1 //===-- X86FloatingPoint.cpp - Floating point Reg -> Stack converter ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the pass which converts floating point instructions from
10 // pseudo registers into register stack instructions. This pass uses live
11 // variable information to indicate where the FPn registers are used and their
12 // lifetimes.
13 //
14 // The x87 hardware tracks liveness of the stack registers, so it is necessary
15 // to implement exact liveness tracking between basic blocks. The CFG edges are
16 // partitioned into bundles where the same FP registers must be live in
17 // identical stack positions. Instructions are inserted at the end of each basic
18 // block to rearrange the live registers to match the outgoing bundle.
19 //
20 // This approach avoids splitting critical edges at the potential cost of more
21 // live register shuffling instructions when critical edges are present.
22 //
23 //===----------------------------------------------------------------------===//
24
25 #include "X86.h"
26 #include "X86InstrInfo.h"
27 #include "llvm/ADT/DepthFirstIterator.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/ADT/SmallPtrSet.h"
30 #include "llvm/ADT/SmallSet.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/ADT/Statistic.h"
33 #include "llvm/CodeGen/EdgeBundles.h"
34 #include "llvm/CodeGen/LivePhysRegs.h"
35 #include "llvm/CodeGen/MachineFunctionPass.h"
36 #include "llvm/CodeGen/MachineInstrBuilder.h"
37 #include "llvm/CodeGen/MachineRegisterInfo.h"
38 #include "llvm/CodeGen/Passes.h"
39 #include "llvm/CodeGen/TargetInstrInfo.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/Config/llvm-config.h"
42 #include "llvm/IR/InlineAsm.h"
43 #include "llvm/InitializePasses.h"
44 #include "llvm/Support/Debug.h"
45 #include "llvm/Support/ErrorHandling.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include "llvm/Target/TargetMachine.h"
48 #include <algorithm>
49 #include <bitset>
50 using namespace llvm;
51
52 #define DEBUG_TYPE "x86-codegen"
53
54 STATISTIC(NumFXCH, "Number of fxch instructions inserted");
55 STATISTIC(NumFP , "Number of floating point instructions");
56
57 namespace {
58 const unsigned ScratchFPReg = 7;
59
60 struct FPS : public MachineFunctionPass {
61 static char ID;
FPS__anonf776ca960111::FPS62 FPS() : MachineFunctionPass(ID) {
63 // This is really only to keep valgrind quiet.
64 // The logic in isLive() is too much for it.
65 memset(Stack, 0, sizeof(Stack));
66 memset(RegMap, 0, sizeof(RegMap));
67 }
68
getAnalysisUsage__anonf776ca960111::FPS69 void getAnalysisUsage(AnalysisUsage &AU) const override {
70 AU.setPreservesCFG();
71 AU.addRequired<EdgeBundles>();
72 AU.addPreservedID(MachineLoopInfoID);
73 AU.addPreservedID(MachineDominatorsID);
74 MachineFunctionPass::getAnalysisUsage(AU);
75 }
76
77 bool runOnMachineFunction(MachineFunction &MF) override;
78
getRequiredProperties__anonf776ca960111::FPS79 MachineFunctionProperties getRequiredProperties() const override {
80 return MachineFunctionProperties().set(
81 MachineFunctionProperties::Property::NoVRegs);
82 }
83
getPassName__anonf776ca960111::FPS84 StringRef getPassName() const override { return "X86 FP Stackifier"; }
85
86 private:
87 const TargetInstrInfo *TII = nullptr; // Machine instruction info.
88
89 // Two CFG edges are related if they leave the same block, or enter the same
90 // block. The transitive closure of an edge under this relation is a
91 // LiveBundle. It represents a set of CFG edges where the live FP stack
92 // registers must be allocated identically in the x87 stack.
93 //
94 // A LiveBundle is usually all the edges leaving a block, or all the edges
95 // entering a block, but it can contain more edges if critical edges are
96 // present.
97 //
98 // The set of live FP registers in a LiveBundle is calculated by bundleCFG,
99 // but the exact mapping of FP registers to stack slots is fixed later.
100 struct LiveBundle {
101 // Bit mask of live FP registers. Bit 0 = FP0, bit 1 = FP1, &c.
102 unsigned Mask = 0;
103
104 // Number of pre-assigned live registers in FixStack. This is 0 when the
105 // stack order has not yet been fixed.
106 unsigned FixCount = 0;
107
108 // Assigned stack order for live-in registers.
109 // FixStack[i] == getStackEntry(i) for all i < FixCount.
110 unsigned char FixStack[8];
111
112 LiveBundle() = default;
113
114 // Have the live registers been assigned a stack order yet?
isFixed__anonf776ca960111::FPS::LiveBundle115 bool isFixed() const { return !Mask || FixCount; }
116 };
117
118 // Numbered LiveBundle structs. LiveBundles[0] is used for all CFG edges
119 // with no live FP registers.
120 SmallVector<LiveBundle, 8> LiveBundles;
121
122 // The edge bundle analysis provides indices into the LiveBundles vector.
123 EdgeBundles *Bundles = nullptr;
124
125 // Return a bitmask of FP registers in block's live-in list.
calcLiveInMask__anonf776ca960111::FPS126 static unsigned calcLiveInMask(MachineBasicBlock *MBB, bool RemoveFPs) {
127 unsigned Mask = 0;
128 for (MachineBasicBlock::livein_iterator I = MBB->livein_begin();
129 I != MBB->livein_end(); ) {
130 MCPhysReg Reg = I->PhysReg;
131 static_assert(X86::FP6 - X86::FP0 == 6, "sequential regnums");
132 if (Reg >= X86::FP0 && Reg <= X86::FP6) {
133 Mask |= 1 << (Reg - X86::FP0);
134 if (RemoveFPs) {
135 I = MBB->removeLiveIn(I);
136 continue;
137 }
138 }
139 ++I;
140 }
141 return Mask;
142 }
143
144 // Partition all the CFG edges into LiveBundles.
145 void bundleCFGRecomputeKillFlags(MachineFunction &MF);
146
147 MachineBasicBlock *MBB = nullptr; // Current basic block
148
149 // The hardware keeps track of how many FP registers are live, so we have
150 // to model that exactly. Usually, each live register corresponds to an
151 // FP<n> register, but when dealing with calls, returns, and inline
152 // assembly, it is sometimes necessary to have live scratch registers.
153 unsigned Stack[8]; // FP<n> Registers in each stack slot...
154 unsigned StackTop = 0; // The current top of the FP stack.
155
156 enum {
157 NumFPRegs = 8 // Including scratch pseudo-registers.
158 };
159
160 // For each live FP<n> register, point to its Stack[] entry.
161 // The first entries correspond to FP0-FP6, the rest are scratch registers
162 // used when we need slightly different live registers than what the
163 // register allocator thinks.
164 unsigned RegMap[NumFPRegs];
165
166 // Set up our stack model to match the incoming registers to MBB.
167 void setupBlockStack();
168
169 // Shuffle live registers to match the expectations of successor blocks.
170 void finishBlockStack();
171
172 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dumpStack__anonf776ca960111::FPS173 void dumpStack() const {
174 dbgs() << "Stack contents:";
175 for (unsigned i = 0; i != StackTop; ++i) {
176 dbgs() << " FP" << Stack[i];
177 assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!");
178 }
179 }
180 #endif
181
182 /// getSlot - Return the stack slot number a particular register number is
183 /// in.
getSlot__anonf776ca960111::FPS184 unsigned getSlot(unsigned RegNo) const {
185 assert(RegNo < NumFPRegs && "Regno out of range!");
186 return RegMap[RegNo];
187 }
188
189 /// isLive - Is RegNo currently live in the stack?
isLive__anonf776ca960111::FPS190 bool isLive(unsigned RegNo) const {
191 unsigned Slot = getSlot(RegNo);
192 return Slot < StackTop && Stack[Slot] == RegNo;
193 }
194
195 /// getStackEntry - Return the X86::FP<n> register in register ST(i).
getStackEntry__anonf776ca960111::FPS196 unsigned getStackEntry(unsigned STi) const {
197 if (STi >= StackTop)
198 report_fatal_error("Access past stack top!");
199 return Stack[StackTop-1-STi];
200 }
201
202 /// getSTReg - Return the X86::ST(i) register which contains the specified
203 /// FP<RegNo> register.
getSTReg__anonf776ca960111::FPS204 unsigned getSTReg(unsigned RegNo) const {
205 return StackTop - 1 - getSlot(RegNo) + X86::ST0;
206 }
207
208 // pushReg - Push the specified FP<n> register onto the stack.
pushReg__anonf776ca960111::FPS209 void pushReg(unsigned Reg) {
210 assert(Reg < NumFPRegs && "Register number out of range!");
211 if (StackTop >= 8)
212 report_fatal_error("Stack overflow!");
213 Stack[StackTop] = Reg;
214 RegMap[Reg] = StackTop++;
215 }
216
217 // popReg - Pop a register from the stack.
popReg__anonf776ca960111::FPS218 void popReg() {
219 if (StackTop == 0)
220 report_fatal_error("Cannot pop empty stack!");
221 RegMap[Stack[--StackTop]] = ~0; // Update state
222 }
223
isAtTop__anonf776ca960111::FPS224 bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; }
moveToTop__anonf776ca960111::FPS225 void moveToTop(unsigned RegNo, MachineBasicBlock::iterator I) {
226 DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc();
227 if (isAtTop(RegNo)) return;
228
229 unsigned STReg = getSTReg(RegNo);
230 unsigned RegOnTop = getStackEntry(0);
231
232 // Swap the slots the regs are in.
233 std::swap(RegMap[RegNo], RegMap[RegOnTop]);
234
235 // Swap stack slot contents.
236 if (RegMap[RegOnTop] >= StackTop)
237 report_fatal_error("Access past stack top!");
238 std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
239
240 // Emit an fxch to update the runtime processors version of the state.
241 BuildMI(*MBB, I, dl, TII->get(X86::XCH_F)).addReg(STReg);
242 ++NumFXCH;
243 }
244
duplicateToTop__anonf776ca960111::FPS245 void duplicateToTop(unsigned RegNo, unsigned AsReg,
246 MachineBasicBlock::iterator I) {
247 DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc();
248 unsigned STReg = getSTReg(RegNo);
249 pushReg(AsReg); // New register on top of stack
250
251 BuildMI(*MBB, I, dl, TII->get(X86::LD_Frr)).addReg(STReg);
252 }
253
254 /// popStackAfter - Pop the current value off of the top of the FP stack
255 /// after the specified instruction.
256 void popStackAfter(MachineBasicBlock::iterator &I);
257
258 /// freeStackSlotAfter - Free the specified register from the register
259 /// stack, so that it is no longer in a register. If the register is
260 /// currently at the top of the stack, we just pop the current instruction,
261 /// otherwise we store the current top-of-stack into the specified slot,
262 /// then pop the top of stack.
263 void freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned Reg);
264
265 /// freeStackSlotBefore - Just the pop, no folding. Return the inserted
266 /// instruction.
267 MachineBasicBlock::iterator
268 freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo);
269
270 /// Adjust the live registers to be the set in Mask.
271 void adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I);
272
273 /// Shuffle the top FixCount stack entries such that FP reg FixStack[0] is
274 /// st(0), FP reg FixStack[1] is st(1) etc.
275 void shuffleStackTop(const unsigned char *FixStack, unsigned FixCount,
276 MachineBasicBlock::iterator I);
277
278 bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
279
280 void handleCall(MachineBasicBlock::iterator &I);
281 void handleReturn(MachineBasicBlock::iterator &I);
282 void handleZeroArgFP(MachineBasicBlock::iterator &I);
283 void handleOneArgFP(MachineBasicBlock::iterator &I);
284 void handleOneArgFPRW(MachineBasicBlock::iterator &I);
285 void handleTwoArgFP(MachineBasicBlock::iterator &I);
286 void handleCompareFP(MachineBasicBlock::iterator &I);
287 void handleCondMovFP(MachineBasicBlock::iterator &I);
288 void handleSpecialFP(MachineBasicBlock::iterator &I);
289
290 // Check if a COPY instruction is using FP registers.
isFPCopy__anonf776ca960111::FPS291 static bool isFPCopy(MachineInstr &MI) {
292 Register DstReg = MI.getOperand(0).getReg();
293 Register SrcReg = MI.getOperand(1).getReg();
294
295 return X86::RFP80RegClass.contains(DstReg) ||
296 X86::RFP80RegClass.contains(SrcReg);
297 }
298
299 void setKillFlags(MachineBasicBlock &MBB) const;
300 };
301 }
302
303 char FPS::ID = 0;
304
305 INITIALIZE_PASS_BEGIN(FPS, DEBUG_TYPE, "X86 FP Stackifier",
306 false, false)
INITIALIZE_PASS_DEPENDENCY(EdgeBundles)307 INITIALIZE_PASS_DEPENDENCY(EdgeBundles)
308 INITIALIZE_PASS_END(FPS, DEBUG_TYPE, "X86 FP Stackifier",
309 false, false)
310
311 FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); }
312
313 /// getFPReg - Return the X86::FPx register number for the specified operand.
314 /// For example, this returns 3 for X86::FP3.
getFPReg(const MachineOperand & MO)315 static unsigned getFPReg(const MachineOperand &MO) {
316 assert(MO.isReg() && "Expected an FP register!");
317 Register Reg = MO.getReg();
318 assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!");
319 return Reg - X86::FP0;
320 }
321
322 /// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
323 /// register references into FP stack references.
324 ///
runOnMachineFunction(MachineFunction & MF)325 bool FPS::runOnMachineFunction(MachineFunction &MF) {
326 // We only need to run this pass if there are any FP registers used in this
327 // function. If it is all integer, there is nothing for us to do!
328 bool FPIsUsed = false;
329
330 static_assert(X86::FP6 == X86::FP0+6, "Register enums aren't sorted right!");
331 const MachineRegisterInfo &MRI = MF.getRegInfo();
332 for (unsigned i = 0; i <= 6; ++i)
333 if (!MRI.reg_nodbg_empty(X86::FP0 + i)) {
334 FPIsUsed = true;
335 break;
336 }
337
338 // Early exit.
339 if (!FPIsUsed) return false;
340
341 Bundles = &getAnalysis<EdgeBundles>();
342 TII = MF.getSubtarget().getInstrInfo();
343
344 // Prepare cross-MBB liveness.
345 bundleCFGRecomputeKillFlags(MF);
346
347 StackTop = 0;
348
349 // Process the function in depth first order so that we process at least one
350 // of the predecessors for every reachable block in the function.
351 df_iterator_default_set<MachineBasicBlock*> Processed;
352 MachineBasicBlock *Entry = &MF.front();
353
354 LiveBundle &Bundle =
355 LiveBundles[Bundles->getBundle(Entry->getNumber(), false)];
356
357 // In regcall convention, some FP registers may not be passed through
358 // the stack, so they will need to be assigned to the stack first
359 if ((Entry->getParent()->getFunction().getCallingConv() ==
360 CallingConv::X86_RegCall) && (Bundle.Mask && !Bundle.FixCount)) {
361 // In the register calling convention, up to one FP argument could be
362 // saved in the first FP register.
363 // If bundle.mask is non-zero and Bundle.FixCount is zero, it means
364 // that the FP registers contain arguments.
365 // The actual value is passed in FP0.
366 // Here we fix the stack and mark FP0 as pre-assigned register.
367 assert((Bundle.Mask & 0xFE) == 0 &&
368 "Only FP0 could be passed as an argument");
369 Bundle.FixCount = 1;
370 Bundle.FixStack[0] = 0;
371 }
372
373 bool Changed = false;
374 for (MachineBasicBlock *BB : depth_first_ext(Entry, Processed))
375 Changed |= processBasicBlock(MF, *BB);
376
377 // Process any unreachable blocks in arbitrary order now.
378 if (MF.size() != Processed.size())
379 for (MachineBasicBlock &BB : MF)
380 if (Processed.insert(&BB).second)
381 Changed |= processBasicBlock(MF, BB);
382
383 LiveBundles.clear();
384
385 return Changed;
386 }
387
388 /// bundleCFG - Scan all the basic blocks to determine consistent live-in and
389 /// live-out sets for the FP registers. Consistent means that the set of
390 /// registers live-out from a block is identical to the live-in set of all
391 /// successors. This is not enforced by the normal live-in lists since
392 /// registers may be implicitly defined, or not used by all successors.
bundleCFGRecomputeKillFlags(MachineFunction & MF)393 void FPS::bundleCFGRecomputeKillFlags(MachineFunction &MF) {
394 assert(LiveBundles.empty() && "Stale data in LiveBundles");
395 LiveBundles.resize(Bundles->getNumBundles());
396
397 // Gather the actual live-in masks for all MBBs.
398 for (MachineBasicBlock &MBB : MF) {
399 setKillFlags(MBB);
400
401 const unsigned Mask = calcLiveInMask(&MBB, false);
402 if (!Mask)
403 continue;
404 // Update MBB ingoing bundle mask.
405 LiveBundles[Bundles->getBundle(MBB.getNumber(), false)].Mask |= Mask;
406 }
407 }
408
409 /// processBasicBlock - Loop over all of the instructions in the basic block,
410 /// transforming FP instructions into their stack form.
411 ///
processBasicBlock(MachineFunction & MF,MachineBasicBlock & BB)412 bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
413 bool Changed = false;
414 MBB = &BB;
415
416 setupBlockStack();
417
418 for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
419 MachineInstr &MI = *I;
420 uint64_t Flags = MI.getDesc().TSFlags;
421
422 unsigned FPInstClass = Flags & X86II::FPTypeMask;
423 if (MI.isInlineAsm())
424 FPInstClass = X86II::SpecialFP;
425
426 if (MI.isCopy() && isFPCopy(MI))
427 FPInstClass = X86II::SpecialFP;
428
429 if (MI.isImplicitDef() &&
430 X86::RFP80RegClass.contains(MI.getOperand(0).getReg()))
431 FPInstClass = X86II::SpecialFP;
432
433 if (MI.isCall())
434 FPInstClass = X86II::SpecialFP;
435
436 if (FPInstClass == X86II::NotFP)
437 continue; // Efficiently ignore non-fp insts!
438
439 MachineInstr *PrevMI = nullptr;
440 if (I != BB.begin())
441 PrevMI = &*std::prev(I);
442
443 ++NumFP; // Keep track of # of pseudo instrs
444 LLVM_DEBUG(dbgs() << "\nFPInst:\t" << MI);
445
446 // Get dead variables list now because the MI pointer may be deleted as part
447 // of processing!
448 SmallVector<unsigned, 8> DeadRegs;
449 for (const MachineOperand &MO : MI.operands())
450 if (MO.isReg() && MO.isDead())
451 DeadRegs.push_back(MO.getReg());
452
453 switch (FPInstClass) {
454 case X86II::ZeroArgFP: handleZeroArgFP(I); break;
455 case X86II::OneArgFP: handleOneArgFP(I); break; // fstp ST(0)
456 case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0))
457 case X86II::TwoArgFP: handleTwoArgFP(I); break;
458 case X86II::CompareFP: handleCompareFP(I); break;
459 case X86II::CondMovFP: handleCondMovFP(I); break;
460 case X86II::SpecialFP: handleSpecialFP(I); break;
461 default: llvm_unreachable("Unknown FP Type!");
462 }
463
464 // Check to see if any of the values defined by this instruction are dead
465 // after definition. If so, pop them.
466 for (unsigned i = 0, e = DeadRegs.size(); i != e; ++i) {
467 unsigned Reg = DeadRegs[i];
468 // Check if Reg is live on the stack. An inline-asm register operand that
469 // is in the clobber list and marked dead might not be live on the stack.
470 static_assert(X86::FP7 - X86::FP0 == 7, "sequential FP regnumbers");
471 if (Reg >= X86::FP0 && Reg <= X86::FP6 && isLive(Reg-X86::FP0)) {
472 LLVM_DEBUG(dbgs() << "Register FP#" << Reg - X86::FP0 << " is dead!\n");
473 freeStackSlotAfter(I, Reg-X86::FP0);
474 }
475 }
476
477 // Print out all of the instructions expanded to if -debug
478 LLVM_DEBUG({
479 MachineBasicBlock::iterator PrevI = PrevMI;
480 if (I == PrevI) {
481 dbgs() << "Just deleted pseudo instruction\n";
482 } else {
483 MachineBasicBlock::iterator Start = I;
484 // Rewind to first instruction newly inserted.
485 while (Start != BB.begin() && std::prev(Start) != PrevI)
486 --Start;
487 dbgs() << "Inserted instructions:\n\t";
488 Start->print(dbgs());
489 while (++Start != std::next(I)) {
490 }
491 }
492 dumpStack();
493 });
494 (void)PrevMI;
495
496 Changed = true;
497 }
498
499 finishBlockStack();
500
501 return Changed;
502 }
503
504 /// setupBlockStack - Use the live bundles to set up our model of the stack
505 /// to match predecessors' live out stack.
setupBlockStack()506 void FPS::setupBlockStack() {
507 LLVM_DEBUG(dbgs() << "\nSetting up live-ins for " << printMBBReference(*MBB)
508 << " derived from " << MBB->getName() << ".\n");
509 StackTop = 0;
510 // Get the live-in bundle for MBB.
511 const LiveBundle &Bundle =
512 LiveBundles[Bundles->getBundle(MBB->getNumber(), false)];
513
514 if (!Bundle.Mask) {
515 LLVM_DEBUG(dbgs() << "Block has no FP live-ins.\n");
516 return;
517 }
518
519 // Depth-first iteration should ensure that we always have an assigned stack.
520 assert(Bundle.isFixed() && "Reached block before any predecessors");
521
522 // Push the fixed live-in registers.
523 for (unsigned i = Bundle.FixCount; i > 0; --i) {
524 LLVM_DEBUG(dbgs() << "Live-in st(" << (i - 1) << "): %fp"
525 << unsigned(Bundle.FixStack[i - 1]) << '\n');
526 pushReg(Bundle.FixStack[i-1]);
527 }
528
529 // Kill off unwanted live-ins. This can happen with a critical edge.
530 // FIXME: We could keep these live registers around as zombies. They may need
531 // to be revived at the end of a short block. It might save a few instrs.
532 unsigned Mask = calcLiveInMask(MBB, /*RemoveFPs=*/true);
533 adjustLiveRegs(Mask, MBB->begin());
534 LLVM_DEBUG(MBB->dump());
535 }
536
537 /// finishBlockStack - Revive live-outs that are implicitly defined out of
538 /// MBB. Shuffle live registers to match the expected fixed stack of any
539 /// predecessors, and ensure that all predecessors are expecting the same
540 /// stack.
finishBlockStack()541 void FPS::finishBlockStack() {
542 // The RET handling below takes care of return blocks for us.
543 if (MBB->succ_empty())
544 return;
545
546 LLVM_DEBUG(dbgs() << "Setting up live-outs for " << printMBBReference(*MBB)
547 << " derived from " << MBB->getName() << ".\n");
548
549 // Get MBB's live-out bundle.
550 unsigned BundleIdx = Bundles->getBundle(MBB->getNumber(), true);
551 LiveBundle &Bundle = LiveBundles[BundleIdx];
552
553 // We may need to kill and define some registers to match successors.
554 // FIXME: This can probably be combined with the shuffle below.
555 MachineBasicBlock::iterator Term = MBB->getFirstTerminator();
556 adjustLiveRegs(Bundle.Mask, Term);
557
558 if (!Bundle.Mask) {
559 LLVM_DEBUG(dbgs() << "No live-outs.\n");
560 return;
561 }
562
563 // Has the stack order been fixed yet?
564 LLVM_DEBUG(dbgs() << "LB#" << BundleIdx << ": ");
565 if (Bundle.isFixed()) {
566 LLVM_DEBUG(dbgs() << "Shuffling stack to match.\n");
567 shuffleStackTop(Bundle.FixStack, Bundle.FixCount, Term);
568 } else {
569 // Not fixed yet, we get to choose.
570 LLVM_DEBUG(dbgs() << "Fixing stack order now.\n");
571 Bundle.FixCount = StackTop;
572 for (unsigned i = 0; i < StackTop; ++i)
573 Bundle.FixStack[i] = getStackEntry(i);
574 }
575 }
576
577
578 //===----------------------------------------------------------------------===//
579 // Efficient Lookup Table Support
580 //===----------------------------------------------------------------------===//
581
582 namespace {
583 struct TableEntry {
584 uint16_t from;
585 uint16_t to;
operator <__anonf776ca960311::TableEntry586 bool operator<(const TableEntry &TE) const { return from < TE.from; }
operator <(const TableEntry & TE,unsigned V)587 friend bool operator<(const TableEntry &TE, unsigned V) {
588 return TE.from < V;
589 }
operator <(unsigned V,const TableEntry & TE)590 friend bool LLVM_ATTRIBUTE_UNUSED operator<(unsigned V,
591 const TableEntry &TE) {
592 return V < TE.from;
593 }
594 };
595 }
596
Lookup(ArrayRef<TableEntry> Table,unsigned Opcode)597 static int Lookup(ArrayRef<TableEntry> Table, unsigned Opcode) {
598 const TableEntry *I = llvm::lower_bound(Table, Opcode);
599 if (I != Table.end() && I->from == Opcode)
600 return I->to;
601 return -1;
602 }
603
604 #ifdef NDEBUG
605 #define ASSERT_SORTED(TABLE)
606 #else
607 #define ASSERT_SORTED(TABLE) \
608 { \
609 static std::atomic<bool> TABLE##Checked(false); \
610 if (!TABLE##Checked.load(std::memory_order_relaxed)) { \
611 assert(is_sorted(TABLE) && \
612 "All lookup tables must be sorted for efficient access!"); \
613 TABLE##Checked.store(true, std::memory_order_relaxed); \
614 } \
615 }
616 #endif
617
618 //===----------------------------------------------------------------------===//
619 // Register File -> Register Stack Mapping Methods
620 //===----------------------------------------------------------------------===//
621
622 // OpcodeTable - Sorted map of register instructions to their stack version.
623 // The first element is an register file pseudo instruction, the second is the
624 // concrete X86 instruction which uses the register stack.
625 //
626 static const TableEntry OpcodeTable[] = {
627 { X86::ABS_Fp32 , X86::ABS_F },
628 { X86::ABS_Fp64 , X86::ABS_F },
629 { X86::ABS_Fp80 , X86::ABS_F },
630 { X86::ADD_Fp32m , X86::ADD_F32m },
631 { X86::ADD_Fp64m , X86::ADD_F64m },
632 { X86::ADD_Fp64m32 , X86::ADD_F32m },
633 { X86::ADD_Fp80m32 , X86::ADD_F32m },
634 { X86::ADD_Fp80m64 , X86::ADD_F64m },
635 { X86::ADD_FpI16m32 , X86::ADD_FI16m },
636 { X86::ADD_FpI16m64 , X86::ADD_FI16m },
637 { X86::ADD_FpI16m80 , X86::ADD_FI16m },
638 { X86::ADD_FpI32m32 , X86::ADD_FI32m },
639 { X86::ADD_FpI32m64 , X86::ADD_FI32m },
640 { X86::ADD_FpI32m80 , X86::ADD_FI32m },
641 { X86::CHS_Fp32 , X86::CHS_F },
642 { X86::CHS_Fp64 , X86::CHS_F },
643 { X86::CHS_Fp80 , X86::CHS_F },
644 { X86::CMOVBE_Fp32 , X86::CMOVBE_F },
645 { X86::CMOVBE_Fp64 , X86::CMOVBE_F },
646 { X86::CMOVBE_Fp80 , X86::CMOVBE_F },
647 { X86::CMOVB_Fp32 , X86::CMOVB_F },
648 { X86::CMOVB_Fp64 , X86::CMOVB_F },
649 { X86::CMOVB_Fp80 , X86::CMOVB_F },
650 { X86::CMOVE_Fp32 , X86::CMOVE_F },
651 { X86::CMOVE_Fp64 , X86::CMOVE_F },
652 { X86::CMOVE_Fp80 , X86::CMOVE_F },
653 { X86::CMOVNBE_Fp32 , X86::CMOVNBE_F },
654 { X86::CMOVNBE_Fp64 , X86::CMOVNBE_F },
655 { X86::CMOVNBE_Fp80 , X86::CMOVNBE_F },
656 { X86::CMOVNB_Fp32 , X86::CMOVNB_F },
657 { X86::CMOVNB_Fp64 , X86::CMOVNB_F },
658 { X86::CMOVNB_Fp80 , X86::CMOVNB_F },
659 { X86::CMOVNE_Fp32 , X86::CMOVNE_F },
660 { X86::CMOVNE_Fp64 , X86::CMOVNE_F },
661 { X86::CMOVNE_Fp80 , X86::CMOVNE_F },
662 { X86::CMOVNP_Fp32 , X86::CMOVNP_F },
663 { X86::CMOVNP_Fp64 , X86::CMOVNP_F },
664 { X86::CMOVNP_Fp80 , X86::CMOVNP_F },
665 { X86::CMOVP_Fp32 , X86::CMOVP_F },
666 { X86::CMOVP_Fp64 , X86::CMOVP_F },
667 { X86::CMOVP_Fp80 , X86::CMOVP_F },
668 { X86::COM_FpIr32 , X86::COM_FIr },
669 { X86::COM_FpIr64 , X86::COM_FIr },
670 { X86::COM_FpIr80 , X86::COM_FIr },
671 { X86::COM_Fpr32 , X86::COM_FST0r },
672 { X86::COM_Fpr64 , X86::COM_FST0r },
673 { X86::COM_Fpr80 , X86::COM_FST0r },
674 { X86::DIVR_Fp32m , X86::DIVR_F32m },
675 { X86::DIVR_Fp64m , X86::DIVR_F64m },
676 { X86::DIVR_Fp64m32 , X86::DIVR_F32m },
677 { X86::DIVR_Fp80m32 , X86::DIVR_F32m },
678 { X86::DIVR_Fp80m64 , X86::DIVR_F64m },
679 { X86::DIVR_FpI16m32, X86::DIVR_FI16m},
680 { X86::DIVR_FpI16m64, X86::DIVR_FI16m},
681 { X86::DIVR_FpI16m80, X86::DIVR_FI16m},
682 { X86::DIVR_FpI32m32, X86::DIVR_FI32m},
683 { X86::DIVR_FpI32m64, X86::DIVR_FI32m},
684 { X86::DIVR_FpI32m80, X86::DIVR_FI32m},
685 { X86::DIV_Fp32m , X86::DIV_F32m },
686 { X86::DIV_Fp64m , X86::DIV_F64m },
687 { X86::DIV_Fp64m32 , X86::DIV_F32m },
688 { X86::DIV_Fp80m32 , X86::DIV_F32m },
689 { X86::DIV_Fp80m64 , X86::DIV_F64m },
690 { X86::DIV_FpI16m32 , X86::DIV_FI16m },
691 { X86::DIV_FpI16m64 , X86::DIV_FI16m },
692 { X86::DIV_FpI16m80 , X86::DIV_FI16m },
693 { X86::DIV_FpI32m32 , X86::DIV_FI32m },
694 { X86::DIV_FpI32m64 , X86::DIV_FI32m },
695 { X86::DIV_FpI32m80 , X86::DIV_FI32m },
696 { X86::ILD_Fp16m32 , X86::ILD_F16m },
697 { X86::ILD_Fp16m64 , X86::ILD_F16m },
698 { X86::ILD_Fp16m80 , X86::ILD_F16m },
699 { X86::ILD_Fp32m32 , X86::ILD_F32m },
700 { X86::ILD_Fp32m64 , X86::ILD_F32m },
701 { X86::ILD_Fp32m80 , X86::ILD_F32m },
702 { X86::ILD_Fp64m32 , X86::ILD_F64m },
703 { X86::ILD_Fp64m64 , X86::ILD_F64m },
704 { X86::ILD_Fp64m80 , X86::ILD_F64m },
705 { X86::ISTT_Fp16m32 , X86::ISTT_FP16m},
706 { X86::ISTT_Fp16m64 , X86::ISTT_FP16m},
707 { X86::ISTT_Fp16m80 , X86::ISTT_FP16m},
708 { X86::ISTT_Fp32m32 , X86::ISTT_FP32m},
709 { X86::ISTT_Fp32m64 , X86::ISTT_FP32m},
710 { X86::ISTT_Fp32m80 , X86::ISTT_FP32m},
711 { X86::ISTT_Fp64m32 , X86::ISTT_FP64m},
712 { X86::ISTT_Fp64m64 , X86::ISTT_FP64m},
713 { X86::ISTT_Fp64m80 , X86::ISTT_FP64m},
714 { X86::IST_Fp16m32 , X86::IST_F16m },
715 { X86::IST_Fp16m64 , X86::IST_F16m },
716 { X86::IST_Fp16m80 , X86::IST_F16m },
717 { X86::IST_Fp32m32 , X86::IST_F32m },
718 { X86::IST_Fp32m64 , X86::IST_F32m },
719 { X86::IST_Fp32m80 , X86::IST_F32m },
720 { X86::IST_Fp64m32 , X86::IST_FP64m },
721 { X86::IST_Fp64m64 , X86::IST_FP64m },
722 { X86::IST_Fp64m80 , X86::IST_FP64m },
723 { X86::LD_Fp032 , X86::LD_F0 },
724 { X86::LD_Fp064 , X86::LD_F0 },
725 { X86::LD_Fp080 , X86::LD_F0 },
726 { X86::LD_Fp132 , X86::LD_F1 },
727 { X86::LD_Fp164 , X86::LD_F1 },
728 { X86::LD_Fp180 , X86::LD_F1 },
729 { X86::LD_Fp32m , X86::LD_F32m },
730 { X86::LD_Fp32m64 , X86::LD_F32m },
731 { X86::LD_Fp32m80 , X86::LD_F32m },
732 { X86::LD_Fp64m , X86::LD_F64m },
733 { X86::LD_Fp64m80 , X86::LD_F64m },
734 { X86::LD_Fp80m , X86::LD_F80m },
735 { X86::MUL_Fp32m , X86::MUL_F32m },
736 { X86::MUL_Fp64m , X86::MUL_F64m },
737 { X86::MUL_Fp64m32 , X86::MUL_F32m },
738 { X86::MUL_Fp80m32 , X86::MUL_F32m },
739 { X86::MUL_Fp80m64 , X86::MUL_F64m },
740 { X86::MUL_FpI16m32 , X86::MUL_FI16m },
741 { X86::MUL_FpI16m64 , X86::MUL_FI16m },
742 { X86::MUL_FpI16m80 , X86::MUL_FI16m },
743 { X86::MUL_FpI32m32 , X86::MUL_FI32m },
744 { X86::MUL_FpI32m64 , X86::MUL_FI32m },
745 { X86::MUL_FpI32m80 , X86::MUL_FI32m },
746 { X86::SQRT_Fp32 , X86::SQRT_F },
747 { X86::SQRT_Fp64 , X86::SQRT_F },
748 { X86::SQRT_Fp80 , X86::SQRT_F },
749 { X86::ST_Fp32m , X86::ST_F32m },
750 { X86::ST_Fp64m , X86::ST_F64m },
751 { X86::ST_Fp64m32 , X86::ST_F32m },
752 { X86::ST_Fp80m32 , X86::ST_F32m },
753 { X86::ST_Fp80m64 , X86::ST_F64m },
754 { X86::ST_FpP80m , X86::ST_FP80m },
755 { X86::SUBR_Fp32m , X86::SUBR_F32m },
756 { X86::SUBR_Fp64m , X86::SUBR_F64m },
757 { X86::SUBR_Fp64m32 , X86::SUBR_F32m },
758 { X86::SUBR_Fp80m32 , X86::SUBR_F32m },
759 { X86::SUBR_Fp80m64 , X86::SUBR_F64m },
760 { X86::SUBR_FpI16m32, X86::SUBR_FI16m},
761 { X86::SUBR_FpI16m64, X86::SUBR_FI16m},
762 { X86::SUBR_FpI16m80, X86::SUBR_FI16m},
763 { X86::SUBR_FpI32m32, X86::SUBR_FI32m},
764 { X86::SUBR_FpI32m64, X86::SUBR_FI32m},
765 { X86::SUBR_FpI32m80, X86::SUBR_FI32m},
766 { X86::SUB_Fp32m , X86::SUB_F32m },
767 { X86::SUB_Fp64m , X86::SUB_F64m },
768 { X86::SUB_Fp64m32 , X86::SUB_F32m },
769 { X86::SUB_Fp80m32 , X86::SUB_F32m },
770 { X86::SUB_Fp80m64 , X86::SUB_F64m },
771 { X86::SUB_FpI16m32 , X86::SUB_FI16m },
772 { X86::SUB_FpI16m64 , X86::SUB_FI16m },
773 { X86::SUB_FpI16m80 , X86::SUB_FI16m },
774 { X86::SUB_FpI32m32 , X86::SUB_FI32m },
775 { X86::SUB_FpI32m64 , X86::SUB_FI32m },
776 { X86::SUB_FpI32m80 , X86::SUB_FI32m },
777 { X86::TST_Fp32 , X86::TST_F },
778 { X86::TST_Fp64 , X86::TST_F },
779 { X86::TST_Fp80 , X86::TST_F },
780 { X86::UCOM_FpIr32 , X86::UCOM_FIr },
781 { X86::UCOM_FpIr64 , X86::UCOM_FIr },
782 { X86::UCOM_FpIr80 , X86::UCOM_FIr },
783 { X86::UCOM_Fpr32 , X86::UCOM_Fr },
784 { X86::UCOM_Fpr64 , X86::UCOM_Fr },
785 { X86::UCOM_Fpr80 , X86::UCOM_Fr },
786 { X86::XAM_Fp32 , X86::XAM_F },
787 { X86::XAM_Fp64 , X86::XAM_F },
788 { X86::XAM_Fp80 , X86::XAM_F },
789 };
790
getConcreteOpcode(unsigned Opcode)791 static unsigned getConcreteOpcode(unsigned Opcode) {
792 ASSERT_SORTED(OpcodeTable);
793 int Opc = Lookup(OpcodeTable, Opcode);
794 assert(Opc != -1 && "FP Stack instruction not in OpcodeTable!");
795 return Opc;
796 }
797
798 //===----------------------------------------------------------------------===//
799 // Helper Methods
800 //===----------------------------------------------------------------------===//
801
802 // PopTable - Sorted map of instructions to their popping version. The first
803 // element is an instruction, the second is the version which pops.
804 //
805 static const TableEntry PopTable[] = {
806 { X86::ADD_FrST0 , X86::ADD_FPrST0 },
807
808 { X86::COMP_FST0r, X86::FCOMPP },
809 { X86::COM_FIr , X86::COM_FIPr },
810 { X86::COM_FST0r , X86::COMP_FST0r },
811
812 { X86::DIVR_FrST0, X86::DIVR_FPrST0 },
813 { X86::DIV_FrST0 , X86::DIV_FPrST0 },
814
815 { X86::IST_F16m , X86::IST_FP16m },
816 { X86::IST_F32m , X86::IST_FP32m },
817
818 { X86::MUL_FrST0 , X86::MUL_FPrST0 },
819
820 { X86::ST_F32m , X86::ST_FP32m },
821 { X86::ST_F64m , X86::ST_FP64m },
822 { X86::ST_Frr , X86::ST_FPrr },
823
824 { X86::SUBR_FrST0, X86::SUBR_FPrST0 },
825 { X86::SUB_FrST0 , X86::SUB_FPrST0 },
826
827 { X86::UCOM_FIr , X86::UCOM_FIPr },
828
829 { X86::UCOM_FPr , X86::UCOM_FPPr },
830 { X86::UCOM_Fr , X86::UCOM_FPr },
831 };
832
doesInstructionSetFPSW(MachineInstr & MI)833 static bool doesInstructionSetFPSW(MachineInstr &MI) {
834 if (const MachineOperand *MO = MI.findRegisterDefOperand(X86::FPSW))
835 if (!MO->isDead())
836 return true;
837 return false;
838 }
839
840 static MachineBasicBlock::iterator
getNextFPInstruction(MachineBasicBlock::iterator I)841 getNextFPInstruction(MachineBasicBlock::iterator I) {
842 MachineBasicBlock &MBB = *I->getParent();
843 while (++I != MBB.end()) {
844 MachineInstr &MI = *I;
845 if (X86::isX87Instruction(MI))
846 return I;
847 }
848 return MBB.end();
849 }
850
851 /// popStackAfter - Pop the current value off of the top of the FP stack after
852 /// the specified instruction. This attempts to be sneaky and combine the pop
853 /// into the instruction itself if possible. The iterator is left pointing to
854 /// the last instruction, be it a new pop instruction inserted, or the old
855 /// instruction if it was modified in place.
856 ///
popStackAfter(MachineBasicBlock::iterator & I)857 void FPS::popStackAfter(MachineBasicBlock::iterator &I) {
858 MachineInstr &MI = *I;
859 const DebugLoc &dl = MI.getDebugLoc();
860 ASSERT_SORTED(PopTable);
861
862 popReg();
863
864 // Check to see if there is a popping version of this instruction...
865 int Opcode = Lookup(PopTable, I->getOpcode());
866 if (Opcode != -1) {
867 I->setDesc(TII->get(Opcode));
868 if (Opcode == X86::FCOMPP || Opcode == X86::UCOM_FPPr)
869 I->removeOperand(0);
870 MI.dropDebugNumber();
871 } else { // Insert an explicit pop
872 // If this instruction sets FPSW, which is read in following instruction,
873 // insert pop after that reader.
874 if (doesInstructionSetFPSW(MI)) {
875 MachineBasicBlock &MBB = *MI.getParent();
876 MachineBasicBlock::iterator Next = getNextFPInstruction(I);
877 if (Next != MBB.end() && Next->readsRegister(X86::FPSW))
878 I = Next;
879 }
880 I = BuildMI(*MBB, ++I, dl, TII->get(X86::ST_FPrr)).addReg(X86::ST0);
881 }
882 }
883
884 /// freeStackSlotAfter - Free the specified register from the register stack, so
885 /// that it is no longer in a register. If the register is currently at the top
886 /// of the stack, we just pop the current instruction, otherwise we store the
887 /// current top-of-stack into the specified slot, then pop the top of stack.
freeStackSlotAfter(MachineBasicBlock::iterator & I,unsigned FPRegNo)888 void FPS::freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned FPRegNo) {
889 if (getStackEntry(0) == FPRegNo) { // already at the top of stack? easy.
890 popStackAfter(I);
891 return;
892 }
893
894 // Otherwise, store the top of stack into the dead slot, killing the operand
895 // without having to add in an explicit xchg then pop.
896 //
897 I = freeStackSlotBefore(++I, FPRegNo);
898 }
899
900 /// freeStackSlotBefore - Free the specified register without trying any
901 /// folding.
902 MachineBasicBlock::iterator
freeStackSlotBefore(MachineBasicBlock::iterator I,unsigned FPRegNo)903 FPS::freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo) {
904 unsigned STReg = getSTReg(FPRegNo);
905 unsigned OldSlot = getSlot(FPRegNo);
906 unsigned TopReg = Stack[StackTop-1];
907 Stack[OldSlot] = TopReg;
908 RegMap[TopReg] = OldSlot;
909 RegMap[FPRegNo] = ~0;
910 Stack[--StackTop] = ~0;
911 return BuildMI(*MBB, I, DebugLoc(), TII->get(X86::ST_FPrr))
912 .addReg(STReg)
913 .getInstr();
914 }
915
916 /// adjustLiveRegs - Kill and revive registers such that exactly the FP
917 /// registers with a bit in Mask are live.
adjustLiveRegs(unsigned Mask,MachineBasicBlock::iterator I)918 void FPS::adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I) {
919 unsigned Defs = Mask;
920 unsigned Kills = 0;
921 for (unsigned i = 0; i < StackTop; ++i) {
922 unsigned RegNo = Stack[i];
923 if (!(Defs & (1 << RegNo)))
924 // This register is live, but we don't want it.
925 Kills |= (1 << RegNo);
926 else
927 // We don't need to imp-def this live register.
928 Defs &= ~(1 << RegNo);
929 }
930 assert((Kills & Defs) == 0 && "Register needs killing and def'ing?");
931
932 // Produce implicit-defs for free by using killed registers.
933 while (Kills && Defs) {
934 unsigned KReg = countTrailingZeros(Kills);
935 unsigned DReg = countTrailingZeros(Defs);
936 LLVM_DEBUG(dbgs() << "Renaming %fp" << KReg << " as imp %fp" << DReg
937 << "\n");
938 std::swap(Stack[getSlot(KReg)], Stack[getSlot(DReg)]);
939 std::swap(RegMap[KReg], RegMap[DReg]);
940 Kills &= ~(1 << KReg);
941 Defs &= ~(1 << DReg);
942 }
943
944 // Kill registers by popping.
945 if (Kills && I != MBB->begin()) {
946 MachineBasicBlock::iterator I2 = std::prev(I);
947 while (StackTop) {
948 unsigned KReg = getStackEntry(0);
949 if (!(Kills & (1 << KReg)))
950 break;
951 LLVM_DEBUG(dbgs() << "Popping %fp" << KReg << "\n");
952 popStackAfter(I2);
953 Kills &= ~(1 << KReg);
954 }
955 }
956
957 // Manually kill the rest.
958 while (Kills) {
959 unsigned KReg = countTrailingZeros(Kills);
960 LLVM_DEBUG(dbgs() << "Killing %fp" << KReg << "\n");
961 freeStackSlotBefore(I, KReg);
962 Kills &= ~(1 << KReg);
963 }
964
965 // Load zeros for all the imp-defs.
966 while(Defs) {
967 unsigned DReg = countTrailingZeros(Defs);
968 LLVM_DEBUG(dbgs() << "Defining %fp" << DReg << " as 0\n");
969 BuildMI(*MBB, I, DebugLoc(), TII->get(X86::LD_F0));
970 pushReg(DReg);
971 Defs &= ~(1 << DReg);
972 }
973
974 // Now we should have the correct registers live.
975 LLVM_DEBUG(dumpStack());
976 assert(StackTop == (unsigned)llvm::popcount(Mask) && "Live count mismatch");
977 }
978
979 /// shuffleStackTop - emit fxch instructions before I to shuffle the top
980 /// FixCount entries into the order given by FixStack.
981 /// FIXME: Is there a better algorithm than insertion sort?
shuffleStackTop(const unsigned char * FixStack,unsigned FixCount,MachineBasicBlock::iterator I)982 void FPS::shuffleStackTop(const unsigned char *FixStack,
983 unsigned FixCount,
984 MachineBasicBlock::iterator I) {
985 // Move items into place, starting from the desired stack bottom.
986 while (FixCount--) {
987 // Old register at position FixCount.
988 unsigned OldReg = getStackEntry(FixCount);
989 // Desired register at position FixCount.
990 unsigned Reg = FixStack[FixCount];
991 if (Reg == OldReg)
992 continue;
993 // (Reg st0) (OldReg st0) = (Reg OldReg st0)
994 moveToTop(Reg, I);
995 if (FixCount > 0)
996 moveToTop(OldReg, I);
997 }
998 LLVM_DEBUG(dumpStack());
999 }
1000
1001
1002 //===----------------------------------------------------------------------===//
1003 // Instruction transformation implementation
1004 //===----------------------------------------------------------------------===//
1005
handleCall(MachineBasicBlock::iterator & I)1006 void FPS::handleCall(MachineBasicBlock::iterator &I) {
1007 MachineInstr &MI = *I;
1008 unsigned STReturns = 0;
1009
1010 bool ClobbersFPStack = false;
1011 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1012 MachineOperand &Op = MI.getOperand(i);
1013 // Check if this call clobbers the FP stack.
1014 // is sufficient.
1015 if (Op.isRegMask()) {
1016 bool ClobbersFP0 = Op.clobbersPhysReg(X86::FP0);
1017 #ifndef NDEBUG
1018 static_assert(X86::FP7 - X86::FP0 == 7, "sequential FP regnumbers");
1019 for (unsigned i = 1; i != 8; ++i)
1020 assert(Op.clobbersPhysReg(X86::FP0 + i) == ClobbersFP0 &&
1021 "Inconsistent FP register clobber");
1022 #endif
1023
1024 if (ClobbersFP0)
1025 ClobbersFPStack = true;
1026 }
1027
1028 if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1029 continue;
1030
1031 assert(Op.isImplicit() && "Expected implicit def/use");
1032
1033 if (Op.isDef())
1034 STReturns |= 1 << getFPReg(Op);
1035
1036 // Remove the operand so that later passes don't see it.
1037 MI.removeOperand(i);
1038 --i;
1039 --e;
1040 }
1041
1042 // Most calls should have a regmask that clobbers the FP registers. If it
1043 // isn't present then the register allocator didn't spill the FP registers
1044 // so they are still on the stack.
1045 assert((ClobbersFPStack || STReturns == 0) &&
1046 "ST returns without FP stack clobber");
1047 if (!ClobbersFPStack)
1048 return;
1049
1050 unsigned N = countTrailingOnes(STReturns);
1051
1052 // FP registers used for function return must be consecutive starting at
1053 // FP0
1054 assert(STReturns == 0 || (isMask_32(STReturns) && N <= 2));
1055
1056 // Reset the FP Stack - It is required because of possible leftovers from
1057 // passed arguments. The caller should assume that the FP stack is
1058 // returned empty (unless the callee returns values on FP stack).
1059 while (StackTop > 0)
1060 popReg();
1061
1062 for (unsigned I = 0; I < N; ++I)
1063 pushReg(N - I - 1);
1064
1065 // If this call has been modified, drop all variable values defined by it.
1066 // We can't track them once they've been stackified.
1067 if (STReturns)
1068 I->dropDebugNumber();
1069 }
1070
1071 /// If RET has an FP register use operand, pass the first one in ST(0) and
1072 /// the second one in ST(1).
handleReturn(MachineBasicBlock::iterator & I)1073 void FPS::handleReturn(MachineBasicBlock::iterator &I) {
1074 MachineInstr &MI = *I;
1075
1076 // Find the register operands.
1077 unsigned FirstFPRegOp = ~0U, SecondFPRegOp = ~0U;
1078 unsigned LiveMask = 0;
1079
1080 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1081 MachineOperand &Op = MI.getOperand(i);
1082 if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1083 continue;
1084 // FP Register uses must be kills unless there are two uses of the same
1085 // register, in which case only one will be a kill.
1086 assert(Op.isUse() &&
1087 (Op.isKill() || // Marked kill.
1088 getFPReg(Op) == FirstFPRegOp || // Second instance.
1089 MI.killsRegister(Op.getReg())) && // Later use is marked kill.
1090 "Ret only defs operands, and values aren't live beyond it");
1091
1092 if (FirstFPRegOp == ~0U)
1093 FirstFPRegOp = getFPReg(Op);
1094 else {
1095 assert(SecondFPRegOp == ~0U && "More than two fp operands!");
1096 SecondFPRegOp = getFPReg(Op);
1097 }
1098 LiveMask |= (1 << getFPReg(Op));
1099
1100 // Remove the operand so that later passes don't see it.
1101 MI.removeOperand(i);
1102 --i;
1103 --e;
1104 }
1105
1106 // We may have been carrying spurious live-ins, so make sure only the
1107 // returned registers are left live.
1108 adjustLiveRegs(LiveMask, MI);
1109 if (!LiveMask) return; // Quick check to see if any are possible.
1110
1111 // There are only four possibilities here:
1112 // 1) we are returning a single FP value. In this case, it has to be in
1113 // ST(0) already, so just declare success by removing the value from the
1114 // FP Stack.
1115 if (SecondFPRegOp == ~0U) {
1116 // Assert that the top of stack contains the right FP register.
1117 assert(StackTop == 1 && FirstFPRegOp == getStackEntry(0) &&
1118 "Top of stack not the right register for RET!");
1119
1120 // Ok, everything is good, mark the value as not being on the stack
1121 // anymore so that our assertion about the stack being empty at end of
1122 // block doesn't fire.
1123 StackTop = 0;
1124 return;
1125 }
1126
1127 // Otherwise, we are returning two values:
1128 // 2) If returning the same value for both, we only have one thing in the FP
1129 // stack. Consider: RET FP1, FP1
1130 if (StackTop == 1) {
1131 assert(FirstFPRegOp == SecondFPRegOp && FirstFPRegOp == getStackEntry(0)&&
1132 "Stack misconfiguration for RET!");
1133
1134 // Duplicate the TOS so that we return it twice. Just pick some other FPx
1135 // register to hold it.
1136 unsigned NewReg = ScratchFPReg;
1137 duplicateToTop(FirstFPRegOp, NewReg, MI);
1138 FirstFPRegOp = NewReg;
1139 }
1140
1141 /// Okay we know we have two different FPx operands now:
1142 assert(StackTop == 2 && "Must have two values live!");
1143
1144 /// 3) If SecondFPRegOp is currently in ST(0) and FirstFPRegOp is currently
1145 /// in ST(1). In this case, emit an fxch.
1146 if (getStackEntry(0) == SecondFPRegOp) {
1147 assert(getStackEntry(1) == FirstFPRegOp && "Unknown regs live");
1148 moveToTop(FirstFPRegOp, MI);
1149 }
1150
1151 /// 4) Finally, FirstFPRegOp must be in ST(0) and SecondFPRegOp must be in
1152 /// ST(1). Just remove both from our understanding of the stack and return.
1153 assert(getStackEntry(0) == FirstFPRegOp && "Unknown regs live");
1154 assert(getStackEntry(1) == SecondFPRegOp && "Unknown regs live");
1155 StackTop = 0;
1156 }
1157
1158 /// handleZeroArgFP - ST(0) = fld0 ST(0) = flds <mem>
1159 ///
handleZeroArgFP(MachineBasicBlock::iterator & I)1160 void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) {
1161 MachineInstr &MI = *I;
1162 unsigned DestReg = getFPReg(MI.getOperand(0));
1163
1164 // Change from the pseudo instruction to the concrete instruction.
1165 MI.removeOperand(0); // Remove the explicit ST(0) operand
1166 MI.setDesc(TII->get(getConcreteOpcode(MI.getOpcode())));
1167 MI.addOperand(
1168 MachineOperand::CreateReg(X86::ST0, /*isDef*/ true, /*isImp*/ true));
1169
1170 // Result gets pushed on the stack.
1171 pushReg(DestReg);
1172
1173 MI.dropDebugNumber();
1174 }
1175
1176 /// handleOneArgFP - fst <mem>, ST(0)
1177 ///
handleOneArgFP(MachineBasicBlock::iterator & I)1178 void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) {
1179 MachineInstr &MI = *I;
1180 unsigned NumOps = MI.getDesc().getNumOperands();
1181 assert((NumOps == X86::AddrNumOperands + 1 || NumOps == 1) &&
1182 "Can only handle fst* & ftst instructions!");
1183
1184 // Is this the last use of the source register?
1185 unsigned Reg = getFPReg(MI.getOperand(NumOps - 1));
1186 bool KillsSrc = MI.killsRegister(X86::FP0 + Reg);
1187
1188 // FISTP64m is strange because there isn't a non-popping versions.
1189 // If we have one _and_ we don't want to pop the operand, duplicate the value
1190 // on the stack instead of moving it. This ensure that popping the value is
1191 // always ok.
1192 // Ditto FISTTP16m, FISTTP32m, FISTTP64m, ST_FpP80m.
1193 //
1194 if (!KillsSrc && (MI.getOpcode() == X86::IST_Fp64m32 ||
1195 MI.getOpcode() == X86::ISTT_Fp16m32 ||
1196 MI.getOpcode() == X86::ISTT_Fp32m32 ||
1197 MI.getOpcode() == X86::ISTT_Fp64m32 ||
1198 MI.getOpcode() == X86::IST_Fp64m64 ||
1199 MI.getOpcode() == X86::ISTT_Fp16m64 ||
1200 MI.getOpcode() == X86::ISTT_Fp32m64 ||
1201 MI.getOpcode() == X86::ISTT_Fp64m64 ||
1202 MI.getOpcode() == X86::IST_Fp64m80 ||
1203 MI.getOpcode() == X86::ISTT_Fp16m80 ||
1204 MI.getOpcode() == X86::ISTT_Fp32m80 ||
1205 MI.getOpcode() == X86::ISTT_Fp64m80 ||
1206 MI.getOpcode() == X86::ST_FpP80m)) {
1207 duplicateToTop(Reg, ScratchFPReg, I);
1208 } else {
1209 moveToTop(Reg, I); // Move to the top of the stack...
1210 }
1211
1212 // Convert from the pseudo instruction to the concrete instruction.
1213 MI.removeOperand(NumOps - 1); // Remove explicit ST(0) operand
1214 MI.setDesc(TII->get(getConcreteOpcode(MI.getOpcode())));
1215 MI.addOperand(
1216 MachineOperand::CreateReg(X86::ST0, /*isDef*/ false, /*isImp*/ true));
1217
1218 if (MI.getOpcode() == X86::IST_FP64m || MI.getOpcode() == X86::ISTT_FP16m ||
1219 MI.getOpcode() == X86::ISTT_FP32m || MI.getOpcode() == X86::ISTT_FP64m ||
1220 MI.getOpcode() == X86::ST_FP80m) {
1221 if (StackTop == 0)
1222 report_fatal_error("Stack empty??");
1223 --StackTop;
1224 } else if (KillsSrc) { // Last use of operand?
1225 popStackAfter(I);
1226 }
1227
1228 MI.dropDebugNumber();
1229 }
1230
1231
1232 /// handleOneArgFPRW: Handle instructions that read from the top of stack and
1233 /// replace the value with a newly computed value. These instructions may have
1234 /// non-fp operands after their FP operands.
1235 ///
1236 /// Examples:
1237 /// R1 = fchs R2
1238 /// R1 = fadd R2, [mem]
1239 ///
handleOneArgFPRW(MachineBasicBlock::iterator & I)1240 void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) {
1241 MachineInstr &MI = *I;
1242 #ifndef NDEBUG
1243 unsigned NumOps = MI.getDesc().getNumOperands();
1244 assert(NumOps >= 2 && "FPRW instructions must have 2 ops!!");
1245 #endif
1246
1247 // Is this the last use of the source register?
1248 unsigned Reg = getFPReg(MI.getOperand(1));
1249 bool KillsSrc = MI.killsRegister(X86::FP0 + Reg);
1250
1251 if (KillsSrc) {
1252 // If this is the last use of the source register, just make sure it's on
1253 // the top of the stack.
1254 moveToTop(Reg, I);
1255 if (StackTop == 0)
1256 report_fatal_error("Stack cannot be empty!");
1257 --StackTop;
1258 pushReg(getFPReg(MI.getOperand(0)));
1259 } else {
1260 // If this is not the last use of the source register, _copy_ it to the top
1261 // of the stack.
1262 duplicateToTop(Reg, getFPReg(MI.getOperand(0)), I);
1263 }
1264
1265 // Change from the pseudo instruction to the concrete instruction.
1266 MI.removeOperand(1); // Drop the source operand.
1267 MI.removeOperand(0); // Drop the destination operand.
1268 MI.setDesc(TII->get(getConcreteOpcode(MI.getOpcode())));
1269 MI.dropDebugNumber();
1270 }
1271
1272
1273 //===----------------------------------------------------------------------===//
1274 // Define tables of various ways to map pseudo instructions
1275 //
1276
1277 // ForwardST0Table - Map: A = B op C into: ST(0) = ST(0) op ST(i)
1278 static const TableEntry ForwardST0Table[] = {
1279 { X86::ADD_Fp32 , X86::ADD_FST0r },
1280 { X86::ADD_Fp64 , X86::ADD_FST0r },
1281 { X86::ADD_Fp80 , X86::ADD_FST0r },
1282 { X86::DIV_Fp32 , X86::DIV_FST0r },
1283 { X86::DIV_Fp64 , X86::DIV_FST0r },
1284 { X86::DIV_Fp80 , X86::DIV_FST0r },
1285 { X86::MUL_Fp32 , X86::MUL_FST0r },
1286 { X86::MUL_Fp64 , X86::MUL_FST0r },
1287 { X86::MUL_Fp80 , X86::MUL_FST0r },
1288 { X86::SUB_Fp32 , X86::SUB_FST0r },
1289 { X86::SUB_Fp64 , X86::SUB_FST0r },
1290 { X86::SUB_Fp80 , X86::SUB_FST0r },
1291 };
1292
1293 // ReverseST0Table - Map: A = B op C into: ST(0) = ST(i) op ST(0)
1294 static const TableEntry ReverseST0Table[] = {
1295 { X86::ADD_Fp32 , X86::ADD_FST0r }, // commutative
1296 { X86::ADD_Fp64 , X86::ADD_FST0r }, // commutative
1297 { X86::ADD_Fp80 , X86::ADD_FST0r }, // commutative
1298 { X86::DIV_Fp32 , X86::DIVR_FST0r },
1299 { X86::DIV_Fp64 , X86::DIVR_FST0r },
1300 { X86::DIV_Fp80 , X86::DIVR_FST0r },
1301 { X86::MUL_Fp32 , X86::MUL_FST0r }, // commutative
1302 { X86::MUL_Fp64 , X86::MUL_FST0r }, // commutative
1303 { X86::MUL_Fp80 , X86::MUL_FST0r }, // commutative
1304 { X86::SUB_Fp32 , X86::SUBR_FST0r },
1305 { X86::SUB_Fp64 , X86::SUBR_FST0r },
1306 { X86::SUB_Fp80 , X86::SUBR_FST0r },
1307 };
1308
1309 // ForwardSTiTable - Map: A = B op C into: ST(i) = ST(0) op ST(i)
1310 static const TableEntry ForwardSTiTable[] = {
1311 { X86::ADD_Fp32 , X86::ADD_FrST0 }, // commutative
1312 { X86::ADD_Fp64 , X86::ADD_FrST0 }, // commutative
1313 { X86::ADD_Fp80 , X86::ADD_FrST0 }, // commutative
1314 { X86::DIV_Fp32 , X86::DIVR_FrST0 },
1315 { X86::DIV_Fp64 , X86::DIVR_FrST0 },
1316 { X86::DIV_Fp80 , X86::DIVR_FrST0 },
1317 { X86::MUL_Fp32 , X86::MUL_FrST0 }, // commutative
1318 { X86::MUL_Fp64 , X86::MUL_FrST0 }, // commutative
1319 { X86::MUL_Fp80 , X86::MUL_FrST0 }, // commutative
1320 { X86::SUB_Fp32 , X86::SUBR_FrST0 },
1321 { X86::SUB_Fp64 , X86::SUBR_FrST0 },
1322 { X86::SUB_Fp80 , X86::SUBR_FrST0 },
1323 };
1324
1325 // ReverseSTiTable - Map: A = B op C into: ST(i) = ST(i) op ST(0)
1326 static const TableEntry ReverseSTiTable[] = {
1327 { X86::ADD_Fp32 , X86::ADD_FrST0 },
1328 { X86::ADD_Fp64 , X86::ADD_FrST0 },
1329 { X86::ADD_Fp80 , X86::ADD_FrST0 },
1330 { X86::DIV_Fp32 , X86::DIV_FrST0 },
1331 { X86::DIV_Fp64 , X86::DIV_FrST0 },
1332 { X86::DIV_Fp80 , X86::DIV_FrST0 },
1333 { X86::MUL_Fp32 , X86::MUL_FrST0 },
1334 { X86::MUL_Fp64 , X86::MUL_FrST0 },
1335 { X86::MUL_Fp80 , X86::MUL_FrST0 },
1336 { X86::SUB_Fp32 , X86::SUB_FrST0 },
1337 { X86::SUB_Fp64 , X86::SUB_FrST0 },
1338 { X86::SUB_Fp80 , X86::SUB_FrST0 },
1339 };
1340
1341
1342 /// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
1343 /// instructions which need to be simplified and possibly transformed.
1344 ///
1345 /// Result: ST(0) = fsub ST(0), ST(i)
1346 /// ST(i) = fsub ST(0), ST(i)
1347 /// ST(0) = fsubr ST(0), ST(i)
1348 /// ST(i) = fsubr ST(0), ST(i)
1349 ///
handleTwoArgFP(MachineBasicBlock::iterator & I)1350 void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) {
1351 ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
1352 ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
1353 MachineInstr &MI = *I;
1354
1355 unsigned NumOperands = MI.getDesc().getNumOperands();
1356 assert(NumOperands == 3 && "Illegal TwoArgFP instruction!");
1357 unsigned Dest = getFPReg(MI.getOperand(0));
1358 unsigned Op0 = getFPReg(MI.getOperand(NumOperands - 2));
1359 unsigned Op1 = getFPReg(MI.getOperand(NumOperands - 1));
1360 bool KillsOp0 = MI.killsRegister(X86::FP0 + Op0);
1361 bool KillsOp1 = MI.killsRegister(X86::FP0 + Op1);
1362 const DebugLoc &dl = MI.getDebugLoc();
1363
1364 unsigned TOS = getStackEntry(0);
1365
1366 // One of our operands must be on the top of the stack. If neither is yet, we
1367 // need to move one.
1368 if (Op0 != TOS && Op1 != TOS) { // No operand at TOS?
1369 // We can choose to move either operand to the top of the stack. If one of
1370 // the operands is killed by this instruction, we want that one so that we
1371 // can update right on top of the old version.
1372 if (KillsOp0) {
1373 moveToTop(Op0, I); // Move dead operand to TOS.
1374 TOS = Op0;
1375 } else if (KillsOp1) {
1376 moveToTop(Op1, I);
1377 TOS = Op1;
1378 } else {
1379 // All of the operands are live after this instruction executes, so we
1380 // cannot update on top of any operand. Because of this, we must
1381 // duplicate one of the stack elements to the top. It doesn't matter
1382 // which one we pick.
1383 //
1384 duplicateToTop(Op0, Dest, I);
1385 Op0 = TOS = Dest;
1386 KillsOp0 = true;
1387 }
1388 } else if (!KillsOp0 && !KillsOp1) {
1389 // If we DO have one of our operands at the top of the stack, but we don't
1390 // have a dead operand, we must duplicate one of the operands to a new slot
1391 // on the stack.
1392 duplicateToTop(Op0, Dest, I);
1393 Op0 = TOS = Dest;
1394 KillsOp0 = true;
1395 }
1396
1397 // Now we know that one of our operands is on the top of the stack, and at
1398 // least one of our operands is killed by this instruction.
1399 assert((TOS == Op0 || TOS == Op1) && (KillsOp0 || KillsOp1) &&
1400 "Stack conditions not set up right!");
1401
1402 // We decide which form to use based on what is on the top of the stack, and
1403 // which operand is killed by this instruction.
1404 ArrayRef<TableEntry> InstTable;
1405 bool isForward = TOS == Op0;
1406 bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0);
1407 if (updateST0) {
1408 if (isForward)
1409 InstTable = ForwardST0Table;
1410 else
1411 InstTable = ReverseST0Table;
1412 } else {
1413 if (isForward)
1414 InstTable = ForwardSTiTable;
1415 else
1416 InstTable = ReverseSTiTable;
1417 }
1418
1419 int Opcode = Lookup(InstTable, MI.getOpcode());
1420 assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!");
1421
1422 // NotTOS - The register which is not on the top of stack...
1423 unsigned NotTOS = (TOS == Op0) ? Op1 : Op0;
1424
1425 // Replace the old instruction with a new instruction
1426 MBB->remove(&*I++);
1427 I = BuildMI(*MBB, I, dl, TII->get(Opcode)).addReg(getSTReg(NotTOS));
1428
1429 if (!MI.mayRaiseFPException())
1430 I->setFlag(MachineInstr::MIFlag::NoFPExcept);
1431
1432 // If both operands are killed, pop one off of the stack in addition to
1433 // overwriting the other one.
1434 if (KillsOp0 && KillsOp1 && Op0 != Op1) {
1435 assert(!updateST0 && "Should have updated other operand!");
1436 popStackAfter(I); // Pop the top of stack
1437 }
1438
1439 // Update stack information so that we know the destination register is now on
1440 // the stack.
1441 unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS);
1442 assert(UpdatedSlot < StackTop && Dest < 7);
1443 Stack[UpdatedSlot] = Dest;
1444 RegMap[Dest] = UpdatedSlot;
1445 MBB->getParent()->deleteMachineInstr(&MI); // Remove the old instruction
1446 }
1447
1448 /// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP
1449 /// register arguments and no explicit destinations.
1450 ///
handleCompareFP(MachineBasicBlock::iterator & I)1451 void FPS::handleCompareFP(MachineBasicBlock::iterator &I) {
1452 MachineInstr &MI = *I;
1453
1454 unsigned NumOperands = MI.getDesc().getNumOperands();
1455 assert(NumOperands == 2 && "Illegal FUCOM* instruction!");
1456 unsigned Op0 = getFPReg(MI.getOperand(NumOperands - 2));
1457 unsigned Op1 = getFPReg(MI.getOperand(NumOperands - 1));
1458 bool KillsOp0 = MI.killsRegister(X86::FP0 + Op0);
1459 bool KillsOp1 = MI.killsRegister(X86::FP0 + Op1);
1460
1461 // Make sure the first operand is on the top of stack, the other one can be
1462 // anywhere.
1463 moveToTop(Op0, I);
1464
1465 // Change from the pseudo instruction to the concrete instruction.
1466 MI.getOperand(0).setReg(getSTReg(Op1));
1467 MI.removeOperand(1);
1468 MI.setDesc(TII->get(getConcreteOpcode(MI.getOpcode())));
1469 MI.dropDebugNumber();
1470
1471 // If any of the operands are killed by this instruction, free them.
1472 if (KillsOp0) freeStackSlotAfter(I, Op0);
1473 if (KillsOp1 && Op0 != Op1) freeStackSlotAfter(I, Op1);
1474 }
1475
1476 /// handleCondMovFP - Handle two address conditional move instructions. These
1477 /// instructions move a st(i) register to st(0) iff a condition is true. These
1478 /// instructions require that the first operand is at the top of the stack, but
1479 /// otherwise don't modify the stack at all.
handleCondMovFP(MachineBasicBlock::iterator & I)1480 void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) {
1481 MachineInstr &MI = *I;
1482
1483 unsigned Op0 = getFPReg(MI.getOperand(0));
1484 unsigned Op1 = getFPReg(MI.getOperand(2));
1485 bool KillsOp1 = MI.killsRegister(X86::FP0 + Op1);
1486
1487 // The first operand *must* be on the top of the stack.
1488 moveToTop(Op0, I);
1489
1490 // Change the second operand to the stack register that the operand is in.
1491 // Change from the pseudo instruction to the concrete instruction.
1492 MI.removeOperand(0);
1493 MI.removeOperand(1);
1494 MI.getOperand(0).setReg(getSTReg(Op1));
1495 MI.setDesc(TII->get(getConcreteOpcode(MI.getOpcode())));
1496 MI.dropDebugNumber();
1497
1498 // If we kill the second operand, make sure to pop it from the stack.
1499 if (Op0 != Op1 && KillsOp1) {
1500 // Get this value off of the register stack.
1501 freeStackSlotAfter(I, Op1);
1502 }
1503 }
1504
1505
1506 /// handleSpecialFP - Handle special instructions which behave unlike other
1507 /// floating point instructions. This is primarily intended for use by pseudo
1508 /// instructions.
1509 ///
handleSpecialFP(MachineBasicBlock::iterator & Inst)1510 void FPS::handleSpecialFP(MachineBasicBlock::iterator &Inst) {
1511 MachineInstr &MI = *Inst;
1512
1513 if (MI.isCall()) {
1514 handleCall(Inst);
1515 return;
1516 }
1517
1518 if (MI.isReturn()) {
1519 handleReturn(Inst);
1520 return;
1521 }
1522
1523 switch (MI.getOpcode()) {
1524 default: llvm_unreachable("Unknown SpecialFP instruction!");
1525 case TargetOpcode::COPY: {
1526 // We handle three kinds of copies: FP <- FP, FP <- ST, and ST <- FP.
1527 const MachineOperand &MO1 = MI.getOperand(1);
1528 const MachineOperand &MO0 = MI.getOperand(0);
1529 bool KillsSrc = MI.killsRegister(MO1.getReg());
1530
1531 // FP <- FP copy.
1532 unsigned DstFP = getFPReg(MO0);
1533 unsigned SrcFP = getFPReg(MO1);
1534 assert(isLive(SrcFP) && "Cannot copy dead register");
1535 if (KillsSrc) {
1536 // If the input operand is killed, we can just change the owner of the
1537 // incoming stack slot into the result.
1538 unsigned Slot = getSlot(SrcFP);
1539 Stack[Slot] = DstFP;
1540 RegMap[DstFP] = Slot;
1541 } else {
1542 // For COPY we just duplicate the specified value to a new stack slot.
1543 // This could be made better, but would require substantial changes.
1544 duplicateToTop(SrcFP, DstFP, Inst);
1545 }
1546 break;
1547 }
1548
1549 case TargetOpcode::IMPLICIT_DEF: {
1550 // All FP registers must be explicitly defined, so load a 0 instead.
1551 unsigned Reg = MI.getOperand(0).getReg() - X86::FP0;
1552 LLVM_DEBUG(dbgs() << "Emitting LD_F0 for implicit FP" << Reg << '\n');
1553 BuildMI(*MBB, Inst, MI.getDebugLoc(), TII->get(X86::LD_F0));
1554 pushReg(Reg);
1555 break;
1556 }
1557
1558 case TargetOpcode::INLINEASM:
1559 case TargetOpcode::INLINEASM_BR: {
1560 // The inline asm MachineInstr currently only *uses* FP registers for the
1561 // 'f' constraint. These should be turned into the current ST(x) register
1562 // in the machine instr.
1563 //
1564 // There are special rules for x87 inline assembly. The compiler must know
1565 // exactly how many registers are popped and pushed implicitly by the asm.
1566 // Otherwise it is not possible to restore the stack state after the inline
1567 // asm.
1568 //
1569 // There are 3 kinds of input operands:
1570 //
1571 // 1. Popped inputs. These must appear at the stack top in ST0-STn. A
1572 // popped input operand must be in a fixed stack slot, and it is either
1573 // tied to an output operand, or in the clobber list. The MI has ST use
1574 // and def operands for these inputs.
1575 //
1576 // 2. Fixed inputs. These inputs appear in fixed stack slots, but are
1577 // preserved by the inline asm. The fixed stack slots must be STn-STm
1578 // following the popped inputs. A fixed input operand cannot be tied to
1579 // an output or appear in the clobber list. The MI has ST use operands
1580 // and no defs for these inputs.
1581 //
1582 // 3. Preserved inputs. These inputs use the "f" constraint which is
1583 // represented as an FP register. The inline asm won't change these
1584 // stack slots.
1585 //
1586 // Outputs must be in ST registers, FP outputs are not allowed. Clobbered
1587 // registers do not count as output operands. The inline asm changes the
1588 // stack as if it popped all the popped inputs and then pushed all the
1589 // output operands.
1590
1591 // Scan the assembly for ST registers used, defined and clobbered. We can
1592 // only tell clobbers from defs by looking at the asm descriptor.
1593 unsigned STUses = 0, STDefs = 0, STClobbers = 0;
1594 unsigned NumOps = 0;
1595 SmallSet<unsigned, 1> FRegIdx;
1596 unsigned RCID;
1597
1598 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = MI.getNumOperands();
1599 i != e && MI.getOperand(i).isImm(); i += 1 + NumOps) {
1600 unsigned Flags = MI.getOperand(i).getImm();
1601
1602 NumOps = InlineAsm::getNumOperandRegisters(Flags);
1603 if (NumOps != 1)
1604 continue;
1605 const MachineOperand &MO = MI.getOperand(i + 1);
1606 if (!MO.isReg())
1607 continue;
1608 unsigned STReg = MO.getReg() - X86::FP0;
1609 if (STReg >= 8)
1610 continue;
1611
1612 // If the flag has a register class constraint, this must be an operand
1613 // with constraint "f". Record its index and continue.
1614 if (InlineAsm::hasRegClassConstraint(Flags, RCID)) {
1615 FRegIdx.insert(i + 1);
1616 continue;
1617 }
1618
1619 switch (InlineAsm::getKind(Flags)) {
1620 case InlineAsm::Kind_RegUse:
1621 STUses |= (1u << STReg);
1622 break;
1623 case InlineAsm::Kind_RegDef:
1624 case InlineAsm::Kind_RegDefEarlyClobber:
1625 STDefs |= (1u << STReg);
1626 break;
1627 case InlineAsm::Kind_Clobber:
1628 STClobbers |= (1u << STReg);
1629 break;
1630 default:
1631 break;
1632 }
1633 }
1634
1635 if (STUses && !isMask_32(STUses))
1636 MI.emitError("fixed input regs must be last on the x87 stack");
1637 unsigned NumSTUses = countTrailingOnes(STUses);
1638
1639 // Defs must be contiguous from the stack top. ST0-STn.
1640 if (STDefs && !isMask_32(STDefs)) {
1641 MI.emitError("output regs must be last on the x87 stack");
1642 STDefs = NextPowerOf2(STDefs) - 1;
1643 }
1644 unsigned NumSTDefs = countTrailingOnes(STDefs);
1645
1646 // So must the clobbered stack slots. ST0-STm, m >= n.
1647 if (STClobbers && !isMask_32(STDefs | STClobbers))
1648 MI.emitError("clobbers must be last on the x87 stack");
1649
1650 // Popped inputs are the ones that are also clobbered or defined.
1651 unsigned STPopped = STUses & (STDefs | STClobbers);
1652 if (STPopped && !isMask_32(STPopped))
1653 MI.emitError("implicitly popped regs must be last on the x87 stack");
1654 unsigned NumSTPopped = countTrailingOnes(STPopped);
1655
1656 LLVM_DEBUG(dbgs() << "Asm uses " << NumSTUses << " fixed regs, pops "
1657 << NumSTPopped << ", and defines " << NumSTDefs
1658 << " regs.\n");
1659
1660 #ifndef NDEBUG
1661 // If any input operand uses constraint "f", all output register
1662 // constraints must be early-clobber defs.
1663 for (unsigned I = 0, E = MI.getNumOperands(); I < E; ++I)
1664 if (FRegIdx.count(I)) {
1665 assert((1 << getFPReg(MI.getOperand(I)) & STDefs) == 0 &&
1666 "Operands with constraint \"f\" cannot overlap with defs");
1667 }
1668 #endif
1669
1670 // Collect all FP registers (register operands with constraints "t", "u",
1671 // and "f") to kill afer the instruction.
1672 unsigned FPKills = ((1u << NumFPRegs) - 1) & ~0xff;
1673 for (const MachineOperand &Op : MI.operands()) {
1674 if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1675 continue;
1676 unsigned FPReg = getFPReg(Op);
1677
1678 // If we kill this operand, make sure to pop it from the stack after the
1679 // asm. We just remember it for now, and pop them all off at the end in
1680 // a batch.
1681 if (Op.isUse() && Op.isKill())
1682 FPKills |= 1U << FPReg;
1683 }
1684
1685 // Do not include registers that are implicitly popped by defs/clobbers.
1686 FPKills &= ~(STDefs | STClobbers);
1687
1688 // Now we can rearrange the live registers to match what was requested.
1689 unsigned char STUsesArray[8];
1690
1691 for (unsigned I = 0; I < NumSTUses; ++I)
1692 STUsesArray[I] = I;
1693
1694 shuffleStackTop(STUsesArray, NumSTUses, Inst);
1695 LLVM_DEBUG({
1696 dbgs() << "Before asm: ";
1697 dumpStack();
1698 });
1699
1700 // With the stack layout fixed, rewrite the FP registers.
1701 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1702 MachineOperand &Op = MI.getOperand(i);
1703 if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1704 continue;
1705
1706 unsigned FPReg = getFPReg(Op);
1707
1708 if (FRegIdx.count(i))
1709 // Operand with constraint "f".
1710 Op.setReg(getSTReg(FPReg));
1711 else
1712 // Operand with a single register class constraint ("t" or "u").
1713 Op.setReg(X86::ST0 + FPReg);
1714 }
1715
1716 // Simulate the inline asm popping its inputs and pushing its outputs.
1717 StackTop -= NumSTPopped;
1718
1719 for (unsigned i = 0; i < NumSTDefs; ++i)
1720 pushReg(NumSTDefs - i - 1);
1721
1722 // If this asm kills any FP registers (is the last use of them) we must
1723 // explicitly emit pop instructions for them. Do this now after the asm has
1724 // executed so that the ST(x) numbers are not off (which would happen if we
1725 // did this inline with operand rewriting).
1726 //
1727 // Note: this might be a non-optimal pop sequence. We might be able to do
1728 // better by trying to pop in stack order or something.
1729 while (FPKills) {
1730 unsigned FPReg = countTrailingZeros(FPKills);
1731 if (isLive(FPReg))
1732 freeStackSlotAfter(Inst, FPReg);
1733 FPKills &= ~(1U << FPReg);
1734 }
1735
1736 // Don't delete the inline asm!
1737 return;
1738 }
1739 }
1740
1741 Inst = MBB->erase(Inst); // Remove the pseudo instruction
1742
1743 // We want to leave I pointing to the previous instruction, but what if we
1744 // just erased the first instruction?
1745 if (Inst == MBB->begin()) {
1746 LLVM_DEBUG(dbgs() << "Inserting dummy KILL\n");
1747 Inst = BuildMI(*MBB, Inst, DebugLoc(), TII->get(TargetOpcode::KILL));
1748 } else
1749 --Inst;
1750 }
1751
setKillFlags(MachineBasicBlock & MBB) const1752 void FPS::setKillFlags(MachineBasicBlock &MBB) const {
1753 const TargetRegisterInfo &TRI =
1754 *MBB.getParent()->getSubtarget().getRegisterInfo();
1755 LivePhysRegs LPR(TRI);
1756
1757 LPR.addLiveOuts(MBB);
1758
1759 for (MachineInstr &MI : llvm::reverse(MBB)) {
1760 if (MI.isDebugInstr())
1761 continue;
1762
1763 std::bitset<8> Defs;
1764 SmallVector<MachineOperand *, 2> Uses;
1765
1766 for (auto &MO : MI.operands()) {
1767 if (!MO.isReg())
1768 continue;
1769
1770 unsigned Reg = MO.getReg() - X86::FP0;
1771
1772 if (Reg >= 8)
1773 continue;
1774
1775 if (MO.isDef()) {
1776 Defs.set(Reg);
1777 if (!LPR.contains(MO.getReg()))
1778 MO.setIsDead();
1779 } else
1780 Uses.push_back(&MO);
1781 }
1782
1783 for (auto *MO : Uses)
1784 if (Defs.test(getFPReg(*MO)) || !LPR.contains(MO->getReg()))
1785 MO->setIsKill();
1786
1787 LPR.stepBackward(MI);
1788 }
1789 }
1790