1 //===-- X86FixupBWInsts.cpp - Fixup Byte or Word instructions -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file defines the pass that looks through the machine instructions
10 /// late in the compilation, and finds byte or word instructions that
11 /// can be profitably replaced with 32 bit instructions that give equivalent
12 /// results for the bits of the results that are used. There are two possible
13 /// reasons to do this.
14 ///
15 /// One reason is to avoid false-dependences on the upper portions
16 /// of the registers. Only instructions that have a destination register
17 /// which is not in any of the source registers can be affected by this.
18 /// Any instruction where one of the source registers is also the destination
19 /// register is unaffected, because it has a true dependence on the source
20 /// register already. So, this consideration primarily affects load
21 /// instructions and register-to-register moves. It would
22 /// seem like cmov(s) would also be affected, but because of the way cmov is
23 /// really implemented by most machines as reading both the destination and
24 /// and source registers, and then "merging" the two based on a condition,
25 /// it really already should be considered as having a true dependence on the
26 /// destination register as well.
27 ///
28 /// The other reason to do this is for potential code size savings. Word
29 /// operations need an extra override byte compared to their 32 bit
30 /// versions. So this can convert many word operations to their larger
31 /// size, saving a byte in encoding. This could introduce partial register
32 /// dependences where none existed however. As an example take:
33 /// orw ax, $0x1000
34 /// addw ax, $3
35 /// now if this were to get transformed into
36 /// orw ax, $1000
37 /// addl eax, $3
38 /// because the addl encodes shorter than the addw, this would introduce
39 /// a use of a register that was only partially written earlier. On older
40 /// Intel processors this can be quite a performance penalty, so this should
41 /// probably only be done when it can be proven that a new partial dependence
42 /// wouldn't be created, or when your know a newer processor is being
43 /// targeted, or when optimizing for minimum code size.
44 ///
45 //===----------------------------------------------------------------------===//
46
47 #include "X86.h"
48 #include "X86InstrInfo.h"
49 #include "X86Subtarget.h"
50 #include "llvm/ADT/Statistic.h"
51 #include "llvm/Analysis/ProfileSummaryInfo.h"
52 #include "llvm/CodeGen/LazyMachineBlockFrequencyInfo.h"
53 #include "llvm/CodeGen/LivePhysRegs.h"
54 #include "llvm/CodeGen/MachineFunctionPass.h"
55 #include "llvm/CodeGen/MachineInstrBuilder.h"
56 #include "llvm/CodeGen/MachineLoopInfo.h"
57 #include "llvm/CodeGen/MachineRegisterInfo.h"
58 #include "llvm/CodeGen/MachineSizeOpts.h"
59 #include "llvm/CodeGen/Passes.h"
60 #include "llvm/CodeGen/TargetInstrInfo.h"
61 #include "llvm/Support/Debug.h"
62 #include "llvm/Support/raw_ostream.h"
63 using namespace llvm;
64
65 #define FIXUPBW_DESC "X86 Byte/Word Instruction Fixup"
66 #define FIXUPBW_NAME "x86-fixup-bw-insts"
67
68 #define DEBUG_TYPE FIXUPBW_NAME
69
70 // Option to allow this optimization pass to have fine-grained control.
71 static cl::opt<bool>
72 FixupBWInsts("fixup-byte-word-insts",
73 cl::desc("Change byte and word instructions to larger sizes"),
74 cl::init(true), cl::Hidden);
75
76 namespace {
77 class FixupBWInstPass : public MachineFunctionPass {
78 /// Loop over all of the instructions in the basic block replacing applicable
79 /// byte or word instructions with better alternatives.
80 void processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
81
82 /// This sets the \p SuperDestReg to the 32 bit super reg of the original
83 /// destination register of the MachineInstr passed in. It returns true if
84 /// that super register is dead just prior to \p OrigMI, and false if not.
85 bool getSuperRegDestIfDead(MachineInstr *OrigMI,
86 Register &SuperDestReg) const;
87
88 /// Change the MachineInstr \p MI into the equivalent extending load to 32 bit
89 /// register if it is safe to do so. Return the replacement instruction if
90 /// OK, otherwise return nullptr.
91 MachineInstr *tryReplaceLoad(unsigned New32BitOpcode, MachineInstr *MI) const;
92
93 /// Change the MachineInstr \p MI into the equivalent 32-bit copy if it is
94 /// safe to do so. Return the replacement instruction if OK, otherwise return
95 /// nullptr.
96 MachineInstr *tryReplaceCopy(MachineInstr *MI) const;
97
98 /// Change the MachineInstr \p MI into the equivalent extend to 32 bit
99 /// register if it is safe to do so. Return the replacement instruction if
100 /// OK, otherwise return nullptr.
101 MachineInstr *tryReplaceExtend(unsigned New32BitOpcode,
102 MachineInstr *MI) const;
103
104 // Change the MachineInstr \p MI into an eqivalent 32 bit instruction if
105 // possible. Return the replacement instruction if OK, return nullptr
106 // otherwise.
107 MachineInstr *tryReplaceInstr(MachineInstr *MI, MachineBasicBlock &MBB) const;
108
109 public:
110 static char ID;
111
getPassName() const112 StringRef getPassName() const override { return FIXUPBW_DESC; }
113
FixupBWInstPass()114 FixupBWInstPass() : MachineFunctionPass(ID) { }
115
getAnalysisUsage(AnalysisUsage & AU) const116 void getAnalysisUsage(AnalysisUsage &AU) const override {
117 AU.addRequired<MachineLoopInfo>(); // Machine loop info is used to
118 // guide some heuristics.
119 AU.addRequired<ProfileSummaryInfoWrapperPass>();
120 AU.addRequired<LazyMachineBlockFrequencyInfoPass>();
121 MachineFunctionPass::getAnalysisUsage(AU);
122 }
123
124 /// Loop over all of the basic blocks, replacing byte and word instructions by
125 /// equivalent 32 bit instructions where performance or code size can be
126 /// improved.
127 bool runOnMachineFunction(MachineFunction &MF) override;
128
getRequiredProperties() const129 MachineFunctionProperties getRequiredProperties() const override {
130 return MachineFunctionProperties().set(
131 MachineFunctionProperties::Property::NoVRegs);
132 }
133
134 private:
135 MachineFunction *MF = nullptr;
136
137 /// Machine instruction info used throughout the class.
138 const X86InstrInfo *TII = nullptr;
139
140 const TargetRegisterInfo *TRI = nullptr;
141
142 /// Local member for function's OptForSize attribute.
143 bool OptForSize = false;
144
145 /// Machine loop info used for guiding some heruistics.
146 MachineLoopInfo *MLI = nullptr;
147
148 /// Register Liveness information after the current instruction.
149 LivePhysRegs LiveRegs;
150
151 ProfileSummaryInfo *PSI;
152 MachineBlockFrequencyInfo *MBFI;
153 };
154 char FixupBWInstPass::ID = 0;
155 }
156
INITIALIZE_PASS(FixupBWInstPass,FIXUPBW_NAME,FIXUPBW_DESC,false,false)157 INITIALIZE_PASS(FixupBWInstPass, FIXUPBW_NAME, FIXUPBW_DESC, false, false)
158
159 FunctionPass *llvm::createX86FixupBWInsts() { return new FixupBWInstPass(); }
160
runOnMachineFunction(MachineFunction & MF)161 bool FixupBWInstPass::runOnMachineFunction(MachineFunction &MF) {
162 if (!FixupBWInsts || skipFunction(MF.getFunction()))
163 return false;
164
165 this->MF = &MF;
166 TII = MF.getSubtarget<X86Subtarget>().getInstrInfo();
167 TRI = MF.getRegInfo().getTargetRegisterInfo();
168 MLI = &getAnalysis<MachineLoopInfo>();
169 PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
170 MBFI = (PSI && PSI->hasProfileSummary()) ?
171 &getAnalysis<LazyMachineBlockFrequencyInfoPass>().getBFI() :
172 nullptr;
173 LiveRegs.init(TII->getRegisterInfo());
174
175 LLVM_DEBUG(dbgs() << "Start X86FixupBWInsts\n";);
176
177 // Process all basic blocks.
178 for (auto &MBB : MF)
179 processBasicBlock(MF, MBB);
180
181 LLVM_DEBUG(dbgs() << "End X86FixupBWInsts\n";);
182
183 return true;
184 }
185
186 /// Check if after \p OrigMI the only portion of super register
187 /// of the destination register of \p OrigMI that is alive is that
188 /// destination register.
189 ///
190 /// If so, return that super register in \p SuperDestReg.
getSuperRegDestIfDead(MachineInstr * OrigMI,Register & SuperDestReg) const191 bool FixupBWInstPass::getSuperRegDestIfDead(MachineInstr *OrigMI,
192 Register &SuperDestReg) const {
193 const X86RegisterInfo *TRI = &TII->getRegisterInfo();
194 Register OrigDestReg = OrigMI->getOperand(0).getReg();
195 SuperDestReg = getX86SubSuperRegister(OrigDestReg, 32);
196
197 const auto SubRegIdx = TRI->getSubRegIndex(SuperDestReg, OrigDestReg);
198
199 // Make sure that the sub-register that this instruction has as its
200 // destination is the lowest order sub-register of the super-register.
201 // If it isn't, then the register isn't really dead even if the
202 // super-register is considered dead.
203 if (SubRegIdx == X86::sub_8bit_hi)
204 return false;
205
206 // If neither the destination-super register nor any applicable subregisters
207 // are live after this instruction, then the super register is safe to use.
208 if (!LiveRegs.contains(SuperDestReg)) {
209 // If the original destination register was not the low 8-bit subregister
210 // then the super register check is sufficient.
211 if (SubRegIdx != X86::sub_8bit)
212 return true;
213 // If the original destination register was the low 8-bit subregister and
214 // we also need to check the 16-bit subregister and the high 8-bit
215 // subregister.
216 if (!LiveRegs.contains(getX86SubSuperRegister(OrigDestReg, 16)) &&
217 !LiveRegs.contains(getX86SubSuperRegister(SuperDestReg, 8,
218 /*High=*/true)))
219 return true;
220 // Otherwise, we have a little more checking to do.
221 }
222
223 // If we get here, the super-register destination (or some part of it) is
224 // marked as live after the original instruction.
225 //
226 // The X86 backend does not have subregister liveness tracking enabled,
227 // so liveness information might be overly conservative. Specifically, the
228 // super register might be marked as live because it is implicitly defined
229 // by the instruction we are examining.
230 //
231 // However, for some specific instructions (this pass only cares about MOVs)
232 // we can produce more precise results by analysing that MOV's operands.
233 //
234 // Indeed, if super-register is not live before the mov it means that it
235 // was originally <read-undef> and so we are free to modify these
236 // undef upper bits. That may happen in case where the use is in another MBB
237 // and the vreg/physreg corresponding to the move has higher width than
238 // necessary (e.g. due to register coalescing with a "truncate" copy).
239 // So, we would like to handle patterns like this:
240 //
241 // %bb.2: derived from LLVM BB %if.then
242 // Live Ins: %rdi
243 // Predecessors according to CFG: %bb.0
244 // %ax<def> = MOV16rm killed %rdi, 1, %noreg, 0, %noreg, implicit-def %eax
245 // ; No implicit %eax
246 // Successors according to CFG: %bb.3(?%)
247 //
248 // %bb.3: derived from LLVM BB %if.end
249 // Live Ins: %eax Only %ax is actually live
250 // Predecessors according to CFG: %bb.2 %bb.1
251 // %ax = KILL %ax, implicit killed %eax
252 // RET 0, %ax
253 unsigned Opc = OrigMI->getOpcode(); (void)Opc;
254 // These are the opcodes currently known to work with the code below, if
255 // something // else will be added we need to ensure that new opcode has the
256 // same properties.
257 if (Opc != X86::MOV8rm && Opc != X86::MOV16rm && Opc != X86::MOV8rr &&
258 Opc != X86::MOV16rr)
259 return false;
260
261 bool IsDefined = false;
262 for (auto &MO: OrigMI->implicit_operands()) {
263 if (!MO.isReg())
264 continue;
265
266 assert((MO.isDef() || MO.isUse()) && "Expected Def or Use only!");
267
268 if (MO.isDef() && TRI->isSuperRegisterEq(OrigDestReg, MO.getReg()))
269 IsDefined = true;
270
271 // If MO is a use of any part of the destination register but is not equal
272 // to OrigDestReg or one of its subregisters, we cannot use SuperDestReg.
273 // For example, if OrigDestReg is %al then an implicit use of %ah, %ax,
274 // %eax, or %rax will prevent us from using the %eax register.
275 if (MO.isUse() && !TRI->isSubRegisterEq(OrigDestReg, MO.getReg()) &&
276 TRI->regsOverlap(SuperDestReg, MO.getReg()))
277 return false;
278 }
279 // Reg is not Imp-def'ed -> it's live both before/after the instruction.
280 if (!IsDefined)
281 return false;
282
283 // Otherwise, the Reg is not live before the MI and the MOV can't
284 // make it really live, so it's in fact dead even after the MI.
285 return true;
286 }
287
tryReplaceLoad(unsigned New32BitOpcode,MachineInstr * MI) const288 MachineInstr *FixupBWInstPass::tryReplaceLoad(unsigned New32BitOpcode,
289 MachineInstr *MI) const {
290 Register NewDestReg;
291
292 // We are going to try to rewrite this load to a larger zero-extending
293 // load. This is safe if all portions of the 32 bit super-register
294 // of the original destination register, except for the original destination
295 // register are dead. getSuperRegDestIfDead checks that.
296 if (!getSuperRegDestIfDead(MI, NewDestReg))
297 return nullptr;
298
299 // Safe to change the instruction.
300 MachineInstrBuilder MIB =
301 BuildMI(*MF, MI->getDebugLoc(), TII->get(New32BitOpcode), NewDestReg);
302
303 unsigned NumArgs = MI->getNumOperands();
304 for (unsigned i = 1; i < NumArgs; ++i)
305 MIB.add(MI->getOperand(i));
306
307 MIB.setMemRefs(MI->memoperands());
308
309 // If it was debug tracked, record a substitution.
310 if (unsigned OldInstrNum = MI->peekDebugInstrNum()) {
311 unsigned Subreg = TRI->getSubRegIndex(MIB->getOperand(0).getReg(),
312 MI->getOperand(0).getReg());
313 unsigned NewInstrNum = MIB->getDebugInstrNum(*MF);
314 MF->makeDebugValueSubstitution({OldInstrNum, 0}, {NewInstrNum, 0}, Subreg);
315 }
316
317 return MIB;
318 }
319
tryReplaceCopy(MachineInstr * MI) const320 MachineInstr *FixupBWInstPass::tryReplaceCopy(MachineInstr *MI) const {
321 assert(MI->getNumExplicitOperands() == 2);
322 auto &OldDest = MI->getOperand(0);
323 auto &OldSrc = MI->getOperand(1);
324
325 Register NewDestReg;
326 if (!getSuperRegDestIfDead(MI, NewDestReg))
327 return nullptr;
328
329 Register NewSrcReg = getX86SubSuperRegister(OldSrc.getReg(), 32);
330
331 // This is only correct if we access the same subregister index: otherwise,
332 // we could try to replace "movb %ah, %al" with "movl %eax, %eax".
333 const X86RegisterInfo *TRI = &TII->getRegisterInfo();
334 if (TRI->getSubRegIndex(NewSrcReg, OldSrc.getReg()) !=
335 TRI->getSubRegIndex(NewDestReg, OldDest.getReg()))
336 return nullptr;
337
338 // Safe to change the instruction.
339 // Don't set src flags, as we don't know if we're also killing the superreg.
340 // However, the superregister might not be defined; make it explicit that
341 // we don't care about the higher bits by reading it as Undef, and adding
342 // an imp-use on the original subregister.
343 MachineInstrBuilder MIB =
344 BuildMI(*MF, MI->getDebugLoc(), TII->get(X86::MOV32rr), NewDestReg)
345 .addReg(NewSrcReg, RegState::Undef)
346 .addReg(OldSrc.getReg(), RegState::Implicit);
347
348 // Drop imp-defs/uses that would be redundant with the new def/use.
349 for (auto &Op : MI->implicit_operands())
350 if (Op.getReg() != (Op.isDef() ? NewDestReg : NewSrcReg))
351 MIB.add(Op);
352
353 return MIB;
354 }
355
tryReplaceExtend(unsigned New32BitOpcode,MachineInstr * MI) const356 MachineInstr *FixupBWInstPass::tryReplaceExtend(unsigned New32BitOpcode,
357 MachineInstr *MI) const {
358 Register NewDestReg;
359 if (!getSuperRegDestIfDead(MI, NewDestReg))
360 return nullptr;
361
362 // Don't interfere with formation of CBW instructions which should be a
363 // shorter encoding than even the MOVSX32rr8. It's also immune to partial
364 // merge issues on Intel CPUs.
365 if (MI->getOpcode() == X86::MOVSX16rr8 &&
366 MI->getOperand(0).getReg() == X86::AX &&
367 MI->getOperand(1).getReg() == X86::AL)
368 return nullptr;
369
370 // Safe to change the instruction.
371 MachineInstrBuilder MIB =
372 BuildMI(*MF, MI->getDebugLoc(), TII->get(New32BitOpcode), NewDestReg);
373
374 unsigned NumArgs = MI->getNumOperands();
375 for (unsigned i = 1; i < NumArgs; ++i)
376 MIB.add(MI->getOperand(i));
377
378 MIB.setMemRefs(MI->memoperands());
379
380 if (unsigned OldInstrNum = MI->peekDebugInstrNum()) {
381 unsigned Subreg = TRI->getSubRegIndex(MIB->getOperand(0).getReg(),
382 MI->getOperand(0).getReg());
383 unsigned NewInstrNum = MIB->getDebugInstrNum(*MF);
384 MF->makeDebugValueSubstitution({OldInstrNum, 0}, {NewInstrNum, 0}, Subreg);
385 }
386
387 return MIB;
388 }
389
tryReplaceInstr(MachineInstr * MI,MachineBasicBlock & MBB) const390 MachineInstr *FixupBWInstPass::tryReplaceInstr(MachineInstr *MI,
391 MachineBasicBlock &MBB) const {
392 // See if this is an instruction of the type we are currently looking for.
393 switch (MI->getOpcode()) {
394
395 case X86::MOV8rm:
396 // Replace 8-bit loads with the zero-extending version if not optimizing
397 // for size. The extending op is cheaper across a wide range of uarch and
398 // it avoids a potentially expensive partial register stall. It takes an
399 // extra byte to encode, however, so don't do this when optimizing for size.
400 if (!OptForSize)
401 return tryReplaceLoad(X86::MOVZX32rm8, MI);
402 break;
403
404 case X86::MOV16rm:
405 // Always try to replace 16 bit load with 32 bit zero extending.
406 // Code size is the same, and there is sometimes a perf advantage
407 // from eliminating a false dependence on the upper portion of
408 // the register.
409 return tryReplaceLoad(X86::MOVZX32rm16, MI);
410
411 case X86::MOV8rr:
412 case X86::MOV16rr:
413 // Always try to replace 8/16 bit copies with a 32 bit copy.
414 // Code size is either less (16) or equal (8), and there is sometimes a
415 // perf advantage from eliminating a false dependence on the upper portion
416 // of the register.
417 return tryReplaceCopy(MI);
418
419 case X86::MOVSX16rr8:
420 return tryReplaceExtend(X86::MOVSX32rr8, MI);
421 case X86::MOVSX16rm8:
422 return tryReplaceExtend(X86::MOVSX32rm8, MI);
423 case X86::MOVZX16rr8:
424 return tryReplaceExtend(X86::MOVZX32rr8, MI);
425 case X86::MOVZX16rm8:
426 return tryReplaceExtend(X86::MOVZX32rm8, MI);
427
428 default:
429 // nothing to do here.
430 break;
431 }
432
433 return nullptr;
434 }
435
processBasicBlock(MachineFunction & MF,MachineBasicBlock & MBB)436 void FixupBWInstPass::processBasicBlock(MachineFunction &MF,
437 MachineBasicBlock &MBB) {
438
439 // This algorithm doesn't delete the instructions it is replacing
440 // right away. By leaving the existing instructions in place, the
441 // register liveness information doesn't change, and this makes the
442 // analysis that goes on be better than if the replaced instructions
443 // were immediately removed.
444 //
445 // This algorithm always creates a replacement instruction
446 // and notes that and the original in a data structure, until the
447 // whole BB has been analyzed. This keeps the replacement instructions
448 // from making it seem as if the larger register might be live.
449 SmallVector<std::pair<MachineInstr *, MachineInstr *>, 8> MIReplacements;
450
451 // Start computing liveness for this block. We iterate from the end to be able
452 // to update this for each instruction.
453 LiveRegs.clear();
454 // We run after PEI, so we need to AddPristinesAndCSRs.
455 LiveRegs.addLiveOuts(MBB);
456
457 OptForSize = MF.getFunction().hasOptSize() ||
458 llvm::shouldOptimizeForSize(&MBB, PSI, MBFI);
459
460 for (MachineInstr &MI : llvm::reverse(MBB)) {
461 if (MachineInstr *NewMI = tryReplaceInstr(&MI, MBB))
462 MIReplacements.push_back(std::make_pair(&MI, NewMI));
463
464 // We're done with this instruction, update liveness for the next one.
465 LiveRegs.stepBackward(MI);
466 }
467
468 while (!MIReplacements.empty()) {
469 MachineInstr *MI = MIReplacements.back().first;
470 MachineInstr *NewMI = MIReplacements.back().second;
471 MIReplacements.pop_back();
472 MBB.insert(MI, NewMI);
473 MBB.erase(MI);
474 }
475 }
476