1 //====- X86SpeculativeLoadHardening.cpp - A Spectre v1 mitigation ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 ///
10 /// Provide a pass which mitigates speculative execution attacks which operate
11 /// by speculating incorrectly past some predicate (a type check, bounds check,
12 /// or other condition) to reach a load with invalid inputs and leak the data
13 /// accessed by that load using a side channel out of the speculative domain.
14 ///
15 /// For details on the attacks, see the first variant in both the Project Zero
16 /// writeup and the Spectre paper:
17 /// https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
18 /// https://spectreattack.com/spectre.pdf
19 ///
20 //===----------------------------------------------------------------------===//
21
22 #include "X86.h"
23 #include "X86InstrBuilder.h"
24 #include "X86InstrInfo.h"
25 #include "X86Subtarget.h"
26 #include "llvm/ADT/ArrayRef.h"
27 #include "llvm/ADT/DenseMap.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/ADT/ScopeExit.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallSet.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/ADT/SparseBitVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/CodeGen/MachineBasicBlock.h"
36 #include "llvm/CodeGen/MachineConstantPool.h"
37 #include "llvm/CodeGen/MachineFunction.h"
38 #include "llvm/CodeGen/MachineFunctionPass.h"
39 #include "llvm/CodeGen/MachineInstr.h"
40 #include "llvm/CodeGen/MachineInstrBuilder.h"
41 #include "llvm/CodeGen/MachineModuleInfo.h"
42 #include "llvm/CodeGen/MachineOperand.h"
43 #include "llvm/CodeGen/MachineRegisterInfo.h"
44 #include "llvm/CodeGen/MachineSSAUpdater.h"
45 #include "llvm/CodeGen/TargetInstrInfo.h"
46 #include "llvm/CodeGen/TargetRegisterInfo.h"
47 #include "llvm/CodeGen/TargetSchedule.h"
48 #include "llvm/CodeGen/TargetSubtargetInfo.h"
49 #include "llvm/IR/DebugLoc.h"
50 #include "llvm/MC/MCSchedule.h"
51 #include "llvm/Pass.h"
52 #include "llvm/Support/CommandLine.h"
53 #include "llvm/Support/Debug.h"
54 #include "llvm/Support/raw_ostream.h"
55 #include "llvm/Target/TargetMachine.h"
56 #include <algorithm>
57 #include <cassert>
58 #include <iterator>
59 #include <optional>
60 #include <utility>
61
62 using namespace llvm;
63
64 #define PASS_KEY "x86-slh"
65 #define DEBUG_TYPE PASS_KEY
66
67 STATISTIC(NumCondBranchesTraced, "Number of conditional branches traced");
68 STATISTIC(NumBranchesUntraced, "Number of branches unable to trace");
69 STATISTIC(NumAddrRegsHardened,
70 "Number of address mode used registers hardaned");
71 STATISTIC(NumPostLoadRegsHardened,
72 "Number of post-load register values hardened");
73 STATISTIC(NumCallsOrJumpsHardened,
74 "Number of calls or jumps requiring extra hardening");
75 STATISTIC(NumInstsInserted, "Number of instructions inserted");
76 STATISTIC(NumLFENCEsInserted, "Number of lfence instructions inserted");
77
78 static cl::opt<bool> EnableSpeculativeLoadHardening(
79 "x86-speculative-load-hardening",
80 cl::desc("Force enable speculative load hardening"), cl::init(false),
81 cl::Hidden);
82
83 static cl::opt<bool> HardenEdgesWithLFENCE(
84 PASS_KEY "-lfence",
85 cl::desc(
86 "Use LFENCE along each conditional edge to harden against speculative "
87 "loads rather than conditional movs and poisoned pointers."),
88 cl::init(false), cl::Hidden);
89
90 static cl::opt<bool> EnablePostLoadHardening(
91 PASS_KEY "-post-load",
92 cl::desc("Harden the value loaded *after* it is loaded by "
93 "flushing the loaded bits to 1. This is hard to do "
94 "in general but can be done easily for GPRs."),
95 cl::init(true), cl::Hidden);
96
97 static cl::opt<bool> FenceCallAndRet(
98 PASS_KEY "-fence-call-and-ret",
99 cl::desc("Use a full speculation fence to harden both call and ret edges "
100 "rather than a lighter weight mitigation."),
101 cl::init(false), cl::Hidden);
102
103 static cl::opt<bool> HardenInterprocedurally(
104 PASS_KEY "-ip",
105 cl::desc("Harden interprocedurally by passing our state in and out of "
106 "functions in the high bits of the stack pointer."),
107 cl::init(true), cl::Hidden);
108
109 static cl::opt<bool>
110 HardenLoads(PASS_KEY "-loads",
111 cl::desc("Sanitize loads from memory. When disable, no "
112 "significant security is provided."),
113 cl::init(true), cl::Hidden);
114
115 static cl::opt<bool> HardenIndirectCallsAndJumps(
116 PASS_KEY "-indirect",
117 cl::desc("Harden indirect calls and jumps against using speculatively "
118 "stored attacker controlled addresses. This is designed to "
119 "mitigate Spectre v1.2 style attacks."),
120 cl::init(true), cl::Hidden);
121
122 namespace {
123
124 class X86SpeculativeLoadHardeningPass : public MachineFunctionPass {
125 public:
X86SpeculativeLoadHardeningPass()126 X86SpeculativeLoadHardeningPass() : MachineFunctionPass(ID) { }
127
getPassName() const128 StringRef getPassName() const override {
129 return "X86 speculative load hardening";
130 }
131 bool runOnMachineFunction(MachineFunction &MF) override;
132 void getAnalysisUsage(AnalysisUsage &AU) const override;
133
134 /// Pass identification, replacement for typeid.
135 static char ID;
136
137 private:
138 /// The information about a block's conditional terminators needed to trace
139 /// our predicate state through the exiting edges.
140 struct BlockCondInfo {
141 MachineBasicBlock *MBB;
142
143 // We mostly have one conditional branch, and in extremely rare cases have
144 // two. Three and more are so rare as to be unimportant for compile time.
145 SmallVector<MachineInstr *, 2> CondBrs;
146
147 MachineInstr *UncondBr;
148 };
149
150 /// Manages the predicate state traced through the program.
151 struct PredState {
152 unsigned InitialReg = 0;
153 unsigned PoisonReg = 0;
154
155 const TargetRegisterClass *RC;
156 MachineSSAUpdater SSA;
157
PredState__anon1358490d0111::X86SpeculativeLoadHardeningPass::PredState158 PredState(MachineFunction &MF, const TargetRegisterClass *RC)
159 : RC(RC), SSA(MF) {}
160 };
161
162 const X86Subtarget *Subtarget = nullptr;
163 MachineRegisterInfo *MRI = nullptr;
164 const X86InstrInfo *TII = nullptr;
165 const TargetRegisterInfo *TRI = nullptr;
166
167 std::optional<PredState> PS;
168
169 void hardenEdgesWithLFENCE(MachineFunction &MF);
170
171 SmallVector<BlockCondInfo, 16> collectBlockCondInfo(MachineFunction &MF);
172
173 SmallVector<MachineInstr *, 16>
174 tracePredStateThroughCFG(MachineFunction &MF, ArrayRef<BlockCondInfo> Infos);
175
176 void unfoldCallAndJumpLoads(MachineFunction &MF);
177
178 SmallVector<MachineInstr *, 16>
179 tracePredStateThroughIndirectBranches(MachineFunction &MF);
180
181 void tracePredStateThroughBlocksAndHarden(MachineFunction &MF);
182
183 unsigned saveEFLAGS(MachineBasicBlock &MBB,
184 MachineBasicBlock::iterator InsertPt,
185 const DebugLoc &Loc);
186 void restoreEFLAGS(MachineBasicBlock &MBB,
187 MachineBasicBlock::iterator InsertPt, const DebugLoc &Loc,
188 Register Reg);
189
190 void mergePredStateIntoSP(MachineBasicBlock &MBB,
191 MachineBasicBlock::iterator InsertPt,
192 const DebugLoc &Loc, unsigned PredStateReg);
193 unsigned extractPredStateFromSP(MachineBasicBlock &MBB,
194 MachineBasicBlock::iterator InsertPt,
195 const DebugLoc &Loc);
196
197 void
198 hardenLoadAddr(MachineInstr &MI, MachineOperand &BaseMO,
199 MachineOperand &IndexMO,
200 SmallDenseMap<unsigned, unsigned, 32> &AddrRegToHardenedReg);
201 MachineInstr *
202 sinkPostLoadHardenedInst(MachineInstr &MI,
203 SmallPtrSetImpl<MachineInstr *> &HardenedInstrs);
204 bool canHardenRegister(Register Reg);
205 unsigned hardenValueInRegister(Register Reg, MachineBasicBlock &MBB,
206 MachineBasicBlock::iterator InsertPt,
207 const DebugLoc &Loc);
208 unsigned hardenPostLoad(MachineInstr &MI);
209 void hardenReturnInstr(MachineInstr &MI);
210 void tracePredStateThroughCall(MachineInstr &MI);
211 void hardenIndirectCallOrJumpInstr(
212 MachineInstr &MI,
213 SmallDenseMap<unsigned, unsigned, 32> &AddrRegToHardenedReg);
214 };
215
216 } // end anonymous namespace
217
218 char X86SpeculativeLoadHardeningPass::ID = 0;
219
getAnalysisUsage(AnalysisUsage & AU) const220 void X86SpeculativeLoadHardeningPass::getAnalysisUsage(
221 AnalysisUsage &AU) const {
222 MachineFunctionPass::getAnalysisUsage(AU);
223 }
224
splitEdge(MachineBasicBlock & MBB,MachineBasicBlock & Succ,int SuccCount,MachineInstr * Br,MachineInstr * & UncondBr,const X86InstrInfo & TII)225 static MachineBasicBlock &splitEdge(MachineBasicBlock &MBB,
226 MachineBasicBlock &Succ, int SuccCount,
227 MachineInstr *Br, MachineInstr *&UncondBr,
228 const X86InstrInfo &TII) {
229 assert(!Succ.isEHPad() && "Shouldn't get edges to EH pads!");
230
231 MachineFunction &MF = *MBB.getParent();
232
233 MachineBasicBlock &NewMBB = *MF.CreateMachineBasicBlock();
234
235 // We have to insert the new block immediately after the current one as we
236 // don't know what layout-successor relationships the successor has and we
237 // may not be able to (and generally don't want to) try to fix those up.
238 MF.insert(std::next(MachineFunction::iterator(&MBB)), &NewMBB);
239
240 // Update the branch instruction if necessary.
241 if (Br) {
242 assert(Br->getOperand(0).getMBB() == &Succ &&
243 "Didn't start with the right target!");
244 Br->getOperand(0).setMBB(&NewMBB);
245
246 // If this successor was reached through a branch rather than fallthrough,
247 // we might have *broken* fallthrough and so need to inject a new
248 // unconditional branch.
249 if (!UncondBr) {
250 MachineBasicBlock &OldLayoutSucc =
251 *std::next(MachineFunction::iterator(&NewMBB));
252 assert(MBB.isSuccessor(&OldLayoutSucc) &&
253 "Without an unconditional branch, the old layout successor should "
254 "be an actual successor!");
255 auto BrBuilder =
256 BuildMI(&MBB, DebugLoc(), TII.get(X86::JMP_1)).addMBB(&OldLayoutSucc);
257 // Update the unconditional branch now that we've added one.
258 UncondBr = &*BrBuilder;
259 }
260
261 // Insert unconditional "jump Succ" instruction in the new block if
262 // necessary.
263 if (!NewMBB.isLayoutSuccessor(&Succ)) {
264 SmallVector<MachineOperand, 4> Cond;
265 TII.insertBranch(NewMBB, &Succ, nullptr, Cond, Br->getDebugLoc());
266 }
267 } else {
268 assert(!UncondBr &&
269 "Cannot have a branchless successor and an unconditional branch!");
270 assert(NewMBB.isLayoutSuccessor(&Succ) &&
271 "A non-branch successor must have been a layout successor before "
272 "and now is a layout successor of the new block.");
273 }
274
275 // If this is the only edge to the successor, we can just replace it in the
276 // CFG. Otherwise we need to add a new entry in the CFG for the new
277 // successor.
278 if (SuccCount == 1) {
279 MBB.replaceSuccessor(&Succ, &NewMBB);
280 } else {
281 MBB.splitSuccessor(&Succ, &NewMBB);
282 }
283
284 // Hook up the edge from the new basic block to the old successor in the CFG.
285 NewMBB.addSuccessor(&Succ);
286
287 // Fix PHI nodes in Succ so they refer to NewMBB instead of MBB.
288 for (MachineInstr &MI : Succ) {
289 if (!MI.isPHI())
290 break;
291 for (int OpIdx = 1, NumOps = MI.getNumOperands(); OpIdx < NumOps;
292 OpIdx += 2) {
293 MachineOperand &OpV = MI.getOperand(OpIdx);
294 MachineOperand &OpMBB = MI.getOperand(OpIdx + 1);
295 assert(OpMBB.isMBB() && "Block operand to a PHI is not a block!");
296 if (OpMBB.getMBB() != &MBB)
297 continue;
298
299 // If this is the last edge to the succesor, just replace MBB in the PHI
300 if (SuccCount == 1) {
301 OpMBB.setMBB(&NewMBB);
302 break;
303 }
304
305 // Otherwise, append a new pair of operands for the new incoming edge.
306 MI.addOperand(MF, OpV);
307 MI.addOperand(MF, MachineOperand::CreateMBB(&NewMBB));
308 break;
309 }
310 }
311
312 // Inherit live-ins from the successor
313 for (auto &LI : Succ.liveins())
314 NewMBB.addLiveIn(LI);
315
316 LLVM_DEBUG(dbgs() << " Split edge from '" << MBB.getName() << "' to '"
317 << Succ.getName() << "'.\n");
318 return NewMBB;
319 }
320
321 /// Removing duplicate PHI operands to leave the PHI in a canonical and
322 /// predictable form.
323 ///
324 /// FIXME: It's really frustrating that we have to do this, but SSA-form in MIR
325 /// isn't what you might expect. We may have multiple entries in PHI nodes for
326 /// a single predecessor. This makes CFG-updating extremely complex, so here we
327 /// simplify all PHI nodes to a model even simpler than the IR's model: exactly
328 /// one entry per predecessor, regardless of how many edges there are.
canonicalizePHIOperands(MachineFunction & MF)329 static void canonicalizePHIOperands(MachineFunction &MF) {
330 SmallPtrSet<MachineBasicBlock *, 4> Preds;
331 SmallVector<int, 4> DupIndices;
332 for (auto &MBB : MF)
333 for (auto &MI : MBB) {
334 if (!MI.isPHI())
335 break;
336
337 // First we scan the operands of the PHI looking for duplicate entries
338 // a particular predecessor. We retain the operand index of each duplicate
339 // entry found.
340 for (int OpIdx = 1, NumOps = MI.getNumOperands(); OpIdx < NumOps;
341 OpIdx += 2)
342 if (!Preds.insert(MI.getOperand(OpIdx + 1).getMBB()).second)
343 DupIndices.push_back(OpIdx);
344
345 // Now walk the duplicate indices, removing both the block and value. Note
346 // that these are stored as a vector making this element-wise removal
347 // :w
348 // potentially quadratic.
349 //
350 // FIXME: It is really frustrating that we have to use a quadratic
351 // removal algorithm here. There should be a better way, but the use-def
352 // updates required make that impossible using the public API.
353 //
354 // Note that we have to process these backwards so that we don't
355 // invalidate other indices with each removal.
356 while (!DupIndices.empty()) {
357 int OpIdx = DupIndices.pop_back_val();
358 // Remove both the block and value operand, again in reverse order to
359 // preserve indices.
360 MI.removeOperand(OpIdx + 1);
361 MI.removeOperand(OpIdx);
362 }
363
364 Preds.clear();
365 }
366 }
367
368 /// Helper to scan a function for loads vulnerable to misspeculation that we
369 /// want to harden.
370 ///
371 /// We use this to avoid making changes to functions where there is nothing we
372 /// need to do to harden against misspeculation.
hasVulnerableLoad(MachineFunction & MF)373 static bool hasVulnerableLoad(MachineFunction &MF) {
374 for (MachineBasicBlock &MBB : MF) {
375 for (MachineInstr &MI : MBB) {
376 // Loads within this basic block after an LFENCE are not at risk of
377 // speculatively executing with invalid predicates from prior control
378 // flow. So break out of this block but continue scanning the function.
379 if (MI.getOpcode() == X86::LFENCE)
380 break;
381
382 // Looking for loads only.
383 if (!MI.mayLoad())
384 continue;
385
386 // An MFENCE is modeled as a load but isn't vulnerable to misspeculation.
387 if (MI.getOpcode() == X86::MFENCE)
388 continue;
389
390 // We found a load.
391 return true;
392 }
393 }
394
395 // No loads found.
396 return false;
397 }
398
runOnMachineFunction(MachineFunction & MF)399 bool X86SpeculativeLoadHardeningPass::runOnMachineFunction(
400 MachineFunction &MF) {
401 LLVM_DEBUG(dbgs() << "********** " << getPassName() << " : " << MF.getName()
402 << " **********\n");
403
404 // Only run if this pass is forced enabled or we detect the relevant function
405 // attribute requesting SLH.
406 if (!EnableSpeculativeLoadHardening &&
407 !MF.getFunction().hasFnAttribute(Attribute::SpeculativeLoadHardening))
408 return false;
409
410 Subtarget = &MF.getSubtarget<X86Subtarget>();
411 MRI = &MF.getRegInfo();
412 TII = Subtarget->getInstrInfo();
413 TRI = Subtarget->getRegisterInfo();
414
415 // FIXME: Support for 32-bit.
416 PS.emplace(MF, &X86::GR64_NOSPRegClass);
417
418 if (MF.begin() == MF.end())
419 // Nothing to do for a degenerate empty function...
420 return false;
421
422 // We support an alternative hardening technique based on a debug flag.
423 if (HardenEdgesWithLFENCE) {
424 hardenEdgesWithLFENCE(MF);
425 return true;
426 }
427
428 // Create a dummy debug loc to use for all the generated code here.
429 DebugLoc Loc;
430
431 MachineBasicBlock &Entry = *MF.begin();
432 auto EntryInsertPt = Entry.SkipPHIsLabelsAndDebug(Entry.begin());
433
434 // Do a quick scan to see if we have any checkable loads.
435 bool HasVulnerableLoad = hasVulnerableLoad(MF);
436
437 // See if we have any conditional branching blocks that we will need to trace
438 // predicate state through.
439 SmallVector<BlockCondInfo, 16> Infos = collectBlockCondInfo(MF);
440
441 // If we have no interesting conditions or loads, nothing to do here.
442 if (!HasVulnerableLoad && Infos.empty())
443 return true;
444
445 // The poison value is required to be an all-ones value for many aspects of
446 // this mitigation.
447 const int PoisonVal = -1;
448 PS->PoisonReg = MRI->createVirtualRegister(PS->RC);
449 BuildMI(Entry, EntryInsertPt, Loc, TII->get(X86::MOV64ri32), PS->PoisonReg)
450 .addImm(PoisonVal);
451 ++NumInstsInserted;
452
453 // If we have loads being hardened and we've asked for call and ret edges to
454 // get a full fence-based mitigation, inject that fence.
455 if (HasVulnerableLoad && FenceCallAndRet) {
456 // We need to insert an LFENCE at the start of the function to suspend any
457 // incoming misspeculation from the caller. This helps two-fold: the caller
458 // may not have been protected as this code has been, and this code gets to
459 // not take any specific action to protect across calls.
460 // FIXME: We could skip this for functions which unconditionally return
461 // a constant.
462 BuildMI(Entry, EntryInsertPt, Loc, TII->get(X86::LFENCE));
463 ++NumInstsInserted;
464 ++NumLFENCEsInserted;
465 }
466
467 // If we guarded the entry with an LFENCE and have no conditionals to protect
468 // in blocks, then we're done.
469 if (FenceCallAndRet && Infos.empty())
470 // We may have changed the function's code at this point to insert fences.
471 return true;
472
473 // For every basic block in the function which can b
474 if (HardenInterprocedurally && !FenceCallAndRet) {
475 // Set up the predicate state by extracting it from the incoming stack
476 // pointer so we pick up any misspeculation in our caller.
477 PS->InitialReg = extractPredStateFromSP(Entry, EntryInsertPt, Loc);
478 } else {
479 // Otherwise, just build the predicate state itself by zeroing a register
480 // as we don't need any initial state.
481 PS->InitialReg = MRI->createVirtualRegister(PS->RC);
482 Register PredStateSubReg = MRI->createVirtualRegister(&X86::GR32RegClass);
483 auto ZeroI = BuildMI(Entry, EntryInsertPt, Loc, TII->get(X86::MOV32r0),
484 PredStateSubReg);
485 ++NumInstsInserted;
486 MachineOperand *ZeroEFLAGSDefOp =
487 ZeroI->findRegisterDefOperand(X86::EFLAGS);
488 assert(ZeroEFLAGSDefOp && ZeroEFLAGSDefOp->isImplicit() &&
489 "Must have an implicit def of EFLAGS!");
490 ZeroEFLAGSDefOp->setIsDead(true);
491 BuildMI(Entry, EntryInsertPt, Loc, TII->get(X86::SUBREG_TO_REG),
492 PS->InitialReg)
493 .addImm(0)
494 .addReg(PredStateSubReg)
495 .addImm(X86::sub_32bit);
496 }
497
498 // We're going to need to trace predicate state throughout the function's
499 // CFG. Prepare for this by setting up our initial state of PHIs with unique
500 // predecessor entries and all the initial predicate state.
501 canonicalizePHIOperands(MF);
502
503 // Track the updated values in an SSA updater to rewrite into SSA form at the
504 // end.
505 PS->SSA.Initialize(PS->InitialReg);
506 PS->SSA.AddAvailableValue(&Entry, PS->InitialReg);
507
508 // Trace through the CFG.
509 auto CMovs = tracePredStateThroughCFG(MF, Infos);
510
511 // We may also enter basic blocks in this function via exception handling
512 // control flow. Here, if we are hardening interprocedurally, we need to
513 // re-capture the predicate state from the throwing code. In the Itanium ABI,
514 // the throw will always look like a call to __cxa_throw and will have the
515 // predicate state in the stack pointer, so extract fresh predicate state from
516 // the stack pointer and make it available in SSA.
517 // FIXME: Handle non-itanium ABI EH models.
518 if (HardenInterprocedurally) {
519 for (MachineBasicBlock &MBB : MF) {
520 assert(!MBB.isEHScopeEntry() && "Only Itanium ABI EH supported!");
521 assert(!MBB.isEHFuncletEntry() && "Only Itanium ABI EH supported!");
522 assert(!MBB.isCleanupFuncletEntry() && "Only Itanium ABI EH supported!");
523 if (!MBB.isEHPad())
524 continue;
525 PS->SSA.AddAvailableValue(
526 &MBB,
527 extractPredStateFromSP(MBB, MBB.SkipPHIsAndLabels(MBB.begin()), Loc));
528 }
529 }
530
531 if (HardenIndirectCallsAndJumps) {
532 // If we are going to harden calls and jumps we need to unfold their memory
533 // operands.
534 unfoldCallAndJumpLoads(MF);
535
536 // Then we trace predicate state through the indirect branches.
537 auto IndirectBrCMovs = tracePredStateThroughIndirectBranches(MF);
538 CMovs.append(IndirectBrCMovs.begin(), IndirectBrCMovs.end());
539 }
540
541 // Now that we have the predicate state available at the start of each block
542 // in the CFG, trace it through each block, hardening vulnerable instructions
543 // as we go.
544 tracePredStateThroughBlocksAndHarden(MF);
545
546 // Now rewrite all the uses of the pred state using the SSA updater to insert
547 // PHIs connecting the state between blocks along the CFG edges.
548 for (MachineInstr *CMovI : CMovs)
549 for (MachineOperand &Op : CMovI->operands()) {
550 if (!Op.isReg() || Op.getReg() != PS->InitialReg)
551 continue;
552
553 PS->SSA.RewriteUse(Op);
554 }
555
556 LLVM_DEBUG(dbgs() << "Final speculative load hardened function:\n"; MF.dump();
557 dbgs() << "\n"; MF.verify(this));
558 return true;
559 }
560
561 /// Implements the naive hardening approach of putting an LFENCE after every
562 /// potentially mis-predicted control flow construct.
563 ///
564 /// We include this as an alternative mostly for the purpose of comparison. The
565 /// performance impact of this is expected to be extremely severe and not
566 /// practical for any real-world users.
hardenEdgesWithLFENCE(MachineFunction & MF)567 void X86SpeculativeLoadHardeningPass::hardenEdgesWithLFENCE(
568 MachineFunction &MF) {
569 // First, we scan the function looking for blocks that are reached along edges
570 // that we might want to harden.
571 SmallSetVector<MachineBasicBlock *, 8> Blocks;
572 for (MachineBasicBlock &MBB : MF) {
573 // If there are no or only one successor, nothing to do here.
574 if (MBB.succ_size() <= 1)
575 continue;
576
577 // Skip blocks unless their terminators start with a branch. Other
578 // terminators don't seem interesting for guarding against misspeculation.
579 auto TermIt = MBB.getFirstTerminator();
580 if (TermIt == MBB.end() || !TermIt->isBranch())
581 continue;
582
583 // Add all the non-EH-pad succossors to the blocks we want to harden. We
584 // skip EH pads because there isn't really a condition of interest on
585 // entering.
586 for (MachineBasicBlock *SuccMBB : MBB.successors())
587 if (!SuccMBB->isEHPad())
588 Blocks.insert(SuccMBB);
589 }
590
591 for (MachineBasicBlock *MBB : Blocks) {
592 auto InsertPt = MBB->SkipPHIsAndLabels(MBB->begin());
593 BuildMI(*MBB, InsertPt, DebugLoc(), TII->get(X86::LFENCE));
594 ++NumInstsInserted;
595 ++NumLFENCEsInserted;
596 }
597 }
598
599 SmallVector<X86SpeculativeLoadHardeningPass::BlockCondInfo, 16>
collectBlockCondInfo(MachineFunction & MF)600 X86SpeculativeLoadHardeningPass::collectBlockCondInfo(MachineFunction &MF) {
601 SmallVector<BlockCondInfo, 16> Infos;
602
603 // Walk the function and build up a summary for each block's conditions that
604 // we need to trace through.
605 for (MachineBasicBlock &MBB : MF) {
606 // If there are no or only one successor, nothing to do here.
607 if (MBB.succ_size() <= 1)
608 continue;
609
610 // We want to reliably handle any conditional branch terminators in the
611 // MBB, so we manually analyze the branch. We can handle all of the
612 // permutations here, including ones that analyze branch cannot.
613 //
614 // The approach is to walk backwards across the terminators, resetting at
615 // any unconditional non-indirect branch, and track all conditional edges
616 // to basic blocks as well as the fallthrough or unconditional successor
617 // edge. For each conditional edge, we track the target and the opposite
618 // condition code in order to inject a "no-op" cmov into that successor
619 // that will harden the predicate. For the fallthrough/unconditional
620 // edge, we inject a separate cmov for each conditional branch with
621 // matching condition codes. This effectively implements an "and" of the
622 // condition flags, even if there isn't a single condition flag that would
623 // directly implement that. We don't bother trying to optimize either of
624 // these cases because if such an optimization is possible, LLVM should
625 // have optimized the conditional *branches* in that way already to reduce
626 // instruction count. This late, we simply assume the minimal number of
627 // branch instructions is being emitted and use that to guide our cmov
628 // insertion.
629
630 BlockCondInfo Info = {&MBB, {}, nullptr};
631
632 // Now walk backwards through the terminators and build up successors they
633 // reach and the conditions.
634 for (MachineInstr &MI : llvm::reverse(MBB)) {
635 // Once we've handled all the terminators, we're done.
636 if (!MI.isTerminator())
637 break;
638
639 // If we see a non-branch terminator, we can't handle anything so bail.
640 if (!MI.isBranch()) {
641 Info.CondBrs.clear();
642 break;
643 }
644
645 // If we see an unconditional branch, reset our state, clear any
646 // fallthrough, and set this is the "else" successor.
647 if (MI.getOpcode() == X86::JMP_1) {
648 Info.CondBrs.clear();
649 Info.UncondBr = &MI;
650 continue;
651 }
652
653 // If we get an invalid condition, we have an indirect branch or some
654 // other unanalyzable "fallthrough" case. We model this as a nullptr for
655 // the destination so we can still guard any conditional successors.
656 // Consider code sequences like:
657 // ```
658 // jCC L1
659 // jmpq *%rax
660 // ```
661 // We still want to harden the edge to `L1`.
662 if (X86::getCondFromBranch(MI) == X86::COND_INVALID) {
663 Info.CondBrs.clear();
664 Info.UncondBr = &MI;
665 continue;
666 }
667
668 // We have a vanilla conditional branch, add it to our list.
669 Info.CondBrs.push_back(&MI);
670 }
671 if (Info.CondBrs.empty()) {
672 ++NumBranchesUntraced;
673 LLVM_DEBUG(dbgs() << "WARNING: unable to secure successors of block:\n";
674 MBB.dump());
675 continue;
676 }
677
678 Infos.push_back(Info);
679 }
680
681 return Infos;
682 }
683
684 /// Trace the predicate state through the CFG, instrumenting each conditional
685 /// branch such that misspeculation through an edge will poison the predicate
686 /// state.
687 ///
688 /// Returns the list of inserted CMov instructions so that they can have their
689 /// uses of the predicate state rewritten into proper SSA form once it is
690 /// complete.
691 SmallVector<MachineInstr *, 16>
tracePredStateThroughCFG(MachineFunction & MF,ArrayRef<BlockCondInfo> Infos)692 X86SpeculativeLoadHardeningPass::tracePredStateThroughCFG(
693 MachineFunction &MF, ArrayRef<BlockCondInfo> Infos) {
694 // Collect the inserted cmov instructions so we can rewrite their uses of the
695 // predicate state into SSA form.
696 SmallVector<MachineInstr *, 16> CMovs;
697
698 // Now walk all of the basic blocks looking for ones that end in conditional
699 // jumps where we need to update this register along each edge.
700 for (const BlockCondInfo &Info : Infos) {
701 MachineBasicBlock &MBB = *Info.MBB;
702 const SmallVectorImpl<MachineInstr *> &CondBrs = Info.CondBrs;
703 MachineInstr *UncondBr = Info.UncondBr;
704
705 LLVM_DEBUG(dbgs() << "Tracing predicate through block: " << MBB.getName()
706 << "\n");
707 ++NumCondBranchesTraced;
708
709 // Compute the non-conditional successor as either the target of any
710 // unconditional branch or the layout successor.
711 MachineBasicBlock *UncondSucc =
712 UncondBr ? (UncondBr->getOpcode() == X86::JMP_1
713 ? UncondBr->getOperand(0).getMBB()
714 : nullptr)
715 : &*std::next(MachineFunction::iterator(&MBB));
716
717 // Count how many edges there are to any given successor.
718 SmallDenseMap<MachineBasicBlock *, int> SuccCounts;
719 if (UncondSucc)
720 ++SuccCounts[UncondSucc];
721 for (auto *CondBr : CondBrs)
722 ++SuccCounts[CondBr->getOperand(0).getMBB()];
723
724 // A lambda to insert cmov instructions into a block checking all of the
725 // condition codes in a sequence.
726 auto BuildCheckingBlockForSuccAndConds =
727 [&](MachineBasicBlock &MBB, MachineBasicBlock &Succ, int SuccCount,
728 MachineInstr *Br, MachineInstr *&UncondBr,
729 ArrayRef<X86::CondCode> Conds) {
730 // First, we split the edge to insert the checking block into a safe
731 // location.
732 auto &CheckingMBB =
733 (SuccCount == 1 && Succ.pred_size() == 1)
734 ? Succ
735 : splitEdge(MBB, Succ, SuccCount, Br, UncondBr, *TII);
736
737 bool LiveEFLAGS = Succ.isLiveIn(X86::EFLAGS);
738 if (!LiveEFLAGS)
739 CheckingMBB.addLiveIn(X86::EFLAGS);
740
741 // Now insert the cmovs to implement the checks.
742 auto InsertPt = CheckingMBB.begin();
743 assert((InsertPt == CheckingMBB.end() || !InsertPt->isPHI()) &&
744 "Should never have a PHI in the initial checking block as it "
745 "always has a single predecessor!");
746
747 // We will wire each cmov to each other, but need to start with the
748 // incoming pred state.
749 unsigned CurStateReg = PS->InitialReg;
750
751 for (X86::CondCode Cond : Conds) {
752 int PredStateSizeInBytes = TRI->getRegSizeInBits(*PS->RC) / 8;
753 auto CMovOp = X86::getCMovOpcode(PredStateSizeInBytes);
754
755 Register UpdatedStateReg = MRI->createVirtualRegister(PS->RC);
756 // Note that we intentionally use an empty debug location so that
757 // this picks up the preceding location.
758 auto CMovI = BuildMI(CheckingMBB, InsertPt, DebugLoc(),
759 TII->get(CMovOp), UpdatedStateReg)
760 .addReg(CurStateReg)
761 .addReg(PS->PoisonReg)
762 .addImm(Cond);
763 // If this is the last cmov and the EFLAGS weren't originally
764 // live-in, mark them as killed.
765 if (!LiveEFLAGS && Cond == Conds.back())
766 CMovI->findRegisterUseOperand(X86::EFLAGS)->setIsKill(true);
767
768 ++NumInstsInserted;
769 LLVM_DEBUG(dbgs() << " Inserting cmov: "; CMovI->dump();
770 dbgs() << "\n");
771
772 // The first one of the cmovs will be using the top level
773 // `PredStateReg` and need to get rewritten into SSA form.
774 if (CurStateReg == PS->InitialReg)
775 CMovs.push_back(&*CMovI);
776
777 // The next cmov should start from this one's def.
778 CurStateReg = UpdatedStateReg;
779 }
780
781 // And put the last one into the available values for SSA form of our
782 // predicate state.
783 PS->SSA.AddAvailableValue(&CheckingMBB, CurStateReg);
784 };
785
786 std::vector<X86::CondCode> UncondCodeSeq;
787 for (auto *CondBr : CondBrs) {
788 MachineBasicBlock &Succ = *CondBr->getOperand(0).getMBB();
789 int &SuccCount = SuccCounts[&Succ];
790
791 X86::CondCode Cond = X86::getCondFromBranch(*CondBr);
792 X86::CondCode InvCond = X86::GetOppositeBranchCondition(Cond);
793 UncondCodeSeq.push_back(Cond);
794
795 BuildCheckingBlockForSuccAndConds(MBB, Succ, SuccCount, CondBr, UncondBr,
796 {InvCond});
797
798 // Decrement the successor count now that we've split one of the edges.
799 // We need to keep the count of edges to the successor accurate in order
800 // to know above when to *replace* the successor in the CFG vs. just
801 // adding the new successor.
802 --SuccCount;
803 }
804
805 // Since we may have split edges and changed the number of successors,
806 // normalize the probabilities. This avoids doing it each time we split an
807 // edge.
808 MBB.normalizeSuccProbs();
809
810 // Finally, we need to insert cmovs into the "fallthrough" edge. Here, we
811 // need to intersect the other condition codes. We can do this by just
812 // doing a cmov for each one.
813 if (!UncondSucc)
814 // If we have no fallthrough to protect (perhaps it is an indirect jump?)
815 // just skip this and continue.
816 continue;
817
818 assert(SuccCounts[UncondSucc] == 1 &&
819 "We should never have more than one edge to the unconditional "
820 "successor at this point because every other edge must have been "
821 "split above!");
822
823 // Sort and unique the codes to minimize them.
824 llvm::sort(UncondCodeSeq);
825 UncondCodeSeq.erase(std::unique(UncondCodeSeq.begin(), UncondCodeSeq.end()),
826 UncondCodeSeq.end());
827
828 // Build a checking version of the successor.
829 BuildCheckingBlockForSuccAndConds(MBB, *UncondSucc, /*SuccCount*/ 1,
830 UncondBr, UncondBr, UncondCodeSeq);
831 }
832
833 return CMovs;
834 }
835
836 /// Compute the register class for the unfolded load.
837 ///
838 /// FIXME: This should probably live in X86InstrInfo, potentially by adding
839 /// a way to unfold into a newly created vreg rather than requiring a register
840 /// input.
841 static const TargetRegisterClass *
getRegClassForUnfoldedLoad(MachineFunction & MF,const X86InstrInfo & TII,unsigned Opcode)842 getRegClassForUnfoldedLoad(MachineFunction &MF, const X86InstrInfo &TII,
843 unsigned Opcode) {
844 unsigned Index;
845 unsigned UnfoldedOpc = TII.getOpcodeAfterMemoryUnfold(
846 Opcode, /*UnfoldLoad*/ true, /*UnfoldStore*/ false, &Index);
847 const MCInstrDesc &MCID = TII.get(UnfoldedOpc);
848 return TII.getRegClass(MCID, Index, &TII.getRegisterInfo(), MF);
849 }
850
unfoldCallAndJumpLoads(MachineFunction & MF)851 void X86SpeculativeLoadHardeningPass::unfoldCallAndJumpLoads(
852 MachineFunction &MF) {
853 for (MachineBasicBlock &MBB : MF)
854 // We use make_early_inc_range here so we can remove instructions if needed
855 // without disturbing the iteration.
856 for (MachineInstr &MI : llvm::make_early_inc_range(MBB.instrs())) {
857 // Must either be a call or a branch.
858 if (!MI.isCall() && !MI.isBranch())
859 continue;
860 // We only care about loading variants of these instructions.
861 if (!MI.mayLoad())
862 continue;
863
864 switch (MI.getOpcode()) {
865 default: {
866 LLVM_DEBUG(
867 dbgs() << "ERROR: Found an unexpected loading branch or call "
868 "instruction:\n";
869 MI.dump(); dbgs() << "\n");
870 report_fatal_error("Unexpected loading branch or call!");
871 }
872
873 case X86::FARCALL16m:
874 case X86::FARCALL32m:
875 case X86::FARCALL64m:
876 case X86::FARJMP16m:
877 case X86::FARJMP32m:
878 case X86::FARJMP64m:
879 // We cannot mitigate far jumps or calls, but we also don't expect them
880 // to be vulnerable to Spectre v1.2 style attacks.
881 continue;
882
883 case X86::CALL16m:
884 case X86::CALL16m_NT:
885 case X86::CALL32m:
886 case X86::CALL32m_NT:
887 case X86::CALL64m:
888 case X86::CALL64m_NT:
889 case X86::JMP16m:
890 case X86::JMP16m_NT:
891 case X86::JMP32m:
892 case X86::JMP32m_NT:
893 case X86::JMP64m:
894 case X86::JMP64m_NT:
895 case X86::TAILJMPm64:
896 case X86::TAILJMPm64_REX:
897 case X86::TAILJMPm:
898 case X86::TCRETURNmi64:
899 case X86::TCRETURNmi: {
900 // Use the generic unfold logic now that we know we're dealing with
901 // expected instructions.
902 // FIXME: We don't have test coverage for all of these!
903 auto *UnfoldedRC = getRegClassForUnfoldedLoad(MF, *TII, MI.getOpcode());
904 if (!UnfoldedRC) {
905 LLVM_DEBUG(dbgs()
906 << "ERROR: Unable to unfold load from instruction:\n";
907 MI.dump(); dbgs() << "\n");
908 report_fatal_error("Unable to unfold load!");
909 }
910 Register Reg = MRI->createVirtualRegister(UnfoldedRC);
911 SmallVector<MachineInstr *, 2> NewMIs;
912 // If we were able to compute an unfolded reg class, any failure here
913 // is just a programming error so just assert.
914 bool Unfolded =
915 TII->unfoldMemoryOperand(MF, MI, Reg, /*UnfoldLoad*/ true,
916 /*UnfoldStore*/ false, NewMIs);
917 (void)Unfolded;
918 assert(Unfolded &&
919 "Computed unfolded register class but failed to unfold");
920 // Now stitch the new instructions into place and erase the old one.
921 for (auto *NewMI : NewMIs)
922 MBB.insert(MI.getIterator(), NewMI);
923
924 // Update the call site info.
925 if (MI.isCandidateForCallSiteEntry())
926 MF.eraseCallSiteInfo(&MI);
927
928 MI.eraseFromParent();
929 LLVM_DEBUG({
930 dbgs() << "Unfolded load successfully into:\n";
931 for (auto *NewMI : NewMIs) {
932 NewMI->dump();
933 dbgs() << "\n";
934 }
935 });
936 continue;
937 }
938 }
939 llvm_unreachable("Escaped switch with default!");
940 }
941 }
942
943 /// Trace the predicate state through indirect branches, instrumenting them to
944 /// poison the state if a target is reached that does not match the expected
945 /// target.
946 ///
947 /// This is designed to mitigate Spectre variant 1 attacks where an indirect
948 /// branch is trained to predict a particular target and then mispredicts that
949 /// target in a way that can leak data. Despite using an indirect branch, this
950 /// is really a variant 1 style attack: it does not steer execution to an
951 /// arbitrary or attacker controlled address, and it does not require any
952 /// special code executing next to the victim. This attack can also be mitigated
953 /// through retpolines, but those require either replacing indirect branches
954 /// with conditional direct branches or lowering them through a device that
955 /// blocks speculation. This mitigation can replace these retpoline-style
956 /// mitigations for jump tables and other indirect branches within a function
957 /// when variant 2 isn't a risk while allowing limited speculation. Indirect
958 /// calls, however, cannot be mitigated through this technique without changing
959 /// the ABI in a fundamental way.
960 SmallVector<MachineInstr *, 16>
tracePredStateThroughIndirectBranches(MachineFunction & MF)961 X86SpeculativeLoadHardeningPass::tracePredStateThroughIndirectBranches(
962 MachineFunction &MF) {
963 // We use the SSAUpdater to insert PHI nodes for the target addresses of
964 // indirect branches. We don't actually need the full power of the SSA updater
965 // in this particular case as we always have immediately available values, but
966 // this avoids us having to re-implement the PHI construction logic.
967 MachineSSAUpdater TargetAddrSSA(MF);
968 TargetAddrSSA.Initialize(MRI->createVirtualRegister(&X86::GR64RegClass));
969
970 // Track which blocks were terminated with an indirect branch.
971 SmallPtrSet<MachineBasicBlock *, 4> IndirectTerminatedMBBs;
972
973 // We need to know what blocks end up reached via indirect branches. We
974 // expect this to be a subset of those whose address is taken and so track it
975 // directly via the CFG.
976 SmallPtrSet<MachineBasicBlock *, 4> IndirectTargetMBBs;
977
978 // Walk all the blocks which end in an indirect branch and make the
979 // target address available.
980 for (MachineBasicBlock &MBB : MF) {
981 // Find the last terminator.
982 auto MII = MBB.instr_rbegin();
983 while (MII != MBB.instr_rend() && MII->isDebugInstr())
984 ++MII;
985 if (MII == MBB.instr_rend())
986 continue;
987 MachineInstr &TI = *MII;
988 if (!TI.isTerminator() || !TI.isBranch())
989 // No terminator or non-branch terminator.
990 continue;
991
992 unsigned TargetReg;
993
994 switch (TI.getOpcode()) {
995 default:
996 // Direct branch or conditional branch (leading to fallthrough).
997 continue;
998
999 case X86::FARJMP16m:
1000 case X86::FARJMP32m:
1001 case X86::FARJMP64m:
1002 // We cannot mitigate far jumps or calls, but we also don't expect them
1003 // to be vulnerable to Spectre v1.2 or v2 (self trained) style attacks.
1004 continue;
1005
1006 case X86::JMP16m:
1007 case X86::JMP16m_NT:
1008 case X86::JMP32m:
1009 case X86::JMP32m_NT:
1010 case X86::JMP64m:
1011 case X86::JMP64m_NT:
1012 // Mostly as documentation.
1013 report_fatal_error("Memory operand jumps should have been unfolded!");
1014
1015 case X86::JMP16r:
1016 report_fatal_error(
1017 "Support for 16-bit indirect branches is not implemented.");
1018 case X86::JMP32r:
1019 report_fatal_error(
1020 "Support for 32-bit indirect branches is not implemented.");
1021
1022 case X86::JMP64r:
1023 TargetReg = TI.getOperand(0).getReg();
1024 }
1025
1026 // We have definitely found an indirect branch. Verify that there are no
1027 // preceding conditional branches as we don't yet support that.
1028 if (llvm::any_of(MBB.terminators(), [&](MachineInstr &OtherTI) {
1029 return !OtherTI.isDebugInstr() && &OtherTI != &TI;
1030 })) {
1031 LLVM_DEBUG({
1032 dbgs() << "ERROR: Found other terminators in a block with an indirect "
1033 "branch! This is not yet supported! Terminator sequence:\n";
1034 for (MachineInstr &MI : MBB.terminators()) {
1035 MI.dump();
1036 dbgs() << '\n';
1037 }
1038 });
1039 report_fatal_error("Unimplemented terminator sequence!");
1040 }
1041
1042 // Make the target register an available value for this block.
1043 TargetAddrSSA.AddAvailableValue(&MBB, TargetReg);
1044 IndirectTerminatedMBBs.insert(&MBB);
1045
1046 // Add all the successors to our target candidates.
1047 for (MachineBasicBlock *Succ : MBB.successors())
1048 IndirectTargetMBBs.insert(Succ);
1049 }
1050
1051 // Keep track of the cmov instructions we insert so we can return them.
1052 SmallVector<MachineInstr *, 16> CMovs;
1053
1054 // If we didn't find any indirect branches with targets, nothing to do here.
1055 if (IndirectTargetMBBs.empty())
1056 return CMovs;
1057
1058 // We found indirect branches and targets that need to be instrumented to
1059 // harden loads within them. Walk the blocks of the function (to get a stable
1060 // ordering) and instrument each target of an indirect branch.
1061 for (MachineBasicBlock &MBB : MF) {
1062 // Skip the blocks that aren't candidate targets.
1063 if (!IndirectTargetMBBs.count(&MBB))
1064 continue;
1065
1066 // We don't expect EH pads to ever be reached via an indirect branch. If
1067 // this is desired for some reason, we could simply skip them here rather
1068 // than asserting.
1069 assert(!MBB.isEHPad() &&
1070 "Unexpected EH pad as target of an indirect branch!");
1071
1072 // We should never end up threading EFLAGS into a block to harden
1073 // conditional jumps as there would be an additional successor via the
1074 // indirect branch. As a consequence, all such edges would be split before
1075 // reaching here, and the inserted block will handle the EFLAGS-based
1076 // hardening.
1077 assert(!MBB.isLiveIn(X86::EFLAGS) &&
1078 "Cannot check within a block that already has live-in EFLAGS!");
1079
1080 // We can't handle having non-indirect edges into this block unless this is
1081 // the only successor and we can synthesize the necessary target address.
1082 for (MachineBasicBlock *Pred : MBB.predecessors()) {
1083 // If we've already handled this by extracting the target directly,
1084 // nothing to do.
1085 if (IndirectTerminatedMBBs.count(Pred))
1086 continue;
1087
1088 // Otherwise, we have to be the only successor. We generally expect this
1089 // to be true as conditional branches should have had a critical edge
1090 // split already. We don't however need to worry about EH pad successors
1091 // as they'll happily ignore the target and their hardening strategy is
1092 // resilient to all ways in which they could be reached speculatively.
1093 if (!llvm::all_of(Pred->successors(), [&](MachineBasicBlock *Succ) {
1094 return Succ->isEHPad() || Succ == &MBB;
1095 })) {
1096 LLVM_DEBUG({
1097 dbgs() << "ERROR: Found conditional entry to target of indirect "
1098 "branch!\n";
1099 Pred->dump();
1100 MBB.dump();
1101 });
1102 report_fatal_error("Cannot harden a conditional entry to a target of "
1103 "an indirect branch!");
1104 }
1105
1106 // Now we need to compute the address of this block and install it as a
1107 // synthetic target in the predecessor. We do this at the bottom of the
1108 // predecessor.
1109 auto InsertPt = Pred->getFirstTerminator();
1110 Register TargetReg = MRI->createVirtualRegister(&X86::GR64RegClass);
1111 if (MF.getTarget().getCodeModel() == CodeModel::Small &&
1112 !Subtarget->isPositionIndependent()) {
1113 // Directly materialize it into an immediate.
1114 auto AddrI = BuildMI(*Pred, InsertPt, DebugLoc(),
1115 TII->get(X86::MOV64ri32), TargetReg)
1116 .addMBB(&MBB);
1117 ++NumInstsInserted;
1118 (void)AddrI;
1119 LLVM_DEBUG(dbgs() << " Inserting mov: "; AddrI->dump();
1120 dbgs() << "\n");
1121 } else {
1122 auto AddrI = BuildMI(*Pred, InsertPt, DebugLoc(), TII->get(X86::LEA64r),
1123 TargetReg)
1124 .addReg(/*Base*/ X86::RIP)
1125 .addImm(/*Scale*/ 1)
1126 .addReg(/*Index*/ 0)
1127 .addMBB(&MBB)
1128 .addReg(/*Segment*/ 0);
1129 ++NumInstsInserted;
1130 (void)AddrI;
1131 LLVM_DEBUG(dbgs() << " Inserting lea: "; AddrI->dump();
1132 dbgs() << "\n");
1133 }
1134 // And make this available.
1135 TargetAddrSSA.AddAvailableValue(Pred, TargetReg);
1136 }
1137
1138 // Materialize the needed SSA value of the target. Note that we need the
1139 // middle of the block as this block might at the bottom have an indirect
1140 // branch back to itself. We can do this here because at this point, every
1141 // predecessor of this block has an available value. This is basically just
1142 // automating the construction of a PHI node for this target.
1143 Register TargetReg = TargetAddrSSA.GetValueInMiddleOfBlock(&MBB);
1144
1145 // Insert a comparison of the incoming target register with this block's
1146 // address. This also requires us to mark the block as having its address
1147 // taken explicitly.
1148 MBB.setMachineBlockAddressTaken();
1149 auto InsertPt = MBB.SkipPHIsLabelsAndDebug(MBB.begin());
1150 if (MF.getTarget().getCodeModel() == CodeModel::Small &&
1151 !Subtarget->isPositionIndependent()) {
1152 // Check directly against a relocated immediate when we can.
1153 auto CheckI = BuildMI(MBB, InsertPt, DebugLoc(), TII->get(X86::CMP64ri32))
1154 .addReg(TargetReg, RegState::Kill)
1155 .addMBB(&MBB);
1156 ++NumInstsInserted;
1157 (void)CheckI;
1158 LLVM_DEBUG(dbgs() << " Inserting cmp: "; CheckI->dump(); dbgs() << "\n");
1159 } else {
1160 // Otherwise compute the address into a register first.
1161 Register AddrReg = MRI->createVirtualRegister(&X86::GR64RegClass);
1162 auto AddrI =
1163 BuildMI(MBB, InsertPt, DebugLoc(), TII->get(X86::LEA64r), AddrReg)
1164 .addReg(/*Base*/ X86::RIP)
1165 .addImm(/*Scale*/ 1)
1166 .addReg(/*Index*/ 0)
1167 .addMBB(&MBB)
1168 .addReg(/*Segment*/ 0);
1169 ++NumInstsInserted;
1170 (void)AddrI;
1171 LLVM_DEBUG(dbgs() << " Inserting lea: "; AddrI->dump(); dbgs() << "\n");
1172 auto CheckI = BuildMI(MBB, InsertPt, DebugLoc(), TII->get(X86::CMP64rr))
1173 .addReg(TargetReg, RegState::Kill)
1174 .addReg(AddrReg, RegState::Kill);
1175 ++NumInstsInserted;
1176 (void)CheckI;
1177 LLVM_DEBUG(dbgs() << " Inserting cmp: "; CheckI->dump(); dbgs() << "\n");
1178 }
1179
1180 // Now cmov over the predicate if the comparison wasn't equal.
1181 int PredStateSizeInBytes = TRI->getRegSizeInBits(*PS->RC) / 8;
1182 auto CMovOp = X86::getCMovOpcode(PredStateSizeInBytes);
1183 Register UpdatedStateReg = MRI->createVirtualRegister(PS->RC);
1184 auto CMovI =
1185 BuildMI(MBB, InsertPt, DebugLoc(), TII->get(CMovOp), UpdatedStateReg)
1186 .addReg(PS->InitialReg)
1187 .addReg(PS->PoisonReg)
1188 .addImm(X86::COND_NE);
1189 CMovI->findRegisterUseOperand(X86::EFLAGS)->setIsKill(true);
1190 ++NumInstsInserted;
1191 LLVM_DEBUG(dbgs() << " Inserting cmov: "; CMovI->dump(); dbgs() << "\n");
1192 CMovs.push_back(&*CMovI);
1193
1194 // And put the new value into the available values for SSA form of our
1195 // predicate state.
1196 PS->SSA.AddAvailableValue(&MBB, UpdatedStateReg);
1197 }
1198
1199 // Return all the newly inserted cmov instructions of the predicate state.
1200 return CMovs;
1201 }
1202
1203 // Returns true if the MI has EFLAGS as a register def operand and it's live,
1204 // otherwise it returns false
isEFLAGSDefLive(const MachineInstr & MI)1205 static bool isEFLAGSDefLive(const MachineInstr &MI) {
1206 if (const MachineOperand *DefOp = MI.findRegisterDefOperand(X86::EFLAGS)) {
1207 return !DefOp->isDead();
1208 }
1209 return false;
1210 }
1211
isEFLAGSLive(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,const TargetRegisterInfo & TRI)1212 static bool isEFLAGSLive(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
1213 const TargetRegisterInfo &TRI) {
1214 // Check if EFLAGS are alive by seeing if there is a def of them or they
1215 // live-in, and then seeing if that def is in turn used.
1216 for (MachineInstr &MI : llvm::reverse(llvm::make_range(MBB.begin(), I))) {
1217 if (MachineOperand *DefOp = MI.findRegisterDefOperand(X86::EFLAGS)) {
1218 // If the def is dead, then EFLAGS is not live.
1219 if (DefOp->isDead())
1220 return false;
1221
1222 // Otherwise we've def'ed it, and it is live.
1223 return true;
1224 }
1225 // While at this instruction, also check if we use and kill EFLAGS
1226 // which means it isn't live.
1227 if (MI.killsRegister(X86::EFLAGS, &TRI))
1228 return false;
1229 }
1230
1231 // If we didn't find anything conclusive (neither definitely alive or
1232 // definitely dead) return whether it lives into the block.
1233 return MBB.isLiveIn(X86::EFLAGS);
1234 }
1235
1236 /// Trace the predicate state through each of the blocks in the function,
1237 /// hardening everything necessary along the way.
1238 ///
1239 /// We call this routine once the initial predicate state has been established
1240 /// for each basic block in the function in the SSA updater. This routine traces
1241 /// it through the instructions within each basic block, and for non-returning
1242 /// blocks informs the SSA updater about the final state that lives out of the
1243 /// block. Along the way, it hardens any vulnerable instruction using the
1244 /// currently valid predicate state. We have to do these two things together
1245 /// because the SSA updater only works across blocks. Within a block, we track
1246 /// the current predicate state directly and update it as it changes.
1247 ///
1248 /// This operates in two passes over each block. First, we analyze the loads in
1249 /// the block to determine which strategy will be used to harden them: hardening
1250 /// the address or hardening the loaded value when loaded into a register
1251 /// amenable to hardening. We have to process these first because the two
1252 /// strategies may interact -- later hardening may change what strategy we wish
1253 /// to use. We also will analyze data dependencies between loads and avoid
1254 /// hardening those loads that are data dependent on a load with a hardened
1255 /// address. We also skip hardening loads already behind an LFENCE as that is
1256 /// sufficient to harden them against misspeculation.
1257 ///
1258 /// Second, we actively trace the predicate state through the block, applying
1259 /// the hardening steps we determined necessary in the first pass as we go.
1260 ///
1261 /// These two passes are applied to each basic block. We operate one block at a
1262 /// time to simplify reasoning about reachability and sequencing.
tracePredStateThroughBlocksAndHarden(MachineFunction & MF)1263 void X86SpeculativeLoadHardeningPass::tracePredStateThroughBlocksAndHarden(
1264 MachineFunction &MF) {
1265 SmallPtrSet<MachineInstr *, 16> HardenPostLoad;
1266 SmallPtrSet<MachineInstr *, 16> HardenLoadAddr;
1267
1268 SmallSet<unsigned, 16> HardenedAddrRegs;
1269
1270 SmallDenseMap<unsigned, unsigned, 32> AddrRegToHardenedReg;
1271
1272 // Track the set of load-dependent registers through the basic block. Because
1273 // the values of these registers have an existing data dependency on a loaded
1274 // value which we would have checked, we can omit any checks on them.
1275 SparseBitVector<> LoadDepRegs;
1276
1277 for (MachineBasicBlock &MBB : MF) {
1278 // The first pass over the block: collect all the loads which can have their
1279 // loaded value hardened and all the loads that instead need their address
1280 // hardened. During this walk we propagate load dependence for address
1281 // hardened loads and also look for LFENCE to stop hardening wherever
1282 // possible. When deciding whether or not to harden the loaded value or not,
1283 // we check to see if any registers used in the address will have been
1284 // hardened at this point and if so, harden any remaining address registers
1285 // as that often successfully re-uses hardened addresses and minimizes
1286 // instructions.
1287 //
1288 // FIXME: We should consider an aggressive mode where we continue to keep as
1289 // many loads value hardened even when some address register hardening would
1290 // be free (due to reuse).
1291 //
1292 // Note that we only need this pass if we are actually hardening loads.
1293 if (HardenLoads)
1294 for (MachineInstr &MI : MBB) {
1295 // We naively assume that all def'ed registers of an instruction have
1296 // a data dependency on all of their operands.
1297 // FIXME: Do a more careful analysis of x86 to build a conservative
1298 // model here.
1299 if (llvm::any_of(MI.uses(), [&](MachineOperand &Op) {
1300 return Op.isReg() && LoadDepRegs.test(Op.getReg());
1301 }))
1302 for (MachineOperand &Def : MI.defs())
1303 if (Def.isReg())
1304 LoadDepRegs.set(Def.getReg());
1305
1306 // Both Intel and AMD are guiding that they will change the semantics of
1307 // LFENCE to be a speculation barrier, so if we see an LFENCE, there is
1308 // no more need to guard things in this block.
1309 if (MI.getOpcode() == X86::LFENCE)
1310 break;
1311
1312 // If this instruction cannot load, nothing to do.
1313 if (!MI.mayLoad())
1314 continue;
1315
1316 // Some instructions which "load" are trivially safe or unimportant.
1317 if (MI.getOpcode() == X86::MFENCE)
1318 continue;
1319
1320 // Extract the memory operand information about this instruction.
1321 // FIXME: This doesn't handle loading pseudo instructions which we often
1322 // could handle with similarly generic logic. We probably need to add an
1323 // MI-layer routine similar to the MC-layer one we use here which maps
1324 // pseudos much like this maps real instructions.
1325 const MCInstrDesc &Desc = MI.getDesc();
1326 int MemRefBeginIdx = X86II::getMemoryOperandNo(Desc.TSFlags);
1327 if (MemRefBeginIdx < 0) {
1328 LLVM_DEBUG(dbgs()
1329 << "WARNING: unable to harden loading instruction: ";
1330 MI.dump());
1331 continue;
1332 }
1333
1334 MemRefBeginIdx += X86II::getOperandBias(Desc);
1335
1336 MachineOperand &BaseMO =
1337 MI.getOperand(MemRefBeginIdx + X86::AddrBaseReg);
1338 MachineOperand &IndexMO =
1339 MI.getOperand(MemRefBeginIdx + X86::AddrIndexReg);
1340
1341 // If we have at least one (non-frame-index, non-RIP) register operand,
1342 // and neither operand is load-dependent, we need to check the load.
1343 unsigned BaseReg = 0, IndexReg = 0;
1344 if (!BaseMO.isFI() && BaseMO.getReg() != X86::RIP &&
1345 BaseMO.getReg() != X86::NoRegister)
1346 BaseReg = BaseMO.getReg();
1347 if (IndexMO.getReg() != X86::NoRegister)
1348 IndexReg = IndexMO.getReg();
1349
1350 if (!BaseReg && !IndexReg)
1351 // No register operands!
1352 continue;
1353
1354 // If any register operand is dependent, this load is dependent and we
1355 // needn't check it.
1356 // FIXME: Is this true in the case where we are hardening loads after
1357 // they complete? Unclear, need to investigate.
1358 if ((BaseReg && LoadDepRegs.test(BaseReg)) ||
1359 (IndexReg && LoadDepRegs.test(IndexReg)))
1360 continue;
1361
1362 // If post-load hardening is enabled, this load is compatible with
1363 // post-load hardening, and we aren't already going to harden one of the
1364 // address registers, queue it up to be hardened post-load. Notably,
1365 // even once hardened this won't introduce a useful dependency that
1366 // could prune out subsequent loads.
1367 if (EnablePostLoadHardening && X86InstrInfo::isDataInvariantLoad(MI) &&
1368 !isEFLAGSDefLive(MI) && MI.getDesc().getNumDefs() == 1 &&
1369 MI.getOperand(0).isReg() &&
1370 canHardenRegister(MI.getOperand(0).getReg()) &&
1371 !HardenedAddrRegs.count(BaseReg) &&
1372 !HardenedAddrRegs.count(IndexReg)) {
1373 HardenPostLoad.insert(&MI);
1374 HardenedAddrRegs.insert(MI.getOperand(0).getReg());
1375 continue;
1376 }
1377
1378 // Record this instruction for address hardening and record its register
1379 // operands as being address-hardened.
1380 HardenLoadAddr.insert(&MI);
1381 if (BaseReg)
1382 HardenedAddrRegs.insert(BaseReg);
1383 if (IndexReg)
1384 HardenedAddrRegs.insert(IndexReg);
1385
1386 for (MachineOperand &Def : MI.defs())
1387 if (Def.isReg())
1388 LoadDepRegs.set(Def.getReg());
1389 }
1390
1391 // Now re-walk the instructions in the basic block, and apply whichever
1392 // hardening strategy we have elected. Note that we do this in a second
1393 // pass specifically so that we have the complete set of instructions for
1394 // which we will do post-load hardening and can defer it in certain
1395 // circumstances.
1396 for (MachineInstr &MI : MBB) {
1397 if (HardenLoads) {
1398 // We cannot both require hardening the def of a load and its address.
1399 assert(!(HardenLoadAddr.count(&MI) && HardenPostLoad.count(&MI)) &&
1400 "Requested to harden both the address and def of a load!");
1401
1402 // Check if this is a load whose address needs to be hardened.
1403 if (HardenLoadAddr.erase(&MI)) {
1404 const MCInstrDesc &Desc = MI.getDesc();
1405 int MemRefBeginIdx = X86II::getMemoryOperandNo(Desc.TSFlags);
1406 assert(MemRefBeginIdx >= 0 && "Cannot have an invalid index here!");
1407
1408 MemRefBeginIdx += X86II::getOperandBias(Desc);
1409
1410 MachineOperand &BaseMO =
1411 MI.getOperand(MemRefBeginIdx + X86::AddrBaseReg);
1412 MachineOperand &IndexMO =
1413 MI.getOperand(MemRefBeginIdx + X86::AddrIndexReg);
1414 hardenLoadAddr(MI, BaseMO, IndexMO, AddrRegToHardenedReg);
1415 continue;
1416 }
1417
1418 // Test if this instruction is one of our post load instructions (and
1419 // remove it from the set if so).
1420 if (HardenPostLoad.erase(&MI)) {
1421 assert(!MI.isCall() && "Must not try to post-load harden a call!");
1422
1423 // If this is a data-invariant load and there is no EFLAGS
1424 // interference, we want to try and sink any hardening as far as
1425 // possible.
1426 if (X86InstrInfo::isDataInvariantLoad(MI) && !isEFLAGSDefLive(MI)) {
1427 // Sink the instruction we'll need to harden as far as we can down
1428 // the graph.
1429 MachineInstr *SunkMI = sinkPostLoadHardenedInst(MI, HardenPostLoad);
1430
1431 // If we managed to sink this instruction, update everything so we
1432 // harden that instruction when we reach it in the instruction
1433 // sequence.
1434 if (SunkMI != &MI) {
1435 // If in sinking there was no instruction needing to be hardened,
1436 // we're done.
1437 if (!SunkMI)
1438 continue;
1439
1440 // Otherwise, add this to the set of defs we harden.
1441 HardenPostLoad.insert(SunkMI);
1442 continue;
1443 }
1444 }
1445
1446 unsigned HardenedReg = hardenPostLoad(MI);
1447
1448 // Mark the resulting hardened register as such so we don't re-harden.
1449 AddrRegToHardenedReg[HardenedReg] = HardenedReg;
1450
1451 continue;
1452 }
1453
1454 // Check for an indirect call or branch that may need its input hardened
1455 // even if we couldn't find the specific load used, or were able to
1456 // avoid hardening it for some reason. Note that here we cannot break
1457 // out afterward as we may still need to handle any call aspect of this
1458 // instruction.
1459 if ((MI.isCall() || MI.isBranch()) && HardenIndirectCallsAndJumps)
1460 hardenIndirectCallOrJumpInstr(MI, AddrRegToHardenedReg);
1461 }
1462
1463 // After we finish hardening loads we handle interprocedural hardening if
1464 // enabled and relevant for this instruction.
1465 if (!HardenInterprocedurally)
1466 continue;
1467 if (!MI.isCall() && !MI.isReturn())
1468 continue;
1469
1470 // If this is a direct return (IE, not a tail call) just directly harden
1471 // it.
1472 if (MI.isReturn() && !MI.isCall()) {
1473 hardenReturnInstr(MI);
1474 continue;
1475 }
1476
1477 // Otherwise we have a call. We need to handle transferring the predicate
1478 // state into a call and recovering it after the call returns (unless this
1479 // is a tail call).
1480 assert(MI.isCall() && "Should only reach here for calls!");
1481 tracePredStateThroughCall(MI);
1482 }
1483
1484 HardenPostLoad.clear();
1485 HardenLoadAddr.clear();
1486 HardenedAddrRegs.clear();
1487 AddrRegToHardenedReg.clear();
1488
1489 // Currently, we only track data-dependent loads within a basic block.
1490 // FIXME: We should see if this is necessary or if we could be more
1491 // aggressive here without opening up attack avenues.
1492 LoadDepRegs.clear();
1493 }
1494 }
1495
1496 /// Save EFLAGS into the returned GPR. This can in turn be restored with
1497 /// `restoreEFLAGS`.
1498 ///
1499 /// Note that LLVM can only lower very simple patterns of saved and restored
1500 /// EFLAGS registers. The restore should always be within the same basic block
1501 /// as the save so that no PHI nodes are inserted.
saveEFLAGS(MachineBasicBlock & MBB,MachineBasicBlock::iterator InsertPt,const DebugLoc & Loc)1502 unsigned X86SpeculativeLoadHardeningPass::saveEFLAGS(
1503 MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt,
1504 const DebugLoc &Loc) {
1505 // FIXME: Hard coding this to a 32-bit register class seems weird, but matches
1506 // what instruction selection does.
1507 Register Reg = MRI->createVirtualRegister(&X86::GR32RegClass);
1508 // We directly copy the FLAGS register and rely on later lowering to clean
1509 // this up into the appropriate setCC instructions.
1510 BuildMI(MBB, InsertPt, Loc, TII->get(X86::COPY), Reg).addReg(X86::EFLAGS);
1511 ++NumInstsInserted;
1512 return Reg;
1513 }
1514
1515 /// Restore EFLAGS from the provided GPR. This should be produced by
1516 /// `saveEFLAGS`.
1517 ///
1518 /// This must be done within the same basic block as the save in order to
1519 /// reliably lower.
restoreEFLAGS(MachineBasicBlock & MBB,MachineBasicBlock::iterator InsertPt,const DebugLoc & Loc,Register Reg)1520 void X86SpeculativeLoadHardeningPass::restoreEFLAGS(
1521 MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt,
1522 const DebugLoc &Loc, Register Reg) {
1523 BuildMI(MBB, InsertPt, Loc, TII->get(X86::COPY), X86::EFLAGS).addReg(Reg);
1524 ++NumInstsInserted;
1525 }
1526
1527 /// Takes the current predicate state (in a register) and merges it into the
1528 /// stack pointer. The state is essentially a single bit, but we merge this in
1529 /// a way that won't form non-canonical pointers and also will be preserved
1530 /// across normal stack adjustments.
mergePredStateIntoSP(MachineBasicBlock & MBB,MachineBasicBlock::iterator InsertPt,const DebugLoc & Loc,unsigned PredStateReg)1531 void X86SpeculativeLoadHardeningPass::mergePredStateIntoSP(
1532 MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt,
1533 const DebugLoc &Loc, unsigned PredStateReg) {
1534 Register TmpReg = MRI->createVirtualRegister(PS->RC);
1535 // FIXME: This hard codes a shift distance based on the number of bits needed
1536 // to stay canonical on 64-bit. We should compute this somehow and support
1537 // 32-bit as part of that.
1538 auto ShiftI = BuildMI(MBB, InsertPt, Loc, TII->get(X86::SHL64ri), TmpReg)
1539 .addReg(PredStateReg, RegState::Kill)
1540 .addImm(47);
1541 ShiftI->addRegisterDead(X86::EFLAGS, TRI);
1542 ++NumInstsInserted;
1543 auto OrI = BuildMI(MBB, InsertPt, Loc, TII->get(X86::OR64rr), X86::RSP)
1544 .addReg(X86::RSP)
1545 .addReg(TmpReg, RegState::Kill);
1546 OrI->addRegisterDead(X86::EFLAGS, TRI);
1547 ++NumInstsInserted;
1548 }
1549
1550 /// Extracts the predicate state stored in the high bits of the stack pointer.
extractPredStateFromSP(MachineBasicBlock & MBB,MachineBasicBlock::iterator InsertPt,const DebugLoc & Loc)1551 unsigned X86SpeculativeLoadHardeningPass::extractPredStateFromSP(
1552 MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt,
1553 const DebugLoc &Loc) {
1554 Register PredStateReg = MRI->createVirtualRegister(PS->RC);
1555 Register TmpReg = MRI->createVirtualRegister(PS->RC);
1556
1557 // We know that the stack pointer will have any preserved predicate state in
1558 // its high bit. We just want to smear this across the other bits. Turns out,
1559 // this is exactly what an arithmetic right shift does.
1560 BuildMI(MBB, InsertPt, Loc, TII->get(TargetOpcode::COPY), TmpReg)
1561 .addReg(X86::RSP);
1562 auto ShiftI =
1563 BuildMI(MBB, InsertPt, Loc, TII->get(X86::SAR64ri), PredStateReg)
1564 .addReg(TmpReg, RegState::Kill)
1565 .addImm(TRI->getRegSizeInBits(*PS->RC) - 1);
1566 ShiftI->addRegisterDead(X86::EFLAGS, TRI);
1567 ++NumInstsInserted;
1568
1569 return PredStateReg;
1570 }
1571
hardenLoadAddr(MachineInstr & MI,MachineOperand & BaseMO,MachineOperand & IndexMO,SmallDenseMap<unsigned,unsigned,32> & AddrRegToHardenedReg)1572 void X86SpeculativeLoadHardeningPass::hardenLoadAddr(
1573 MachineInstr &MI, MachineOperand &BaseMO, MachineOperand &IndexMO,
1574 SmallDenseMap<unsigned, unsigned, 32> &AddrRegToHardenedReg) {
1575 MachineBasicBlock &MBB = *MI.getParent();
1576 const DebugLoc &Loc = MI.getDebugLoc();
1577
1578 // Check if EFLAGS are alive by seeing if there is a def of them or they
1579 // live-in, and then seeing if that def is in turn used.
1580 bool EFLAGSLive = isEFLAGSLive(MBB, MI.getIterator(), *TRI);
1581
1582 SmallVector<MachineOperand *, 2> HardenOpRegs;
1583
1584 if (BaseMO.isFI()) {
1585 // A frame index is never a dynamically controllable load, so only
1586 // harden it if we're covering fixed address loads as well.
1587 LLVM_DEBUG(
1588 dbgs() << " Skipping hardening base of explicit stack frame load: ";
1589 MI.dump(); dbgs() << "\n");
1590 } else if (BaseMO.getReg() == X86::RSP) {
1591 // Some idempotent atomic operations are lowered directly to a locked
1592 // OR with 0 to the top of stack(or slightly offset from top) which uses an
1593 // explicit RSP register as the base.
1594 assert(IndexMO.getReg() == X86::NoRegister &&
1595 "Explicit RSP access with dynamic index!");
1596 LLVM_DEBUG(
1597 dbgs() << " Cannot harden base of explicit RSP offset in a load!");
1598 } else if (BaseMO.getReg() == X86::RIP ||
1599 BaseMO.getReg() == X86::NoRegister) {
1600 // For both RIP-relative addressed loads or absolute loads, we cannot
1601 // meaningfully harden them because the address being loaded has no
1602 // dynamic component.
1603 //
1604 // FIXME: When using a segment base (like TLS does) we end up with the
1605 // dynamic address being the base plus -1 because we can't mutate the
1606 // segment register here. This allows the signed 32-bit offset to point at
1607 // valid segment-relative addresses and load them successfully.
1608 LLVM_DEBUG(
1609 dbgs() << " Cannot harden base of "
1610 << (BaseMO.getReg() == X86::RIP ? "RIP-relative" : "no-base")
1611 << " address in a load!");
1612 } else {
1613 assert(BaseMO.isReg() &&
1614 "Only allowed to have a frame index or register base.");
1615 HardenOpRegs.push_back(&BaseMO);
1616 }
1617
1618 if (IndexMO.getReg() != X86::NoRegister &&
1619 (HardenOpRegs.empty() ||
1620 HardenOpRegs.front()->getReg() != IndexMO.getReg()))
1621 HardenOpRegs.push_back(&IndexMO);
1622
1623 assert((HardenOpRegs.size() == 1 || HardenOpRegs.size() == 2) &&
1624 "Should have exactly one or two registers to harden!");
1625 assert((HardenOpRegs.size() == 1 ||
1626 HardenOpRegs[0]->getReg() != HardenOpRegs[1]->getReg()) &&
1627 "Should not have two of the same registers!");
1628
1629 // Remove any registers that have alreaded been checked.
1630 llvm::erase_if(HardenOpRegs, [&](MachineOperand *Op) {
1631 // See if this operand's register has already been checked.
1632 auto It = AddrRegToHardenedReg.find(Op->getReg());
1633 if (It == AddrRegToHardenedReg.end())
1634 // Not checked, so retain this one.
1635 return false;
1636
1637 // Otherwise, we can directly update this operand and remove it.
1638 Op->setReg(It->second);
1639 return true;
1640 });
1641 // If there are none left, we're done.
1642 if (HardenOpRegs.empty())
1643 return;
1644
1645 // Compute the current predicate state.
1646 Register StateReg = PS->SSA.GetValueAtEndOfBlock(&MBB);
1647
1648 auto InsertPt = MI.getIterator();
1649
1650 // If EFLAGS are live and we don't have access to instructions that avoid
1651 // clobbering EFLAGS we need to save and restore them. This in turn makes
1652 // the EFLAGS no longer live.
1653 unsigned FlagsReg = 0;
1654 if (EFLAGSLive && !Subtarget->hasBMI2()) {
1655 EFLAGSLive = false;
1656 FlagsReg = saveEFLAGS(MBB, InsertPt, Loc);
1657 }
1658
1659 for (MachineOperand *Op : HardenOpRegs) {
1660 Register OpReg = Op->getReg();
1661 auto *OpRC = MRI->getRegClass(OpReg);
1662 Register TmpReg = MRI->createVirtualRegister(OpRC);
1663
1664 // If this is a vector register, we'll need somewhat custom logic to handle
1665 // hardening it.
1666 if (!Subtarget->hasVLX() && (OpRC->hasSuperClassEq(&X86::VR128RegClass) ||
1667 OpRC->hasSuperClassEq(&X86::VR256RegClass))) {
1668 assert(Subtarget->hasAVX2() && "AVX2-specific register classes!");
1669 bool Is128Bit = OpRC->hasSuperClassEq(&X86::VR128RegClass);
1670
1671 // Move our state into a vector register.
1672 // FIXME: We could skip this at the cost of longer encodings with AVX-512
1673 // but that doesn't seem likely worth it.
1674 Register VStateReg = MRI->createVirtualRegister(&X86::VR128RegClass);
1675 auto MovI =
1676 BuildMI(MBB, InsertPt, Loc, TII->get(X86::VMOV64toPQIrr), VStateReg)
1677 .addReg(StateReg);
1678 (void)MovI;
1679 ++NumInstsInserted;
1680 LLVM_DEBUG(dbgs() << " Inserting mov: "; MovI->dump(); dbgs() << "\n");
1681
1682 // Broadcast it across the vector register.
1683 Register VBStateReg = MRI->createVirtualRegister(OpRC);
1684 auto BroadcastI = BuildMI(MBB, InsertPt, Loc,
1685 TII->get(Is128Bit ? X86::VPBROADCASTQrr
1686 : X86::VPBROADCASTQYrr),
1687 VBStateReg)
1688 .addReg(VStateReg);
1689 (void)BroadcastI;
1690 ++NumInstsInserted;
1691 LLVM_DEBUG(dbgs() << " Inserting broadcast: "; BroadcastI->dump();
1692 dbgs() << "\n");
1693
1694 // Merge our potential poison state into the value with a vector or.
1695 auto OrI =
1696 BuildMI(MBB, InsertPt, Loc,
1697 TII->get(Is128Bit ? X86::VPORrr : X86::VPORYrr), TmpReg)
1698 .addReg(VBStateReg)
1699 .addReg(OpReg);
1700 (void)OrI;
1701 ++NumInstsInserted;
1702 LLVM_DEBUG(dbgs() << " Inserting or: "; OrI->dump(); dbgs() << "\n");
1703 } else if (OpRC->hasSuperClassEq(&X86::VR128XRegClass) ||
1704 OpRC->hasSuperClassEq(&X86::VR256XRegClass) ||
1705 OpRC->hasSuperClassEq(&X86::VR512RegClass)) {
1706 assert(Subtarget->hasAVX512() && "AVX512-specific register classes!");
1707 bool Is128Bit = OpRC->hasSuperClassEq(&X86::VR128XRegClass);
1708 bool Is256Bit = OpRC->hasSuperClassEq(&X86::VR256XRegClass);
1709 if (Is128Bit || Is256Bit)
1710 assert(Subtarget->hasVLX() && "AVX512VL-specific register classes!");
1711
1712 // Broadcast our state into a vector register.
1713 Register VStateReg = MRI->createVirtualRegister(OpRC);
1714 unsigned BroadcastOp = Is128Bit ? X86::VPBROADCASTQrZ128rr
1715 : Is256Bit ? X86::VPBROADCASTQrZ256rr
1716 : X86::VPBROADCASTQrZrr;
1717 auto BroadcastI =
1718 BuildMI(MBB, InsertPt, Loc, TII->get(BroadcastOp), VStateReg)
1719 .addReg(StateReg);
1720 (void)BroadcastI;
1721 ++NumInstsInserted;
1722 LLVM_DEBUG(dbgs() << " Inserting broadcast: "; BroadcastI->dump();
1723 dbgs() << "\n");
1724
1725 // Merge our potential poison state into the value with a vector or.
1726 unsigned OrOp = Is128Bit ? X86::VPORQZ128rr
1727 : Is256Bit ? X86::VPORQZ256rr : X86::VPORQZrr;
1728 auto OrI = BuildMI(MBB, InsertPt, Loc, TII->get(OrOp), TmpReg)
1729 .addReg(VStateReg)
1730 .addReg(OpReg);
1731 (void)OrI;
1732 ++NumInstsInserted;
1733 LLVM_DEBUG(dbgs() << " Inserting or: "; OrI->dump(); dbgs() << "\n");
1734 } else {
1735 // FIXME: Need to support GR32 here for 32-bit code.
1736 assert(OpRC->hasSuperClassEq(&X86::GR64RegClass) &&
1737 "Not a supported register class for address hardening!");
1738
1739 if (!EFLAGSLive) {
1740 // Merge our potential poison state into the value with an or.
1741 auto OrI = BuildMI(MBB, InsertPt, Loc, TII->get(X86::OR64rr), TmpReg)
1742 .addReg(StateReg)
1743 .addReg(OpReg);
1744 OrI->addRegisterDead(X86::EFLAGS, TRI);
1745 ++NumInstsInserted;
1746 LLVM_DEBUG(dbgs() << " Inserting or: "; OrI->dump(); dbgs() << "\n");
1747 } else {
1748 // We need to avoid touching EFLAGS so shift out all but the least
1749 // significant bit using the instruction that doesn't update flags.
1750 auto ShiftI =
1751 BuildMI(MBB, InsertPt, Loc, TII->get(X86::SHRX64rr), TmpReg)
1752 .addReg(OpReg)
1753 .addReg(StateReg);
1754 (void)ShiftI;
1755 ++NumInstsInserted;
1756 LLVM_DEBUG(dbgs() << " Inserting shrx: "; ShiftI->dump();
1757 dbgs() << "\n");
1758 }
1759 }
1760
1761 // Record this register as checked and update the operand.
1762 assert(!AddrRegToHardenedReg.count(Op->getReg()) &&
1763 "Should not have checked this register yet!");
1764 AddrRegToHardenedReg[Op->getReg()] = TmpReg;
1765 Op->setReg(TmpReg);
1766 ++NumAddrRegsHardened;
1767 }
1768
1769 // And restore the flags if needed.
1770 if (FlagsReg)
1771 restoreEFLAGS(MBB, InsertPt, Loc, FlagsReg);
1772 }
1773
sinkPostLoadHardenedInst(MachineInstr & InitialMI,SmallPtrSetImpl<MachineInstr * > & HardenedInstrs)1774 MachineInstr *X86SpeculativeLoadHardeningPass::sinkPostLoadHardenedInst(
1775 MachineInstr &InitialMI, SmallPtrSetImpl<MachineInstr *> &HardenedInstrs) {
1776 assert(X86InstrInfo::isDataInvariantLoad(InitialMI) &&
1777 "Cannot get here with a non-invariant load!");
1778 assert(!isEFLAGSDefLive(InitialMI) &&
1779 "Cannot get here with a data invariant load "
1780 "that interferes with EFLAGS!");
1781
1782 // See if we can sink hardening the loaded value.
1783 auto SinkCheckToSingleUse =
1784 [&](MachineInstr &MI) -> std::optional<MachineInstr *> {
1785 Register DefReg = MI.getOperand(0).getReg();
1786
1787 // We need to find a single use which we can sink the check. We can
1788 // primarily do this because many uses may already end up checked on their
1789 // own.
1790 MachineInstr *SingleUseMI = nullptr;
1791 for (MachineInstr &UseMI : MRI->use_instructions(DefReg)) {
1792 // If we're already going to harden this use, it is data invariant, it
1793 // does not interfere with EFLAGS, and within our block.
1794 if (HardenedInstrs.count(&UseMI)) {
1795 if (!X86InstrInfo::isDataInvariantLoad(UseMI) || isEFLAGSDefLive(UseMI)) {
1796 // If we've already decided to harden a non-load, we must have sunk
1797 // some other post-load hardened instruction to it and it must itself
1798 // be data-invariant.
1799 assert(X86InstrInfo::isDataInvariant(UseMI) &&
1800 "Data variant instruction being hardened!");
1801 continue;
1802 }
1803
1804 // Otherwise, this is a load and the load component can't be data
1805 // invariant so check how this register is being used.
1806 const MCInstrDesc &Desc = UseMI.getDesc();
1807 int MemRefBeginIdx = X86II::getMemoryOperandNo(Desc.TSFlags);
1808 assert(MemRefBeginIdx >= 0 &&
1809 "Should always have mem references here!");
1810 MemRefBeginIdx += X86II::getOperandBias(Desc);
1811
1812 MachineOperand &BaseMO =
1813 UseMI.getOperand(MemRefBeginIdx + X86::AddrBaseReg);
1814 MachineOperand &IndexMO =
1815 UseMI.getOperand(MemRefBeginIdx + X86::AddrIndexReg);
1816 if ((BaseMO.isReg() && BaseMO.getReg() == DefReg) ||
1817 (IndexMO.isReg() && IndexMO.getReg() == DefReg))
1818 // The load uses the register as part of its address making it not
1819 // invariant.
1820 return {};
1821
1822 continue;
1823 }
1824
1825 if (SingleUseMI)
1826 // We already have a single use, this would make two. Bail.
1827 return {};
1828
1829 // If this single use isn't data invariant, isn't in this block, or has
1830 // interfering EFLAGS, we can't sink the hardening to it.
1831 if (!X86InstrInfo::isDataInvariant(UseMI) || UseMI.getParent() != MI.getParent() ||
1832 isEFLAGSDefLive(UseMI))
1833 return {};
1834
1835 // If this instruction defines multiple registers bail as we won't harden
1836 // all of them.
1837 if (UseMI.getDesc().getNumDefs() > 1)
1838 return {};
1839
1840 // If this register isn't a virtual register we can't walk uses of sanely,
1841 // just bail. Also check that its register class is one of the ones we
1842 // can harden.
1843 Register UseDefReg = UseMI.getOperand(0).getReg();
1844 if (!UseDefReg.isVirtual() || !canHardenRegister(UseDefReg))
1845 return {};
1846
1847 SingleUseMI = &UseMI;
1848 }
1849
1850 // If SingleUseMI is still null, there is no use that needs its own
1851 // checking. Otherwise, it is the single use that needs checking.
1852 return {SingleUseMI};
1853 };
1854
1855 MachineInstr *MI = &InitialMI;
1856 while (std::optional<MachineInstr *> SingleUse = SinkCheckToSingleUse(*MI)) {
1857 // Update which MI we're checking now.
1858 MI = *SingleUse;
1859 if (!MI)
1860 break;
1861 }
1862
1863 return MI;
1864 }
1865
canHardenRegister(Register Reg)1866 bool X86SpeculativeLoadHardeningPass::canHardenRegister(Register Reg) {
1867 auto *RC = MRI->getRegClass(Reg);
1868 int RegBytes = TRI->getRegSizeInBits(*RC) / 8;
1869 if (RegBytes > 8)
1870 // We don't support post-load hardening of vectors.
1871 return false;
1872
1873 unsigned RegIdx = Log2_32(RegBytes);
1874 assert(RegIdx < 4 && "Unsupported register size");
1875
1876 // If this register class is explicitly constrained to a class that doesn't
1877 // require REX prefix, we may not be able to satisfy that constraint when
1878 // emitting the hardening instructions, so bail out here.
1879 // FIXME: This seems like a pretty lame hack. The way this comes up is when we
1880 // end up both with a NOREX and REX-only register as operands to the hardening
1881 // instructions. It would be better to fix that code to handle this situation
1882 // rather than hack around it in this way.
1883 const TargetRegisterClass *NOREXRegClasses[] = {
1884 &X86::GR8_NOREXRegClass, &X86::GR16_NOREXRegClass,
1885 &X86::GR32_NOREXRegClass, &X86::GR64_NOREXRegClass};
1886 if (RC == NOREXRegClasses[RegIdx])
1887 return false;
1888
1889 const TargetRegisterClass *GPRRegClasses[] = {
1890 &X86::GR8RegClass, &X86::GR16RegClass, &X86::GR32RegClass,
1891 &X86::GR64RegClass};
1892 return RC->hasSuperClassEq(GPRRegClasses[RegIdx]);
1893 }
1894
1895 /// Harden a value in a register.
1896 ///
1897 /// This is the low-level logic to fully harden a value sitting in a register
1898 /// against leaking during speculative execution.
1899 ///
1900 /// Unlike hardening an address that is used by a load, this routine is required
1901 /// to hide *all* incoming bits in the register.
1902 ///
1903 /// `Reg` must be a virtual register. Currently, it is required to be a GPR no
1904 /// larger than the predicate state register. FIXME: We should support vector
1905 /// registers here by broadcasting the predicate state.
1906 ///
1907 /// The new, hardened virtual register is returned. It will have the same
1908 /// register class as `Reg`.
hardenValueInRegister(Register Reg,MachineBasicBlock & MBB,MachineBasicBlock::iterator InsertPt,const DebugLoc & Loc)1909 unsigned X86SpeculativeLoadHardeningPass::hardenValueInRegister(
1910 Register Reg, MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt,
1911 const DebugLoc &Loc) {
1912 assert(canHardenRegister(Reg) && "Cannot harden this register!");
1913 assert(Reg.isVirtual() && "Cannot harden a physical register!");
1914
1915 auto *RC = MRI->getRegClass(Reg);
1916 int Bytes = TRI->getRegSizeInBits(*RC) / 8;
1917 Register StateReg = PS->SSA.GetValueAtEndOfBlock(&MBB);
1918 assert((Bytes == 1 || Bytes == 2 || Bytes == 4 || Bytes == 8) &&
1919 "Unknown register size");
1920
1921 // FIXME: Need to teach this about 32-bit mode.
1922 if (Bytes != 8) {
1923 unsigned SubRegImms[] = {X86::sub_8bit, X86::sub_16bit, X86::sub_32bit};
1924 unsigned SubRegImm = SubRegImms[Log2_32(Bytes)];
1925 Register NarrowStateReg = MRI->createVirtualRegister(RC);
1926 BuildMI(MBB, InsertPt, Loc, TII->get(TargetOpcode::COPY), NarrowStateReg)
1927 .addReg(StateReg, 0, SubRegImm);
1928 StateReg = NarrowStateReg;
1929 }
1930
1931 unsigned FlagsReg = 0;
1932 if (isEFLAGSLive(MBB, InsertPt, *TRI))
1933 FlagsReg = saveEFLAGS(MBB, InsertPt, Loc);
1934
1935 Register NewReg = MRI->createVirtualRegister(RC);
1936 unsigned OrOpCodes[] = {X86::OR8rr, X86::OR16rr, X86::OR32rr, X86::OR64rr};
1937 unsigned OrOpCode = OrOpCodes[Log2_32(Bytes)];
1938 auto OrI = BuildMI(MBB, InsertPt, Loc, TII->get(OrOpCode), NewReg)
1939 .addReg(StateReg)
1940 .addReg(Reg);
1941 OrI->addRegisterDead(X86::EFLAGS, TRI);
1942 ++NumInstsInserted;
1943 LLVM_DEBUG(dbgs() << " Inserting or: "; OrI->dump(); dbgs() << "\n");
1944
1945 if (FlagsReg)
1946 restoreEFLAGS(MBB, InsertPt, Loc, FlagsReg);
1947
1948 return NewReg;
1949 }
1950
1951 /// Harden a load by hardening the loaded value in the defined register.
1952 ///
1953 /// We can harden a non-leaking load into a register without touching the
1954 /// address by just hiding all of the loaded bits during misspeculation. We use
1955 /// an `or` instruction to do this because we set up our poison value as all
1956 /// ones. And the goal is just for the loaded bits to not be exposed to
1957 /// execution and coercing them to one is sufficient.
1958 ///
1959 /// Returns the newly hardened register.
hardenPostLoad(MachineInstr & MI)1960 unsigned X86SpeculativeLoadHardeningPass::hardenPostLoad(MachineInstr &MI) {
1961 MachineBasicBlock &MBB = *MI.getParent();
1962 const DebugLoc &Loc = MI.getDebugLoc();
1963
1964 auto &DefOp = MI.getOperand(0);
1965 Register OldDefReg = DefOp.getReg();
1966 auto *DefRC = MRI->getRegClass(OldDefReg);
1967
1968 // Because we want to completely replace the uses of this def'ed value with
1969 // the hardened value, create a dedicated new register that will only be used
1970 // to communicate the unhardened value to the hardening.
1971 Register UnhardenedReg = MRI->createVirtualRegister(DefRC);
1972 DefOp.setReg(UnhardenedReg);
1973
1974 // Now harden this register's value, getting a hardened reg that is safe to
1975 // use. Note that we insert the instructions to compute this *after* the
1976 // defining instruction, not before it.
1977 unsigned HardenedReg = hardenValueInRegister(
1978 UnhardenedReg, MBB, std::next(MI.getIterator()), Loc);
1979
1980 // Finally, replace the old register (which now only has the uses of the
1981 // original def) with the hardened register.
1982 MRI->replaceRegWith(/*FromReg*/ OldDefReg, /*ToReg*/ HardenedReg);
1983
1984 ++NumPostLoadRegsHardened;
1985 return HardenedReg;
1986 }
1987
1988 /// Harden a return instruction.
1989 ///
1990 /// Returns implicitly perform a load which we need to harden. Without hardening
1991 /// this load, an attacker my speculatively write over the return address to
1992 /// steer speculation of the return to an attacker controlled address. This is
1993 /// called Spectre v1.1 or Bounds Check Bypass Store (BCBS) and is described in
1994 /// this paper:
1995 /// https://people.csail.mit.edu/vlk/spectre11.pdf
1996 ///
1997 /// We can harden this by introducing an LFENCE that will delay any load of the
1998 /// return address until prior instructions have retired (and thus are not being
1999 /// speculated), or we can harden the address used by the implicit load: the
2000 /// stack pointer.
2001 ///
2002 /// If we are not using an LFENCE, hardening the stack pointer has an additional
2003 /// benefit: it allows us to pass the predicate state accumulated in this
2004 /// function back to the caller. In the absence of a BCBS attack on the return,
2005 /// the caller will typically be resumed and speculatively executed due to the
2006 /// Return Stack Buffer (RSB) prediction which is very accurate and has a high
2007 /// priority. It is possible that some code from the caller will be executed
2008 /// speculatively even during a BCBS-attacked return until the steering takes
2009 /// effect. Whenever this happens, the caller can recover the (poisoned)
2010 /// predicate state from the stack pointer and continue to harden loads.
hardenReturnInstr(MachineInstr & MI)2011 void X86SpeculativeLoadHardeningPass::hardenReturnInstr(MachineInstr &MI) {
2012 MachineBasicBlock &MBB = *MI.getParent();
2013 const DebugLoc &Loc = MI.getDebugLoc();
2014 auto InsertPt = MI.getIterator();
2015
2016 if (FenceCallAndRet)
2017 // No need to fence here as we'll fence at the return site itself. That
2018 // handles more cases than we can handle here.
2019 return;
2020
2021 // Take our predicate state, shift it to the high 17 bits (so that we keep
2022 // pointers canonical) and merge it into RSP. This will allow the caller to
2023 // extract it when we return (speculatively).
2024 mergePredStateIntoSP(MBB, InsertPt, Loc, PS->SSA.GetValueAtEndOfBlock(&MBB));
2025 }
2026
2027 /// Trace the predicate state through a call.
2028 ///
2029 /// There are several layers of this needed to handle the full complexity of
2030 /// calls.
2031 ///
2032 /// First, we need to send the predicate state into the called function. We do
2033 /// this by merging it into the high bits of the stack pointer.
2034 ///
2035 /// For tail calls, this is all we need to do.
2036 ///
2037 /// For calls where we might return and resume the control flow, we need to
2038 /// extract the predicate state from the high bits of the stack pointer after
2039 /// control returns from the called function.
2040 ///
2041 /// We also need to verify that we intended to return to this location in the
2042 /// code. An attacker might arrange for the processor to mispredict the return
2043 /// to this valid but incorrect return address in the program rather than the
2044 /// correct one. See the paper on this attack, called "ret2spec" by the
2045 /// researchers, here:
2046 /// https://christian-rossow.de/publications/ret2spec-ccs2018.pdf
2047 ///
2048 /// The way we verify that we returned to the correct location is by preserving
2049 /// the expected return address across the call. One technique involves taking
2050 /// advantage of the red-zone to load the return address from `8(%rsp)` where it
2051 /// was left by the RET instruction when it popped `%rsp`. Alternatively, we can
2052 /// directly save the address into a register that will be preserved across the
2053 /// call. We compare this intended return address against the address
2054 /// immediately following the call (the observed return address). If these
2055 /// mismatch, we have detected misspeculation and can poison our predicate
2056 /// state.
tracePredStateThroughCall(MachineInstr & MI)2057 void X86SpeculativeLoadHardeningPass::tracePredStateThroughCall(
2058 MachineInstr &MI) {
2059 MachineBasicBlock &MBB = *MI.getParent();
2060 MachineFunction &MF = *MBB.getParent();
2061 auto InsertPt = MI.getIterator();
2062 const DebugLoc &Loc = MI.getDebugLoc();
2063
2064 if (FenceCallAndRet) {
2065 if (MI.isReturn())
2066 // Tail call, we don't return to this function.
2067 // FIXME: We should also handle noreturn calls.
2068 return;
2069
2070 // We don't need to fence before the call because the function should fence
2071 // in its entry. However, we do need to fence after the call returns.
2072 // Fencing before the return doesn't correctly handle cases where the return
2073 // itself is mispredicted.
2074 BuildMI(MBB, std::next(InsertPt), Loc, TII->get(X86::LFENCE));
2075 ++NumInstsInserted;
2076 ++NumLFENCEsInserted;
2077 return;
2078 }
2079
2080 // First, we transfer the predicate state into the called function by merging
2081 // it into the stack pointer. This will kill the current def of the state.
2082 Register StateReg = PS->SSA.GetValueAtEndOfBlock(&MBB);
2083 mergePredStateIntoSP(MBB, InsertPt, Loc, StateReg);
2084
2085 // If this call is also a return, it is a tail call and we don't need anything
2086 // else to handle it so just return. Also, if there are no further
2087 // instructions and no successors, this call does not return so we can also
2088 // bail.
2089 if (MI.isReturn() || (std::next(InsertPt) == MBB.end() && MBB.succ_empty()))
2090 return;
2091
2092 // Create a symbol to track the return address and attach it to the call
2093 // machine instruction. We will lower extra symbols attached to call
2094 // instructions as label immediately following the call.
2095 MCSymbol *RetSymbol =
2096 MF.getContext().createTempSymbol("slh_ret_addr",
2097 /*AlwaysAddSuffix*/ true);
2098 MI.setPostInstrSymbol(MF, RetSymbol);
2099
2100 const TargetRegisterClass *AddrRC = &X86::GR64RegClass;
2101 unsigned ExpectedRetAddrReg = 0;
2102
2103 // If we have no red zones or if the function returns twice (possibly without
2104 // using the `ret` instruction) like setjmp, we need to save the expected
2105 // return address prior to the call.
2106 if (!Subtarget->getFrameLowering()->has128ByteRedZone(MF) ||
2107 MF.exposesReturnsTwice()) {
2108 // If we don't have red zones, we need to compute the expected return
2109 // address prior to the call and store it in a register that lives across
2110 // the call.
2111 //
2112 // In some ways, this is doubly satisfying as a mitigation because it will
2113 // also successfully detect stack smashing bugs in some cases (typically,
2114 // when a callee-saved register is used and the callee doesn't push it onto
2115 // the stack). But that isn't our primary goal, so we only use it as
2116 // a fallback.
2117 //
2118 // FIXME: It isn't clear that this is reliable in the face of
2119 // rematerialization in the register allocator. We somehow need to force
2120 // that to not occur for this particular instruction, and instead to spill
2121 // or otherwise preserve the value computed *prior* to the call.
2122 //
2123 // FIXME: It is even less clear why MachineCSE can't just fold this when we
2124 // end up having to use identical instructions both before and after the
2125 // call to feed the comparison.
2126 ExpectedRetAddrReg = MRI->createVirtualRegister(AddrRC);
2127 if (MF.getTarget().getCodeModel() == CodeModel::Small &&
2128 !Subtarget->isPositionIndependent()) {
2129 BuildMI(MBB, InsertPt, Loc, TII->get(X86::MOV64ri32), ExpectedRetAddrReg)
2130 .addSym(RetSymbol);
2131 } else {
2132 BuildMI(MBB, InsertPt, Loc, TII->get(X86::LEA64r), ExpectedRetAddrReg)
2133 .addReg(/*Base*/ X86::RIP)
2134 .addImm(/*Scale*/ 1)
2135 .addReg(/*Index*/ 0)
2136 .addSym(RetSymbol)
2137 .addReg(/*Segment*/ 0);
2138 }
2139 }
2140
2141 // Step past the call to handle when it returns.
2142 ++InsertPt;
2143
2144 // If we didn't pre-compute the expected return address into a register, then
2145 // red zones are enabled and the return address is still available on the
2146 // stack immediately after the call. As the very first instruction, we load it
2147 // into a register.
2148 if (!ExpectedRetAddrReg) {
2149 ExpectedRetAddrReg = MRI->createVirtualRegister(AddrRC);
2150 BuildMI(MBB, InsertPt, Loc, TII->get(X86::MOV64rm), ExpectedRetAddrReg)
2151 .addReg(/*Base*/ X86::RSP)
2152 .addImm(/*Scale*/ 1)
2153 .addReg(/*Index*/ 0)
2154 .addImm(/*Displacement*/ -8) // The stack pointer has been popped, so
2155 // the return address is 8-bytes past it.
2156 .addReg(/*Segment*/ 0);
2157 }
2158
2159 // Now we extract the callee's predicate state from the stack pointer.
2160 unsigned NewStateReg = extractPredStateFromSP(MBB, InsertPt, Loc);
2161
2162 // Test the expected return address against our actual address. If we can
2163 // form this basic block's address as an immediate, this is easy. Otherwise
2164 // we compute it.
2165 if (MF.getTarget().getCodeModel() == CodeModel::Small &&
2166 !Subtarget->isPositionIndependent()) {
2167 // FIXME: Could we fold this with the load? It would require careful EFLAGS
2168 // management.
2169 BuildMI(MBB, InsertPt, Loc, TII->get(X86::CMP64ri32))
2170 .addReg(ExpectedRetAddrReg, RegState::Kill)
2171 .addSym(RetSymbol);
2172 } else {
2173 Register ActualRetAddrReg = MRI->createVirtualRegister(AddrRC);
2174 BuildMI(MBB, InsertPt, Loc, TII->get(X86::LEA64r), ActualRetAddrReg)
2175 .addReg(/*Base*/ X86::RIP)
2176 .addImm(/*Scale*/ 1)
2177 .addReg(/*Index*/ 0)
2178 .addSym(RetSymbol)
2179 .addReg(/*Segment*/ 0);
2180 BuildMI(MBB, InsertPt, Loc, TII->get(X86::CMP64rr))
2181 .addReg(ExpectedRetAddrReg, RegState::Kill)
2182 .addReg(ActualRetAddrReg, RegState::Kill);
2183 }
2184
2185 // Now conditionally update the predicate state we just extracted if we ended
2186 // up at a different return address than expected.
2187 int PredStateSizeInBytes = TRI->getRegSizeInBits(*PS->RC) / 8;
2188 auto CMovOp = X86::getCMovOpcode(PredStateSizeInBytes);
2189
2190 Register UpdatedStateReg = MRI->createVirtualRegister(PS->RC);
2191 auto CMovI = BuildMI(MBB, InsertPt, Loc, TII->get(CMovOp), UpdatedStateReg)
2192 .addReg(NewStateReg, RegState::Kill)
2193 .addReg(PS->PoisonReg)
2194 .addImm(X86::COND_NE);
2195 CMovI->findRegisterUseOperand(X86::EFLAGS)->setIsKill(true);
2196 ++NumInstsInserted;
2197 LLVM_DEBUG(dbgs() << " Inserting cmov: "; CMovI->dump(); dbgs() << "\n");
2198
2199 PS->SSA.AddAvailableValue(&MBB, UpdatedStateReg);
2200 }
2201
2202 /// An attacker may speculatively store over a value that is then speculatively
2203 /// loaded and used as the target of an indirect call or jump instruction. This
2204 /// is called Spectre v1.2 or Bounds Check Bypass Store (BCBS) and is described
2205 /// in this paper:
2206 /// https://people.csail.mit.edu/vlk/spectre11.pdf
2207 ///
2208 /// When this happens, the speculative execution of the call or jump will end up
2209 /// being steered to this attacker controlled address. While most such loads
2210 /// will be adequately hardened already, we want to ensure that they are
2211 /// definitively treated as needing post-load hardening. While address hardening
2212 /// is sufficient to prevent secret data from leaking to the attacker, it may
2213 /// not be sufficient to prevent an attacker from steering speculative
2214 /// execution. We forcibly unfolded all relevant loads above and so will always
2215 /// have an opportunity to post-load harden here, we just need to scan for cases
2216 /// not already flagged and add them.
hardenIndirectCallOrJumpInstr(MachineInstr & MI,SmallDenseMap<unsigned,unsigned,32> & AddrRegToHardenedReg)2217 void X86SpeculativeLoadHardeningPass::hardenIndirectCallOrJumpInstr(
2218 MachineInstr &MI,
2219 SmallDenseMap<unsigned, unsigned, 32> &AddrRegToHardenedReg) {
2220 switch (MI.getOpcode()) {
2221 case X86::FARCALL16m:
2222 case X86::FARCALL32m:
2223 case X86::FARCALL64m:
2224 case X86::FARJMP16m:
2225 case X86::FARJMP32m:
2226 case X86::FARJMP64m:
2227 // We don't need to harden either far calls or far jumps as they are
2228 // safe from Spectre.
2229 return;
2230
2231 default:
2232 break;
2233 }
2234
2235 // We should never see a loading instruction at this point, as those should
2236 // have been unfolded.
2237 assert(!MI.mayLoad() && "Found a lingering loading instruction!");
2238
2239 // If the first operand isn't a register, this is a branch or call
2240 // instruction with an immediate operand which doesn't need to be hardened.
2241 if (!MI.getOperand(0).isReg())
2242 return;
2243
2244 // For all of these, the target register is the first operand of the
2245 // instruction.
2246 auto &TargetOp = MI.getOperand(0);
2247 Register OldTargetReg = TargetOp.getReg();
2248
2249 // Try to lookup a hardened version of this register. We retain a reference
2250 // here as we want to update the map to track any newly computed hardened
2251 // register.
2252 unsigned &HardenedTargetReg = AddrRegToHardenedReg[OldTargetReg];
2253
2254 // If we don't have a hardened register yet, compute one. Otherwise, just use
2255 // the already hardened register.
2256 //
2257 // FIXME: It is a little suspect that we use partially hardened registers that
2258 // only feed addresses. The complexity of partial hardening with SHRX
2259 // continues to pile up. Should definitively measure its value and consider
2260 // eliminating it.
2261 if (!HardenedTargetReg)
2262 HardenedTargetReg = hardenValueInRegister(
2263 OldTargetReg, *MI.getParent(), MI.getIterator(), MI.getDebugLoc());
2264
2265 // Set the target operand to the hardened register.
2266 TargetOp.setReg(HardenedTargetReg);
2267
2268 ++NumCallsOrJumpsHardened;
2269 }
2270
2271 INITIALIZE_PASS_BEGIN(X86SpeculativeLoadHardeningPass, PASS_KEY,
2272 "X86 speculative load hardener", false, false)
2273 INITIALIZE_PASS_END(X86SpeculativeLoadHardeningPass, PASS_KEY,
2274 "X86 speculative load hardener", false, false)
2275
createX86SpeculativeLoadHardeningPass()2276 FunctionPass *llvm::createX86SpeculativeLoadHardeningPass() {
2277 return new X86SpeculativeLoadHardeningPass();
2278 }
2279