xref: /dpdk/lib/acl/acl_run_scalar.c (revision 99a2dd955fba6e4cc23b77d590a033650ced9c45)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2014 Intel Corporation
3  */
4 
5 #include "acl_run.h"
6 
7 /*
8  * Resolve priority for multiple results (scalar version).
9  * This consists comparing the priority of the current traversal with the
10  * running set of results for the packet.
11  * For each result, keep a running array of the result (rule number) and
12  * its priority for each category.
13  */
14 static inline void
resolve_priority_scalar(uint64_t transition,int n,const struct rte_acl_ctx * ctx,struct parms * parms,const struct rte_acl_match_results * p,uint32_t categories)15 resolve_priority_scalar(uint64_t transition, int n,
16 	const struct rte_acl_ctx *ctx, struct parms *parms,
17 	const struct rte_acl_match_results *p, uint32_t categories)
18 {
19 	uint32_t i;
20 	int32_t *saved_priority;
21 	uint32_t *saved_results;
22 	const int32_t *priority;
23 	const uint32_t *results;
24 
25 	saved_results = parms[n].cmplt->results;
26 	saved_priority = parms[n].cmplt->priority;
27 
28 	/* results and priorities for completed trie */
29 	results = p[transition].results;
30 	priority = p[transition].priority;
31 
32 	/* if this is not the first completed trie */
33 	if (parms[n].cmplt->count != ctx->num_tries) {
34 		for (i = 0; i < categories; i += RTE_ACL_RESULTS_MULTIPLIER) {
35 
36 			if (saved_priority[i] <= priority[i]) {
37 				saved_priority[i] = priority[i];
38 				saved_results[i] = results[i];
39 			}
40 			if (saved_priority[i + 1] <= priority[i + 1]) {
41 				saved_priority[i + 1] = priority[i + 1];
42 				saved_results[i + 1] = results[i + 1];
43 			}
44 			if (saved_priority[i + 2] <= priority[i + 2]) {
45 				saved_priority[i + 2] = priority[i + 2];
46 				saved_results[i + 2] = results[i + 2];
47 			}
48 			if (saved_priority[i + 3] <= priority[i + 3]) {
49 				saved_priority[i + 3] = priority[i + 3];
50 				saved_results[i + 3] = results[i + 3];
51 			}
52 		}
53 	} else {
54 		for (i = 0; i < categories; i += RTE_ACL_RESULTS_MULTIPLIER) {
55 			saved_priority[i] = priority[i];
56 			saved_priority[i + 1] = priority[i + 1];
57 			saved_priority[i + 2] = priority[i + 2];
58 			saved_priority[i + 3] = priority[i + 3];
59 
60 			saved_results[i] = results[i];
61 			saved_results[i + 1] = results[i + 1];
62 			saved_results[i + 2] = results[i + 2];
63 			saved_results[i + 3] = results[i + 3];
64 		}
65 	}
66 }
67 
68 static inline uint32_t
scan_forward(uint32_t input,uint32_t max)69 scan_forward(uint32_t input, uint32_t max)
70 {
71 	return (input == 0) ? max : rte_bsf32(input);
72 }
73 
74 static inline uint64_t
scalar_transition(const uint64_t * trans_table,uint64_t transition,uint8_t input)75 scalar_transition(const uint64_t *trans_table, uint64_t transition,
76 	uint8_t input)
77 {
78 	uint32_t addr, index, ranges, x, a, b, c;
79 
80 	/* break transition into component parts */
81 	ranges = transition >> (sizeof(index) * CHAR_BIT);
82 	index = transition & ~RTE_ACL_NODE_INDEX;
83 	addr = transition ^ index;
84 
85 	if (index != RTE_ACL_NODE_DFA) {
86 		/* calc address for a QRANGE/SINGLE node */
87 		c = (uint32_t)input * SCALAR_QRANGE_MULT;
88 		a = ranges | SCALAR_QRANGE_MIN;
89 		a -= (c & SCALAR_QRANGE_MASK);
90 		b = c & SCALAR_QRANGE_MIN;
91 		a &= SCALAR_QRANGE_MIN;
92 		a ^= (ranges ^ b) & (a ^ b);
93 		x = scan_forward(a, 32) >> 3;
94 	} else {
95 		/* calc address for a DFA node */
96 		x = ranges >> (input /
97 			RTE_ACL_DFA_GR64_SIZE * RTE_ACL_DFA_GR64_BIT);
98 		x &= UINT8_MAX;
99 		x = input - x;
100 	}
101 
102 	addr += x;
103 
104 	/* pickup next transition */
105 	transition = *(trans_table + addr);
106 	return transition;
107 }
108 
109 int
rte_acl_classify_scalar(const struct rte_acl_ctx * ctx,const uint8_t ** data,uint32_t * results,uint32_t num,uint32_t categories)110 rte_acl_classify_scalar(const struct rte_acl_ctx *ctx, const uint8_t **data,
111 	uint32_t *results, uint32_t num, uint32_t categories)
112 {
113 	int n;
114 	uint64_t transition0, transition1;
115 	uint32_t input0, input1;
116 	struct acl_flow_data flows;
117 	uint64_t index_array[MAX_SEARCHES_SCALAR];
118 	struct completion cmplt[MAX_SEARCHES_SCALAR];
119 	struct parms parms[MAX_SEARCHES_SCALAR];
120 
121 	acl_set_flow(&flows, cmplt, RTE_DIM(cmplt), data, results, num,
122 		categories, ctx->trans_table);
123 
124 	for (n = 0; n < MAX_SEARCHES_SCALAR; n++) {
125 		cmplt[n].count = 0;
126 		index_array[n] = acl_start_next_trie(&flows, parms, n, ctx);
127 	}
128 
129 	transition0 = index_array[0];
130 	transition1 = index_array[1];
131 
132 	while ((transition0 | transition1) & RTE_ACL_NODE_MATCH) {
133 		transition0 = acl_match_check(transition0,
134 			0, ctx, parms, &flows, resolve_priority_scalar);
135 		transition1 = acl_match_check(transition1,
136 			1, ctx, parms, &flows, resolve_priority_scalar);
137 	}
138 
139 	while (flows.started > 0) {
140 
141 		input0 = GET_NEXT_4BYTES(parms, 0);
142 		input1 = GET_NEXT_4BYTES(parms, 1);
143 
144 		for (n = 0; n < 4; n++) {
145 
146 			transition0 = scalar_transition(flows.trans,
147 				transition0, (uint8_t)input0);
148 			input0 >>= CHAR_BIT;
149 
150 			transition1 = scalar_transition(flows.trans,
151 				transition1, (uint8_t)input1);
152 			input1 >>= CHAR_BIT;
153 		}
154 
155 		while ((transition0 | transition1) & RTE_ACL_NODE_MATCH) {
156 			transition0 = acl_match_check(transition0,
157 				0, ctx, parms, &flows, resolve_priority_scalar);
158 			transition1 = acl_match_check(transition1,
159 				1, ctx, parms, &flows, resolve_priority_scalar);
160 		}
161 	}
162 	return 0;
163 }
164