1 //===- X86OptimizeLEAs.cpp - optimize usage of LEA instructions -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the pass that performs some optimizations with LEA
10 // instructions in order to improve performance and code size.
11 // Currently, it does two things:
12 // 1) If there are two LEA instructions calculating addresses which only differ
13 // by displacement inside a basic block, one of them is removed.
14 // 2) Address calculations in load and store instructions are replaced by
15 // existing LEA def registers where possible.
16 //
17 //===----------------------------------------------------------------------===//
18
19 #include "MCTargetDesc/X86BaseInfo.h"
20 #include "X86.h"
21 #include "X86InstrInfo.h"
22 #include "X86Subtarget.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/DenseMapInfo.h"
25 #include "llvm/ADT/Hashing.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/Statistic.h"
28 #include "llvm/Analysis/ProfileSummaryInfo.h"
29 #include "llvm/CodeGen/LazyMachineBlockFrequencyInfo.h"
30 #include "llvm/CodeGen/MachineBasicBlock.h"
31 #include "llvm/CodeGen/MachineFunction.h"
32 #include "llvm/CodeGen/MachineFunctionPass.h"
33 #include "llvm/CodeGen/MachineInstr.h"
34 #include "llvm/CodeGen/MachineInstrBuilder.h"
35 #include "llvm/CodeGen/MachineOperand.h"
36 #include "llvm/CodeGen/MachineRegisterInfo.h"
37 #include "llvm/CodeGen/MachineSizeOpts.h"
38 #include "llvm/CodeGen/TargetOpcodes.h"
39 #include "llvm/CodeGen/TargetRegisterInfo.h"
40 #include "llvm/IR/DebugInfoMetadata.h"
41 #include "llvm/IR/DebugLoc.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/MC/MCInstrDesc.h"
44 #include "llvm/Support/CommandLine.h"
45 #include "llvm/Support/Debug.h"
46 #include "llvm/Support/ErrorHandling.h"
47 #include "llvm/Support/MathExtras.h"
48 #include "llvm/Support/raw_ostream.h"
49 #include <cassert>
50 #include <cstdint>
51 #include <iterator>
52
53 using namespace llvm;
54
55 #define DEBUG_TYPE "x86-optimize-LEAs"
56
57 static cl::opt<bool>
58 DisableX86LEAOpt("disable-x86-lea-opt", cl::Hidden,
59 cl::desc("X86: Disable LEA optimizations."),
60 cl::init(false));
61
62 STATISTIC(NumSubstLEAs, "Number of LEA instruction substitutions");
63 STATISTIC(NumRedundantLEAs, "Number of redundant LEA instructions removed");
64
65 /// Returns true if two machine operands are identical and they are not
66 /// physical registers.
67 static inline bool isIdenticalOp(const MachineOperand &MO1,
68 const MachineOperand &MO2);
69
70 /// Returns true if two address displacement operands are of the same
71 /// type and use the same symbol/index/address regardless of the offset.
72 static bool isSimilarDispOp(const MachineOperand &MO1,
73 const MachineOperand &MO2);
74
75 /// Returns true if the instruction is LEA.
76 static inline bool isLEA(const MachineInstr &MI);
77
78 namespace {
79
80 /// A key based on instruction's memory operands.
81 class MemOpKey {
82 public:
MemOpKey(const MachineOperand * Base,const MachineOperand * Scale,const MachineOperand * Index,const MachineOperand * Segment,const MachineOperand * Disp)83 MemOpKey(const MachineOperand *Base, const MachineOperand *Scale,
84 const MachineOperand *Index, const MachineOperand *Segment,
85 const MachineOperand *Disp)
86 : Disp(Disp) {
87 Operands[0] = Base;
88 Operands[1] = Scale;
89 Operands[2] = Index;
90 Operands[3] = Segment;
91 }
92
operator ==(const MemOpKey & Other) const93 bool operator==(const MemOpKey &Other) const {
94 // Addresses' bases, scales, indices and segments must be identical.
95 for (int i = 0; i < 4; ++i)
96 if (!isIdenticalOp(*Operands[i], *Other.Operands[i]))
97 return false;
98
99 // Addresses' displacements don't have to be exactly the same. It only
100 // matters that they use the same symbol/index/address. Immediates' or
101 // offsets' differences will be taken care of during instruction
102 // substitution.
103 return isSimilarDispOp(*Disp, *Other.Disp);
104 }
105
106 // Address' base, scale, index and segment operands.
107 const MachineOperand *Operands[4];
108
109 // Address' displacement operand.
110 const MachineOperand *Disp;
111 };
112
113 } // end anonymous namespace
114
115 namespace llvm {
116
117 /// Provide DenseMapInfo for MemOpKey.
118 template <> struct DenseMapInfo<MemOpKey> {
119 using PtrInfo = DenseMapInfo<const MachineOperand *>;
120
getEmptyKeyllvm::DenseMapInfo121 static inline MemOpKey getEmptyKey() {
122 return MemOpKey(PtrInfo::getEmptyKey(), PtrInfo::getEmptyKey(),
123 PtrInfo::getEmptyKey(), PtrInfo::getEmptyKey(),
124 PtrInfo::getEmptyKey());
125 }
126
getTombstoneKeyllvm::DenseMapInfo127 static inline MemOpKey getTombstoneKey() {
128 return MemOpKey(PtrInfo::getTombstoneKey(), PtrInfo::getTombstoneKey(),
129 PtrInfo::getTombstoneKey(), PtrInfo::getTombstoneKey(),
130 PtrInfo::getTombstoneKey());
131 }
132
getHashValuellvm::DenseMapInfo133 static unsigned getHashValue(const MemOpKey &Val) {
134 // Checking any field of MemOpKey is enough to determine if the key is
135 // empty or tombstone.
136 assert(Val.Disp != PtrInfo::getEmptyKey() && "Cannot hash the empty key");
137 assert(Val.Disp != PtrInfo::getTombstoneKey() &&
138 "Cannot hash the tombstone key");
139
140 hash_code Hash = hash_combine(*Val.Operands[0], *Val.Operands[1],
141 *Val.Operands[2], *Val.Operands[3]);
142
143 // If the address displacement is an immediate, it should not affect the
144 // hash so that memory operands which differ only be immediate displacement
145 // would have the same hash. If the address displacement is something else,
146 // we should reflect symbol/index/address in the hash.
147 switch (Val.Disp->getType()) {
148 case MachineOperand::MO_Immediate:
149 break;
150 case MachineOperand::MO_ConstantPoolIndex:
151 case MachineOperand::MO_JumpTableIndex:
152 Hash = hash_combine(Hash, Val.Disp->getIndex());
153 break;
154 case MachineOperand::MO_ExternalSymbol:
155 Hash = hash_combine(Hash, Val.Disp->getSymbolName());
156 break;
157 case MachineOperand::MO_GlobalAddress:
158 Hash = hash_combine(Hash, Val.Disp->getGlobal());
159 break;
160 case MachineOperand::MO_BlockAddress:
161 Hash = hash_combine(Hash, Val.Disp->getBlockAddress());
162 break;
163 case MachineOperand::MO_MCSymbol:
164 Hash = hash_combine(Hash, Val.Disp->getMCSymbol());
165 break;
166 case MachineOperand::MO_MachineBasicBlock:
167 Hash = hash_combine(Hash, Val.Disp->getMBB());
168 break;
169 default:
170 llvm_unreachable("Invalid address displacement operand");
171 }
172
173 return (unsigned)Hash;
174 }
175
isEqualllvm::DenseMapInfo176 static bool isEqual(const MemOpKey &LHS, const MemOpKey &RHS) {
177 // Checking any field of MemOpKey is enough to determine if the key is
178 // empty or tombstone.
179 if (RHS.Disp == PtrInfo::getEmptyKey())
180 return LHS.Disp == PtrInfo::getEmptyKey();
181 if (RHS.Disp == PtrInfo::getTombstoneKey())
182 return LHS.Disp == PtrInfo::getTombstoneKey();
183 return LHS == RHS;
184 }
185 };
186
187 } // end namespace llvm
188
189 /// Returns a hash table key based on memory operands of \p MI. The
190 /// number of the first memory operand of \p MI is specified through \p N.
getMemOpKey(const MachineInstr & MI,unsigned N)191 static inline MemOpKey getMemOpKey(const MachineInstr &MI, unsigned N) {
192 assert((isLEA(MI) || MI.mayLoadOrStore()) &&
193 "The instruction must be a LEA, a load or a store");
194 return MemOpKey(&MI.getOperand(N + X86::AddrBaseReg),
195 &MI.getOperand(N + X86::AddrScaleAmt),
196 &MI.getOperand(N + X86::AddrIndexReg),
197 &MI.getOperand(N + X86::AddrSegmentReg),
198 &MI.getOperand(N + X86::AddrDisp));
199 }
200
isIdenticalOp(const MachineOperand & MO1,const MachineOperand & MO2)201 static inline bool isIdenticalOp(const MachineOperand &MO1,
202 const MachineOperand &MO2) {
203 return MO1.isIdenticalTo(MO2) && (!MO1.isReg() || !MO1.getReg().isPhysical());
204 }
205
206 #ifndef NDEBUG
isValidDispOp(const MachineOperand & MO)207 static bool isValidDispOp(const MachineOperand &MO) {
208 return MO.isImm() || MO.isCPI() || MO.isJTI() || MO.isSymbol() ||
209 MO.isGlobal() || MO.isBlockAddress() || MO.isMCSymbol() || MO.isMBB();
210 }
211 #endif
212
isSimilarDispOp(const MachineOperand & MO1,const MachineOperand & MO2)213 static bool isSimilarDispOp(const MachineOperand &MO1,
214 const MachineOperand &MO2) {
215 assert(isValidDispOp(MO1) && isValidDispOp(MO2) &&
216 "Address displacement operand is not valid");
217 return (MO1.isImm() && MO2.isImm()) ||
218 (MO1.isCPI() && MO2.isCPI() && MO1.getIndex() == MO2.getIndex()) ||
219 (MO1.isJTI() && MO2.isJTI() && MO1.getIndex() == MO2.getIndex()) ||
220 (MO1.isSymbol() && MO2.isSymbol() &&
221 MO1.getSymbolName() == MO2.getSymbolName()) ||
222 (MO1.isGlobal() && MO2.isGlobal() &&
223 MO1.getGlobal() == MO2.getGlobal()) ||
224 (MO1.isBlockAddress() && MO2.isBlockAddress() &&
225 MO1.getBlockAddress() == MO2.getBlockAddress()) ||
226 (MO1.isMCSymbol() && MO2.isMCSymbol() &&
227 MO1.getMCSymbol() == MO2.getMCSymbol()) ||
228 (MO1.isMBB() && MO2.isMBB() && MO1.getMBB() == MO2.getMBB());
229 }
230
isLEA(const MachineInstr & MI)231 static inline bool isLEA(const MachineInstr &MI) {
232 unsigned Opcode = MI.getOpcode();
233 return Opcode == X86::LEA16r || Opcode == X86::LEA32r ||
234 Opcode == X86::LEA64r || Opcode == X86::LEA64_32r;
235 }
236
237 namespace {
238
239 class X86OptimizeLEAPass : public MachineFunctionPass {
240 public:
X86OptimizeLEAPass()241 X86OptimizeLEAPass() : MachineFunctionPass(ID) {}
242
getPassName() const243 StringRef getPassName() const override { return "X86 LEA Optimize"; }
244
245 /// Loop over all of the basic blocks, replacing address
246 /// calculations in load and store instructions, if it's already
247 /// been calculated by LEA. Also, remove redundant LEAs.
248 bool runOnMachineFunction(MachineFunction &MF) override;
249
250 static char ID;
251
getAnalysisUsage(AnalysisUsage & AU) const252 void getAnalysisUsage(AnalysisUsage &AU) const override {
253 AU.addRequired<ProfileSummaryInfoWrapperPass>();
254 AU.addRequired<LazyMachineBlockFrequencyInfoPass>();
255 MachineFunctionPass::getAnalysisUsage(AU);
256 }
257
258 private:
259 using MemOpMap = DenseMap<MemOpKey, SmallVector<MachineInstr *, 16>>;
260
261 /// Returns a distance between two instructions inside one basic block.
262 /// Negative result means, that instructions occur in reverse order.
263 int calcInstrDist(const MachineInstr &First, const MachineInstr &Last);
264
265 /// Choose the best \p LEA instruction from the \p List to replace
266 /// address calculation in \p MI instruction. Return the address displacement
267 /// and the distance between \p MI and the chosen \p BestLEA in
268 /// \p AddrDispShift and \p Dist.
269 bool chooseBestLEA(const SmallVectorImpl<MachineInstr *> &List,
270 const MachineInstr &MI, MachineInstr *&BestLEA,
271 int64_t &AddrDispShift, int &Dist);
272
273 /// Returns the difference between addresses' displacements of \p MI1
274 /// and \p MI2. The numbers of the first memory operands for the instructions
275 /// are specified through \p N1 and \p N2.
276 int64_t getAddrDispShift(const MachineInstr &MI1, unsigned N1,
277 const MachineInstr &MI2, unsigned N2) const;
278
279 /// Returns true if the \p Last LEA instruction can be replaced by the
280 /// \p First. The difference between displacements of the addresses calculated
281 /// by these LEAs is returned in \p AddrDispShift. It'll be used for proper
282 /// replacement of the \p Last LEA's uses with the \p First's def register.
283 bool isReplaceable(const MachineInstr &First, const MachineInstr &Last,
284 int64_t &AddrDispShift) const;
285
286 /// Find all LEA instructions in the basic block. Also, assign position
287 /// numbers to all instructions in the basic block to speed up calculation of
288 /// distance between them.
289 void findLEAs(const MachineBasicBlock &MBB, MemOpMap &LEAs);
290
291 /// Removes redundant address calculations.
292 bool removeRedundantAddrCalc(MemOpMap &LEAs);
293
294 /// Replace debug value MI with a new debug value instruction using register
295 /// VReg with an appropriate offset and DIExpression to incorporate the
296 /// address displacement AddrDispShift. Return new debug value instruction.
297 MachineInstr *replaceDebugValue(MachineInstr &MI, unsigned OldReg,
298 unsigned NewReg, int64_t AddrDispShift);
299
300 /// Removes LEAs which calculate similar addresses.
301 bool removeRedundantLEAs(MemOpMap &LEAs);
302
303 DenseMap<const MachineInstr *, unsigned> InstrPos;
304
305 MachineRegisterInfo *MRI = nullptr;
306 const X86InstrInfo *TII = nullptr;
307 const X86RegisterInfo *TRI = nullptr;
308 };
309
310 } // end anonymous namespace
311
312 char X86OptimizeLEAPass::ID = 0;
313
createX86OptimizeLEAs()314 FunctionPass *llvm::createX86OptimizeLEAs() { return new X86OptimizeLEAPass(); }
315 INITIALIZE_PASS(X86OptimizeLEAPass, DEBUG_TYPE, "X86 optimize LEA pass", false,
316 false)
317
calcInstrDist(const MachineInstr & First,const MachineInstr & Last)318 int X86OptimizeLEAPass::calcInstrDist(const MachineInstr &First,
319 const MachineInstr &Last) {
320 // Both instructions must be in the same basic block and they must be
321 // presented in InstrPos.
322 assert(Last.getParent() == First.getParent() &&
323 "Instructions are in different basic blocks");
324 assert(InstrPos.find(&First) != InstrPos.end() &&
325 InstrPos.find(&Last) != InstrPos.end() &&
326 "Instructions' positions are undefined");
327
328 return InstrPos[&Last] - InstrPos[&First];
329 }
330
331 // Find the best LEA instruction in the List to replace address recalculation in
332 // MI. Such LEA must meet these requirements:
333 // 1) The address calculated by the LEA differs only by the displacement from
334 // the address used in MI.
335 // 2) The register class of the definition of the LEA is compatible with the
336 // register class of the address base register of MI.
337 // 3) Displacement of the new memory operand should fit in 1 byte if possible.
338 // 4) The LEA should be as close to MI as possible, and prior to it if
339 // possible.
chooseBestLEA(const SmallVectorImpl<MachineInstr * > & List,const MachineInstr & MI,MachineInstr * & BestLEA,int64_t & AddrDispShift,int & Dist)340 bool X86OptimizeLEAPass::chooseBestLEA(
341 const SmallVectorImpl<MachineInstr *> &List, const MachineInstr &MI,
342 MachineInstr *&BestLEA, int64_t &AddrDispShift, int &Dist) {
343 const MachineFunction *MF = MI.getParent()->getParent();
344 const MCInstrDesc &Desc = MI.getDesc();
345 int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags) +
346 X86II::getOperandBias(Desc);
347
348 BestLEA = nullptr;
349
350 // Loop over all LEA instructions.
351 for (auto *DefMI : List) {
352 // Get new address displacement.
353 int64_t AddrDispShiftTemp = getAddrDispShift(MI, MemOpNo, *DefMI, 1);
354
355 // Make sure address displacement fits 4 bytes.
356 if (!isInt<32>(AddrDispShiftTemp))
357 continue;
358
359 // Check that LEA def register can be used as MI address base. Some
360 // instructions can use a limited set of registers as address base, for
361 // example MOV8mr_NOREX. We could constrain the register class of the LEA
362 // def to suit MI, however since this case is very rare and hard to
363 // reproduce in a test it's just more reliable to skip the LEA.
364 if (TII->getRegClass(Desc, MemOpNo + X86::AddrBaseReg, TRI, *MF) !=
365 MRI->getRegClass(DefMI->getOperand(0).getReg()))
366 continue;
367
368 // Choose the closest LEA instruction from the list, prior to MI if
369 // possible. Note that we took into account resulting address displacement
370 // as well. Also note that the list is sorted by the order in which the LEAs
371 // occur, so the break condition is pretty simple.
372 int DistTemp = calcInstrDist(*DefMI, MI);
373 assert(DistTemp != 0 &&
374 "The distance between two different instructions cannot be zero");
375 if (DistTemp > 0 || BestLEA == nullptr) {
376 // Do not update return LEA, if the current one provides a displacement
377 // which fits in 1 byte, while the new candidate does not.
378 if (BestLEA != nullptr && !isInt<8>(AddrDispShiftTemp) &&
379 isInt<8>(AddrDispShift))
380 continue;
381
382 BestLEA = DefMI;
383 AddrDispShift = AddrDispShiftTemp;
384 Dist = DistTemp;
385 }
386
387 // FIXME: Maybe we should not always stop at the first LEA after MI.
388 if (DistTemp < 0)
389 break;
390 }
391
392 return BestLEA != nullptr;
393 }
394
395 // Get the difference between the addresses' displacements of the two
396 // instructions \p MI1 and \p MI2. The numbers of the first memory operands are
397 // passed through \p N1 and \p N2.
getAddrDispShift(const MachineInstr & MI1,unsigned N1,const MachineInstr & MI2,unsigned N2) const398 int64_t X86OptimizeLEAPass::getAddrDispShift(const MachineInstr &MI1,
399 unsigned N1,
400 const MachineInstr &MI2,
401 unsigned N2) const {
402 const MachineOperand &Op1 = MI1.getOperand(N1 + X86::AddrDisp);
403 const MachineOperand &Op2 = MI2.getOperand(N2 + X86::AddrDisp);
404
405 assert(isSimilarDispOp(Op1, Op2) &&
406 "Address displacement operands are not compatible");
407
408 // After the assert above we can be sure that both operands are of the same
409 // valid type and use the same symbol/index/address, thus displacement shift
410 // calculation is rather simple.
411 if (Op1.isJTI())
412 return 0;
413 return Op1.isImm() ? Op1.getImm() - Op2.getImm()
414 : Op1.getOffset() - Op2.getOffset();
415 }
416
417 // Check that the Last LEA can be replaced by the First LEA. To be so,
418 // these requirements must be met:
419 // 1) Addresses calculated by LEAs differ only by displacement.
420 // 2) Def registers of LEAs belong to the same class.
421 // 3) All uses of the Last LEA def register are replaceable, thus the
422 // register is used only as address base.
isReplaceable(const MachineInstr & First,const MachineInstr & Last,int64_t & AddrDispShift) const423 bool X86OptimizeLEAPass::isReplaceable(const MachineInstr &First,
424 const MachineInstr &Last,
425 int64_t &AddrDispShift) const {
426 assert(isLEA(First) && isLEA(Last) &&
427 "The function works only with LEA instructions");
428
429 // Make sure that LEA def registers belong to the same class. There may be
430 // instructions (like MOV8mr_NOREX) which allow a limited set of registers to
431 // be used as their operands, so we must be sure that replacing one LEA
432 // with another won't lead to putting a wrong register in the instruction.
433 if (MRI->getRegClass(First.getOperand(0).getReg()) !=
434 MRI->getRegClass(Last.getOperand(0).getReg()))
435 return false;
436
437 // Get new address displacement.
438 AddrDispShift = getAddrDispShift(Last, 1, First, 1);
439
440 // Loop over all uses of the Last LEA to check that its def register is
441 // used only as address base for memory accesses. If so, it can be
442 // replaced, otherwise - no.
443 for (auto &MO : MRI->use_nodbg_operands(Last.getOperand(0).getReg())) {
444 MachineInstr &MI = *MO.getParent();
445
446 // Get the number of the first memory operand.
447 const MCInstrDesc &Desc = MI.getDesc();
448 int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags);
449
450 // If the use instruction has no memory operand - the LEA is not
451 // replaceable.
452 if (MemOpNo < 0)
453 return false;
454
455 MemOpNo += X86II::getOperandBias(Desc);
456
457 // If the address base of the use instruction is not the LEA def register -
458 // the LEA is not replaceable.
459 if (!isIdenticalOp(MI.getOperand(MemOpNo + X86::AddrBaseReg), MO))
460 return false;
461
462 // If the LEA def register is used as any other operand of the use
463 // instruction - the LEA is not replaceable.
464 for (unsigned i = 0; i < MI.getNumOperands(); i++)
465 if (i != (unsigned)(MemOpNo + X86::AddrBaseReg) &&
466 isIdenticalOp(MI.getOperand(i), MO))
467 return false;
468
469 // Check that the new address displacement will fit 4 bytes.
470 if (MI.getOperand(MemOpNo + X86::AddrDisp).isImm() &&
471 !isInt<32>(MI.getOperand(MemOpNo + X86::AddrDisp).getImm() +
472 AddrDispShift))
473 return false;
474 }
475
476 return true;
477 }
478
findLEAs(const MachineBasicBlock & MBB,MemOpMap & LEAs)479 void X86OptimizeLEAPass::findLEAs(const MachineBasicBlock &MBB,
480 MemOpMap &LEAs) {
481 unsigned Pos = 0;
482 for (auto &MI : MBB) {
483 // Assign the position number to the instruction. Note that we are going to
484 // move some instructions during the optimization however there will never
485 // be a need to move two instructions before any selected instruction. So to
486 // avoid multiple positions' updates during moves we just increase position
487 // counter by two leaving a free space for instructions which will be moved.
488 InstrPos[&MI] = Pos += 2;
489
490 if (isLEA(MI))
491 LEAs[getMemOpKey(MI, 1)].push_back(const_cast<MachineInstr *>(&MI));
492 }
493 }
494
495 // Try to find load and store instructions which recalculate addresses already
496 // calculated by some LEA and replace their memory operands with its def
497 // register.
removeRedundantAddrCalc(MemOpMap & LEAs)498 bool X86OptimizeLEAPass::removeRedundantAddrCalc(MemOpMap &LEAs) {
499 bool Changed = false;
500
501 assert(!LEAs.empty());
502 MachineBasicBlock *MBB = (*LEAs.begin()->second.begin())->getParent();
503
504 // Process all instructions in basic block.
505 for (MachineInstr &MI : llvm::make_early_inc_range(*MBB)) {
506 // Instruction must be load or store.
507 if (!MI.mayLoadOrStore())
508 continue;
509
510 // Get the number of the first memory operand.
511 const MCInstrDesc &Desc = MI.getDesc();
512 int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags);
513
514 // If instruction has no memory operand - skip it.
515 if (MemOpNo < 0)
516 continue;
517
518 MemOpNo += X86II::getOperandBias(Desc);
519
520 // Do not call chooseBestLEA if there was no matching LEA
521 auto Insns = LEAs.find(getMemOpKey(MI, MemOpNo));
522 if (Insns == LEAs.end())
523 continue;
524
525 // Get the best LEA instruction to replace address calculation.
526 MachineInstr *DefMI;
527 int64_t AddrDispShift;
528 int Dist;
529 if (!chooseBestLEA(Insns->second, MI, DefMI, AddrDispShift, Dist))
530 continue;
531
532 // If LEA occurs before current instruction, we can freely replace
533 // the instruction. If LEA occurs after, we can lift LEA above the
534 // instruction and this way to be able to replace it. Since LEA and the
535 // instruction have similar memory operands (thus, the same def
536 // instructions for these operands), we can always do that, without
537 // worries of using registers before their defs.
538 if (Dist < 0) {
539 DefMI->removeFromParent();
540 MBB->insert(MachineBasicBlock::iterator(&MI), DefMI);
541 InstrPos[DefMI] = InstrPos[&MI] - 1;
542
543 // Make sure the instructions' position numbers are sane.
544 assert(((InstrPos[DefMI] == 1 &&
545 MachineBasicBlock::iterator(DefMI) == MBB->begin()) ||
546 InstrPos[DefMI] >
547 InstrPos[&*std::prev(MachineBasicBlock::iterator(DefMI))]) &&
548 "Instruction positioning is broken");
549 }
550
551 // Since we can possibly extend register lifetime, clear kill flags.
552 MRI->clearKillFlags(DefMI->getOperand(0).getReg());
553
554 ++NumSubstLEAs;
555 LLVM_DEBUG(dbgs() << "OptimizeLEAs: Candidate to replace: "; MI.dump(););
556
557 // Change instruction operands.
558 MI.getOperand(MemOpNo + X86::AddrBaseReg)
559 .ChangeToRegister(DefMI->getOperand(0).getReg(), false);
560 MI.getOperand(MemOpNo + X86::AddrScaleAmt).ChangeToImmediate(1);
561 MI.getOperand(MemOpNo + X86::AddrIndexReg)
562 .ChangeToRegister(X86::NoRegister, false);
563 MI.getOperand(MemOpNo + X86::AddrDisp).ChangeToImmediate(AddrDispShift);
564 MI.getOperand(MemOpNo + X86::AddrSegmentReg)
565 .ChangeToRegister(X86::NoRegister, false);
566
567 LLVM_DEBUG(dbgs() << "OptimizeLEAs: Replaced by: "; MI.dump(););
568
569 Changed = true;
570 }
571
572 return Changed;
573 }
574
replaceDebugValue(MachineInstr & MI,unsigned OldReg,unsigned NewReg,int64_t AddrDispShift)575 MachineInstr *X86OptimizeLEAPass::replaceDebugValue(MachineInstr &MI,
576 unsigned OldReg,
577 unsigned NewReg,
578 int64_t AddrDispShift) {
579 const DIExpression *Expr = MI.getDebugExpression();
580 if (AddrDispShift != 0) {
581 if (MI.isNonListDebugValue()) {
582 Expr =
583 DIExpression::prepend(Expr, DIExpression::StackValue, AddrDispShift);
584 } else {
585 // Update the Expression, appending an offset of `AddrDispShift` to the
586 // Op corresponding to `OldReg`.
587 SmallVector<uint64_t, 3> Ops;
588 DIExpression::appendOffset(Ops, AddrDispShift);
589 for (MachineOperand &Op : MI.getDebugOperandsForReg(OldReg)) {
590 unsigned OpIdx = MI.getDebugOperandIndex(&Op);
591 Expr = DIExpression::appendOpsToArg(Expr, Ops, OpIdx);
592 }
593 }
594 }
595
596 // Replace DBG_VALUE instruction with modified version.
597 MachineBasicBlock *MBB = MI.getParent();
598 DebugLoc DL = MI.getDebugLoc();
599 bool IsIndirect = MI.isIndirectDebugValue();
600 const MDNode *Var = MI.getDebugVariable();
601 unsigned Opcode = MI.isNonListDebugValue() ? TargetOpcode::DBG_VALUE
602 : TargetOpcode::DBG_VALUE_LIST;
603 if (IsIndirect)
604 assert(MI.getDebugOffset().getImm() == 0 &&
605 "DBG_VALUE with nonzero offset");
606 SmallVector<MachineOperand, 4> NewOps;
607 // If we encounter an operand using the old register, replace it with an
608 // operand that uses the new register; otherwise keep the old operand.
609 auto replaceOldReg = [OldReg, NewReg](const MachineOperand &Op) {
610 if (Op.isReg() && Op.getReg() == OldReg)
611 return MachineOperand::CreateReg(NewReg, false, false, false, false,
612 false, false, false, false, false,
613 /*IsRenamable*/ true);
614 return Op;
615 };
616 for (const MachineOperand &Op : MI.debug_operands())
617 NewOps.push_back(replaceOldReg(Op));
618 return BuildMI(*MBB, MBB->erase(&MI), DL, TII->get(Opcode), IsIndirect,
619 NewOps, Var, Expr);
620 }
621
622 // Try to find similar LEAs in the list and replace one with another.
removeRedundantLEAs(MemOpMap & LEAs)623 bool X86OptimizeLEAPass::removeRedundantLEAs(MemOpMap &LEAs) {
624 bool Changed = false;
625
626 // Loop over all entries in the table.
627 for (auto &E : LEAs) {
628 auto &List = E.second;
629
630 // Loop over all LEA pairs.
631 auto I1 = List.begin();
632 while (I1 != List.end()) {
633 MachineInstr &First = **I1;
634 auto I2 = std::next(I1);
635 while (I2 != List.end()) {
636 MachineInstr &Last = **I2;
637 int64_t AddrDispShift;
638
639 // LEAs should be in occurrence order in the list, so we can freely
640 // replace later LEAs with earlier ones.
641 assert(calcInstrDist(First, Last) > 0 &&
642 "LEAs must be in occurrence order in the list");
643
644 // Check that the Last LEA instruction can be replaced by the First.
645 if (!isReplaceable(First, Last, AddrDispShift)) {
646 ++I2;
647 continue;
648 }
649
650 // Loop over all uses of the Last LEA and update their operands. Note
651 // that the correctness of this has already been checked in the
652 // isReplaceable function.
653 Register FirstVReg = First.getOperand(0).getReg();
654 Register LastVReg = Last.getOperand(0).getReg();
655 // We use MRI->use_empty here instead of the combination of
656 // llvm::make_early_inc_range and MRI->use_operands because we could
657 // replace two or more uses in a debug instruction in one iteration, and
658 // that would deeply confuse llvm::make_early_inc_range.
659 while (!MRI->use_empty(LastVReg)) {
660 MachineOperand &MO = *MRI->use_begin(LastVReg);
661 MachineInstr &MI = *MO.getParent();
662
663 if (MI.isDebugValue()) {
664 // Replace DBG_VALUE instruction with modified version using the
665 // register from the replacing LEA and the address displacement
666 // between the LEA instructions.
667 replaceDebugValue(MI, LastVReg, FirstVReg, AddrDispShift);
668 continue;
669 }
670
671 // Get the number of the first memory operand.
672 const MCInstrDesc &Desc = MI.getDesc();
673 int MemOpNo =
674 X86II::getMemoryOperandNo(Desc.TSFlags) +
675 X86II::getOperandBias(Desc);
676
677 // Update address base.
678 MO.setReg(FirstVReg);
679
680 // Update address disp.
681 MachineOperand &Op = MI.getOperand(MemOpNo + X86::AddrDisp);
682 if (Op.isImm())
683 Op.setImm(Op.getImm() + AddrDispShift);
684 else if (!Op.isJTI())
685 Op.setOffset(Op.getOffset() + AddrDispShift);
686 }
687
688 // Since we can possibly extend register lifetime, clear kill flags.
689 MRI->clearKillFlags(FirstVReg);
690
691 ++NumRedundantLEAs;
692 LLVM_DEBUG(dbgs() << "OptimizeLEAs: Remove redundant LEA: ";
693 Last.dump(););
694
695 // By this moment, all of the Last LEA's uses must be replaced. So we
696 // can freely remove it.
697 assert(MRI->use_empty(LastVReg) &&
698 "The LEA's def register must have no uses");
699 Last.eraseFromParent();
700
701 // Erase removed LEA from the list.
702 I2 = List.erase(I2);
703
704 Changed = true;
705 }
706 ++I1;
707 }
708 }
709
710 return Changed;
711 }
712
runOnMachineFunction(MachineFunction & MF)713 bool X86OptimizeLEAPass::runOnMachineFunction(MachineFunction &MF) {
714 bool Changed = false;
715
716 if (DisableX86LEAOpt || skipFunction(MF.getFunction()))
717 return false;
718
719 MRI = &MF.getRegInfo();
720 TII = MF.getSubtarget<X86Subtarget>().getInstrInfo();
721 TRI = MF.getSubtarget<X86Subtarget>().getRegisterInfo();
722 auto *PSI =
723 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
724 auto *MBFI = (PSI && PSI->hasProfileSummary()) ?
725 &getAnalysis<LazyMachineBlockFrequencyInfoPass>().getBFI() :
726 nullptr;
727
728 // Process all basic blocks.
729 for (auto &MBB : MF) {
730 MemOpMap LEAs;
731 InstrPos.clear();
732
733 // Find all LEA instructions in basic block.
734 findLEAs(MBB, LEAs);
735
736 // If current basic block has no LEAs, move on to the next one.
737 if (LEAs.empty())
738 continue;
739
740 // Remove redundant LEA instructions.
741 Changed |= removeRedundantLEAs(LEAs);
742
743 // Remove redundant address calculations. Do it only for -Os/-Oz since only
744 // a code size gain is expected from this part of the pass.
745 bool OptForSize = MF.getFunction().hasOptSize() ||
746 llvm::shouldOptimizeForSize(&MBB, PSI, MBFI);
747 if (OptForSize)
748 Changed |= removeRedundantAddrCalc(LEAs);
749 }
750
751 return Changed;
752 }
753