xref: /llvm-project/llvm/lib/Target/X86/MCTargetDesc/X86IntelInstPrinter.cpp (revision ee2722fc882ed5dbc7609686bd998b023c6645b2)
1 //===-- X86IntelInstPrinter.cpp - Intel assembly instruction printing -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file includes code for rendering MCInst instances as Intel-style
10 // assembly.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "X86IntelInstPrinter.h"
15 #include "X86BaseInfo.h"
16 #include "X86InstComments.h"
17 #include "llvm/MC/MCExpr.h"
18 #include "llvm/MC/MCInst.h"
19 #include "llvm/MC/MCInstrAnalysis.h"
20 #include "llvm/MC/MCInstrDesc.h"
21 #include "llvm/MC/MCInstrInfo.h"
22 #include "llvm/MC/MCSubtargetInfo.h"
23 #include "llvm/Support/ErrorHandling.h"
24 #include <cassert>
25 #include <cstdint>
26 
27 using namespace llvm;
28 
29 #define DEBUG_TYPE "asm-printer"
30 
31 // Include the auto-generated portion of the assembly writer.
32 #define PRINT_ALIAS_INSTR
33 #include "X86GenAsmWriter1.inc"
34 
35 void X86IntelInstPrinter::printRegName(raw_ostream &OS, MCRegister Reg) {
36   markup(OS, Markup::Register) << getRegisterName(Reg);
37 }
38 
39 void X86IntelInstPrinter::printInst(const MCInst *MI, uint64_t Address,
40                                     StringRef Annot, const MCSubtargetInfo &STI,
41                                     raw_ostream &OS) {
42   printInstFlags(MI, OS, STI);
43 
44   // In 16-bit mode, print data16 as data32.
45   if (MI->getOpcode() == X86::DATA16_PREFIX &&
46       STI.hasFeature(X86::Is16Bit)) {
47     OS << "\tdata32";
48   } else if (!printAliasInstr(MI, Address, OS) && !printVecCompareInstr(MI, OS))
49     printInstruction(MI, Address, OS);
50 
51   // Next always print the annotation.
52   printAnnotation(OS, Annot);
53 
54   // If verbose assembly is enabled, we can print some informative comments.
55   if (CommentStream)
56     EmitAnyX86InstComments(MI, *CommentStream, MII);
57 }
58 
59 bool X86IntelInstPrinter::printVecCompareInstr(const MCInst *MI, raw_ostream &OS) {
60   if (MI->getNumOperands() == 0 ||
61       !MI->getOperand(MI->getNumOperands() - 1).isImm())
62     return false;
63 
64   int64_t Imm = MI->getOperand(MI->getNumOperands() - 1).getImm();
65 
66   const MCInstrDesc &Desc = MII.get(MI->getOpcode());
67 
68   // Custom print the vector compare instructions to get the immediate
69   // translated into the mnemonic.
70   switch (MI->getOpcode()) {
71   case X86::CMPPDrmi:     case X86::CMPPDrri:
72   case X86::CMPPSrmi:     case X86::CMPPSrri:
73   case X86::CMPSDrmi:     case X86::CMPSDrri:
74   case X86::CMPSDrmi_Int: case X86::CMPSDrri_Int:
75   case X86::CMPSSrmi:     case X86::CMPSSrri:
76   case X86::CMPSSrmi_Int: case X86::CMPSSrri_Int:
77     if (Imm >= 0 && Imm <= 7) {
78       OS << '\t';
79       printCMPMnemonic(MI, /*IsVCMP*/false, OS);
80       printOperand(MI, 0, OS);
81       OS << ", ";
82       // Skip operand 1 as its tied to the dest.
83 
84       if ((Desc.TSFlags & X86II::FormMask) == X86II::MRMSrcMem) {
85         if ((Desc.TSFlags & X86II::OpPrefixMask) == X86II::XS)
86           printdwordmem(MI, 2, OS);
87         else if ((Desc.TSFlags & X86II::OpPrefixMask) == X86II::XD)
88           printqwordmem(MI, 2, OS);
89         else
90           printxmmwordmem(MI, 2, OS);
91       } else
92         printOperand(MI, 2, OS);
93 
94       return true;
95     }
96     break;
97 
98   case X86::VCMPPDrmi:       case X86::VCMPPDrri:
99   case X86::VCMPPDYrmi:      case X86::VCMPPDYrri:
100   case X86::VCMPPDZ128rmi:   case X86::VCMPPDZ128rri:
101   case X86::VCMPPDZ256rmi:   case X86::VCMPPDZ256rri:
102   case X86::VCMPPDZrmi:      case X86::VCMPPDZrri:
103   case X86::VCMPPSrmi:       case X86::VCMPPSrri:
104   case X86::VCMPPSYrmi:      case X86::VCMPPSYrri:
105   case X86::VCMPPSZ128rmi:   case X86::VCMPPSZ128rri:
106   case X86::VCMPPSZ256rmi:   case X86::VCMPPSZ256rri:
107   case X86::VCMPPSZrmi:      case X86::VCMPPSZrri:
108   case X86::VCMPSDrmi:       case X86::VCMPSDrri:
109   case X86::VCMPSDZrmi:      case X86::VCMPSDZrri:
110   case X86::VCMPSDrmi_Int:   case X86::VCMPSDrri_Int:
111   case X86::VCMPSDZrmi_Int:  case X86::VCMPSDZrri_Int:
112   case X86::VCMPSSrmi:       case X86::VCMPSSrri:
113   case X86::VCMPSSZrmi:      case X86::VCMPSSZrri:
114   case X86::VCMPSSrmi_Int:   case X86::VCMPSSrri_Int:
115   case X86::VCMPSSZrmi_Int:  case X86::VCMPSSZrri_Int:
116   case X86::VCMPPDZ128rmik:  case X86::VCMPPDZ128rrik:
117   case X86::VCMPPDZ256rmik:  case X86::VCMPPDZ256rrik:
118   case X86::VCMPPDZrmik:     case X86::VCMPPDZrrik:
119   case X86::VCMPPSZ128rmik:  case X86::VCMPPSZ128rrik:
120   case X86::VCMPPSZ256rmik:  case X86::VCMPPSZ256rrik:
121   case X86::VCMPPSZrmik:     case X86::VCMPPSZrrik:
122   case X86::VCMPSDZrmik_Int: case X86::VCMPSDZrrik_Int:
123   case X86::VCMPSSZrmik_Int: case X86::VCMPSSZrrik_Int:
124   case X86::VCMPPDZ128rmbi:  case X86::VCMPPDZ128rmbik:
125   case X86::VCMPPDZ256rmbi:  case X86::VCMPPDZ256rmbik:
126   case X86::VCMPPDZrmbi:     case X86::VCMPPDZrmbik:
127   case X86::VCMPPSZ128rmbi:  case X86::VCMPPSZ128rmbik:
128   case X86::VCMPPSZ256rmbi:  case X86::VCMPPSZ256rmbik:
129   case X86::VCMPPSZrmbi:     case X86::VCMPPSZrmbik:
130   case X86::VCMPPDZrrib:     case X86::VCMPPDZrribk:
131   case X86::VCMPPSZrrib:     case X86::VCMPPSZrribk:
132   case X86::VCMPSDZrrib_Int: case X86::VCMPSDZrribk_Int:
133   case X86::VCMPSSZrrib_Int: case X86::VCMPSSZrribk_Int:
134   case X86::VCMPPHZ128rmi:   case X86::VCMPPHZ128rri:
135   case X86::VCMPPHZ256rmi:   case X86::VCMPPHZ256rri:
136   case X86::VCMPPHZrmi:      case X86::VCMPPHZrri:
137   case X86::VCMPSHZrmi:      case X86::VCMPSHZrri:
138   case X86::VCMPSHZrmi_Int:  case X86::VCMPSHZrri_Int:
139   case X86::VCMPPHZ128rmik:  case X86::VCMPPHZ128rrik:
140   case X86::VCMPPHZ256rmik:  case X86::VCMPPHZ256rrik:
141   case X86::VCMPPHZrmik:     case X86::VCMPPHZrrik:
142   case X86::VCMPSHZrmik_Int: case X86::VCMPSHZrrik_Int:
143   case X86::VCMPPHZ128rmbi:  case X86::VCMPPHZ128rmbik:
144   case X86::VCMPPHZ256rmbi:  case X86::VCMPPHZ256rmbik:
145   case X86::VCMPPHZrmbi:     case X86::VCMPPHZrmbik:
146   case X86::VCMPPHZrrib:     case X86::VCMPPHZrribk:
147   case X86::VCMPSHZrrib_Int: case X86::VCMPSHZrribk_Int:
148   case X86::VCMPBF16Z128rmi:  case X86::VCMPBF16Z128rri:
149   case X86::VCMPBF16Z256rmi:  case X86::VCMPBF16Z256rri:
150   case X86::VCMPBF16Zrmi:     case X86::VCMPBF16Zrri:
151   case X86::VCMPBF16Z128rmik: case X86::VCMPBF16Z128rrik:
152   case X86::VCMPBF16Z256rmik: case X86::VCMPBF16Z256rrik:
153   case X86::VCMPBF16Zrmik:    case X86::VCMPBF16Zrrik:
154   case X86::VCMPBF16Z128rmbi: case X86::VCMPBF16Z128rmbik:
155   case X86::VCMPBF16Z256rmbi: case X86::VCMPBF16Z256rmbik:
156   case X86::VCMPBF16Zrmbi:    case X86::VCMPBF16Zrmbik:
157     if (Imm >= 0 && Imm <= 31) {
158       OS << '\t';
159       printCMPMnemonic(MI, /*IsVCMP*/true, OS);
160 
161       unsigned CurOp = 0;
162       printOperand(MI, CurOp++, OS);
163 
164       if (Desc.TSFlags & X86II::EVEX_K) {
165         // Print mask operand.
166         OS << " {";
167         printOperand(MI, CurOp++, OS);
168         OS << "}";
169       }
170       OS << ", ";
171       printOperand(MI, CurOp++, OS);
172       OS << ", ";
173 
174       if ((Desc.TSFlags & X86II::FormMask) == X86II::MRMSrcMem) {
175         if (Desc.TSFlags & X86II::EVEX_B) {
176           // Broadcast form.
177           // Load size is word for TA map. Otherwise it is based on W-bit.
178           if ((Desc.TSFlags & X86II::OpMapMask) == X86II::TA) {
179             assert(!(Desc.TSFlags & X86II::REX_W) && "Unknown W-bit value!");
180             printwordmem(MI, CurOp++, OS);
181           } else if (Desc.TSFlags & X86II::REX_W) {
182             printqwordmem(MI, CurOp++, OS);
183           } else {
184             printdwordmem(MI, CurOp++, OS);
185           }
186 
187           // Print the number of elements broadcasted.
188           unsigned NumElts;
189           if (Desc.TSFlags & X86II::EVEX_L2)
190             NumElts = (Desc.TSFlags & X86II::REX_W) ? 8 : 16;
191           else if (Desc.TSFlags & X86II::VEX_L)
192             NumElts = (Desc.TSFlags & X86II::REX_W) ? 4 : 8;
193           else
194             NumElts = (Desc.TSFlags & X86II::REX_W) ? 2 : 4;
195           if ((Desc.TSFlags & X86II::OpMapMask) == X86II::TA) {
196             assert(!(Desc.TSFlags & X86II::REX_W) && "Unknown W-bit value!");
197             NumElts *= 2;
198           }
199           OS << "{1to" << NumElts << "}";
200         } else {
201           if ((Desc.TSFlags & X86II::OpPrefixMask) == X86II::XS) {
202             if ((Desc.TSFlags & X86II::OpMapMask) == X86II::TA)
203               printwordmem(MI, CurOp++, OS);
204             else
205               printdwordmem(MI, CurOp++, OS);
206           } else if ((Desc.TSFlags & X86II::OpPrefixMask) == X86II::XD &&
207                      (Desc.TSFlags & X86II::OpMapMask) != X86II::TA) {
208             printqwordmem(MI, CurOp++, OS);
209           } else if (Desc.TSFlags & X86II::EVEX_L2) {
210             printzmmwordmem(MI, CurOp++, OS);
211           } else if (Desc.TSFlags & X86II::VEX_L) {
212             printymmwordmem(MI, CurOp++, OS);
213           } else {
214             printxmmwordmem(MI, CurOp++, OS);
215           }
216         }
217       } else {
218         printOperand(MI, CurOp++, OS);
219         if (Desc.TSFlags & X86II::EVEX_B)
220           OS << ", {sae}";
221       }
222 
223       return true;
224     }
225     break;
226 
227   case X86::VPCOMBmi:  case X86::VPCOMBri:
228   case X86::VPCOMDmi:  case X86::VPCOMDri:
229   case X86::VPCOMQmi:  case X86::VPCOMQri:
230   case X86::VPCOMUBmi: case X86::VPCOMUBri:
231   case X86::VPCOMUDmi: case X86::VPCOMUDri:
232   case X86::VPCOMUQmi: case X86::VPCOMUQri:
233   case X86::VPCOMUWmi: case X86::VPCOMUWri:
234   case X86::VPCOMWmi:  case X86::VPCOMWri:
235     if (Imm >= 0 && Imm <= 7) {
236       OS << '\t';
237       printVPCOMMnemonic(MI, OS);
238       printOperand(MI, 0, OS);
239       OS << ", ";
240       printOperand(MI, 1, OS);
241       OS << ", ";
242       if ((Desc.TSFlags & X86II::FormMask) == X86II::MRMSrcMem)
243         printxmmwordmem(MI, 2, OS);
244       else
245         printOperand(MI, 2, OS);
246       return true;
247     }
248     break;
249 
250   case X86::VPCMPBZ128rmi:   case X86::VPCMPBZ128rri:
251   case X86::VPCMPBZ256rmi:   case X86::VPCMPBZ256rri:
252   case X86::VPCMPBZrmi:      case X86::VPCMPBZrri:
253   case X86::VPCMPDZ128rmi:   case X86::VPCMPDZ128rri:
254   case X86::VPCMPDZ256rmi:   case X86::VPCMPDZ256rri:
255   case X86::VPCMPDZrmi:      case X86::VPCMPDZrri:
256   case X86::VPCMPQZ128rmi:   case X86::VPCMPQZ128rri:
257   case X86::VPCMPQZ256rmi:   case X86::VPCMPQZ256rri:
258   case X86::VPCMPQZrmi:      case X86::VPCMPQZrri:
259   case X86::VPCMPUBZ128rmi:  case X86::VPCMPUBZ128rri:
260   case X86::VPCMPUBZ256rmi:  case X86::VPCMPUBZ256rri:
261   case X86::VPCMPUBZrmi:     case X86::VPCMPUBZrri:
262   case X86::VPCMPUDZ128rmi:  case X86::VPCMPUDZ128rri:
263   case X86::VPCMPUDZ256rmi:  case X86::VPCMPUDZ256rri:
264   case X86::VPCMPUDZrmi:     case X86::VPCMPUDZrri:
265   case X86::VPCMPUQZ128rmi:  case X86::VPCMPUQZ128rri:
266   case X86::VPCMPUQZ256rmi:  case X86::VPCMPUQZ256rri:
267   case X86::VPCMPUQZrmi:     case X86::VPCMPUQZrri:
268   case X86::VPCMPUWZ128rmi:  case X86::VPCMPUWZ128rri:
269   case X86::VPCMPUWZ256rmi:  case X86::VPCMPUWZ256rri:
270   case X86::VPCMPUWZrmi:     case X86::VPCMPUWZrri:
271   case X86::VPCMPWZ128rmi:   case X86::VPCMPWZ128rri:
272   case X86::VPCMPWZ256rmi:   case X86::VPCMPWZ256rri:
273   case X86::VPCMPWZrmi:      case X86::VPCMPWZrri:
274   case X86::VPCMPBZ128rmik:  case X86::VPCMPBZ128rrik:
275   case X86::VPCMPBZ256rmik:  case X86::VPCMPBZ256rrik:
276   case X86::VPCMPBZrmik:     case X86::VPCMPBZrrik:
277   case X86::VPCMPDZ128rmik:  case X86::VPCMPDZ128rrik:
278   case X86::VPCMPDZ256rmik:  case X86::VPCMPDZ256rrik:
279   case X86::VPCMPDZrmik:     case X86::VPCMPDZrrik:
280   case X86::VPCMPQZ128rmik:  case X86::VPCMPQZ128rrik:
281   case X86::VPCMPQZ256rmik:  case X86::VPCMPQZ256rrik:
282   case X86::VPCMPQZrmik:     case X86::VPCMPQZrrik:
283   case X86::VPCMPUBZ128rmik: case X86::VPCMPUBZ128rrik:
284   case X86::VPCMPUBZ256rmik: case X86::VPCMPUBZ256rrik:
285   case X86::VPCMPUBZrmik:    case X86::VPCMPUBZrrik:
286   case X86::VPCMPUDZ128rmik: case X86::VPCMPUDZ128rrik:
287   case X86::VPCMPUDZ256rmik: case X86::VPCMPUDZ256rrik:
288   case X86::VPCMPUDZrmik:    case X86::VPCMPUDZrrik:
289   case X86::VPCMPUQZ128rmik: case X86::VPCMPUQZ128rrik:
290   case X86::VPCMPUQZ256rmik: case X86::VPCMPUQZ256rrik:
291   case X86::VPCMPUQZrmik:    case X86::VPCMPUQZrrik:
292   case X86::VPCMPUWZ128rmik: case X86::VPCMPUWZ128rrik:
293   case X86::VPCMPUWZ256rmik: case X86::VPCMPUWZ256rrik:
294   case X86::VPCMPUWZrmik:    case X86::VPCMPUWZrrik:
295   case X86::VPCMPWZ128rmik:  case X86::VPCMPWZ128rrik:
296   case X86::VPCMPWZ256rmik:  case X86::VPCMPWZ256rrik:
297   case X86::VPCMPWZrmik:     case X86::VPCMPWZrrik:
298   case X86::VPCMPDZ128rmbi:  case X86::VPCMPDZ128rmbik:
299   case X86::VPCMPDZ256rmbi:  case X86::VPCMPDZ256rmbik:
300   case X86::VPCMPDZrmbi:     case X86::VPCMPDZrmbik:
301   case X86::VPCMPQZ128rmbi:  case X86::VPCMPQZ128rmbik:
302   case X86::VPCMPQZ256rmbi:  case X86::VPCMPQZ256rmbik:
303   case X86::VPCMPQZrmbi:     case X86::VPCMPQZrmbik:
304   case X86::VPCMPUDZ128rmbi: case X86::VPCMPUDZ128rmbik:
305   case X86::VPCMPUDZ256rmbi: case X86::VPCMPUDZ256rmbik:
306   case X86::VPCMPUDZrmbi:    case X86::VPCMPUDZrmbik:
307   case X86::VPCMPUQZ128rmbi: case X86::VPCMPUQZ128rmbik:
308   case X86::VPCMPUQZ256rmbi: case X86::VPCMPUQZ256rmbik:
309   case X86::VPCMPUQZrmbi:    case X86::VPCMPUQZrmbik:
310     if ((Imm >= 0 && Imm <= 2) || (Imm >= 4 && Imm <= 6)) {
311       OS << '\t';
312       printVPCMPMnemonic(MI, OS);
313 
314       unsigned CurOp = 0;
315       printOperand(MI, CurOp++, OS);
316 
317       if (Desc.TSFlags & X86II::EVEX_K) {
318         // Print mask operand.
319         OS << " {";
320         printOperand(MI, CurOp++, OS);
321         OS << "}";
322       }
323       OS << ", ";
324       printOperand(MI, CurOp++, OS);
325       OS << ", ";
326 
327       if ((Desc.TSFlags & X86II::FormMask) == X86II::MRMSrcMem) {
328         if (Desc.TSFlags & X86II::EVEX_B) {
329           // Broadcast form.
330           // Load size is based on W-bit as only D and Q are supported.
331           if (Desc.TSFlags & X86II::REX_W)
332             printqwordmem(MI, CurOp++, OS);
333           else
334             printdwordmem(MI, CurOp++, OS);
335 
336           // Print the number of elements broadcasted.
337           unsigned NumElts;
338           if (Desc.TSFlags & X86II::EVEX_L2)
339             NumElts = (Desc.TSFlags & X86II::REX_W) ? 8 : 16;
340           else if (Desc.TSFlags & X86II::VEX_L)
341             NumElts = (Desc.TSFlags & X86II::REX_W) ? 4 : 8;
342           else
343             NumElts = (Desc.TSFlags & X86II::REX_W) ? 2 : 4;
344           OS << "{1to" << NumElts << "}";
345         } else {
346           if (Desc.TSFlags & X86II::EVEX_L2)
347             printzmmwordmem(MI, CurOp++, OS);
348           else if (Desc.TSFlags & X86II::VEX_L)
349             printymmwordmem(MI, CurOp++, OS);
350           else
351             printxmmwordmem(MI, CurOp++, OS);
352         }
353       } else {
354         printOperand(MI, CurOp++, OS);
355       }
356 
357       return true;
358     }
359     break;
360   }
361 
362   return false;
363 }
364 
365 void X86IntelInstPrinter::printOperand(const MCInst *MI, unsigned OpNo,
366                                        raw_ostream &O) {
367   const MCOperand &Op = MI->getOperand(OpNo);
368   if (Op.isReg()) {
369     printRegName(O, Op.getReg());
370   } else if (Op.isImm()) {
371     markup(O, Markup::Immediate) << formatImm((int64_t)Op.getImm());
372   } else {
373     assert(Op.isExpr() && "unknown operand kind in printOperand");
374     O << "offset ";
375     Op.getExpr()->print(O, &MAI);
376   }
377 }
378 
379 void X86IntelInstPrinter::printMemReference(const MCInst *MI, unsigned Op,
380                                             raw_ostream &O) {
381   // Do not print the exact form of the memory operand if it references a known
382   // binary object.
383   if (SymbolizeOperands && MIA) {
384     uint64_t Target;
385     if (MIA->evaluateBranch(*MI, 0, 0, Target))
386       return;
387     if (MIA->evaluateMemoryOperandAddress(*MI, /*STI=*/nullptr, 0, 0))
388       return;
389   }
390   const MCOperand &BaseReg  = MI->getOperand(Op+X86::AddrBaseReg);
391   unsigned ScaleVal         = MI->getOperand(Op+X86::AddrScaleAmt).getImm();
392   const MCOperand &IndexReg = MI->getOperand(Op+X86::AddrIndexReg);
393   const MCOperand &DispSpec = MI->getOperand(Op+X86::AddrDisp);
394 
395   // If this has a segment register, print it.
396   printOptionalSegReg(MI, Op + X86::AddrSegmentReg, O);
397 
398   WithMarkup M = markup(O, Markup::Memory);
399   O << '[';
400 
401   bool NeedPlus = false;
402   if (BaseReg.getReg()) {
403     printOperand(MI, Op+X86::AddrBaseReg, O);
404     NeedPlus = true;
405   }
406 
407   if (IndexReg.getReg()) {
408     if (NeedPlus) O << " + ";
409     if (ScaleVal != 1 || !BaseReg.getReg())
410       O << ScaleVal << '*';
411     printOperand(MI, Op+X86::AddrIndexReg, O);
412     NeedPlus = true;
413   }
414 
415   if (!DispSpec.isImm()) {
416     if (NeedPlus) O << " + ";
417     assert(DispSpec.isExpr() && "non-immediate displacement for LEA?");
418     DispSpec.getExpr()->print(O, &MAI);
419   } else {
420     int64_t DispVal = DispSpec.getImm();
421     if (DispVal || (!IndexReg.getReg() && !BaseReg.getReg())) {
422       if (NeedPlus) {
423         if (DispVal > 0)
424           O << " + ";
425         else {
426           O << " - ";
427           DispVal = -DispVal;
428         }
429       }
430       markup(O, Markup::Immediate) << formatImm(DispVal);
431     }
432   }
433 
434   O << ']';
435 }
436 
437 void X86IntelInstPrinter::printSrcIdx(const MCInst *MI, unsigned Op,
438                                       raw_ostream &O) {
439   // If this has a segment register, print it.
440   printOptionalSegReg(MI, Op + 1, O);
441 
442   WithMarkup M = markup(O, Markup::Memory);
443   O << '[';
444   printOperand(MI, Op, O);
445   O << ']';
446 }
447 
448 void X86IntelInstPrinter::printDstIdx(const MCInst *MI, unsigned Op,
449                                       raw_ostream &O) {
450   // DI accesses are always ES-based.
451   O << "es:";
452 
453   WithMarkup M = markup(O, Markup::Memory);
454   O << '[';
455   printOperand(MI, Op, O);
456   O << ']';
457 }
458 
459 void X86IntelInstPrinter::printMemOffset(const MCInst *MI, unsigned Op,
460                                          raw_ostream &O) {
461   const MCOperand &DispSpec = MI->getOperand(Op);
462 
463   // If this has a segment register, print it.
464   printOptionalSegReg(MI, Op + 1, O);
465 
466   WithMarkup M = markup(O, Markup::Memory);
467   O << '[';
468 
469   if (DispSpec.isImm()) {
470     markup(O, Markup::Immediate) << formatImm(DispSpec.getImm());
471   } else {
472     assert(DispSpec.isExpr() && "non-immediate displacement?");
473     DispSpec.getExpr()->print(O, &MAI);
474   }
475 
476   O << ']';
477 }
478 
479 void X86IntelInstPrinter::printU8Imm(const MCInst *MI, unsigned Op,
480                                      raw_ostream &O) {
481   if (MI->getOperand(Op).isExpr())
482     return MI->getOperand(Op).getExpr()->print(O, &MAI);
483 
484   markup(O, Markup::Immediate) << formatImm(MI->getOperand(Op).getImm() & 0xff);
485 }
486 
487 void X86IntelInstPrinter::printSTiRegOperand(const MCInst *MI, unsigned OpNo,
488                                             raw_ostream &OS) {
489   MCRegister Reg = MI->getOperand(OpNo).getReg();
490   // Override the default printing to print st(0) instead st.
491   if (Reg == X86::ST0)
492     OS << "st(0)";
493   else
494     printRegName(OS, Reg);
495 }
496