1 //===-- X86SelectionDAGInfo.cpp - X86 SelectionDAG Info -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the X86SelectionDAGInfo class.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "X86SelectionDAGInfo.h"
14 #include "X86ISelLowering.h"
15 #include "X86InstrInfo.h"
16 #include "X86RegisterInfo.h"
17 #include "X86Subtarget.h"
18 #include "llvm/CodeGen/MachineFrameInfo.h"
19 #include "llvm/CodeGen/SelectionDAG.h"
20 #include "llvm/CodeGen/TargetLowering.h"
21 #include "llvm/IR/DerivedTypes.h"
22
23 using namespace llvm;
24
25 #define DEBUG_TYPE "x86-selectiondag-info"
26
27 static cl::opt<bool>
28 UseFSRMForMemcpy("x86-use-fsrm-for-memcpy", cl::Hidden, cl::init(false),
29 cl::desc("Use fast short rep mov in memcpy lowering"));
30
isBaseRegConflictPossible(SelectionDAG & DAG,ArrayRef<MCPhysReg> ClobberSet) const31 bool X86SelectionDAGInfo::isBaseRegConflictPossible(
32 SelectionDAG &DAG, ArrayRef<MCPhysReg> ClobberSet) const {
33 // We cannot use TRI->hasBasePointer() until *after* we select all basic
34 // blocks. Legalization may introduce new stack temporaries with large
35 // alignment requirements. Fall back to generic code if there are any
36 // dynamic stack adjustments (hopefully rare) and the base pointer would
37 // conflict if we had to use it.
38 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
39 if (!MFI.hasVarSizedObjects() && !MFI.hasOpaqueSPAdjustment())
40 return false;
41
42 const X86RegisterInfo *TRI = static_cast<const X86RegisterInfo *>(
43 DAG.getSubtarget().getRegisterInfo());
44 return llvm::is_contained(ClobberSet, TRI->getBaseRegister());
45 }
46
EmitTargetCodeForMemset(SelectionDAG & DAG,const SDLoc & dl,SDValue Chain,SDValue Dst,SDValue Val,SDValue Size,Align Alignment,bool isVolatile,bool AlwaysInline,MachinePointerInfo DstPtrInfo) const47 SDValue X86SelectionDAGInfo::EmitTargetCodeForMemset(
48 SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Val,
49 SDValue Size, Align Alignment, bool isVolatile, bool AlwaysInline,
50 MachinePointerInfo DstPtrInfo) const {
51 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
52 const X86Subtarget &Subtarget =
53 DAG.getMachineFunction().getSubtarget<X86Subtarget>();
54
55 #ifndef NDEBUG
56 // If the base register might conflict with our physical registers, bail out.
57 const MCPhysReg ClobberSet[] = {X86::RCX, X86::RAX, X86::RDI,
58 X86::ECX, X86::EAX, X86::EDI};
59 assert(!isBaseRegConflictPossible(DAG, ClobberSet));
60 #endif
61
62 // If to a segment-relative address space, use the default lowering.
63 if (DstPtrInfo.getAddrSpace() >= 256)
64 return SDValue();
65
66 // If not DWORD aligned or size is more than the threshold, call the library.
67 // The libc version is likely to be faster for these cases. It can use the
68 // address value and run time information about the CPU.
69 if (Alignment < Align(4) || !ConstantSize ||
70 ConstantSize->getZExtValue() > Subtarget.getMaxInlineSizeThreshold())
71 return SDValue();
72
73 uint64_t SizeVal = ConstantSize->getZExtValue();
74 SDValue InFlag;
75 EVT AVT;
76 SDValue Count;
77 unsigned BytesLeft = 0;
78 if (auto *ValC = dyn_cast<ConstantSDNode>(Val)) {
79 unsigned ValReg;
80 uint64_t Val = ValC->getZExtValue() & 255;
81
82 // If the value is a constant, then we can potentially use larger sets.
83 if (Alignment > Align(2)) {
84 // DWORD aligned
85 AVT = MVT::i32;
86 ValReg = X86::EAX;
87 Val = (Val << 8) | Val;
88 Val = (Val << 16) | Val;
89 if (Subtarget.is64Bit() && Alignment > Align(8)) { // QWORD aligned
90 AVT = MVT::i64;
91 ValReg = X86::RAX;
92 Val = (Val << 32) | Val;
93 }
94 } else if (Alignment == Align(2)) {
95 // WORD aligned
96 AVT = MVT::i16;
97 ValReg = X86::AX;
98 Val = (Val << 8) | Val;
99 } else {
100 // Byte aligned
101 AVT = MVT::i8;
102 ValReg = X86::AL;
103 Count = DAG.getIntPtrConstant(SizeVal, dl);
104 }
105
106 if (AVT.bitsGT(MVT::i8)) {
107 unsigned UBytes = AVT.getSizeInBits() / 8;
108 Count = DAG.getIntPtrConstant(SizeVal / UBytes, dl);
109 BytesLeft = SizeVal % UBytes;
110 }
111
112 Chain = DAG.getCopyToReg(Chain, dl, ValReg, DAG.getConstant(Val, dl, AVT),
113 InFlag);
114 InFlag = Chain.getValue(1);
115 } else {
116 AVT = MVT::i8;
117 Count = DAG.getIntPtrConstant(SizeVal, dl);
118 Chain = DAG.getCopyToReg(Chain, dl, X86::AL, Val, InFlag);
119 InFlag = Chain.getValue(1);
120 }
121
122 bool Use64BitRegs = Subtarget.isTarget64BitLP64();
123 Chain = DAG.getCopyToReg(Chain, dl, Use64BitRegs ? X86::RCX : X86::ECX,
124 Count, InFlag);
125 InFlag = Chain.getValue(1);
126 Chain = DAG.getCopyToReg(Chain, dl, Use64BitRegs ? X86::RDI : X86::EDI,
127 Dst, InFlag);
128 InFlag = Chain.getValue(1);
129
130 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
131 SDValue Ops[] = { Chain, DAG.getValueType(AVT), InFlag };
132 Chain = DAG.getNode(X86ISD::REP_STOS, dl, Tys, Ops);
133
134 if (BytesLeft) {
135 // Handle the last 1 - 7 bytes.
136 unsigned Offset = SizeVal - BytesLeft;
137 EVT AddrVT = Dst.getValueType();
138 EVT SizeVT = Size.getValueType();
139
140 Chain =
141 DAG.getMemset(Chain, dl,
142 DAG.getNode(ISD::ADD, dl, AddrVT, Dst,
143 DAG.getConstant(Offset, dl, AddrVT)),
144 Val, DAG.getConstant(BytesLeft, dl, SizeVT), Alignment,
145 isVolatile, AlwaysInline,
146 /* isTailCall */ false, DstPtrInfo.getWithOffset(Offset));
147 }
148
149 // TODO: Use a Tokenfactor, as in memcpy, instead of a single chain.
150 return Chain;
151 }
152
153 /// Emit a single REP MOVS{B,W,D,Q} instruction.
emitRepmovs(const X86Subtarget & Subtarget,SelectionDAG & DAG,const SDLoc & dl,SDValue Chain,SDValue Dst,SDValue Src,SDValue Size,MVT AVT)154 static SDValue emitRepmovs(const X86Subtarget &Subtarget, SelectionDAG &DAG,
155 const SDLoc &dl, SDValue Chain, SDValue Dst,
156 SDValue Src, SDValue Size, MVT AVT) {
157 const bool Use64BitRegs = Subtarget.isTarget64BitLP64();
158 const unsigned CX = Use64BitRegs ? X86::RCX : X86::ECX;
159 const unsigned DI = Use64BitRegs ? X86::RDI : X86::EDI;
160 const unsigned SI = Use64BitRegs ? X86::RSI : X86::ESI;
161
162 SDValue InFlag;
163 Chain = DAG.getCopyToReg(Chain, dl, CX, Size, InFlag);
164 InFlag = Chain.getValue(1);
165 Chain = DAG.getCopyToReg(Chain, dl, DI, Dst, InFlag);
166 InFlag = Chain.getValue(1);
167 Chain = DAG.getCopyToReg(Chain, dl, SI, Src, InFlag);
168 InFlag = Chain.getValue(1);
169
170 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
171 SDValue Ops[] = {Chain, DAG.getValueType(AVT), InFlag};
172 return DAG.getNode(X86ISD::REP_MOVS, dl, Tys, Ops);
173 }
174
175 /// Emit a single REP MOVSB instruction for a particular constant size.
emitRepmovsB(const X86Subtarget & Subtarget,SelectionDAG & DAG,const SDLoc & dl,SDValue Chain,SDValue Dst,SDValue Src,uint64_t Size)176 static SDValue emitRepmovsB(const X86Subtarget &Subtarget, SelectionDAG &DAG,
177 const SDLoc &dl, SDValue Chain, SDValue Dst,
178 SDValue Src, uint64_t Size) {
179 return emitRepmovs(Subtarget, DAG, dl, Chain, Dst, Src,
180 DAG.getIntPtrConstant(Size, dl), MVT::i8);
181 }
182
183 /// Returns the best type to use with repmovs depending on alignment.
getOptimalRepmovsType(const X86Subtarget & Subtarget,uint64_t Align)184 static MVT getOptimalRepmovsType(const X86Subtarget &Subtarget,
185 uint64_t Align) {
186 assert((Align != 0) && "Align is normalized");
187 assert(isPowerOf2_64(Align) && "Align is a power of 2");
188 switch (Align) {
189 case 1:
190 return MVT::i8;
191 case 2:
192 return MVT::i16;
193 case 4:
194 return MVT::i32;
195 default:
196 return Subtarget.is64Bit() ? MVT::i64 : MVT::i32;
197 }
198 }
199
200 /// Returns a REP MOVS instruction, possibly with a few load/stores to implement
201 /// a constant size memory copy. In some cases where we know REP MOVS is
202 /// inefficient we return an empty SDValue so the calling code can either
203 /// generate a load/store sequence or call the runtime memcpy function.
emitConstantSizeRepmov(SelectionDAG & DAG,const X86Subtarget & Subtarget,const SDLoc & dl,SDValue Chain,SDValue Dst,SDValue Src,uint64_t Size,EVT SizeVT,unsigned Align,bool isVolatile,bool AlwaysInline,MachinePointerInfo DstPtrInfo,MachinePointerInfo SrcPtrInfo)204 static SDValue emitConstantSizeRepmov(
205 SelectionDAG &DAG, const X86Subtarget &Subtarget, const SDLoc &dl,
206 SDValue Chain, SDValue Dst, SDValue Src, uint64_t Size, EVT SizeVT,
207 unsigned Align, bool isVolatile, bool AlwaysInline,
208 MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo) {
209
210 /// TODO: Revisit next line: big copy with ERMSB on march >= haswell are very
211 /// efficient.
212 if (!AlwaysInline && Size > Subtarget.getMaxInlineSizeThreshold())
213 return SDValue();
214
215 /// If we have enhanced repmovs we use it.
216 if (Subtarget.hasERMSB())
217 return emitRepmovsB(Subtarget, DAG, dl, Chain, Dst, Src, Size);
218
219 assert(!Subtarget.hasERMSB() && "No efficient RepMovs");
220 /// We assume runtime memcpy will do a better job for unaligned copies when
221 /// ERMS is not present.
222 if (!AlwaysInline && (Align & 3) != 0)
223 return SDValue();
224
225 const MVT BlockType = getOptimalRepmovsType(Subtarget, Align);
226 const uint64_t BlockBytes = BlockType.getSizeInBits() / 8;
227 const uint64_t BlockCount = Size / BlockBytes;
228 const uint64_t BytesLeft = Size % BlockBytes;
229 SDValue RepMovs =
230 emitRepmovs(Subtarget, DAG, dl, Chain, Dst, Src,
231 DAG.getIntPtrConstant(BlockCount, dl), BlockType);
232
233 /// RepMov can process the whole length.
234 if (BytesLeft == 0)
235 return RepMovs;
236
237 assert(BytesLeft && "We have leftover at this point");
238
239 /// In case we optimize for size we use repmovsb even if it's less efficient
240 /// so we can save the loads/stores of the leftover.
241 if (DAG.getMachineFunction().getFunction().hasMinSize())
242 return emitRepmovsB(Subtarget, DAG, dl, Chain, Dst, Src, Size);
243
244 // Handle the last 1 - 7 bytes.
245 SmallVector<SDValue, 4> Results;
246 Results.push_back(RepMovs);
247 unsigned Offset = Size - BytesLeft;
248 EVT DstVT = Dst.getValueType();
249 EVT SrcVT = Src.getValueType();
250 Results.push_back(DAG.getMemcpy(
251 Chain, dl,
252 DAG.getNode(ISD::ADD, dl, DstVT, Dst, DAG.getConstant(Offset, dl, DstVT)),
253 DAG.getNode(ISD::ADD, dl, SrcVT, Src, DAG.getConstant(Offset, dl, SrcVT)),
254 DAG.getConstant(BytesLeft, dl, SizeVT), llvm::Align(Align), isVolatile,
255 /*AlwaysInline*/ true, /*isTailCall*/ false,
256 DstPtrInfo.getWithOffset(Offset), SrcPtrInfo.getWithOffset(Offset)));
257 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Results);
258 }
259
EmitTargetCodeForMemcpy(SelectionDAG & DAG,const SDLoc & dl,SDValue Chain,SDValue Dst,SDValue Src,SDValue Size,Align Alignment,bool isVolatile,bool AlwaysInline,MachinePointerInfo DstPtrInfo,MachinePointerInfo SrcPtrInfo) const260 SDValue X86SelectionDAGInfo::EmitTargetCodeForMemcpy(
261 SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src,
262 SDValue Size, Align Alignment, bool isVolatile, bool AlwaysInline,
263 MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo) const {
264 // If to a segment-relative address space, use the default lowering.
265 if (DstPtrInfo.getAddrSpace() >= 256 || SrcPtrInfo.getAddrSpace() >= 256)
266 return SDValue();
267
268 // If the base registers conflict with our physical registers, use the default
269 // lowering.
270 const MCPhysReg ClobberSet[] = {X86::RCX, X86::RSI, X86::RDI,
271 X86::ECX, X86::ESI, X86::EDI};
272 if (isBaseRegConflictPossible(DAG, ClobberSet))
273 return SDValue();
274
275 const X86Subtarget &Subtarget =
276 DAG.getMachineFunction().getSubtarget<X86Subtarget>();
277
278 // If enabled and available, use fast short rep mov.
279 if (UseFSRMForMemcpy && Subtarget.hasFSRM())
280 return emitRepmovs(Subtarget, DAG, dl, Chain, Dst, Src, Size, MVT::i8);
281
282 /// Handle constant sizes,
283 if (ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size))
284 return emitConstantSizeRepmov(
285 DAG, Subtarget, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
286 Size.getValueType(), Alignment.value(), isVolatile, AlwaysInline,
287 DstPtrInfo, SrcPtrInfo);
288
289 return SDValue();
290 }
291