRCONF_MVDD_SHIFT);
1797 	}
1798 
1799 	return 0;
1800 }
1801 
tonga_init_arb_table_index(struct pp_hwmgr * hwmgr)1802 static int tonga_init_arb_table_index(struct pp_hwmgr *hwmgr)
1803 {
1804 	struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smu_backend);
1805 	uint32_t tmp;
1806 	int result;
1807 
1808 	/*
1809 	* This is a read-modify-write on the first byte of the ARB table.
1810 	* The first byte in the SMU72_Discrete_MCArbDramTimingTable structure
1811 	* is the field 'current'.
1812 	* This solution is ugly, but we never write the whole table only
1813 	* individual fields in it.
1814 	* In reality this field should not be in that structure
1815 	* but in a soft register.
1816 	*/
1817 	result = smu7_read_smc_sram_dword(hwmgr,
1818 				smu_data->smu7_data.arb_table_start, &tmp, SMC_RAM_END);
1819 
1820 	if (result != 0)
1821 		return result;
1822 
1823 	tmp &= 0x00FFFFFF;
1824 	tmp |= ((uint32_t)MC_CG_ARB_FREQ_F1) << 24;
1825 
1826 	return smu7_write_smc_sram_dword(hwmgr,
1827 			smu_data->smu7_data.arb_table_start, tmp, SMC_RAM_END);
1828 }
1829 
1830 
tonga_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr * hwmgr)1831 static int tonga_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr *hwmgr)
1832 {
1833 	struct tonga_smumgr *smu_data =
1834 				(struct tonga_smumgr *)(hwmgr->smu_backend);
1835 	const struct tonga_pt_defaults *defaults = smu_data->power_tune_defaults;
1836 	SMU72_Discrete_DpmTable  *dpm_table = &(smu_data->smc_state_table);
1837 	struct phm_ppt_v1_information *table_info =
1838 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
1839 	struct phm_cac_tdp_table *cac_dtp_table = table_info->cac_dtp_table;
1840 	int  i, j, k;
1841 	const uint16_t *pdef1, *pdef2;
1842 
1843 	dpm_table->DefaultTdp = PP_HOST_TO_SMC_US(
1844 			(uint16_t)(cac_dtp_table->usTDP * 256));
1845 	dpm_table->TargetTdp = PP_HOST_TO_SMC_US(
1846 			(uint16_t)(cac_dtp_table->usConfigurableTDP * 256));
1847 
1848 	PP_ASSERT_WITH_CODE(cac_dtp_table->usTargetOperatingTemp <= 255,
1849 			"Target Operating Temp is out of Range !",
1850 			);
1851 
1852 	dpm_table->GpuTjMax = (uint8_t)(cac_dtp_table->usTargetOperatingTemp);
1853 	dpm_table->GpuTjHyst = 8;
1854 
1855 	dpm_table->DTEAmbientTempBase = defaults->dte_ambient_temp_base;
1856 
1857 	dpm_table->BAPM_TEMP_GRADIENT =
1858 				PP_HOST_TO_SMC_UL(defaults->bapm_temp_gradient);
1859 	pdef1 = defaults->bapmti_r;
1860 	pdef2 = defaults->bapmti_rc;
1861 
1862 	for (i = 0; i < SMU72_DTE_ITERATIONS; i++) {
1863 		for (j = 0; j < SMU72_DTE_SOURCES; j++) {
1864 			for (k = 0; k < SMU72_DTE_SINKS; k++) {
1865 				dpm_table->BAPMTI_R[i][j][k] =
1866 						PP_HOST_TO_SMC_US(*pdef1);
1867 				dpm_table->BAPMTI_RC[i][j][k] =
1868 						PP_HOST_TO_SMC_US(*pdef2);
1869 				pdef1++;
1870 				pdef2++;
1871 			}
1872 		}
1873 	}
1874 
1875 	return 0;
1876 }
1877 
tonga_populate_svi_load_line(struct pp_hwmgr * hwmgr)1878 static int tonga_populate_svi_load_line(struct pp_hwmgr *hwmgr)
1879 {
1880 	struct tonga_smumgr *smu_data =
1881 				(struct tonga_smumgr *)(hwmgr->smu_backend);
1882 	const struct tonga_pt_defaults *defaults = smu_data->power_tune_defaults;
1883 
1884 	smu_data->power_tune_table.SviLoadLineEn = defaults->svi_load_line_en;
1885 	smu_data->power_tune_table.SviLoadLineVddC = defaults->svi_load_line_vddC;
1886 	smu_data->power_tune_table.SviLoadLineTrimVddC = 3;
1887 	smu_data->power_tune_table.SviLoadLineOffsetVddC = 0;
1888 
1889 	return 0;
1890 }
1891 
tonga_populate_tdc_limit(struct pp_hwmgr * hwmgr)1892 static int tonga_populate_tdc_limit(struct pp_hwmgr *hwmgr)
1893 {
1894 	uint16_t tdc_limit;
1895 	struct tonga_smumgr *smu_data =
1896 				(struct tonga_smumgr *)(hwmgr->smu_backend);
1897 	const struct tonga_pt_defaults *defaults = smu_data->power_tune_defaults;
1898 	struct phm_ppt_v1_information *table_info =
1899 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
1900 
1901 	/* TDC number of fraction bits are changed from 8 to 7
1902 	 * for Fiji as requested by SMC team
1903 	 */
1904 	tdc_limit = (uint16_t)(table_info->cac_dtp_table->usTDC * 256);
1905 	smu_data->power_tune_table.TDC_VDDC_PkgLimit =
1906 			CONVERT_FROM_HOST_TO_SMC_US(tdc_limit);
1907 	smu_data->power_tune_table.TDC_VDDC_ThrottleReleaseLimitPerc =
1908 			defaults->tdc_vddc_throttle_release_limit_perc;
1909 	smu_data->power_tune_table.TDC_MAWt = defaults->tdc_mawt;
1910 
1911 	return 0;
1912 }
1913 
tonga_populate_dw8(struct pp_hwmgr * hwmgr,uint32_t fuse_table_offset)1914 static int tonga_populate_dw8(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset)
1915 {
1916 	struct tonga_smumgr *smu_data =
1917 			(struct tonga_smumgr *)(hwmgr->smu_backend);
1918 	const struct tonga_pt_defaults *defaults = smu_data->power_tune_defaults;
1919 	uint32_t temp;
1920 
1921 	if (smu7_read_smc_sram_dword(hwmgr,
1922 			fuse_table_offset +
1923 			offsetof(SMU72_Discrete_PmFuses, TdcWaterfallCtl),
1924 			(uint32_t *)&temp, SMC_RAM_END))
1925 		PP_ASSERT_WITH_CODE(false,
1926 				"Attempt to read PmFuses.DW6 "
1927 				"(SviLoadLineEn) from SMC Failed !",
1928 				return -EINVAL);
1929 	else
1930 		smu_data->power_tune_table.TdcWaterfallCtl = defaults->tdc_waterfall_ctl;
1931 
1932 	return 0;
1933 }
1934 
tonga_populate_temperature_scaler(struct pp_hwmgr * hwmgr)1935 static int tonga_populate_temperature_scaler(struct pp_hwmgr *hwmgr)
1936 {
1937 	int i;
1938 	struct tonga_smumgr *smu_data =
1939 				(struct tonga_smumgr *)(hwmgr->smu_backend);
1940 
1941 	/* Currently not used. Set all to zero. */
1942 	for (i = 0; i < 16; i++)
1943 		smu_data->power_tune_table.LPMLTemperatureScaler[i] = 0;
1944 
1945 	return 0;
1946 }
1947 
tonga_populate_fuzzy_fan(struct pp_hwmgr * hwmgr)1948 static int tonga_populate_fuzzy_fan(struct pp_hwmgr *hwmgr)
1949 {
1950 	struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smu_backend);
1951 
1952 	if ((hwmgr->thermal_controller.advanceFanControlParameters.
1953 			usFanOutputSensitivity & (1 << 15)) ||
1954 		(hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity == 0))
1955 		hwmgr->thermal_controller.advanceFanControlParameters.
1956 		usFanOutputSensitivity = hwmgr->thermal_controller.
1957 			advanceFanControlParameters.usDefaultFanOutputSensitivity;
1958 
1959 	smu_data->power_tune_table.FuzzyFan_PwmSetDelta =
1960 			PP_HOST_TO_SMC_US(hwmgr->thermal_controller.
1961 					advanceFanControlParameters.usFanOutputSensitivity);
1962 	return 0;
1963 }
1964 
tonga_populate_gnb_lpml(struct pp_hwmgr * hwmgr)1965 static int tonga_populate_gnb_lpml(struct pp_hwmgr *hwmgr)
1966 {
1967 	int i;
1968 	struct tonga_smumgr *smu_data =
1969 				(struct tonga_smumgr *)(hwmgr->smu_backend);
1970 
1971 	/* Currently not used. Set all to zero. */
1972 	for (i = 0; i < 16; i++)
1973 		smu_data->power_tune_table.GnbLPML[i] = 0;
1974 
1975 	return 0;
1976 }
1977 
tonga_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr * hwmgr)1978 static int tonga_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr *hwmgr)
1979 {
1980 	struct tonga_smumgr *smu_data =
1981 				(struct tonga_smumgr *)(hwmgr->smu_backend);
1982 	struct phm_ppt_v1_information *table_info =
1983 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
1984 	uint16_t hi_sidd = smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd;
1985 	uint16_t lo_sidd = smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd;
1986 	struct phm_cac_tdp_table *cac_table = table_info->cac_dtp_table;
1987 
1988 	hi_sidd = (uint16_t)(cac_table->usHighCACLeakage / 100 * 256);
1989 	lo_sidd = (uint16_t)(cac_table->usLowCACLeakage / 100 * 256);
1990 
1991 	smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd =
1992 			CONVERT_FROM_HOST_TO_SMC_US(hi_sidd);
1993 	smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd =
1994 			CONVERT_FROM_HOST_TO_SMC_US(lo_sidd);
1995 
1996 	return 0;
1997 }
1998 
tonga_populate_pm_fuses(struct pp_hwmgr * hwmgr)1999 static int tonga_populate_pm_fuses(struct pp_hwmgr *hwmgr)
2000 {
2001 	struct tonga_smumgr *smu_data =
2002 				(struct tonga_smumgr *)(hwmgr->smu_backend);
2003 	uint32_t pm_fuse_table_offset;
2004 
2005 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2006 			PHM_PlatformCaps_PowerContainment)) {
2007 		if (smu7_read_smc_sram_dword(hwmgr,
2008 				SMU72_FIRMWARE_HEADER_LOCATION +
2009 				offsetof(SMU72_Firmware_Header, PmFuseTable),
2010 				&pm_fuse_table_offset, SMC_RAM_END))
2011 			PP_ASSERT_WITH_CODE(false,
2012 				"Attempt to get pm_fuse_table_offset Failed !",
2013 				return -EINVAL);
2014 
2015 		/* DW6 */
2016 		if (tonga_populate_svi_load_line(hwmgr))
2017 			PP_ASSERT_WITH_CODE(false,
2018 				"Attempt to populate SviLoadLine Failed !",
2019 				return -EINVAL);
2020 		/* DW7 */
2021 		if (tonga_populate_tdc_limit(hwmgr))
2022 			PP_ASSERT_WITH_CODE(false,
2023 					"Attempt to populate TDCLimit Failed !",
2024 					return -EINVAL);
2025 		/* DW8 */
2026 		if (tonga_populate_dw8(hwmgr, pm_fuse_table_offset))
2027 			PP_ASSERT_WITH_CODE(false,
2028 				"Attempt to populate TdcWaterfallCtl Failed !",
2029 				return -EINVAL);
2030 
2031 		/* DW9-DW12 */
2032 		if (tonga_populate_temperature_scaler(hwmgr) != 0)
2033 			PP_ASSERT_WITH_CODE(false,
2034 				"Attempt to populate LPMLTemperatureScaler Failed !",
2035 				return -EINVAL);
2036 
2037 		/* DW13-DW14 */
2038 		if (tonga_populate_fuzzy_fan(hwmgr))
2039 			PP_ASSERT_WITH_CODE(false,
2040 				"Attempt to populate Fuzzy Fan "
2041 				"Control parameters Failed !",
2042 				return -EINVAL);
2043 
2044 		/* DW15-DW18 */
2045 		if (tonga_populate_gnb_lpml(hwmgr))
2046 			PP_ASSERT_WITH_CODE(false,
2047 				"Attempt to populate GnbLPML Failed !",
2048 				return -EINVAL);
2049 
2050 		/* DW20 */
2051 		if (tonga_populate_bapm_vddc_base_leakage_sidd(hwmgr))
2052 			PP_ASSERT_WITH_CODE(
2053 				false,
2054 				"Attempt to populate BapmVddCBaseLeakage "
2055 				"Hi and Lo Sidd Failed !",
2056 				return -EINVAL);
2057 
2058 		if (smu7_copy_bytes_to_smc(hwmgr, pm_fuse_table_offset,
2059 				(uint8_t *)&smu_data->power_tune_table,
2060 				sizeof(struct SMU72_Discrete_PmFuses), SMC_RAM_END))
2061 			PP_ASSERT_WITH_CODE(false,
2062 					"Attempt to download PmFuseTable Failed !",
2063 					return -EINVAL);
2064 	}
2065 	return 0;
2066 }
2067 
tonga_populate_mc_reg_address(struct pp_hwmgr * hwmgr,SMU72_Discrete_MCRegisters * mc_reg_table)2068 static int tonga_populate_mc_reg_address(struct pp_hwmgr *hwmgr,
2069 				 SMU72_Discrete_MCRegisters *mc_reg_table)
2070 {
2071 	const struct tonga_smumgr *smu_data = (struct tonga_smumgr *)hwmgr->smu_backend;
2072 
2073 	uint32_t i, j;
2074 
2075 	for (i = 0, j = 0; j < smu_data->mc_reg_table.last; j++) {
2076 		if (smu_data->mc_reg_table.validflag & 1<<j) {
2077 			PP_ASSERT_WITH_CODE(
2078 				i < SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE,
2079 				"Index of mc_reg_table->address[] array "
2080 				"out of boundary",
2081 				return -EINVAL);
2082 			mc_reg_table->address[i].s0 =
2083 				PP_HOST_TO_SMC_US(smu_data->mc_reg_table.mc_reg_address[j].s0);
2084 			mc_reg_table->address[i].s1 =
2085 				PP_HOST_TO_SMC_US(smu_data->mc_reg_table.mc_reg_address[j].s1);
2086 			i++;
2087 		}
2088 	}
2089 
2090 	mc_reg_table->last = (uint8_t)i;
2091 
2092 	return 0;
2093 }
2094 
2095 /*convert register values from driver to SMC format */
tonga_convert_mc_registers(const struct tonga_mc_reg_entry * entry,SMU72_Discrete_MCRegisterSet * data,uint32_t num_entries,uint32_t valid_flag)2096 static void tonga_convert_mc_registers(
2097 	const struct tonga_mc_reg_entry *entry,
2098 	SMU72_Discrete_MCRegisterSet *data,
2099 	uint32_t num_entries, uint32_t valid_flag)
2100 {
2101 	uint32_t i, j;
2102 
2103 	for (i = 0, j = 0; j < num_entries; j++) {
2104 		if (valid_flag & 1<<j) {
2105 			data->value[i] = PP_HOST_TO_SMC_UL(entry->mc_data[j]);
2106 			i++;
2107 		}
2108 	}
2109 }
2110 
tonga_convert_mc_reg_table_entry_to_smc(struct pp_hwmgr * hwmgr,const uint32_t memory_clock,SMU72_Discrete_MCRegisterSet * mc_reg_table_data)2111 static int tonga_convert_mc_reg_table_entry_to_smc(
2112 		struct pp_hwmgr *hwmgr,
2113 		const uint32_t memory_clock,
2114 		SMU72_Discrete_MCRegisterSet *mc_reg_table_data
2115 		)
2116 {
2117 	struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smu_backend);
2118 	uint32_t i = 0;
2119 
2120 	for (i = 0; i < smu_data->mc_reg_table.num_entries; i++) {
2121 		if (memory_clock <=
2122 			smu_data->mc_reg_table.mc_reg_table_entry[i].mclk_max) {
2123 			break;
2124 		}
2125 	}
2126 
2127 	if ((i == smu_data->mc_reg_table.num_entries) && (i > 0))
2128 		--i;
2129 
2130 	tonga_convert_mc_registers(&smu_data->mc_reg_table.mc_reg_table_entry[i],
2131 				mc_reg_table_data, smu_data->mc_reg_table.last,
2132 				smu_data->mc_reg_table.validflag);
2133 
2134 	return 0;
2135 }
2136 
tonga_convert_mc_reg_table_to_smc(struct pp_hwmgr * hwmgr,SMU72_Discrete_MCRegisters * mc_regs)2137 static int tonga_convert_mc_reg_table_to_smc(struct pp_hwmgr *hwmgr,
2138 		SMU72_Discrete_MCRegisters *mc_regs)
2139 {
2140 	int result = 0;
2141 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2142 	int res;
2143 	uint32_t i;
2144 
2145 	for (i = 0; i < data->dpm_table.mclk_table.count; i++) {
2146 		res = tonga_convert_mc_reg_table_entry_to_smc(
2147 				hwmgr,
2148 				data->dpm_table.mclk_table.dpm_levels[i].value,
2149 				&mc_regs->data[i]
2150 				);
2151 
2152 		if (0 != res)
2153 			result = res;
2154 	}
2155 
2156 	return result;
2157 }
2158 
tonga_update_and_upload_mc_reg_table(struct pp_hwmgr * hwmgr)2159 static int tonga_update_and_upload_mc_reg_table(struct pp_hwmgr *hwmgr)
2160 {
2161 	struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smu_backend);
2162 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2163 	uint32_t address;
2164 	int32_t result;
2165 
2166 	if (0 == (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK))
2167 		return 0;
2168 
2169 
2170 	memset(&smu_data->mc_regs, 0, sizeof(SMU72_Discrete_MCRegisters));
2171 
2172 	result = tonga_convert_mc_reg_table_to_smc(hwmgr, &(smu_data->mc_regs));
2173 
2174 	if (result != 0)
2175 		return result;
2176 
2177 
2178 	address = smu_data->smu7_data.mc_reg_table_start +
2179 			(uint32_t)offsetof(SMU72_Discrete_MCRegisters, data[0]);
2180 
2181 	return  smu7_copy_bytes_to_smc(
2182 			hwmgr, address,
2183 			(uint8_t *)&smu_data->mc_regs.data[0],
2184 			sizeof(SMU72_Discrete_MCRegisterSet) *
2185 			data->dpm_table.mclk_table.count,
2186 			SMC_RAM_END);
2187 }
2188 
tonga_populate_initial_mc_reg_table(struct pp_hwmgr * hwmgr)2189 static int tonga_populate_initial_mc_reg_table(struct pp_hwmgr *hwmgr)
2190 {
2191 	int result;
2192 	struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smu_backend);
2193 
2194 	memset(&smu_data->mc_regs, 0x00, sizeof(SMU72_Discrete_MCRegisters));
2195 	result = tonga_populate_mc_reg_address(hwmgr, &(smu_data->mc_regs));
2196 	PP_ASSERT_WITH_CODE(!result,
2197 		"Failed to initialize MCRegTable for the MC register addresses !",
2198 		return result;);
2199 
2200 	result = tonga_convert_mc_reg_table_to_smc(hwmgr, &smu_data->mc_regs);
2201 	PP_ASSERT_WITH_CODE(!result,
2202 		"Failed to initialize MCRegTable for driver state !",
2203 		return result;);
2204 
2205 	return smu7_copy_bytes_to_smc(hwmgr, smu_data->smu7_data.mc_reg_table_start,
2206 			(uint8_t *)&smu_data->mc_regs, sizeof(SMU72_Discrete_MCRegisters), SMC_RAM_END);
2207 }
2208 
tonga_initialize_power_tune_defaults(struct pp_hwmgr * hwmgr)2209 static void tonga_initialize_power_tune_defaults(struct pp_hwmgr *hwmgr)
2210 {
2211 	struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smu_backend);
2212 	struct  phm_ppt_v1_information *table_info =
2213 			(struct  phm_ppt_v1_information *)(hwmgr->pptable);
2214 
2215 	if (table_info &&
2216 			table_info->cac_dtp_table->usPowerTuneDataSetID <= POWERTUNE_DEFAULT_SET_MAX &&
2217 			table_info->cac_dtp_table->usPowerTuneDataSetID)
2218 		smu_data->power_tune_defaults =
2219 				&tonga_power_tune_data_set_array
2220 				[table_info->cac_dtp_table->usPowerTuneDataSetID - 1];
2221 	else
2222 		smu_data->power_tune_defaults = &tonga_power_tune_data_set_array[0];
2223 }
2224 
tonga_init_smc_table(struct pp_hwmgr * hwmgr)2225 static int tonga_init_smc_table(struct pp_hwmgr *hwmgr)
2226 {
2227 	int result;
2228 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2229 	struct tonga_smumgr *smu_data =
2230 			(struct tonga_smumgr *)(hwmgr->smu_backend);
2231 	SMU72_Discrete_DpmTable *table = &(smu_data->smc_state_table);
2232 	struct phm_ppt_v1_information *table_info =
2233 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
2234 
2235 	uint8_t i;
2236 	pp_atomctrl_gpio_pin_assignment gpio_pin_assignment;
2237 
2238 
2239 	memset(&(smu_data->smc_state_table), 0x00, sizeof(smu_data->smc_state_table));
2240 
2241 	tonga_initialize_power_tune_defaults(hwmgr);
2242 
2243 	if (SMU7_VOLTAGE_CONTROL_NONE != data->voltage_control)
2244 		tonga_populate_smc_voltage_tables(hwmgr, table);
2245 
2246 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2247 			PHM_PlatformCaps_AutomaticDCTransition))
2248 		table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC;
2249 
2250 
2251 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2252 			PHM_PlatformCaps_StepVddc))
2253 		table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC;
2254 
2255 	if (data->is_memory_gddr5)
2256 		table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5;
2257 
2258 	i = PHM_READ_FIELD(hwmgr->device, CC_MC_MAX_CHANNEL, NOOFCHAN);
2259 
2260 	if (i == 1 || i == 0)
2261 		table->SystemFlags |= 0x40;
2262 
2263 	if (data->ulv_supported && table_info->us_ulv_voltage_offset) {
2264 		result = tonga_populate_ulv_state(hwmgr, table);
2265 		PP_ASSERT_WITH_CODE(!result,
2266 			"Failed to initialize ULV state !",
2267 			return result;);
2268 
2269 		cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
2270 			ixCG_ULV_PARAMETER, 0x40035);
2271 	}
2272 
2273 	result = tonga_populate_smc_link_level(hwmgr, table);
2274 	PP_ASSERT_WITH_CODE(!result,
2275 		"Failed to initialize Link Level !", return result);
2276 
2277 	result = tonga_populate_all_graphic_levels(hwmgr);
2278 	PP_ASSERT_WITH_CODE(!result,
2279 		"Failed to initialize Graphics Level !", return result);
2280 
2281 	result = tonga_populate_all_memory_levels(hwmgr);
2282 	PP_ASSERT_WITH_CODE(!result,
2283 		"Failed to initialize Memory Level !", return result);
2284 
2285 	result = tonga_populate_smc_acpi_level(hwmgr, table);
2286 	PP_ASSERT_WITH_CODE(!result,
2287 		"Failed to initialize ACPI Level !", return result);
2288 
2289 	result = tonga_populate_smc_vce_level(hwmgr, table);
2290 	PP_ASSERT_WITH_CODE(!result,
2291 		"Failed to initialize VCE Level !", return result);
2292 
2293 	result = tonga_populate_smc_acp_level(hwmgr, table);
2294 	PP_ASSERT_WITH_CODE(!result,
2295 		"Failed to initialize ACP Level !", return result);
2296 
2297 	/* Since only the initial state is completely set up at this
2298 	* point (the other states are just copies of the boot state) we only
2299 	* need to populate the  ARB settings for the initial state.
2300 	*/
2301 	result = tonga_program_memory_timing_parameters(hwmgr);
2302 	PP_ASSERT_WITH_CODE(!result,
2303 		"Failed to Write ARB settings for the initial state.",
2304 		return result;);
2305 
2306 	result = tonga_populate_smc_uvd_level(hwmgr, table);
2307 	PP_ASSERT_WITH_CODE(!result,
2308 		"Failed to initialize UVD Level !", return result);
2309 
2310 	result = tonga_populate_smc_boot_level(hwmgr, table);
2311 	PP_ASSERT_WITH_CODE(!result,
2312 		"Failed to initialize Boot Level !", return result);
2313 
2314 	tonga_populate_bapm_parameters_in_dpm_table(hwmgr);
2315 	PP_ASSERT_WITH_CODE(!result,
2316 		"Failed to populate BAPM Parameters !", return result);
2317 
2318 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2319 			PHM_PlatformCaps_ClockStretcher)) {
2320 		result = tonga_populate_clock_stretcher_data_table(hwmgr);
2321 		PP_ASSERT_WITH_CODE(!result,
2322 			"Failed to populate Clock Stretcher Data Table !",
2323 			return result;);
2324 	}
2325 	table->GraphicsVoltageChangeEnable  = 1;
2326 	table->GraphicsThermThrottleEnable  = 1;
2327 	table->GraphicsInterval = 1;
2328 	table->VoltageInterval  = 1;
2329 	table->ThermalInterval  = 1;
2330 	table->TemperatureLimitHigh =
2331 		table_info->cac_dtp_table->usTargetOperatingTemp *
2332 		SMU7_Q88_FORMAT_CONVERSION_UNIT;
2333 	table->TemperatureLimitLow =
2334 		(table_info->cac_dtp_table->usTargetOperatingTemp - 1) *
2335 		SMU7_Q88_FORMAT_CONVERSION_UNIT;
2336 	table->MemoryVoltageChangeEnable  = 1;
2337 	table->MemoryInterval  = 1;
2338 	table->VoltageResponseTime  = 0;
2339 	table->PhaseResponseTime  = 0;
2340 	table->MemoryThermThrottleEnable  = 1;
2341 
2342 	/*
2343 	* Cail reads current link status and reports it as cap (we cannot
2344 	* change this due to some previous issues we had)
2345 	* SMC drops the link status to lowest level after enabling
2346 	* DPM by PowerPlay. After pnp or toggling CF, driver gets reloaded again
2347 	* but this time Cail reads current link status which was set to low by
2348 	* SMC and reports it as cap to powerplay
2349 	* To avoid it, we set PCIeBootLinkLevel to highest dpm level
2350 	*/
2351 	PP_ASSERT_WITH_CODE((1 <= data->dpm_table.pcie_speed_table.count),
2352 			"There must be 1 or more PCIE levels defined in PPTable.",
2353 			return -EINVAL);
2354 
2355 	table->PCIeBootLinkLevel = (uint8_t) (data->dpm_table.pcie_speed_table.count);
2356 
2357 	table->PCIeGenInterval  = 1;
2358 
2359 	result = tonga_populate_vr_config(hwmgr, table);
2360 	PP_ASSERT_WITH_CODE(!result,
2361 		"Failed to populate VRConfig setting !", return result);
2362 	data->vr_config = table->VRConfig;
2363 	table->ThermGpio  = 17;
2364 	table->SclkStepSize = 0x4000;
2365 
2366 	if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_VRHOT_GPIO_PINID,
2367 						&gpio_pin_assignment)) {
2368 		table->VRHotGpio = gpio_pin_assignment.uc_gpio_pin_bit_shift;
2369 		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2370 			PHM_PlatformCaps_RegulatorHot);
2371 	} else {
2372 		table->VRHotGpio = SMU7_UNUSED_GPIO_PIN;
2373 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2374 			PHM_PlatformCaps_RegulatorHot);
2375 	}
2376 
2377 	if (atomctrl_get_pp_assign_pin(hwmgr, PP_AC_DC_SWITCH_GPIO_PINID,
2378 						&gpio_pin_assignment)) {
2379 		table->AcDcGpio = gpio_pin_assignment.uc_gpio_pin_bit_shift;
2380 		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2381 			PHM_PlatformCaps_AutomaticDCTransition);
2382 	} else {
2383 		table->AcDcGpio = SMU7_UNUSED_GPIO_PIN;
2384 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2385 			PHM_PlatformCaps_AutomaticDCTransition);
2386 	}
2387 
2388 	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2389 		PHM_PlatformCaps_Falcon_QuickTransition);
2390 
2391 	if (0) {
2392 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2393 			PHM_PlatformCaps_AutomaticDCTransition);
2394 		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2395 			PHM_PlatformCaps_Falcon_QuickTransition);
2396 	}
2397 
2398 	if (atomctrl_get_pp_assign_pin(hwmgr,
2399 			THERMAL_INT_OUTPUT_GPIO_PINID, &gpio_pin_assignment)) {
2400 		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2401 			PHM_PlatformCaps_ThermalOutGPIO);
2402 
2403 		table->ThermOutGpio = gpio_pin_assignment.uc_gpio_pin_bit_shift;
2404 
2405 		table->ThermOutPolarity =
2406 			(0 == (cgs_read_register(hwmgr->device, mmGPIOPAD_A) &
2407 			(1 << gpio_pin_assignment.uc_gpio_pin_bit_shift))) ? 1 : 0;
2408 
2409 		table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_ONLY;
2410 
2411 		/* if required, combine VRHot/PCC with thermal out GPIO*/
2412 		if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2413 			PHM_PlatformCaps_RegulatorHot) &&
2414 			phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2415 			PHM_PlatformCaps_CombinePCCWithThermalSignal)){
2416 			table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_VRHOT;
2417 		}
2418 	} else {
2419 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2420 			PHM_PlatformCaps_ThermalOutGPIO);
2421 
2422 		table->ThermOutGpio = 17;
2423 		table->ThermOutPolarity = 1;
2424 		table->ThermOutMode = SMU7_THERM_OUT_MODE_DISABLE;
2425 	}
2426 
2427 	for (i = 0; i < SMU72_MAX_ENTRIES_SMIO; i++)
2428 		table->Smio[i] = PP_HOST_TO_SMC_UL(table->Smio[i]);
2429 	CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags);
2430 	CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig);
2431 	CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask1);
2432 	CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask2);
2433 	CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize);
2434 	CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh);
2435 	CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow);
2436 	CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime);
2437 	CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime);
2438 
2439 	/* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */
2440 	result = smu7_copy_bytes_to_smc(
2441 			hwmgr,
2442 			smu_data->smu7_data.dpm_table_start + offsetof(SMU72_Discrete_DpmTable, SystemFlags),
2443 			(uint8_t *)&(table->SystemFlags),
2444 			sizeof(SMU72_Discrete_DpmTable) - 3 * sizeof(SMU72_PIDController),
2445 			SMC_RAM_END);
2446 
2447 	PP_ASSERT_WITH_CODE(!result,
2448 		"Failed to upload dpm data to SMC memory !", return result;);
2449 
2450 	result = tonga_init_arb_table_index(hwmgr);
2451 	PP_ASSERT_WITH_CODE(!result,
2452 			"Failed to upload arb data to SMC memory !", return result);
2453 
2454 	tonga_populate_pm_fuses(hwmgr);
2455 	PP_ASSERT_WITH_CODE((!result),
2456 		"Failed to populate initialize pm fuses !", return result);
2457 
2458 	result = tonga_populate_initial_mc_reg_table(hwmgr);
2459 	PP_ASSERT_WITH_CODE((!result),
2460 		"Failed to populate initialize MC Reg table !", return result);
2461 
2462 	return 0;
2463 }
2464 
tonga_thermal_setup_fan_table(struct pp_hwmgr * hwmgr)2465 static int tonga_thermal_setup_fan_table(struct pp_hwmgr *hwmgr)
2466 {
2467 	struct tonga_smumgr *smu_data =
2468 			(struct tonga_smumgr *)(hwmgr->smu_backend);
2469 	SMU72_Discrete_FanTable fan_table = { FDO_MODE_HARDWARE };
2470 	uint32_t duty100;
2471 	uint32_t t_diff1, t_diff2, pwm_diff1, pwm_diff2;
2472 	uint16_t fdo_min, slope1, slope2;
2473 	uint32_t reference_clock;
2474 	int res __unused;
2475 	uint64_t tmp64;
2476 
2477 	if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2478 					PHM_PlatformCaps_MicrocodeFanControl))
2479 		return 0;
2480 
2481 	if (hwmgr->thermal_controller.fanInfo.bNoFan) {
2482 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2483 			PHM_PlatformCaps_MicrocodeFanControl);
2484 		return 0;
2485 	}
2486 
2487 	if (0 == smu_data->smu7_data.fan_table_start) {
2488 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2489 					PHM_PlatformCaps_MicrocodeFanControl);
2490 		return 0;
2491 	}
2492 
2493 	duty100 = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device,
2494 						CGS_IND_REG__SMC,
2495 						CG_FDO_CTRL1, FMAX_DUTY100);
2496 
2497 	if (0 == duty100) {
2498 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2499 				PHM_PlatformCaps_MicrocodeFanControl);
2500 		return 0;
2501 	}
2502 
2503 	tmp64 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin * duty100;
2504 	do_div(tmp64, 10000);
2505 	fdo_min = (uint16_t)tmp64;
2506 
2507 	t_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usTMed -
2508 		   hwmgr->thermal_controller.advanceFanControlParameters.usTMin;
2509 	t_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usTHigh -
2510 		  hwmgr->thermal_controller.advanceFanControlParameters.usTMed;
2511 
2512 	pwm_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed -
2513 		    hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin;
2514 	pwm_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMHigh -
2515 		    hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed;
2516 
2517 	slope1 = (uint16_t)((50 + ((16 * duty100 * pwm_diff1) / t_diff1)) / 100);
2518 	slope2 = (uint16_t)((50 + ((16 * duty100 * pwm_diff2) / t_diff2)) / 100);
2519 
2520 	fan_table.TempMin = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMin) / 100);
2521 	fan_table.TempMed = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMed) / 100);
2522 	fan_table.TempMax = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMax) / 100);
2523 
2524 	fan_table.Slope1 = cpu_to_be16(slope1);
2525 	fan_table.Slope2 = cpu_to_be16(slope2);
2526 
2527 	fan_table.FdoMin = cpu_to_be16(fdo_min);
2528 
2529 	fan_table.HystDown = cpu_to_be16(hwmgr->thermal_controller.advanceFanControlParameters.ucTHyst);
2530 
2531 	fan_table.HystUp = cpu_to_be16(1);
2532 
2533 	fan_table.HystSlope = cpu_to_be16(1);
2534 
2535 	fan_table.TempRespLim = cpu_to_be16(5);
2536 
2537 	reference_clock = amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev);
2538 
2539 	fan_table.RefreshPeriod = cpu_to_be32((hwmgr->thermal_controller.advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600);
2540 
2541 	fan_table.FdoMax = cpu_to_be16((uint16_t)duty100);
2542 
2543 	fan_table.TempSrc = (uint8_t)PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_MULT_THERMAL_CTRL, TEMP_SEL);
2544 
2545 	fan_table.FanControl_GL_Flag = 1;
2546 
2547 	res = smu7_copy_bytes_to_smc(hwmgr,
2548 					smu_data->smu7_data.fan_table_start,
2549 					(uint8_t *)&fan_table,
2550 					(uint32_t)sizeof(fan_table),
2551 					SMC_RAM_END);
2552 
2553 	return 0;
2554 }
2555 
2556 
tonga_program_mem_timing_parameters(struct pp_hwmgr * hwmgr)2557 static int tonga_program_mem_timing_parameters(struct pp_hwmgr *hwmgr)
2558 {
2559 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2560 
2561 	if (data->need_update_smu7_dpm_table &
2562 		(DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_OD_UPDATE_MCLK))
2563 		return tonga_program_memory_timing_parameters(hwmgr);
2564 
2565 	return 0;
2566 }
2567 
tonga_update_sclk_threshold(struct pp_hwmgr * hwmgr)2568 static int tonga_update_sclk_threshold(struct pp_hwmgr *hwmgr)
2569 {
2570 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2571 	struct tonga_smumgr *smu_data =
2572 			(struct tonga_smumgr *)(hwmgr->smu_backend);
2573 
2574 	int result = 0;
2575 	uint32_t low_sclk_interrupt_threshold = 0;
2576 
2577 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2578 			PHM_PlatformCaps_SclkThrottleLowNotification)
2579 		&& (data->low_sclk_interrupt_threshold != 0)) {
2580 		low_sclk_interrupt_threshold =
2581 				data->low_sclk_interrupt_threshold;
2582 
2583 		CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold);
2584 
2585 		result = smu7_copy_bytes_to_smc(
2586 				hwmgr,
2587 				smu_data->smu7_data.dpm_table_start +
2588 				offsetof(SMU72_Discrete_DpmTable,
2589 					LowSclkInterruptThreshold),
2590 				(uint8_t *)&low_sclk_interrupt_threshold,
2591 				sizeof(uint32_t),
2592 				SMC_RAM_END);
2593 	}
2594 
2595 	result = tonga_update_and_upload_mc_reg_table(hwmgr);
2596 
2597 	PP_ASSERT_WITH_CODE((!result),
2598 				"Failed to upload MC reg table !",
2599 				return result);
2600 
2601 	result = tonga_program_mem_timing_parameters(hwmgr);
2602 	PP_ASSERT_WITH_CODE((result == 0),
2603 			"Failed to program memory timing parameters !",
2604 			);
2605 
2606 	return result;
2607 }
2608 
tonga_get_offsetof(uint32_t type,uint32_t member)2609 static uint32_t tonga_get_offsetof(uint32_t type, uint32_t member)
2610 {
2611 	switch (type) {
2612 	case SMU_SoftRegisters:
2613 		switch (member) {
2614 		case HandshakeDisables:
2615 			return offsetof(SMU72_SoftRegisters, HandshakeDisables);
2616 		case VoltageChangeTimeout:
2617 			return offsetof(SMU72_SoftRegisters, VoltageChangeTimeout);
2618 		case AverageGraphicsActivity:
2619 			return offsetof(SMU72_SoftRegisters, AverageGraphicsActivity);
2620 		case AverageMemoryActivity:
2621 			return offsetof(SMU72_SoftRegisters, AverageMemoryActivity);
2622 		case PreVBlankGap:
2623 			return offsetof(SMU72_SoftRegisters, PreVBlankGap);
2624 		case VBlankTimeout:
2625 			return offsetof(SMU72_SoftRegisters, VBlankTimeout);
2626 		case UcodeLoadStatus:
2627 			return offsetof(SMU72_SoftRegisters, UcodeLoadStatus);
2628 		case DRAM_LOG_ADDR_H:
2629 			return offsetof(SMU72_SoftRegisters, DRAM_LOG_ADDR_H);
2630 		case DRAM_LOG_ADDR_L:
2631 			return offsetof(SMU72_SoftRegisters, DRAM_LOG_ADDR_L);
2632 		case DRAM_LOG_PHY_ADDR_H:
2633 			return offsetof(SMU72_SoftRegisters, DRAM_LOG_PHY_ADDR_H);
2634 		case DRAM_LOG_PHY_ADDR_L:
2635 			return offsetof(SMU72_SoftRegisters, DRAM_LOG_PHY_ADDR_L);
2636 		case DRAM_LOG_BUFF_SIZE:
2637 			return offsetof(SMU72_SoftRegisters, DRAM_LOG_BUFF_SIZE);
2638 		}
2639 		break;
2640 	case SMU_Discrete_DpmTable:
2641 		switch (member) {
2642 		case UvdBootLevel:
2643 			return offsetof(SMU72_Discrete_DpmTable, UvdBootLevel);
2644 		case VceBootLevel:
2645 			return offsetof(SMU72_Discrete_DpmTable, VceBootLevel);
2646 		case LowSclkInterruptThreshold:
2647 			return offsetof(SMU72_Discrete_DpmTable, LowSclkInterruptThreshold);
2648 		}
2649 		break;
2650 	}
2651 	pr_warn("can't get the offset of type %x member %x\n", type, member);
2652 	return 0;
2653 }
2654 
tonga_get_mac_definition(uint32_t value)2655 static uint32_t tonga_get_mac_definition(uint32_t value)
2656 {
2657 	switch (value) {
2658 	case SMU_MAX_LEVELS_GRAPHICS:
2659 		return SMU72_MAX_LEVELS_GRAPHICS;
2660 	case SMU_MAX_LEVELS_MEMORY:
2661 		return SMU72_MAX_LEVELS_MEMORY;
2662 	case SMU_MAX_LEVELS_LINK:
2663 		return SMU72_MAX_LEVELS_LINK;
2664 	case SMU_MAX_ENTRIES_SMIO:
2665 		return SMU72_MAX_ENTRIES_SMIO;
2666 	case SMU_MAX_LEVELS_VDDC:
2667 		return SMU72_MAX_LEVELS_VDDC;
2668 	case SMU_MAX_LEVELS_VDDGFX:
2669 		return SMU72_MAX_LEVELS_VDDGFX;
2670 	case SMU_MAX_LEVELS_VDDCI:
2671 		return SMU72_MAX_LEVELS_VDDCI;
2672 	case SMU_MAX_LEVELS_MVDD:
2673 		return SMU72_MAX_LEVELS_MVDD;
2674 	}
2675 	pr_warn("can't get the mac value %x\n", value);
2676 
2677 	return 0;
2678 }
2679 
tonga_update_uvd_smc_table(struct pp_hwmgr * hwmgr)2680 static int tonga_update_uvd_smc_table(struct pp_hwmgr *hwmgr)
2681 {
2682 	struct tonga_smumgr *smu_data =
2683 				(struct tonga_smumgr *)(hwmgr->smu_backend);
2684 	uint32_t mm_boot_level_offset, mm_boot_level_value;
2685 	struct phm_ppt_v1_information *table_info =
2686 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
2687 
2688 	smu_data->smc_state_table.UvdBootLevel = 0;
2689 	if (table_info->mm_dep_table->count > 0)
2690 		smu_data->smc_state_table.UvdBootLevel =
2691 				(uint8_t) (table_info->mm_dep_table->count - 1);
2692 	mm_boot_level_offset = smu_data->smu7_data.dpm_table_start +
2693 				offsetof(SMU72_Discrete_DpmTable, UvdBootLevel);
2694 	mm_boot_level_offset /= 4;
2695 	mm_boot_level_offset *= 4;
2696 	mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
2697 			CGS_IND_REG__SMC, mm_boot_level_offset);
2698 	mm_boot_level_value &= 0x00FFFFFF;
2699 	mm_boot_level_value |= smu_data->smc_state_table.UvdBootLevel << 24;
2700 	cgs_write_ind_register(hwmgr->device,
2701 				CGS_IND_REG__SMC,
2702 				mm_boot_level_offset, mm_boot_level_value);
2703 
2704 	if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2705 			PHM_PlatformCaps_UVDDPM) ||
2706 		phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2707 			PHM_PlatformCaps_StablePState))
2708 		smum_send_msg_to_smc_with_parameter(hwmgr,
2709 				PPSMC_MSG_UVDDPM_SetEnabledMask,
2710 				(uint32_t)(1 << smu_data->smc_state_table.UvdBootLevel));
2711 	return 0;
2712 }
2713 
tonga_update_vce_smc_table(struct pp_hwmgr * hwmgr)2714 static int tonga_update_vce_smc_table(struct pp_hwmgr *hwmgr)
2715 {
2716 	struct tonga_smumgr *smu_data =
2717 				(struct tonga_smumgr *)(hwmgr->smu_backend);
2718 	uint32_t mm_boot_level_offset, mm_boot_level_value;
2719 	struct phm_ppt_v1_information *table_info =
2720 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
2721 
2722 
2723 	smu_data->smc_state_table.VceBootLevel =
2724 		(uint8_t) (table_info->mm_dep_table->count - 1);
2725 
2726 	mm_boot_level_offset = smu_data->smu7_data.dpm_table_start +
2727 					offsetof(SMU72_Discrete_DpmTable, VceBootLevel);
2728 	mm_boot_level_offset /= 4;
2729 	mm_boot_level_offset *= 4;
2730 	mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
2731 			CGS_IND_REG__SMC, mm_boot_level_offset);
2732 	mm_boot_level_value &= 0xFF00FFFF;
2733 	mm_boot_level_value |= smu_data->smc_state_table.VceBootLevel << 16;
2734 	cgs_write_ind_register(hwmgr->device,
2735 			CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
2736 
2737 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2738 					PHM_PlatformCaps_StablePState))
2739 		smum_send_msg_to_smc_with_parameter(hwmgr,
2740 				PPSMC_MSG_VCEDPM_SetEnabledMask,
2741 				(uint32_t)1 << smu_data->smc_state_table.VceBootLevel);
2742 	return 0;
2743 }
2744 
tonga_update_smc_table(struct pp_hwmgr * hwmgr,uint32_t type)2745 static int tonga_update_smc_table(struct pp_hwmgr *hwmgr, uint32_t type)
2746 {
2747 	switch (type) {
2748 	case SMU_UVD_TABLE:
2749 		tonga_update_uvd_smc_table(hwmgr);
2750 		break;
2751 	case SMU_VCE_TABLE:
2752 		tonga_update_vce_smc_table(hwmgr);
2753 		break;
2754 	default:
2755 		break;
2756 	}
2757 	return 0;
2758 }
2759 
tonga_process_firmware_header(struct pp_hwmgr * hwmgr)2760 static int tonga_process_firmware_header(struct pp_hwmgr *hwmgr)
2761 {
2762 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2763 	struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smu_backend);
2764 
2765 	uint32_t tmp;
2766 	int result;
2767 	bool error = false;
2768 
2769 	result = smu7_read_smc_sram_dword(hwmgr,
2770 				SMU72_FIRMWARE_HEADER_LOCATION +
2771 				offsetof(SMU72_Firmware_Header, DpmTable),
2772 				&tmp, SMC_RAM_END);
2773 
2774 	if (!result)
2775 		smu_data->smu7_data.dpm_table_start = tmp;
2776 
2777 	error |= (result != 0);
2778 
2779 	result = smu7_read_smc_sram_dword(hwmgr,
2780 				SMU72_FIRMWARE_HEADER_LOCATION +
2781 				offsetof(SMU72_Firmware_Header, SoftRegisters),
2782 				&tmp, SMC_RAM_END);
2783 
2784 	if (!result) {
2785 		data->soft_regs_start = tmp;
2786 		smu_data->smu7_data.soft_regs_start = tmp;
2787 	}
2788 
2789 	error |= (result != 0);
2790 
2791 
2792 	result = smu7_read_smc_sram_dword(hwmgr,
2793 				SMU72_FIRMWARE_HEADER_LOCATION +
2794 				offsetof(SMU72_Firmware_Header, mcRegisterTable),
2795 				&tmp, SMC_RAM_END);
2796 
2797 	if (!result)
2798 		smu_data->smu7_data.mc_reg_table_start = tmp;
2799 
2800 	result = smu7_read_smc_sram_dword(hwmgr,
2801 				SMU72_FIRMWARE_HEADER_LOCATION +
2802 				offsetof(SMU72_Firmware_Header, FanTable),
2803 				&tmp, SMC_RAM_END);
2804 
2805 	if (!result)
2806 		smu_data->smu7_data.fan_table_start = tmp;
2807 
2808 	error |= (result != 0);
2809 
2810 	result = smu7_read_smc_sram_dword(hwmgr,
2811 				SMU72_FIRMWARE_HEADER_LOCATION +
2812 				offsetof(SMU72_Firmware_Header, mcArbDramTimingTable),
2813 				&tmp, SMC_RAM_END);
2814 
2815 	if (!result)
2816 		smu_data->smu7_data.arb_table_start = tmp;
2817 
2818 	error |= (result != 0);
2819 
2820 	result = smu7_read_smc_sram_dword(hwmgr,
2821 				SMU72_FIRMWARE_HEADER_LOCATION +
2822 				offsetof(SMU72_Firmware_Header, Version),
2823 				&tmp, SMC_RAM_END);
2824 
2825 	if (!result)
2826 		hwmgr->microcode_version_info.SMC = tmp;
2827 
2828 	error |= (result != 0);
2829 
2830 	return error ? 1 : 0;
2831 }
2832 
2833 /*---------------------------MC----------------------------*/
2834 
tonga_get_memory_modile_index(struct pp_hwmgr * hwmgr)2835 static uint8_t tonga_get_memory_modile_index(struct pp_hwmgr *hwmgr)
2836 {
2837 	return (uint8_t) (0xFF & (cgs_read_register(hwmgr->device, mmBIOS_SCRATCH_4) >> 16));
2838 }
2839 
tonga_check_s0_mc_reg_index(uint16_t in_reg,uint16_t * out_reg)2840 static bool tonga_check_s0_mc_reg_index(uint16_t in_reg, uint16_t *out_reg)
2841 {
2842 	bool result = true;
2843 
2844 	switch (in_reg) {
2845 	case  mmMC_SEQ_RAS_TIMING:
2846 		*out_reg = mmMC_SEQ_RAS_TIMING_LP;
2847 		break;
2848 
2849 	case  mmMC_SEQ_DLL_STBY:
2850 		*out_reg = mmMC_SEQ_DLL_STBY_LP;
2851 		break;
2852 
2853 	case  mmMC_SEQ_G5PDX_CMD0:
2854 		*out_reg = mmMC_SEQ_G5PDX_CMD0_LP;
2855 		break;
2856 
2857 	case  mmMC_SEQ_G5PDX_CMD1:
2858 		*out_reg = mmMC_SEQ_G5PDX_CMD1_LP;
2859 		break;
2860 
2861 	case  mmMC_SEQ_G5PDX_CTRL:
2862 		*out_reg = mmMC_SEQ_G5PDX_CTRL_LP;
2863 		break;
2864 
2865 	case mmMC_SEQ_CAS_TIMING:
2866 		*out_reg = mmMC_SEQ_CAS_TIMING_LP;
2867 		break;
2868 
2869 	case mmMC_SEQ_MISC_TIMING:
2870 		*out_reg = mmMC_SEQ_MISC_TIMING_LP;
2871 		break;
2872 
2873 	case mmMC_SEQ_MISC_TIMING2:
2874 		*out_reg = mmMC_SEQ_MISC_TIMING2_LP;
2875 		break;
2876 
2877 	case mmMC_SEQ_PMG_DVS_CMD:
2878 		*out_reg = mmMC_SEQ_PMG_DVS_CMD_LP;
2879 		break;
2880 
2881 	case mmMC_SEQ_PMG_DVS_CTL:
2882 		*out_reg = mmMC_SEQ_PMG_DVS_CTL_LP;
2883 		break;
2884 
2885 	case mmMC_SEQ_RD_CTL_D0:
2886 		*out_reg = mmMC_SEQ_RD_CTL_D0_LP;
2887 		break;
2888 
2889 	case mmMC_SEQ_RD_CTL_D1:
2890 		*out_reg = mmMC_SEQ_RD_CTL_D1_LP;
2891 		break;
2892 
2893 	case mmMC_SEQ_WR_CTL_D0:
2894 		*out_reg = mmMC_SEQ_WR_CTL_D0_LP;
2895 		break;
2896 
2897 	case mmMC_SEQ_WR_CTL_D1:
2898 		*out_reg = mmMC_SEQ_WR_CTL_D1_LP;
2899 		break;
2900 
2901 	case mmMC_PMG_CMD_EMRS:
2902 		*out_reg = mmMC_SEQ_PMG_CMD_EMRS_LP;
2903 		break;
2904 
2905 	case mmMC_PMG_CMD_MRS:
2906 		*out_reg = mmMC_SEQ_PMG_CMD_MRS_LP;
2907 		break;
2908 
2909 	case mmMC_PMG_CMD_MRS1:
2910 		*out_reg = mmMC_SEQ_PMG_CMD_MRS1_LP;
2911 		break;
2912 
2913 	case mmMC_SEQ_PMG_TIMING:
2914 		*out_reg = mmMC_SEQ_PMG_TIMING_LP;
2915 		break;
2916 
2917 	case mmMC_PMG_CMD_MRS2:
2918 		*out_reg = mmMC_SEQ_PMG_CMD_MRS2_LP;
2919 		break;
2920 
2921 	case mmMC_SEQ_WR_CTL_2:
2922 		*out_reg = mmMC_SEQ_WR_CTL_2_LP;
2923 		break;
2924 
2925 	default:
2926 		result = false;
2927 		break;
2928 	}
2929 
2930 	return result;
2931 }
2932 
tonga_set_s0_mc_reg_index(struct tonga_mc_reg_table * table)2933 static int tonga_set_s0_mc_reg_index(struct tonga_mc_reg_table *table)
2934 {
2935 	uint32_t i;
2936 	uint16_t address;
2937 
2938 	for (i = 0; i < table->last; i++) {
2939 		table->mc_reg_address[i].s0 =
2940 			tonga_check_s0_mc_reg_index(table->mc_reg_address[i].s1,
2941 							&address) ?
2942 							address :
2943 						 table->mc_reg_address[i].s1;
2944 	}
2945 	return 0;
2946 }
2947 
tonga_copy_vbios_smc_reg_table(const pp_atomctrl_mc_reg_table * table,struct tonga_mc_reg_table * ni_table)2948 static int tonga_copy_vbios_smc_reg_table(const pp_atomctrl_mc_reg_table *table,
2949 					struct tonga_mc_reg_table *ni_table)
2950 {
2951 	uint8_t i, j;
2952 
2953 	PP_ASSERT_WITH_CODE((table->last <= SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE),
2954 		"Invalid VramInfo table.", return -EINVAL);
2955 	PP_ASSERT_WITH_CODE((table->num_entries <= MAX_AC_TIMING_ENTRIES),
2956 		"Invalid VramInfo table.", return -EINVAL);
2957 
2958 	for (i = 0; i < table->last; i++)
2959 		ni_table->mc_reg_address[i].s1 = table->mc_reg_address[i].s1;
2960 
2961 	ni_table->last = table->last;
2962 
2963 	for (i = 0; i < table->num_entries; i++) {
2964 		ni_table->mc_reg_table_entry[i].mclk_max =
2965 			table->mc_reg_table_entry[i].mclk_max;
2966 		for (j = 0; j < table->last; j++) {
2967 			ni_table->mc_reg_table_entry[i].mc_data[j] =
2968 				table->mc_reg_table_entry[i].mc_data[j];
2969 		}
2970 	}
2971 
2972 	ni_table->num_entries = table->num_entries;
2973 
2974 	return 0;
2975 }
2976 
tonga_set_mc_special_registers(struct pp_hwmgr * hwmgr,struct tonga_mc_reg_table * table)2977 static int tonga_set_mc_special_registers(struct pp_hwmgr *hwmgr,
2978 					struct tonga_mc_reg_table *table)
2979 {
2980 	uint8_t i, j, k;
2981 	uint32_t temp_reg;
2982 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2983 
2984 	for (i = 0, j = table->last; i < table->last; i++) {
2985 		PP_ASSERT_WITH_CODE((j < SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE),
2986 			"Invalid VramInfo table.", return -EINVAL);
2987 
2988 		switch (table->mc_reg_address[i].s1) {
2989 
2990 		case mmMC_SEQ_MISC1:
2991 			temp_reg = cgs_read_register(hwmgr->device,
2992 							mmMC_PMG_CMD_EMRS);
2993 			table->mc_reg_address[j].s1 = mmMC_PMG_CMD_EMRS;
2994 			table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_EMRS_LP;
2995 			for (k = 0; k < table->num_entries; k++) {
2996 				table->mc_reg_table_entry[k].mc_data[j] =
2997 					((temp_reg & 0xffff0000)) |
2998 					((table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16);
2999 			}
3000 			j++;
3001 
3002 			PP_ASSERT_WITH_CODE((j < SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE),
3003 				"Invalid VramInfo table.", return -EINVAL);
3004 			temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS);
3005 			table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS;
3006 			table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS_LP;
3007 			for (k = 0; k < table->num_entries; k++) {
3008 				table->mc_reg_table_entry[k].mc_data[j] =
3009 					(temp_reg & 0xffff0000) |
3010 					(table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff);
3011 
3012 				if (!data->is_memory_gddr5)
3013 					table->mc_reg_table_entry[k].mc_data[j] |= 0x100;
3014 			}
3015 			j++;
3016 
3017 			if (!data->is_memory_gddr5) {
3018 				PP_ASSERT_WITH_CODE((j < SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE),
3019 					"Invalid VramInfo table.", return -EINVAL);
3020 				table->mc_reg_address[j].s1 = mmMC_PMG_AUTO_CMD;
3021 				table->mc_reg_address[j].s0 = mmMC_PMG_AUTO_CMD;
3022 				for (k = 0; k < table->num_entries; k++)
3023 					table->mc_reg_table_entry[k].mc_data[j] =
3024 						(table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16;
3025 				j++;
3026 			}
3027 
3028 			break;
3029 
3030 		case mmMC_SEQ_RESERVE_M:
3031 			temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1);
3032 			table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS1;
3033 			table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS1_LP;
3034 			for (k = 0; k < table->num_entries; k++) {
3035 				table->mc_reg_table_entry[k].mc_data[j] =
3036 					(temp_reg & 0xffff0000) |
3037 					(table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff);
3038 			}
3039 			j++;
3040 			break;
3041 
3042 		default:
3043 			break;
3044 		}
3045 
3046 	}
3047 
3048 	table->last = j;
3049 
3050 	return 0;
3051 }
3052 
tonga_set_valid_flag(struct tonga_mc_reg_table * table)3053 static int tonga_set_valid_flag(struct tonga_mc_reg_table *table)
3054 {
3055 	uint8_t i, j;
3056 
3057 	for (i = 0; i < table->last; i++) {
3058 		for (j = 1; j < table->num_entries; j++) {
3059 			if (table->mc_reg_table_entry[j-1].mc_data[i] !=
3060 				table->mc_reg_table_entry[j].mc_data[i]) {
3061 				table->validflag |= (1<<i);
3062 				break;
3063 			}
3064 		}
3065 	}
3066 
3067 	return 0;
3068 }
3069 
tonga_initialize_mc_reg_table(struct pp_hwmgr * hwmgr)3070 static int tonga_initialize_mc_reg_table(struct pp_hwmgr *hwmgr)
3071 {
3072 	int result;
3073 	struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smu_backend);
3074 	pp_atomctrl_mc_reg_table *table;
3075 	struct tonga_mc_reg_table *ni_table = &smu_data->mc_reg_table;
3076 	uint8_t module_index = tonga_get_memory_modile_index(hwmgr);
3077 
3078 	table = kzalloc(sizeof(pp_atomctrl_mc_reg_table), GFP_KERNEL);
3079 
3080 	if (table == NULL)
3081 		return -ENOMEM;
3082 
3083 	/* Program additional LP registers that are no longer programmed by VBIOS */
3084 	cgs_write_register(hwmgr->device, mmMC_SEQ_RAS_TIMING_LP,
3085 			cgs_read_register(hwmgr->device, mmMC_SEQ_RAS_TIMING));
3086 	cgs_write_register(hwmgr->device, mmMC_SEQ_CAS_TIMING_LP,
3087 			cgs_read_register(hwmgr->device, mmMC_SEQ_CAS_TIMING));
3088 	cgs_write_register(hwmgr->device, mmMC_SEQ_DLL_STBY_LP,
3089 			cgs_read_register(hwmgr->device, mmMC_SEQ_DLL_STBY));
3090 	cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0_LP,
3091 			cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0));
3092 	cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1_LP,
3093 			cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1));
3094 	cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL_LP,
3095 			cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL));
3096 	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD_LP,
3097 			cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD));
3098 	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL_LP,
3099 			cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL));
3100 	cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING_LP,
3101 			cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING));
3102 	cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2_LP,
3103 			cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2));
3104 	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_EMRS_LP,
3105 			cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS));
3106 	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS_LP,
3107 			cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS));
3108 	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS1_LP,
3109 			cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1));
3110 	cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0_LP,
3111 			cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0));
3112 	cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1_LP,
3113 			cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1));
3114 	cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0_LP,
3115 			cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0));
3116 	cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1_LP,
3117 			cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1));
3118 	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_TIMING_LP,
3119 			cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_TIMING));
3120 	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS2_LP,
3121 			cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS2));
3122 	cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_2_LP,
3123 			cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_2));
3124 
3125 	result = atomctrl_initialize_mc_reg_table(hwmgr, module_index, table);
3126 
3127 	if (!result)
3128 		result = tonga_copy_vbios_smc_reg_table(table, ni_table);
3129 
3130 	if (!result) {
3131 		tonga_set_s0_mc_reg_index(ni_table);
3132 		result = tonga_set_mc_special_registers(hwmgr, ni_table);
3133 	}
3134 
3135 	if (!result)
3136 		tonga_set_valid_flag(ni_table);
3137 
3138 	kfree(table);
3139 
3140 	return result;
3141 }
3142 
tonga_is_dpm_running(struct pp_hwmgr * hwmgr)3143 static bool tonga_is_dpm_running(struct pp_hwmgr *hwmgr)
3144 {
3145 	return (1 == PHM_READ_INDIRECT_FIELD(hwmgr->device,
3146 			CGS_IND_REG__SMC, FEATURE_STATUS, VOLTAGE_CONTROLLER_ON))
3147 			? true : false;
3148 }
3149 
tonga_update_dpm_settings(struct pp_hwmgr * hwmgr,void * profile_setting)3150 static int tonga_update_dpm_settings(struct pp_hwmgr *hwmgr,
3151 				void *profile_setting)
3152 {
3153 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3154 	struct tonga_smumgr *smu_data = (struct tonga_smumgr *)
3155 			(hwmgr->smu_backend);
3156 	struct profile_mode_setting *setting;
3157 	struct SMU72_Discrete_GraphicsLevel *levels =
3158 			smu_data->smc_state_table.GraphicsLevel;
3159 	uint32_t array = smu_data->smu7_data.dpm_table_start +
3160 			offsetof(SMU72_Discrete_DpmTable, GraphicsLevel);
3161 
3162 	uint32_t mclk_array = smu_data->smu7_data.dpm_table_start +
3163 			offsetof(SMU72_Discrete_DpmTable, MemoryLevel);
3164 	struct SMU72_Discrete_MemoryLevel *mclk_levels =
3165 			smu_data->smc_state_table.MemoryLevel;
3166 	uint32_t i;
3167 	uint32_t offset, up_hyst_offset, down_hyst_offset, clk_activity_offset, tmp;
3168 
3169 	if (profile_setting == NULL)
3170 		return -EINVAL;
3171 
3172 	setting = (struct profile_mode_setting *)profile_setting;
3173 
3174 	if (setting->bupdate_sclk) {
3175 		if (!data->sclk_dpm_key_disabled)
3176 			smum_send_msg_to_smc(hwmgr, PPSMC_MSG_SCLKDPM_FreezeLevel);
3177 		for (i = 0; i < smu_data->smc_state_table.GraphicsDpmLevelCount; i++) {
3178 			if (levels[i].ActivityLevel !=
3179 				cpu_to_be16(setting->sclk_activity)) {
3180 				levels[i].ActivityLevel = cpu_to_be16(setting->sclk_activity);
3181 
3182 				clk_activity_offset = array + (sizeof(SMU72_Discrete_GraphicsLevel) * i)
3183 						+ offsetof(SMU72_Discrete_GraphicsLevel, ActivityLevel);
3184 				offset = clk_activity_offset & ~0x3;
3185 				tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
3186 				tmp = phm_set_field_to_u32(clk_activity_offset, tmp, levels[i].ActivityLevel, sizeof(uint16_t));
3187 				cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
3188 
3189 			}
3190 			if (levels[i].UpHyst != setting->sclk_up_hyst ||
3191 				levels[i].DownHyst != setting->sclk_down_hyst) {
3192 				levels[i].UpHyst = setting->sclk_up_hyst;
3193 				levels[i].DownHyst = setting->sclk_down_hyst;
3194 				up_hyst_offset = array + (sizeof(SMU72_Discrete_GraphicsLevel) * i)
3195 						+ offsetof(SMU72_Discrete_GraphicsLevel, UpHyst);
3196 				down_hyst_offset = array + (sizeof(SMU72_Discrete_GraphicsLevel) * i)
3197 						+ offsetof(SMU72_Discrete_GraphicsLevel, DownHyst);
3198 				offset = up_hyst_offset & ~0x3;
3199 				tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
3200 				tmp = phm_set_field_to_u32(up_hyst_offset, tmp, levels[i].UpHyst, sizeof(uint8_t));
3201 				tmp = phm_set_field_to_u32(down_hyst_offset, tmp, levels[i].DownHyst, sizeof(uint8_t));
3202 				cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
3203 			}
3204 		}
3205 		if (!data->sclk_dpm_key_disabled)
3206 			smum_send_msg_to_smc(hwmgr, PPSMC_MSG_SCLKDPM_UnfreezeLevel);
3207 	}
3208 
3209 	if (setting->bupdate_mclk) {
3210 		if (!data->mclk_dpm_key_disabled)
3211 			smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MCLKDPM_FreezeLevel);
3212 		for (i = 0; i < smu_data->smc_state_table.MemoryDpmLevelCount; i++) {
3213 			if (mclk_levels[i].ActivityLevel !=
3214 				cpu_to_be16(setting->mclk_activity)) {
3215 				mclk_levels[i].ActivityLevel = cpu_to_be16(setting->mclk_activity);
3216 
3217 				clk_activity_offset = mclk_array + (sizeof(SMU72_Discrete_MemoryLevel) * i)
3218 						+ offsetof(SMU72_Discrete_MemoryLevel, ActivityLevel);
3219 				offset = clk_activity_offset & ~0x3;
3220 				tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
3221 				tmp = phm_set_field_to_u32(clk_activity_offset, tmp, mclk_levels[i].ActivityLevel, sizeof(uint16_t));
3222 				cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
3223 
3224 			}
3225 			if (mclk_levels[i].UpHyst != setting->mclk_up_hyst ||
3226 				mclk_levels[i].DownHyst != setting->mclk_down_hyst) {
3227 				mclk_levels[i].UpHyst = setting->mclk_up_hyst;
3228 				mclk_levels[i].DownHyst = setting->mclk_down_hyst;
3229 				up_hyst_offset = mclk_array + (sizeof(SMU72_Discrete_MemoryLevel) * i)
3230 						+ offsetof(SMU72_Discrete_MemoryLevel, UpHyst);
3231 				down_hyst_offset = mclk_array + (sizeof(SMU72_Discrete_MemoryLevel) * i)
3232 						+ offsetof(SMU72_Discrete_MemoryLevel, DownHyst);
3233 				offset = up_hyst_offset & ~0x3;
3234 				tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
3235 				tmp = phm_set_field_to_u32(up_hyst_offset, tmp, mclk_levels[i].UpHyst, sizeof(uint8_t));
3236 				tmp = phm_set_field_to_u32(down_hyst_offset, tmp, mclk_levels[i].DownHyst, sizeof(uint8_t));
3237 				cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
3238 			}
3239 		}
3240 		if (!data->mclk_dpm_key_disabled)
3241 			smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MCLKDPM_UnfreezeLevel);
3242 	}
3243 	return 0;
3244 }
3245 
3246 const struct pp_smumgr_func tonga_smu_funcs = {
3247 	.name = "tonga_smu",
3248 	.smu_init = &tonga_smu_init,
3249 	.smu_fini = &smu7_smu_fini,
3250 	.start_smu = &tonga_start_smu,
3251 	.check_fw_load_finish = &smu7_check_fw_load_finish,
3252 	.request_smu_load_fw = &smu7_request_smu_load_fw,
3253 	.request_smu_load_specific_fw = NULL,
3254 	.send_msg_to_smc = &smu7_send_msg_to_smc,
3255 	.send_msg_to_smc_with_parameter = &smu7_send_msg_to_smc_with_parameter,
3256 	.download_pptable_settings = NULL,
3257 	.upload_pptable_settings = NULL,
3258 	.update_smc_table = tonga_update_smc_table,
3259 	.get_offsetof = tonga_get_offsetof,
3260 	.process_firmware_header = tonga_process_firmware_header,
3261 	.init_smc_table = tonga_init_smc_table,
3262 	.update_sclk_threshold = tonga_update_sclk_threshold,
3263 	.thermal_setup_fan_table = tonga_thermal_setup_fan_table,
3264 	.populate_all_graphic_levels = tonga_populate_all_graphic_levels,
3265 	.populate_all_memory_levels = tonga_populate_all_memory_levels,
3266 	.get_mac_definition = tonga_get_mac_definition,
3267 	.initialize_mc_reg_table = tonga_initialize_mc_reg_table,
3268 	.is_dpm_running = tonga_is_dpm_running,
3269 	.update_dpm_settings = tonga_update_dpm_settings,
3270 };
3271