xref: /netbsd-src/sys/external/bsd/drm2/dist/drm/amd/display/dc/calcs/amdgpu_bw_fixed.c (revision 41ec02673d281bbb3d38e6c78504ce6e30c228c1)
1 /*	$NetBSD: amdgpu_bw_fixed.c,v 1.2 2021/12/18 23:45:01 riastradh Exp $	*/
2 
3 /*
4  * Copyright 2015 Advanced Micro Devices, Inc.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  *
24  * Authors: AMD
25  *
26  */
27 #include <sys/cdefs.h>
28 __KERNEL_RCSID(0, "$NetBSD: amdgpu_bw_fixed.c,v 1.2 2021/12/18 23:45:01 riastradh Exp $");
29 
30 #include "dm_services.h"
31 #include "bw_fixed.h"
32 
33 
34 #define MIN_I64 \
35 	(int64_t)(-(1LL << 63))
36 
37 #define MAX_I64 \
38 	(int64_t)((1ULL << 63) - 1)
39 
40 #define FRACTIONAL_PART_MASK \
41 	((1ULL << BW_FIXED_BITS_PER_FRACTIONAL_PART) - 1)
42 
43 #define GET_FRACTIONAL_PART(x) \
44 	(FRACTIONAL_PART_MASK & (x))
45 
abs_i64(int64_t arg)46 static uint64_t abs_i64(int64_t arg)
47 {
48 	if (arg >= 0)
49 		return (uint64_t)(arg);
50 	else
51 		return (uint64_t)(-arg);
52 }
53 
bw_int_to_fixed_nonconst(int64_t value)54 struct bw_fixed bw_int_to_fixed_nonconst(int64_t value)
55 {
56 	struct bw_fixed res;
57 	ASSERT(value < BW_FIXED_MAX_I32 && value > BW_FIXED_MIN_I32);
58 	res.value = value << BW_FIXED_BITS_PER_FRACTIONAL_PART;
59 	return res;
60 }
61 
bw_frc_to_fixed(int64_t numerator,int64_t denominator)62 struct bw_fixed bw_frc_to_fixed(int64_t numerator, int64_t denominator)
63 {
64 	struct bw_fixed res;
65 	bool arg1_negative = numerator < 0;
66 	bool arg2_negative = denominator < 0;
67 	uint64_t arg1_value;
68 	uint64_t arg2_value;
69 	uint64_t remainder;
70 
71 	/* determine integer part */
72 	uint64_t res_value;
73 
74 	ASSERT(denominator != 0);
75 
76 	arg1_value = abs_i64(numerator);
77 	arg2_value = abs_i64(denominator);
78 	res_value = div64_u64_rem(arg1_value, arg2_value, &remainder);
79 
80 	ASSERT(res_value <= BW_FIXED_MAX_I32);
81 
82 	/* determine fractional part */
83 	{
84 		uint32_t i = BW_FIXED_BITS_PER_FRACTIONAL_PART;
85 
86 		do
87 		{
88 			remainder <<= 1;
89 
90 			res_value <<= 1;
91 
92 			if (remainder >= arg2_value)
93 			{
94 				res_value |= 1;
95 				remainder -= arg2_value;
96 			}
97 		} while (--i != 0);
98 	}
99 
100 	/* round up LSB */
101 	{
102 		uint64_t summand = (remainder << 1) >= arg2_value;
103 
104 		ASSERT(res_value <= MAX_I64 - summand);
105 
106 		res_value += summand;
107 	}
108 
109 	res.value = (int64_t)(res_value);
110 
111 	if (arg1_negative ^ arg2_negative)
112 		res.value = -res.value;
113 	return res;
114 }
115 
bw_floor2(const struct bw_fixed arg,const struct bw_fixed significance)116 struct bw_fixed bw_floor2(
117 	const struct bw_fixed arg,
118 	const struct bw_fixed significance)
119 {
120 	struct bw_fixed result;
121 	int64_t multiplicand;
122 
123 	multiplicand = div64_s64(arg.value, abs_i64(significance.value));
124 	result.value = abs_i64(significance.value) * multiplicand;
125 	ASSERT(abs_i64(result.value) <= abs_i64(arg.value));
126 	return result;
127 }
128 
bw_ceil2(const struct bw_fixed arg,const struct bw_fixed significance)129 struct bw_fixed bw_ceil2(
130 	const struct bw_fixed arg,
131 	const struct bw_fixed significance)
132 {
133 	struct bw_fixed result;
134 	int64_t multiplicand;
135 
136 	multiplicand = div64_s64(arg.value, abs_i64(significance.value));
137 	result.value = abs_i64(significance.value) * multiplicand;
138 	if (abs_i64(result.value) < abs_i64(arg.value)) {
139 		if (arg.value < 0)
140 			result.value -= abs_i64(significance.value);
141 		else
142 			result.value += abs_i64(significance.value);
143 	}
144 	return result;
145 }
146 
bw_mul(const struct bw_fixed arg1,const struct bw_fixed arg2)147 struct bw_fixed bw_mul(const struct bw_fixed arg1, const struct bw_fixed arg2)
148 {
149 	struct bw_fixed res;
150 
151 	bool arg1_negative = arg1.value < 0;
152 	bool arg2_negative = arg2.value < 0;
153 
154 	uint64_t arg1_value = abs_i64(arg1.value);
155 	uint64_t arg2_value = abs_i64(arg2.value);
156 
157 	uint64_t arg1_int = BW_FIXED_GET_INTEGER_PART(arg1_value);
158 	uint64_t arg2_int = BW_FIXED_GET_INTEGER_PART(arg2_value);
159 
160 	uint64_t arg1_fra = GET_FRACTIONAL_PART(arg1_value);
161 	uint64_t arg2_fra = GET_FRACTIONAL_PART(arg2_value);
162 
163 	uint64_t tmp;
164 
165 	res.value = arg1_int * arg2_int;
166 
167 	ASSERT(res.value <= BW_FIXED_MAX_I32);
168 
169 	res.value <<= BW_FIXED_BITS_PER_FRACTIONAL_PART;
170 
171 	tmp = arg1_int * arg2_fra;
172 
173 	ASSERT(tmp <= (uint64_t)(MAX_I64 - res.value));
174 
175 	res.value += tmp;
176 
177 	tmp = arg2_int * arg1_fra;
178 
179 	ASSERT(tmp <= (uint64_t)(MAX_I64 - res.value));
180 
181 	res.value += tmp;
182 
183 	tmp = arg1_fra * arg2_fra;
184 
185 	tmp = (tmp >> BW_FIXED_BITS_PER_FRACTIONAL_PART) +
186 		(tmp >= (uint64_t)(bw_frc_to_fixed(1, 2).value));
187 
188 	ASSERT(tmp <= (uint64_t)(MAX_I64 - res.value));
189 
190 	res.value += tmp;
191 
192 	if (arg1_negative ^ arg2_negative)
193 		res.value = -res.value;
194 	return res;
195 }
196 
197