1 //===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines a DAG pattern matching instruction selector for X86,
11 // converting from a legalized dag to a X86 dag.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "X86.h"
16 #include "X86InstrBuilder.h"
17 #include "X86MachineFunctionInfo.h"
18 #include "X86RegisterInfo.h"
19 #include "X86Subtarget.h"
20 #include "X86TargetMachine.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/CodeGen/MachineFrameInfo.h"
23 #include "llvm/CodeGen/MachineFunction.h"
24 #include "llvm/CodeGen/MachineInstrBuilder.h"
25 #include "llvm/CodeGen/MachineRegisterInfo.h"
26 #include "llvm/CodeGen/SelectionDAGISel.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/Intrinsics.h"
30 #include "llvm/IR/Type.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/MathExtras.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include "llvm/Target/TargetMachine.h"
36 #include "llvm/Target/TargetOptions.h"
37 #include <stdint.h>
38 using namespace llvm;
39
40 #define DEBUG_TYPE "x86-isel"
41
42 STATISTIC(NumLoadMoved, "Number of loads moved below TokenFactor");
43
44 //===----------------------------------------------------------------------===//
45 // Pattern Matcher Implementation
46 //===----------------------------------------------------------------------===//
47
48 namespace {
49 /// X86ISelAddressMode - This corresponds to X86AddressMode, but uses
50 /// SDValue's instead of register numbers for the leaves of the matched
51 /// tree.
52 struct X86ISelAddressMode {
53 enum {
54 RegBase,
55 FrameIndexBase
56 } BaseType;
57
58 // This is really a union, discriminated by BaseType!
59 SDValue Base_Reg;
60 int Base_FrameIndex;
61
62 unsigned Scale;
63 SDValue IndexReg;
64 int32_t Disp;
65 SDValue Segment;
66 const GlobalValue *GV;
67 const Constant *CP;
68 const BlockAddress *BlockAddr;
69 const char *ES;
70 int JT;
71 unsigned Align; // CP alignment.
72 unsigned char SymbolFlags; // X86II::MO_*
73
X86ISelAddressMode__anonb987ef3c0111::X86ISelAddressMode74 X86ISelAddressMode()
75 : BaseType(RegBase), Base_FrameIndex(0), Scale(1), IndexReg(), Disp(0),
76 Segment(), GV(nullptr), CP(nullptr), BlockAddr(nullptr), ES(nullptr),
77 JT(-1), Align(0), SymbolFlags(X86II::MO_NO_FLAG) {
78 }
79
hasSymbolicDisplacement__anonb987ef3c0111::X86ISelAddressMode80 bool hasSymbolicDisplacement() const {
81 return GV != nullptr || CP != nullptr || ES != nullptr ||
82 JT != -1 || BlockAddr != nullptr;
83 }
84
hasBaseOrIndexReg__anonb987ef3c0111::X86ISelAddressMode85 bool hasBaseOrIndexReg() const {
86 return BaseType == FrameIndexBase ||
87 IndexReg.getNode() != nullptr || Base_Reg.getNode() != nullptr;
88 }
89
90 /// isRIPRelative - Return true if this addressing mode is already RIP
91 /// relative.
isRIPRelative__anonb987ef3c0111::X86ISelAddressMode92 bool isRIPRelative() const {
93 if (BaseType != RegBase) return false;
94 if (RegisterSDNode *RegNode =
95 dyn_cast_or_null<RegisterSDNode>(Base_Reg.getNode()))
96 return RegNode->getReg() == X86::RIP;
97 return false;
98 }
99
setBaseReg__anonb987ef3c0111::X86ISelAddressMode100 void setBaseReg(SDValue Reg) {
101 BaseType = RegBase;
102 Base_Reg = Reg;
103 }
104
105 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump__anonb987ef3c0111::X86ISelAddressMode106 void dump() {
107 dbgs() << "X86ISelAddressMode " << this << '\n';
108 dbgs() << "Base_Reg ";
109 if (Base_Reg.getNode())
110 Base_Reg.getNode()->dump();
111 else
112 dbgs() << "nul";
113 dbgs() << " Base.FrameIndex " << Base_FrameIndex << '\n'
114 << " Scale" << Scale << '\n'
115 << "IndexReg ";
116 if (IndexReg.getNode())
117 IndexReg.getNode()->dump();
118 else
119 dbgs() << "nul";
120 dbgs() << " Disp " << Disp << '\n'
121 << "GV ";
122 if (GV)
123 GV->dump();
124 else
125 dbgs() << "nul";
126 dbgs() << " CP ";
127 if (CP)
128 CP->dump();
129 else
130 dbgs() << "nul";
131 dbgs() << '\n'
132 << "ES ";
133 if (ES)
134 dbgs() << ES;
135 else
136 dbgs() << "nul";
137 dbgs() << " JT" << JT << " Align" << Align << '\n';
138 }
139 #endif
140 };
141 }
142
143 namespace {
144 //===--------------------------------------------------------------------===//
145 /// ISel - X86 specific code to select X86 machine instructions for
146 /// SelectionDAG operations.
147 ///
148 class X86DAGToDAGISel final : public SelectionDAGISel {
149 /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
150 /// make the right decision when generating code for different targets.
151 const X86Subtarget *Subtarget;
152
153 /// OptForSize - If true, selector should try to optimize for code size
154 /// instead of performance.
155 bool OptForSize;
156
157 public:
X86DAGToDAGISel(X86TargetMachine & tm,CodeGenOpt::Level OptLevel)158 explicit X86DAGToDAGISel(X86TargetMachine &tm, CodeGenOpt::Level OptLevel)
159 : SelectionDAGISel(tm, OptLevel),
160 Subtarget(&tm.getSubtarget<X86Subtarget>()),
161 OptForSize(false) {}
162
getPassName() const163 const char *getPassName() const override {
164 return "X86 DAG->DAG Instruction Selection";
165 }
166
runOnMachineFunction(MachineFunction & MF)167 bool runOnMachineFunction(MachineFunction &MF) override {
168 // Reset the subtarget each time through.
169 Subtarget = &TM.getSubtarget<X86Subtarget>();
170 SelectionDAGISel::runOnMachineFunction(MF);
171 return true;
172 }
173
174 void EmitFunctionEntryCode() override;
175
176 bool IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const override;
177
178 void PreprocessISelDAG() override;
179
immSext8(SDNode * N) const180 inline bool immSext8(SDNode *N) const {
181 return isInt<8>(cast<ConstantSDNode>(N)->getSExtValue());
182 }
183
184 // i64immSExt32 predicate - True if the 64-bit immediate fits in a 32-bit
185 // sign extended field.
i64immSExt32(SDNode * N) const186 inline bool i64immSExt32(SDNode *N) const {
187 uint64_t v = cast<ConstantSDNode>(N)->getZExtValue();
188 return (int64_t)v == (int32_t)v;
189 }
190
191 // Include the pieces autogenerated from the target description.
192 #include "X86GenDAGISel.inc"
193
194 private:
195 SDNode *Select(SDNode *N) override;
196 SDNode *SelectGather(SDNode *N, unsigned Opc);
197 SDNode *SelectAtomicLoadArith(SDNode *Node, MVT NVT);
198
199 bool FoldOffsetIntoAddress(uint64_t Offset, X86ISelAddressMode &AM);
200 bool MatchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM);
201 bool MatchWrapper(SDValue N, X86ISelAddressMode &AM);
202 bool MatchAddress(SDValue N, X86ISelAddressMode &AM);
203 bool MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
204 unsigned Depth);
205 bool MatchAddressBase(SDValue N, X86ISelAddressMode &AM);
206 bool SelectAddr(SDNode *Parent, SDValue N, SDValue &Base,
207 SDValue &Scale, SDValue &Index, SDValue &Disp,
208 SDValue &Segment);
209 bool SelectMOV64Imm32(SDValue N, SDValue &Imm);
210 bool SelectLEAAddr(SDValue N, SDValue &Base,
211 SDValue &Scale, SDValue &Index, SDValue &Disp,
212 SDValue &Segment);
213 bool SelectLEA64_32Addr(SDValue N, SDValue &Base,
214 SDValue &Scale, SDValue &Index, SDValue &Disp,
215 SDValue &Segment);
216 bool SelectTLSADDRAddr(SDValue N, SDValue &Base,
217 SDValue &Scale, SDValue &Index, SDValue &Disp,
218 SDValue &Segment);
219 bool SelectScalarSSELoad(SDNode *Root, SDValue N,
220 SDValue &Base, SDValue &Scale,
221 SDValue &Index, SDValue &Disp,
222 SDValue &Segment,
223 SDValue &NodeWithChain);
224
225 bool TryFoldLoad(SDNode *P, SDValue N,
226 SDValue &Base, SDValue &Scale,
227 SDValue &Index, SDValue &Disp,
228 SDValue &Segment);
229
230 /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
231 /// inline asm expressions.
232 bool SelectInlineAsmMemoryOperand(const SDValue &Op,
233 char ConstraintCode,
234 std::vector<SDValue> &OutOps) override;
235
236 void EmitSpecialCodeForMain(MachineBasicBlock *BB, MachineFrameInfo *MFI);
237
getAddressOperands(X86ISelAddressMode & AM,SDValue & Base,SDValue & Scale,SDValue & Index,SDValue & Disp,SDValue & Segment)238 inline void getAddressOperands(X86ISelAddressMode &AM, SDValue &Base,
239 SDValue &Scale, SDValue &Index,
240 SDValue &Disp, SDValue &Segment) {
241 Base = (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
242 ? CurDAG->getTargetFrameIndex(AM.Base_FrameIndex,
243 TLI->getPointerTy())
244 : AM.Base_Reg;
245 Scale = getI8Imm(AM.Scale);
246 Index = AM.IndexReg;
247 // These are 32-bit even in 64-bit mode since RIP relative offset
248 // is 32-bit.
249 if (AM.GV)
250 Disp = CurDAG->getTargetGlobalAddress(AM.GV, SDLoc(),
251 MVT::i32, AM.Disp,
252 AM.SymbolFlags);
253 else if (AM.CP)
254 Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i32,
255 AM.Align, AM.Disp, AM.SymbolFlags);
256 else if (AM.ES) {
257 assert(!AM.Disp && "Non-zero displacement is ignored with ES.");
258 Disp = CurDAG->getTargetExternalSymbol(AM.ES, MVT::i32, AM.SymbolFlags);
259 } else if (AM.JT != -1) {
260 assert(!AM.Disp && "Non-zero displacement is ignored with JT.");
261 Disp = CurDAG->getTargetJumpTable(AM.JT, MVT::i32, AM.SymbolFlags);
262 } else if (AM.BlockAddr)
263 Disp = CurDAG->getTargetBlockAddress(AM.BlockAddr, MVT::i32, AM.Disp,
264 AM.SymbolFlags);
265 else
266 Disp = CurDAG->getTargetConstant(AM.Disp, MVT::i32);
267
268 if (AM.Segment.getNode())
269 Segment = AM.Segment;
270 else
271 Segment = CurDAG->getRegister(0, MVT::i32);
272 }
273
274 /// getI8Imm - Return a target constant with the specified value, of type
275 /// i8.
getI8Imm(unsigned Imm)276 inline SDValue getI8Imm(unsigned Imm) {
277 return CurDAG->getTargetConstant(Imm, MVT::i8);
278 }
279
280 /// getI32Imm - Return a target constant with the specified value, of type
281 /// i32.
getI32Imm(unsigned Imm)282 inline SDValue getI32Imm(unsigned Imm) {
283 return CurDAG->getTargetConstant(Imm, MVT::i32);
284 }
285
286 /// getGlobalBaseReg - Return an SDNode that returns the value of
287 /// the global base register. Output instructions required to
288 /// initialize the global base register, if necessary.
289 ///
290 SDNode *getGlobalBaseReg();
291
292 /// getTargetMachine - Return a reference to the TargetMachine, casted
293 /// to the target-specific type.
getTargetMachine() const294 const X86TargetMachine &getTargetMachine() const {
295 return static_cast<const X86TargetMachine &>(TM);
296 }
297
298 /// getInstrInfo - Return a reference to the TargetInstrInfo, casted
299 /// to the target-specific type.
getInstrInfo() const300 const X86InstrInfo *getInstrInfo() const {
301 return getTargetMachine().getSubtargetImpl()->getInstrInfo();
302 }
303
304 /// \brief Address-mode matching performs shift-of-and to and-of-shift
305 /// reassociation in order to expose more scaled addressing
306 /// opportunities.
ComplexPatternFuncMutatesDAG() const307 bool ComplexPatternFuncMutatesDAG() const override {
308 return true;
309 }
310 };
311 }
312
313
314 bool
IsProfitableToFold(SDValue N,SDNode * U,SDNode * Root) const315 X86DAGToDAGISel::IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const {
316 if (OptLevel == CodeGenOpt::None) return false;
317
318 if (!N.hasOneUse())
319 return false;
320
321 if (N.getOpcode() != ISD::LOAD)
322 return true;
323
324 // If N is a load, do additional profitability checks.
325 if (U == Root) {
326 switch (U->getOpcode()) {
327 default: break;
328 case X86ISD::ADD:
329 case X86ISD::SUB:
330 case X86ISD::AND:
331 case X86ISD::XOR:
332 case X86ISD::OR:
333 case ISD::ADD:
334 case ISD::ADDC:
335 case ISD::ADDE:
336 case ISD::AND:
337 case ISD::OR:
338 case ISD::XOR: {
339 SDValue Op1 = U->getOperand(1);
340
341 // If the other operand is a 8-bit immediate we should fold the immediate
342 // instead. This reduces code size.
343 // e.g.
344 // movl 4(%esp), %eax
345 // addl $4, %eax
346 // vs.
347 // movl $4, %eax
348 // addl 4(%esp), %eax
349 // The former is 2 bytes shorter. In case where the increment is 1, then
350 // the saving can be 4 bytes (by using incl %eax).
351 if (ConstantSDNode *Imm = dyn_cast<ConstantSDNode>(Op1))
352 if (Imm->getAPIntValue().isSignedIntN(8))
353 return false;
354
355 // If the other operand is a TLS address, we should fold it instead.
356 // This produces
357 // movl %gs:0, %eax
358 // leal i@NTPOFF(%eax), %eax
359 // instead of
360 // movl $i@NTPOFF, %eax
361 // addl %gs:0, %eax
362 // if the block also has an access to a second TLS address this will save
363 // a load.
364 // FIXME: This is probably also true for non-TLS addresses.
365 if (Op1.getOpcode() == X86ISD::Wrapper) {
366 SDValue Val = Op1.getOperand(0);
367 if (Val.getOpcode() == ISD::TargetGlobalTLSAddress)
368 return false;
369 }
370 }
371 }
372 }
373
374 return true;
375 }
376
377 /// MoveBelowCallOrigChain - Replace the original chain operand of the call with
378 /// load's chain operand and move load below the call's chain operand.
MoveBelowOrigChain(SelectionDAG * CurDAG,SDValue Load,SDValue Call,SDValue OrigChain)379 static void MoveBelowOrigChain(SelectionDAG *CurDAG, SDValue Load,
380 SDValue Call, SDValue OrigChain) {
381 SmallVector<SDValue, 8> Ops;
382 SDValue Chain = OrigChain.getOperand(0);
383 if (Chain.getNode() == Load.getNode())
384 Ops.push_back(Load.getOperand(0));
385 else {
386 assert(Chain.getOpcode() == ISD::TokenFactor &&
387 "Unexpected chain operand");
388 for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i)
389 if (Chain.getOperand(i).getNode() == Load.getNode())
390 Ops.push_back(Load.getOperand(0));
391 else
392 Ops.push_back(Chain.getOperand(i));
393 SDValue NewChain =
394 CurDAG->getNode(ISD::TokenFactor, SDLoc(Load), MVT::Other, Ops);
395 Ops.clear();
396 Ops.push_back(NewChain);
397 }
398 for (unsigned i = 1, e = OrigChain.getNumOperands(); i != e; ++i)
399 Ops.push_back(OrigChain.getOperand(i));
400 CurDAG->UpdateNodeOperands(OrigChain.getNode(), Ops);
401 CurDAG->UpdateNodeOperands(Load.getNode(), Call.getOperand(0),
402 Load.getOperand(1), Load.getOperand(2));
403
404 unsigned NumOps = Call.getNode()->getNumOperands();
405 Ops.clear();
406 Ops.push_back(SDValue(Load.getNode(), 1));
407 for (unsigned i = 1, e = NumOps; i != e; ++i)
408 Ops.push_back(Call.getOperand(i));
409 CurDAG->UpdateNodeOperands(Call.getNode(), Ops);
410 }
411
412 /// isCalleeLoad - Return true if call address is a load and it can be
413 /// moved below CALLSEQ_START and the chains leading up to the call.
414 /// Return the CALLSEQ_START by reference as a second output.
415 /// In the case of a tail call, there isn't a callseq node between the call
416 /// chain and the load.
isCalleeLoad(SDValue Callee,SDValue & Chain,bool HasCallSeq)417 static bool isCalleeLoad(SDValue Callee, SDValue &Chain, bool HasCallSeq) {
418 // The transformation is somewhat dangerous if the call's chain was glued to
419 // the call. After MoveBelowOrigChain the load is moved between the call and
420 // the chain, this can create a cycle if the load is not folded. So it is
421 // *really* important that we are sure the load will be folded.
422 if (Callee.getNode() == Chain.getNode() || !Callee.hasOneUse())
423 return false;
424 LoadSDNode *LD = dyn_cast<LoadSDNode>(Callee.getNode());
425 if (!LD ||
426 LD->isVolatile() ||
427 LD->getAddressingMode() != ISD::UNINDEXED ||
428 LD->getExtensionType() != ISD::NON_EXTLOAD)
429 return false;
430
431 // Now let's find the callseq_start.
432 while (HasCallSeq && Chain.getOpcode() != ISD::CALLSEQ_START) {
433 if (!Chain.hasOneUse())
434 return false;
435 Chain = Chain.getOperand(0);
436 }
437
438 if (!Chain.getNumOperands())
439 return false;
440 // Since we are not checking for AA here, conservatively abort if the chain
441 // writes to memory. It's not safe to move the callee (a load) across a store.
442 if (isa<MemSDNode>(Chain.getNode()) &&
443 cast<MemSDNode>(Chain.getNode())->writeMem())
444 return false;
445 if (Chain.getOperand(0).getNode() == Callee.getNode())
446 return true;
447 if (Chain.getOperand(0).getOpcode() == ISD::TokenFactor &&
448 Callee.getValue(1).isOperandOf(Chain.getOperand(0).getNode()) &&
449 Callee.getValue(1).hasOneUse())
450 return true;
451 return false;
452 }
453
PreprocessISelDAG()454 void X86DAGToDAGISel::PreprocessISelDAG() {
455 // OptForSize is used in pattern predicates that isel is matching.
456 OptForSize = MF->getFunction()->getAttributes().
457 hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize);
458
459 for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
460 E = CurDAG->allnodes_end(); I != E; ) {
461 SDNode *N = I++; // Preincrement iterator to avoid invalidation issues.
462
463 if (OptLevel != CodeGenOpt::None &&
464 // Only does this when target favors doesn't favor register indirect
465 // call.
466 ((N->getOpcode() == X86ISD::CALL && !Subtarget->callRegIndirect()) ||
467 (N->getOpcode() == X86ISD::TC_RETURN &&
468 // Only does this if load can be folded into TC_RETURN.
469 (Subtarget->is64Bit() ||
470 getTargetMachine().getRelocationModel() != Reloc::PIC_)))) {
471 /// Also try moving call address load from outside callseq_start to just
472 /// before the call to allow it to be folded.
473 ///
474 /// [Load chain]
475 /// ^
476 /// |
477 /// [Load]
478 /// ^ ^
479 /// | |
480 /// / \--
481 /// / |
482 ///[CALLSEQ_START] |
483 /// ^ |
484 /// | |
485 /// [LOAD/C2Reg] |
486 /// | |
487 /// \ /
488 /// \ /
489 /// [CALL]
490 bool HasCallSeq = N->getOpcode() == X86ISD::CALL;
491 SDValue Chain = N->getOperand(0);
492 SDValue Load = N->getOperand(1);
493 if (!isCalleeLoad(Load, Chain, HasCallSeq))
494 continue;
495 MoveBelowOrigChain(CurDAG, Load, SDValue(N, 0), Chain);
496 ++NumLoadMoved;
497 continue;
498 }
499
500 // Lower fpround and fpextend nodes that target the FP stack to be store and
501 // load to the stack. This is a gross hack. We would like to simply mark
502 // these as being illegal, but when we do that, legalize produces these when
503 // it expands calls, then expands these in the same legalize pass. We would
504 // like dag combine to be able to hack on these between the call expansion
505 // and the node legalization. As such this pass basically does "really
506 // late" legalization of these inline with the X86 isel pass.
507 // FIXME: This should only happen when not compiled with -O0.
508 if (N->getOpcode() != ISD::FP_ROUND && N->getOpcode() != ISD::FP_EXTEND)
509 continue;
510
511 MVT SrcVT = N->getOperand(0).getSimpleValueType();
512 MVT DstVT = N->getSimpleValueType(0);
513
514 // If any of the sources are vectors, no fp stack involved.
515 if (SrcVT.isVector() || DstVT.isVector())
516 continue;
517
518 // If the source and destination are SSE registers, then this is a legal
519 // conversion that should not be lowered.
520 const X86TargetLowering *X86Lowering =
521 static_cast<const X86TargetLowering *>(TLI);
522 bool SrcIsSSE = X86Lowering->isScalarFPTypeInSSEReg(SrcVT);
523 bool DstIsSSE = X86Lowering->isScalarFPTypeInSSEReg(DstVT);
524 if (SrcIsSSE && DstIsSSE)
525 continue;
526
527 if (!SrcIsSSE && !DstIsSSE) {
528 // If this is an FPStack extension, it is a noop.
529 if (N->getOpcode() == ISD::FP_EXTEND)
530 continue;
531 // If this is a value-preserving FPStack truncation, it is a noop.
532 if (N->getConstantOperandVal(1))
533 continue;
534 }
535
536 // Here we could have an FP stack truncation or an FPStack <-> SSE convert.
537 // FPStack has extload and truncstore. SSE can fold direct loads into other
538 // operations. Based on this, decide what we want to do.
539 MVT MemVT;
540 if (N->getOpcode() == ISD::FP_ROUND)
541 MemVT = DstVT; // FP_ROUND must use DstVT, we can't do a 'trunc load'.
542 else
543 MemVT = SrcIsSSE ? SrcVT : DstVT;
544
545 SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT);
546 SDLoc dl(N);
547
548 // FIXME: optimize the case where the src/dest is a load or store?
549 SDValue Store = CurDAG->getTruncStore(CurDAG->getEntryNode(), dl,
550 N->getOperand(0),
551 MemTmp, MachinePointerInfo(), MemVT,
552 false, false, 0);
553 SDValue Result = CurDAG->getExtLoad(ISD::EXTLOAD, dl, DstVT, Store, MemTmp,
554 MachinePointerInfo(),
555 MemVT, false, false, false, 0);
556
557 // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the
558 // extload we created. This will cause general havok on the dag because
559 // anything below the conversion could be folded into other existing nodes.
560 // To avoid invalidating 'I', back it up to the convert node.
561 --I;
562 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
563
564 // Now that we did that, the node is dead. Increment the iterator to the
565 // next node to process, then delete N.
566 ++I;
567 CurDAG->DeleteNode(N);
568 }
569 }
570
571
572 /// EmitSpecialCodeForMain - Emit any code that needs to be executed only in
573 /// the main function.
EmitSpecialCodeForMain(MachineBasicBlock * BB,MachineFrameInfo * MFI)574 void X86DAGToDAGISel::EmitSpecialCodeForMain(MachineBasicBlock *BB,
575 MachineFrameInfo *MFI) {
576 const TargetInstrInfo *TII = TM.getSubtargetImpl()->getInstrInfo();
577 if (Subtarget->isTargetCygMing()) {
578 unsigned CallOp =
579 Subtarget->is64Bit() ? X86::CALL64pcrel32 : X86::CALLpcrel32;
580 BuildMI(BB, DebugLoc(),
581 TII->get(CallOp)).addExternalSymbol("__main");
582 }
583 }
584
EmitFunctionEntryCode()585 void X86DAGToDAGISel::EmitFunctionEntryCode() {
586 // If this is main, emit special code for main.
587 if (const Function *Fn = MF->getFunction())
588 if (Fn->hasExternalLinkage() && Fn->getName() == "main")
589 EmitSpecialCodeForMain(MF->begin(), MF->getFrameInfo());
590 }
591
isDispSafeForFrameIndex(int64_t Val)592 static bool isDispSafeForFrameIndex(int64_t Val) {
593 // On 64-bit platforms, we can run into an issue where a frame index
594 // includes a displacement that, when added to the explicit displacement,
595 // will overflow the displacement field. Assuming that the frame index
596 // displacement fits into a 31-bit integer (which is only slightly more
597 // aggressive than the current fundamental assumption that it fits into
598 // a 32-bit integer), a 31-bit disp should always be safe.
599 return isInt<31>(Val);
600 }
601
FoldOffsetIntoAddress(uint64_t Offset,X86ISelAddressMode & AM)602 bool X86DAGToDAGISel::FoldOffsetIntoAddress(uint64_t Offset,
603 X86ISelAddressMode &AM) {
604 int64_t Val = AM.Disp + Offset;
605 CodeModel::Model M = TM.getCodeModel();
606 if (Subtarget->is64Bit()) {
607 if (!X86::isOffsetSuitableForCodeModel(Val, M,
608 AM.hasSymbolicDisplacement()))
609 return true;
610 // In addition to the checks required for a register base, check that
611 // we do not try to use an unsafe Disp with a frame index.
612 if (AM.BaseType == X86ISelAddressMode::FrameIndexBase &&
613 !isDispSafeForFrameIndex(Val))
614 return true;
615 }
616 AM.Disp = Val;
617 return false;
618
619 }
620
MatchLoadInAddress(LoadSDNode * N,X86ISelAddressMode & AM)621 bool X86DAGToDAGISel::MatchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM){
622 SDValue Address = N->getOperand(1);
623
624 // load gs:0 -> GS segment register.
625 // load fs:0 -> FS segment register.
626 //
627 // This optimization is valid because the GNU TLS model defines that
628 // gs:0 (or fs:0 on X86-64) contains its own address.
629 // For more information see http://people.redhat.com/drepper/tls.pdf
630 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Address))
631 if (C->getSExtValue() == 0 && AM.Segment.getNode() == nullptr &&
632 Subtarget->isTargetLinux())
633 switch (N->getPointerInfo().getAddrSpace()) {
634 case 256:
635 AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
636 return false;
637 case 257:
638 AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
639 return false;
640 }
641
642 return true;
643 }
644
645 /// MatchWrapper - Try to match X86ISD::Wrapper and X86ISD::WrapperRIP nodes
646 /// into an addressing mode. These wrap things that will resolve down into a
647 /// symbol reference. If no match is possible, this returns true, otherwise it
648 /// returns false.
MatchWrapper(SDValue N,X86ISelAddressMode & AM)649 bool X86DAGToDAGISel::MatchWrapper(SDValue N, X86ISelAddressMode &AM) {
650 // If the addressing mode already has a symbol as the displacement, we can
651 // never match another symbol.
652 if (AM.hasSymbolicDisplacement())
653 return true;
654
655 SDValue N0 = N.getOperand(0);
656 CodeModel::Model M = TM.getCodeModel();
657
658 // Handle X86-64 rip-relative addresses. We check this before checking direct
659 // folding because RIP is preferable to non-RIP accesses.
660 if (Subtarget->is64Bit() && N.getOpcode() == X86ISD::WrapperRIP &&
661 // Under X86-64 non-small code model, GV (and friends) are 64-bits, so
662 // they cannot be folded into immediate fields.
663 // FIXME: This can be improved for kernel and other models?
664 (M == CodeModel::Small || M == CodeModel::Kernel)) {
665 // Base and index reg must be 0 in order to use %rip as base.
666 if (AM.hasBaseOrIndexReg())
667 return true;
668 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
669 X86ISelAddressMode Backup = AM;
670 AM.GV = G->getGlobal();
671 AM.SymbolFlags = G->getTargetFlags();
672 if (FoldOffsetIntoAddress(G->getOffset(), AM)) {
673 AM = Backup;
674 return true;
675 }
676 } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
677 X86ISelAddressMode Backup = AM;
678 AM.CP = CP->getConstVal();
679 AM.Align = CP->getAlignment();
680 AM.SymbolFlags = CP->getTargetFlags();
681 if (FoldOffsetIntoAddress(CP->getOffset(), AM)) {
682 AM = Backup;
683 return true;
684 }
685 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
686 AM.ES = S->getSymbol();
687 AM.SymbolFlags = S->getTargetFlags();
688 } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
689 AM.JT = J->getIndex();
690 AM.SymbolFlags = J->getTargetFlags();
691 } else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(N0)) {
692 X86ISelAddressMode Backup = AM;
693 AM.BlockAddr = BA->getBlockAddress();
694 AM.SymbolFlags = BA->getTargetFlags();
695 if (FoldOffsetIntoAddress(BA->getOffset(), AM)) {
696 AM = Backup;
697 return true;
698 }
699 } else
700 llvm_unreachable("Unhandled symbol reference node.");
701
702 if (N.getOpcode() == X86ISD::WrapperRIP)
703 AM.setBaseReg(CurDAG->getRegister(X86::RIP, MVT::i64));
704 return false;
705 }
706
707 // Handle the case when globals fit in our immediate field: This is true for
708 // X86-32 always and X86-64 when in -mcmodel=small mode. In 64-bit
709 // mode, this only applies to a non-RIP-relative computation.
710 if (!Subtarget->is64Bit() ||
711 M == CodeModel::Small || M == CodeModel::Kernel) {
712 assert(N.getOpcode() != X86ISD::WrapperRIP &&
713 "RIP-relative addressing already handled");
714 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
715 AM.GV = G->getGlobal();
716 AM.Disp += G->getOffset();
717 AM.SymbolFlags = G->getTargetFlags();
718 } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
719 AM.CP = CP->getConstVal();
720 AM.Align = CP->getAlignment();
721 AM.Disp += CP->getOffset();
722 AM.SymbolFlags = CP->getTargetFlags();
723 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
724 AM.ES = S->getSymbol();
725 AM.SymbolFlags = S->getTargetFlags();
726 } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
727 AM.JT = J->getIndex();
728 AM.SymbolFlags = J->getTargetFlags();
729 } else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(N0)) {
730 AM.BlockAddr = BA->getBlockAddress();
731 AM.Disp += BA->getOffset();
732 AM.SymbolFlags = BA->getTargetFlags();
733 } else
734 llvm_unreachable("Unhandled symbol reference node.");
735 return false;
736 }
737
738 return true;
739 }
740
741 /// MatchAddress - Add the specified node to the specified addressing mode,
742 /// returning true if it cannot be done. This just pattern matches for the
743 /// addressing mode.
MatchAddress(SDValue N,X86ISelAddressMode & AM)744 bool X86DAGToDAGISel::MatchAddress(SDValue N, X86ISelAddressMode &AM) {
745 if (MatchAddressRecursively(N, AM, 0))
746 return true;
747
748 // Post-processing: Convert lea(,%reg,2) to lea(%reg,%reg), which has
749 // a smaller encoding and avoids a scaled-index.
750 if (AM.Scale == 2 &&
751 AM.BaseType == X86ISelAddressMode::RegBase &&
752 AM.Base_Reg.getNode() == nullptr) {
753 AM.Base_Reg = AM.IndexReg;
754 AM.Scale = 1;
755 }
756
757 // Post-processing: Convert foo to foo(%rip), even in non-PIC mode,
758 // because it has a smaller encoding.
759 // TODO: Which other code models can use this?
760 if (TM.getCodeModel() == CodeModel::Small &&
761 Subtarget->is64Bit() &&
762 AM.Scale == 1 &&
763 AM.BaseType == X86ISelAddressMode::RegBase &&
764 AM.Base_Reg.getNode() == nullptr &&
765 AM.IndexReg.getNode() == nullptr &&
766 AM.SymbolFlags == X86II::MO_NO_FLAG &&
767 AM.hasSymbolicDisplacement())
768 AM.Base_Reg = CurDAG->getRegister(X86::RIP, MVT::i64);
769
770 return false;
771 }
772
773 // Insert a node into the DAG at least before the Pos node's position. This
774 // will reposition the node as needed, and will assign it a node ID that is <=
775 // the Pos node's ID. Note that this does *not* preserve the uniqueness of node
776 // IDs! The selection DAG must no longer depend on their uniqueness when this
777 // is used.
InsertDAGNode(SelectionDAG & DAG,SDValue Pos,SDValue N)778 static void InsertDAGNode(SelectionDAG &DAG, SDValue Pos, SDValue N) {
779 if (N.getNode()->getNodeId() == -1 ||
780 N.getNode()->getNodeId() > Pos.getNode()->getNodeId()) {
781 DAG.RepositionNode(Pos.getNode(), N.getNode());
782 N.getNode()->setNodeId(Pos.getNode()->getNodeId());
783 }
784 }
785
786 // Transform "(X >> (8-C1)) & (0xff << C1)" to "((X >> 8) & 0xff) << C1" if
787 // safe. This allows us to convert the shift and and into an h-register
788 // extract and a scaled index. Returns false if the simplification is
789 // performed.
FoldMaskAndShiftToExtract(SelectionDAG & DAG,SDValue N,uint64_t Mask,SDValue Shift,SDValue X,X86ISelAddressMode & AM)790 static bool FoldMaskAndShiftToExtract(SelectionDAG &DAG, SDValue N,
791 uint64_t Mask,
792 SDValue Shift, SDValue X,
793 X86ISelAddressMode &AM) {
794 if (Shift.getOpcode() != ISD::SRL ||
795 !isa<ConstantSDNode>(Shift.getOperand(1)) ||
796 !Shift.hasOneUse())
797 return true;
798
799 int ScaleLog = 8 - Shift.getConstantOperandVal(1);
800 if (ScaleLog <= 0 || ScaleLog >= 4 ||
801 Mask != (0xffu << ScaleLog))
802 return true;
803
804 MVT VT = N.getSimpleValueType();
805 SDLoc DL(N);
806 SDValue Eight = DAG.getConstant(8, MVT::i8);
807 SDValue NewMask = DAG.getConstant(0xff, VT);
808 SDValue Srl = DAG.getNode(ISD::SRL, DL, VT, X, Eight);
809 SDValue And = DAG.getNode(ISD::AND, DL, VT, Srl, NewMask);
810 SDValue ShlCount = DAG.getConstant(ScaleLog, MVT::i8);
811 SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, And, ShlCount);
812
813 // Insert the new nodes into the topological ordering. We must do this in
814 // a valid topological ordering as nothing is going to go back and re-sort
815 // these nodes. We continually insert before 'N' in sequence as this is
816 // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
817 // hierarchy left to express.
818 InsertDAGNode(DAG, N, Eight);
819 InsertDAGNode(DAG, N, Srl);
820 InsertDAGNode(DAG, N, NewMask);
821 InsertDAGNode(DAG, N, And);
822 InsertDAGNode(DAG, N, ShlCount);
823 InsertDAGNode(DAG, N, Shl);
824 DAG.ReplaceAllUsesWith(N, Shl);
825 AM.IndexReg = And;
826 AM.Scale = (1 << ScaleLog);
827 return false;
828 }
829
830 // Transforms "(X << C1) & C2" to "(X & (C2>>C1)) << C1" if safe and if this
831 // allows us to fold the shift into this addressing mode. Returns false if the
832 // transform succeeded.
FoldMaskedShiftToScaledMask(SelectionDAG & DAG,SDValue N,uint64_t Mask,SDValue Shift,SDValue X,X86ISelAddressMode & AM)833 static bool FoldMaskedShiftToScaledMask(SelectionDAG &DAG, SDValue N,
834 uint64_t Mask,
835 SDValue Shift, SDValue X,
836 X86ISelAddressMode &AM) {
837 if (Shift.getOpcode() != ISD::SHL ||
838 !isa<ConstantSDNode>(Shift.getOperand(1)))
839 return true;
840
841 // Not likely to be profitable if either the AND or SHIFT node has more
842 // than one use (unless all uses are for address computation). Besides,
843 // isel mechanism requires their node ids to be reused.
844 if (!N.hasOneUse() || !Shift.hasOneUse())
845 return true;
846
847 // Verify that the shift amount is something we can fold.
848 unsigned ShiftAmt = Shift.getConstantOperandVal(1);
849 if (ShiftAmt != 1 && ShiftAmt != 2 && ShiftAmt != 3)
850 return true;
851
852 MVT VT = N.getSimpleValueType();
853 SDLoc DL(N);
854 SDValue NewMask = DAG.getConstant(Mask >> ShiftAmt, VT);
855 SDValue NewAnd = DAG.getNode(ISD::AND, DL, VT, X, NewMask);
856 SDValue NewShift = DAG.getNode(ISD::SHL, DL, VT, NewAnd, Shift.getOperand(1));
857
858 // Insert the new nodes into the topological ordering. We must do this in
859 // a valid topological ordering as nothing is going to go back and re-sort
860 // these nodes. We continually insert before 'N' in sequence as this is
861 // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
862 // hierarchy left to express.
863 InsertDAGNode(DAG, N, NewMask);
864 InsertDAGNode(DAG, N, NewAnd);
865 InsertDAGNode(DAG, N, NewShift);
866 DAG.ReplaceAllUsesWith(N, NewShift);
867
868 AM.Scale = 1 << ShiftAmt;
869 AM.IndexReg = NewAnd;
870 return false;
871 }
872
873 // Implement some heroics to detect shifts of masked values where the mask can
874 // be replaced by extending the shift and undoing that in the addressing mode
875 // scale. Patterns such as (shl (srl x, c1), c2) are canonicalized into (and
876 // (srl x, SHIFT), MASK) by DAGCombines that don't know the shl can be done in
877 // the addressing mode. This results in code such as:
878 //
879 // int f(short *y, int *lookup_table) {
880 // ...
881 // return *y + lookup_table[*y >> 11];
882 // }
883 //
884 // Turning into:
885 // movzwl (%rdi), %eax
886 // movl %eax, %ecx
887 // shrl $11, %ecx
888 // addl (%rsi,%rcx,4), %eax
889 //
890 // Instead of:
891 // movzwl (%rdi), %eax
892 // movl %eax, %ecx
893 // shrl $9, %ecx
894 // andl $124, %rcx
895 // addl (%rsi,%rcx), %eax
896 //
897 // Note that this function assumes the mask is provided as a mask *after* the
898 // value is shifted. The input chain may or may not match that, but computing
899 // such a mask is trivial.
FoldMaskAndShiftToScale(SelectionDAG & DAG,SDValue N,uint64_t Mask,SDValue Shift,SDValue X,X86ISelAddressMode & AM)900 static bool FoldMaskAndShiftToScale(SelectionDAG &DAG, SDValue N,
901 uint64_t Mask,
902 SDValue Shift, SDValue X,
903 X86ISelAddressMode &AM) {
904 if (Shift.getOpcode() != ISD::SRL || !Shift.hasOneUse() ||
905 !isa<ConstantSDNode>(Shift.getOperand(1)))
906 return true;
907
908 unsigned ShiftAmt = Shift.getConstantOperandVal(1);
909 unsigned MaskLZ = countLeadingZeros(Mask);
910 unsigned MaskTZ = countTrailingZeros(Mask);
911
912 // The amount of shift we're trying to fit into the addressing mode is taken
913 // from the trailing zeros of the mask.
914 unsigned AMShiftAmt = MaskTZ;
915
916 // There is nothing we can do here unless the mask is removing some bits.
917 // Also, the addressing mode can only represent shifts of 1, 2, or 3 bits.
918 if (AMShiftAmt <= 0 || AMShiftAmt > 3) return true;
919
920 // We also need to ensure that mask is a continuous run of bits.
921 if (CountTrailingOnes_64(Mask >> MaskTZ) + MaskTZ + MaskLZ != 64) return true;
922
923 // Scale the leading zero count down based on the actual size of the value.
924 // Also scale it down based on the size of the shift.
925 MaskLZ -= (64 - X.getSimpleValueType().getSizeInBits()) + ShiftAmt;
926
927 // The final check is to ensure that any masked out high bits of X are
928 // already known to be zero. Otherwise, the mask has a semantic impact
929 // other than masking out a couple of low bits. Unfortunately, because of
930 // the mask, zero extensions will be removed from operands in some cases.
931 // This code works extra hard to look through extensions because we can
932 // replace them with zero extensions cheaply if necessary.
933 bool ReplacingAnyExtend = false;
934 if (X.getOpcode() == ISD::ANY_EXTEND) {
935 unsigned ExtendBits = X.getSimpleValueType().getSizeInBits() -
936 X.getOperand(0).getSimpleValueType().getSizeInBits();
937 // Assume that we'll replace the any-extend with a zero-extend, and
938 // narrow the search to the extended value.
939 X = X.getOperand(0);
940 MaskLZ = ExtendBits > MaskLZ ? 0 : MaskLZ - ExtendBits;
941 ReplacingAnyExtend = true;
942 }
943 APInt MaskedHighBits =
944 APInt::getHighBitsSet(X.getSimpleValueType().getSizeInBits(), MaskLZ);
945 APInt KnownZero, KnownOne;
946 DAG.computeKnownBits(X, KnownZero, KnownOne);
947 if (MaskedHighBits != KnownZero) return true;
948
949 // We've identified a pattern that can be transformed into a single shift
950 // and an addressing mode. Make it so.
951 MVT VT = N.getSimpleValueType();
952 if (ReplacingAnyExtend) {
953 assert(X.getValueType() != VT);
954 // We looked through an ANY_EXTEND node, insert a ZERO_EXTEND.
955 SDValue NewX = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(X), VT, X);
956 InsertDAGNode(DAG, N, NewX);
957 X = NewX;
958 }
959 SDLoc DL(N);
960 SDValue NewSRLAmt = DAG.getConstant(ShiftAmt + AMShiftAmt, MVT::i8);
961 SDValue NewSRL = DAG.getNode(ISD::SRL, DL, VT, X, NewSRLAmt);
962 SDValue NewSHLAmt = DAG.getConstant(AMShiftAmt, MVT::i8);
963 SDValue NewSHL = DAG.getNode(ISD::SHL, DL, VT, NewSRL, NewSHLAmt);
964
965 // Insert the new nodes into the topological ordering. We must do this in
966 // a valid topological ordering as nothing is going to go back and re-sort
967 // these nodes. We continually insert before 'N' in sequence as this is
968 // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
969 // hierarchy left to express.
970 InsertDAGNode(DAG, N, NewSRLAmt);
971 InsertDAGNode(DAG, N, NewSRL);
972 InsertDAGNode(DAG, N, NewSHLAmt);
973 InsertDAGNode(DAG, N, NewSHL);
974 DAG.ReplaceAllUsesWith(N, NewSHL);
975
976 AM.Scale = 1 << AMShiftAmt;
977 AM.IndexReg = NewSRL;
978 return false;
979 }
980
MatchAddressRecursively(SDValue N,X86ISelAddressMode & AM,unsigned Depth)981 bool X86DAGToDAGISel::MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
982 unsigned Depth) {
983 SDLoc dl(N);
984 DEBUG({
985 dbgs() << "MatchAddress: ";
986 AM.dump();
987 });
988 // Limit recursion.
989 if (Depth > 5)
990 return MatchAddressBase(N, AM);
991
992 // If this is already a %rip relative address, we can only merge immediates
993 // into it. Instead of handling this in every case, we handle it here.
994 // RIP relative addressing: %rip + 32-bit displacement!
995 if (AM.isRIPRelative()) {
996 // FIXME: JumpTable and ExternalSymbol address currently don't like
997 // displacements. It isn't very important, but this should be fixed for
998 // consistency.
999 if (!AM.ES && AM.JT != -1) return true;
1000
1001 if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N))
1002 if (!FoldOffsetIntoAddress(Cst->getSExtValue(), AM))
1003 return false;
1004 return true;
1005 }
1006
1007 switch (N.getOpcode()) {
1008 default: break;
1009 case ISD::Constant: {
1010 uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
1011 if (!FoldOffsetIntoAddress(Val, AM))
1012 return false;
1013 break;
1014 }
1015
1016 case X86ISD::Wrapper:
1017 case X86ISD::WrapperRIP:
1018 if (!MatchWrapper(N, AM))
1019 return false;
1020 break;
1021
1022 case ISD::LOAD:
1023 if (!MatchLoadInAddress(cast<LoadSDNode>(N), AM))
1024 return false;
1025 break;
1026
1027 case ISD::FrameIndex:
1028 if (AM.BaseType == X86ISelAddressMode::RegBase &&
1029 AM.Base_Reg.getNode() == nullptr &&
1030 (!Subtarget->is64Bit() || isDispSafeForFrameIndex(AM.Disp))) {
1031 AM.BaseType = X86ISelAddressMode::FrameIndexBase;
1032 AM.Base_FrameIndex = cast<FrameIndexSDNode>(N)->getIndex();
1033 return false;
1034 }
1035 break;
1036
1037 case ISD::SHL:
1038 if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1)
1039 break;
1040
1041 if (ConstantSDNode
1042 *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1))) {
1043 unsigned Val = CN->getZExtValue();
1044 // Note that we handle x<<1 as (,x,2) rather than (x,x) here so
1045 // that the base operand remains free for further matching. If
1046 // the base doesn't end up getting used, a post-processing step
1047 // in MatchAddress turns (,x,2) into (x,x), which is cheaper.
1048 if (Val == 1 || Val == 2 || Val == 3) {
1049 AM.Scale = 1 << Val;
1050 SDValue ShVal = N.getNode()->getOperand(0);
1051
1052 // Okay, we know that we have a scale by now. However, if the scaled
1053 // value is an add of something and a constant, we can fold the
1054 // constant into the disp field here.
1055 if (CurDAG->isBaseWithConstantOffset(ShVal)) {
1056 AM.IndexReg = ShVal.getNode()->getOperand(0);
1057 ConstantSDNode *AddVal =
1058 cast<ConstantSDNode>(ShVal.getNode()->getOperand(1));
1059 uint64_t Disp = (uint64_t)AddVal->getSExtValue() << Val;
1060 if (!FoldOffsetIntoAddress(Disp, AM))
1061 return false;
1062 }
1063
1064 AM.IndexReg = ShVal;
1065 return false;
1066 }
1067 }
1068 break;
1069
1070 case ISD::SRL: {
1071 // Scale must not be used already.
1072 if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1) break;
1073
1074 SDValue And = N.getOperand(0);
1075 if (And.getOpcode() != ISD::AND) break;
1076 SDValue X = And.getOperand(0);
1077
1078 // We only handle up to 64-bit values here as those are what matter for
1079 // addressing mode optimizations.
1080 if (X.getSimpleValueType().getSizeInBits() > 64) break;
1081
1082 // The mask used for the transform is expected to be post-shift, but we
1083 // found the shift first so just apply the shift to the mask before passing
1084 // it down.
1085 if (!isa<ConstantSDNode>(N.getOperand(1)) ||
1086 !isa<ConstantSDNode>(And.getOperand(1)))
1087 break;
1088 uint64_t Mask = And.getConstantOperandVal(1) >> N.getConstantOperandVal(1);
1089
1090 // Try to fold the mask and shift into the scale, and return false if we
1091 // succeed.
1092 if (!FoldMaskAndShiftToScale(*CurDAG, N, Mask, N, X, AM))
1093 return false;
1094 break;
1095 }
1096
1097 case ISD::SMUL_LOHI:
1098 case ISD::UMUL_LOHI:
1099 // A mul_lohi where we need the low part can be folded as a plain multiply.
1100 if (N.getResNo() != 0) break;
1101 // FALL THROUGH
1102 case ISD::MUL:
1103 case X86ISD::MUL_IMM:
1104 // X*[3,5,9] -> X+X*[2,4,8]
1105 if (AM.BaseType == X86ISelAddressMode::RegBase &&
1106 AM.Base_Reg.getNode() == nullptr &&
1107 AM.IndexReg.getNode() == nullptr) {
1108 if (ConstantSDNode
1109 *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1)))
1110 if (CN->getZExtValue() == 3 || CN->getZExtValue() == 5 ||
1111 CN->getZExtValue() == 9) {
1112 AM.Scale = unsigned(CN->getZExtValue())-1;
1113
1114 SDValue MulVal = N.getNode()->getOperand(0);
1115 SDValue Reg;
1116
1117 // Okay, we know that we have a scale by now. However, if the scaled
1118 // value is an add of something and a constant, we can fold the
1119 // constant into the disp field here.
1120 if (MulVal.getNode()->getOpcode() == ISD::ADD && MulVal.hasOneUse() &&
1121 isa<ConstantSDNode>(MulVal.getNode()->getOperand(1))) {
1122 Reg = MulVal.getNode()->getOperand(0);
1123 ConstantSDNode *AddVal =
1124 cast<ConstantSDNode>(MulVal.getNode()->getOperand(1));
1125 uint64_t Disp = AddVal->getSExtValue() * CN->getZExtValue();
1126 if (FoldOffsetIntoAddress(Disp, AM))
1127 Reg = N.getNode()->getOperand(0);
1128 } else {
1129 Reg = N.getNode()->getOperand(0);
1130 }
1131
1132 AM.IndexReg = AM.Base_Reg = Reg;
1133 return false;
1134 }
1135 }
1136 break;
1137
1138 case ISD::SUB: {
1139 // Given A-B, if A can be completely folded into the address and
1140 // the index field with the index field unused, use -B as the index.
1141 // This is a win if a has multiple parts that can be folded into
1142 // the address. Also, this saves a mov if the base register has
1143 // other uses, since it avoids a two-address sub instruction, however
1144 // it costs an additional mov if the index register has other uses.
1145
1146 // Add an artificial use to this node so that we can keep track of
1147 // it if it gets CSE'd with a different node.
1148 HandleSDNode Handle(N);
1149
1150 // Test if the LHS of the sub can be folded.
1151 X86ISelAddressMode Backup = AM;
1152 if (MatchAddressRecursively(N.getNode()->getOperand(0), AM, Depth+1)) {
1153 AM = Backup;
1154 break;
1155 }
1156 // Test if the index field is free for use.
1157 if (AM.IndexReg.getNode() || AM.isRIPRelative()) {
1158 AM = Backup;
1159 break;
1160 }
1161
1162 int Cost = 0;
1163 SDValue RHS = Handle.getValue().getNode()->getOperand(1);
1164 // If the RHS involves a register with multiple uses, this
1165 // transformation incurs an extra mov, due to the neg instruction
1166 // clobbering its operand.
1167 if (!RHS.getNode()->hasOneUse() ||
1168 RHS.getNode()->getOpcode() == ISD::CopyFromReg ||
1169 RHS.getNode()->getOpcode() == ISD::TRUNCATE ||
1170 RHS.getNode()->getOpcode() == ISD::ANY_EXTEND ||
1171 (RHS.getNode()->getOpcode() == ISD::ZERO_EXTEND &&
1172 RHS.getNode()->getOperand(0).getValueType() == MVT::i32))
1173 ++Cost;
1174 // If the base is a register with multiple uses, this
1175 // transformation may save a mov.
1176 if ((AM.BaseType == X86ISelAddressMode::RegBase &&
1177 AM.Base_Reg.getNode() &&
1178 !AM.Base_Reg.getNode()->hasOneUse()) ||
1179 AM.BaseType == X86ISelAddressMode::FrameIndexBase)
1180 --Cost;
1181 // If the folded LHS was interesting, this transformation saves
1182 // address arithmetic.
1183 if ((AM.hasSymbolicDisplacement() && !Backup.hasSymbolicDisplacement()) +
1184 ((AM.Disp != 0) && (Backup.Disp == 0)) +
1185 (AM.Segment.getNode() && !Backup.Segment.getNode()) >= 2)
1186 --Cost;
1187 // If it doesn't look like it may be an overall win, don't do it.
1188 if (Cost >= 0) {
1189 AM = Backup;
1190 break;
1191 }
1192
1193 // Ok, the transformation is legal and appears profitable. Go for it.
1194 SDValue Zero = CurDAG->getConstant(0, N.getValueType());
1195 SDValue Neg = CurDAG->getNode(ISD::SUB, dl, N.getValueType(), Zero, RHS);
1196 AM.IndexReg = Neg;
1197 AM.Scale = 1;
1198
1199 // Insert the new nodes into the topological ordering.
1200 InsertDAGNode(*CurDAG, N, Zero);
1201 InsertDAGNode(*CurDAG, N, Neg);
1202 return false;
1203 }
1204
1205 case ISD::ADD: {
1206 // Add an artificial use to this node so that we can keep track of
1207 // it if it gets CSE'd with a different node.
1208 HandleSDNode Handle(N);
1209
1210 X86ISelAddressMode Backup = AM;
1211 if (!MatchAddressRecursively(N.getOperand(0), AM, Depth+1) &&
1212 !MatchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1))
1213 return false;
1214 AM = Backup;
1215
1216 // Try again after commuting the operands.
1217 if (!MatchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1)&&
1218 !MatchAddressRecursively(Handle.getValue().getOperand(0), AM, Depth+1))
1219 return false;
1220 AM = Backup;
1221
1222 // If we couldn't fold both operands into the address at the same time,
1223 // see if we can just put each operand into a register and fold at least
1224 // the add.
1225 if (AM.BaseType == X86ISelAddressMode::RegBase &&
1226 !AM.Base_Reg.getNode() &&
1227 !AM.IndexReg.getNode()) {
1228 N = Handle.getValue();
1229 AM.Base_Reg = N.getOperand(0);
1230 AM.IndexReg = N.getOperand(1);
1231 AM.Scale = 1;
1232 return false;
1233 }
1234 N = Handle.getValue();
1235 break;
1236 }
1237
1238 case ISD::OR:
1239 // Handle "X | C" as "X + C" iff X is known to have C bits clear.
1240 if (CurDAG->isBaseWithConstantOffset(N)) {
1241 X86ISelAddressMode Backup = AM;
1242 ConstantSDNode *CN = cast<ConstantSDNode>(N.getOperand(1));
1243
1244 // Start with the LHS as an addr mode.
1245 if (!MatchAddressRecursively(N.getOperand(0), AM, Depth+1) &&
1246 !FoldOffsetIntoAddress(CN->getSExtValue(), AM))
1247 return false;
1248 AM = Backup;
1249 }
1250 break;
1251
1252 case ISD::AND: {
1253 // Perform some heroic transforms on an and of a constant-count shift
1254 // with a constant to enable use of the scaled offset field.
1255
1256 // Scale must not be used already.
1257 if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1) break;
1258
1259 SDValue Shift = N.getOperand(0);
1260 if (Shift.getOpcode() != ISD::SRL && Shift.getOpcode() != ISD::SHL) break;
1261 SDValue X = Shift.getOperand(0);
1262
1263 // We only handle up to 64-bit values here as those are what matter for
1264 // addressing mode optimizations.
1265 if (X.getSimpleValueType().getSizeInBits() > 64) break;
1266
1267 if (!isa<ConstantSDNode>(N.getOperand(1)))
1268 break;
1269 uint64_t Mask = N.getConstantOperandVal(1);
1270
1271 // Try to fold the mask and shift into an extract and scale.
1272 if (!FoldMaskAndShiftToExtract(*CurDAG, N, Mask, Shift, X, AM))
1273 return false;
1274
1275 // Try to fold the mask and shift directly into the scale.
1276 if (!FoldMaskAndShiftToScale(*CurDAG, N, Mask, Shift, X, AM))
1277 return false;
1278
1279 // Try to swap the mask and shift to place shifts which can be done as
1280 // a scale on the outside of the mask.
1281 if (!FoldMaskedShiftToScaledMask(*CurDAG, N, Mask, Shift, X, AM))
1282 return false;
1283 break;
1284 }
1285 }
1286
1287 return MatchAddressBase(N, AM);
1288 }
1289
1290 /// MatchAddressBase - Helper for MatchAddress. Add the specified node to the
1291 /// specified addressing mode without any further recursion.
MatchAddressBase(SDValue N,X86ISelAddressMode & AM)1292 bool X86DAGToDAGISel::MatchAddressBase(SDValue N, X86ISelAddressMode &AM) {
1293 // Is the base register already occupied?
1294 if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base_Reg.getNode()) {
1295 // If so, check to see if the scale index register is set.
1296 if (!AM.IndexReg.getNode()) {
1297 AM.IndexReg = N;
1298 AM.Scale = 1;
1299 return false;
1300 }
1301
1302 // Otherwise, we cannot select it.
1303 return true;
1304 }
1305
1306 // Default, generate it as a register.
1307 AM.BaseType = X86ISelAddressMode::RegBase;
1308 AM.Base_Reg = N;
1309 return false;
1310 }
1311
1312 /// SelectAddr - returns true if it is able pattern match an addressing mode.
1313 /// It returns the operands which make up the maximal addressing mode it can
1314 /// match by reference.
1315 ///
1316 /// Parent is the parent node of the addr operand that is being matched. It
1317 /// is always a load, store, atomic node, or null. It is only null when
1318 /// checking memory operands for inline asm nodes.
SelectAddr(SDNode * Parent,SDValue N,SDValue & Base,SDValue & Scale,SDValue & Index,SDValue & Disp,SDValue & Segment)1319 bool X86DAGToDAGISel::SelectAddr(SDNode *Parent, SDValue N, SDValue &Base,
1320 SDValue &Scale, SDValue &Index,
1321 SDValue &Disp, SDValue &Segment) {
1322 X86ISelAddressMode AM;
1323
1324 if (Parent &&
1325 // This list of opcodes are all the nodes that have an "addr:$ptr" operand
1326 // that are not a MemSDNode, and thus don't have proper addrspace info.
1327 Parent->getOpcode() != ISD::INTRINSIC_W_CHAIN && // unaligned loads, fixme
1328 Parent->getOpcode() != ISD::INTRINSIC_VOID && // nontemporal stores
1329 Parent->getOpcode() != X86ISD::TLSCALL && // Fixme
1330 Parent->getOpcode() != X86ISD::EH_SJLJ_SETJMP && // setjmp
1331 Parent->getOpcode() != X86ISD::EH_SJLJ_LONGJMP) { // longjmp
1332 unsigned AddrSpace =
1333 cast<MemSDNode>(Parent)->getPointerInfo().getAddrSpace();
1334 // AddrSpace 256 -> GS, 257 -> FS.
1335 if (AddrSpace == 256)
1336 AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
1337 if (AddrSpace == 257)
1338 AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
1339 }
1340
1341 if (MatchAddress(N, AM))
1342 return false;
1343
1344 MVT VT = N.getSimpleValueType();
1345 if (AM.BaseType == X86ISelAddressMode::RegBase) {
1346 if (!AM.Base_Reg.getNode())
1347 AM.Base_Reg = CurDAG->getRegister(0, VT);
1348 }
1349
1350 if (!AM.IndexReg.getNode())
1351 AM.IndexReg = CurDAG->getRegister(0, VT);
1352
1353 getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1354 return true;
1355 }
1356
1357 /// SelectScalarSSELoad - Match a scalar SSE load. In particular, we want to
1358 /// match a load whose top elements are either undef or zeros. The load flavor
1359 /// is derived from the type of N, which is either v4f32 or v2f64.
1360 ///
1361 /// We also return:
1362 /// PatternChainNode: this is the matched node that has a chain input and
1363 /// output.
SelectScalarSSELoad(SDNode * Root,SDValue N,SDValue & Base,SDValue & Scale,SDValue & Index,SDValue & Disp,SDValue & Segment,SDValue & PatternNodeWithChain)1364 bool X86DAGToDAGISel::SelectScalarSSELoad(SDNode *Root,
1365 SDValue N, SDValue &Base,
1366 SDValue &Scale, SDValue &Index,
1367 SDValue &Disp, SDValue &Segment,
1368 SDValue &PatternNodeWithChain) {
1369 if (N.getOpcode() == ISD::SCALAR_TO_VECTOR) {
1370 PatternNodeWithChain = N.getOperand(0);
1371 if (ISD::isNON_EXTLoad(PatternNodeWithChain.getNode()) &&
1372 PatternNodeWithChain.hasOneUse() &&
1373 IsProfitableToFold(N.getOperand(0), N.getNode(), Root) &&
1374 IsLegalToFold(N.getOperand(0), N.getNode(), Root, OptLevel)) {
1375 LoadSDNode *LD = cast<LoadSDNode>(PatternNodeWithChain);
1376 if (!SelectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp, Segment))
1377 return false;
1378 return true;
1379 }
1380 }
1381
1382 // Also handle the case where we explicitly require zeros in the top
1383 // elements. This is a vector shuffle from the zero vector.
1384 if (N.getOpcode() == X86ISD::VZEXT_MOVL && N.getNode()->hasOneUse() &&
1385 // Check to see if the top elements are all zeros (or bitcast of zeros).
1386 N.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR &&
1387 N.getOperand(0).getNode()->hasOneUse() &&
1388 ISD::isNON_EXTLoad(N.getOperand(0).getOperand(0).getNode()) &&
1389 N.getOperand(0).getOperand(0).hasOneUse() &&
1390 IsProfitableToFold(N.getOperand(0), N.getNode(), Root) &&
1391 IsLegalToFold(N.getOperand(0), N.getNode(), Root, OptLevel)) {
1392 // Okay, this is a zero extending load. Fold it.
1393 LoadSDNode *LD = cast<LoadSDNode>(N.getOperand(0).getOperand(0));
1394 if (!SelectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp, Segment))
1395 return false;
1396 PatternNodeWithChain = SDValue(LD, 0);
1397 return true;
1398 }
1399 return false;
1400 }
1401
1402
SelectMOV64Imm32(SDValue N,SDValue & Imm)1403 bool X86DAGToDAGISel::SelectMOV64Imm32(SDValue N, SDValue &Imm) {
1404 if (const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
1405 uint64_t ImmVal = CN->getZExtValue();
1406 if ((uint32_t)ImmVal != (uint64_t)ImmVal)
1407 return false;
1408
1409 Imm = CurDAG->getTargetConstant(ImmVal, MVT::i64);
1410 return true;
1411 }
1412
1413 // In static codegen with small code model, we can get the address of a label
1414 // into a register with 'movl'. TableGen has already made sure we're looking
1415 // at a label of some kind.
1416 assert(N->getOpcode() == X86ISD::Wrapper &&
1417 "Unexpected node type for MOV32ri64");
1418 N = N.getOperand(0);
1419
1420 if (N->getOpcode() != ISD::TargetConstantPool &&
1421 N->getOpcode() != ISD::TargetJumpTable &&
1422 N->getOpcode() != ISD::TargetGlobalAddress &&
1423 N->getOpcode() != ISD::TargetExternalSymbol &&
1424 N->getOpcode() != ISD::TargetBlockAddress)
1425 return false;
1426
1427 Imm = N;
1428 return TM.getCodeModel() == CodeModel::Small;
1429 }
1430
SelectLEA64_32Addr(SDValue N,SDValue & Base,SDValue & Scale,SDValue & Index,SDValue & Disp,SDValue & Segment)1431 bool X86DAGToDAGISel::SelectLEA64_32Addr(SDValue N, SDValue &Base,
1432 SDValue &Scale, SDValue &Index,
1433 SDValue &Disp, SDValue &Segment) {
1434 if (!SelectLEAAddr(N, Base, Scale, Index, Disp, Segment))
1435 return false;
1436
1437 SDLoc DL(N);
1438 RegisterSDNode *RN = dyn_cast<RegisterSDNode>(Base);
1439 if (RN && RN->getReg() == 0)
1440 Base = CurDAG->getRegister(0, MVT::i64);
1441 else if (Base.getValueType() == MVT::i32 && !dyn_cast<FrameIndexSDNode>(Base)) {
1442 // Base could already be %rip, particularly in the x32 ABI.
1443 Base = SDValue(CurDAG->getMachineNode(
1444 TargetOpcode::SUBREG_TO_REG, DL, MVT::i64,
1445 CurDAG->getTargetConstant(0, MVT::i64),
1446 Base,
1447 CurDAG->getTargetConstant(X86::sub_32bit, MVT::i32)),
1448 0);
1449 }
1450
1451 RN = dyn_cast<RegisterSDNode>(Index);
1452 if (RN && RN->getReg() == 0)
1453 Index = CurDAG->getRegister(0, MVT::i64);
1454 else {
1455 assert(Index.getValueType() == MVT::i32 &&
1456 "Expect to be extending 32-bit registers for use in LEA");
1457 Index = SDValue(CurDAG->getMachineNode(
1458 TargetOpcode::SUBREG_TO_REG, DL, MVT::i64,
1459 CurDAG->getTargetConstant(0, MVT::i64),
1460 Index,
1461 CurDAG->getTargetConstant(X86::sub_32bit, MVT::i32)),
1462 0);
1463 }
1464
1465 return true;
1466 }
1467
1468 /// SelectLEAAddr - it calls SelectAddr and determines if the maximal addressing
1469 /// mode it matches can be cost effectively emitted as an LEA instruction.
SelectLEAAddr(SDValue N,SDValue & Base,SDValue & Scale,SDValue & Index,SDValue & Disp,SDValue & Segment)1470 bool X86DAGToDAGISel::SelectLEAAddr(SDValue N,
1471 SDValue &Base, SDValue &Scale,
1472 SDValue &Index, SDValue &Disp,
1473 SDValue &Segment) {
1474 X86ISelAddressMode AM;
1475
1476 // Set AM.Segment to prevent MatchAddress from using one. LEA doesn't support
1477 // segments.
1478 SDValue Copy = AM.Segment;
1479 SDValue T = CurDAG->getRegister(0, MVT::i32);
1480 AM.Segment = T;
1481 if (MatchAddress(N, AM))
1482 return false;
1483 assert (T == AM.Segment);
1484 AM.Segment = Copy;
1485
1486 MVT VT = N.getSimpleValueType();
1487 unsigned Complexity = 0;
1488 if (AM.BaseType == X86ISelAddressMode::RegBase)
1489 if (AM.Base_Reg.getNode())
1490 Complexity = 1;
1491 else
1492 AM.Base_Reg = CurDAG->getRegister(0, VT);
1493 else if (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
1494 Complexity = 4;
1495
1496 if (AM.IndexReg.getNode())
1497 Complexity++;
1498 else
1499 AM.IndexReg = CurDAG->getRegister(0, VT);
1500
1501 // Don't match just leal(,%reg,2). It's cheaper to do addl %reg, %reg, or with
1502 // a simple shift.
1503 if (AM.Scale > 1)
1504 Complexity++;
1505
1506 // FIXME: We are artificially lowering the criteria to turn ADD %reg, $GA
1507 // to a LEA. This is determined with some expermentation but is by no means
1508 // optimal (especially for code size consideration). LEA is nice because of
1509 // its three-address nature. Tweak the cost function again when we can run
1510 // convertToThreeAddress() at register allocation time.
1511 if (AM.hasSymbolicDisplacement()) {
1512 // For X86-64, we should always use lea to materialize RIP relative
1513 // addresses.
1514 if (Subtarget->is64Bit())
1515 Complexity = 4;
1516 else
1517 Complexity += 2;
1518 }
1519
1520 if (AM.Disp && (AM.Base_Reg.getNode() || AM.IndexReg.getNode()))
1521 Complexity++;
1522
1523 // If it isn't worth using an LEA, reject it.
1524 if (Complexity <= 2)
1525 return false;
1526
1527 getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1528 return true;
1529 }
1530
1531 /// SelectTLSADDRAddr - This is only run on TargetGlobalTLSAddress nodes.
SelectTLSADDRAddr(SDValue N,SDValue & Base,SDValue & Scale,SDValue & Index,SDValue & Disp,SDValue & Segment)1532 bool X86DAGToDAGISel::SelectTLSADDRAddr(SDValue N, SDValue &Base,
1533 SDValue &Scale, SDValue &Index,
1534 SDValue &Disp, SDValue &Segment) {
1535 assert(N.getOpcode() == ISD::TargetGlobalTLSAddress);
1536 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
1537
1538 X86ISelAddressMode AM;
1539 AM.GV = GA->getGlobal();
1540 AM.Disp += GA->getOffset();
1541 AM.Base_Reg = CurDAG->getRegister(0, N.getValueType());
1542 AM.SymbolFlags = GA->getTargetFlags();
1543
1544 if (N.getValueType() == MVT::i32) {
1545 AM.Scale = 1;
1546 AM.IndexReg = CurDAG->getRegister(X86::EBX, MVT::i32);
1547 } else {
1548 AM.IndexReg = CurDAG->getRegister(0, MVT::i64);
1549 }
1550
1551 getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1552 return true;
1553 }
1554
1555
TryFoldLoad(SDNode * P,SDValue N,SDValue & Base,SDValue & Scale,SDValue & Index,SDValue & Disp,SDValue & Segment)1556 bool X86DAGToDAGISel::TryFoldLoad(SDNode *P, SDValue N,
1557 SDValue &Base, SDValue &Scale,
1558 SDValue &Index, SDValue &Disp,
1559 SDValue &Segment) {
1560 if (!ISD::isNON_EXTLoad(N.getNode()) ||
1561 !IsProfitableToFold(N, P, P) ||
1562 !IsLegalToFold(N, P, P, OptLevel))
1563 return false;
1564
1565 return SelectAddr(N.getNode(),
1566 N.getOperand(1), Base, Scale, Index, Disp, Segment);
1567 }
1568
1569 /// getGlobalBaseReg - Return an SDNode that returns the value of
1570 /// the global base register. Output instructions required to
1571 /// initialize the global base register, if necessary.
1572 ///
getGlobalBaseReg()1573 SDNode *X86DAGToDAGISel::getGlobalBaseReg() {
1574 unsigned GlobalBaseReg = getInstrInfo()->getGlobalBaseReg(MF);
1575 return CurDAG->getRegister(GlobalBaseReg, TLI->getPointerTy()).getNode();
1576 }
1577
1578 /// Atomic opcode table
1579 ///
1580 enum AtomicOpc {
1581 ADD,
1582 SUB,
1583 INC,
1584 DEC,
1585 OR,
1586 AND,
1587 XOR,
1588 AtomicOpcEnd
1589 };
1590
1591 enum AtomicSz {
1592 ConstantI8,
1593 I8,
1594 SextConstantI16,
1595 ConstantI16,
1596 I16,
1597 SextConstantI32,
1598 ConstantI32,
1599 I32,
1600 SextConstantI64,
1601 ConstantI64,
1602 I64,
1603 AtomicSzEnd
1604 };
1605
1606 static const uint16_t AtomicOpcTbl[AtomicOpcEnd][AtomicSzEnd] = {
1607 {
1608 X86::LOCK_ADD8mi,
1609 X86::LOCK_ADD8mr,
1610 X86::LOCK_ADD16mi8,
1611 X86::LOCK_ADD16mi,
1612 X86::LOCK_ADD16mr,
1613 X86::LOCK_ADD32mi8,
1614 X86::LOCK_ADD32mi,
1615 X86::LOCK_ADD32mr,
1616 X86::LOCK_ADD64mi8,
1617 X86::LOCK_ADD64mi32,
1618 X86::LOCK_ADD64mr,
1619 },
1620 {
1621 X86::LOCK_SUB8mi,
1622 X86::LOCK_SUB8mr,
1623 X86::LOCK_SUB16mi8,
1624 X86::LOCK_SUB16mi,
1625 X86::LOCK_SUB16mr,
1626 X86::LOCK_SUB32mi8,
1627 X86::LOCK_SUB32mi,
1628 X86::LOCK_SUB32mr,
1629 X86::LOCK_SUB64mi8,
1630 X86::LOCK_SUB64mi32,
1631 X86::LOCK_SUB64mr,
1632 },
1633 {
1634 0,
1635 X86::LOCK_INC8m,
1636 0,
1637 0,
1638 X86::LOCK_INC16m,
1639 0,
1640 0,
1641 X86::LOCK_INC32m,
1642 0,
1643 0,
1644 X86::LOCK_INC64m,
1645 },
1646 {
1647 0,
1648 X86::LOCK_DEC8m,
1649 0,
1650 0,
1651 X86::LOCK_DEC16m,
1652 0,
1653 0,
1654 X86::LOCK_DEC32m,
1655 0,
1656 0,
1657 X86::LOCK_DEC64m,
1658 },
1659 {
1660 X86::LOCK_OR8mi,
1661 X86::LOCK_OR8mr,
1662 X86::LOCK_OR16mi8,
1663 X86::LOCK_OR16mi,
1664 X86::LOCK_OR16mr,
1665 X86::LOCK_OR32mi8,
1666 X86::LOCK_OR32mi,
1667 X86::LOCK_OR32mr,
1668 X86::LOCK_OR64mi8,
1669 X86::LOCK_OR64mi32,
1670 X86::LOCK_OR64mr,
1671 },
1672 {
1673 X86::LOCK_AND8mi,
1674 X86::LOCK_AND8mr,
1675 X86::LOCK_AND16mi8,
1676 X86::LOCK_AND16mi,
1677 X86::LOCK_AND16mr,
1678 X86::LOCK_AND32mi8,
1679 X86::LOCK_AND32mi,
1680 X86::LOCK_AND32mr,
1681 X86::LOCK_AND64mi8,
1682 X86::LOCK_AND64mi32,
1683 X86::LOCK_AND64mr,
1684 },
1685 {
1686 X86::LOCK_XOR8mi,
1687 X86::LOCK_XOR8mr,
1688 X86::LOCK_XOR16mi8,
1689 X86::LOCK_XOR16mi,
1690 X86::LOCK_XOR16mr,
1691 X86::LOCK_XOR32mi8,
1692 X86::LOCK_XOR32mi,
1693 X86::LOCK_XOR32mr,
1694 X86::LOCK_XOR64mi8,
1695 X86::LOCK_XOR64mi32,
1696 X86::LOCK_XOR64mr,
1697 }
1698 };
1699
1700 // Return the target constant operand for atomic-load-op and do simple
1701 // translations, such as from atomic-load-add to lock-sub. The return value is
1702 // one of the following 3 cases:
1703 // + target-constant, the operand could be supported as a target constant.
1704 // + empty, the operand is not needed any more with the new op selected.
1705 // + non-empty, otherwise.
getAtomicLoadArithTargetConstant(SelectionDAG * CurDAG,SDLoc dl,enum AtomicOpc & Op,MVT NVT,SDValue Val,const X86Subtarget * Subtarget)1706 static SDValue getAtomicLoadArithTargetConstant(SelectionDAG *CurDAG,
1707 SDLoc dl,
1708 enum AtomicOpc &Op, MVT NVT,
1709 SDValue Val,
1710 const X86Subtarget *Subtarget) {
1711 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Val)) {
1712 int64_t CNVal = CN->getSExtValue();
1713 // Quit if not 32-bit imm.
1714 if ((int32_t)CNVal != CNVal)
1715 return Val;
1716 // Quit if INT32_MIN: it would be negated as it is negative and overflow,
1717 // producing an immediate that does not fit in the 32 bits available for
1718 // an immediate operand to sub. However, it still fits in 32 bits for the
1719 // add (since it is not negated) so we can return target-constant.
1720 if (CNVal == INT32_MIN)
1721 return CurDAG->getTargetConstant(CNVal, NVT);
1722 // For atomic-load-add, we could do some optimizations.
1723 if (Op == ADD) {
1724 // Translate to INC/DEC if ADD by 1 or -1.
1725 if (((CNVal == 1) || (CNVal == -1)) && !Subtarget->slowIncDec()) {
1726 Op = (CNVal == 1) ? INC : DEC;
1727 // No more constant operand after being translated into INC/DEC.
1728 return SDValue();
1729 }
1730 // Translate to SUB if ADD by negative value.
1731 if (CNVal < 0) {
1732 Op = SUB;
1733 CNVal = -CNVal;
1734 }
1735 }
1736 return CurDAG->getTargetConstant(CNVal, NVT);
1737 }
1738
1739 // If the value operand is single-used, try to optimize it.
1740 if (Op == ADD && Val.hasOneUse()) {
1741 // Translate (atomic-load-add ptr (sub 0 x)) back to (lock-sub x).
1742 if (Val.getOpcode() == ISD::SUB && X86::isZeroNode(Val.getOperand(0))) {
1743 Op = SUB;
1744 return Val.getOperand(1);
1745 }
1746 // A special case for i16, which needs truncating as, in most cases, it's
1747 // promoted to i32. We will translate
1748 // (atomic-load-add (truncate (sub 0 x))) to (lock-sub (EXTRACT_SUBREG x))
1749 if (Val.getOpcode() == ISD::TRUNCATE && NVT == MVT::i16 &&
1750 Val.getOperand(0).getOpcode() == ISD::SUB &&
1751 X86::isZeroNode(Val.getOperand(0).getOperand(0))) {
1752 Op = SUB;
1753 Val = Val.getOperand(0);
1754 return CurDAG->getTargetExtractSubreg(X86::sub_16bit, dl, NVT,
1755 Val.getOperand(1));
1756 }
1757 }
1758
1759 return Val;
1760 }
1761
SelectAtomicLoadArith(SDNode * Node,MVT NVT)1762 SDNode *X86DAGToDAGISel::SelectAtomicLoadArith(SDNode *Node, MVT NVT) {
1763 if (Node->hasAnyUseOfValue(0))
1764 return nullptr;
1765
1766 SDLoc dl(Node);
1767
1768 // Optimize common patterns for __sync_or_and_fetch and similar arith
1769 // operations where the result is not used. This allows us to use the "lock"
1770 // version of the arithmetic instruction.
1771 SDValue Chain = Node->getOperand(0);
1772 SDValue Ptr = Node->getOperand(1);
1773 SDValue Val = Node->getOperand(2);
1774 SDValue Base, Scale, Index, Disp, Segment;
1775 if (!SelectAddr(Node, Ptr, Base, Scale, Index, Disp, Segment))
1776 return nullptr;
1777
1778 // Which index into the table.
1779 enum AtomicOpc Op;
1780 switch (Node->getOpcode()) {
1781 default:
1782 return nullptr;
1783 case ISD::ATOMIC_LOAD_OR:
1784 Op = OR;
1785 break;
1786 case ISD::ATOMIC_LOAD_AND:
1787 Op = AND;
1788 break;
1789 case ISD::ATOMIC_LOAD_XOR:
1790 Op = XOR;
1791 break;
1792 case ISD::ATOMIC_LOAD_ADD:
1793 Op = ADD;
1794 break;
1795 }
1796
1797 Val = getAtomicLoadArithTargetConstant(CurDAG, dl, Op, NVT, Val, Subtarget);
1798 bool isUnOp = !Val.getNode();
1799 bool isCN = Val.getNode() && (Val.getOpcode() == ISD::TargetConstant);
1800
1801 unsigned Opc = 0;
1802 switch (NVT.SimpleTy) {
1803 default: return nullptr;
1804 case MVT::i8:
1805 if (isCN)
1806 Opc = AtomicOpcTbl[Op][ConstantI8];
1807 else
1808 Opc = AtomicOpcTbl[Op][I8];
1809 break;
1810 case MVT::i16:
1811 if (isCN) {
1812 if (immSext8(Val.getNode()))
1813 Opc = AtomicOpcTbl[Op][SextConstantI16];
1814 else
1815 Opc = AtomicOpcTbl[Op][ConstantI16];
1816 } else
1817 Opc = AtomicOpcTbl[Op][I16];
1818 break;
1819 case MVT::i32:
1820 if (isCN) {
1821 if (immSext8(Val.getNode()))
1822 Opc = AtomicOpcTbl[Op][SextConstantI32];
1823 else
1824 Opc = AtomicOpcTbl[Op][ConstantI32];
1825 } else
1826 Opc = AtomicOpcTbl[Op][I32];
1827 break;
1828 case MVT::i64:
1829 if (isCN) {
1830 if (immSext8(Val.getNode()))
1831 Opc = AtomicOpcTbl[Op][SextConstantI64];
1832 else if (i64immSExt32(Val.getNode()))
1833 Opc = AtomicOpcTbl[Op][ConstantI64];
1834 else
1835 llvm_unreachable("True 64 bits constant in SelectAtomicLoadArith");
1836 } else
1837 Opc = AtomicOpcTbl[Op][I64];
1838 break;
1839 }
1840
1841 assert(Opc != 0 && "Invalid arith lock transform!");
1842
1843 // Building the new node.
1844 SDValue Ret;
1845 if (isUnOp) {
1846 SDValue Ops[] = { Base, Scale, Index, Disp, Segment, Chain };
1847 Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops), 0);
1848 } else {
1849 SDValue Ops[] = { Base, Scale, Index, Disp, Segment, Val, Chain };
1850 Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops), 0);
1851 }
1852
1853 // Copying the MachineMemOperand.
1854 MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
1855 MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
1856 cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1);
1857
1858 // We need to have two outputs as that is what the original instruction had.
1859 // So we add a dummy, undefined output. This is safe as we checked first
1860 // that no-one uses our output anyway.
1861 SDValue Undef = SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,
1862 dl, NVT), 0);
1863 SDValue RetVals[] = { Undef, Ret };
1864 return CurDAG->getMergeValues(RetVals, dl).getNode();
1865 }
1866
1867 /// HasNoSignedComparisonUses - Test whether the given X86ISD::CMP node has
1868 /// any uses which require the SF or OF bits to be accurate.
HasNoSignedComparisonUses(SDNode * N)1869 static bool HasNoSignedComparisonUses(SDNode *N) {
1870 // Examine each user of the node.
1871 for (SDNode::use_iterator UI = N->use_begin(),
1872 UE = N->use_end(); UI != UE; ++UI) {
1873 // Only examine CopyToReg uses.
1874 if (UI->getOpcode() != ISD::CopyToReg)
1875 return false;
1876 // Only examine CopyToReg uses that copy to EFLAGS.
1877 if (cast<RegisterSDNode>(UI->getOperand(1))->getReg() !=
1878 X86::EFLAGS)
1879 return false;
1880 // Examine each user of the CopyToReg use.
1881 for (SDNode::use_iterator FlagUI = UI->use_begin(),
1882 FlagUE = UI->use_end(); FlagUI != FlagUE; ++FlagUI) {
1883 // Only examine the Flag result.
1884 if (FlagUI.getUse().getResNo() != 1) continue;
1885 // Anything unusual: assume conservatively.
1886 if (!FlagUI->isMachineOpcode()) return false;
1887 // Examine the opcode of the user.
1888 switch (FlagUI->getMachineOpcode()) {
1889 // These comparisons don't treat the most significant bit specially.
1890 case X86::SETAr: case X86::SETAEr: case X86::SETBr: case X86::SETBEr:
1891 case X86::SETEr: case X86::SETNEr: case X86::SETPr: case X86::SETNPr:
1892 case X86::SETAm: case X86::SETAEm: case X86::SETBm: case X86::SETBEm:
1893 case X86::SETEm: case X86::SETNEm: case X86::SETPm: case X86::SETNPm:
1894 case X86::JA_1: case X86::JAE_1: case X86::JB_1: case X86::JBE_1:
1895 case X86::JE_1: case X86::JNE_1: case X86::JP_1: case X86::JNP_1:
1896 case X86::CMOVA16rr: case X86::CMOVA16rm:
1897 case X86::CMOVA32rr: case X86::CMOVA32rm:
1898 case X86::CMOVA64rr: case X86::CMOVA64rm:
1899 case X86::CMOVAE16rr: case X86::CMOVAE16rm:
1900 case X86::CMOVAE32rr: case X86::CMOVAE32rm:
1901 case X86::CMOVAE64rr: case X86::CMOVAE64rm:
1902 case X86::CMOVB16rr: case X86::CMOVB16rm:
1903 case X86::CMOVB32rr: case X86::CMOVB32rm:
1904 case X86::CMOVB64rr: case X86::CMOVB64rm:
1905 case X86::CMOVBE16rr: case X86::CMOVBE16rm:
1906 case X86::CMOVBE32rr: case X86::CMOVBE32rm:
1907 case X86::CMOVBE64rr: case X86::CMOVBE64rm:
1908 case X86::CMOVE16rr: case X86::CMOVE16rm:
1909 case X86::CMOVE32rr: case X86::CMOVE32rm:
1910 case X86::CMOVE64rr: case X86::CMOVE64rm:
1911 case X86::CMOVNE16rr: case X86::CMOVNE16rm:
1912 case X86::CMOVNE32rr: case X86::CMOVNE32rm:
1913 case X86::CMOVNE64rr: case X86::CMOVNE64rm:
1914 case X86::CMOVNP16rr: case X86::CMOVNP16rm:
1915 case X86::CMOVNP32rr: case X86::CMOVNP32rm:
1916 case X86::CMOVNP64rr: case X86::CMOVNP64rm:
1917 case X86::CMOVP16rr: case X86::CMOVP16rm:
1918 case X86::CMOVP32rr: case X86::CMOVP32rm:
1919 case X86::CMOVP64rr: case X86::CMOVP64rm:
1920 continue;
1921 // Anything else: assume conservatively.
1922 default: return false;
1923 }
1924 }
1925 }
1926 return true;
1927 }
1928
1929 /// isLoadIncOrDecStore - Check whether or not the chain ending in StoreNode
1930 /// is suitable for doing the {load; increment or decrement; store} to modify
1931 /// transformation.
isLoadIncOrDecStore(StoreSDNode * StoreNode,unsigned Opc,SDValue StoredVal,SelectionDAG * CurDAG,LoadSDNode * & LoadNode,SDValue & InputChain)1932 static bool isLoadIncOrDecStore(StoreSDNode *StoreNode, unsigned Opc,
1933 SDValue StoredVal, SelectionDAG *CurDAG,
1934 LoadSDNode* &LoadNode, SDValue &InputChain) {
1935
1936 // is the value stored the result of a DEC or INC?
1937 if (!(Opc == X86ISD::DEC || Opc == X86ISD::INC)) return false;
1938
1939 // is the stored value result 0 of the load?
1940 if (StoredVal.getResNo() != 0) return false;
1941
1942 // are there other uses of the loaded value than the inc or dec?
1943 if (!StoredVal.getNode()->hasNUsesOfValue(1, 0)) return false;
1944
1945 // is the store non-extending and non-indexed?
1946 if (!ISD::isNormalStore(StoreNode) || StoreNode->isNonTemporal())
1947 return false;
1948
1949 SDValue Load = StoredVal->getOperand(0);
1950 // Is the stored value a non-extending and non-indexed load?
1951 if (!ISD::isNormalLoad(Load.getNode())) return false;
1952
1953 // Return LoadNode by reference.
1954 LoadNode = cast<LoadSDNode>(Load);
1955 // is the size of the value one that we can handle? (i.e. 64, 32, 16, or 8)
1956 EVT LdVT = LoadNode->getMemoryVT();
1957 if (LdVT != MVT::i64 && LdVT != MVT::i32 && LdVT != MVT::i16 &&
1958 LdVT != MVT::i8)
1959 return false;
1960
1961 // Is store the only read of the loaded value?
1962 if (!Load.hasOneUse())
1963 return false;
1964
1965 // Is the address of the store the same as the load?
1966 if (LoadNode->getBasePtr() != StoreNode->getBasePtr() ||
1967 LoadNode->getOffset() != StoreNode->getOffset())
1968 return false;
1969
1970 // Check if the chain is produced by the load or is a TokenFactor with
1971 // the load output chain as an operand. Return InputChain by reference.
1972 SDValue Chain = StoreNode->getChain();
1973
1974 bool ChainCheck = false;
1975 if (Chain == Load.getValue(1)) {
1976 ChainCheck = true;
1977 InputChain = LoadNode->getChain();
1978 } else if (Chain.getOpcode() == ISD::TokenFactor) {
1979 SmallVector<SDValue, 4> ChainOps;
1980 for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i) {
1981 SDValue Op = Chain.getOperand(i);
1982 if (Op == Load.getValue(1)) {
1983 ChainCheck = true;
1984 continue;
1985 }
1986
1987 // Make sure using Op as part of the chain would not cause a cycle here.
1988 // In theory, we could check whether the chain node is a predecessor of
1989 // the load. But that can be very expensive. Instead visit the uses and
1990 // make sure they all have smaller node id than the load.
1991 int LoadId = LoadNode->getNodeId();
1992 for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
1993 UE = UI->use_end(); UI != UE; ++UI) {
1994 if (UI.getUse().getResNo() != 0)
1995 continue;
1996 if (UI->getNodeId() > LoadId)
1997 return false;
1998 }
1999
2000 ChainOps.push_back(Op);
2001 }
2002
2003 if (ChainCheck)
2004 // Make a new TokenFactor with all the other input chains except
2005 // for the load.
2006 InputChain = CurDAG->getNode(ISD::TokenFactor, SDLoc(Chain),
2007 MVT::Other, ChainOps);
2008 }
2009 if (!ChainCheck)
2010 return false;
2011
2012 return true;
2013 }
2014
2015 /// getFusedLdStOpcode - Get the appropriate X86 opcode for an in memory
2016 /// increment or decrement. Opc should be X86ISD::DEC or X86ISD::INC.
getFusedLdStOpcode(EVT & LdVT,unsigned Opc)2017 static unsigned getFusedLdStOpcode(EVT &LdVT, unsigned Opc) {
2018 if (Opc == X86ISD::DEC) {
2019 if (LdVT == MVT::i64) return X86::DEC64m;
2020 if (LdVT == MVT::i32) return X86::DEC32m;
2021 if (LdVT == MVT::i16) return X86::DEC16m;
2022 if (LdVT == MVT::i8) return X86::DEC8m;
2023 } else {
2024 assert(Opc == X86ISD::INC && "unrecognized opcode");
2025 if (LdVT == MVT::i64) return X86::INC64m;
2026 if (LdVT == MVT::i32) return X86::INC32m;
2027 if (LdVT == MVT::i16) return X86::INC16m;
2028 if (LdVT == MVT::i8) return X86::INC8m;
2029 }
2030 llvm_unreachable("unrecognized size for LdVT");
2031 }
2032
2033 /// SelectGather - Customized ISel for GATHER operations.
2034 ///
SelectGather(SDNode * Node,unsigned Opc)2035 SDNode *X86DAGToDAGISel::SelectGather(SDNode *Node, unsigned Opc) {
2036 // Operands of Gather: VSrc, Base, VIdx, VMask, Scale
2037 SDValue Chain = Node->getOperand(0);
2038 SDValue VSrc = Node->getOperand(2);
2039 SDValue Base = Node->getOperand(3);
2040 SDValue VIdx = Node->getOperand(4);
2041 SDValue VMask = Node->getOperand(5);
2042 ConstantSDNode *Scale = dyn_cast<ConstantSDNode>(Node->getOperand(6));
2043 if (!Scale)
2044 return nullptr;
2045
2046 SDVTList VTs = CurDAG->getVTList(VSrc.getValueType(), VSrc.getValueType(),
2047 MVT::Other);
2048
2049 // Memory Operands: Base, Scale, Index, Disp, Segment
2050 SDValue Disp = CurDAG->getTargetConstant(0, MVT::i32);
2051 SDValue Segment = CurDAG->getRegister(0, MVT::i32);
2052 const SDValue Ops[] = { VSrc, Base, getI8Imm(Scale->getSExtValue()), VIdx,
2053 Disp, Segment, VMask, Chain};
2054 SDNode *ResNode = CurDAG->getMachineNode(Opc, SDLoc(Node), VTs, Ops);
2055 // Node has 2 outputs: VDst and MVT::Other.
2056 // ResNode has 3 outputs: VDst, VMask_wb, and MVT::Other.
2057 // We replace VDst of Node with VDst of ResNode, and Other of Node with Other
2058 // of ResNode.
2059 ReplaceUses(SDValue(Node, 0), SDValue(ResNode, 0));
2060 ReplaceUses(SDValue(Node, 1), SDValue(ResNode, 2));
2061 return ResNode;
2062 }
2063
Select(SDNode * Node)2064 SDNode *X86DAGToDAGISel::Select(SDNode *Node) {
2065 MVT NVT = Node->getSimpleValueType(0);
2066 unsigned Opc, MOpc;
2067 unsigned Opcode = Node->getOpcode();
2068 SDLoc dl(Node);
2069
2070 DEBUG(dbgs() << "Selecting: "; Node->dump(CurDAG); dbgs() << '\n');
2071
2072 if (Node->isMachineOpcode()) {
2073 DEBUG(dbgs() << "== "; Node->dump(CurDAG); dbgs() << '\n');
2074 Node->setNodeId(-1);
2075 return nullptr; // Already selected.
2076 }
2077
2078 switch (Opcode) {
2079 default: break;
2080 case ISD::INTRINSIC_W_CHAIN: {
2081 unsigned IntNo = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
2082 switch (IntNo) {
2083 default: break;
2084 case Intrinsic::x86_avx2_gather_d_pd:
2085 case Intrinsic::x86_avx2_gather_d_pd_256:
2086 case Intrinsic::x86_avx2_gather_q_pd:
2087 case Intrinsic::x86_avx2_gather_q_pd_256:
2088 case Intrinsic::x86_avx2_gather_d_ps:
2089 case Intrinsic::x86_avx2_gather_d_ps_256:
2090 case Intrinsic::x86_avx2_gather_q_ps:
2091 case Intrinsic::x86_avx2_gather_q_ps_256:
2092 case Intrinsic::x86_avx2_gather_d_q:
2093 case Intrinsic::x86_avx2_gather_d_q_256:
2094 case Intrinsic::x86_avx2_gather_q_q:
2095 case Intrinsic::x86_avx2_gather_q_q_256:
2096 case Intrinsic::x86_avx2_gather_d_d:
2097 case Intrinsic::x86_avx2_gather_d_d_256:
2098 case Intrinsic::x86_avx2_gather_q_d:
2099 case Intrinsic::x86_avx2_gather_q_d_256: {
2100 if (!Subtarget->hasAVX2())
2101 break;
2102 unsigned Opc;
2103 switch (IntNo) {
2104 default: llvm_unreachable("Impossible intrinsic");
2105 case Intrinsic::x86_avx2_gather_d_pd: Opc = X86::VGATHERDPDrm; break;
2106 case Intrinsic::x86_avx2_gather_d_pd_256: Opc = X86::VGATHERDPDYrm; break;
2107 case Intrinsic::x86_avx2_gather_q_pd: Opc = X86::VGATHERQPDrm; break;
2108 case Intrinsic::x86_avx2_gather_q_pd_256: Opc = X86::VGATHERQPDYrm; break;
2109 case Intrinsic::x86_avx2_gather_d_ps: Opc = X86::VGATHERDPSrm; break;
2110 case Intrinsic::x86_avx2_gather_d_ps_256: Opc = X86::VGATHERDPSYrm; break;
2111 case Intrinsic::x86_avx2_gather_q_ps: Opc = X86::VGATHERQPSrm; break;
2112 case Intrinsic::x86_avx2_gather_q_ps_256: Opc = X86::VGATHERQPSYrm; break;
2113 case Intrinsic::x86_avx2_gather_d_q: Opc = X86::VPGATHERDQrm; break;
2114 case Intrinsic::x86_avx2_gather_d_q_256: Opc = X86::VPGATHERDQYrm; break;
2115 case Intrinsic::x86_avx2_gather_q_q: Opc = X86::VPGATHERQQrm; break;
2116 case Intrinsic::x86_avx2_gather_q_q_256: Opc = X86::VPGATHERQQYrm; break;
2117 case Intrinsic::x86_avx2_gather_d_d: Opc = X86::VPGATHERDDrm; break;
2118 case Intrinsic::x86_avx2_gather_d_d_256: Opc = X86::VPGATHERDDYrm; break;
2119 case Intrinsic::x86_avx2_gather_q_d: Opc = X86::VPGATHERQDrm; break;
2120 case Intrinsic::x86_avx2_gather_q_d_256: Opc = X86::VPGATHERQDYrm; break;
2121 }
2122 SDNode *RetVal = SelectGather(Node, Opc);
2123 if (RetVal)
2124 // We already called ReplaceUses inside SelectGather.
2125 return nullptr;
2126 break;
2127 }
2128 }
2129 break;
2130 }
2131 case X86ISD::GlobalBaseReg:
2132 return getGlobalBaseReg();
2133
2134 case X86ISD::SHRUNKBLEND: {
2135 // SHRUNKBLEND selects like a regular VSELECT.
2136 SDValue VSelect = CurDAG->getNode(
2137 ISD::VSELECT, SDLoc(Node), Node->getValueType(0), Node->getOperand(0),
2138 Node->getOperand(1), Node->getOperand(2));
2139 ReplaceUses(SDValue(Node, 0), VSelect);
2140 SelectCode(VSelect.getNode());
2141 // We already called ReplaceUses.
2142 return nullptr;
2143 }
2144
2145 case ISD::ATOMIC_LOAD_XOR:
2146 case ISD::ATOMIC_LOAD_AND:
2147 case ISD::ATOMIC_LOAD_OR:
2148 case ISD::ATOMIC_LOAD_ADD: {
2149 SDNode *RetVal = SelectAtomicLoadArith(Node, NVT);
2150 if (RetVal)
2151 return RetVal;
2152 break;
2153 }
2154 case ISD::AND:
2155 case ISD::OR:
2156 case ISD::XOR: {
2157 // For operations of the form (x << C1) op C2, check if we can use a smaller
2158 // encoding for C2 by transforming it into (x op (C2>>C1)) << C1.
2159 SDValue N0 = Node->getOperand(0);
2160 SDValue N1 = Node->getOperand(1);
2161
2162 if (N0->getOpcode() != ISD::SHL || !N0->hasOneUse())
2163 break;
2164
2165 // i8 is unshrinkable, i16 should be promoted to i32.
2166 if (NVT != MVT::i32 && NVT != MVT::i64)
2167 break;
2168
2169 ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N1);
2170 ConstantSDNode *ShlCst = dyn_cast<ConstantSDNode>(N0->getOperand(1));
2171 if (!Cst || !ShlCst)
2172 break;
2173
2174 int64_t Val = Cst->getSExtValue();
2175 uint64_t ShlVal = ShlCst->getZExtValue();
2176
2177 // Make sure that we don't change the operation by removing bits.
2178 // This only matters for OR and XOR, AND is unaffected.
2179 uint64_t RemovedBitsMask = (1ULL << ShlVal) - 1;
2180 if (Opcode != ISD::AND && (Val & RemovedBitsMask) != 0)
2181 break;
2182
2183 unsigned ShlOp, Op;
2184 MVT CstVT = NVT;
2185
2186 // Check the minimum bitwidth for the new constant.
2187 // TODO: AND32ri is the same as AND64ri32 with zext imm.
2188 // TODO: MOV32ri+OR64r is cheaper than MOV64ri64+OR64rr
2189 // TODO: Using 16 and 8 bit operations is also possible for or32 & xor32.
2190 if (!isInt<8>(Val) && isInt<8>(Val >> ShlVal))
2191 CstVT = MVT::i8;
2192 else if (!isInt<32>(Val) && isInt<32>(Val >> ShlVal))
2193 CstVT = MVT::i32;
2194
2195 // Bail if there is no smaller encoding.
2196 if (NVT == CstVT)
2197 break;
2198
2199 switch (NVT.SimpleTy) {
2200 default: llvm_unreachable("Unsupported VT!");
2201 case MVT::i32:
2202 assert(CstVT == MVT::i8);
2203 ShlOp = X86::SHL32ri;
2204
2205 switch (Opcode) {
2206 default: llvm_unreachable("Impossible opcode");
2207 case ISD::AND: Op = X86::AND32ri8; break;
2208 case ISD::OR: Op = X86::OR32ri8; break;
2209 case ISD::XOR: Op = X86::XOR32ri8; break;
2210 }
2211 break;
2212 case MVT::i64:
2213 assert(CstVT == MVT::i8 || CstVT == MVT::i32);
2214 ShlOp = X86::SHL64ri;
2215
2216 switch (Opcode) {
2217 default: llvm_unreachable("Impossible opcode");
2218 case ISD::AND: Op = CstVT==MVT::i8? X86::AND64ri8 : X86::AND64ri32; break;
2219 case ISD::OR: Op = CstVT==MVT::i8? X86::OR64ri8 : X86::OR64ri32; break;
2220 case ISD::XOR: Op = CstVT==MVT::i8? X86::XOR64ri8 : X86::XOR64ri32; break;
2221 }
2222 break;
2223 }
2224
2225 // Emit the smaller op and the shift.
2226 SDValue NewCst = CurDAG->getTargetConstant(Val >> ShlVal, CstVT);
2227 SDNode *New = CurDAG->getMachineNode(Op, dl, NVT, N0->getOperand(0),NewCst);
2228 return CurDAG->SelectNodeTo(Node, ShlOp, NVT, SDValue(New, 0),
2229 getI8Imm(ShlVal));
2230 }
2231 case X86ISD::UMUL8:
2232 case X86ISD::SMUL8: {
2233 SDValue N0 = Node->getOperand(0);
2234 SDValue N1 = Node->getOperand(1);
2235
2236 Opc = (Opcode == X86ISD::SMUL8 ? X86::IMUL8r : X86::MUL8r);
2237
2238 SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, X86::AL,
2239 N0, SDValue()).getValue(1);
2240
2241 SDVTList VTs = CurDAG->getVTList(NVT, MVT::i32);
2242 SDValue Ops[] = {N1, InFlag};
2243 SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
2244
2245 ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0));
2246 ReplaceUses(SDValue(Node, 1), SDValue(CNode, 1));
2247 return nullptr;
2248 }
2249
2250 case X86ISD::UMUL: {
2251 SDValue N0 = Node->getOperand(0);
2252 SDValue N1 = Node->getOperand(1);
2253
2254 unsigned LoReg;
2255 switch (NVT.SimpleTy) {
2256 default: llvm_unreachable("Unsupported VT!");
2257 case MVT::i8: LoReg = X86::AL; Opc = X86::MUL8r; break;
2258 case MVT::i16: LoReg = X86::AX; Opc = X86::MUL16r; break;
2259 case MVT::i32: LoReg = X86::EAX; Opc = X86::MUL32r; break;
2260 case MVT::i64: LoReg = X86::RAX; Opc = X86::MUL64r; break;
2261 }
2262
2263 SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg,
2264 N0, SDValue()).getValue(1);
2265
2266 SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::i32);
2267 SDValue Ops[] = {N1, InFlag};
2268 SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
2269
2270 ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0));
2271 ReplaceUses(SDValue(Node, 1), SDValue(CNode, 1));
2272 ReplaceUses(SDValue(Node, 2), SDValue(CNode, 2));
2273 return nullptr;
2274 }
2275
2276 case ISD::SMUL_LOHI:
2277 case ISD::UMUL_LOHI: {
2278 SDValue N0 = Node->getOperand(0);
2279 SDValue N1 = Node->getOperand(1);
2280
2281 bool isSigned = Opcode == ISD::SMUL_LOHI;
2282 bool hasBMI2 = Subtarget->hasBMI2();
2283 if (!isSigned) {
2284 switch (NVT.SimpleTy) {
2285 default: llvm_unreachable("Unsupported VT!");
2286 case MVT::i8: Opc = X86::MUL8r; MOpc = X86::MUL8m; break;
2287 case MVT::i16: Opc = X86::MUL16r; MOpc = X86::MUL16m; break;
2288 case MVT::i32: Opc = hasBMI2 ? X86::MULX32rr : X86::MUL32r;
2289 MOpc = hasBMI2 ? X86::MULX32rm : X86::MUL32m; break;
2290 case MVT::i64: Opc = hasBMI2 ? X86::MULX64rr : X86::MUL64r;
2291 MOpc = hasBMI2 ? X86::MULX64rm : X86::MUL64m; break;
2292 }
2293 } else {
2294 switch (NVT.SimpleTy) {
2295 default: llvm_unreachable("Unsupported VT!");
2296 case MVT::i8: Opc = X86::IMUL8r; MOpc = X86::IMUL8m; break;
2297 case MVT::i16: Opc = X86::IMUL16r; MOpc = X86::IMUL16m; break;
2298 case MVT::i32: Opc = X86::IMUL32r; MOpc = X86::IMUL32m; break;
2299 case MVT::i64: Opc = X86::IMUL64r; MOpc = X86::IMUL64m; break;
2300 }
2301 }
2302
2303 unsigned SrcReg, LoReg, HiReg;
2304 switch (Opc) {
2305 default: llvm_unreachable("Unknown MUL opcode!");
2306 case X86::IMUL8r:
2307 case X86::MUL8r:
2308 SrcReg = LoReg = X86::AL; HiReg = X86::AH;
2309 break;
2310 case X86::IMUL16r:
2311 case X86::MUL16r:
2312 SrcReg = LoReg = X86::AX; HiReg = X86::DX;
2313 break;
2314 case X86::IMUL32r:
2315 case X86::MUL32r:
2316 SrcReg = LoReg = X86::EAX; HiReg = X86::EDX;
2317 break;
2318 case X86::IMUL64r:
2319 case X86::MUL64r:
2320 SrcReg = LoReg = X86::RAX; HiReg = X86::RDX;
2321 break;
2322 case X86::MULX32rr:
2323 SrcReg = X86::EDX; LoReg = HiReg = 0;
2324 break;
2325 case X86::MULX64rr:
2326 SrcReg = X86::RDX; LoReg = HiReg = 0;
2327 break;
2328 }
2329
2330 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
2331 bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
2332 // Multiply is commmutative.
2333 if (!foldedLoad) {
2334 foldedLoad = TryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
2335 if (foldedLoad)
2336 std::swap(N0, N1);
2337 }
2338
2339 SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, SrcReg,
2340 N0, SDValue()).getValue(1);
2341 SDValue ResHi, ResLo;
2342
2343 if (foldedLoad) {
2344 SDValue Chain;
2345 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
2346 InFlag };
2347 if (MOpc == X86::MULX32rm || MOpc == X86::MULX64rm) {
2348 SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::Other, MVT::Glue);
2349 SDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
2350 ResHi = SDValue(CNode, 0);
2351 ResLo = SDValue(CNode, 1);
2352 Chain = SDValue(CNode, 2);
2353 InFlag = SDValue(CNode, 3);
2354 } else {
2355 SDVTList VTs = CurDAG->getVTList(MVT::Other, MVT::Glue);
2356 SDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
2357 Chain = SDValue(CNode, 0);
2358 InFlag = SDValue(CNode, 1);
2359 }
2360
2361 // Update the chain.
2362 ReplaceUses(N1.getValue(1), Chain);
2363 } else {
2364 SDValue Ops[] = { N1, InFlag };
2365 if (Opc == X86::MULX32rr || Opc == X86::MULX64rr) {
2366 SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::Glue);
2367 SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
2368 ResHi = SDValue(CNode, 0);
2369 ResLo = SDValue(CNode, 1);
2370 InFlag = SDValue(CNode, 2);
2371 } else {
2372 SDVTList VTs = CurDAG->getVTList(MVT::Glue);
2373 SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
2374 InFlag = SDValue(CNode, 0);
2375 }
2376 }
2377
2378 // Prevent use of AH in a REX instruction by referencing AX instead.
2379 if (HiReg == X86::AH && Subtarget->is64Bit() &&
2380 !SDValue(Node, 1).use_empty()) {
2381 SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2382 X86::AX, MVT::i16, InFlag);
2383 InFlag = Result.getValue(2);
2384 // Get the low part if needed. Don't use getCopyFromReg for aliasing
2385 // registers.
2386 if (!SDValue(Node, 0).use_empty())
2387 ReplaceUses(SDValue(Node, 1),
2388 CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
2389
2390 // Shift AX down 8 bits.
2391 Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16,
2392 Result,
2393 CurDAG->getTargetConstant(8, MVT::i8)), 0);
2394 // Then truncate it down to i8.
2395 ReplaceUses(SDValue(Node, 1),
2396 CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
2397 }
2398 // Copy the low half of the result, if it is needed.
2399 if (!SDValue(Node, 0).use_empty()) {
2400 if (!ResLo.getNode()) {
2401 assert(LoReg && "Register for low half is not defined!");
2402 ResLo = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, LoReg, NVT,
2403 InFlag);
2404 InFlag = ResLo.getValue(2);
2405 }
2406 ReplaceUses(SDValue(Node, 0), ResLo);
2407 DEBUG(dbgs() << "=> "; ResLo.getNode()->dump(CurDAG); dbgs() << '\n');
2408 }
2409 // Copy the high half of the result, if it is needed.
2410 if (!SDValue(Node, 1).use_empty()) {
2411 if (!ResHi.getNode()) {
2412 assert(HiReg && "Register for high half is not defined!");
2413 ResHi = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, HiReg, NVT,
2414 InFlag);
2415 InFlag = ResHi.getValue(2);
2416 }
2417 ReplaceUses(SDValue(Node, 1), ResHi);
2418 DEBUG(dbgs() << "=> "; ResHi.getNode()->dump(CurDAG); dbgs() << '\n');
2419 }
2420
2421 return nullptr;
2422 }
2423
2424 case ISD::SDIVREM:
2425 case ISD::UDIVREM:
2426 case X86ISD::SDIVREM8_SEXT_HREG:
2427 case X86ISD::UDIVREM8_ZEXT_HREG: {
2428 SDValue N0 = Node->getOperand(0);
2429 SDValue N1 = Node->getOperand(1);
2430
2431 bool isSigned = (Opcode == ISD::SDIVREM ||
2432 Opcode == X86ISD::SDIVREM8_SEXT_HREG);
2433 if (!isSigned) {
2434 switch (NVT.SimpleTy) {
2435 default: llvm_unreachable("Unsupported VT!");
2436 case MVT::i8: Opc = X86::DIV8r; MOpc = X86::DIV8m; break;
2437 case MVT::i16: Opc = X86::DIV16r; MOpc = X86::DIV16m; break;
2438 case MVT::i32: Opc = X86::DIV32r; MOpc = X86::DIV32m; break;
2439 case MVT::i64: Opc = X86::DIV64r; MOpc = X86::DIV64m; break;
2440 }
2441 } else {
2442 switch (NVT.SimpleTy) {
2443 default: llvm_unreachable("Unsupported VT!");
2444 case MVT::i8: Opc = X86::IDIV8r; MOpc = X86::IDIV8m; break;
2445 case MVT::i16: Opc = X86::IDIV16r; MOpc = X86::IDIV16m; break;
2446 case MVT::i32: Opc = X86::IDIV32r; MOpc = X86::IDIV32m; break;
2447 case MVT::i64: Opc = X86::IDIV64r; MOpc = X86::IDIV64m; break;
2448 }
2449 }
2450
2451 unsigned LoReg, HiReg, ClrReg;
2452 unsigned SExtOpcode;
2453 switch (NVT.SimpleTy) {
2454 default: llvm_unreachable("Unsupported VT!");
2455 case MVT::i8:
2456 LoReg = X86::AL; ClrReg = HiReg = X86::AH;
2457 SExtOpcode = X86::CBW;
2458 break;
2459 case MVT::i16:
2460 LoReg = X86::AX; HiReg = X86::DX;
2461 ClrReg = X86::DX;
2462 SExtOpcode = X86::CWD;
2463 break;
2464 case MVT::i32:
2465 LoReg = X86::EAX; ClrReg = HiReg = X86::EDX;
2466 SExtOpcode = X86::CDQ;
2467 break;
2468 case MVT::i64:
2469 LoReg = X86::RAX; ClrReg = HiReg = X86::RDX;
2470 SExtOpcode = X86::CQO;
2471 break;
2472 }
2473
2474 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
2475 bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
2476 bool signBitIsZero = CurDAG->SignBitIsZero(N0);
2477
2478 SDValue InFlag;
2479 if (NVT == MVT::i8 && (!isSigned || signBitIsZero)) {
2480 // Special case for div8, just use a move with zero extension to AX to
2481 // clear the upper 8 bits (AH).
2482 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Move, Chain;
2483 if (TryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
2484 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(0) };
2485 Move =
2486 SDValue(CurDAG->getMachineNode(X86::MOVZX32rm8, dl, MVT::i32,
2487 MVT::Other, Ops), 0);
2488 Chain = Move.getValue(1);
2489 ReplaceUses(N0.getValue(1), Chain);
2490 } else {
2491 Move =
2492 SDValue(CurDAG->getMachineNode(X86::MOVZX32rr8, dl, MVT::i32, N0),0);
2493 Chain = CurDAG->getEntryNode();
2494 }
2495 Chain = CurDAG->getCopyToReg(Chain, dl, X86::EAX, Move, SDValue());
2496 InFlag = Chain.getValue(1);
2497 } else {
2498 InFlag =
2499 CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl,
2500 LoReg, N0, SDValue()).getValue(1);
2501 if (isSigned && !signBitIsZero) {
2502 // Sign extend the low part into the high part.
2503 InFlag =
2504 SDValue(CurDAG->getMachineNode(SExtOpcode, dl, MVT::Glue, InFlag),0);
2505 } else {
2506 // Zero out the high part, effectively zero extending the input.
2507 SDValue ClrNode = SDValue(CurDAG->getMachineNode(X86::MOV32r0, dl, NVT), 0);
2508 switch (NVT.SimpleTy) {
2509 case MVT::i16:
2510 ClrNode =
2511 SDValue(CurDAG->getMachineNode(
2512 TargetOpcode::EXTRACT_SUBREG, dl, MVT::i16, ClrNode,
2513 CurDAG->getTargetConstant(X86::sub_16bit, MVT::i32)),
2514 0);
2515 break;
2516 case MVT::i32:
2517 break;
2518 case MVT::i64:
2519 ClrNode =
2520 SDValue(CurDAG->getMachineNode(
2521 TargetOpcode::SUBREG_TO_REG, dl, MVT::i64,
2522 CurDAG->getTargetConstant(0, MVT::i64), ClrNode,
2523 CurDAG->getTargetConstant(X86::sub_32bit, MVT::i32)),
2524 0);
2525 break;
2526 default:
2527 llvm_unreachable("Unexpected division source");
2528 }
2529
2530 InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, ClrReg,
2531 ClrNode, InFlag).getValue(1);
2532 }
2533 }
2534
2535 if (foldedLoad) {
2536 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
2537 InFlag };
2538 SDNode *CNode =
2539 CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Glue, Ops);
2540 InFlag = SDValue(CNode, 1);
2541 // Update the chain.
2542 ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
2543 } else {
2544 InFlag =
2545 SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, N1, InFlag), 0);
2546 }
2547
2548 // Prevent use of AH in a REX instruction by explicitly copying it to
2549 // an ABCD_L register.
2550 //
2551 // The current assumption of the register allocator is that isel
2552 // won't generate explicit references to the GR8_ABCD_H registers. If
2553 // the allocator and/or the backend get enhanced to be more robust in
2554 // that regard, this can be, and should be, removed.
2555 if (HiReg == X86::AH && !SDValue(Node, 1).use_empty()) {
2556 SDValue AHCopy = CurDAG->getRegister(X86::AH, MVT::i8);
2557 unsigned AHExtOpcode =
2558 isSigned ? X86::MOVSX32_NOREXrr8 : X86::MOVZX32_NOREXrr8;
2559
2560 SDNode *RNode = CurDAG->getMachineNode(AHExtOpcode, dl, MVT::i32,
2561 MVT::Glue, AHCopy, InFlag);
2562 SDValue Result(RNode, 0);
2563 InFlag = SDValue(RNode, 1);
2564
2565 if (Opcode == X86ISD::UDIVREM8_ZEXT_HREG ||
2566 Opcode == X86ISD::SDIVREM8_SEXT_HREG) {
2567 if (Node->getValueType(1) == MVT::i64) {
2568 // It's not possible to directly movsx AH to a 64bit register, because
2569 // the latter needs the REX prefix, but the former can't have it.
2570 assert(Opcode != X86ISD::SDIVREM8_SEXT_HREG &&
2571 "Unexpected i64 sext of h-register");
2572 Result =
2573 SDValue(CurDAG->getMachineNode(
2574 TargetOpcode::SUBREG_TO_REG, dl, MVT::i64,
2575 CurDAG->getTargetConstant(0, MVT::i64), Result,
2576 CurDAG->getTargetConstant(X86::sub_32bit, MVT::i32)),
2577 0);
2578 }
2579 } else {
2580 Result =
2581 CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result);
2582 }
2583 ReplaceUses(SDValue(Node, 1), Result);
2584 DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
2585 }
2586 // Copy the division (low) result, if it is needed.
2587 if (!SDValue(Node, 0).use_empty()) {
2588 SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2589 LoReg, NVT, InFlag);
2590 InFlag = Result.getValue(2);
2591 ReplaceUses(SDValue(Node, 0), Result);
2592 DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
2593 }
2594 // Copy the remainder (high) result, if it is needed.
2595 if (!SDValue(Node, 1).use_empty()) {
2596 SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2597 HiReg, NVT, InFlag);
2598 InFlag = Result.getValue(2);
2599 ReplaceUses(SDValue(Node, 1), Result);
2600 DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
2601 }
2602 return nullptr;
2603 }
2604
2605 case X86ISD::CMP:
2606 case X86ISD::SUB: {
2607 // Sometimes a SUB is used to perform comparison.
2608 if (Opcode == X86ISD::SUB && Node->hasAnyUseOfValue(0))
2609 // This node is not a CMP.
2610 break;
2611 SDValue N0 = Node->getOperand(0);
2612 SDValue N1 = Node->getOperand(1);
2613
2614 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() &&
2615 HasNoSignedComparisonUses(Node)) {
2616 // Look for (X86cmp (truncate $op, i1), 0) and try to convert to a
2617 // smaller encoding
2618 if (Opcode == X86ISD::CMP && N0.getValueType() == MVT::i1 &&
2619 X86::isZeroNode(N1)) {
2620 SDValue Reg = N0.getOperand(0);
2621 SDValue Imm = CurDAG->getTargetConstant(1, MVT::i8);
2622
2623 // Emit testb
2624 if (Reg.getScalarValueSizeInBits() > 8)
2625 Reg = CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Reg);
2626 // Emit a testb.
2627 SDNode *NewNode = CurDAG->getMachineNode(X86::TEST8ri, dl, MVT::i32,
2628 Reg, Imm);
2629 ReplaceUses(SDValue(Node, 0), SDValue(NewNode, 0));
2630 return nullptr;
2631 }
2632
2633 N0 = N0.getOperand(0);
2634 }
2635 // Look for (X86cmp (and $op, $imm), 0) and see if we can convert it to
2636 // use a smaller encoding.
2637 // Look past the truncate if CMP is the only use of it.
2638 if ((N0.getNode()->getOpcode() == ISD::AND ||
2639 (N0.getResNo() == 0 && N0.getNode()->getOpcode() == X86ISD::AND)) &&
2640 N0.getNode()->hasOneUse() &&
2641 N0.getValueType() != MVT::i8 &&
2642 X86::isZeroNode(N1)) {
2643 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getNode()->getOperand(1));
2644 if (!C) break;
2645
2646 // For example, convert "testl %eax, $8" to "testb %al, $8"
2647 if ((C->getZExtValue() & ~UINT64_C(0xff)) == 0 &&
2648 (!(C->getZExtValue() & 0x80) ||
2649 HasNoSignedComparisonUses(Node))) {
2650 SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i8);
2651 SDValue Reg = N0.getNode()->getOperand(0);
2652
2653 // On x86-32, only the ABCD registers have 8-bit subregisters.
2654 if (!Subtarget->is64Bit()) {
2655 const TargetRegisterClass *TRC;
2656 switch (N0.getSimpleValueType().SimpleTy) {
2657 case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break;
2658 case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break;
2659 default: llvm_unreachable("Unsupported TEST operand type!");
2660 }
2661 SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32);
2662 Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl,
2663 Reg.getValueType(), Reg, RC), 0);
2664 }
2665
2666 // Extract the l-register.
2667 SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl,
2668 MVT::i8, Reg);
2669
2670 // Emit a testb.
2671 SDNode *NewNode = CurDAG->getMachineNode(X86::TEST8ri, dl, MVT::i32,
2672 Subreg, Imm);
2673 // Replace SUB|CMP with TEST, since SUB has two outputs while TEST has
2674 // one, do not call ReplaceAllUsesWith.
2675 ReplaceUses(SDValue(Node, (Opcode == X86ISD::SUB ? 1 : 0)),
2676 SDValue(NewNode, 0));
2677 return nullptr;
2678 }
2679
2680 // For example, "testl %eax, $2048" to "testb %ah, $8".
2681 if ((C->getZExtValue() & ~UINT64_C(0xff00)) == 0 &&
2682 (!(C->getZExtValue() & 0x8000) ||
2683 HasNoSignedComparisonUses(Node))) {
2684 // Shift the immediate right by 8 bits.
2685 SDValue ShiftedImm = CurDAG->getTargetConstant(C->getZExtValue() >> 8,
2686 MVT::i8);
2687 SDValue Reg = N0.getNode()->getOperand(0);
2688
2689 // Put the value in an ABCD register.
2690 const TargetRegisterClass *TRC;
2691 switch (N0.getSimpleValueType().SimpleTy) {
2692 case MVT::i64: TRC = &X86::GR64_ABCDRegClass; break;
2693 case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break;
2694 case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break;
2695 default: llvm_unreachable("Unsupported TEST operand type!");
2696 }
2697 SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32);
2698 Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl,
2699 Reg.getValueType(), Reg, RC), 0);
2700
2701 // Extract the h-register.
2702 SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_8bit_hi, dl,
2703 MVT::i8, Reg);
2704
2705 // Emit a testb. The EXTRACT_SUBREG becomes a COPY that can only
2706 // target GR8_NOREX registers, so make sure the register class is
2707 // forced.
2708 SDNode *NewNode = CurDAG->getMachineNode(X86::TEST8ri_NOREX, dl,
2709 MVT::i32, Subreg, ShiftedImm);
2710 // Replace SUB|CMP with TEST, since SUB has two outputs while TEST has
2711 // one, do not call ReplaceAllUsesWith.
2712 ReplaceUses(SDValue(Node, (Opcode == X86ISD::SUB ? 1 : 0)),
2713 SDValue(NewNode, 0));
2714 return nullptr;
2715 }
2716
2717 // For example, "testl %eax, $32776" to "testw %ax, $32776".
2718 if ((C->getZExtValue() & ~UINT64_C(0xffff)) == 0 &&
2719 N0.getValueType() != MVT::i16 &&
2720 (!(C->getZExtValue() & 0x8000) ||
2721 HasNoSignedComparisonUses(Node))) {
2722 SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i16);
2723 SDValue Reg = N0.getNode()->getOperand(0);
2724
2725 // Extract the 16-bit subregister.
2726 SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_16bit, dl,
2727 MVT::i16, Reg);
2728
2729 // Emit a testw.
2730 SDNode *NewNode = CurDAG->getMachineNode(X86::TEST16ri, dl, MVT::i32,
2731 Subreg, Imm);
2732 // Replace SUB|CMP with TEST, since SUB has two outputs while TEST has
2733 // one, do not call ReplaceAllUsesWith.
2734 ReplaceUses(SDValue(Node, (Opcode == X86ISD::SUB ? 1 : 0)),
2735 SDValue(NewNode, 0));
2736 return nullptr;
2737 }
2738
2739 // For example, "testq %rax, $268468232" to "testl %eax, $268468232".
2740 if ((C->getZExtValue() & ~UINT64_C(0xffffffff)) == 0 &&
2741 N0.getValueType() == MVT::i64 &&
2742 (!(C->getZExtValue() & 0x80000000) ||
2743 HasNoSignedComparisonUses(Node))) {
2744 SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i32);
2745 SDValue Reg = N0.getNode()->getOperand(0);
2746
2747 // Extract the 32-bit subregister.
2748 SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_32bit, dl,
2749 MVT::i32, Reg);
2750
2751 // Emit a testl.
2752 SDNode *NewNode = CurDAG->getMachineNode(X86::TEST32ri, dl, MVT::i32,
2753 Subreg, Imm);
2754 // Replace SUB|CMP with TEST, since SUB has two outputs while TEST has
2755 // one, do not call ReplaceAllUsesWith.
2756 ReplaceUses(SDValue(Node, (Opcode == X86ISD::SUB ? 1 : 0)),
2757 SDValue(NewNode, 0));
2758 return nullptr;
2759 }
2760 }
2761 break;
2762 }
2763 case ISD::STORE: {
2764 // Change a chain of {load; incr or dec; store} of the same value into
2765 // a simple increment or decrement through memory of that value, if the
2766 // uses of the modified value and its address are suitable.
2767 // The DEC64m tablegen pattern is currently not able to match the case where
2768 // the EFLAGS on the original DEC are used. (This also applies to
2769 // {INC,DEC}X{64,32,16,8}.)
2770 // We'll need to improve tablegen to allow flags to be transferred from a
2771 // node in the pattern to the result node. probably with a new keyword
2772 // for example, we have this
2773 // def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst",
2774 // [(store (add (loadi64 addr:$dst), -1), addr:$dst),
2775 // (implicit EFLAGS)]>;
2776 // but maybe need something like this
2777 // def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst",
2778 // [(store (add (loadi64 addr:$dst), -1), addr:$dst),
2779 // (transferrable EFLAGS)]>;
2780
2781 StoreSDNode *StoreNode = cast<StoreSDNode>(Node);
2782 SDValue StoredVal = StoreNode->getOperand(1);
2783 unsigned Opc = StoredVal->getOpcode();
2784
2785 LoadSDNode *LoadNode = nullptr;
2786 SDValue InputChain;
2787 if (!isLoadIncOrDecStore(StoreNode, Opc, StoredVal, CurDAG,
2788 LoadNode, InputChain))
2789 break;
2790
2791 SDValue Base, Scale, Index, Disp, Segment;
2792 if (!SelectAddr(LoadNode, LoadNode->getBasePtr(),
2793 Base, Scale, Index, Disp, Segment))
2794 break;
2795
2796 MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(2);
2797 MemOp[0] = StoreNode->getMemOperand();
2798 MemOp[1] = LoadNode->getMemOperand();
2799 const SDValue Ops[] = { Base, Scale, Index, Disp, Segment, InputChain };
2800 EVT LdVT = LoadNode->getMemoryVT();
2801 unsigned newOpc = getFusedLdStOpcode(LdVT, Opc);
2802 MachineSDNode *Result = CurDAG->getMachineNode(newOpc,
2803 SDLoc(Node),
2804 MVT::i32, MVT::Other, Ops);
2805 Result->setMemRefs(MemOp, MemOp + 2);
2806
2807 ReplaceUses(SDValue(StoreNode, 0), SDValue(Result, 1));
2808 ReplaceUses(SDValue(StoredVal.getNode(), 1), SDValue(Result, 0));
2809
2810 return Result;
2811 }
2812 }
2813
2814 SDNode *ResNode = SelectCode(Node);
2815
2816 DEBUG(dbgs() << "=> ";
2817 if (ResNode == nullptr || ResNode == Node)
2818 Node->dump(CurDAG);
2819 else
2820 ResNode->dump(CurDAG);
2821 dbgs() << '\n');
2822
2823 return ResNode;
2824 }
2825
2826 bool X86DAGToDAGISel::
SelectInlineAsmMemoryOperand(const SDValue & Op,char ConstraintCode,std::vector<SDValue> & OutOps)2827 SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode,
2828 std::vector<SDValue> &OutOps) {
2829 SDValue Op0, Op1, Op2, Op3, Op4;
2830 switch (ConstraintCode) {
2831 case 'o': // offsetable ??
2832 case 'v': // not offsetable ??
2833 default: return true;
2834 case 'm': // memory
2835 if (!SelectAddr(nullptr, Op, Op0, Op1, Op2, Op3, Op4))
2836 return true;
2837 break;
2838 }
2839
2840 OutOps.push_back(Op0);
2841 OutOps.push_back(Op1);
2842 OutOps.push_back(Op2);
2843 OutOps.push_back(Op3);
2844 OutOps.push_back(Op4);
2845 return false;
2846 }
2847
2848 /// createX86ISelDag - This pass converts a legalized DAG into a
2849 /// X86-specific DAG, ready for instruction scheduling.
2850 ///
createX86ISelDag(X86TargetMachine & TM,CodeGenOpt::Level OptLevel)2851 FunctionPass *llvm::createX86ISelDag(X86TargetMachine &TM,
2852 CodeGenOpt::Level OptLevel) {
2853 return new X86DAGToDAGISel(TM, OptLevel);
2854 }
2855