xref: /netbsd-src/sys/external/bsd/drm2/dist/drm/amd/powerplay/amdgpu_renoir_ppt.c (revision a95c684e5ad6265b24b1bf73c59cb74d20714acf)
1 /*	$NetBSD: amdgpu_renoir_ppt.c,v 1.4 2021/12/19 12:37:54 riastradh Exp $	*/
2 
3 /*
4  * Copyright 2019 Advanced Micro Devices, Inc.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  *
24  */
25 
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: amdgpu_renoir_ppt.c,v 1.4 2021/12/19 12:37:54 riastradh Exp $");
28 
29 #include "amdgpu.h"
30 #include "amdgpu_smu.h"
31 #include "smu_internal.h"
32 #include "soc15_common.h"
33 #include "smu_v12_0_ppsmc.h"
34 #include "smu12_driver_if.h"
35 #include "smu_v12_0.h"
36 #include "renoir_ppt.h"
37 
38 #include <linux/nbsd-namespace.h>
39 
40 
41 #define CLK_MAP(clk, index) \
42 	[SMU_##clk] = {1, (index)}
43 
44 #define MSG_MAP(msg, index) \
45 	[SMU_MSG_##msg] = {1, (index)}
46 
47 #define TAB_MAP_VALID(tab) \
48 	[SMU_TABLE_##tab] = {1, TABLE_##tab}
49 
50 #define TAB_MAP_INVALID(tab) \
51 	[SMU_TABLE_##tab] = {0, TABLE_##tab}
52 
53 static struct smu_12_0_cmn2aisc_mapping renoir_message_map[SMU_MSG_MAX_COUNT] = {
54 	MSG_MAP(TestMessage,                    PPSMC_MSG_TestMessage),
55 	MSG_MAP(GetSmuVersion,                  PPSMC_MSG_GetSmuVersion),
56 	MSG_MAP(GetDriverIfVersion,             PPSMC_MSG_GetDriverIfVersion),
57 	MSG_MAP(PowerUpGfx,                     PPSMC_MSG_PowerUpGfx),
58 	MSG_MAP(AllowGfxOff,                    PPSMC_MSG_EnableGfxOff),
59 	MSG_MAP(DisallowGfxOff,                 PPSMC_MSG_DisableGfxOff),
60 	MSG_MAP(PowerDownIspByTile,             PPSMC_MSG_PowerDownIspByTile),
61 	MSG_MAP(PowerUpIspByTile,               PPSMC_MSG_PowerUpIspByTile),
62 	MSG_MAP(PowerDownVcn,                   PPSMC_MSG_PowerDownVcn),
63 	MSG_MAP(PowerUpVcn,                     PPSMC_MSG_PowerUpVcn),
64 	MSG_MAP(PowerDownSdma,                  PPSMC_MSG_PowerDownSdma),
65 	MSG_MAP(PowerUpSdma,                    PPSMC_MSG_PowerUpSdma),
66 	MSG_MAP(SetHardMinIspclkByFreq,         PPSMC_MSG_SetHardMinIspclkByFreq),
67 	MSG_MAP(SetHardMinVcn,                  PPSMC_MSG_SetHardMinVcn),
68 	MSG_MAP(Spare1,                         PPSMC_MSG_spare1),
69 	MSG_MAP(Spare2,                         PPSMC_MSG_spare2),
70 	MSG_MAP(SetAllowFclkSwitch,             PPSMC_MSG_SetAllowFclkSwitch),
71 	MSG_MAP(SetMinVideoGfxclkFreq,          PPSMC_MSG_SetMinVideoGfxclkFreq),
72 	MSG_MAP(ActiveProcessNotify,            PPSMC_MSG_ActiveProcessNotify),
73 	MSG_MAP(SetCustomPolicy,                PPSMC_MSG_SetCustomPolicy),
74 	MSG_MAP(SetVideoFps,                    PPSMC_MSG_SetVideoFps),
75 	MSG_MAP(NumOfDisplays,                  PPSMC_MSG_SetDisplayCount),
76 	MSG_MAP(QueryPowerLimit,                PPSMC_MSG_QueryPowerLimit),
77 	MSG_MAP(SetDriverDramAddrHigh,          PPSMC_MSG_SetDriverDramAddrHigh),
78 	MSG_MAP(SetDriverDramAddrLow,           PPSMC_MSG_SetDriverDramAddrLow),
79 	MSG_MAP(TransferTableSmu2Dram,          PPSMC_MSG_TransferTableSmu2Dram),
80 	MSG_MAP(TransferTableDram2Smu,          PPSMC_MSG_TransferTableDram2Smu),
81 	MSG_MAP(GfxDeviceDriverReset,           PPSMC_MSG_GfxDeviceDriverReset),
82 	MSG_MAP(SetGfxclkOverdriveByFreqVid,    PPSMC_MSG_SetGfxclkOverdriveByFreqVid),
83 	MSG_MAP(SetHardMinDcfclkByFreq,         PPSMC_MSG_SetHardMinDcfclkByFreq),
84 	MSG_MAP(SetHardMinSocclkByFreq,         PPSMC_MSG_SetHardMinSocclkByFreq),
85 	MSG_MAP(ControlIgpuATS,                 PPSMC_MSG_ControlIgpuATS),
86 	MSG_MAP(SetMinVideoFclkFreq,            PPSMC_MSG_SetMinVideoFclkFreq),
87 	MSG_MAP(SetMinDeepSleepDcfclk,          PPSMC_MSG_SetMinDeepSleepDcfclk),
88 	MSG_MAP(ForcePowerDownGfx,              PPSMC_MSG_ForcePowerDownGfx),
89 	MSG_MAP(SetPhyclkVoltageByFreq,         PPSMC_MSG_SetPhyclkVoltageByFreq),
90 	MSG_MAP(SetDppclkVoltageByFreq,         PPSMC_MSG_SetDppclkVoltageByFreq),
91 	MSG_MAP(SetSoftMinVcn,                  PPSMC_MSG_SetSoftMinVcn),
92 	MSG_MAP(EnablePostCode,                 PPSMC_MSG_EnablePostCode),
93 	MSG_MAP(GetGfxclkFrequency,             PPSMC_MSG_GetGfxclkFrequency),
94 	MSG_MAP(GetFclkFrequency,               PPSMC_MSG_GetFclkFrequency),
95 	MSG_MAP(GetMinGfxclkFrequency,          PPSMC_MSG_GetMinGfxclkFrequency),
96 	MSG_MAP(GetMaxGfxclkFrequency,          PPSMC_MSG_GetMaxGfxclkFrequency),
97 	MSG_MAP(SoftReset,                      PPSMC_MSG_SoftReset),
98 	MSG_MAP(SetGfxCGPG,                     PPSMC_MSG_SetGfxCGPG),
99 	MSG_MAP(SetSoftMaxGfxClk,               PPSMC_MSG_SetSoftMaxGfxClk),
100 	MSG_MAP(SetHardMinGfxClk,               PPSMC_MSG_SetHardMinGfxClk),
101 	MSG_MAP(SetSoftMaxSocclkByFreq,         PPSMC_MSG_SetSoftMaxSocclkByFreq),
102 	MSG_MAP(SetSoftMaxFclkByFreq,           PPSMC_MSG_SetSoftMaxFclkByFreq),
103 	MSG_MAP(SetSoftMaxVcn,                  PPSMC_MSG_SetSoftMaxVcn),
104 	MSG_MAP(PowerGateMmHub,                 PPSMC_MSG_PowerGateMmHub),
105 	MSG_MAP(UpdatePmeRestore,               PPSMC_MSG_UpdatePmeRestore),
106 	MSG_MAP(GpuChangeState,                 PPSMC_MSG_GpuChangeState),
107 	MSG_MAP(SetPowerLimitPercentage,        PPSMC_MSG_SetPowerLimitPercentage),
108 	MSG_MAP(ForceGfxContentSave,            PPSMC_MSG_ForceGfxContentSave),
109 	MSG_MAP(EnableTmdp48MHzRefclkPwrDown,   PPSMC_MSG_EnableTmdp48MHzRefclkPwrDown),
110 	MSG_MAP(PowerDownJpeg,                  PPSMC_MSG_PowerDownJpeg),
111 	MSG_MAP(PowerUpJpeg,                    PPSMC_MSG_PowerUpJpeg),
112 	MSG_MAP(PowerGateAtHub,                 PPSMC_MSG_PowerGateAtHub),
113 	MSG_MAP(SetSoftMinJpeg,                 PPSMC_MSG_SetSoftMinJpeg),
114 	MSG_MAP(SetHardMinFclkByFreq,           PPSMC_MSG_SetHardMinFclkByFreq),
115 };
116 
117 static struct smu_12_0_cmn2aisc_mapping renoir_clk_map[SMU_CLK_COUNT] = {
118 	CLK_MAP(GFXCLK, CLOCK_GFXCLK),
119 	CLK_MAP(SCLK,	CLOCK_GFXCLK),
120 	CLK_MAP(SOCCLK, CLOCK_SOCCLK),
121 	CLK_MAP(UCLK, CLOCK_UMCCLK),
122 	CLK_MAP(MCLK, CLOCK_UMCCLK),
123 };
124 
125 static struct smu_12_0_cmn2aisc_mapping renoir_table_map[SMU_TABLE_COUNT] = {
126 	TAB_MAP_VALID(WATERMARKS),
127 	TAB_MAP_INVALID(CUSTOM_DPM),
128 	TAB_MAP_VALID(DPMCLOCKS),
129 	TAB_MAP_VALID(SMU_METRICS),
130 };
131 
renoir_get_smu_msg_index(struct smu_context * smc,uint32_t index)132 static int renoir_get_smu_msg_index(struct smu_context *smc, uint32_t index)
133 {
134 	struct smu_12_0_cmn2aisc_mapping mapping;
135 
136 	if (index >= SMU_MSG_MAX_COUNT)
137 		return -EINVAL;
138 
139 	mapping = renoir_message_map[index];
140 	if (!(mapping.valid_mapping))
141 		return -EINVAL;
142 
143 	return mapping.map_to;
144 }
145 
renoir_get_smu_clk_index(struct smu_context * smc,uint32_t index)146 static int renoir_get_smu_clk_index(struct smu_context *smc, uint32_t index)
147 {
148 	struct smu_12_0_cmn2aisc_mapping mapping;
149 
150 	if (index >= SMU_CLK_COUNT)
151 		return -EINVAL;
152 
153 	mapping = renoir_clk_map[index];
154 	if (!(mapping.valid_mapping)) {
155 		return -EINVAL;
156 	}
157 
158 	return mapping.map_to;
159 }
160 
renoir_get_smu_table_index(struct smu_context * smc,uint32_t index)161 static int renoir_get_smu_table_index(struct smu_context *smc, uint32_t index)
162 {
163 	struct smu_12_0_cmn2aisc_mapping mapping;
164 
165 	if (index >= SMU_TABLE_COUNT)
166 		return -EINVAL;
167 
168 	mapping = renoir_table_map[index];
169 	if (!(mapping.valid_mapping))
170 		return -EINVAL;
171 
172 	return mapping.map_to;
173 }
174 
renoir_get_metrics_table(struct smu_context * smu,SmuMetrics_t * metrics_table)175 static int renoir_get_metrics_table(struct smu_context *smu,
176 				    SmuMetrics_t *metrics_table)
177 {
178 	struct smu_table_context *smu_table= &smu->smu_table;
179 	int ret = 0;
180 
181 	mutex_lock(&smu->metrics_lock);
182 	if (!smu_table->metrics_time || time_after(jiffies, smu_table->metrics_time + msecs_to_jiffies(100))) {
183 		ret = smu_update_table(smu, SMU_TABLE_SMU_METRICS, 0,
184 				(void *)smu_table->metrics_table, false);
185 		if (ret) {
186 			pr_info("Failed to export SMU metrics table!\n");
187 			mutex_unlock(&smu->metrics_lock);
188 			return ret;
189 		}
190 		smu_table->metrics_time = jiffies;
191 	}
192 
193 	memcpy(metrics_table, smu_table->metrics_table, sizeof(SmuMetrics_t));
194 	mutex_unlock(&smu->metrics_lock);
195 
196 	return ret;
197 }
198 
renoir_tables_init(struct smu_context * smu,struct smu_table * tables)199 static int renoir_tables_init(struct smu_context *smu, struct smu_table *tables)
200 {
201 	struct smu_table_context *smu_table = &smu->smu_table;
202 
203 	SMU_TABLE_INIT(tables, SMU_TABLE_WATERMARKS, sizeof(Watermarks_t),
204 		PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM);
205 	SMU_TABLE_INIT(tables, SMU_TABLE_DPMCLOCKS, sizeof(DpmClocks_t),
206 		PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM);
207 	SMU_TABLE_INIT(tables, SMU_TABLE_SMU_METRICS, sizeof(SmuMetrics_t),
208 		PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM);
209 
210 	smu_table->clocks_table = kzalloc(sizeof(DpmClocks_t), GFP_KERNEL);
211 	if (!smu_table->clocks_table)
212 		return -ENOMEM;
213 
214 	smu_table->metrics_table = kzalloc(sizeof(SmuMetrics_t), GFP_KERNEL);
215 	if (!smu_table->metrics_table)
216 		return -ENOMEM;
217 	smu_table->metrics_time = 0;
218 
219 	smu_table->watermarks_table = kzalloc(sizeof(Watermarks_t), GFP_KERNEL);
220 	if (!smu_table->watermarks_table)
221 		return -ENOMEM;
222 
223 	return 0;
224 }
225 
226 /**
227  * This interface just for getting uclk ultimate freq and should't introduce
228  * other likewise function result in overmuch callback.
229  */
renoir_get_dpm_clk_limited(struct smu_context * smu,enum smu_clk_type clk_type,uint32_t dpm_level,uint32_t * freq)230 static int renoir_get_dpm_clk_limited(struct smu_context *smu, enum smu_clk_type clk_type,
231 						uint32_t dpm_level, uint32_t *freq)
232 {
233 	DpmClocks_t *clk_table = smu->smu_table.clocks_table;
234 
235 	if (!clk_table || clk_type >= SMU_CLK_COUNT)
236 		return -EINVAL;
237 
238 	GET_DPM_CUR_FREQ(clk_table, clk_type, dpm_level, *freq);
239 
240 	return 0;
241 }
242 
renoir_print_clk_levels(struct smu_context * smu,enum smu_clk_type clk_type,char * buf)243 static int renoir_print_clk_levels(struct smu_context *smu,
244 			enum smu_clk_type clk_type, char *buf)
245 {
246 	int i, size = 0, ret = 0;
247 	uint32_t cur_value = 0, value = 0, count = 0, min = 0, max = 0;
248 	DpmClocks_t *clk_table = smu->smu_table.clocks_table;
249 	SmuMetrics_t metrics;
250 
251 	if (!clk_table || clk_type >= SMU_CLK_COUNT)
252 		return -EINVAL;
253 
254 	memset(&metrics, 0, sizeof(metrics));
255 
256 	ret = renoir_get_metrics_table(smu, &metrics);
257 	if (ret)
258 		return ret;
259 
260 	switch (clk_type) {
261 	case SMU_GFXCLK:
262 	case SMU_SCLK:
263 		/* retirve table returned paramters unit is MHz */
264 		cur_value = metrics.ClockFrequency[CLOCK_GFXCLK];
265 		ret = smu_get_dpm_freq_range(smu, SMU_GFXCLK, &min, &max, false);
266 		if (!ret) {
267 			/* driver only know min/max gfx_clk, Add level 1 for all other gfx clks */
268 			if (cur_value  == max)
269 				i = 2;
270 			else if (cur_value == min)
271 				i = 0;
272 			else
273 				i = 1;
274 
275 			size += sprintf(buf + size, "0: %uMhz %s\n", min,
276 					i == 0 ? "*" : "");
277 			size += sprintf(buf + size, "1: %uMhz %s\n",
278 					i == 1 ? cur_value : RENOIR_UMD_PSTATE_GFXCLK,
279 					i == 1 ? "*" : "");
280 			size += sprintf(buf + size, "2: %uMhz %s\n", max,
281 					i == 2 ? "*" : "");
282 		}
283 		return size;
284 	case SMU_SOCCLK:
285 		count = NUM_SOCCLK_DPM_LEVELS;
286 		cur_value = metrics.ClockFrequency[CLOCK_SOCCLK];
287 		break;
288 	case SMU_MCLK:
289 		count = NUM_MEMCLK_DPM_LEVELS;
290 		cur_value = metrics.ClockFrequency[CLOCK_UMCCLK];
291 		break;
292 	case SMU_DCEFCLK:
293 		count = NUM_DCFCLK_DPM_LEVELS;
294 		cur_value = metrics.ClockFrequency[CLOCK_DCFCLK];
295 		break;
296 	case SMU_FCLK:
297 		count = NUM_FCLK_DPM_LEVELS;
298 		cur_value = metrics.ClockFrequency[CLOCK_FCLK];
299 		break;
300 	default:
301 		return -EINVAL;
302 	}
303 
304 	for (i = 0; i < count; i++) {
305 		GET_DPM_CUR_FREQ(clk_table, clk_type, i, value);
306 		size += sprintf(buf + size, "%d: %uMhz %s\n", i, value,
307 				cur_value == value ? "*" : "");
308 	}
309 
310 	return size;
311 }
312 
renoir_get_current_power_state(struct smu_context * smu)313 static enum amd_pm_state_type renoir_get_current_power_state(struct smu_context *smu)
314 {
315 	enum amd_pm_state_type pm_type;
316 	struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm);
317 
318 	if (!smu_dpm_ctx->dpm_context ||
319 	    !smu_dpm_ctx->dpm_current_power_state)
320 		return -EINVAL;
321 
322 	switch (smu_dpm_ctx->dpm_current_power_state->classification.ui_label) {
323 	case SMU_STATE_UI_LABEL_BATTERY:
324 		pm_type = POWER_STATE_TYPE_BATTERY;
325 		break;
326 	case SMU_STATE_UI_LABEL_BALLANCED:
327 		pm_type = POWER_STATE_TYPE_BALANCED;
328 		break;
329 	case SMU_STATE_UI_LABEL_PERFORMANCE:
330 		pm_type = POWER_STATE_TYPE_PERFORMANCE;
331 		break;
332 	default:
333 		if (smu_dpm_ctx->dpm_current_power_state->classification.flags & SMU_STATE_CLASSIFICATION_FLAG_BOOT)
334 			pm_type = POWER_STATE_TYPE_INTERNAL_BOOT;
335 		else
336 			pm_type = POWER_STATE_TYPE_DEFAULT;
337 		break;
338 	}
339 
340 	return pm_type;
341 }
342 
renoir_dpm_set_uvd_enable(struct smu_context * smu,bool enable)343 static int renoir_dpm_set_uvd_enable(struct smu_context *smu, bool enable)
344 {
345 	struct smu_power_context *smu_power = &smu->smu_power;
346 	struct smu_power_gate *power_gate = &smu_power->power_gate;
347 	int ret = 0;
348 
349 	if (enable) {
350 		/* vcn dpm on is a prerequisite for vcn power gate messages */
351 		if (smu_feature_is_enabled(smu, SMU_FEATURE_VCN_PG_BIT)) {
352 			ret = smu_send_smc_msg_with_param(smu, SMU_MSG_PowerUpVcn, 0);
353 			if (ret)
354 				return ret;
355 		}
356 		power_gate->vcn_gated = false;
357 	} else {
358 		if (smu_feature_is_enabled(smu, SMU_FEATURE_VCN_PG_BIT)) {
359 			ret = smu_send_smc_msg(smu, SMU_MSG_PowerDownVcn);
360 			if (ret)
361 				return ret;
362 		}
363 		power_gate->vcn_gated = true;
364 	}
365 
366 	return ret;
367 }
368 
renoir_dpm_set_jpeg_enable(struct smu_context * smu,bool enable)369 static int renoir_dpm_set_jpeg_enable(struct smu_context *smu, bool enable)
370 {
371 	struct smu_power_context *smu_power = &smu->smu_power;
372 	struct smu_power_gate *power_gate = &smu_power->power_gate;
373 	int ret = 0;
374 
375 	if (enable) {
376 		if (smu_feature_is_enabled(smu, SMU_FEATURE_JPEG_PG_BIT)) {
377 			ret = smu_send_smc_msg_with_param(smu, SMU_MSG_PowerUpJpeg, 0);
378 			if (ret)
379 				return ret;
380 		}
381 		power_gate->jpeg_gated = false;
382 	} else {
383 		if (smu_feature_is_enabled(smu, SMU_FEATURE_JPEG_PG_BIT)) {
384 			ret = smu_send_smc_msg_with_param(smu, SMU_MSG_PowerDownJpeg, 0);
385 			if (ret)
386 				return ret;
387 		}
388 		power_gate->jpeg_gated = true;
389 	}
390 
391 	return ret;
392 }
393 
renoir_get_current_clk_freq_by_table(struct smu_context * smu,enum smu_clk_type clk_type,uint32_t * value)394 static int renoir_get_current_clk_freq_by_table(struct smu_context *smu,
395 				       enum smu_clk_type clk_type,
396 				       uint32_t *value)
397 {
398 	int ret = 0, clk_id = 0;
399 	SmuMetrics_t metrics;
400 
401 	ret = renoir_get_metrics_table(smu, &metrics);
402 	if (ret)
403 		return ret;
404 
405 	clk_id = smu_clk_get_index(smu, clk_type);
406 	if (clk_id < 0)
407 		return clk_id;
408 
409 	*value = metrics.ClockFrequency[clk_id];
410 
411 	return ret;
412 }
413 
renoir_force_dpm_limit_value(struct smu_context * smu,bool highest)414 static int renoir_force_dpm_limit_value(struct smu_context *smu, bool highest)
415 {
416 	int ret = 0, i = 0;
417 	uint32_t min_freq, max_freq, force_freq;
418 	enum smu_clk_type clk_type;
419 
420 	enum smu_clk_type clks[] = {
421 		SMU_GFXCLK,
422 		SMU_MCLK,
423 		SMU_SOCCLK,
424 	};
425 
426 	for (i = 0; i < ARRAY_SIZE(clks); i++) {
427 		clk_type = clks[i];
428 		ret = smu_get_dpm_freq_range(smu, clk_type, &min_freq, &max_freq, false);
429 		if (ret)
430 			return ret;
431 
432 		force_freq = highest ? max_freq : min_freq;
433 		ret = smu_set_soft_freq_range(smu, clk_type, force_freq, force_freq);
434 		if (ret)
435 			return ret;
436 	}
437 
438 	return ret;
439 }
440 
renoir_unforce_dpm_levels(struct smu_context * smu)441 static int renoir_unforce_dpm_levels(struct smu_context *smu) {
442 
443 	int ret = 0, i = 0;
444 	uint32_t min_freq, max_freq;
445 	enum smu_clk_type clk_type;
446 
447 	struct clk_feature_map {
448 		enum smu_clk_type clk_type;
449 		uint32_t	feature;
450 	} clk_feature_map[] = {
451 		{SMU_GFXCLK, SMU_FEATURE_DPM_GFXCLK_BIT},
452 		{SMU_MCLK,   SMU_FEATURE_DPM_UCLK_BIT},
453 		{SMU_SOCCLK, SMU_FEATURE_DPM_SOCCLK_BIT},
454 	};
455 
456 	for (i = 0; i < ARRAY_SIZE(clk_feature_map); i++) {
457 		if (!smu_feature_is_enabled(smu, clk_feature_map[i].feature))
458 		    continue;
459 
460 		clk_type = clk_feature_map[i].clk_type;
461 
462 		ret = smu_get_dpm_freq_range(smu, clk_type, &min_freq, &max_freq, false);
463 		if (ret)
464 			return ret;
465 
466 		ret = smu_set_soft_freq_range(smu, clk_type, min_freq, max_freq);
467 		if (ret)
468 			return ret;
469 	}
470 
471 	return ret;
472 }
473 
renoir_get_gpu_temperature(struct smu_context * smu,uint32_t * value)474 static int renoir_get_gpu_temperature(struct smu_context *smu, uint32_t *value)
475 {
476 	int ret = 0;
477 	SmuMetrics_t metrics;
478 
479 	if (!value)
480 		return -EINVAL;
481 
482 	ret = renoir_get_metrics_table(smu, &metrics);
483 	if (ret)
484 		return ret;
485 
486 	*value = (metrics.GfxTemperature / 100) *
487 		SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
488 
489 	return 0;
490 }
491 
renoir_get_current_activity_percent(struct smu_context * smu,enum amd_pp_sensors sensor,uint32_t * value)492 static int renoir_get_current_activity_percent(struct smu_context *smu,
493 					       enum amd_pp_sensors sensor,
494 					       uint32_t *value)
495 {
496 	int ret = 0;
497 	SmuMetrics_t metrics;
498 
499 	if (!value)
500 		return -EINVAL;
501 
502 	ret = renoir_get_metrics_table(smu, &metrics);
503 	if (ret)
504 		return ret;
505 
506 	switch (sensor) {
507 	case AMDGPU_PP_SENSOR_GPU_LOAD:
508 		*value = metrics.AverageGfxActivity / 100;
509 		break;
510 	default:
511 		pr_err("Invalid sensor for retrieving clock activity\n");
512 		return -EINVAL;
513 	}
514 
515 	return 0;
516 }
517 
renoir_get_workload_type(struct smu_context * smu,uint32_t profile)518 static int renoir_get_workload_type(struct smu_context *smu, uint32_t profile)
519 {
520 
521 	uint32_t  pplib_workload = 0;
522 
523 	switch (profile) {
524 	case PP_SMC_POWER_PROFILE_FULLSCREEN3D:
525 		pplib_workload = WORKLOAD_PPLIB_FULL_SCREEN_3D_BIT;
526 		break;
527 	case PP_SMC_POWER_PROFILE_CUSTOM:
528 		pplib_workload = WORKLOAD_PPLIB_COUNT;
529 		break;
530 	case PP_SMC_POWER_PROFILE_VIDEO:
531 		pplib_workload = WORKLOAD_PPLIB_VIDEO_BIT;
532 		break;
533 	case PP_SMC_POWER_PROFILE_VR:
534 		pplib_workload = WORKLOAD_PPLIB_VR_BIT;
535 		break;
536 	case PP_SMC_POWER_PROFILE_COMPUTE:
537 		pplib_workload = WORKLOAD_PPLIB_COMPUTE_BIT;
538 		break;
539 	default:
540 		return -EINVAL;
541 	}
542 
543 	return pplib_workload;
544 }
545 
renoir_get_profiling_clk_mask(struct smu_context * smu,enum amd_dpm_forced_level level,uint32_t * sclk_mask,uint32_t * mclk_mask,uint32_t * soc_mask)546 static int renoir_get_profiling_clk_mask(struct smu_context *smu,
547 					 enum amd_dpm_forced_level level,
548 					 uint32_t *sclk_mask,
549 					 uint32_t *mclk_mask,
550 					 uint32_t *soc_mask)
551 {
552 
553 	if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK) {
554 		if (sclk_mask)
555 			*sclk_mask = 0;
556 	} else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK) {
557 		if (mclk_mask)
558 			*mclk_mask = 0;
559 	} else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) {
560 		if(sclk_mask)
561 			/* The sclk as gfxclk and has three level about max/min/current */
562 			*sclk_mask = 3 - 1;
563 
564 		if(mclk_mask)
565 			*mclk_mask = NUM_MEMCLK_DPM_LEVELS - 1;
566 
567 		if(soc_mask)
568 			*soc_mask = NUM_SOCCLK_DPM_LEVELS - 1;
569 	}
570 
571 	return 0;
572 }
573 
574 /**
575  * This interface get dpm clock table for dc
576  */
renoir_get_dpm_clock_table(struct smu_context * smu,struct dpm_clocks * clock_table)577 static int renoir_get_dpm_clock_table(struct smu_context *smu, struct dpm_clocks *clock_table)
578 {
579 	DpmClocks_t *table = smu->smu_table.clocks_table;
580 	int i;
581 
582 	if (!clock_table || !table)
583 		return -EINVAL;
584 
585 	for (i = 0; i < NUM_DCFCLK_DPM_LEVELS; i++) {
586 		clock_table->DcfClocks[i].Freq = table->DcfClocks[i].Freq;
587 		clock_table->DcfClocks[i].Vol = table->DcfClocks[i].Vol;
588 	}
589 
590 	for (i = 0; i < NUM_SOCCLK_DPM_LEVELS; i++) {
591 		clock_table->SocClocks[i].Freq = table->SocClocks[i].Freq;
592 		clock_table->SocClocks[i].Vol = table->SocClocks[i].Vol;
593 	}
594 
595 	for (i = 0; i < NUM_FCLK_DPM_LEVELS; i++) {
596 		clock_table->FClocks[i].Freq = table->FClocks[i].Freq;
597 		clock_table->FClocks[i].Vol = table->FClocks[i].Vol;
598 	}
599 
600 	for (i = 0; i<  NUM_MEMCLK_DPM_LEVELS; i++) {
601 		clock_table->MemClocks[i].Freq = table->MemClocks[i].Freq;
602 		clock_table->MemClocks[i].Vol = table->MemClocks[i].Vol;
603 	}
604 
605 	return 0;
606 }
607 
renoir_force_clk_levels(struct smu_context * smu,enum smu_clk_type clk_type,uint32_t mask)608 static int renoir_force_clk_levels(struct smu_context *smu,
609 				   enum smu_clk_type clk_type, uint32_t mask)
610 {
611 
612 	int ret = 0 ;
613 	uint32_t soft_min_level = 0, soft_max_level = 0, min_freq = 0, max_freq = 0;
614 	DpmClocks_t *clk_table = smu->smu_table.clocks_table;
615 
616 	soft_min_level = mask ? (ffs(mask) - 1) : 0;
617 	soft_max_level = mask ? (fls(mask) - 1) : 0;
618 
619 	switch (clk_type) {
620 	case SMU_GFXCLK:
621 	case SMU_SCLK:
622 		if (soft_min_level > 2 || soft_max_level > 2) {
623 			pr_info("Currently sclk only support 3 levels on APU\n");
624 			return -EINVAL;
625 		}
626 
627 		ret = smu_get_dpm_freq_range(smu, SMU_GFXCLK, &min_freq, &max_freq, false);
628 		if (ret)
629 			return ret;
630 		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetSoftMaxGfxClk,
631 					soft_max_level == 0 ? min_freq :
632 					soft_max_level == 1 ? RENOIR_UMD_PSTATE_GFXCLK : max_freq);
633 		if (ret)
634 			return ret;
635 		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetHardMinGfxClk,
636 					soft_min_level == 2 ? max_freq :
637 					soft_min_level == 1 ? RENOIR_UMD_PSTATE_GFXCLK : min_freq);
638 		if (ret)
639 			return ret;
640 		break;
641 	case SMU_SOCCLK:
642 		GET_DPM_CUR_FREQ(clk_table, clk_type, soft_min_level, min_freq);
643 		GET_DPM_CUR_FREQ(clk_table, clk_type, soft_max_level, max_freq);
644 		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetSoftMaxSocclkByFreq, max_freq);
645 		if (ret)
646 			return ret;
647 		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetHardMinSocclkByFreq, min_freq);
648 		if (ret)
649 			return ret;
650 		break;
651 	case SMU_MCLK:
652 	case SMU_FCLK:
653 		GET_DPM_CUR_FREQ(clk_table, clk_type, soft_min_level, min_freq);
654 		GET_DPM_CUR_FREQ(clk_table, clk_type, soft_max_level, max_freq);
655 		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetSoftMaxFclkByFreq, max_freq);
656 		if (ret)
657 			return ret;
658 		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetHardMinFclkByFreq, min_freq);
659 		if (ret)
660 			return ret;
661 		break;
662 	default:
663 		break;
664 	}
665 
666 	return ret;
667 }
668 
renoir_set_power_profile_mode(struct smu_context * smu,long * input,uint32_t size)669 static int renoir_set_power_profile_mode(struct smu_context *smu, long *input, uint32_t size)
670 {
671 	int workload_type, ret;
672 	uint32_t profile_mode = input[size];
673 
674 	if (profile_mode > PP_SMC_POWER_PROFILE_CUSTOM) {
675 		pr_err("Invalid power profile mode %d\n", smu->power_profile_mode);
676 		return -EINVAL;
677 	}
678 
679 	/* conv PP_SMC_POWER_PROFILE* to WORKLOAD_PPLIB_*_BIT */
680 	workload_type = smu_workload_get_type(smu, smu->power_profile_mode);
681 	if (workload_type < 0) {
682 		pr_err("Unsupported power profile mode %d on RENOIR\n",smu->power_profile_mode);
683 		return -EINVAL;
684 	}
685 
686 	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetWorkloadMask,
687 				    1 << workload_type);
688 	if (ret) {
689 		pr_err("Fail to set workload type %d\n", workload_type);
690 		return ret;
691 	}
692 
693 	smu->power_profile_mode = profile_mode;
694 
695 	return 0;
696 }
697 
renoir_set_peak_clock_by_device(struct smu_context * smu)698 static int renoir_set_peak_clock_by_device(struct smu_context *smu)
699 {
700 	int ret = 0;
701 	uint32_t sclk_freq = 0, uclk_freq = 0;
702 
703 	ret = smu_get_dpm_freq_range(smu, SMU_SCLK, NULL, &sclk_freq, false);
704 	if (ret)
705 		return ret;
706 
707 	ret = smu_set_soft_freq_range(smu, SMU_SCLK, sclk_freq, sclk_freq);
708 	if (ret)
709 		return ret;
710 
711 	ret = smu_get_dpm_freq_range(smu, SMU_UCLK, NULL, &uclk_freq, false);
712 	if (ret)
713 		return ret;
714 
715 	ret = smu_set_soft_freq_range(smu, SMU_UCLK, uclk_freq, uclk_freq);
716 	if (ret)
717 		return ret;
718 
719 	return ret;
720 }
721 
renoir_set_performance_level(struct smu_context * smu,enum amd_dpm_forced_level level)722 static int renoir_set_performance_level(struct smu_context *smu,
723 					enum amd_dpm_forced_level level)
724 {
725 	int ret = 0;
726 	uint32_t sclk_mask, mclk_mask, soc_mask;
727 
728 	switch (level) {
729 	case AMD_DPM_FORCED_LEVEL_HIGH:
730 		ret = smu_force_dpm_limit_value(smu, true);
731 		break;
732 	case AMD_DPM_FORCED_LEVEL_LOW:
733 		ret = smu_force_dpm_limit_value(smu, false);
734 		break;
735 	case AMD_DPM_FORCED_LEVEL_AUTO:
736 	case AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD:
737 		ret = smu_unforce_dpm_levels(smu);
738 		break;
739 	case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK:
740 	case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK:
741 		ret = smu_get_profiling_clk_mask(smu, level,
742 						 &sclk_mask,
743 						 &mclk_mask,
744 						 &soc_mask);
745 		if (ret)
746 			return ret;
747 		smu_force_clk_levels(smu, SMU_SCLK, 1 << sclk_mask, false);
748 		smu_force_clk_levels(smu, SMU_MCLK, 1 << mclk_mask, false);
749 		smu_force_clk_levels(smu, SMU_SOCCLK, 1 << soc_mask, false);
750 		break;
751 	case AMD_DPM_FORCED_LEVEL_PROFILE_PEAK:
752 		ret = renoir_set_peak_clock_by_device(smu);
753 		break;
754 	case AMD_DPM_FORCED_LEVEL_MANUAL:
755 	case AMD_DPM_FORCED_LEVEL_PROFILE_EXIT:
756 	default:
757 		break;
758 	}
759 	return ret;
760 }
761 
762 /* save watermark settings into pplib smu structure,
763  * also pass data to smu controller
764  */
renoir_set_watermarks_table(struct smu_context * smu,void * watermarks,struct dm_pp_wm_sets_with_clock_ranges_soc15 * clock_ranges)765 static int renoir_set_watermarks_table(
766 		struct smu_context *smu,
767 		void *watermarks,
768 		struct dm_pp_wm_sets_with_clock_ranges_soc15 *clock_ranges)
769 {
770 	int i;
771 	int ret = 0;
772 	Watermarks_t *table = watermarks;
773 
774 	if (!table || !clock_ranges)
775 		return -EINVAL;
776 
777 	if (clock_ranges->num_wm_dmif_sets > 4 ||
778 			clock_ranges->num_wm_mcif_sets > 4)
779 		return -EINVAL;
780 
781 	/* save into smu->smu_table.tables[SMU_TABLE_WATERMARKS]->cpu_addr*/
782 	for (i = 0; i < clock_ranges->num_wm_dmif_sets; i++) {
783 		table->WatermarkRow[WM_DCFCLK][i].MinClock =
784 			cpu_to_le16((uint16_t)
785 			(clock_ranges->wm_dmif_clocks_ranges[i].wm_min_dcfclk_clk_in_khz));
786 		table->WatermarkRow[WM_DCFCLK][i].MaxClock =
787 			cpu_to_le16((uint16_t)
788 			(clock_ranges->wm_dmif_clocks_ranges[i].wm_max_dcfclk_clk_in_khz));
789 		table->WatermarkRow[WM_DCFCLK][i].MinMclk =
790 			cpu_to_le16((uint16_t)
791 			(clock_ranges->wm_dmif_clocks_ranges[i].wm_min_mem_clk_in_khz));
792 		table->WatermarkRow[WM_DCFCLK][i].MaxMclk =
793 			cpu_to_le16((uint16_t)
794 			(clock_ranges->wm_dmif_clocks_ranges[i].wm_max_mem_clk_in_khz));
795 		table->WatermarkRow[WM_DCFCLK][i].WmSetting = (uint8_t)
796 				clock_ranges->wm_dmif_clocks_ranges[i].wm_set_id;
797 	}
798 
799 	for (i = 0; i < clock_ranges->num_wm_mcif_sets; i++) {
800 		table->WatermarkRow[WM_SOCCLK][i].MinClock =
801 			cpu_to_le16((uint16_t)
802 			(clock_ranges->wm_mcif_clocks_ranges[i].wm_min_socclk_clk_in_khz));
803 		table->WatermarkRow[WM_SOCCLK][i].MaxClock =
804 			cpu_to_le16((uint16_t)
805 			(clock_ranges->wm_mcif_clocks_ranges[i].wm_max_socclk_clk_in_khz));
806 		table->WatermarkRow[WM_SOCCLK][i].MinMclk =
807 			cpu_to_le16((uint16_t)
808 			(clock_ranges->wm_mcif_clocks_ranges[i].wm_min_mem_clk_in_khz));
809 		table->WatermarkRow[WM_SOCCLK][i].MaxMclk =
810 			cpu_to_le16((uint16_t)
811 			(clock_ranges->wm_mcif_clocks_ranges[i].wm_max_mem_clk_in_khz));
812 		table->WatermarkRow[WM_SOCCLK][i].WmSetting = (uint8_t)
813 				clock_ranges->wm_mcif_clocks_ranges[i].wm_set_id;
814 	}
815 
816 	/* pass data to smu controller */
817 	if ((smu->watermarks_bitmap & WATERMARKS_EXIST) &&
818 			!(smu->watermarks_bitmap & WATERMARKS_LOADED)) {
819 		ret = smu_write_watermarks_table(smu);
820 		if (ret) {
821 			pr_err("Failed to update WMTABLE!");
822 			return ret;
823 		}
824 		smu->watermarks_bitmap |= WATERMARKS_LOADED;
825 	}
826 
827 	return 0;
828 }
829 
renoir_get_power_profile_mode(struct smu_context * smu,char * buf)830 static int renoir_get_power_profile_mode(struct smu_context *smu,
831 					   char *buf)
832 {
833 	static const char *profile_name[] = {
834 					"BOOTUP_DEFAULT",
835 					"3D_FULL_SCREEN",
836 					"POWER_SAVING",
837 					"VIDEO",
838 					"VR",
839 					"COMPUTE",
840 					"CUSTOM"};
841 	uint32_t i, size = 0;
842 	int16_t workload_type = 0;
843 
844 	if (!smu->pm_enabled || !buf)
845 		return -EINVAL;
846 
847 	for (i = 0; i <= PP_SMC_POWER_PROFILE_CUSTOM; i++) {
848 		/*
849 		 * Conv PP_SMC_POWER_PROFILE* to WORKLOAD_PPLIB_*_BIT
850 		 * Not all profile modes are supported on arcturus.
851 		 */
852 		workload_type = smu_workload_get_type(smu, i);
853 		if (workload_type < 0)
854 			continue;
855 
856 		size += sprintf(buf + size, "%2d %14s%s\n",
857 			i, profile_name[i], (i == smu->power_profile_mode) ? "*" : " ");
858 	}
859 
860 	return size;
861 }
862 
renoir_read_sensor(struct smu_context * smu,enum amd_pp_sensors sensor,void * data,uint32_t * size)863 static int renoir_read_sensor(struct smu_context *smu,
864 				 enum amd_pp_sensors sensor,
865 				 void *data, uint32_t *size)
866 {
867 	int ret = 0;
868 
869 	if (!data || !size)
870 		return -EINVAL;
871 
872 	mutex_lock(&smu->sensor_lock);
873 	switch (sensor) {
874 	case AMDGPU_PP_SENSOR_GPU_LOAD:
875 		ret = renoir_get_current_activity_percent(smu, sensor, (uint32_t *)data);
876 		*size = 4;
877 		break;
878 	case AMDGPU_PP_SENSOR_GPU_TEMP:
879 		ret = renoir_get_gpu_temperature(smu, (uint32_t *)data);
880 		*size = 4;
881 		break;
882 	default:
883 		ret = smu_v12_0_read_sensor(smu, sensor, data, size);
884 	}
885 	mutex_unlock(&smu->sensor_lock);
886 
887 	return ret;
888 }
889 
890 static const struct pptable_funcs renoir_ppt_funcs = {
891 	.get_smu_msg_index = renoir_get_smu_msg_index,
892 	.get_smu_clk_index = renoir_get_smu_clk_index,
893 	.get_smu_table_index = renoir_get_smu_table_index,
894 	.tables_init = renoir_tables_init,
895 	.set_power_state = NULL,
896 	.get_dpm_clk_limited = renoir_get_dpm_clk_limited,
897 	.print_clk_levels = renoir_print_clk_levels,
898 	.get_current_power_state = renoir_get_current_power_state,
899 	.dpm_set_uvd_enable = renoir_dpm_set_uvd_enable,
900 	.dpm_set_jpeg_enable = renoir_dpm_set_jpeg_enable,
901 	.get_current_clk_freq_by_table = renoir_get_current_clk_freq_by_table,
902 	.force_dpm_limit_value = renoir_force_dpm_limit_value,
903 	.unforce_dpm_levels = renoir_unforce_dpm_levels,
904 	.get_workload_type = renoir_get_workload_type,
905 	.get_profiling_clk_mask = renoir_get_profiling_clk_mask,
906 	.force_clk_levels = renoir_force_clk_levels,
907 	.set_power_profile_mode = renoir_set_power_profile_mode,
908 	.set_performance_level = renoir_set_performance_level,
909 	.get_dpm_clock_table = renoir_get_dpm_clock_table,
910 	.set_watermarks_table = renoir_set_watermarks_table,
911 	.get_power_profile_mode = renoir_get_power_profile_mode,
912 	.read_sensor = renoir_read_sensor,
913 	.check_fw_status = smu_v12_0_check_fw_status,
914 	.check_fw_version = smu_v12_0_check_fw_version,
915 	.powergate_sdma = smu_v12_0_powergate_sdma,
916 	.powergate_vcn = smu_v12_0_powergate_vcn,
917 	.powergate_jpeg = smu_v12_0_powergate_jpeg,
918 	.send_smc_msg_with_param = smu_v12_0_send_msg_with_param,
919 	.read_smc_arg = smu_v12_0_read_arg,
920 	.set_gfx_cgpg = smu_v12_0_set_gfx_cgpg,
921 	.gfx_off_control = smu_v12_0_gfx_off_control,
922 	.init_smc_tables = smu_v12_0_init_smc_tables,
923 	.fini_smc_tables = smu_v12_0_fini_smc_tables,
924 	.populate_smc_tables = smu_v12_0_populate_smc_tables,
925 	.get_enabled_mask = smu_v12_0_get_enabled_mask,
926 	.get_current_clk_freq = smu_v12_0_get_current_clk_freq,
927 	.get_dpm_ultimate_freq = smu_v12_0_get_dpm_ultimate_freq,
928 	.mode2_reset = smu_v12_0_mode2_reset,
929 	.set_soft_freq_limited_range = smu_v12_0_set_soft_freq_limited_range,
930 	.set_driver_table_location = smu_v12_0_set_driver_table_location,
931 };
932 
renoir_set_ppt_funcs(struct smu_context * smu)933 void renoir_set_ppt_funcs(struct smu_context *smu)
934 {
935 	smu->ppt_funcs = &renoir_ppt_funcs;
936 	smu->smc_if_version = SMU12_DRIVER_IF_VERSION;
937 	smu->is_apu = true;
938 }
939