1 //===-- X86FastISel.cpp - X86 FastISel implementation ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the X86-specific support for the FastISel class. Much 10 // of the target-specific code is generated by tablegen in the file 11 // X86GenFastISel.inc, which is #included here. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "X86.h" 16 #include "X86CallingConv.h" 17 #include "X86InstrBuilder.h" 18 #include "X86InstrInfo.h" 19 #include "X86MachineFunctionInfo.h" 20 #include "X86RegisterInfo.h" 21 #include "X86Subtarget.h" 22 #include "X86TargetMachine.h" 23 #include "llvm/Analysis/BranchProbabilityInfo.h" 24 #include "llvm/CodeGen/FastISel.h" 25 #include "llvm/CodeGen/FunctionLoweringInfo.h" 26 #include "llvm/CodeGen/MachineConstantPool.h" 27 #include "llvm/CodeGen/MachineFrameInfo.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/IR/CallingConv.h" 30 #include "llvm/IR/DebugInfo.h" 31 #include "llvm/IR/DerivedTypes.h" 32 #include "llvm/IR/GetElementPtrTypeIterator.h" 33 #include "llvm/IR/GlobalVariable.h" 34 #include "llvm/IR/Instructions.h" 35 #include "llvm/IR/IntrinsicInst.h" 36 #include "llvm/IR/IntrinsicsX86.h" 37 #include "llvm/IR/Operator.h" 38 #include "llvm/MC/MCAsmInfo.h" 39 #include "llvm/MC/MCSymbol.h" 40 #include "llvm/Support/ErrorHandling.h" 41 #include "llvm/Target/TargetOptions.h" 42 using namespace llvm; 43 44 namespace { 45 46 class X86FastISel final : public FastISel { 47 /// Subtarget - Keep a pointer to the X86Subtarget around so that we can 48 /// make the right decision when generating code for different targets. 49 const X86Subtarget *Subtarget; 50 51 public: 52 explicit X86FastISel(FunctionLoweringInfo &funcInfo, 53 const TargetLibraryInfo *libInfo) 54 : FastISel(funcInfo, libInfo) { 55 Subtarget = &funcInfo.MF->getSubtarget<X86Subtarget>(); 56 } 57 58 bool fastSelectInstruction(const Instruction *I) override; 59 60 /// The specified machine instr operand is a vreg, and that 61 /// vreg is being provided by the specified load instruction. If possible, 62 /// try to fold the load as an operand to the instruction, returning true if 63 /// possible. 64 bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, 65 const LoadInst *LI) override; 66 67 bool fastLowerArguments() override; 68 bool fastLowerCall(CallLoweringInfo &CLI) override; 69 bool fastLowerIntrinsicCall(const IntrinsicInst *II) override; 70 71 #include "X86GenFastISel.inc" 72 73 private: 74 bool X86FastEmitCompare(const Value *LHS, const Value *RHS, EVT VT, 75 const DebugLoc &DL); 76 77 bool X86FastEmitLoad(MVT VT, X86AddressMode &AM, MachineMemOperand *MMO, 78 unsigned &ResultReg, unsigned Alignment = 1); 79 80 bool X86FastEmitStore(EVT VT, const Value *Val, X86AddressMode &AM, 81 MachineMemOperand *MMO = nullptr, bool Aligned = false); 82 bool X86FastEmitStore(EVT VT, unsigned ValReg, X86AddressMode &AM, 83 MachineMemOperand *MMO = nullptr, bool Aligned = false); 84 85 bool X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT, 86 unsigned &ResultReg); 87 88 bool X86SelectAddress(const Value *V, X86AddressMode &AM); 89 bool X86SelectCallAddress(const Value *V, X86AddressMode &AM); 90 91 bool X86SelectLoad(const Instruction *I); 92 93 bool X86SelectStore(const Instruction *I); 94 95 bool X86SelectRet(const Instruction *I); 96 97 bool X86SelectCmp(const Instruction *I); 98 99 bool X86SelectZExt(const Instruction *I); 100 101 bool X86SelectSExt(const Instruction *I); 102 103 bool X86SelectBranch(const Instruction *I); 104 105 bool X86SelectShift(const Instruction *I); 106 107 bool X86SelectDivRem(const Instruction *I); 108 109 bool X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I); 110 111 bool X86FastEmitSSESelect(MVT RetVT, const Instruction *I); 112 113 bool X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I); 114 115 bool X86SelectSelect(const Instruction *I); 116 117 bool X86SelectTrunc(const Instruction *I); 118 119 bool X86SelectFPExtOrFPTrunc(const Instruction *I, unsigned Opc, 120 const TargetRegisterClass *RC); 121 122 bool X86SelectFPExt(const Instruction *I); 123 bool X86SelectFPTrunc(const Instruction *I); 124 bool X86SelectSIToFP(const Instruction *I); 125 bool X86SelectUIToFP(const Instruction *I); 126 bool X86SelectIntToFP(const Instruction *I, bool IsSigned); 127 128 const X86InstrInfo *getInstrInfo() const { 129 return Subtarget->getInstrInfo(); 130 } 131 const X86TargetMachine *getTargetMachine() const { 132 return static_cast<const X86TargetMachine *>(&TM); 133 } 134 135 bool handleConstantAddresses(const Value *V, X86AddressMode &AM); 136 137 unsigned X86MaterializeInt(const ConstantInt *CI, MVT VT); 138 unsigned X86MaterializeFP(const ConstantFP *CFP, MVT VT); 139 unsigned X86MaterializeGV(const GlobalValue *GV, MVT VT); 140 unsigned fastMaterializeConstant(const Constant *C) override; 141 142 unsigned fastMaterializeAlloca(const AllocaInst *C) override; 143 144 unsigned fastMaterializeFloatZero(const ConstantFP *CF) override; 145 146 /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is 147 /// computed in an SSE register, not on the X87 floating point stack. 148 bool isScalarFPTypeInSSEReg(EVT VT) const { 149 return (VT == MVT::f64 && Subtarget->hasSSE2()) || 150 (VT == MVT::f32 && Subtarget->hasSSE1()) || VT == MVT::f16; 151 } 152 153 bool isTypeLegal(Type *Ty, MVT &VT, bool AllowI1 = false); 154 155 bool IsMemcpySmall(uint64_t Len); 156 157 bool TryEmitSmallMemcpy(X86AddressMode DestAM, 158 X86AddressMode SrcAM, uint64_t Len); 159 160 bool foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I, 161 const Value *Cond); 162 163 const MachineInstrBuilder &addFullAddress(const MachineInstrBuilder &MIB, 164 X86AddressMode &AM); 165 166 unsigned fastEmitInst_rrrr(unsigned MachineInstOpcode, 167 const TargetRegisterClass *RC, unsigned Op0, 168 unsigned Op1, unsigned Op2, unsigned Op3); 169 }; 170 171 } // end anonymous namespace. 172 173 static std::pair<unsigned, bool> 174 getX86SSEConditionCode(CmpInst::Predicate Predicate) { 175 unsigned CC; 176 bool NeedSwap = false; 177 178 // SSE Condition code mapping: 179 // 0 - EQ 180 // 1 - LT 181 // 2 - LE 182 // 3 - UNORD 183 // 4 - NEQ 184 // 5 - NLT 185 // 6 - NLE 186 // 7 - ORD 187 switch (Predicate) { 188 default: llvm_unreachable("Unexpected predicate"); 189 case CmpInst::FCMP_OEQ: CC = 0; break; 190 case CmpInst::FCMP_OGT: NeedSwap = true; [[fallthrough]]; 191 case CmpInst::FCMP_OLT: CC = 1; break; 192 case CmpInst::FCMP_OGE: NeedSwap = true; [[fallthrough]]; 193 case CmpInst::FCMP_OLE: CC = 2; break; 194 case CmpInst::FCMP_UNO: CC = 3; break; 195 case CmpInst::FCMP_UNE: CC = 4; break; 196 case CmpInst::FCMP_ULE: NeedSwap = true; [[fallthrough]]; 197 case CmpInst::FCMP_UGE: CC = 5; break; 198 case CmpInst::FCMP_ULT: NeedSwap = true; [[fallthrough]]; 199 case CmpInst::FCMP_UGT: CC = 6; break; 200 case CmpInst::FCMP_ORD: CC = 7; break; 201 case CmpInst::FCMP_UEQ: CC = 8; break; 202 case CmpInst::FCMP_ONE: CC = 12; break; 203 } 204 205 return std::make_pair(CC, NeedSwap); 206 } 207 208 /// Adds a complex addressing mode to the given machine instr builder. 209 /// Note, this will constrain the index register. If its not possible to 210 /// constrain the given index register, then a new one will be created. The 211 /// IndexReg field of the addressing mode will be updated to match in this case. 212 const MachineInstrBuilder & 213 X86FastISel::addFullAddress(const MachineInstrBuilder &MIB, 214 X86AddressMode &AM) { 215 // First constrain the index register. It needs to be a GR64_NOSP. 216 AM.IndexReg = constrainOperandRegClass(MIB->getDesc(), AM.IndexReg, 217 MIB->getNumOperands() + 218 X86::AddrIndexReg); 219 return ::addFullAddress(MIB, AM); 220 } 221 222 /// Check if it is possible to fold the condition from the XALU intrinsic 223 /// into the user. The condition code will only be updated on success. 224 bool X86FastISel::foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I, 225 const Value *Cond) { 226 if (!isa<ExtractValueInst>(Cond)) 227 return false; 228 229 const auto *EV = cast<ExtractValueInst>(Cond); 230 if (!isa<IntrinsicInst>(EV->getAggregateOperand())) 231 return false; 232 233 const auto *II = cast<IntrinsicInst>(EV->getAggregateOperand()); 234 MVT RetVT; 235 const Function *Callee = II->getCalledFunction(); 236 Type *RetTy = 237 cast<StructType>(Callee->getReturnType())->getTypeAtIndex(0U); 238 if (!isTypeLegal(RetTy, RetVT)) 239 return false; 240 241 if (RetVT != MVT::i32 && RetVT != MVT::i64) 242 return false; 243 244 X86::CondCode TmpCC; 245 switch (II->getIntrinsicID()) { 246 default: return false; 247 case Intrinsic::sadd_with_overflow: 248 case Intrinsic::ssub_with_overflow: 249 case Intrinsic::smul_with_overflow: 250 case Intrinsic::umul_with_overflow: TmpCC = X86::COND_O; break; 251 case Intrinsic::uadd_with_overflow: 252 case Intrinsic::usub_with_overflow: TmpCC = X86::COND_B; break; 253 } 254 255 // Check if both instructions are in the same basic block. 256 if (II->getParent() != I->getParent()) 257 return false; 258 259 // Make sure nothing is in the way 260 BasicBlock::const_iterator Start(I); 261 BasicBlock::const_iterator End(II); 262 for (auto Itr = std::prev(Start); Itr != End; --Itr) { 263 // We only expect extractvalue instructions between the intrinsic and the 264 // instruction to be selected. 265 if (!isa<ExtractValueInst>(Itr)) 266 return false; 267 268 // Check that the extractvalue operand comes from the intrinsic. 269 const auto *EVI = cast<ExtractValueInst>(Itr); 270 if (EVI->getAggregateOperand() != II) 271 return false; 272 } 273 274 // Make sure no potentially eflags clobbering phi moves can be inserted in 275 // between. 276 auto HasPhis = [](const BasicBlock *Succ) { return !Succ->phis().empty(); }; 277 if (I->isTerminator() && llvm::any_of(successors(I), HasPhis)) 278 return false; 279 280 // Make sure there are no potentially eflags clobbering constant 281 // materializations in between. 282 if (llvm::any_of(I->operands(), [](Value *V) { return isa<Constant>(V); })) 283 return false; 284 285 CC = TmpCC; 286 return true; 287 } 288 289 bool X86FastISel::isTypeLegal(Type *Ty, MVT &VT, bool AllowI1) { 290 EVT evt = TLI.getValueType(DL, Ty, /*AllowUnknown=*/true); 291 if (evt == MVT::Other || !evt.isSimple()) 292 // Unhandled type. Halt "fast" selection and bail. 293 return false; 294 295 VT = evt.getSimpleVT(); 296 // For now, require SSE/SSE2 for performing floating-point operations, 297 // since x87 requires additional work. 298 if (VT == MVT::f64 && !Subtarget->hasSSE2()) 299 return false; 300 if (VT == MVT::f32 && !Subtarget->hasSSE1()) 301 return false; 302 // Similarly, no f80 support yet. 303 if (VT == MVT::f80) 304 return false; 305 // We only handle legal types. For example, on x86-32 the instruction 306 // selector contains all of the 64-bit instructions from x86-64, 307 // under the assumption that i64 won't be used if the target doesn't 308 // support it. 309 return (AllowI1 && VT == MVT::i1) || TLI.isTypeLegal(VT); 310 } 311 312 /// X86FastEmitLoad - Emit a machine instruction to load a value of type VT. 313 /// The address is either pre-computed, i.e. Ptr, or a GlobalAddress, i.e. GV. 314 /// Return true and the result register by reference if it is possible. 315 bool X86FastISel::X86FastEmitLoad(MVT VT, X86AddressMode &AM, 316 MachineMemOperand *MMO, unsigned &ResultReg, 317 unsigned Alignment) { 318 bool HasSSE1 = Subtarget->hasSSE1(); 319 bool HasSSE2 = Subtarget->hasSSE2(); 320 bool HasSSE41 = Subtarget->hasSSE41(); 321 bool HasAVX = Subtarget->hasAVX(); 322 bool HasAVX2 = Subtarget->hasAVX2(); 323 bool HasAVX512 = Subtarget->hasAVX512(); 324 bool HasVLX = Subtarget->hasVLX(); 325 bool IsNonTemporal = MMO && MMO->isNonTemporal(); 326 327 // Treat i1 loads the same as i8 loads. Masking will be done when storing. 328 if (VT == MVT::i1) 329 VT = MVT::i8; 330 331 // Get opcode and regclass of the output for the given load instruction. 332 unsigned Opc = 0; 333 switch (VT.SimpleTy) { 334 default: return false; 335 case MVT::i8: 336 Opc = X86::MOV8rm; 337 break; 338 case MVT::i16: 339 Opc = X86::MOV16rm; 340 break; 341 case MVT::i32: 342 Opc = X86::MOV32rm; 343 break; 344 case MVT::i64: 345 // Must be in x86-64 mode. 346 Opc = X86::MOV64rm; 347 break; 348 case MVT::f32: 349 Opc = HasAVX512 ? X86::VMOVSSZrm_alt 350 : HasAVX ? X86::VMOVSSrm_alt 351 : HasSSE1 ? X86::MOVSSrm_alt 352 : X86::LD_Fp32m; 353 break; 354 case MVT::f64: 355 Opc = HasAVX512 ? X86::VMOVSDZrm_alt 356 : HasAVX ? X86::VMOVSDrm_alt 357 : HasSSE2 ? X86::MOVSDrm_alt 358 : X86::LD_Fp64m; 359 break; 360 case MVT::f80: 361 // No f80 support yet. 362 return false; 363 case MVT::v4f32: 364 if (IsNonTemporal && Alignment >= 16 && HasSSE41) 365 Opc = HasVLX ? X86::VMOVNTDQAZ128rm : 366 HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm; 367 else if (Alignment >= 16) 368 Opc = HasVLX ? X86::VMOVAPSZ128rm : 369 HasAVX ? X86::VMOVAPSrm : X86::MOVAPSrm; 370 else 371 Opc = HasVLX ? X86::VMOVUPSZ128rm : 372 HasAVX ? X86::VMOVUPSrm : X86::MOVUPSrm; 373 break; 374 case MVT::v2f64: 375 if (IsNonTemporal && Alignment >= 16 && HasSSE41) 376 Opc = HasVLX ? X86::VMOVNTDQAZ128rm : 377 HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm; 378 else if (Alignment >= 16) 379 Opc = HasVLX ? X86::VMOVAPDZ128rm : 380 HasAVX ? X86::VMOVAPDrm : X86::MOVAPDrm; 381 else 382 Opc = HasVLX ? X86::VMOVUPDZ128rm : 383 HasAVX ? X86::VMOVUPDrm : X86::MOVUPDrm; 384 break; 385 case MVT::v4i32: 386 case MVT::v2i64: 387 case MVT::v8i16: 388 case MVT::v16i8: 389 if (IsNonTemporal && Alignment >= 16 && HasSSE41) 390 Opc = HasVLX ? X86::VMOVNTDQAZ128rm : 391 HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm; 392 else if (Alignment >= 16) 393 Opc = HasVLX ? X86::VMOVDQA64Z128rm : 394 HasAVX ? X86::VMOVDQArm : X86::MOVDQArm; 395 else 396 Opc = HasVLX ? X86::VMOVDQU64Z128rm : 397 HasAVX ? X86::VMOVDQUrm : X86::MOVDQUrm; 398 break; 399 case MVT::v8f32: 400 assert(HasAVX); 401 if (IsNonTemporal && Alignment >= 32 && HasAVX2) 402 Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm; 403 else if (IsNonTemporal && Alignment >= 16) 404 return false; // Force split for X86::VMOVNTDQArm 405 else if (Alignment >= 32) 406 Opc = HasVLX ? X86::VMOVAPSZ256rm : X86::VMOVAPSYrm; 407 else 408 Opc = HasVLX ? X86::VMOVUPSZ256rm : X86::VMOVUPSYrm; 409 break; 410 case MVT::v4f64: 411 assert(HasAVX); 412 if (IsNonTemporal && Alignment >= 32 && HasAVX2) 413 Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm; 414 else if (IsNonTemporal && Alignment >= 16) 415 return false; // Force split for X86::VMOVNTDQArm 416 else if (Alignment >= 32) 417 Opc = HasVLX ? X86::VMOVAPDZ256rm : X86::VMOVAPDYrm; 418 else 419 Opc = HasVLX ? X86::VMOVUPDZ256rm : X86::VMOVUPDYrm; 420 break; 421 case MVT::v8i32: 422 case MVT::v4i64: 423 case MVT::v16i16: 424 case MVT::v32i8: 425 assert(HasAVX); 426 if (IsNonTemporal && Alignment >= 32 && HasAVX2) 427 Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm; 428 else if (IsNonTemporal && Alignment >= 16) 429 return false; // Force split for X86::VMOVNTDQArm 430 else if (Alignment >= 32) 431 Opc = HasVLX ? X86::VMOVDQA64Z256rm : X86::VMOVDQAYrm; 432 else 433 Opc = HasVLX ? X86::VMOVDQU64Z256rm : X86::VMOVDQUYrm; 434 break; 435 case MVT::v16f32: 436 assert(HasAVX512); 437 if (IsNonTemporal && Alignment >= 64) 438 Opc = X86::VMOVNTDQAZrm; 439 else 440 Opc = (Alignment >= 64) ? X86::VMOVAPSZrm : X86::VMOVUPSZrm; 441 break; 442 case MVT::v8f64: 443 assert(HasAVX512); 444 if (IsNonTemporal && Alignment >= 64) 445 Opc = X86::VMOVNTDQAZrm; 446 else 447 Opc = (Alignment >= 64) ? X86::VMOVAPDZrm : X86::VMOVUPDZrm; 448 break; 449 case MVT::v8i64: 450 case MVT::v16i32: 451 case MVT::v32i16: 452 case MVT::v64i8: 453 assert(HasAVX512); 454 // Note: There are a lot more choices based on type with AVX-512, but 455 // there's really no advantage when the load isn't masked. 456 if (IsNonTemporal && Alignment >= 64) 457 Opc = X86::VMOVNTDQAZrm; 458 else 459 Opc = (Alignment >= 64) ? X86::VMOVDQA64Zrm : X86::VMOVDQU64Zrm; 460 break; 461 } 462 463 const TargetRegisterClass *RC = TLI.getRegClassFor(VT); 464 465 ResultReg = createResultReg(RC); 466 MachineInstrBuilder MIB = 467 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), ResultReg); 468 addFullAddress(MIB, AM); 469 if (MMO) 470 MIB->addMemOperand(*FuncInfo.MF, MMO); 471 return true; 472 } 473 474 /// X86FastEmitStore - Emit a machine instruction to store a value Val of 475 /// type VT. The address is either pre-computed, consisted of a base ptr, Ptr 476 /// and a displacement offset, or a GlobalAddress, 477 /// i.e. V. Return true if it is possible. 478 bool X86FastISel::X86FastEmitStore(EVT VT, unsigned ValReg, X86AddressMode &AM, 479 MachineMemOperand *MMO, bool Aligned) { 480 bool HasSSE1 = Subtarget->hasSSE1(); 481 bool HasSSE2 = Subtarget->hasSSE2(); 482 bool HasSSE4A = Subtarget->hasSSE4A(); 483 bool HasAVX = Subtarget->hasAVX(); 484 bool HasAVX512 = Subtarget->hasAVX512(); 485 bool HasVLX = Subtarget->hasVLX(); 486 bool IsNonTemporal = MMO && MMO->isNonTemporal(); 487 488 // Get opcode and regclass of the output for the given store instruction. 489 unsigned Opc = 0; 490 switch (VT.getSimpleVT().SimpleTy) { 491 case MVT::f80: // No f80 support yet. 492 default: return false; 493 case MVT::i1: { 494 // Mask out all but lowest bit. 495 Register AndResult = createResultReg(&X86::GR8RegClass); 496 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 497 TII.get(X86::AND8ri), AndResult) 498 .addReg(ValReg).addImm(1); 499 ValReg = AndResult; 500 [[fallthrough]]; // handle i1 as i8. 501 } 502 case MVT::i8: Opc = X86::MOV8mr; break; 503 case MVT::i16: Opc = X86::MOV16mr; break; 504 case MVT::i32: 505 Opc = (IsNonTemporal && HasSSE2) ? X86::MOVNTImr : X86::MOV32mr; 506 break; 507 case MVT::i64: 508 // Must be in x86-64 mode. 509 Opc = (IsNonTemporal && HasSSE2) ? X86::MOVNTI_64mr : X86::MOV64mr; 510 break; 511 case MVT::f32: 512 if (HasSSE1) { 513 if (IsNonTemporal && HasSSE4A) 514 Opc = X86::MOVNTSS; 515 else 516 Opc = HasAVX512 ? X86::VMOVSSZmr : 517 HasAVX ? X86::VMOVSSmr : X86::MOVSSmr; 518 } else 519 Opc = X86::ST_Fp32m; 520 break; 521 case MVT::f64: 522 if (HasSSE2) { 523 if (IsNonTemporal && HasSSE4A) 524 Opc = X86::MOVNTSD; 525 else 526 Opc = HasAVX512 ? X86::VMOVSDZmr : 527 HasAVX ? X86::VMOVSDmr : X86::MOVSDmr; 528 } else 529 Opc = X86::ST_Fp64m; 530 break; 531 case MVT::x86mmx: 532 Opc = (IsNonTemporal && HasSSE1) ? X86::MMX_MOVNTQmr : X86::MMX_MOVQ64mr; 533 break; 534 case MVT::v4f32: 535 if (Aligned) { 536 if (IsNonTemporal) 537 Opc = HasVLX ? X86::VMOVNTPSZ128mr : 538 HasAVX ? X86::VMOVNTPSmr : X86::MOVNTPSmr; 539 else 540 Opc = HasVLX ? X86::VMOVAPSZ128mr : 541 HasAVX ? X86::VMOVAPSmr : X86::MOVAPSmr; 542 } else 543 Opc = HasVLX ? X86::VMOVUPSZ128mr : 544 HasAVX ? X86::VMOVUPSmr : X86::MOVUPSmr; 545 break; 546 case MVT::v2f64: 547 if (Aligned) { 548 if (IsNonTemporal) 549 Opc = HasVLX ? X86::VMOVNTPDZ128mr : 550 HasAVX ? X86::VMOVNTPDmr : X86::MOVNTPDmr; 551 else 552 Opc = HasVLX ? X86::VMOVAPDZ128mr : 553 HasAVX ? X86::VMOVAPDmr : X86::MOVAPDmr; 554 } else 555 Opc = HasVLX ? X86::VMOVUPDZ128mr : 556 HasAVX ? X86::VMOVUPDmr : X86::MOVUPDmr; 557 break; 558 case MVT::v4i32: 559 case MVT::v2i64: 560 case MVT::v8i16: 561 case MVT::v16i8: 562 if (Aligned) { 563 if (IsNonTemporal) 564 Opc = HasVLX ? X86::VMOVNTDQZ128mr : 565 HasAVX ? X86::VMOVNTDQmr : X86::MOVNTDQmr; 566 else 567 Opc = HasVLX ? X86::VMOVDQA64Z128mr : 568 HasAVX ? X86::VMOVDQAmr : X86::MOVDQAmr; 569 } else 570 Opc = HasVLX ? X86::VMOVDQU64Z128mr : 571 HasAVX ? X86::VMOVDQUmr : X86::MOVDQUmr; 572 break; 573 case MVT::v8f32: 574 assert(HasAVX); 575 if (Aligned) { 576 if (IsNonTemporal) 577 Opc = HasVLX ? X86::VMOVNTPSZ256mr : X86::VMOVNTPSYmr; 578 else 579 Opc = HasVLX ? X86::VMOVAPSZ256mr : X86::VMOVAPSYmr; 580 } else 581 Opc = HasVLX ? X86::VMOVUPSZ256mr : X86::VMOVUPSYmr; 582 break; 583 case MVT::v4f64: 584 assert(HasAVX); 585 if (Aligned) { 586 if (IsNonTemporal) 587 Opc = HasVLX ? X86::VMOVNTPDZ256mr : X86::VMOVNTPDYmr; 588 else 589 Opc = HasVLX ? X86::VMOVAPDZ256mr : X86::VMOVAPDYmr; 590 } else 591 Opc = HasVLX ? X86::VMOVUPDZ256mr : X86::VMOVUPDYmr; 592 break; 593 case MVT::v8i32: 594 case MVT::v4i64: 595 case MVT::v16i16: 596 case MVT::v32i8: 597 assert(HasAVX); 598 if (Aligned) { 599 if (IsNonTemporal) 600 Opc = HasVLX ? X86::VMOVNTDQZ256mr : X86::VMOVNTDQYmr; 601 else 602 Opc = HasVLX ? X86::VMOVDQA64Z256mr : X86::VMOVDQAYmr; 603 } else 604 Opc = HasVLX ? X86::VMOVDQU64Z256mr : X86::VMOVDQUYmr; 605 break; 606 case MVT::v16f32: 607 assert(HasAVX512); 608 if (Aligned) 609 Opc = IsNonTemporal ? X86::VMOVNTPSZmr : X86::VMOVAPSZmr; 610 else 611 Opc = X86::VMOVUPSZmr; 612 break; 613 case MVT::v8f64: 614 assert(HasAVX512); 615 if (Aligned) { 616 Opc = IsNonTemporal ? X86::VMOVNTPDZmr : X86::VMOVAPDZmr; 617 } else 618 Opc = X86::VMOVUPDZmr; 619 break; 620 case MVT::v8i64: 621 case MVT::v16i32: 622 case MVT::v32i16: 623 case MVT::v64i8: 624 assert(HasAVX512); 625 // Note: There are a lot more choices based on type with AVX-512, but 626 // there's really no advantage when the store isn't masked. 627 if (Aligned) 628 Opc = IsNonTemporal ? X86::VMOVNTDQZmr : X86::VMOVDQA64Zmr; 629 else 630 Opc = X86::VMOVDQU64Zmr; 631 break; 632 } 633 634 const MCInstrDesc &Desc = TII.get(Opc); 635 // Some of the instructions in the previous switch use FR128 instead 636 // of FR32 for ValReg. Make sure the register we feed the instruction 637 // matches its register class constraints. 638 // Note: This is fine to do a copy from FR32 to FR128, this is the 639 // same registers behind the scene and actually why it did not trigger 640 // any bugs before. 641 ValReg = constrainOperandRegClass(Desc, ValReg, Desc.getNumOperands() - 1); 642 MachineInstrBuilder MIB = 643 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, Desc); 644 addFullAddress(MIB, AM).addReg(ValReg); 645 if (MMO) 646 MIB->addMemOperand(*FuncInfo.MF, MMO); 647 648 return true; 649 } 650 651 bool X86FastISel::X86FastEmitStore(EVT VT, const Value *Val, 652 X86AddressMode &AM, 653 MachineMemOperand *MMO, bool Aligned) { 654 // Handle 'null' like i32/i64 0. 655 if (isa<ConstantPointerNull>(Val)) 656 Val = Constant::getNullValue(DL.getIntPtrType(Val->getContext())); 657 658 // If this is a store of a simple constant, fold the constant into the store. 659 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Val)) { 660 unsigned Opc = 0; 661 bool Signed = true; 662 switch (VT.getSimpleVT().SimpleTy) { 663 default: break; 664 case MVT::i1: 665 Signed = false; 666 [[fallthrough]]; // Handle as i8. 667 case MVT::i8: Opc = X86::MOV8mi; break; 668 case MVT::i16: Opc = X86::MOV16mi; break; 669 case MVT::i32: Opc = X86::MOV32mi; break; 670 case MVT::i64: 671 // Must be a 32-bit sign extended value. 672 if (isInt<32>(CI->getSExtValue())) 673 Opc = X86::MOV64mi32; 674 break; 675 } 676 677 if (Opc) { 678 MachineInstrBuilder MIB = 679 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc)); 680 addFullAddress(MIB, AM).addImm(Signed ? (uint64_t) CI->getSExtValue() 681 : CI->getZExtValue()); 682 if (MMO) 683 MIB->addMemOperand(*FuncInfo.MF, MMO); 684 return true; 685 } 686 } 687 688 Register ValReg = getRegForValue(Val); 689 if (ValReg == 0) 690 return false; 691 692 return X86FastEmitStore(VT, ValReg, AM, MMO, Aligned); 693 } 694 695 /// X86FastEmitExtend - Emit a machine instruction to extend a value Src of 696 /// type SrcVT to type DstVT using the specified extension opcode Opc (e.g. 697 /// ISD::SIGN_EXTEND). 698 bool X86FastISel::X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, 699 unsigned Src, EVT SrcVT, 700 unsigned &ResultReg) { 701 unsigned RR = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc, Src); 702 if (RR == 0) 703 return false; 704 705 ResultReg = RR; 706 return true; 707 } 708 709 bool X86FastISel::handleConstantAddresses(const Value *V, X86AddressMode &AM) { 710 // Handle constant address. 711 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 712 // Can't handle alternate code models yet. 713 if (TM.getCodeModel() != CodeModel::Small && 714 TM.getCodeModel() != CodeModel::Medium) 715 return false; 716 717 // Can't handle large objects yet. 718 if (TM.isLargeGlobalValue(GV)) 719 return false; 720 721 // Can't handle TLS yet. 722 if (GV->isThreadLocal()) 723 return false; 724 725 // Can't handle !absolute_symbol references yet. 726 if (GV->isAbsoluteSymbolRef()) 727 return false; 728 729 // RIP-relative addresses can't have additional register operands, so if 730 // we've already folded stuff into the addressing mode, just force the 731 // global value into its own register, which we can use as the basereg. 732 if (!Subtarget->isPICStyleRIPRel() || 733 (AM.Base.Reg == 0 && AM.IndexReg == 0)) { 734 // Okay, we've committed to selecting this global. Set up the address. 735 AM.GV = GV; 736 737 // Allow the subtarget to classify the global. 738 unsigned char GVFlags = Subtarget->classifyGlobalReference(GV); 739 740 // If this reference is relative to the pic base, set it now. 741 if (isGlobalRelativeToPICBase(GVFlags)) { 742 // FIXME: How do we know Base.Reg is free?? 743 AM.Base.Reg = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF); 744 } 745 746 // Unless the ABI requires an extra load, return a direct reference to 747 // the global. 748 if (!isGlobalStubReference(GVFlags)) { 749 if (Subtarget->isPICStyleRIPRel()) { 750 // Use rip-relative addressing if we can. Above we verified that the 751 // base and index registers are unused. 752 assert(AM.Base.Reg == 0 && AM.IndexReg == 0); 753 AM.Base.Reg = X86::RIP; 754 } 755 AM.GVOpFlags = GVFlags; 756 return true; 757 } 758 759 // Ok, we need to do a load from a stub. If we've already loaded from 760 // this stub, reuse the loaded pointer, otherwise emit the load now. 761 DenseMap<const Value *, Register>::iterator I = LocalValueMap.find(V); 762 Register LoadReg; 763 if (I != LocalValueMap.end() && I->second) { 764 LoadReg = I->second; 765 } else { 766 // Issue load from stub. 767 unsigned Opc = 0; 768 const TargetRegisterClass *RC = nullptr; 769 X86AddressMode StubAM; 770 StubAM.Base.Reg = AM.Base.Reg; 771 StubAM.GV = GV; 772 StubAM.GVOpFlags = GVFlags; 773 774 // Prepare for inserting code in the local-value area. 775 SavePoint SaveInsertPt = enterLocalValueArea(); 776 777 if (TLI.getPointerTy(DL) == MVT::i64) { 778 Opc = X86::MOV64rm; 779 RC = &X86::GR64RegClass; 780 } else { 781 Opc = X86::MOV32rm; 782 RC = &X86::GR32RegClass; 783 } 784 785 if (Subtarget->isPICStyleRIPRel() || GVFlags == X86II::MO_GOTPCREL || 786 GVFlags == X86II::MO_GOTPCREL_NORELAX) 787 StubAM.Base.Reg = X86::RIP; 788 789 LoadReg = createResultReg(RC); 790 MachineInstrBuilder LoadMI = 791 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), LoadReg); 792 addFullAddress(LoadMI, StubAM); 793 794 // Ok, back to normal mode. 795 leaveLocalValueArea(SaveInsertPt); 796 797 // Prevent loading GV stub multiple times in same MBB. 798 LocalValueMap[V] = LoadReg; 799 } 800 801 // Now construct the final address. Note that the Disp, Scale, 802 // and Index values may already be set here. 803 AM.Base.Reg = LoadReg; 804 AM.GV = nullptr; 805 return true; 806 } 807 } 808 809 // If all else fails, try to materialize the value in a register. 810 if (!AM.GV || !Subtarget->isPICStyleRIPRel()) { 811 if (AM.Base.Reg == 0) { 812 AM.Base.Reg = getRegForValue(V); 813 return AM.Base.Reg != 0; 814 } 815 if (AM.IndexReg == 0) { 816 assert(AM.Scale == 1 && "Scale with no index!"); 817 AM.IndexReg = getRegForValue(V); 818 return AM.IndexReg != 0; 819 } 820 } 821 822 return false; 823 } 824 825 /// X86SelectAddress - Attempt to fill in an address from the given value. 826 /// 827 bool X86FastISel::X86SelectAddress(const Value *V, X86AddressMode &AM) { 828 SmallVector<const Value *, 32> GEPs; 829 redo_gep: 830 const User *U = nullptr; 831 unsigned Opcode = Instruction::UserOp1; 832 if (const Instruction *I = dyn_cast<Instruction>(V)) { 833 // Don't walk into other basic blocks; it's possible we haven't 834 // visited them yet, so the instructions may not yet be assigned 835 // virtual registers. 836 if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(V)) || 837 FuncInfo.getMBB(I->getParent()) == FuncInfo.MBB) { 838 Opcode = I->getOpcode(); 839 U = I; 840 } 841 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) { 842 Opcode = C->getOpcode(); 843 U = C; 844 } 845 846 if (PointerType *Ty = dyn_cast<PointerType>(V->getType())) 847 if (Ty->getAddressSpace() > 255) 848 // Fast instruction selection doesn't support the special 849 // address spaces. 850 return false; 851 852 switch (Opcode) { 853 default: break; 854 case Instruction::BitCast: 855 // Look past bitcasts. 856 return X86SelectAddress(U->getOperand(0), AM); 857 858 case Instruction::IntToPtr: 859 // Look past no-op inttoptrs. 860 if (TLI.getValueType(DL, U->getOperand(0)->getType()) == 861 TLI.getPointerTy(DL)) 862 return X86SelectAddress(U->getOperand(0), AM); 863 break; 864 865 case Instruction::PtrToInt: 866 // Look past no-op ptrtoints. 867 if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL)) 868 return X86SelectAddress(U->getOperand(0), AM); 869 break; 870 871 case Instruction::Alloca: { 872 // Do static allocas. 873 const AllocaInst *A = cast<AllocaInst>(V); 874 DenseMap<const AllocaInst *, int>::iterator SI = 875 FuncInfo.StaticAllocaMap.find(A); 876 if (SI != FuncInfo.StaticAllocaMap.end()) { 877 AM.BaseType = X86AddressMode::FrameIndexBase; 878 AM.Base.FrameIndex = SI->second; 879 return true; 880 } 881 break; 882 } 883 884 case Instruction::Add: { 885 // Adds of constants are common and easy enough. 886 if (const ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 887 uint64_t Disp = (int32_t)AM.Disp + (uint64_t)CI->getSExtValue(); 888 // They have to fit in the 32-bit signed displacement field though. 889 if (isInt<32>(Disp)) { 890 AM.Disp = (uint32_t)Disp; 891 return X86SelectAddress(U->getOperand(0), AM); 892 } 893 } 894 break; 895 } 896 897 case Instruction::GetElementPtr: { 898 X86AddressMode SavedAM = AM; 899 900 // Pattern-match simple GEPs. 901 uint64_t Disp = (int32_t)AM.Disp; 902 unsigned IndexReg = AM.IndexReg; 903 unsigned Scale = AM.Scale; 904 MVT PtrVT = TLI.getValueType(DL, U->getType()).getSimpleVT(); 905 906 gep_type_iterator GTI = gep_type_begin(U); 907 // Iterate through the indices, folding what we can. Constants can be 908 // folded, and one dynamic index can be handled, if the scale is supported. 909 for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end(); 910 i != e; ++i, ++GTI) { 911 const Value *Op = *i; 912 if (StructType *STy = GTI.getStructTypeOrNull()) { 913 const StructLayout *SL = DL.getStructLayout(STy); 914 Disp += SL->getElementOffset(cast<ConstantInt>(Op)->getZExtValue()); 915 continue; 916 } 917 918 // A array/variable index is always of the form i*S where S is the 919 // constant scale size. See if we can push the scale into immediates. 920 uint64_t S = GTI.getSequentialElementStride(DL); 921 for (;;) { 922 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 923 // Constant-offset addressing. 924 Disp += CI->getSExtValue() * S; 925 break; 926 } 927 if (canFoldAddIntoGEP(U, Op)) { 928 // A compatible add with a constant operand. Fold the constant. 929 ConstantInt *CI = 930 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1)); 931 Disp += CI->getSExtValue() * S; 932 // Iterate on the other operand. 933 Op = cast<AddOperator>(Op)->getOperand(0); 934 continue; 935 } 936 if (IndexReg == 0 && 937 (!AM.GV || !Subtarget->isPICStyleRIPRel()) && 938 (S == 1 || S == 2 || S == 4 || S == 8)) { 939 // Scaled-index addressing. 940 Scale = S; 941 IndexReg = getRegForGEPIndex(PtrVT, Op); 942 if (IndexReg == 0) 943 return false; 944 break; 945 } 946 // Unsupported. 947 goto unsupported_gep; 948 } 949 } 950 951 // Check for displacement overflow. 952 if (!isInt<32>(Disp)) 953 break; 954 955 AM.IndexReg = IndexReg; 956 AM.Scale = Scale; 957 AM.Disp = (uint32_t)Disp; 958 GEPs.push_back(V); 959 960 if (const GetElementPtrInst *GEP = 961 dyn_cast<GetElementPtrInst>(U->getOperand(0))) { 962 // Ok, the GEP indices were covered by constant-offset and scaled-index 963 // addressing. Update the address state and move on to examining the base. 964 V = GEP; 965 goto redo_gep; 966 } else if (X86SelectAddress(U->getOperand(0), AM)) { 967 return true; 968 } 969 970 // If we couldn't merge the gep value into this addr mode, revert back to 971 // our address and just match the value instead of completely failing. 972 AM = SavedAM; 973 974 for (const Value *I : reverse(GEPs)) 975 if (handleConstantAddresses(I, AM)) 976 return true; 977 978 return false; 979 unsupported_gep: 980 // Ok, the GEP indices weren't all covered. 981 break; 982 } 983 } 984 985 return handleConstantAddresses(V, AM); 986 } 987 988 /// X86SelectCallAddress - Attempt to fill in an address from the given value. 989 /// 990 bool X86FastISel::X86SelectCallAddress(const Value *V, X86AddressMode &AM) { 991 const User *U = nullptr; 992 unsigned Opcode = Instruction::UserOp1; 993 const Instruction *I = dyn_cast<Instruction>(V); 994 // Record if the value is defined in the same basic block. 995 // 996 // This information is crucial to know whether or not folding an 997 // operand is valid. 998 // Indeed, FastISel generates or reuses a virtual register for all 999 // operands of all instructions it selects. Obviously, the definition and 1000 // its uses must use the same virtual register otherwise the produced 1001 // code is incorrect. 1002 // Before instruction selection, FunctionLoweringInfo::set sets the virtual 1003 // registers for values that are alive across basic blocks. This ensures 1004 // that the values are consistently set between across basic block, even 1005 // if different instruction selection mechanisms are used (e.g., a mix of 1006 // SDISel and FastISel). 1007 // For values local to a basic block, the instruction selection process 1008 // generates these virtual registers with whatever method is appropriate 1009 // for its needs. In particular, FastISel and SDISel do not share the way 1010 // local virtual registers are set. 1011 // Therefore, this is impossible (or at least unsafe) to share values 1012 // between basic blocks unless they use the same instruction selection 1013 // method, which is not guarantee for X86. 1014 // Moreover, things like hasOneUse could not be used accurately, if we 1015 // allow to reference values across basic blocks whereas they are not 1016 // alive across basic blocks initially. 1017 bool InMBB = true; 1018 if (I) { 1019 Opcode = I->getOpcode(); 1020 U = I; 1021 InMBB = I->getParent() == FuncInfo.MBB->getBasicBlock(); 1022 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) { 1023 Opcode = C->getOpcode(); 1024 U = C; 1025 } 1026 1027 switch (Opcode) { 1028 default: break; 1029 case Instruction::BitCast: 1030 // Look past bitcasts if its operand is in the same BB. 1031 if (InMBB) 1032 return X86SelectCallAddress(U->getOperand(0), AM); 1033 break; 1034 1035 case Instruction::IntToPtr: 1036 // Look past no-op inttoptrs if its operand is in the same BB. 1037 if (InMBB && 1038 TLI.getValueType(DL, U->getOperand(0)->getType()) == 1039 TLI.getPointerTy(DL)) 1040 return X86SelectCallAddress(U->getOperand(0), AM); 1041 break; 1042 1043 case Instruction::PtrToInt: 1044 // Look past no-op ptrtoints if its operand is in the same BB. 1045 if (InMBB && TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL)) 1046 return X86SelectCallAddress(U->getOperand(0), AM); 1047 break; 1048 } 1049 1050 // Handle constant address. 1051 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 1052 // Can't handle alternate code models yet. 1053 if (TM.getCodeModel() != CodeModel::Small && 1054 TM.getCodeModel() != CodeModel::Medium) 1055 return false; 1056 1057 // RIP-relative addresses can't have additional register operands. 1058 if (Subtarget->isPICStyleRIPRel() && 1059 (AM.Base.Reg != 0 || AM.IndexReg != 0)) 1060 return false; 1061 1062 // Can't handle TLS. 1063 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 1064 if (GVar->isThreadLocal()) 1065 return false; 1066 1067 // Okay, we've committed to selecting this global. Set up the basic address. 1068 AM.GV = GV; 1069 1070 // Return a direct reference to the global. Fastisel can handle calls to 1071 // functions that require loads, such as dllimport and nonlazybind 1072 // functions. 1073 if (Subtarget->isPICStyleRIPRel()) { 1074 // Use rip-relative addressing if we can. Above we verified that the 1075 // base and index registers are unused. 1076 assert(AM.Base.Reg == 0 && AM.IndexReg == 0); 1077 AM.Base.Reg = X86::RIP; 1078 } else { 1079 AM.GVOpFlags = Subtarget->classifyLocalReference(nullptr); 1080 } 1081 1082 return true; 1083 } 1084 1085 // If all else fails, try to materialize the value in a register. 1086 if (!AM.GV || !Subtarget->isPICStyleRIPRel()) { 1087 auto GetCallRegForValue = [this](const Value *V) { 1088 Register Reg = getRegForValue(V); 1089 1090 // In 64-bit mode, we need a 64-bit register even if pointers are 32 bits. 1091 if (Reg && Subtarget->isTarget64BitILP32()) { 1092 Register CopyReg = createResultReg(&X86::GR32RegClass); 1093 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOV32rr), 1094 CopyReg) 1095 .addReg(Reg); 1096 1097 Register ExtReg = createResultReg(&X86::GR64RegClass); 1098 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1099 TII.get(TargetOpcode::SUBREG_TO_REG), ExtReg) 1100 .addImm(0) 1101 .addReg(CopyReg) 1102 .addImm(X86::sub_32bit); 1103 Reg = ExtReg; 1104 } 1105 1106 return Reg; 1107 }; 1108 1109 if (AM.Base.Reg == 0) { 1110 AM.Base.Reg = GetCallRegForValue(V); 1111 return AM.Base.Reg != 0; 1112 } 1113 if (AM.IndexReg == 0) { 1114 assert(AM.Scale == 1 && "Scale with no index!"); 1115 AM.IndexReg = GetCallRegForValue(V); 1116 return AM.IndexReg != 0; 1117 } 1118 } 1119 1120 return false; 1121 } 1122 1123 1124 /// X86SelectStore - Select and emit code to implement store instructions. 1125 bool X86FastISel::X86SelectStore(const Instruction *I) { 1126 // Atomic stores need special handling. 1127 const StoreInst *S = cast<StoreInst>(I); 1128 1129 if (S->isAtomic()) 1130 return false; 1131 1132 const Value *PtrV = I->getOperand(1); 1133 if (TLI.supportSwiftError()) { 1134 // Swifterror values can come from either a function parameter with 1135 // swifterror attribute or an alloca with swifterror attribute. 1136 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 1137 if (Arg->hasSwiftErrorAttr()) 1138 return false; 1139 } 1140 1141 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 1142 if (Alloca->isSwiftError()) 1143 return false; 1144 } 1145 } 1146 1147 const Value *Val = S->getValueOperand(); 1148 const Value *Ptr = S->getPointerOperand(); 1149 1150 MVT VT; 1151 if (!isTypeLegal(Val->getType(), VT, /*AllowI1=*/true)) 1152 return false; 1153 1154 Align Alignment = S->getAlign(); 1155 Align ABIAlignment = DL.getABITypeAlign(Val->getType()); 1156 bool Aligned = Alignment >= ABIAlignment; 1157 1158 X86AddressMode AM; 1159 if (!X86SelectAddress(Ptr, AM)) 1160 return false; 1161 1162 return X86FastEmitStore(VT, Val, AM, createMachineMemOperandFor(I), Aligned); 1163 } 1164 1165 /// X86SelectRet - Select and emit code to implement ret instructions. 1166 bool X86FastISel::X86SelectRet(const Instruction *I) { 1167 const ReturnInst *Ret = cast<ReturnInst>(I); 1168 const Function &F = *I->getParent()->getParent(); 1169 const X86MachineFunctionInfo *X86MFInfo = 1170 FuncInfo.MF->getInfo<X86MachineFunctionInfo>(); 1171 1172 if (!FuncInfo.CanLowerReturn) 1173 return false; 1174 1175 if (TLI.supportSwiftError() && 1176 F.getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 1177 return false; 1178 1179 if (TLI.supportSplitCSR(FuncInfo.MF)) 1180 return false; 1181 1182 CallingConv::ID CC = F.getCallingConv(); 1183 if (CC != CallingConv::C && 1184 CC != CallingConv::Fast && 1185 CC != CallingConv::Tail && 1186 CC != CallingConv::SwiftTail && 1187 CC != CallingConv::X86_FastCall && 1188 CC != CallingConv::X86_StdCall && 1189 CC != CallingConv::X86_ThisCall && 1190 CC != CallingConv::X86_64_SysV && 1191 CC != CallingConv::Win64) 1192 return false; 1193 1194 // Don't handle popping bytes if they don't fit the ret's immediate. 1195 if (!isUInt<16>(X86MFInfo->getBytesToPopOnReturn())) 1196 return false; 1197 1198 // fastcc with -tailcallopt is intended to provide a guaranteed 1199 // tail call optimization. Fastisel doesn't know how to do that. 1200 if ((CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt) || 1201 CC == CallingConv::Tail || CC == CallingConv::SwiftTail) 1202 return false; 1203 1204 // Let SDISel handle vararg functions. 1205 if (F.isVarArg()) 1206 return false; 1207 1208 // Build a list of return value registers. 1209 SmallVector<unsigned, 4> RetRegs; 1210 1211 if (Ret->getNumOperands() > 0) { 1212 SmallVector<ISD::OutputArg, 4> Outs; 1213 GetReturnInfo(CC, F.getReturnType(), F.getAttributes(), Outs, TLI, DL); 1214 1215 // Analyze operands of the call, assigning locations to each operand. 1216 SmallVector<CCValAssign, 16> ValLocs; 1217 CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext()); 1218 CCInfo.AnalyzeReturn(Outs, RetCC_X86); 1219 1220 const Value *RV = Ret->getOperand(0); 1221 Register Reg = getRegForValue(RV); 1222 if (Reg == 0) 1223 return false; 1224 1225 // Only handle a single return value for now. 1226 if (ValLocs.size() != 1) 1227 return false; 1228 1229 CCValAssign &VA = ValLocs[0]; 1230 1231 // Don't bother handling odd stuff for now. 1232 if (VA.getLocInfo() != CCValAssign::Full) 1233 return false; 1234 // Only handle register returns for now. 1235 if (!VA.isRegLoc()) 1236 return false; 1237 1238 // The calling-convention tables for x87 returns don't tell 1239 // the whole story. 1240 if (VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1) 1241 return false; 1242 1243 unsigned SrcReg = Reg + VA.getValNo(); 1244 EVT SrcVT = TLI.getValueType(DL, RV->getType()); 1245 EVT DstVT = VA.getValVT(); 1246 // Special handling for extended integers. 1247 if (SrcVT != DstVT) { 1248 if (SrcVT != MVT::i1 && SrcVT != MVT::i8 && SrcVT != MVT::i16) 1249 return false; 1250 1251 if (!Outs[0].Flags.isZExt() && !Outs[0].Flags.isSExt()) 1252 return false; 1253 1254 if (SrcVT == MVT::i1) { 1255 if (Outs[0].Flags.isSExt()) 1256 return false; 1257 SrcReg = fastEmitZExtFromI1(MVT::i8, SrcReg); 1258 SrcVT = MVT::i8; 1259 } 1260 if (SrcVT != DstVT) { 1261 unsigned Op = 1262 Outs[0].Flags.isZExt() ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND; 1263 SrcReg = 1264 fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Op, SrcReg); 1265 } 1266 } 1267 1268 // Make the copy. 1269 Register DstReg = VA.getLocReg(); 1270 const TargetRegisterClass *SrcRC = MRI.getRegClass(SrcReg); 1271 // Avoid a cross-class copy. This is very unlikely. 1272 if (!SrcRC->contains(DstReg)) 1273 return false; 1274 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1275 TII.get(TargetOpcode::COPY), DstReg).addReg(SrcReg); 1276 1277 // Add register to return instruction. 1278 RetRegs.push_back(VA.getLocReg()); 1279 } 1280 1281 // Swift calling convention does not require we copy the sret argument 1282 // into %rax/%eax for the return, and SRetReturnReg is not set for Swift. 1283 1284 // All x86 ABIs require that for returning structs by value we copy 1285 // the sret argument into %rax/%eax (depending on ABI) for the return. 1286 // We saved the argument into a virtual register in the entry block, 1287 // so now we copy the value out and into %rax/%eax. 1288 if (F.hasStructRetAttr() && CC != CallingConv::Swift && 1289 CC != CallingConv::SwiftTail) { 1290 Register Reg = X86MFInfo->getSRetReturnReg(); 1291 assert(Reg && 1292 "SRetReturnReg should have been set in LowerFormalArguments()!"); 1293 unsigned RetReg = Subtarget->isTarget64BitLP64() ? X86::RAX : X86::EAX; 1294 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1295 TII.get(TargetOpcode::COPY), RetReg).addReg(Reg); 1296 RetRegs.push_back(RetReg); 1297 } 1298 1299 // Now emit the RET. 1300 MachineInstrBuilder MIB; 1301 if (X86MFInfo->getBytesToPopOnReturn()) { 1302 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1303 TII.get(Subtarget->is64Bit() ? X86::RETI64 : X86::RETI32)) 1304 .addImm(X86MFInfo->getBytesToPopOnReturn()); 1305 } else { 1306 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1307 TII.get(Subtarget->is64Bit() ? X86::RET64 : X86::RET32)); 1308 } 1309 for (unsigned Reg : RetRegs) 1310 MIB.addReg(Reg, RegState::Implicit); 1311 return true; 1312 } 1313 1314 /// X86SelectLoad - Select and emit code to implement load instructions. 1315 /// 1316 bool X86FastISel::X86SelectLoad(const Instruction *I) { 1317 const LoadInst *LI = cast<LoadInst>(I); 1318 1319 // Atomic loads need special handling. 1320 if (LI->isAtomic()) 1321 return false; 1322 1323 const Value *SV = I->getOperand(0); 1324 if (TLI.supportSwiftError()) { 1325 // Swifterror values can come from either a function parameter with 1326 // swifterror attribute or an alloca with swifterror attribute. 1327 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 1328 if (Arg->hasSwiftErrorAttr()) 1329 return false; 1330 } 1331 1332 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 1333 if (Alloca->isSwiftError()) 1334 return false; 1335 } 1336 } 1337 1338 MVT VT; 1339 if (!isTypeLegal(LI->getType(), VT, /*AllowI1=*/true)) 1340 return false; 1341 1342 const Value *Ptr = LI->getPointerOperand(); 1343 1344 X86AddressMode AM; 1345 if (!X86SelectAddress(Ptr, AM)) 1346 return false; 1347 1348 unsigned ResultReg = 0; 1349 if (!X86FastEmitLoad(VT, AM, createMachineMemOperandFor(LI), ResultReg, 1350 LI->getAlign().value())) 1351 return false; 1352 1353 updateValueMap(I, ResultReg); 1354 return true; 1355 } 1356 1357 static unsigned X86ChooseCmpOpcode(EVT VT, const X86Subtarget *Subtarget) { 1358 bool HasAVX512 = Subtarget->hasAVX512(); 1359 bool HasAVX = Subtarget->hasAVX(); 1360 bool HasSSE1 = Subtarget->hasSSE1(); 1361 bool HasSSE2 = Subtarget->hasSSE2(); 1362 1363 switch (VT.getSimpleVT().SimpleTy) { 1364 default: return 0; 1365 case MVT::i8: return X86::CMP8rr; 1366 case MVT::i16: return X86::CMP16rr; 1367 case MVT::i32: return X86::CMP32rr; 1368 case MVT::i64: return X86::CMP64rr; 1369 case MVT::f32: 1370 return HasAVX512 ? X86::VUCOMISSZrr 1371 : HasAVX ? X86::VUCOMISSrr 1372 : HasSSE1 ? X86::UCOMISSrr 1373 : 0; 1374 case MVT::f64: 1375 return HasAVX512 ? X86::VUCOMISDZrr 1376 : HasAVX ? X86::VUCOMISDrr 1377 : HasSSE2 ? X86::UCOMISDrr 1378 : 0; 1379 } 1380 } 1381 1382 /// If we have a comparison with RHS as the RHS of the comparison, return an 1383 /// opcode that works for the compare (e.g. CMP32ri) otherwise return 0. 1384 static unsigned X86ChooseCmpImmediateOpcode(EVT VT, const ConstantInt *RHSC) { 1385 switch (VT.getSimpleVT().SimpleTy) { 1386 // Otherwise, we can't fold the immediate into this comparison. 1387 default: 1388 return 0; 1389 case MVT::i8: 1390 return X86::CMP8ri; 1391 case MVT::i16: 1392 return X86::CMP16ri; 1393 case MVT::i32: 1394 return X86::CMP32ri; 1395 case MVT::i64: 1396 // 64-bit comparisons are only valid if the immediate fits in a 32-bit sext 1397 // field. 1398 return isInt<32>(RHSC->getSExtValue()) ? X86::CMP64ri32 : 0; 1399 } 1400 } 1401 1402 bool X86FastISel::X86FastEmitCompare(const Value *Op0, const Value *Op1, EVT VT, 1403 const DebugLoc &CurMIMD) { 1404 Register Op0Reg = getRegForValue(Op0); 1405 if (Op0Reg == 0) return false; 1406 1407 // Handle 'null' like i32/i64 0. 1408 if (isa<ConstantPointerNull>(Op1)) 1409 Op1 = Constant::getNullValue(DL.getIntPtrType(Op0->getContext())); 1410 1411 // We have two options: compare with register or immediate. If the RHS of 1412 // the compare is an immediate that we can fold into this compare, use 1413 // CMPri, otherwise use CMPrr. 1414 if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) { 1415 if (unsigned CompareImmOpc = X86ChooseCmpImmediateOpcode(VT, Op1C)) { 1416 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, CurMIMD, TII.get(CompareImmOpc)) 1417 .addReg(Op0Reg) 1418 .addImm(Op1C->getSExtValue()); 1419 return true; 1420 } 1421 } 1422 1423 unsigned CompareOpc = X86ChooseCmpOpcode(VT, Subtarget); 1424 if (CompareOpc == 0) return false; 1425 1426 Register Op1Reg = getRegForValue(Op1); 1427 if (Op1Reg == 0) return false; 1428 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, CurMIMD, TII.get(CompareOpc)) 1429 .addReg(Op0Reg) 1430 .addReg(Op1Reg); 1431 1432 return true; 1433 } 1434 1435 bool X86FastISel::X86SelectCmp(const Instruction *I) { 1436 const CmpInst *CI = cast<CmpInst>(I); 1437 1438 MVT VT; 1439 if (!isTypeLegal(I->getOperand(0)->getType(), VT)) 1440 return false; 1441 1442 // Below code only works for scalars. 1443 if (VT.isVector()) 1444 return false; 1445 1446 // Try to optimize or fold the cmp. 1447 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI); 1448 unsigned ResultReg = 0; 1449 switch (Predicate) { 1450 default: break; 1451 case CmpInst::FCMP_FALSE: { 1452 ResultReg = createResultReg(&X86::GR32RegClass); 1453 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOV32r0), 1454 ResultReg); 1455 ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultReg, X86::sub_8bit); 1456 if (!ResultReg) 1457 return false; 1458 break; 1459 } 1460 case CmpInst::FCMP_TRUE: { 1461 ResultReg = createResultReg(&X86::GR8RegClass); 1462 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOV8ri), 1463 ResultReg).addImm(1); 1464 break; 1465 } 1466 } 1467 1468 if (ResultReg) { 1469 updateValueMap(I, ResultReg); 1470 return true; 1471 } 1472 1473 const Value *LHS = CI->getOperand(0); 1474 const Value *RHS = CI->getOperand(1); 1475 1476 // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0. 1477 // We don't have to materialize a zero constant for this case and can just use 1478 // %x again on the RHS. 1479 if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) { 1480 const auto *RHSC = dyn_cast<ConstantFP>(RHS); 1481 if (RHSC && RHSC->isNullValue()) 1482 RHS = LHS; 1483 } 1484 1485 // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction. 1486 static const uint16_t SETFOpcTable[2][3] = { 1487 { X86::COND_E, X86::COND_NP, X86::AND8rr }, 1488 { X86::COND_NE, X86::COND_P, X86::OR8rr } 1489 }; 1490 const uint16_t *SETFOpc = nullptr; 1491 switch (Predicate) { 1492 default: break; 1493 case CmpInst::FCMP_OEQ: SETFOpc = &SETFOpcTable[0][0]; break; 1494 case CmpInst::FCMP_UNE: SETFOpc = &SETFOpcTable[1][0]; break; 1495 } 1496 1497 ResultReg = createResultReg(&X86::GR8RegClass); 1498 if (SETFOpc) { 1499 if (!X86FastEmitCompare(LHS, RHS, VT, I->getDebugLoc())) 1500 return false; 1501 1502 Register FlagReg1 = createResultReg(&X86::GR8RegClass); 1503 Register FlagReg2 = createResultReg(&X86::GR8RegClass); 1504 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::SETCCr), 1505 FlagReg1).addImm(SETFOpc[0]); 1506 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::SETCCr), 1507 FlagReg2).addImm(SETFOpc[1]); 1508 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(SETFOpc[2]), 1509 ResultReg).addReg(FlagReg1).addReg(FlagReg2); 1510 updateValueMap(I, ResultReg); 1511 return true; 1512 } 1513 1514 X86::CondCode CC; 1515 bool SwapArgs; 1516 std::tie(CC, SwapArgs) = X86::getX86ConditionCode(Predicate); 1517 assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code."); 1518 1519 if (SwapArgs) 1520 std::swap(LHS, RHS); 1521 1522 // Emit a compare of LHS/RHS. 1523 if (!X86FastEmitCompare(LHS, RHS, VT, I->getDebugLoc())) 1524 return false; 1525 1526 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::SETCCr), 1527 ResultReg).addImm(CC); 1528 updateValueMap(I, ResultReg); 1529 return true; 1530 } 1531 1532 bool X86FastISel::X86SelectZExt(const Instruction *I) { 1533 EVT DstVT = TLI.getValueType(DL, I->getType()); 1534 if (!TLI.isTypeLegal(DstVT)) 1535 return false; 1536 1537 Register ResultReg = getRegForValue(I->getOperand(0)); 1538 if (ResultReg == 0) 1539 return false; 1540 1541 // Handle zero-extension from i1 to i8, which is common. 1542 MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType()); 1543 if (SrcVT == MVT::i1) { 1544 // Set the high bits to zero. 1545 ResultReg = fastEmitZExtFromI1(MVT::i8, ResultReg); 1546 SrcVT = MVT::i8; 1547 1548 if (ResultReg == 0) 1549 return false; 1550 } 1551 1552 if (DstVT == MVT::i64) { 1553 // Handle extension to 64-bits via sub-register shenanigans. 1554 unsigned MovInst; 1555 1556 switch (SrcVT.SimpleTy) { 1557 case MVT::i8: MovInst = X86::MOVZX32rr8; break; 1558 case MVT::i16: MovInst = X86::MOVZX32rr16; break; 1559 case MVT::i32: MovInst = X86::MOV32rr; break; 1560 default: llvm_unreachable("Unexpected zext to i64 source type"); 1561 } 1562 1563 Register Result32 = createResultReg(&X86::GR32RegClass); 1564 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(MovInst), Result32) 1565 .addReg(ResultReg); 1566 1567 ResultReg = createResultReg(&X86::GR64RegClass); 1568 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::SUBREG_TO_REG), 1569 ResultReg) 1570 .addImm(0).addReg(Result32).addImm(X86::sub_32bit); 1571 } else if (DstVT == MVT::i16) { 1572 // i8->i16 doesn't exist in the autogenerated isel table. Need to zero 1573 // extend to 32-bits and then extract down to 16-bits. 1574 Register Result32 = createResultReg(&X86::GR32RegClass); 1575 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOVZX32rr8), 1576 Result32).addReg(ResultReg); 1577 1578 ResultReg = fastEmitInst_extractsubreg(MVT::i16, Result32, X86::sub_16bit); 1579 } else if (DstVT != MVT::i8) { 1580 ResultReg = fastEmit_r(MVT::i8, DstVT.getSimpleVT(), ISD::ZERO_EXTEND, 1581 ResultReg); 1582 if (ResultReg == 0) 1583 return false; 1584 } 1585 1586 updateValueMap(I, ResultReg); 1587 return true; 1588 } 1589 1590 bool X86FastISel::X86SelectSExt(const Instruction *I) { 1591 EVT DstVT = TLI.getValueType(DL, I->getType()); 1592 if (!TLI.isTypeLegal(DstVT)) 1593 return false; 1594 1595 Register ResultReg = getRegForValue(I->getOperand(0)); 1596 if (ResultReg == 0) 1597 return false; 1598 1599 // Handle sign-extension from i1 to i8. 1600 MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType()); 1601 if (SrcVT == MVT::i1) { 1602 // Set the high bits to zero. 1603 Register ZExtReg = fastEmitZExtFromI1(MVT::i8, ResultReg); 1604 if (ZExtReg == 0) 1605 return false; 1606 1607 // Negate the result to make an 8-bit sign extended value. 1608 ResultReg = createResultReg(&X86::GR8RegClass); 1609 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::NEG8r), 1610 ResultReg).addReg(ZExtReg); 1611 1612 SrcVT = MVT::i8; 1613 } 1614 1615 if (DstVT == MVT::i16) { 1616 // i8->i16 doesn't exist in the autogenerated isel table. Need to sign 1617 // extend to 32-bits and then extract down to 16-bits. 1618 Register Result32 = createResultReg(&X86::GR32RegClass); 1619 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOVSX32rr8), 1620 Result32).addReg(ResultReg); 1621 1622 ResultReg = fastEmitInst_extractsubreg(MVT::i16, Result32, X86::sub_16bit); 1623 } else if (DstVT != MVT::i8) { 1624 ResultReg = fastEmit_r(MVT::i8, DstVT.getSimpleVT(), ISD::SIGN_EXTEND, 1625 ResultReg); 1626 if (ResultReg == 0) 1627 return false; 1628 } 1629 1630 updateValueMap(I, ResultReg); 1631 return true; 1632 } 1633 1634 bool X86FastISel::X86SelectBranch(const Instruction *I) { 1635 // Unconditional branches are selected by tablegen-generated code. 1636 // Handle a conditional branch. 1637 const BranchInst *BI = cast<BranchInst>(I); 1638 MachineBasicBlock *TrueMBB = FuncInfo.getMBB(BI->getSuccessor(0)); 1639 MachineBasicBlock *FalseMBB = FuncInfo.getMBB(BI->getSuccessor(1)); 1640 1641 // Fold the common case of a conditional branch with a comparison 1642 // in the same block (values defined on other blocks may not have 1643 // initialized registers). 1644 X86::CondCode CC; 1645 if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) { 1646 if (CI->hasOneUse() && CI->getParent() == I->getParent()) { 1647 EVT VT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 1648 1649 // Try to optimize or fold the cmp. 1650 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI); 1651 switch (Predicate) { 1652 default: break; 1653 case CmpInst::FCMP_FALSE: fastEmitBranch(FalseMBB, MIMD.getDL()); return true; 1654 case CmpInst::FCMP_TRUE: fastEmitBranch(TrueMBB, MIMD.getDL()); return true; 1655 } 1656 1657 const Value *CmpLHS = CI->getOperand(0); 1658 const Value *CmpRHS = CI->getOperand(1); 1659 1660 // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 1661 // 0.0. 1662 // We don't have to materialize a zero constant for this case and can just 1663 // use %x again on the RHS. 1664 if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) { 1665 const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS); 1666 if (CmpRHSC && CmpRHSC->isNullValue()) 1667 CmpRHS = CmpLHS; 1668 } 1669 1670 // Try to take advantage of fallthrough opportunities. 1671 if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) { 1672 std::swap(TrueMBB, FalseMBB); 1673 Predicate = CmpInst::getInversePredicate(Predicate); 1674 } 1675 1676 // FCMP_OEQ and FCMP_UNE cannot be expressed with a single flag/condition 1677 // code check. Instead two branch instructions are required to check all 1678 // the flags. First we change the predicate to a supported condition code, 1679 // which will be the first branch. Later one we will emit the second 1680 // branch. 1681 bool NeedExtraBranch = false; 1682 switch (Predicate) { 1683 default: break; 1684 case CmpInst::FCMP_OEQ: 1685 std::swap(TrueMBB, FalseMBB); 1686 [[fallthrough]]; 1687 case CmpInst::FCMP_UNE: 1688 NeedExtraBranch = true; 1689 Predicate = CmpInst::FCMP_ONE; 1690 break; 1691 } 1692 1693 bool SwapArgs; 1694 std::tie(CC, SwapArgs) = X86::getX86ConditionCode(Predicate); 1695 assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code."); 1696 1697 if (SwapArgs) 1698 std::swap(CmpLHS, CmpRHS); 1699 1700 // Emit a compare of the LHS and RHS, setting the flags. 1701 if (!X86FastEmitCompare(CmpLHS, CmpRHS, VT, CI->getDebugLoc())) 1702 return false; 1703 1704 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::JCC_1)) 1705 .addMBB(TrueMBB).addImm(CC); 1706 1707 // X86 requires a second branch to handle UNE (and OEQ, which is mapped 1708 // to UNE above). 1709 if (NeedExtraBranch) { 1710 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::JCC_1)) 1711 .addMBB(TrueMBB).addImm(X86::COND_P); 1712 } 1713 1714 finishCondBranch(BI->getParent(), TrueMBB, FalseMBB); 1715 return true; 1716 } 1717 } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) { 1718 // Handle things like "%cond = trunc i32 %X to i1 / br i1 %cond", which 1719 // typically happen for _Bool and C++ bools. 1720 MVT SourceVT; 1721 if (TI->hasOneUse() && TI->getParent() == I->getParent() && 1722 isTypeLegal(TI->getOperand(0)->getType(), SourceVT)) { 1723 unsigned TestOpc = 0; 1724 switch (SourceVT.SimpleTy) { 1725 default: break; 1726 case MVT::i8: TestOpc = X86::TEST8ri; break; 1727 case MVT::i16: TestOpc = X86::TEST16ri; break; 1728 case MVT::i32: TestOpc = X86::TEST32ri; break; 1729 case MVT::i64: TestOpc = X86::TEST64ri32; break; 1730 } 1731 if (TestOpc) { 1732 Register OpReg = getRegForValue(TI->getOperand(0)); 1733 if (OpReg == 0) return false; 1734 1735 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TestOpc)) 1736 .addReg(OpReg).addImm(1); 1737 1738 unsigned JmpCond = X86::COND_NE; 1739 if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) { 1740 std::swap(TrueMBB, FalseMBB); 1741 JmpCond = X86::COND_E; 1742 } 1743 1744 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::JCC_1)) 1745 .addMBB(TrueMBB).addImm(JmpCond); 1746 1747 finishCondBranch(BI->getParent(), TrueMBB, FalseMBB); 1748 return true; 1749 } 1750 } 1751 } else if (foldX86XALUIntrinsic(CC, BI, BI->getCondition())) { 1752 // Fake request the condition, otherwise the intrinsic might be completely 1753 // optimized away. 1754 Register TmpReg = getRegForValue(BI->getCondition()); 1755 if (TmpReg == 0) 1756 return false; 1757 1758 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::JCC_1)) 1759 .addMBB(TrueMBB).addImm(CC); 1760 finishCondBranch(BI->getParent(), TrueMBB, FalseMBB); 1761 return true; 1762 } 1763 1764 // Otherwise do a clumsy setcc and re-test it. 1765 // Note that i1 essentially gets ANY_EXTEND'ed to i8 where it isn't used 1766 // in an explicit cast, so make sure to handle that correctly. 1767 Register OpReg = getRegForValue(BI->getCondition()); 1768 if (OpReg == 0) return false; 1769 1770 // In case OpReg is a K register, COPY to a GPR 1771 if (MRI.getRegClass(OpReg) == &X86::VK1RegClass) { 1772 unsigned KOpReg = OpReg; 1773 OpReg = createResultReg(&X86::GR32RegClass); 1774 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1775 TII.get(TargetOpcode::COPY), OpReg) 1776 .addReg(KOpReg); 1777 OpReg = fastEmitInst_extractsubreg(MVT::i8, OpReg, X86::sub_8bit); 1778 } 1779 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::TEST8ri)) 1780 .addReg(OpReg) 1781 .addImm(1); 1782 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::JCC_1)) 1783 .addMBB(TrueMBB).addImm(X86::COND_NE); 1784 finishCondBranch(BI->getParent(), TrueMBB, FalseMBB); 1785 return true; 1786 } 1787 1788 bool X86FastISel::X86SelectShift(const Instruction *I) { 1789 unsigned CReg = 0, OpReg = 0; 1790 const TargetRegisterClass *RC = nullptr; 1791 if (I->getType()->isIntegerTy(8)) { 1792 CReg = X86::CL; 1793 RC = &X86::GR8RegClass; 1794 switch (I->getOpcode()) { 1795 case Instruction::LShr: OpReg = X86::SHR8rCL; break; 1796 case Instruction::AShr: OpReg = X86::SAR8rCL; break; 1797 case Instruction::Shl: OpReg = X86::SHL8rCL; break; 1798 default: return false; 1799 } 1800 } else if (I->getType()->isIntegerTy(16)) { 1801 CReg = X86::CX; 1802 RC = &X86::GR16RegClass; 1803 switch (I->getOpcode()) { 1804 default: llvm_unreachable("Unexpected shift opcode"); 1805 case Instruction::LShr: OpReg = X86::SHR16rCL; break; 1806 case Instruction::AShr: OpReg = X86::SAR16rCL; break; 1807 case Instruction::Shl: OpReg = X86::SHL16rCL; break; 1808 } 1809 } else if (I->getType()->isIntegerTy(32)) { 1810 CReg = X86::ECX; 1811 RC = &X86::GR32RegClass; 1812 switch (I->getOpcode()) { 1813 default: llvm_unreachable("Unexpected shift opcode"); 1814 case Instruction::LShr: OpReg = X86::SHR32rCL; break; 1815 case Instruction::AShr: OpReg = X86::SAR32rCL; break; 1816 case Instruction::Shl: OpReg = X86::SHL32rCL; break; 1817 } 1818 } else if (I->getType()->isIntegerTy(64)) { 1819 CReg = X86::RCX; 1820 RC = &X86::GR64RegClass; 1821 switch (I->getOpcode()) { 1822 default: llvm_unreachable("Unexpected shift opcode"); 1823 case Instruction::LShr: OpReg = X86::SHR64rCL; break; 1824 case Instruction::AShr: OpReg = X86::SAR64rCL; break; 1825 case Instruction::Shl: OpReg = X86::SHL64rCL; break; 1826 } 1827 } else { 1828 return false; 1829 } 1830 1831 MVT VT; 1832 if (!isTypeLegal(I->getType(), VT)) 1833 return false; 1834 1835 Register Op0Reg = getRegForValue(I->getOperand(0)); 1836 if (Op0Reg == 0) return false; 1837 1838 Register Op1Reg = getRegForValue(I->getOperand(1)); 1839 if (Op1Reg == 0) return false; 1840 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY), 1841 CReg).addReg(Op1Reg); 1842 1843 // The shift instruction uses X86::CL. If we defined a super-register 1844 // of X86::CL, emit a subreg KILL to precisely describe what we're doing here. 1845 if (CReg != X86::CL) 1846 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1847 TII.get(TargetOpcode::KILL), X86::CL) 1848 .addReg(CReg, RegState::Kill); 1849 1850 Register ResultReg = createResultReg(RC); 1851 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(OpReg), ResultReg) 1852 .addReg(Op0Reg); 1853 updateValueMap(I, ResultReg); 1854 return true; 1855 } 1856 1857 bool X86FastISel::X86SelectDivRem(const Instruction *I) { 1858 const static unsigned NumTypes = 4; // i8, i16, i32, i64 1859 const static unsigned NumOps = 4; // SDiv, SRem, UDiv, URem 1860 const static bool S = true; // IsSigned 1861 const static bool U = false; // !IsSigned 1862 const static unsigned Copy = TargetOpcode::COPY; 1863 // For the X86 DIV/IDIV instruction, in most cases the dividend 1864 // (numerator) must be in a specific register pair highreg:lowreg, 1865 // producing the quotient in lowreg and the remainder in highreg. 1866 // For most data types, to set up the instruction, the dividend is 1867 // copied into lowreg, and lowreg is sign-extended or zero-extended 1868 // into highreg. The exception is i8, where the dividend is defined 1869 // as a single register rather than a register pair, and we 1870 // therefore directly sign-extend or zero-extend the dividend into 1871 // lowreg, instead of copying, and ignore the highreg. 1872 const static struct DivRemEntry { 1873 // The following portion depends only on the data type. 1874 const TargetRegisterClass *RC; 1875 unsigned LowInReg; // low part of the register pair 1876 unsigned HighInReg; // high part of the register pair 1877 // The following portion depends on both the data type and the operation. 1878 struct DivRemResult { 1879 unsigned OpDivRem; // The specific DIV/IDIV opcode to use. 1880 unsigned OpSignExtend; // Opcode for sign-extending lowreg into 1881 // highreg, or copying a zero into highreg. 1882 unsigned OpCopy; // Opcode for copying dividend into lowreg, or 1883 // zero/sign-extending into lowreg for i8. 1884 unsigned DivRemResultReg; // Register containing the desired result. 1885 bool IsOpSigned; // Whether to use signed or unsigned form. 1886 } ResultTable[NumOps]; 1887 } OpTable[NumTypes] = { 1888 { &X86::GR8RegClass, X86::AX, 0, { 1889 { X86::IDIV8r, 0, X86::MOVSX16rr8, X86::AL, S }, // SDiv 1890 { X86::IDIV8r, 0, X86::MOVSX16rr8, X86::AH, S }, // SRem 1891 { X86::DIV8r, 0, X86::MOVZX16rr8, X86::AL, U }, // UDiv 1892 { X86::DIV8r, 0, X86::MOVZX16rr8, X86::AH, U }, // URem 1893 } 1894 }, // i8 1895 { &X86::GR16RegClass, X86::AX, X86::DX, { 1896 { X86::IDIV16r, X86::CWD, Copy, X86::AX, S }, // SDiv 1897 { X86::IDIV16r, X86::CWD, Copy, X86::DX, S }, // SRem 1898 { X86::DIV16r, X86::MOV32r0, Copy, X86::AX, U }, // UDiv 1899 { X86::DIV16r, X86::MOV32r0, Copy, X86::DX, U }, // URem 1900 } 1901 }, // i16 1902 { &X86::GR32RegClass, X86::EAX, X86::EDX, { 1903 { X86::IDIV32r, X86::CDQ, Copy, X86::EAX, S }, // SDiv 1904 { X86::IDIV32r, X86::CDQ, Copy, X86::EDX, S }, // SRem 1905 { X86::DIV32r, X86::MOV32r0, Copy, X86::EAX, U }, // UDiv 1906 { X86::DIV32r, X86::MOV32r0, Copy, X86::EDX, U }, // URem 1907 } 1908 }, // i32 1909 { &X86::GR64RegClass, X86::RAX, X86::RDX, { 1910 { X86::IDIV64r, X86::CQO, Copy, X86::RAX, S }, // SDiv 1911 { X86::IDIV64r, X86::CQO, Copy, X86::RDX, S }, // SRem 1912 { X86::DIV64r, X86::MOV32r0, Copy, X86::RAX, U }, // UDiv 1913 { X86::DIV64r, X86::MOV32r0, Copy, X86::RDX, U }, // URem 1914 } 1915 }, // i64 1916 }; 1917 1918 MVT VT; 1919 if (!isTypeLegal(I->getType(), VT)) 1920 return false; 1921 1922 unsigned TypeIndex, OpIndex; 1923 switch (VT.SimpleTy) { 1924 default: return false; 1925 case MVT::i8: TypeIndex = 0; break; 1926 case MVT::i16: TypeIndex = 1; break; 1927 case MVT::i32: TypeIndex = 2; break; 1928 case MVT::i64: TypeIndex = 3; 1929 if (!Subtarget->is64Bit()) 1930 return false; 1931 break; 1932 } 1933 1934 switch (I->getOpcode()) { 1935 default: llvm_unreachable("Unexpected div/rem opcode"); 1936 case Instruction::SDiv: OpIndex = 0; break; 1937 case Instruction::SRem: OpIndex = 1; break; 1938 case Instruction::UDiv: OpIndex = 2; break; 1939 case Instruction::URem: OpIndex = 3; break; 1940 } 1941 1942 const DivRemEntry &TypeEntry = OpTable[TypeIndex]; 1943 const DivRemEntry::DivRemResult &OpEntry = TypeEntry.ResultTable[OpIndex]; 1944 Register Op0Reg = getRegForValue(I->getOperand(0)); 1945 if (Op0Reg == 0) 1946 return false; 1947 Register Op1Reg = getRegForValue(I->getOperand(1)); 1948 if (Op1Reg == 0) 1949 return false; 1950 1951 // Move op0 into low-order input register. 1952 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1953 TII.get(OpEntry.OpCopy), TypeEntry.LowInReg).addReg(Op0Reg); 1954 // Zero-extend or sign-extend into high-order input register. 1955 if (OpEntry.OpSignExtend) { 1956 if (OpEntry.IsOpSigned) 1957 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1958 TII.get(OpEntry.OpSignExtend)); 1959 else { 1960 Register Zero32 = createResultReg(&X86::GR32RegClass); 1961 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1962 TII.get(X86::MOV32r0), Zero32); 1963 1964 // Copy the zero into the appropriate sub/super/identical physical 1965 // register. Unfortunately the operations needed are not uniform enough 1966 // to fit neatly into the table above. 1967 if (VT == MVT::i16) { 1968 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1969 TII.get(Copy), TypeEntry.HighInReg) 1970 .addReg(Zero32, 0, X86::sub_16bit); 1971 } else if (VT == MVT::i32) { 1972 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1973 TII.get(Copy), TypeEntry.HighInReg) 1974 .addReg(Zero32); 1975 } else if (VT == MVT::i64) { 1976 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1977 TII.get(TargetOpcode::SUBREG_TO_REG), TypeEntry.HighInReg) 1978 .addImm(0).addReg(Zero32).addImm(X86::sub_32bit); 1979 } 1980 } 1981 } 1982 // Generate the DIV/IDIV instruction. 1983 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1984 TII.get(OpEntry.OpDivRem)).addReg(Op1Reg); 1985 // For i8 remainder, we can't reference ah directly, as we'll end 1986 // up with bogus copies like %r9b = COPY %ah. Reference ax 1987 // instead to prevent ah references in a rex instruction. 1988 // 1989 // The current assumption of the fast register allocator is that isel 1990 // won't generate explicit references to the GR8_NOREX registers. If 1991 // the allocator and/or the backend get enhanced to be more robust in 1992 // that regard, this can be, and should be, removed. 1993 unsigned ResultReg = 0; 1994 if ((I->getOpcode() == Instruction::SRem || 1995 I->getOpcode() == Instruction::URem) && 1996 OpEntry.DivRemResultReg == X86::AH && Subtarget->is64Bit()) { 1997 Register SourceSuperReg = createResultReg(&X86::GR16RegClass); 1998 Register ResultSuperReg = createResultReg(&X86::GR16RegClass); 1999 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 2000 TII.get(Copy), SourceSuperReg).addReg(X86::AX); 2001 2002 // Shift AX right by 8 bits instead of using AH. 2003 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::SHR16ri), 2004 ResultSuperReg).addReg(SourceSuperReg).addImm(8); 2005 2006 // Now reference the 8-bit subreg of the result. 2007 ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultSuperReg, 2008 X86::sub_8bit); 2009 } 2010 // Copy the result out of the physreg if we haven't already. 2011 if (!ResultReg) { 2012 ResultReg = createResultReg(TypeEntry.RC); 2013 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Copy), ResultReg) 2014 .addReg(OpEntry.DivRemResultReg); 2015 } 2016 updateValueMap(I, ResultReg); 2017 2018 return true; 2019 } 2020 2021 /// Emit a conditional move instruction (if the are supported) to lower 2022 /// the select. 2023 bool X86FastISel::X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I) { 2024 // Check if the subtarget supports these instructions. 2025 if (!Subtarget->canUseCMOV()) 2026 return false; 2027 2028 // FIXME: Add support for i8. 2029 if (RetVT < MVT::i16 || RetVT > MVT::i64) 2030 return false; 2031 2032 const Value *Cond = I->getOperand(0); 2033 const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT); 2034 bool NeedTest = true; 2035 X86::CondCode CC = X86::COND_NE; 2036 2037 // Optimize conditions coming from a compare if both instructions are in the 2038 // same basic block (values defined in other basic blocks may not have 2039 // initialized registers). 2040 const auto *CI = dyn_cast<CmpInst>(Cond); 2041 if (CI && (CI->getParent() == I->getParent())) { 2042 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI); 2043 2044 // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction. 2045 static const uint16_t SETFOpcTable[2][3] = { 2046 { X86::COND_NP, X86::COND_E, X86::TEST8rr }, 2047 { X86::COND_P, X86::COND_NE, X86::OR8rr } 2048 }; 2049 const uint16_t *SETFOpc = nullptr; 2050 switch (Predicate) { 2051 default: break; 2052 case CmpInst::FCMP_OEQ: 2053 SETFOpc = &SETFOpcTable[0][0]; 2054 Predicate = CmpInst::ICMP_NE; 2055 break; 2056 case CmpInst::FCMP_UNE: 2057 SETFOpc = &SETFOpcTable[1][0]; 2058 Predicate = CmpInst::ICMP_NE; 2059 break; 2060 } 2061 2062 bool NeedSwap; 2063 std::tie(CC, NeedSwap) = X86::getX86ConditionCode(Predicate); 2064 assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code."); 2065 2066 const Value *CmpLHS = CI->getOperand(0); 2067 const Value *CmpRHS = CI->getOperand(1); 2068 if (NeedSwap) 2069 std::swap(CmpLHS, CmpRHS); 2070 2071 EVT CmpVT = TLI.getValueType(DL, CmpLHS->getType()); 2072 // Emit a compare of the LHS and RHS, setting the flags. 2073 if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT, CI->getDebugLoc())) 2074 return false; 2075 2076 if (SETFOpc) { 2077 Register FlagReg1 = createResultReg(&X86::GR8RegClass); 2078 Register FlagReg2 = createResultReg(&X86::GR8RegClass); 2079 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::SETCCr), 2080 FlagReg1).addImm(SETFOpc[0]); 2081 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::SETCCr), 2082 FlagReg2).addImm(SETFOpc[1]); 2083 auto const &II = TII.get(SETFOpc[2]); 2084 if (II.getNumDefs()) { 2085 Register TmpReg = createResultReg(&X86::GR8RegClass); 2086 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, TmpReg) 2087 .addReg(FlagReg2).addReg(FlagReg1); 2088 } else { 2089 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II) 2090 .addReg(FlagReg2).addReg(FlagReg1); 2091 } 2092 } 2093 NeedTest = false; 2094 } else if (foldX86XALUIntrinsic(CC, I, Cond)) { 2095 // Fake request the condition, otherwise the intrinsic might be completely 2096 // optimized away. 2097 Register TmpReg = getRegForValue(Cond); 2098 if (TmpReg == 0) 2099 return false; 2100 2101 NeedTest = false; 2102 } 2103 2104 if (NeedTest) { 2105 // Selects operate on i1, however, CondReg is 8 bits width and may contain 2106 // garbage. Indeed, only the less significant bit is supposed to be 2107 // accurate. If we read more than the lsb, we may see non-zero values 2108 // whereas lsb is zero. Therefore, we have to truncate Op0Reg to i1 for 2109 // the select. This is achieved by performing TEST against 1. 2110 Register CondReg = getRegForValue(Cond); 2111 if (CondReg == 0) 2112 return false; 2113 2114 // In case OpReg is a K register, COPY to a GPR 2115 if (MRI.getRegClass(CondReg) == &X86::VK1RegClass) { 2116 unsigned KCondReg = CondReg; 2117 CondReg = createResultReg(&X86::GR32RegClass); 2118 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 2119 TII.get(TargetOpcode::COPY), CondReg) 2120 .addReg(KCondReg); 2121 CondReg = fastEmitInst_extractsubreg(MVT::i8, CondReg, X86::sub_8bit); 2122 } 2123 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::TEST8ri)) 2124 .addReg(CondReg) 2125 .addImm(1); 2126 } 2127 2128 const Value *LHS = I->getOperand(1); 2129 const Value *RHS = I->getOperand(2); 2130 2131 Register RHSReg = getRegForValue(RHS); 2132 Register LHSReg = getRegForValue(LHS); 2133 if (!LHSReg || !RHSReg) 2134 return false; 2135 2136 const TargetRegisterInfo &TRI = *Subtarget->getRegisterInfo(); 2137 unsigned Opc = X86::getCMovOpcode(TRI.getRegSizeInBits(*RC) / 8, false, 2138 Subtarget->hasNDD()); 2139 Register ResultReg = fastEmitInst_rri(Opc, RC, RHSReg, LHSReg, CC); 2140 updateValueMap(I, ResultReg); 2141 return true; 2142 } 2143 2144 /// Emit SSE or AVX instructions to lower the select. 2145 /// 2146 /// Try to use SSE1/SSE2 instructions to simulate a select without branches. 2147 /// This lowers fp selects into a CMP/AND/ANDN/OR sequence when the necessary 2148 /// SSE instructions are available. If AVX is available, try to use a VBLENDV. 2149 bool X86FastISel::X86FastEmitSSESelect(MVT RetVT, const Instruction *I) { 2150 // Optimize conditions coming from a compare if both instructions are in the 2151 // same basic block (values defined in other basic blocks may not have 2152 // initialized registers). 2153 const auto *CI = dyn_cast<FCmpInst>(I->getOperand(0)); 2154 if (!CI || (CI->getParent() != I->getParent())) 2155 return false; 2156 2157 if (I->getType() != CI->getOperand(0)->getType() || 2158 !((Subtarget->hasSSE1() && RetVT == MVT::f32) || 2159 (Subtarget->hasSSE2() && RetVT == MVT::f64))) 2160 return false; 2161 2162 const Value *CmpLHS = CI->getOperand(0); 2163 const Value *CmpRHS = CI->getOperand(1); 2164 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI); 2165 2166 // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0. 2167 // We don't have to materialize a zero constant for this case and can just use 2168 // %x again on the RHS. 2169 if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) { 2170 const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS); 2171 if (CmpRHSC && CmpRHSC->isNullValue()) 2172 CmpRHS = CmpLHS; 2173 } 2174 2175 unsigned CC; 2176 bool NeedSwap; 2177 std::tie(CC, NeedSwap) = getX86SSEConditionCode(Predicate); 2178 if (CC > 7 && !Subtarget->hasAVX()) 2179 return false; 2180 2181 if (NeedSwap) 2182 std::swap(CmpLHS, CmpRHS); 2183 2184 const Value *LHS = I->getOperand(1); 2185 const Value *RHS = I->getOperand(2); 2186 2187 Register LHSReg = getRegForValue(LHS); 2188 Register RHSReg = getRegForValue(RHS); 2189 Register CmpLHSReg = getRegForValue(CmpLHS); 2190 Register CmpRHSReg = getRegForValue(CmpRHS); 2191 if (!LHSReg || !RHSReg || !CmpLHSReg || !CmpRHSReg) 2192 return false; 2193 2194 const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT); 2195 unsigned ResultReg; 2196 2197 if (Subtarget->hasAVX512()) { 2198 // If we have AVX512 we can use a mask compare and masked movss/sd. 2199 const TargetRegisterClass *VR128X = &X86::VR128XRegClass; 2200 const TargetRegisterClass *VK1 = &X86::VK1RegClass; 2201 2202 unsigned CmpOpcode = 2203 (RetVT == MVT::f32) ? X86::VCMPSSZrri : X86::VCMPSDZrri; 2204 Register CmpReg = fastEmitInst_rri(CmpOpcode, VK1, CmpLHSReg, CmpRHSReg, 2205 CC); 2206 2207 // Need an IMPLICIT_DEF for the input that is used to generate the upper 2208 // bits of the result register since its not based on any of the inputs. 2209 Register ImplicitDefReg = createResultReg(VR128X); 2210 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 2211 TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg); 2212 2213 // Place RHSReg is the passthru of the masked movss/sd operation and put 2214 // LHS in the input. The mask input comes from the compare. 2215 unsigned MovOpcode = 2216 (RetVT == MVT::f32) ? X86::VMOVSSZrrk : X86::VMOVSDZrrk; 2217 unsigned MovReg = fastEmitInst_rrrr(MovOpcode, VR128X, RHSReg, CmpReg, 2218 ImplicitDefReg, LHSReg); 2219 2220 ResultReg = createResultReg(RC); 2221 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 2222 TII.get(TargetOpcode::COPY), ResultReg).addReg(MovReg); 2223 2224 } else if (Subtarget->hasAVX()) { 2225 const TargetRegisterClass *VR128 = &X86::VR128RegClass; 2226 2227 // If we have AVX, create 1 blendv instead of 3 logic instructions. 2228 // Blendv was introduced with SSE 4.1, but the 2 register form implicitly 2229 // uses XMM0 as the selection register. That may need just as many 2230 // instructions as the AND/ANDN/OR sequence due to register moves, so 2231 // don't bother. 2232 unsigned CmpOpcode = 2233 (RetVT == MVT::f32) ? X86::VCMPSSrri : X86::VCMPSDrri; 2234 unsigned BlendOpcode = 2235 (RetVT == MVT::f32) ? X86::VBLENDVPSrrr : X86::VBLENDVPDrrr; 2236 2237 Register CmpReg = fastEmitInst_rri(CmpOpcode, RC, CmpLHSReg, CmpRHSReg, 2238 CC); 2239 Register VBlendReg = fastEmitInst_rrr(BlendOpcode, VR128, RHSReg, LHSReg, 2240 CmpReg); 2241 ResultReg = createResultReg(RC); 2242 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 2243 TII.get(TargetOpcode::COPY), ResultReg).addReg(VBlendReg); 2244 } else { 2245 // Choose the SSE instruction sequence based on data type (float or double). 2246 static const uint16_t OpcTable[2][4] = { 2247 { X86::CMPSSrri, X86::ANDPSrr, X86::ANDNPSrr, X86::ORPSrr }, 2248 { X86::CMPSDrri, X86::ANDPDrr, X86::ANDNPDrr, X86::ORPDrr } 2249 }; 2250 2251 const uint16_t *Opc = nullptr; 2252 switch (RetVT.SimpleTy) { 2253 default: return false; 2254 case MVT::f32: Opc = &OpcTable[0][0]; break; 2255 case MVT::f64: Opc = &OpcTable[1][0]; break; 2256 } 2257 2258 const TargetRegisterClass *VR128 = &X86::VR128RegClass; 2259 Register CmpReg = fastEmitInst_rri(Opc[0], RC, CmpLHSReg, CmpRHSReg, CC); 2260 Register AndReg = fastEmitInst_rr(Opc[1], VR128, CmpReg, LHSReg); 2261 Register AndNReg = fastEmitInst_rr(Opc[2], VR128, CmpReg, RHSReg); 2262 Register OrReg = fastEmitInst_rr(Opc[3], VR128, AndNReg, AndReg); 2263 ResultReg = createResultReg(RC); 2264 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 2265 TII.get(TargetOpcode::COPY), ResultReg).addReg(OrReg); 2266 } 2267 updateValueMap(I, ResultReg); 2268 return true; 2269 } 2270 2271 bool X86FastISel::X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I) { 2272 // These are pseudo CMOV instructions and will be later expanded into control- 2273 // flow. 2274 unsigned Opc; 2275 switch (RetVT.SimpleTy) { 2276 default: return false; 2277 case MVT::i8: Opc = X86::CMOV_GR8; break; 2278 case MVT::i16: Opc = X86::CMOV_GR16; break; 2279 case MVT::i32: Opc = X86::CMOV_GR32; break; 2280 case MVT::f16: 2281 Opc = Subtarget->hasAVX512() ? X86::CMOV_FR16X : X86::CMOV_FR16; break; 2282 case MVT::f32: 2283 Opc = Subtarget->hasAVX512() ? X86::CMOV_FR32X : X86::CMOV_FR32; break; 2284 case MVT::f64: 2285 Opc = Subtarget->hasAVX512() ? X86::CMOV_FR64X : X86::CMOV_FR64; break; 2286 } 2287 2288 const Value *Cond = I->getOperand(0); 2289 X86::CondCode CC = X86::COND_NE; 2290 2291 // Optimize conditions coming from a compare if both instructions are in the 2292 // same basic block (values defined in other basic blocks may not have 2293 // initialized registers). 2294 const auto *CI = dyn_cast<CmpInst>(Cond); 2295 if (CI && (CI->getParent() == I->getParent())) { 2296 bool NeedSwap; 2297 std::tie(CC, NeedSwap) = X86::getX86ConditionCode(CI->getPredicate()); 2298 if (CC > X86::LAST_VALID_COND) 2299 return false; 2300 2301 const Value *CmpLHS = CI->getOperand(0); 2302 const Value *CmpRHS = CI->getOperand(1); 2303 2304 if (NeedSwap) 2305 std::swap(CmpLHS, CmpRHS); 2306 2307 EVT CmpVT = TLI.getValueType(DL, CmpLHS->getType()); 2308 if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT, CI->getDebugLoc())) 2309 return false; 2310 } else { 2311 Register CondReg = getRegForValue(Cond); 2312 if (CondReg == 0) 2313 return false; 2314 2315 // In case OpReg is a K register, COPY to a GPR 2316 if (MRI.getRegClass(CondReg) == &X86::VK1RegClass) { 2317 unsigned KCondReg = CondReg; 2318 CondReg = createResultReg(&X86::GR32RegClass); 2319 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 2320 TII.get(TargetOpcode::COPY), CondReg) 2321 .addReg(KCondReg); 2322 CondReg = fastEmitInst_extractsubreg(MVT::i8, CondReg, X86::sub_8bit); 2323 } 2324 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::TEST8ri)) 2325 .addReg(CondReg) 2326 .addImm(1); 2327 } 2328 2329 const Value *LHS = I->getOperand(1); 2330 const Value *RHS = I->getOperand(2); 2331 2332 Register LHSReg = getRegForValue(LHS); 2333 Register RHSReg = getRegForValue(RHS); 2334 if (!LHSReg || !RHSReg) 2335 return false; 2336 2337 const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT); 2338 2339 Register ResultReg = 2340 fastEmitInst_rri(Opc, RC, RHSReg, LHSReg, CC); 2341 updateValueMap(I, ResultReg); 2342 return true; 2343 } 2344 2345 bool X86FastISel::X86SelectSelect(const Instruction *I) { 2346 MVT RetVT; 2347 if (!isTypeLegal(I->getType(), RetVT)) 2348 return false; 2349 2350 // Check if we can fold the select. 2351 if (const auto *CI = dyn_cast<CmpInst>(I->getOperand(0))) { 2352 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI); 2353 const Value *Opnd = nullptr; 2354 switch (Predicate) { 2355 default: break; 2356 case CmpInst::FCMP_FALSE: Opnd = I->getOperand(2); break; 2357 case CmpInst::FCMP_TRUE: Opnd = I->getOperand(1); break; 2358 } 2359 // No need for a select anymore - this is an unconditional move. 2360 if (Opnd) { 2361 Register OpReg = getRegForValue(Opnd); 2362 if (OpReg == 0) 2363 return false; 2364 const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT); 2365 Register ResultReg = createResultReg(RC); 2366 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 2367 TII.get(TargetOpcode::COPY), ResultReg) 2368 .addReg(OpReg); 2369 updateValueMap(I, ResultReg); 2370 return true; 2371 } 2372 } 2373 2374 // First try to use real conditional move instructions. 2375 if (X86FastEmitCMoveSelect(RetVT, I)) 2376 return true; 2377 2378 // Try to use a sequence of SSE instructions to simulate a conditional move. 2379 if (X86FastEmitSSESelect(RetVT, I)) 2380 return true; 2381 2382 // Fall-back to pseudo conditional move instructions, which will be later 2383 // converted to control-flow. 2384 if (X86FastEmitPseudoSelect(RetVT, I)) 2385 return true; 2386 2387 return false; 2388 } 2389 2390 // Common code for X86SelectSIToFP and X86SelectUIToFP. 2391 bool X86FastISel::X86SelectIntToFP(const Instruction *I, bool IsSigned) { 2392 // The target-independent selection algorithm in FastISel already knows how 2393 // to select a SINT_TO_FP if the target is SSE but not AVX. 2394 // Early exit if the subtarget doesn't have AVX. 2395 // Unsigned conversion requires avx512. 2396 bool HasAVX512 = Subtarget->hasAVX512(); 2397 if (!Subtarget->hasAVX() || (!IsSigned && !HasAVX512)) 2398 return false; 2399 2400 // TODO: We could sign extend narrower types. 2401 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType()); 2402 if (SrcVT != MVT::i32 && SrcVT != MVT::i64) 2403 return false; 2404 2405 // Select integer to float/double conversion. 2406 Register OpReg = getRegForValue(I->getOperand(0)); 2407 if (OpReg == 0) 2408 return false; 2409 2410 unsigned Opcode; 2411 2412 static const uint16_t SCvtOpc[2][2][2] = { 2413 { { X86::VCVTSI2SSrr, X86::VCVTSI642SSrr }, 2414 { X86::VCVTSI2SDrr, X86::VCVTSI642SDrr } }, 2415 { { X86::VCVTSI2SSZrr, X86::VCVTSI642SSZrr }, 2416 { X86::VCVTSI2SDZrr, X86::VCVTSI642SDZrr } }, 2417 }; 2418 static const uint16_t UCvtOpc[2][2] = { 2419 { X86::VCVTUSI2SSZrr, X86::VCVTUSI642SSZrr }, 2420 { X86::VCVTUSI2SDZrr, X86::VCVTUSI642SDZrr }, 2421 }; 2422 bool Is64Bit = SrcVT == MVT::i64; 2423 2424 if (I->getType()->isDoubleTy()) { 2425 // s/uitofp int -> double 2426 Opcode = IsSigned ? SCvtOpc[HasAVX512][1][Is64Bit] : UCvtOpc[1][Is64Bit]; 2427 } else if (I->getType()->isFloatTy()) { 2428 // s/uitofp int -> float 2429 Opcode = IsSigned ? SCvtOpc[HasAVX512][0][Is64Bit] : UCvtOpc[0][Is64Bit]; 2430 } else 2431 return false; 2432 2433 MVT DstVT = TLI.getValueType(DL, I->getType()).getSimpleVT(); 2434 const TargetRegisterClass *RC = TLI.getRegClassFor(DstVT); 2435 Register ImplicitDefReg = createResultReg(RC); 2436 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 2437 TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg); 2438 Register ResultReg = fastEmitInst_rr(Opcode, RC, ImplicitDefReg, OpReg); 2439 updateValueMap(I, ResultReg); 2440 return true; 2441 } 2442 2443 bool X86FastISel::X86SelectSIToFP(const Instruction *I) { 2444 return X86SelectIntToFP(I, /*IsSigned*/true); 2445 } 2446 2447 bool X86FastISel::X86SelectUIToFP(const Instruction *I) { 2448 return X86SelectIntToFP(I, /*IsSigned*/false); 2449 } 2450 2451 // Helper method used by X86SelectFPExt and X86SelectFPTrunc. 2452 bool X86FastISel::X86SelectFPExtOrFPTrunc(const Instruction *I, 2453 unsigned TargetOpc, 2454 const TargetRegisterClass *RC) { 2455 assert((I->getOpcode() == Instruction::FPExt || 2456 I->getOpcode() == Instruction::FPTrunc) && 2457 "Instruction must be an FPExt or FPTrunc!"); 2458 bool HasAVX = Subtarget->hasAVX(); 2459 2460 Register OpReg = getRegForValue(I->getOperand(0)); 2461 if (OpReg == 0) 2462 return false; 2463 2464 unsigned ImplicitDefReg; 2465 if (HasAVX) { 2466 ImplicitDefReg = createResultReg(RC); 2467 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 2468 TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg); 2469 2470 } 2471 2472 Register ResultReg = createResultReg(RC); 2473 MachineInstrBuilder MIB; 2474 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpc), 2475 ResultReg); 2476 2477 if (HasAVX) 2478 MIB.addReg(ImplicitDefReg); 2479 2480 MIB.addReg(OpReg); 2481 updateValueMap(I, ResultReg); 2482 return true; 2483 } 2484 2485 bool X86FastISel::X86SelectFPExt(const Instruction *I) { 2486 if (Subtarget->hasSSE2() && I->getType()->isDoubleTy() && 2487 I->getOperand(0)->getType()->isFloatTy()) { 2488 bool HasAVX512 = Subtarget->hasAVX512(); 2489 // fpext from float to double. 2490 unsigned Opc = 2491 HasAVX512 ? X86::VCVTSS2SDZrr 2492 : Subtarget->hasAVX() ? X86::VCVTSS2SDrr : X86::CVTSS2SDrr; 2493 return X86SelectFPExtOrFPTrunc(I, Opc, TLI.getRegClassFor(MVT::f64)); 2494 } 2495 2496 return false; 2497 } 2498 2499 bool X86FastISel::X86SelectFPTrunc(const Instruction *I) { 2500 if (Subtarget->hasSSE2() && I->getType()->isFloatTy() && 2501 I->getOperand(0)->getType()->isDoubleTy()) { 2502 bool HasAVX512 = Subtarget->hasAVX512(); 2503 // fptrunc from double to float. 2504 unsigned Opc = 2505 HasAVX512 ? X86::VCVTSD2SSZrr 2506 : Subtarget->hasAVX() ? X86::VCVTSD2SSrr : X86::CVTSD2SSrr; 2507 return X86SelectFPExtOrFPTrunc(I, Opc, TLI.getRegClassFor(MVT::f32)); 2508 } 2509 2510 return false; 2511 } 2512 2513 bool X86FastISel::X86SelectTrunc(const Instruction *I) { 2514 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType()); 2515 EVT DstVT = TLI.getValueType(DL, I->getType()); 2516 2517 // This code only handles truncation to byte. 2518 if (DstVT != MVT::i8 && DstVT != MVT::i1) 2519 return false; 2520 if (!TLI.isTypeLegal(SrcVT)) 2521 return false; 2522 2523 Register InputReg = getRegForValue(I->getOperand(0)); 2524 if (!InputReg) 2525 // Unhandled operand. Halt "fast" selection and bail. 2526 return false; 2527 2528 if (SrcVT == MVT::i8) { 2529 // Truncate from i8 to i1; no code needed. 2530 updateValueMap(I, InputReg); 2531 return true; 2532 } 2533 2534 // Issue an extract_subreg. 2535 Register ResultReg = fastEmitInst_extractsubreg(MVT::i8, InputReg, 2536 X86::sub_8bit); 2537 if (!ResultReg) 2538 return false; 2539 2540 updateValueMap(I, ResultReg); 2541 return true; 2542 } 2543 2544 bool X86FastISel::IsMemcpySmall(uint64_t Len) { 2545 return Len <= (Subtarget->is64Bit() ? 32 : 16); 2546 } 2547 2548 bool X86FastISel::TryEmitSmallMemcpy(X86AddressMode DestAM, 2549 X86AddressMode SrcAM, uint64_t Len) { 2550 2551 // Make sure we don't bloat code by inlining very large memcpy's. 2552 if (!IsMemcpySmall(Len)) 2553 return false; 2554 2555 bool i64Legal = Subtarget->is64Bit(); 2556 2557 // We don't care about alignment here since we just emit integer accesses. 2558 while (Len) { 2559 MVT VT; 2560 if (Len >= 8 && i64Legal) 2561 VT = MVT::i64; 2562 else if (Len >= 4) 2563 VT = MVT::i32; 2564 else if (Len >= 2) 2565 VT = MVT::i16; 2566 else 2567 VT = MVT::i8; 2568 2569 unsigned Reg; 2570 bool RV = X86FastEmitLoad(VT, SrcAM, nullptr, Reg); 2571 RV &= X86FastEmitStore(VT, Reg, DestAM); 2572 assert(RV && "Failed to emit load or store??"); 2573 (void)RV; 2574 2575 unsigned Size = VT.getSizeInBits()/8; 2576 Len -= Size; 2577 DestAM.Disp += Size; 2578 SrcAM.Disp += Size; 2579 } 2580 2581 return true; 2582 } 2583 2584 bool X86FastISel::fastLowerIntrinsicCall(const IntrinsicInst *II) { 2585 // FIXME: Handle more intrinsics. 2586 switch (II->getIntrinsicID()) { 2587 default: return false; 2588 case Intrinsic::convert_from_fp16: 2589 case Intrinsic::convert_to_fp16: { 2590 if (Subtarget->useSoftFloat() || !Subtarget->hasF16C()) 2591 return false; 2592 2593 const Value *Op = II->getArgOperand(0); 2594 Register InputReg = getRegForValue(Op); 2595 if (InputReg == 0) 2596 return false; 2597 2598 // F16C only allows converting from float to half and from half to float. 2599 bool IsFloatToHalf = II->getIntrinsicID() == Intrinsic::convert_to_fp16; 2600 if (IsFloatToHalf) { 2601 if (!Op->getType()->isFloatTy()) 2602 return false; 2603 } else { 2604 if (!II->getType()->isFloatTy()) 2605 return false; 2606 } 2607 2608 unsigned ResultReg = 0; 2609 const TargetRegisterClass *RC = TLI.getRegClassFor(MVT::v8i16); 2610 if (IsFloatToHalf) { 2611 // 'InputReg' is implicitly promoted from register class FR32 to 2612 // register class VR128 by method 'constrainOperandRegClass' which is 2613 // directly called by 'fastEmitInst_ri'. 2614 // Instruction VCVTPS2PHrr takes an extra immediate operand which is 2615 // used to provide rounding control: use MXCSR.RC, encoded as 0b100. 2616 // It's consistent with the other FP instructions, which are usually 2617 // controlled by MXCSR. 2618 unsigned Opc = Subtarget->hasVLX() ? X86::VCVTPS2PHZ128rr 2619 : X86::VCVTPS2PHrr; 2620 InputReg = fastEmitInst_ri(Opc, RC, InputReg, 4); 2621 2622 // Move the lower 32-bits of ResultReg to another register of class GR32. 2623 Opc = Subtarget->hasAVX512() ? X86::VMOVPDI2DIZrr 2624 : X86::VMOVPDI2DIrr; 2625 ResultReg = createResultReg(&X86::GR32RegClass); 2626 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), ResultReg) 2627 .addReg(InputReg, RegState::Kill); 2628 2629 // The result value is in the lower 16-bits of ResultReg. 2630 unsigned RegIdx = X86::sub_16bit; 2631 ResultReg = fastEmitInst_extractsubreg(MVT::i16, ResultReg, RegIdx); 2632 } else { 2633 assert(Op->getType()->isIntegerTy(16) && "Expected a 16-bit integer!"); 2634 // Explicitly zero-extend the input to 32-bit. 2635 InputReg = fastEmit_r(MVT::i16, MVT::i32, ISD::ZERO_EXTEND, InputReg); 2636 2637 // The following SCALAR_TO_VECTOR will be expanded into a VMOVDI2PDIrr. 2638 InputReg = fastEmit_r(MVT::i32, MVT::v4i32, ISD::SCALAR_TO_VECTOR, 2639 InputReg); 2640 2641 unsigned Opc = Subtarget->hasVLX() ? X86::VCVTPH2PSZ128rr 2642 : X86::VCVTPH2PSrr; 2643 InputReg = fastEmitInst_r(Opc, RC, InputReg); 2644 2645 // The result value is in the lower 32-bits of ResultReg. 2646 // Emit an explicit copy from register class VR128 to register class FR32. 2647 ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32)); 2648 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 2649 TII.get(TargetOpcode::COPY), ResultReg) 2650 .addReg(InputReg, RegState::Kill); 2651 } 2652 2653 updateValueMap(II, ResultReg); 2654 return true; 2655 } 2656 case Intrinsic::frameaddress: { 2657 MachineFunction *MF = FuncInfo.MF; 2658 if (MF->getTarget().getMCAsmInfo()->usesWindowsCFI()) 2659 return false; 2660 2661 Type *RetTy = II->getCalledFunction()->getReturnType(); 2662 2663 MVT VT; 2664 if (!isTypeLegal(RetTy, VT)) 2665 return false; 2666 2667 unsigned Opc; 2668 const TargetRegisterClass *RC = nullptr; 2669 2670 switch (VT.SimpleTy) { 2671 default: llvm_unreachable("Invalid result type for frameaddress."); 2672 case MVT::i32: Opc = X86::MOV32rm; RC = &X86::GR32RegClass; break; 2673 case MVT::i64: Opc = X86::MOV64rm; RC = &X86::GR64RegClass; break; 2674 } 2675 2676 // This needs to be set before we call getPtrSizedFrameRegister, otherwise 2677 // we get the wrong frame register. 2678 MachineFrameInfo &MFI = MF->getFrameInfo(); 2679 MFI.setFrameAddressIsTaken(true); 2680 2681 const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo(); 2682 unsigned FrameReg = RegInfo->getPtrSizedFrameRegister(*MF); 2683 assert(((FrameReg == X86::RBP && VT == MVT::i64) || 2684 (FrameReg == X86::EBP && VT == MVT::i32)) && 2685 "Invalid Frame Register!"); 2686 2687 // Always make a copy of the frame register to a vreg first, so that we 2688 // never directly reference the frame register (the TwoAddressInstruction- 2689 // Pass doesn't like that). 2690 Register SrcReg = createResultReg(RC); 2691 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 2692 TII.get(TargetOpcode::COPY), SrcReg).addReg(FrameReg); 2693 2694 // Now recursively load from the frame address. 2695 // movq (%rbp), %rax 2696 // movq (%rax), %rax 2697 // movq (%rax), %rax 2698 // ... 2699 unsigned Depth = cast<ConstantInt>(II->getOperand(0))->getZExtValue(); 2700 while (Depth--) { 2701 Register DestReg = createResultReg(RC); 2702 addDirectMem(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 2703 TII.get(Opc), DestReg), SrcReg); 2704 SrcReg = DestReg; 2705 } 2706 2707 updateValueMap(II, SrcReg); 2708 return true; 2709 } 2710 case Intrinsic::memcpy: { 2711 const MemCpyInst *MCI = cast<MemCpyInst>(II); 2712 // Don't handle volatile or variable length memcpys. 2713 if (MCI->isVolatile()) 2714 return false; 2715 2716 if (isa<ConstantInt>(MCI->getLength())) { 2717 // Small memcpy's are common enough that we want to do them 2718 // without a call if possible. 2719 uint64_t Len = cast<ConstantInt>(MCI->getLength())->getZExtValue(); 2720 if (IsMemcpySmall(Len)) { 2721 X86AddressMode DestAM, SrcAM; 2722 if (!X86SelectAddress(MCI->getRawDest(), DestAM) || 2723 !X86SelectAddress(MCI->getRawSource(), SrcAM)) 2724 return false; 2725 TryEmitSmallMemcpy(DestAM, SrcAM, Len); 2726 return true; 2727 } 2728 } 2729 2730 unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32; 2731 if (!MCI->getLength()->getType()->isIntegerTy(SizeWidth)) 2732 return false; 2733 2734 if (MCI->getSourceAddressSpace() > 255 || MCI->getDestAddressSpace() > 255) 2735 return false; 2736 2737 return lowerCallTo(II, "memcpy", II->arg_size() - 1); 2738 } 2739 case Intrinsic::memset: { 2740 const MemSetInst *MSI = cast<MemSetInst>(II); 2741 2742 if (MSI->isVolatile()) 2743 return false; 2744 2745 unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32; 2746 if (!MSI->getLength()->getType()->isIntegerTy(SizeWidth)) 2747 return false; 2748 2749 if (MSI->getDestAddressSpace() > 255) 2750 return false; 2751 2752 return lowerCallTo(II, "memset", II->arg_size() - 1); 2753 } 2754 case Intrinsic::stackprotector: { 2755 // Emit code to store the stack guard onto the stack. 2756 EVT PtrTy = TLI.getPointerTy(DL); 2757 2758 const Value *Op1 = II->getArgOperand(0); // The guard's value. 2759 const AllocaInst *Slot = cast<AllocaInst>(II->getArgOperand(1)); 2760 2761 MFI.setStackProtectorIndex(FuncInfo.StaticAllocaMap[Slot]); 2762 2763 // Grab the frame index. 2764 X86AddressMode AM; 2765 if (!X86SelectAddress(Slot, AM)) return false; 2766 if (!X86FastEmitStore(PtrTy, Op1, AM)) return false; 2767 return true; 2768 } 2769 case Intrinsic::dbg_declare: { 2770 const DbgDeclareInst *DI = cast<DbgDeclareInst>(II); 2771 X86AddressMode AM; 2772 assert(DI->getAddress() && "Null address should be checked earlier!"); 2773 if (!X86SelectAddress(DI->getAddress(), AM)) 2774 return false; 2775 const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE); 2776 assert(DI->getVariable()->isValidLocationForIntrinsic(MIMD.getDL()) && 2777 "Expected inlined-at fields to agree"); 2778 addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II), AM) 2779 .addImm(0) 2780 .addMetadata(DI->getVariable()) 2781 .addMetadata(DI->getExpression()); 2782 return true; 2783 } 2784 case Intrinsic::trap: { 2785 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::TRAP)); 2786 return true; 2787 } 2788 case Intrinsic::sqrt: { 2789 if (!Subtarget->hasSSE1()) 2790 return false; 2791 2792 Type *RetTy = II->getCalledFunction()->getReturnType(); 2793 2794 MVT VT; 2795 if (!isTypeLegal(RetTy, VT)) 2796 return false; 2797 2798 // Unfortunately we can't use fastEmit_r, because the AVX version of FSQRT 2799 // is not generated by FastISel yet. 2800 // FIXME: Update this code once tablegen can handle it. 2801 static const uint16_t SqrtOpc[3][2] = { 2802 { X86::SQRTSSr, X86::SQRTSDr }, 2803 { X86::VSQRTSSr, X86::VSQRTSDr }, 2804 { X86::VSQRTSSZr, X86::VSQRTSDZr }, 2805 }; 2806 unsigned AVXLevel = Subtarget->hasAVX512() ? 2 : 2807 Subtarget->hasAVX() ? 1 : 2808 0; 2809 unsigned Opc; 2810 switch (VT.SimpleTy) { 2811 default: return false; 2812 case MVT::f32: Opc = SqrtOpc[AVXLevel][0]; break; 2813 case MVT::f64: Opc = SqrtOpc[AVXLevel][1]; break; 2814 } 2815 2816 const Value *SrcVal = II->getArgOperand(0); 2817 Register SrcReg = getRegForValue(SrcVal); 2818 2819 if (SrcReg == 0) 2820 return false; 2821 2822 const TargetRegisterClass *RC = TLI.getRegClassFor(VT); 2823 unsigned ImplicitDefReg = 0; 2824 if (AVXLevel > 0) { 2825 ImplicitDefReg = createResultReg(RC); 2826 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 2827 TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg); 2828 } 2829 2830 Register ResultReg = createResultReg(RC); 2831 MachineInstrBuilder MIB; 2832 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), 2833 ResultReg); 2834 2835 if (ImplicitDefReg) 2836 MIB.addReg(ImplicitDefReg); 2837 2838 MIB.addReg(SrcReg); 2839 2840 updateValueMap(II, ResultReg); 2841 return true; 2842 } 2843 case Intrinsic::sadd_with_overflow: 2844 case Intrinsic::uadd_with_overflow: 2845 case Intrinsic::ssub_with_overflow: 2846 case Intrinsic::usub_with_overflow: 2847 case Intrinsic::smul_with_overflow: 2848 case Intrinsic::umul_with_overflow: { 2849 // This implements the basic lowering of the xalu with overflow intrinsics 2850 // into add/sub/mul followed by either seto or setb. 2851 const Function *Callee = II->getCalledFunction(); 2852 auto *Ty = cast<StructType>(Callee->getReturnType()); 2853 Type *RetTy = Ty->getTypeAtIndex(0U); 2854 assert(Ty->getTypeAtIndex(1)->isIntegerTy() && 2855 Ty->getTypeAtIndex(1)->getScalarSizeInBits() == 1 && 2856 "Overflow value expected to be an i1"); 2857 2858 MVT VT; 2859 if (!isTypeLegal(RetTy, VT)) 2860 return false; 2861 2862 if (VT < MVT::i8 || VT > MVT::i64) 2863 return false; 2864 2865 const Value *LHS = II->getArgOperand(0); 2866 const Value *RHS = II->getArgOperand(1); 2867 2868 // Canonicalize immediate to the RHS. 2869 if (isa<ConstantInt>(LHS) && !isa<ConstantInt>(RHS) && II->isCommutative()) 2870 std::swap(LHS, RHS); 2871 2872 unsigned BaseOpc, CondCode; 2873 switch (II->getIntrinsicID()) { 2874 default: llvm_unreachable("Unexpected intrinsic!"); 2875 case Intrinsic::sadd_with_overflow: 2876 BaseOpc = ISD::ADD; CondCode = X86::COND_O; break; 2877 case Intrinsic::uadd_with_overflow: 2878 BaseOpc = ISD::ADD; CondCode = X86::COND_B; break; 2879 case Intrinsic::ssub_with_overflow: 2880 BaseOpc = ISD::SUB; CondCode = X86::COND_O; break; 2881 case Intrinsic::usub_with_overflow: 2882 BaseOpc = ISD::SUB; CondCode = X86::COND_B; break; 2883 case Intrinsic::smul_with_overflow: 2884 BaseOpc = X86ISD::SMUL; CondCode = X86::COND_O; break; 2885 case Intrinsic::umul_with_overflow: 2886 BaseOpc = X86ISD::UMUL; CondCode = X86::COND_O; break; 2887 } 2888 2889 Register LHSReg = getRegForValue(LHS); 2890 if (LHSReg == 0) 2891 return false; 2892 2893 unsigned ResultReg = 0; 2894 // Check if we have an immediate version. 2895 if (const auto *CI = dyn_cast<ConstantInt>(RHS)) { 2896 static const uint16_t Opc[2][4] = { 2897 { X86::INC8r, X86::INC16r, X86::INC32r, X86::INC64r }, 2898 { X86::DEC8r, X86::DEC16r, X86::DEC32r, X86::DEC64r } 2899 }; 2900 2901 if (CI->isOne() && (BaseOpc == ISD::ADD || BaseOpc == ISD::SUB) && 2902 CondCode == X86::COND_O) { 2903 // We can use INC/DEC. 2904 ResultReg = createResultReg(TLI.getRegClassFor(VT)); 2905 bool IsDec = BaseOpc == ISD::SUB; 2906 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 2907 TII.get(Opc[IsDec][VT.SimpleTy-MVT::i8]), ResultReg) 2908 .addReg(LHSReg); 2909 } else 2910 ResultReg = fastEmit_ri(VT, VT, BaseOpc, LHSReg, CI->getZExtValue()); 2911 } 2912 2913 unsigned RHSReg; 2914 if (!ResultReg) { 2915 RHSReg = getRegForValue(RHS); 2916 if (RHSReg == 0) 2917 return false; 2918 ResultReg = fastEmit_rr(VT, VT, BaseOpc, LHSReg, RHSReg); 2919 } 2920 2921 // FastISel doesn't have a pattern for all X86::MUL*r and X86::IMUL*r. Emit 2922 // it manually. 2923 if (BaseOpc == X86ISD::UMUL && !ResultReg) { 2924 static const uint16_t MULOpc[] = 2925 { X86::MUL8r, X86::MUL16r, X86::MUL32r, X86::MUL64r }; 2926 static const MCPhysReg Reg[] = { X86::AL, X86::AX, X86::EAX, X86::RAX }; 2927 // First copy the first operand into RAX, which is an implicit input to 2928 // the X86::MUL*r instruction. 2929 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 2930 TII.get(TargetOpcode::COPY), Reg[VT.SimpleTy-MVT::i8]) 2931 .addReg(LHSReg); 2932 ResultReg = fastEmitInst_r(MULOpc[VT.SimpleTy-MVT::i8], 2933 TLI.getRegClassFor(VT), RHSReg); 2934 } else if (BaseOpc == X86ISD::SMUL && !ResultReg) { 2935 static const uint16_t MULOpc[] = 2936 { X86::IMUL8r, X86::IMUL16rr, X86::IMUL32rr, X86::IMUL64rr }; 2937 if (VT == MVT::i8) { 2938 // Copy the first operand into AL, which is an implicit input to the 2939 // X86::IMUL8r instruction. 2940 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 2941 TII.get(TargetOpcode::COPY), X86::AL) 2942 .addReg(LHSReg); 2943 ResultReg = fastEmitInst_r(MULOpc[0], TLI.getRegClassFor(VT), RHSReg); 2944 } else 2945 ResultReg = fastEmitInst_rr(MULOpc[VT.SimpleTy-MVT::i8], 2946 TLI.getRegClassFor(VT), LHSReg, RHSReg); 2947 } 2948 2949 if (!ResultReg) 2950 return false; 2951 2952 // Assign to a GPR since the overflow return value is lowered to a SETcc. 2953 Register ResultReg2 = createResultReg(&X86::GR8RegClass); 2954 assert((ResultReg+1) == ResultReg2 && "Nonconsecutive result registers."); 2955 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::SETCCr), 2956 ResultReg2).addImm(CondCode); 2957 2958 updateValueMap(II, ResultReg, 2); 2959 return true; 2960 } 2961 case Intrinsic::x86_sse_cvttss2si: 2962 case Intrinsic::x86_sse_cvttss2si64: 2963 case Intrinsic::x86_sse2_cvttsd2si: 2964 case Intrinsic::x86_sse2_cvttsd2si64: { 2965 bool IsInputDouble; 2966 switch (II->getIntrinsicID()) { 2967 default: llvm_unreachable("Unexpected intrinsic."); 2968 case Intrinsic::x86_sse_cvttss2si: 2969 case Intrinsic::x86_sse_cvttss2si64: 2970 if (!Subtarget->hasSSE1()) 2971 return false; 2972 IsInputDouble = false; 2973 break; 2974 case Intrinsic::x86_sse2_cvttsd2si: 2975 case Intrinsic::x86_sse2_cvttsd2si64: 2976 if (!Subtarget->hasSSE2()) 2977 return false; 2978 IsInputDouble = true; 2979 break; 2980 } 2981 2982 Type *RetTy = II->getCalledFunction()->getReturnType(); 2983 MVT VT; 2984 if (!isTypeLegal(RetTy, VT)) 2985 return false; 2986 2987 static const uint16_t CvtOpc[3][2][2] = { 2988 { { X86::CVTTSS2SIrr, X86::CVTTSS2SI64rr }, 2989 { X86::CVTTSD2SIrr, X86::CVTTSD2SI64rr } }, 2990 { { X86::VCVTTSS2SIrr, X86::VCVTTSS2SI64rr }, 2991 { X86::VCVTTSD2SIrr, X86::VCVTTSD2SI64rr } }, 2992 { { X86::VCVTTSS2SIZrr, X86::VCVTTSS2SI64Zrr }, 2993 { X86::VCVTTSD2SIZrr, X86::VCVTTSD2SI64Zrr } }, 2994 }; 2995 unsigned AVXLevel = Subtarget->hasAVX512() ? 2 : 2996 Subtarget->hasAVX() ? 1 : 2997 0; 2998 unsigned Opc; 2999 switch (VT.SimpleTy) { 3000 default: llvm_unreachable("Unexpected result type."); 3001 case MVT::i32: Opc = CvtOpc[AVXLevel][IsInputDouble][0]; break; 3002 case MVT::i64: Opc = CvtOpc[AVXLevel][IsInputDouble][1]; break; 3003 } 3004 3005 // Check if we can fold insertelement instructions into the convert. 3006 const Value *Op = II->getArgOperand(0); 3007 while (auto *IE = dyn_cast<InsertElementInst>(Op)) { 3008 const Value *Index = IE->getOperand(2); 3009 if (!isa<ConstantInt>(Index)) 3010 break; 3011 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 3012 3013 if (Idx == 0) { 3014 Op = IE->getOperand(1); 3015 break; 3016 } 3017 Op = IE->getOperand(0); 3018 } 3019 3020 Register Reg = getRegForValue(Op); 3021 if (Reg == 0) 3022 return false; 3023 3024 Register ResultReg = createResultReg(TLI.getRegClassFor(VT)); 3025 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), ResultReg) 3026 .addReg(Reg); 3027 3028 updateValueMap(II, ResultReg); 3029 return true; 3030 } 3031 case Intrinsic::x86_sse42_crc32_32_8: 3032 case Intrinsic::x86_sse42_crc32_32_16: 3033 case Intrinsic::x86_sse42_crc32_32_32: 3034 case Intrinsic::x86_sse42_crc32_64_64: { 3035 if (!Subtarget->hasCRC32()) 3036 return false; 3037 3038 Type *RetTy = II->getCalledFunction()->getReturnType(); 3039 3040 MVT VT; 3041 if (!isTypeLegal(RetTy, VT)) 3042 return false; 3043 3044 unsigned Opc; 3045 const TargetRegisterClass *RC = nullptr; 3046 3047 switch (II->getIntrinsicID()) { 3048 default: 3049 llvm_unreachable("Unexpected intrinsic."); 3050 #define GET_EGPR_IF_ENABLED(OPC) Subtarget->hasEGPR() ? OPC##_EVEX : OPC 3051 case Intrinsic::x86_sse42_crc32_32_8: 3052 Opc = GET_EGPR_IF_ENABLED(X86::CRC32r32r8); 3053 RC = &X86::GR32RegClass; 3054 break; 3055 case Intrinsic::x86_sse42_crc32_32_16: 3056 Opc = GET_EGPR_IF_ENABLED(X86::CRC32r32r16); 3057 RC = &X86::GR32RegClass; 3058 break; 3059 case Intrinsic::x86_sse42_crc32_32_32: 3060 Opc = GET_EGPR_IF_ENABLED(X86::CRC32r32r32); 3061 RC = &X86::GR32RegClass; 3062 break; 3063 case Intrinsic::x86_sse42_crc32_64_64: 3064 Opc = GET_EGPR_IF_ENABLED(X86::CRC32r64r64); 3065 RC = &X86::GR64RegClass; 3066 break; 3067 #undef GET_EGPR_IF_ENABLED 3068 } 3069 3070 const Value *LHS = II->getArgOperand(0); 3071 const Value *RHS = II->getArgOperand(1); 3072 3073 Register LHSReg = getRegForValue(LHS); 3074 Register RHSReg = getRegForValue(RHS); 3075 if (!LHSReg || !RHSReg) 3076 return false; 3077 3078 Register ResultReg = fastEmitInst_rr(Opc, RC, LHSReg, RHSReg); 3079 if (!ResultReg) 3080 return false; 3081 3082 updateValueMap(II, ResultReg); 3083 return true; 3084 } 3085 } 3086 } 3087 3088 bool X86FastISel::fastLowerArguments() { 3089 if (!FuncInfo.CanLowerReturn) 3090 return false; 3091 3092 const Function *F = FuncInfo.Fn; 3093 if (F->isVarArg()) 3094 return false; 3095 3096 CallingConv::ID CC = F->getCallingConv(); 3097 if (CC != CallingConv::C) 3098 return false; 3099 3100 if (Subtarget->isCallingConvWin64(CC)) 3101 return false; 3102 3103 if (!Subtarget->is64Bit()) 3104 return false; 3105 3106 if (Subtarget->useSoftFloat()) 3107 return false; 3108 3109 // Only handle simple cases. i.e. Up to 6 i32/i64 scalar arguments. 3110 unsigned GPRCnt = 0; 3111 unsigned FPRCnt = 0; 3112 for (auto const &Arg : F->args()) { 3113 if (Arg.hasAttribute(Attribute::ByVal) || 3114 Arg.hasAttribute(Attribute::InReg) || 3115 Arg.hasAttribute(Attribute::StructRet) || 3116 Arg.hasAttribute(Attribute::SwiftSelf) || 3117 Arg.hasAttribute(Attribute::SwiftAsync) || 3118 Arg.hasAttribute(Attribute::SwiftError) || 3119 Arg.hasAttribute(Attribute::Nest)) 3120 return false; 3121 3122 Type *ArgTy = Arg.getType(); 3123 if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy()) 3124 return false; 3125 3126 EVT ArgVT = TLI.getValueType(DL, ArgTy); 3127 if (!ArgVT.isSimple()) return false; 3128 switch (ArgVT.getSimpleVT().SimpleTy) { 3129 default: return false; 3130 case MVT::i32: 3131 case MVT::i64: 3132 ++GPRCnt; 3133 break; 3134 case MVT::f32: 3135 case MVT::f64: 3136 if (!Subtarget->hasSSE1()) 3137 return false; 3138 ++FPRCnt; 3139 break; 3140 } 3141 3142 if (GPRCnt > 6) 3143 return false; 3144 3145 if (FPRCnt > 8) 3146 return false; 3147 } 3148 3149 static const MCPhysReg GPR32ArgRegs[] = { 3150 X86::EDI, X86::ESI, X86::EDX, X86::ECX, X86::R8D, X86::R9D 3151 }; 3152 static const MCPhysReg GPR64ArgRegs[] = { 3153 X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8 , X86::R9 3154 }; 3155 static const MCPhysReg XMMArgRegs[] = { 3156 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, 3157 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7 3158 }; 3159 3160 unsigned GPRIdx = 0; 3161 unsigned FPRIdx = 0; 3162 for (auto const &Arg : F->args()) { 3163 MVT VT = TLI.getSimpleValueType(DL, Arg.getType()); 3164 const TargetRegisterClass *RC = TLI.getRegClassFor(VT); 3165 unsigned SrcReg; 3166 switch (VT.SimpleTy) { 3167 default: llvm_unreachable("Unexpected value type."); 3168 case MVT::i32: SrcReg = GPR32ArgRegs[GPRIdx++]; break; 3169 case MVT::i64: SrcReg = GPR64ArgRegs[GPRIdx++]; break; 3170 case MVT::f32: [[fallthrough]]; 3171 case MVT::f64: SrcReg = XMMArgRegs[FPRIdx++]; break; 3172 } 3173 Register DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC); 3174 // FIXME: Unfortunately it's necessary to emit a copy from the livein copy. 3175 // Without this, EmitLiveInCopies may eliminate the livein if its only 3176 // use is a bitcast (which isn't turned into an instruction). 3177 Register ResultReg = createResultReg(RC); 3178 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 3179 TII.get(TargetOpcode::COPY), ResultReg) 3180 .addReg(DstReg, getKillRegState(true)); 3181 updateValueMap(&Arg, ResultReg); 3182 } 3183 return true; 3184 } 3185 3186 static unsigned computeBytesPoppedByCalleeForSRet(const X86Subtarget *Subtarget, 3187 CallingConv::ID CC, 3188 const CallBase *CB) { 3189 if (Subtarget->is64Bit()) 3190 return 0; 3191 if (Subtarget->getTargetTriple().isOSMSVCRT()) 3192 return 0; 3193 if (CC == CallingConv::Fast || CC == CallingConv::GHC || 3194 CC == CallingConv::HiPE || CC == CallingConv::Tail || 3195 CC == CallingConv::SwiftTail) 3196 return 0; 3197 3198 if (CB) 3199 if (CB->arg_empty() || !CB->paramHasAttr(0, Attribute::StructRet) || 3200 CB->paramHasAttr(0, Attribute::InReg) || Subtarget->isTargetMCU()) 3201 return 0; 3202 3203 return 4; 3204 } 3205 3206 bool X86FastISel::fastLowerCall(CallLoweringInfo &CLI) { 3207 auto &OutVals = CLI.OutVals; 3208 auto &OutFlags = CLI.OutFlags; 3209 auto &OutRegs = CLI.OutRegs; 3210 auto &Ins = CLI.Ins; 3211 auto &InRegs = CLI.InRegs; 3212 CallingConv::ID CC = CLI.CallConv; 3213 bool &IsTailCall = CLI.IsTailCall; 3214 bool IsVarArg = CLI.IsVarArg; 3215 const Value *Callee = CLI.Callee; 3216 MCSymbol *Symbol = CLI.Symbol; 3217 const auto *CB = CLI.CB; 3218 3219 bool Is64Bit = Subtarget->is64Bit(); 3220 bool IsWin64 = Subtarget->isCallingConvWin64(CC); 3221 3222 // Call / invoke instructions with NoCfCheck attribute require special 3223 // handling. 3224 if (CB && CB->doesNoCfCheck()) 3225 return false; 3226 3227 // Functions with no_caller_saved_registers that need special handling. 3228 if ((CB && isa<CallInst>(CB) && CB->hasFnAttr("no_caller_saved_registers"))) 3229 return false; 3230 3231 // Functions with no_callee_saved_registers that need special handling. 3232 if ((CB && CB->hasFnAttr("no_callee_saved_registers"))) 3233 return false; 3234 3235 // Indirect calls with CFI checks need special handling. 3236 if (CB && CB->isIndirectCall() && CB->getOperandBundle(LLVMContext::OB_kcfi)) 3237 return false; 3238 3239 // Functions using thunks for indirect calls need to use SDISel. 3240 if (Subtarget->useIndirectThunkCalls()) 3241 return false; 3242 3243 // Handle only C and fastcc calling conventions for now. 3244 switch (CC) { 3245 default: return false; 3246 case CallingConv::C: 3247 case CallingConv::Fast: 3248 case CallingConv::Tail: 3249 case CallingConv::Swift: 3250 case CallingConv::SwiftTail: 3251 case CallingConv::X86_FastCall: 3252 case CallingConv::X86_StdCall: 3253 case CallingConv::X86_ThisCall: 3254 case CallingConv::Win64: 3255 case CallingConv::X86_64_SysV: 3256 case CallingConv::CFGuard_Check: 3257 break; 3258 } 3259 3260 // Allow SelectionDAG isel to handle tail calls. 3261 if (IsTailCall) 3262 return false; 3263 3264 // fastcc with -tailcallopt is intended to provide a guaranteed 3265 // tail call optimization. Fastisel doesn't know how to do that. 3266 if ((CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt) || 3267 CC == CallingConv::Tail || CC == CallingConv::SwiftTail) 3268 return false; 3269 3270 // Don't know how to handle Win64 varargs yet. Nothing special needed for 3271 // x86-32. Special handling for x86-64 is implemented. 3272 if (IsVarArg && IsWin64) 3273 return false; 3274 3275 // Don't know about inalloca yet. 3276 if (CLI.CB && CLI.CB->hasInAllocaArgument()) 3277 return false; 3278 3279 for (auto Flag : CLI.OutFlags) 3280 if (Flag.isSwiftError() || Flag.isPreallocated()) 3281 return false; 3282 3283 SmallVector<MVT, 16> OutVTs; 3284 SmallVector<unsigned, 16> ArgRegs; 3285 3286 // If this is a constant i1/i8/i16 argument, promote to i32 to avoid an extra 3287 // instruction. This is safe because it is common to all FastISel supported 3288 // calling conventions on x86. 3289 for (int i = 0, e = OutVals.size(); i != e; ++i) { 3290 Value *&Val = OutVals[i]; 3291 ISD::ArgFlagsTy Flags = OutFlags[i]; 3292 if (auto *CI = dyn_cast<ConstantInt>(Val)) { 3293 if (CI->getBitWidth() < 32) { 3294 if (Flags.isSExt()) 3295 Val = ConstantInt::get(CI->getContext(), CI->getValue().sext(32)); 3296 else 3297 Val = ConstantInt::get(CI->getContext(), CI->getValue().zext(32)); 3298 } 3299 } 3300 3301 // Passing bools around ends up doing a trunc to i1 and passing it. 3302 // Codegen this as an argument + "and 1". 3303 MVT VT; 3304 auto *TI = dyn_cast<TruncInst>(Val); 3305 unsigned ResultReg; 3306 if (TI && TI->getType()->isIntegerTy(1) && CLI.CB && 3307 (TI->getParent() == CLI.CB->getParent()) && TI->hasOneUse()) { 3308 Value *PrevVal = TI->getOperand(0); 3309 ResultReg = getRegForValue(PrevVal); 3310 3311 if (!ResultReg) 3312 return false; 3313 3314 if (!isTypeLegal(PrevVal->getType(), VT)) 3315 return false; 3316 3317 ResultReg = fastEmit_ri(VT, VT, ISD::AND, ResultReg, 1); 3318 } else { 3319 if (!isTypeLegal(Val->getType(), VT) || 3320 (VT.isVector() && VT.getVectorElementType() == MVT::i1)) 3321 return false; 3322 ResultReg = getRegForValue(Val); 3323 } 3324 3325 if (!ResultReg) 3326 return false; 3327 3328 ArgRegs.push_back(ResultReg); 3329 OutVTs.push_back(VT); 3330 } 3331 3332 // Analyze operands of the call, assigning locations to each operand. 3333 SmallVector<CCValAssign, 16> ArgLocs; 3334 CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, ArgLocs, CLI.RetTy->getContext()); 3335 3336 // Allocate shadow area for Win64 3337 if (IsWin64) 3338 CCInfo.AllocateStack(32, Align(8)); 3339 3340 CCInfo.AnalyzeCallOperands(OutVTs, OutFlags, CC_X86); 3341 3342 // Get a count of how many bytes are to be pushed on the stack. 3343 unsigned NumBytes = CCInfo.getAlignedCallFrameSize(); 3344 3345 // Issue CALLSEQ_START 3346 unsigned AdjStackDown = TII.getCallFrameSetupOpcode(); 3347 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(AdjStackDown)) 3348 .addImm(NumBytes).addImm(0).addImm(0); 3349 3350 // Walk the register/memloc assignments, inserting copies/loads. 3351 const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo(); 3352 for (const CCValAssign &VA : ArgLocs) { 3353 const Value *ArgVal = OutVals[VA.getValNo()]; 3354 MVT ArgVT = OutVTs[VA.getValNo()]; 3355 3356 if (ArgVT == MVT::x86mmx) 3357 return false; 3358 3359 unsigned ArgReg = ArgRegs[VA.getValNo()]; 3360 3361 // Promote the value if needed. 3362 switch (VA.getLocInfo()) { 3363 case CCValAssign::Full: break; 3364 case CCValAssign::SExt: { 3365 assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() && 3366 "Unexpected extend"); 3367 3368 if (ArgVT == MVT::i1) 3369 return false; 3370 3371 bool Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg, 3372 ArgVT, ArgReg); 3373 assert(Emitted && "Failed to emit a sext!"); (void)Emitted; 3374 ArgVT = VA.getLocVT(); 3375 break; 3376 } 3377 case CCValAssign::ZExt: { 3378 assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() && 3379 "Unexpected extend"); 3380 3381 // Handle zero-extension from i1 to i8, which is common. 3382 if (ArgVT == MVT::i1) { 3383 // Set the high bits to zero. 3384 ArgReg = fastEmitZExtFromI1(MVT::i8, ArgReg); 3385 ArgVT = MVT::i8; 3386 3387 if (ArgReg == 0) 3388 return false; 3389 } 3390 3391 bool Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg, 3392 ArgVT, ArgReg); 3393 assert(Emitted && "Failed to emit a zext!"); (void)Emitted; 3394 ArgVT = VA.getLocVT(); 3395 break; 3396 } 3397 case CCValAssign::AExt: { 3398 assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() && 3399 "Unexpected extend"); 3400 bool Emitted = X86FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(), ArgReg, 3401 ArgVT, ArgReg); 3402 if (!Emitted) 3403 Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg, 3404 ArgVT, ArgReg); 3405 if (!Emitted) 3406 Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg, 3407 ArgVT, ArgReg); 3408 3409 assert(Emitted && "Failed to emit a aext!"); (void)Emitted; 3410 ArgVT = VA.getLocVT(); 3411 break; 3412 } 3413 case CCValAssign::BCvt: { 3414 ArgReg = fastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, ArgReg); 3415 assert(ArgReg && "Failed to emit a bitcast!"); 3416 ArgVT = VA.getLocVT(); 3417 break; 3418 } 3419 case CCValAssign::VExt: 3420 // VExt has not been implemented, so this should be impossible to reach 3421 // for now. However, fallback to Selection DAG isel once implemented. 3422 return false; 3423 case CCValAssign::AExtUpper: 3424 case CCValAssign::SExtUpper: 3425 case CCValAssign::ZExtUpper: 3426 case CCValAssign::FPExt: 3427 case CCValAssign::Trunc: 3428 llvm_unreachable("Unexpected loc info!"); 3429 case CCValAssign::Indirect: 3430 // FIXME: Indirect doesn't need extending, but fast-isel doesn't fully 3431 // support this. 3432 return false; 3433 } 3434 3435 if (VA.isRegLoc()) { 3436 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 3437 TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(ArgReg); 3438 OutRegs.push_back(VA.getLocReg()); 3439 } else { 3440 assert(VA.isMemLoc() && "Unknown value location!"); 3441 3442 // Don't emit stores for undef values. 3443 if (isa<UndefValue>(ArgVal)) 3444 continue; 3445 3446 unsigned LocMemOffset = VA.getLocMemOffset(); 3447 X86AddressMode AM; 3448 AM.Base.Reg = RegInfo->getStackRegister(); 3449 AM.Disp = LocMemOffset; 3450 ISD::ArgFlagsTy Flags = OutFlags[VA.getValNo()]; 3451 Align Alignment = DL.getABITypeAlign(ArgVal->getType()); 3452 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( 3453 MachinePointerInfo::getStack(*FuncInfo.MF, LocMemOffset), 3454 MachineMemOperand::MOStore, ArgVT.getStoreSize(), Alignment); 3455 if (Flags.isByVal()) { 3456 X86AddressMode SrcAM; 3457 SrcAM.Base.Reg = ArgReg; 3458 if (!TryEmitSmallMemcpy(AM, SrcAM, Flags.getByValSize())) 3459 return false; 3460 } else if (isa<ConstantInt>(ArgVal) || isa<ConstantPointerNull>(ArgVal)) { 3461 // If this is a really simple value, emit this with the Value* version 3462 // of X86FastEmitStore. If it isn't simple, we don't want to do this, 3463 // as it can cause us to reevaluate the argument. 3464 if (!X86FastEmitStore(ArgVT, ArgVal, AM, MMO)) 3465 return false; 3466 } else { 3467 if (!X86FastEmitStore(ArgVT, ArgReg, AM, MMO)) 3468 return false; 3469 } 3470 } 3471 } 3472 3473 // ELF / PIC requires GOT in the EBX register before function calls via PLT 3474 // GOT pointer. 3475 if (Subtarget->isPICStyleGOT()) { 3476 unsigned Base = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF); 3477 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 3478 TII.get(TargetOpcode::COPY), X86::EBX).addReg(Base); 3479 } 3480 3481 if (Is64Bit && IsVarArg && !IsWin64) { 3482 // From AMD64 ABI document: 3483 // For calls that may call functions that use varargs or stdargs 3484 // (prototype-less calls or calls to functions containing ellipsis (...) in 3485 // the declaration) %al is used as hidden argument to specify the number 3486 // of SSE registers used. The contents of %al do not need to match exactly 3487 // the number of registers, but must be an ubound on the number of SSE 3488 // registers used and is in the range 0 - 8 inclusive. 3489 3490 // Count the number of XMM registers allocated. 3491 static const MCPhysReg XMMArgRegs[] = { 3492 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, 3493 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7 3494 }; 3495 unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs); 3496 assert((Subtarget->hasSSE1() || !NumXMMRegs) 3497 && "SSE registers cannot be used when SSE is disabled"); 3498 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOV8ri), 3499 X86::AL).addImm(NumXMMRegs); 3500 } 3501 3502 // Materialize callee address in a register. FIXME: GV address can be 3503 // handled with a CALLpcrel32 instead. 3504 X86AddressMode CalleeAM; 3505 if (!X86SelectCallAddress(Callee, CalleeAM)) 3506 return false; 3507 3508 unsigned CalleeOp = 0; 3509 const GlobalValue *GV = nullptr; 3510 if (CalleeAM.GV != nullptr) { 3511 GV = CalleeAM.GV; 3512 } else if (CalleeAM.Base.Reg != 0) { 3513 CalleeOp = CalleeAM.Base.Reg; 3514 } else 3515 return false; 3516 3517 // Issue the call. 3518 MachineInstrBuilder MIB; 3519 if (CalleeOp) { 3520 // Register-indirect call. 3521 unsigned CallOpc = Is64Bit ? X86::CALL64r : X86::CALL32r; 3522 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(CallOpc)) 3523 .addReg(CalleeOp); 3524 } else { 3525 // Direct call. 3526 assert(GV && "Not a direct call"); 3527 // See if we need any target-specific flags on the GV operand. 3528 unsigned char OpFlags = Subtarget->classifyGlobalFunctionReference(GV); 3529 if (OpFlags == X86II::MO_PLT && !Is64Bit && 3530 TM.getRelocationModel() == Reloc::Static && isa<Function>(GV) && 3531 cast<Function>(GV)->isIntrinsic()) 3532 OpFlags = X86II::MO_NO_FLAG; 3533 3534 // This will be a direct call, or an indirect call through memory for 3535 // NonLazyBind calls or dllimport calls. 3536 bool NeedLoad = OpFlags == X86II::MO_DLLIMPORT || 3537 OpFlags == X86II::MO_GOTPCREL || 3538 OpFlags == X86II::MO_GOTPCREL_NORELAX || 3539 OpFlags == X86II::MO_COFFSTUB; 3540 unsigned CallOpc = NeedLoad 3541 ? (Is64Bit ? X86::CALL64m : X86::CALL32m) 3542 : (Is64Bit ? X86::CALL64pcrel32 : X86::CALLpcrel32); 3543 3544 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(CallOpc)); 3545 if (NeedLoad) 3546 MIB.addReg(Is64Bit ? X86::RIP : X86::NoRegister).addImm(1).addReg(0); 3547 if (Symbol) 3548 MIB.addSym(Symbol, OpFlags); 3549 else 3550 MIB.addGlobalAddress(GV, 0, OpFlags); 3551 if (NeedLoad) 3552 MIB.addReg(0); 3553 } 3554 3555 // Add a register mask operand representing the call-preserved registers. 3556 // Proper defs for return values will be added by setPhysRegsDeadExcept(). 3557 MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC)); 3558 3559 // Add an implicit use GOT pointer in EBX. 3560 if (Subtarget->isPICStyleGOT()) 3561 MIB.addReg(X86::EBX, RegState::Implicit); 3562 3563 if (Is64Bit && IsVarArg && !IsWin64) 3564 MIB.addReg(X86::AL, RegState::Implicit); 3565 3566 // Add implicit physical register uses to the call. 3567 for (auto Reg : OutRegs) 3568 MIB.addReg(Reg, RegState::Implicit); 3569 3570 // Issue CALLSEQ_END 3571 unsigned NumBytesForCalleeToPop = 3572 X86::isCalleePop(CC, Subtarget->is64Bit(), IsVarArg, 3573 TM.Options.GuaranteedTailCallOpt) 3574 ? NumBytes // Callee pops everything. 3575 : computeBytesPoppedByCalleeForSRet(Subtarget, CC, CLI.CB); 3576 unsigned AdjStackUp = TII.getCallFrameDestroyOpcode(); 3577 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(AdjStackUp)) 3578 .addImm(NumBytes).addImm(NumBytesForCalleeToPop); 3579 3580 // Now handle call return values. 3581 SmallVector<CCValAssign, 16> RVLocs; 3582 CCState CCRetInfo(CC, IsVarArg, *FuncInfo.MF, RVLocs, 3583 CLI.RetTy->getContext()); 3584 CCRetInfo.AnalyzeCallResult(Ins, RetCC_X86); 3585 3586 // Copy all of the result registers out of their specified physreg. 3587 Register ResultReg = FuncInfo.CreateRegs(CLI.RetTy); 3588 for (unsigned i = 0; i != RVLocs.size(); ++i) { 3589 CCValAssign &VA = RVLocs[i]; 3590 EVT CopyVT = VA.getValVT(); 3591 unsigned CopyReg = ResultReg + i; 3592 Register SrcReg = VA.getLocReg(); 3593 3594 // If this is x86-64, and we disabled SSE, we can't return FP values 3595 if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) && 3596 ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) { 3597 report_fatal_error("SSE register return with SSE disabled"); 3598 } 3599 3600 // If we prefer to use the value in xmm registers, copy it out as f80 and 3601 // use a truncate to move it from fp stack reg to xmm reg. 3602 if ((SrcReg == X86::FP0 || SrcReg == X86::FP1) && 3603 isScalarFPTypeInSSEReg(VA.getValVT())) { 3604 CopyVT = MVT::f80; 3605 CopyReg = createResultReg(&X86::RFP80RegClass); 3606 } 3607 3608 // Copy out the result. 3609 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 3610 TII.get(TargetOpcode::COPY), CopyReg).addReg(SrcReg); 3611 InRegs.push_back(VA.getLocReg()); 3612 3613 // Round the f80 to the right size, which also moves it to the appropriate 3614 // xmm register. This is accomplished by storing the f80 value in memory 3615 // and then loading it back. 3616 if (CopyVT != VA.getValVT()) { 3617 EVT ResVT = VA.getValVT(); 3618 unsigned Opc = ResVT == MVT::f32 ? X86::ST_Fp80m32 : X86::ST_Fp80m64; 3619 unsigned MemSize = ResVT.getSizeInBits()/8; 3620 int FI = MFI.CreateStackObject(MemSize, Align(MemSize), false); 3621 addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 3622 TII.get(Opc)), FI) 3623 .addReg(CopyReg); 3624 Opc = ResVT == MVT::f32 ? X86::MOVSSrm_alt : X86::MOVSDrm_alt; 3625 addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 3626 TII.get(Opc), ResultReg + i), FI); 3627 } 3628 } 3629 3630 CLI.ResultReg = ResultReg; 3631 CLI.NumResultRegs = RVLocs.size(); 3632 CLI.Call = MIB; 3633 3634 return true; 3635 } 3636 3637 bool 3638 X86FastISel::fastSelectInstruction(const Instruction *I) { 3639 switch (I->getOpcode()) { 3640 default: break; 3641 case Instruction::Load: 3642 return X86SelectLoad(I); 3643 case Instruction::Store: 3644 return X86SelectStore(I); 3645 case Instruction::Ret: 3646 return X86SelectRet(I); 3647 case Instruction::ICmp: 3648 case Instruction::FCmp: 3649 return X86SelectCmp(I); 3650 case Instruction::ZExt: 3651 return X86SelectZExt(I); 3652 case Instruction::SExt: 3653 return X86SelectSExt(I); 3654 case Instruction::Br: 3655 return X86SelectBranch(I); 3656 case Instruction::LShr: 3657 case Instruction::AShr: 3658 case Instruction::Shl: 3659 return X86SelectShift(I); 3660 case Instruction::SDiv: 3661 case Instruction::UDiv: 3662 case Instruction::SRem: 3663 case Instruction::URem: 3664 return X86SelectDivRem(I); 3665 case Instruction::Select: 3666 return X86SelectSelect(I); 3667 case Instruction::Trunc: 3668 return X86SelectTrunc(I); 3669 case Instruction::FPExt: 3670 return X86SelectFPExt(I); 3671 case Instruction::FPTrunc: 3672 return X86SelectFPTrunc(I); 3673 case Instruction::SIToFP: 3674 return X86SelectSIToFP(I); 3675 case Instruction::UIToFP: 3676 return X86SelectUIToFP(I); 3677 case Instruction::IntToPtr: // Deliberate fall-through. 3678 case Instruction::PtrToInt: { 3679 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType()); 3680 EVT DstVT = TLI.getValueType(DL, I->getType()); 3681 if (DstVT.bitsGT(SrcVT)) 3682 return X86SelectZExt(I); 3683 if (DstVT.bitsLT(SrcVT)) 3684 return X86SelectTrunc(I); 3685 Register Reg = getRegForValue(I->getOperand(0)); 3686 if (Reg == 0) return false; 3687 updateValueMap(I, Reg); 3688 return true; 3689 } 3690 case Instruction::BitCast: { 3691 // Select SSE2/AVX bitcasts between 128/256/512 bit vector types. 3692 if (!Subtarget->hasSSE2()) 3693 return false; 3694 3695 MVT SrcVT, DstVT; 3696 if (!isTypeLegal(I->getOperand(0)->getType(), SrcVT) || 3697 !isTypeLegal(I->getType(), DstVT)) 3698 return false; 3699 3700 // Only allow vectors that use xmm/ymm/zmm. 3701 if (!SrcVT.isVector() || !DstVT.isVector() || 3702 SrcVT.getVectorElementType() == MVT::i1 || 3703 DstVT.getVectorElementType() == MVT::i1) 3704 return false; 3705 3706 Register Reg = getRegForValue(I->getOperand(0)); 3707 if (!Reg) 3708 return false; 3709 3710 // Emit a reg-reg copy so we don't propagate cached known bits information 3711 // with the wrong VT if we fall out of fast isel after selecting this. 3712 const TargetRegisterClass *DstClass = TLI.getRegClassFor(DstVT); 3713 Register ResultReg = createResultReg(DstClass); 3714 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 3715 TII.get(TargetOpcode::COPY), ResultReg).addReg(Reg); 3716 3717 updateValueMap(I, ResultReg); 3718 return true; 3719 } 3720 } 3721 3722 return false; 3723 } 3724 3725 unsigned X86FastISel::X86MaterializeInt(const ConstantInt *CI, MVT VT) { 3726 if (VT > MVT::i64) 3727 return 0; 3728 3729 uint64_t Imm = CI->getZExtValue(); 3730 if (Imm == 0) { 3731 Register SrcReg = fastEmitInst_(X86::MOV32r0, &X86::GR32RegClass); 3732 switch (VT.SimpleTy) { 3733 default: llvm_unreachable("Unexpected value type"); 3734 case MVT::i1: 3735 case MVT::i8: 3736 return fastEmitInst_extractsubreg(MVT::i8, SrcReg, X86::sub_8bit); 3737 case MVT::i16: 3738 return fastEmitInst_extractsubreg(MVT::i16, SrcReg, X86::sub_16bit); 3739 case MVT::i32: 3740 return SrcReg; 3741 case MVT::i64: { 3742 Register ResultReg = createResultReg(&X86::GR64RegClass); 3743 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 3744 TII.get(TargetOpcode::SUBREG_TO_REG), ResultReg) 3745 .addImm(0).addReg(SrcReg).addImm(X86::sub_32bit); 3746 return ResultReg; 3747 } 3748 } 3749 } 3750 3751 unsigned Opc = 0; 3752 switch (VT.SimpleTy) { 3753 default: llvm_unreachable("Unexpected value type"); 3754 case MVT::i1: 3755 VT = MVT::i8; 3756 [[fallthrough]]; 3757 case MVT::i8: Opc = X86::MOV8ri; break; 3758 case MVT::i16: Opc = X86::MOV16ri; break; 3759 case MVT::i32: Opc = X86::MOV32ri; break; 3760 case MVT::i64: { 3761 if (isUInt<32>(Imm)) 3762 Opc = X86::MOV32ri64; 3763 else if (isInt<32>(Imm)) 3764 Opc = X86::MOV64ri32; 3765 else 3766 Opc = X86::MOV64ri; 3767 break; 3768 } 3769 } 3770 return fastEmitInst_i(Opc, TLI.getRegClassFor(VT), Imm); 3771 } 3772 3773 unsigned X86FastISel::X86MaterializeFP(const ConstantFP *CFP, MVT VT) { 3774 if (CFP->isNullValue()) 3775 return fastMaterializeFloatZero(CFP); 3776 3777 // Can't handle alternate code models yet. 3778 CodeModel::Model CM = TM.getCodeModel(); 3779 if (CM != CodeModel::Small && CM != CodeModel::Medium && 3780 CM != CodeModel::Large) 3781 return 0; 3782 3783 // Get opcode and regclass of the output for the given load instruction. 3784 unsigned Opc = 0; 3785 bool HasSSE1 = Subtarget->hasSSE1(); 3786 bool HasSSE2 = Subtarget->hasSSE2(); 3787 bool HasAVX = Subtarget->hasAVX(); 3788 bool HasAVX512 = Subtarget->hasAVX512(); 3789 switch (VT.SimpleTy) { 3790 default: return 0; 3791 case MVT::f32: 3792 Opc = HasAVX512 ? X86::VMOVSSZrm_alt 3793 : HasAVX ? X86::VMOVSSrm_alt 3794 : HasSSE1 ? X86::MOVSSrm_alt 3795 : X86::LD_Fp32m; 3796 break; 3797 case MVT::f64: 3798 Opc = HasAVX512 ? X86::VMOVSDZrm_alt 3799 : HasAVX ? X86::VMOVSDrm_alt 3800 : HasSSE2 ? X86::MOVSDrm_alt 3801 : X86::LD_Fp64m; 3802 break; 3803 case MVT::f80: 3804 // No f80 support yet. 3805 return 0; 3806 } 3807 3808 // MachineConstantPool wants an explicit alignment. 3809 Align Alignment = DL.getPrefTypeAlign(CFP->getType()); 3810 3811 // x86-32 PIC requires a PIC base register for constant pools. 3812 unsigned PICBase = 0; 3813 unsigned char OpFlag = Subtarget->classifyLocalReference(nullptr); 3814 if (OpFlag == X86II::MO_PIC_BASE_OFFSET) 3815 PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF); 3816 else if (OpFlag == X86II::MO_GOTOFF) 3817 PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF); 3818 else if (Subtarget->is64Bit() && TM.getCodeModel() != CodeModel::Large) 3819 PICBase = X86::RIP; 3820 3821 // Create the load from the constant pool. 3822 unsigned CPI = MCP.getConstantPoolIndex(CFP, Alignment); 3823 Register ResultReg = createResultReg(TLI.getRegClassFor(VT.SimpleTy)); 3824 3825 // Large code model only applies to 64-bit mode. 3826 if (Subtarget->is64Bit() && CM == CodeModel::Large) { 3827 Register AddrReg = createResultReg(&X86::GR64RegClass); 3828 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOV64ri), 3829 AddrReg) 3830 .addConstantPoolIndex(CPI, 0, OpFlag); 3831 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 3832 TII.get(Opc), ResultReg); 3833 addRegReg(MIB, AddrReg, false, PICBase, false); 3834 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( 3835 MachinePointerInfo::getConstantPool(*FuncInfo.MF), 3836 MachineMemOperand::MOLoad, DL.getPointerSize(), Alignment); 3837 MIB->addMemOperand(*FuncInfo.MF, MMO); 3838 return ResultReg; 3839 } 3840 3841 addConstantPoolReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 3842 TII.get(Opc), ResultReg), 3843 CPI, PICBase, OpFlag); 3844 return ResultReg; 3845 } 3846 3847 unsigned X86FastISel::X86MaterializeGV(const GlobalValue *GV, MVT VT) { 3848 // Can't handle large GlobalValues yet. 3849 if (TM.getCodeModel() != CodeModel::Small && 3850 TM.getCodeModel() != CodeModel::Medium) 3851 return 0; 3852 if (TM.isLargeGlobalValue(GV)) 3853 return 0; 3854 3855 // Materialize addresses with LEA/MOV instructions. 3856 X86AddressMode AM; 3857 if (X86SelectAddress(GV, AM)) { 3858 // If the expression is just a basereg, then we're done, otherwise we need 3859 // to emit an LEA. 3860 if (AM.BaseType == X86AddressMode::RegBase && 3861 AM.IndexReg == 0 && AM.Disp == 0 && AM.GV == nullptr) 3862 return AM.Base.Reg; 3863 3864 Register ResultReg = createResultReg(TLI.getRegClassFor(VT)); 3865 if (TM.getRelocationModel() == Reloc::Static && 3866 TLI.getPointerTy(DL) == MVT::i64) { 3867 // The displacement code could be more than 32 bits away so we need to use 3868 // an instruction with a 64 bit immediate 3869 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOV64ri), 3870 ResultReg) 3871 .addGlobalAddress(GV); 3872 } else { 3873 unsigned Opc = 3874 TLI.getPointerTy(DL) == MVT::i32 3875 ? (Subtarget->isTarget64BitILP32() ? X86::LEA64_32r : X86::LEA32r) 3876 : X86::LEA64r; 3877 addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 3878 TII.get(Opc), ResultReg), AM); 3879 } 3880 return ResultReg; 3881 } 3882 return 0; 3883 } 3884 3885 unsigned X86FastISel::fastMaterializeConstant(const Constant *C) { 3886 EVT CEVT = TLI.getValueType(DL, C->getType(), true); 3887 3888 // Only handle simple types. 3889 if (!CEVT.isSimple()) 3890 return 0; 3891 MVT VT = CEVT.getSimpleVT(); 3892 3893 if (const auto *CI = dyn_cast<ConstantInt>(C)) 3894 return X86MaterializeInt(CI, VT); 3895 if (const auto *CFP = dyn_cast<ConstantFP>(C)) 3896 return X86MaterializeFP(CFP, VT); 3897 if (const auto *GV = dyn_cast<GlobalValue>(C)) 3898 return X86MaterializeGV(GV, VT); 3899 if (isa<UndefValue>(C)) { 3900 unsigned Opc = 0; 3901 switch (VT.SimpleTy) { 3902 default: 3903 break; 3904 case MVT::f32: 3905 if (!Subtarget->hasSSE1()) 3906 Opc = X86::LD_Fp032; 3907 break; 3908 case MVT::f64: 3909 if (!Subtarget->hasSSE2()) 3910 Opc = X86::LD_Fp064; 3911 break; 3912 case MVT::f80: 3913 Opc = X86::LD_Fp080; 3914 break; 3915 } 3916 3917 if (Opc) { 3918 Register ResultReg = createResultReg(TLI.getRegClassFor(VT)); 3919 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), 3920 ResultReg); 3921 return ResultReg; 3922 } 3923 } 3924 3925 return 0; 3926 } 3927 3928 unsigned X86FastISel::fastMaterializeAlloca(const AllocaInst *C) { 3929 // Fail on dynamic allocas. At this point, getRegForValue has already 3930 // checked its CSE maps, so if we're here trying to handle a dynamic 3931 // alloca, we're not going to succeed. X86SelectAddress has a 3932 // check for dynamic allocas, because it's called directly from 3933 // various places, but targetMaterializeAlloca also needs a check 3934 // in order to avoid recursion between getRegForValue, 3935 // X86SelectAddrss, and targetMaterializeAlloca. 3936 if (!FuncInfo.StaticAllocaMap.count(C)) 3937 return 0; 3938 assert(C->isStaticAlloca() && "dynamic alloca in the static alloca map?"); 3939 3940 X86AddressMode AM; 3941 if (!X86SelectAddress(C, AM)) 3942 return 0; 3943 unsigned Opc = 3944 TLI.getPointerTy(DL) == MVT::i32 3945 ? (Subtarget->isTarget64BitILP32() ? X86::LEA64_32r : X86::LEA32r) 3946 : X86::LEA64r; 3947 const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL)); 3948 Register ResultReg = createResultReg(RC); 3949 addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 3950 TII.get(Opc), ResultReg), AM); 3951 return ResultReg; 3952 } 3953 3954 unsigned X86FastISel::fastMaterializeFloatZero(const ConstantFP *CF) { 3955 MVT VT; 3956 if (!isTypeLegal(CF->getType(), VT)) 3957 return 0; 3958 3959 // Get opcode and regclass for the given zero. 3960 bool HasSSE1 = Subtarget->hasSSE1(); 3961 bool HasSSE2 = Subtarget->hasSSE2(); 3962 bool HasAVX512 = Subtarget->hasAVX512(); 3963 unsigned Opc = 0; 3964 switch (VT.SimpleTy) { 3965 default: return 0; 3966 case MVT::f16: 3967 Opc = HasAVX512 ? X86::AVX512_FsFLD0SH : X86::FsFLD0SH; 3968 break; 3969 case MVT::f32: 3970 Opc = HasAVX512 ? X86::AVX512_FsFLD0SS 3971 : HasSSE1 ? X86::FsFLD0SS 3972 : X86::LD_Fp032; 3973 break; 3974 case MVT::f64: 3975 Opc = HasAVX512 ? X86::AVX512_FsFLD0SD 3976 : HasSSE2 ? X86::FsFLD0SD 3977 : X86::LD_Fp064; 3978 break; 3979 case MVT::f80: 3980 // No f80 support yet. 3981 return 0; 3982 } 3983 3984 Register ResultReg = createResultReg(TLI.getRegClassFor(VT)); 3985 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), ResultReg); 3986 return ResultReg; 3987 } 3988 3989 3990 bool X86FastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, 3991 const LoadInst *LI) { 3992 const Value *Ptr = LI->getPointerOperand(); 3993 X86AddressMode AM; 3994 if (!X86SelectAddress(Ptr, AM)) 3995 return false; 3996 3997 const X86InstrInfo &XII = (const X86InstrInfo &)TII; 3998 3999 unsigned Size = DL.getTypeAllocSize(LI->getType()); 4000 4001 SmallVector<MachineOperand, 8> AddrOps; 4002 AM.getFullAddress(AddrOps); 4003 4004 MachineInstr *Result = XII.foldMemoryOperandImpl( 4005 *FuncInfo.MF, *MI, OpNo, AddrOps, FuncInfo.InsertPt, Size, LI->getAlign(), 4006 /*AllowCommute=*/true); 4007 if (!Result) 4008 return false; 4009 4010 // The index register could be in the wrong register class. Unfortunately, 4011 // foldMemoryOperandImpl could have commuted the instruction so its not enough 4012 // to just look at OpNo + the offset to the index reg. We actually need to 4013 // scan the instruction to find the index reg and see if its the correct reg 4014 // class. 4015 unsigned OperandNo = 0; 4016 for (MachineInstr::mop_iterator I = Result->operands_begin(), 4017 E = Result->operands_end(); I != E; ++I, ++OperandNo) { 4018 MachineOperand &MO = *I; 4019 if (!MO.isReg() || MO.isDef() || MO.getReg() != AM.IndexReg) 4020 continue; 4021 // Found the index reg, now try to rewrite it. 4022 Register IndexReg = constrainOperandRegClass(Result->getDesc(), 4023 MO.getReg(), OperandNo); 4024 if (IndexReg == MO.getReg()) 4025 continue; 4026 MO.setReg(IndexReg); 4027 } 4028 4029 Result->addMemOperand(*FuncInfo.MF, createMachineMemOperandFor(LI)); 4030 Result->cloneInstrSymbols(*FuncInfo.MF, *MI); 4031 MachineBasicBlock::iterator I(MI); 4032 removeDeadCode(I, std::next(I)); 4033 return true; 4034 } 4035 4036 unsigned X86FastISel::fastEmitInst_rrrr(unsigned MachineInstOpcode, 4037 const TargetRegisterClass *RC, 4038 unsigned Op0, unsigned Op1, 4039 unsigned Op2, unsigned Op3) { 4040 const MCInstrDesc &II = TII.get(MachineInstOpcode); 4041 4042 Register ResultReg = createResultReg(RC); 4043 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 4044 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 4045 Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2); 4046 Op3 = constrainOperandRegClass(II, Op3, II.getNumDefs() + 3); 4047 4048 if (II.getNumDefs() >= 1) 4049 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg) 4050 .addReg(Op0) 4051 .addReg(Op1) 4052 .addReg(Op2) 4053 .addReg(Op3); 4054 else { 4055 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II) 4056 .addReg(Op0) 4057 .addReg(Op1) 4058 .addReg(Op2) 4059 .addReg(Op3); 4060 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY), 4061 ResultReg) 4062 .addReg(II.implicit_defs()[0]); 4063 } 4064 return ResultReg; 4065 } 4066 4067 4068 namespace llvm { 4069 FastISel *X86::createFastISel(FunctionLoweringInfo &funcInfo, 4070 const TargetLibraryInfo *libInfo) { 4071 return new X86FastISel(funcInfo, libInfo); 4072 } 4073 } 4074