1 //===------- VectorCombine.cpp - Optimize partial vector operations -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass optimizes scalar/vector interactions using target cost models. The
10 // transforms implemented here may not fit in traditional loop-based or SLP
11 // vectorization passes.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/Transforms/Vectorize/VectorCombine.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/BasicAliasAnalysis.h"
18 #include "llvm/Analysis/GlobalsModRef.h"
19 #include "llvm/Analysis/Loads.h"
20 #include "llvm/Analysis/TargetTransformInfo.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/Analysis/VectorUtils.h"
23 #include "llvm/IR/Dominators.h"
24 #include "llvm/IR/Function.h"
25 #include "llvm/IR/IRBuilder.h"
26 #include "llvm/IR/PatternMatch.h"
27 #include "llvm/InitializePasses.h"
28 #include "llvm/Pass.h"
29 #include "llvm/Support/CommandLine.h"
30 #include "llvm/Transforms/Utils/Local.h"
31 #include "llvm/Transforms/Vectorize.h"
32
33 using namespace llvm;
34 using namespace llvm::PatternMatch;
35
36 #define DEBUG_TYPE "vector-combine"
37 STATISTIC(NumVecLoad, "Number of vector loads formed");
38 STATISTIC(NumVecCmp, "Number of vector compares formed");
39 STATISTIC(NumVecBO, "Number of vector binops formed");
40 STATISTIC(NumVecCmpBO, "Number of vector compare + binop formed");
41 STATISTIC(NumShufOfBitcast, "Number of shuffles moved after bitcast");
42 STATISTIC(NumScalarBO, "Number of scalar binops formed");
43 STATISTIC(NumScalarCmp, "Number of scalar compares formed");
44
45 static cl::opt<bool> DisableVectorCombine(
46 "disable-vector-combine", cl::init(false), cl::Hidden,
47 cl::desc("Disable all vector combine transforms"));
48
49 static cl::opt<bool> DisableBinopExtractShuffle(
50 "disable-binop-extract-shuffle", cl::init(false), cl::Hidden,
51 cl::desc("Disable binop extract to shuffle transforms"));
52
53 static cl::opt<unsigned> MaxInstrsToScan(
54 "vector-combine-max-scan-instrs", cl::init(30), cl::Hidden,
55 cl::desc("Max number of instructions to scan for vector combining."));
56
57 static const unsigned InvalidIndex = std::numeric_limits<unsigned>::max();
58
59 namespace {
60 class VectorCombine {
61 public:
VectorCombine(Function & F,const TargetTransformInfo & TTI,const DominatorTree & DT,AAResults & AA)62 VectorCombine(Function &F, const TargetTransformInfo &TTI,
63 const DominatorTree &DT, AAResults &AA)
64 : F(F), Builder(F.getContext()), TTI(TTI), DT(DT), AA(AA) {}
65
66 bool run();
67
68 private:
69 Function &F;
70 IRBuilder<> Builder;
71 const TargetTransformInfo &TTI;
72 const DominatorTree &DT;
73 AAResults &AA;
74
75 bool vectorizeLoadInsert(Instruction &I);
76 ExtractElementInst *getShuffleExtract(ExtractElementInst *Ext0,
77 ExtractElementInst *Ext1,
78 unsigned PreferredExtractIndex) const;
79 bool isExtractExtractCheap(ExtractElementInst *Ext0, ExtractElementInst *Ext1,
80 unsigned Opcode,
81 ExtractElementInst *&ConvertToShuffle,
82 unsigned PreferredExtractIndex);
83 void foldExtExtCmp(ExtractElementInst *Ext0, ExtractElementInst *Ext1,
84 Instruction &I);
85 void foldExtExtBinop(ExtractElementInst *Ext0, ExtractElementInst *Ext1,
86 Instruction &I);
87 bool foldExtractExtract(Instruction &I);
88 bool foldBitcastShuf(Instruction &I);
89 bool scalarizeBinopOrCmp(Instruction &I);
90 bool foldExtractedCmps(Instruction &I);
91 bool foldSingleElementStore(Instruction &I);
92 };
93 } // namespace
94
replaceValue(Value & Old,Value & New)95 static void replaceValue(Value &Old, Value &New) {
96 Old.replaceAllUsesWith(&New);
97 New.takeName(&Old);
98 }
99
vectorizeLoadInsert(Instruction & I)100 bool VectorCombine::vectorizeLoadInsert(Instruction &I) {
101 // Match insert into fixed vector of scalar value.
102 // TODO: Handle non-zero insert index.
103 auto *Ty = dyn_cast<FixedVectorType>(I.getType());
104 Value *Scalar;
105 if (!Ty || !match(&I, m_InsertElt(m_Undef(), m_Value(Scalar), m_ZeroInt())) ||
106 !Scalar->hasOneUse())
107 return false;
108
109 // Optionally match an extract from another vector.
110 Value *X;
111 bool HasExtract = match(Scalar, m_ExtractElt(m_Value(X), m_ZeroInt()));
112 if (!HasExtract)
113 X = Scalar;
114
115 // Match source value as load of scalar or vector.
116 // Do not vectorize scalar load (widening) if atomic/volatile or under
117 // asan/hwasan/memtag/tsan. The widened load may load data from dirty regions
118 // or create data races non-existent in the source.
119 auto *Load = dyn_cast<LoadInst>(X);
120 if (!Load || !Load->isSimple() || !Load->hasOneUse() ||
121 Load->getFunction()->hasFnAttribute(Attribute::SanitizeMemTag) ||
122 mustSuppressSpeculation(*Load))
123 return false;
124
125 const DataLayout &DL = I.getModule()->getDataLayout();
126 Value *SrcPtr = Load->getPointerOperand()->stripPointerCasts();
127 assert(isa<PointerType>(SrcPtr->getType()) && "Expected a pointer type");
128
129 // If original AS != Load's AS, we can't bitcast the original pointer and have
130 // to use Load's operand instead. Ideally we would want to strip pointer casts
131 // without changing AS, but there's no API to do that ATM.
132 unsigned AS = Load->getPointerAddressSpace();
133 if (AS != SrcPtr->getType()->getPointerAddressSpace())
134 SrcPtr = Load->getPointerOperand();
135
136 // We are potentially transforming byte-sized (8-bit) memory accesses, so make
137 // sure we have all of our type-based constraints in place for this target.
138 Type *ScalarTy = Scalar->getType();
139 uint64_t ScalarSize = ScalarTy->getPrimitiveSizeInBits();
140 unsigned MinVectorSize = TTI.getMinVectorRegisterBitWidth();
141 if (!ScalarSize || !MinVectorSize || MinVectorSize % ScalarSize != 0 ||
142 ScalarSize % 8 != 0)
143 return false;
144
145 // Check safety of replacing the scalar load with a larger vector load.
146 // We use minimal alignment (maximum flexibility) because we only care about
147 // the dereferenceable region. When calculating cost and creating a new op,
148 // we may use a larger value based on alignment attributes.
149 unsigned MinVecNumElts = MinVectorSize / ScalarSize;
150 auto *MinVecTy = VectorType::get(ScalarTy, MinVecNumElts, false);
151 unsigned OffsetEltIndex = 0;
152 Align Alignment = Load->getAlign();
153 if (!isSafeToLoadUnconditionally(SrcPtr, MinVecTy, Align(1), DL, Load, &DT)) {
154 // It is not safe to load directly from the pointer, but we can still peek
155 // through gep offsets and check if it safe to load from a base address with
156 // updated alignment. If it is, we can shuffle the element(s) into place
157 // after loading.
158 unsigned OffsetBitWidth = DL.getIndexTypeSizeInBits(SrcPtr->getType());
159 APInt Offset(OffsetBitWidth, 0);
160 SrcPtr = SrcPtr->stripAndAccumulateInBoundsConstantOffsets(DL, Offset);
161
162 // We want to shuffle the result down from a high element of a vector, so
163 // the offset must be positive.
164 if (Offset.isNegative())
165 return false;
166
167 // The offset must be a multiple of the scalar element to shuffle cleanly
168 // in the element's size.
169 uint64_t ScalarSizeInBytes = ScalarSize / 8;
170 if (Offset.urem(ScalarSizeInBytes) != 0)
171 return false;
172
173 // If we load MinVecNumElts, will our target element still be loaded?
174 OffsetEltIndex = Offset.udiv(ScalarSizeInBytes).getZExtValue();
175 if (OffsetEltIndex >= MinVecNumElts)
176 return false;
177
178 if (!isSafeToLoadUnconditionally(SrcPtr, MinVecTy, Align(1), DL, Load, &DT))
179 return false;
180
181 // Update alignment with offset value. Note that the offset could be negated
182 // to more accurately represent "(new) SrcPtr - Offset = (old) SrcPtr", but
183 // negation does not change the result of the alignment calculation.
184 Alignment = commonAlignment(Alignment, Offset.getZExtValue());
185 }
186
187 // Original pattern: insertelt undef, load [free casts of] PtrOp, 0
188 // Use the greater of the alignment on the load or its source pointer.
189 Alignment = std::max(SrcPtr->getPointerAlignment(DL), Alignment);
190 Type *LoadTy = Load->getType();
191 InstructionCost OldCost =
192 TTI.getMemoryOpCost(Instruction::Load, LoadTy, Alignment, AS);
193 APInt DemandedElts = APInt::getOneBitSet(MinVecNumElts, 0);
194 OldCost += TTI.getScalarizationOverhead(MinVecTy, DemandedElts,
195 /* Insert */ true, HasExtract);
196
197 // New pattern: load VecPtr
198 InstructionCost NewCost =
199 TTI.getMemoryOpCost(Instruction::Load, MinVecTy, Alignment, AS);
200 // Optionally, we are shuffling the loaded vector element(s) into place.
201 // For the mask set everything but element 0 to undef to prevent poison from
202 // propagating from the extra loaded memory. This will also optionally
203 // shrink/grow the vector from the loaded size to the output size.
204 // We assume this operation has no cost in codegen if there was no offset.
205 // Note that we could use freeze to avoid poison problems, but then we might
206 // still need a shuffle to change the vector size.
207 unsigned OutputNumElts = Ty->getNumElements();
208 SmallVector<int, 16> Mask(OutputNumElts, UndefMaskElem);
209 assert(OffsetEltIndex < MinVecNumElts && "Address offset too big");
210 Mask[0] = OffsetEltIndex;
211 if (OffsetEltIndex)
212 NewCost += TTI.getShuffleCost(TTI::SK_PermuteSingleSrc, MinVecTy, Mask);
213
214 // We can aggressively convert to the vector form because the backend can
215 // invert this transform if it does not result in a performance win.
216 if (OldCost < NewCost || !NewCost.isValid())
217 return false;
218
219 // It is safe and potentially profitable to load a vector directly:
220 // inselt undef, load Scalar, 0 --> load VecPtr
221 IRBuilder<> Builder(Load);
222 Value *CastedPtr = Builder.CreateBitCast(SrcPtr, MinVecTy->getPointerTo(AS));
223 Value *VecLd = Builder.CreateAlignedLoad(MinVecTy, CastedPtr, Alignment);
224 VecLd = Builder.CreateShuffleVector(VecLd, Mask);
225
226 replaceValue(I, *VecLd);
227 ++NumVecLoad;
228 return true;
229 }
230
231 /// Determine which, if any, of the inputs should be replaced by a shuffle
232 /// followed by extract from a different index.
getShuffleExtract(ExtractElementInst * Ext0,ExtractElementInst * Ext1,unsigned PreferredExtractIndex=InvalidIndex) const233 ExtractElementInst *VectorCombine::getShuffleExtract(
234 ExtractElementInst *Ext0, ExtractElementInst *Ext1,
235 unsigned PreferredExtractIndex = InvalidIndex) const {
236 assert(isa<ConstantInt>(Ext0->getIndexOperand()) &&
237 isa<ConstantInt>(Ext1->getIndexOperand()) &&
238 "Expected constant extract indexes");
239
240 unsigned Index0 = cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue();
241 unsigned Index1 = cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue();
242
243 // If the extract indexes are identical, no shuffle is needed.
244 if (Index0 == Index1)
245 return nullptr;
246
247 Type *VecTy = Ext0->getVectorOperand()->getType();
248 assert(VecTy == Ext1->getVectorOperand()->getType() && "Need matching types");
249 InstructionCost Cost0 =
250 TTI.getVectorInstrCost(Ext0->getOpcode(), VecTy, Index0);
251 InstructionCost Cost1 =
252 TTI.getVectorInstrCost(Ext1->getOpcode(), VecTy, Index1);
253
254 // If both costs are invalid no shuffle is needed
255 if (!Cost0.isValid() && !Cost1.isValid())
256 return nullptr;
257
258 // We are extracting from 2 different indexes, so one operand must be shuffled
259 // before performing a vector operation and/or extract. The more expensive
260 // extract will be replaced by a shuffle.
261 if (Cost0 > Cost1)
262 return Ext0;
263 if (Cost1 > Cost0)
264 return Ext1;
265
266 // If the costs are equal and there is a preferred extract index, shuffle the
267 // opposite operand.
268 if (PreferredExtractIndex == Index0)
269 return Ext1;
270 if (PreferredExtractIndex == Index1)
271 return Ext0;
272
273 // Otherwise, replace the extract with the higher index.
274 return Index0 > Index1 ? Ext0 : Ext1;
275 }
276
277 /// Compare the relative costs of 2 extracts followed by scalar operation vs.
278 /// vector operation(s) followed by extract. Return true if the existing
279 /// instructions are cheaper than a vector alternative. Otherwise, return false
280 /// and if one of the extracts should be transformed to a shufflevector, set
281 /// \p ConvertToShuffle to that extract instruction.
isExtractExtractCheap(ExtractElementInst * Ext0,ExtractElementInst * Ext1,unsigned Opcode,ExtractElementInst * & ConvertToShuffle,unsigned PreferredExtractIndex)282 bool VectorCombine::isExtractExtractCheap(ExtractElementInst *Ext0,
283 ExtractElementInst *Ext1,
284 unsigned Opcode,
285 ExtractElementInst *&ConvertToShuffle,
286 unsigned PreferredExtractIndex) {
287 assert(isa<ConstantInt>(Ext0->getOperand(1)) &&
288 isa<ConstantInt>(Ext1->getOperand(1)) &&
289 "Expected constant extract indexes");
290 Type *ScalarTy = Ext0->getType();
291 auto *VecTy = cast<VectorType>(Ext0->getOperand(0)->getType());
292 InstructionCost ScalarOpCost, VectorOpCost;
293
294 // Get cost estimates for scalar and vector versions of the operation.
295 bool IsBinOp = Instruction::isBinaryOp(Opcode);
296 if (IsBinOp) {
297 ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy);
298 VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy);
299 } else {
300 assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
301 "Expected a compare");
302 ScalarOpCost = TTI.getCmpSelInstrCost(Opcode, ScalarTy,
303 CmpInst::makeCmpResultType(ScalarTy));
304 VectorOpCost = TTI.getCmpSelInstrCost(Opcode, VecTy,
305 CmpInst::makeCmpResultType(VecTy));
306 }
307
308 // Get cost estimates for the extract elements. These costs will factor into
309 // both sequences.
310 unsigned Ext0Index = cast<ConstantInt>(Ext0->getOperand(1))->getZExtValue();
311 unsigned Ext1Index = cast<ConstantInt>(Ext1->getOperand(1))->getZExtValue();
312
313 InstructionCost Extract0Cost =
314 TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy, Ext0Index);
315 InstructionCost Extract1Cost =
316 TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy, Ext1Index);
317
318 // A more expensive extract will always be replaced by a splat shuffle.
319 // For example, if Ext0 is more expensive:
320 // opcode (extelt V0, Ext0), (ext V1, Ext1) -->
321 // extelt (opcode (splat V0, Ext0), V1), Ext1
322 // TODO: Evaluate whether that always results in lowest cost. Alternatively,
323 // check the cost of creating a broadcast shuffle and shuffling both
324 // operands to element 0.
325 InstructionCost CheapExtractCost = std::min(Extract0Cost, Extract1Cost);
326
327 // Extra uses of the extracts mean that we include those costs in the
328 // vector total because those instructions will not be eliminated.
329 InstructionCost OldCost, NewCost;
330 if (Ext0->getOperand(0) == Ext1->getOperand(0) && Ext0Index == Ext1Index) {
331 // Handle a special case. If the 2 extracts are identical, adjust the
332 // formulas to account for that. The extra use charge allows for either the
333 // CSE'd pattern or an unoptimized form with identical values:
334 // opcode (extelt V, C), (extelt V, C) --> extelt (opcode V, V), C
335 bool HasUseTax = Ext0 == Ext1 ? !Ext0->hasNUses(2)
336 : !Ext0->hasOneUse() || !Ext1->hasOneUse();
337 OldCost = CheapExtractCost + ScalarOpCost;
338 NewCost = VectorOpCost + CheapExtractCost + HasUseTax * CheapExtractCost;
339 } else {
340 // Handle the general case. Each extract is actually a different value:
341 // opcode (extelt V0, C0), (extelt V1, C1) --> extelt (opcode V0, V1), C
342 OldCost = Extract0Cost + Extract1Cost + ScalarOpCost;
343 NewCost = VectorOpCost + CheapExtractCost +
344 !Ext0->hasOneUse() * Extract0Cost +
345 !Ext1->hasOneUse() * Extract1Cost;
346 }
347
348 ConvertToShuffle = getShuffleExtract(Ext0, Ext1, PreferredExtractIndex);
349 if (ConvertToShuffle) {
350 if (IsBinOp && DisableBinopExtractShuffle)
351 return true;
352
353 // If we are extracting from 2 different indexes, then one operand must be
354 // shuffled before performing the vector operation. The shuffle mask is
355 // undefined except for 1 lane that is being translated to the remaining
356 // extraction lane. Therefore, it is a splat shuffle. Ex:
357 // ShufMask = { undef, undef, 0, undef }
358 // TODO: The cost model has an option for a "broadcast" shuffle
359 // (splat-from-element-0), but no option for a more general splat.
360 NewCost +=
361 TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy);
362 }
363
364 // Aggressively form a vector op if the cost is equal because the transform
365 // may enable further optimization.
366 // Codegen can reverse this transform (scalarize) if it was not profitable.
367 return OldCost < NewCost;
368 }
369
370 /// Create a shuffle that translates (shifts) 1 element from the input vector
371 /// to a new element location.
createShiftShuffle(Value * Vec,unsigned OldIndex,unsigned NewIndex,IRBuilder<> & Builder)372 static Value *createShiftShuffle(Value *Vec, unsigned OldIndex,
373 unsigned NewIndex, IRBuilder<> &Builder) {
374 // The shuffle mask is undefined except for 1 lane that is being translated
375 // to the new element index. Example for OldIndex == 2 and NewIndex == 0:
376 // ShufMask = { 2, undef, undef, undef }
377 auto *VecTy = cast<FixedVectorType>(Vec->getType());
378 SmallVector<int, 32> ShufMask(VecTy->getNumElements(), UndefMaskElem);
379 ShufMask[NewIndex] = OldIndex;
380 return Builder.CreateShuffleVector(Vec, ShufMask, "shift");
381 }
382
383 /// Given an extract element instruction with constant index operand, shuffle
384 /// the source vector (shift the scalar element) to a NewIndex for extraction.
385 /// Return null if the input can be constant folded, so that we are not creating
386 /// unnecessary instructions.
translateExtract(ExtractElementInst * ExtElt,unsigned NewIndex,IRBuilder<> & Builder)387 static ExtractElementInst *translateExtract(ExtractElementInst *ExtElt,
388 unsigned NewIndex,
389 IRBuilder<> &Builder) {
390 // If the extract can be constant-folded, this code is unsimplified. Defer
391 // to other passes to handle that.
392 Value *X = ExtElt->getVectorOperand();
393 Value *C = ExtElt->getIndexOperand();
394 assert(isa<ConstantInt>(C) && "Expected a constant index operand");
395 if (isa<Constant>(X))
396 return nullptr;
397
398 Value *Shuf = createShiftShuffle(X, cast<ConstantInt>(C)->getZExtValue(),
399 NewIndex, Builder);
400 return cast<ExtractElementInst>(Builder.CreateExtractElement(Shuf, NewIndex));
401 }
402
403 /// Try to reduce extract element costs by converting scalar compares to vector
404 /// compares followed by extract.
405 /// cmp (ext0 V0, C), (ext1 V1, C)
foldExtExtCmp(ExtractElementInst * Ext0,ExtractElementInst * Ext1,Instruction & I)406 void VectorCombine::foldExtExtCmp(ExtractElementInst *Ext0,
407 ExtractElementInst *Ext1, Instruction &I) {
408 assert(isa<CmpInst>(&I) && "Expected a compare");
409 assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() ==
410 cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() &&
411 "Expected matching constant extract indexes");
412
413 // cmp Pred (extelt V0, C), (extelt V1, C) --> extelt (cmp Pred V0, V1), C
414 ++NumVecCmp;
415 CmpInst::Predicate Pred = cast<CmpInst>(&I)->getPredicate();
416 Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand();
417 Value *VecCmp = Builder.CreateCmp(Pred, V0, V1);
418 Value *NewExt = Builder.CreateExtractElement(VecCmp, Ext0->getIndexOperand());
419 replaceValue(I, *NewExt);
420 }
421
422 /// Try to reduce extract element costs by converting scalar binops to vector
423 /// binops followed by extract.
424 /// bo (ext0 V0, C), (ext1 V1, C)
foldExtExtBinop(ExtractElementInst * Ext0,ExtractElementInst * Ext1,Instruction & I)425 void VectorCombine::foldExtExtBinop(ExtractElementInst *Ext0,
426 ExtractElementInst *Ext1, Instruction &I) {
427 assert(isa<BinaryOperator>(&I) && "Expected a binary operator");
428 assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() ==
429 cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() &&
430 "Expected matching constant extract indexes");
431
432 // bo (extelt V0, C), (extelt V1, C) --> extelt (bo V0, V1), C
433 ++NumVecBO;
434 Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand();
435 Value *VecBO =
436 Builder.CreateBinOp(cast<BinaryOperator>(&I)->getOpcode(), V0, V1);
437
438 // All IR flags are safe to back-propagate because any potential poison
439 // created in unused vector elements is discarded by the extract.
440 if (auto *VecBOInst = dyn_cast<Instruction>(VecBO))
441 VecBOInst->copyIRFlags(&I);
442
443 Value *NewExt = Builder.CreateExtractElement(VecBO, Ext0->getIndexOperand());
444 replaceValue(I, *NewExt);
445 }
446
447 /// Match an instruction with extracted vector operands.
foldExtractExtract(Instruction & I)448 bool VectorCombine::foldExtractExtract(Instruction &I) {
449 // It is not safe to transform things like div, urem, etc. because we may
450 // create undefined behavior when executing those on unknown vector elements.
451 if (!isSafeToSpeculativelyExecute(&I))
452 return false;
453
454 Instruction *I0, *I1;
455 CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
456 if (!match(&I, m_Cmp(Pred, m_Instruction(I0), m_Instruction(I1))) &&
457 !match(&I, m_BinOp(m_Instruction(I0), m_Instruction(I1))))
458 return false;
459
460 Value *V0, *V1;
461 uint64_t C0, C1;
462 if (!match(I0, m_ExtractElt(m_Value(V0), m_ConstantInt(C0))) ||
463 !match(I1, m_ExtractElt(m_Value(V1), m_ConstantInt(C1))) ||
464 V0->getType() != V1->getType())
465 return false;
466
467 // If the scalar value 'I' is going to be re-inserted into a vector, then try
468 // to create an extract to that same element. The extract/insert can be
469 // reduced to a "select shuffle".
470 // TODO: If we add a larger pattern match that starts from an insert, this
471 // probably becomes unnecessary.
472 auto *Ext0 = cast<ExtractElementInst>(I0);
473 auto *Ext1 = cast<ExtractElementInst>(I1);
474 uint64_t InsertIndex = InvalidIndex;
475 if (I.hasOneUse())
476 match(I.user_back(),
477 m_InsertElt(m_Value(), m_Value(), m_ConstantInt(InsertIndex)));
478
479 ExtractElementInst *ExtractToChange;
480 if (isExtractExtractCheap(Ext0, Ext1, I.getOpcode(), ExtractToChange,
481 InsertIndex))
482 return false;
483
484 if (ExtractToChange) {
485 unsigned CheapExtractIdx = ExtractToChange == Ext0 ? C1 : C0;
486 ExtractElementInst *NewExtract =
487 translateExtract(ExtractToChange, CheapExtractIdx, Builder);
488 if (!NewExtract)
489 return false;
490 if (ExtractToChange == Ext0)
491 Ext0 = NewExtract;
492 else
493 Ext1 = NewExtract;
494 }
495
496 if (Pred != CmpInst::BAD_ICMP_PREDICATE)
497 foldExtExtCmp(Ext0, Ext1, I);
498 else
499 foldExtExtBinop(Ext0, Ext1, I);
500
501 return true;
502 }
503
504 /// If this is a bitcast of a shuffle, try to bitcast the source vector to the
505 /// destination type followed by shuffle. This can enable further transforms by
506 /// moving bitcasts or shuffles together.
foldBitcastShuf(Instruction & I)507 bool VectorCombine::foldBitcastShuf(Instruction &I) {
508 Value *V;
509 ArrayRef<int> Mask;
510 if (!match(&I, m_BitCast(
511 m_OneUse(m_Shuffle(m_Value(V), m_Undef(), m_Mask(Mask))))))
512 return false;
513
514 // 1) Do not fold bitcast shuffle for scalable type. First, shuffle cost for
515 // scalable type is unknown; Second, we cannot reason if the narrowed shuffle
516 // mask for scalable type is a splat or not.
517 // 2) Disallow non-vector casts and length-changing shuffles.
518 // TODO: We could allow any shuffle.
519 auto *DestTy = dyn_cast<FixedVectorType>(I.getType());
520 auto *SrcTy = dyn_cast<FixedVectorType>(V->getType());
521 if (!SrcTy || !DestTy || I.getOperand(0)->getType() != SrcTy)
522 return false;
523
524 unsigned DestNumElts = DestTy->getNumElements();
525 unsigned SrcNumElts = SrcTy->getNumElements();
526 SmallVector<int, 16> NewMask;
527 if (SrcNumElts <= DestNumElts) {
528 // The bitcast is from wide to narrow/equal elements. The shuffle mask can
529 // always be expanded to the equivalent form choosing narrower elements.
530 assert(DestNumElts % SrcNumElts == 0 && "Unexpected shuffle mask");
531 unsigned ScaleFactor = DestNumElts / SrcNumElts;
532 narrowShuffleMaskElts(ScaleFactor, Mask, NewMask);
533 } else {
534 // The bitcast is from narrow elements to wide elements. The shuffle mask
535 // must choose consecutive elements to allow casting first.
536 assert(SrcNumElts % DestNumElts == 0 && "Unexpected shuffle mask");
537 unsigned ScaleFactor = SrcNumElts / DestNumElts;
538 if (!widenShuffleMaskElts(ScaleFactor, Mask, NewMask))
539 return false;
540 }
541
542 // The new shuffle must not cost more than the old shuffle. The bitcast is
543 // moved ahead of the shuffle, so assume that it has the same cost as before.
544 InstructionCost DestCost = TTI.getShuffleCost(
545 TargetTransformInfo::SK_PermuteSingleSrc, DestTy, NewMask);
546 InstructionCost SrcCost =
547 TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, SrcTy, Mask);
548 if (DestCost > SrcCost || !DestCost.isValid())
549 return false;
550
551 // bitcast (shuf V, MaskC) --> shuf (bitcast V), MaskC'
552 ++NumShufOfBitcast;
553 Value *CastV = Builder.CreateBitCast(V, DestTy);
554 Value *Shuf = Builder.CreateShuffleVector(CastV, NewMask);
555 replaceValue(I, *Shuf);
556 return true;
557 }
558
559 /// Match a vector binop or compare instruction with at least one inserted
560 /// scalar operand and convert to scalar binop/cmp followed by insertelement.
scalarizeBinopOrCmp(Instruction & I)561 bool VectorCombine::scalarizeBinopOrCmp(Instruction &I) {
562 CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
563 Value *Ins0, *Ins1;
564 if (!match(&I, m_BinOp(m_Value(Ins0), m_Value(Ins1))) &&
565 !match(&I, m_Cmp(Pred, m_Value(Ins0), m_Value(Ins1))))
566 return false;
567
568 // Do not convert the vector condition of a vector select into a scalar
569 // condition. That may cause problems for codegen because of differences in
570 // boolean formats and register-file transfers.
571 // TODO: Can we account for that in the cost model?
572 bool IsCmp = Pred != CmpInst::Predicate::BAD_ICMP_PREDICATE;
573 if (IsCmp)
574 for (User *U : I.users())
575 if (match(U, m_Select(m_Specific(&I), m_Value(), m_Value())))
576 return false;
577
578 // Match against one or both scalar values being inserted into constant
579 // vectors:
580 // vec_op VecC0, (inselt VecC1, V1, Index)
581 // vec_op (inselt VecC0, V0, Index), VecC1
582 // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index)
583 // TODO: Deal with mismatched index constants and variable indexes?
584 Constant *VecC0 = nullptr, *VecC1 = nullptr;
585 Value *V0 = nullptr, *V1 = nullptr;
586 uint64_t Index0 = 0, Index1 = 0;
587 if (!match(Ins0, m_InsertElt(m_Constant(VecC0), m_Value(V0),
588 m_ConstantInt(Index0))) &&
589 !match(Ins0, m_Constant(VecC0)))
590 return false;
591 if (!match(Ins1, m_InsertElt(m_Constant(VecC1), m_Value(V1),
592 m_ConstantInt(Index1))) &&
593 !match(Ins1, m_Constant(VecC1)))
594 return false;
595
596 bool IsConst0 = !V0;
597 bool IsConst1 = !V1;
598 if (IsConst0 && IsConst1)
599 return false;
600 if (!IsConst0 && !IsConst1 && Index0 != Index1)
601 return false;
602
603 // Bail for single insertion if it is a load.
604 // TODO: Handle this once getVectorInstrCost can cost for load/stores.
605 auto *I0 = dyn_cast_or_null<Instruction>(V0);
606 auto *I1 = dyn_cast_or_null<Instruction>(V1);
607 if ((IsConst0 && I1 && I1->mayReadFromMemory()) ||
608 (IsConst1 && I0 && I0->mayReadFromMemory()))
609 return false;
610
611 uint64_t Index = IsConst0 ? Index1 : Index0;
612 Type *ScalarTy = IsConst0 ? V1->getType() : V0->getType();
613 Type *VecTy = I.getType();
614 assert(VecTy->isVectorTy() &&
615 (IsConst0 || IsConst1 || V0->getType() == V1->getType()) &&
616 (ScalarTy->isIntegerTy() || ScalarTy->isFloatingPointTy() ||
617 ScalarTy->isPointerTy()) &&
618 "Unexpected types for insert element into binop or cmp");
619
620 unsigned Opcode = I.getOpcode();
621 InstructionCost ScalarOpCost, VectorOpCost;
622 if (IsCmp) {
623 ScalarOpCost = TTI.getCmpSelInstrCost(Opcode, ScalarTy);
624 VectorOpCost = TTI.getCmpSelInstrCost(Opcode, VecTy);
625 } else {
626 ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy);
627 VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy);
628 }
629
630 // Get cost estimate for the insert element. This cost will factor into
631 // both sequences.
632 InstructionCost InsertCost =
633 TTI.getVectorInstrCost(Instruction::InsertElement, VecTy, Index);
634 InstructionCost OldCost =
635 (IsConst0 ? 0 : InsertCost) + (IsConst1 ? 0 : InsertCost) + VectorOpCost;
636 InstructionCost NewCost = ScalarOpCost + InsertCost +
637 (IsConst0 ? 0 : !Ins0->hasOneUse() * InsertCost) +
638 (IsConst1 ? 0 : !Ins1->hasOneUse() * InsertCost);
639
640 // We want to scalarize unless the vector variant actually has lower cost.
641 if (OldCost < NewCost || !NewCost.isValid())
642 return false;
643
644 // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index) -->
645 // inselt NewVecC, (scalar_op V0, V1), Index
646 if (IsCmp)
647 ++NumScalarCmp;
648 else
649 ++NumScalarBO;
650
651 // For constant cases, extract the scalar element, this should constant fold.
652 if (IsConst0)
653 V0 = ConstantExpr::getExtractElement(VecC0, Builder.getInt64(Index));
654 if (IsConst1)
655 V1 = ConstantExpr::getExtractElement(VecC1, Builder.getInt64(Index));
656
657 Value *Scalar =
658 IsCmp ? Builder.CreateCmp(Pred, V0, V1)
659 : Builder.CreateBinOp((Instruction::BinaryOps)Opcode, V0, V1);
660
661 Scalar->setName(I.getName() + ".scalar");
662
663 // All IR flags are safe to back-propagate. There is no potential for extra
664 // poison to be created by the scalar instruction.
665 if (auto *ScalarInst = dyn_cast<Instruction>(Scalar))
666 ScalarInst->copyIRFlags(&I);
667
668 // Fold the vector constants in the original vectors into a new base vector.
669 Constant *NewVecC = IsCmp ? ConstantExpr::getCompare(Pred, VecC0, VecC1)
670 : ConstantExpr::get(Opcode, VecC0, VecC1);
671 Value *Insert = Builder.CreateInsertElement(NewVecC, Scalar, Index);
672 replaceValue(I, *Insert);
673 return true;
674 }
675
676 /// Try to combine a scalar binop + 2 scalar compares of extracted elements of
677 /// a vector into vector operations followed by extract. Note: The SLP pass
678 /// may miss this pattern because of implementation problems.
foldExtractedCmps(Instruction & I)679 bool VectorCombine::foldExtractedCmps(Instruction &I) {
680 // We are looking for a scalar binop of booleans.
681 // binop i1 (cmp Pred I0, C0), (cmp Pred I1, C1)
682 if (!I.isBinaryOp() || !I.getType()->isIntegerTy(1))
683 return false;
684
685 // The compare predicates should match, and each compare should have a
686 // constant operand.
687 // TODO: Relax the one-use constraints.
688 Value *B0 = I.getOperand(0), *B1 = I.getOperand(1);
689 Instruction *I0, *I1;
690 Constant *C0, *C1;
691 CmpInst::Predicate P0, P1;
692 if (!match(B0, m_OneUse(m_Cmp(P0, m_Instruction(I0), m_Constant(C0)))) ||
693 !match(B1, m_OneUse(m_Cmp(P1, m_Instruction(I1), m_Constant(C1)))) ||
694 P0 != P1)
695 return false;
696
697 // The compare operands must be extracts of the same vector with constant
698 // extract indexes.
699 // TODO: Relax the one-use constraints.
700 Value *X;
701 uint64_t Index0, Index1;
702 if (!match(I0, m_OneUse(m_ExtractElt(m_Value(X), m_ConstantInt(Index0)))) ||
703 !match(I1, m_OneUse(m_ExtractElt(m_Specific(X), m_ConstantInt(Index1)))))
704 return false;
705
706 auto *Ext0 = cast<ExtractElementInst>(I0);
707 auto *Ext1 = cast<ExtractElementInst>(I1);
708 ExtractElementInst *ConvertToShuf = getShuffleExtract(Ext0, Ext1);
709 if (!ConvertToShuf)
710 return false;
711
712 // The original scalar pattern is:
713 // binop i1 (cmp Pred (ext X, Index0), C0), (cmp Pred (ext X, Index1), C1)
714 CmpInst::Predicate Pred = P0;
715 unsigned CmpOpcode = CmpInst::isFPPredicate(Pred) ? Instruction::FCmp
716 : Instruction::ICmp;
717 auto *VecTy = dyn_cast<FixedVectorType>(X->getType());
718 if (!VecTy)
719 return false;
720
721 InstructionCost OldCost =
722 TTI.getVectorInstrCost(Ext0->getOpcode(), VecTy, Index0);
723 OldCost += TTI.getVectorInstrCost(Ext1->getOpcode(), VecTy, Index1);
724 OldCost += TTI.getCmpSelInstrCost(CmpOpcode, I0->getType()) * 2;
725 OldCost += TTI.getArithmeticInstrCost(I.getOpcode(), I.getType());
726
727 // The proposed vector pattern is:
728 // vcmp = cmp Pred X, VecC
729 // ext (binop vNi1 vcmp, (shuffle vcmp, Index1)), Index0
730 int CheapIndex = ConvertToShuf == Ext0 ? Index1 : Index0;
731 int ExpensiveIndex = ConvertToShuf == Ext0 ? Index0 : Index1;
732 auto *CmpTy = cast<FixedVectorType>(CmpInst::makeCmpResultType(X->getType()));
733 InstructionCost NewCost = TTI.getCmpSelInstrCost(CmpOpcode, X->getType());
734 SmallVector<int, 32> ShufMask(VecTy->getNumElements(), UndefMaskElem);
735 ShufMask[CheapIndex] = ExpensiveIndex;
736 NewCost += TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, CmpTy,
737 ShufMask);
738 NewCost += TTI.getArithmeticInstrCost(I.getOpcode(), CmpTy);
739 NewCost += TTI.getVectorInstrCost(Ext0->getOpcode(), CmpTy, CheapIndex);
740
741 // Aggressively form vector ops if the cost is equal because the transform
742 // may enable further optimization.
743 // Codegen can reverse this transform (scalarize) if it was not profitable.
744 if (OldCost < NewCost || !NewCost.isValid())
745 return false;
746
747 // Create a vector constant from the 2 scalar constants.
748 SmallVector<Constant *, 32> CmpC(VecTy->getNumElements(),
749 UndefValue::get(VecTy->getElementType()));
750 CmpC[Index0] = C0;
751 CmpC[Index1] = C1;
752 Value *VCmp = Builder.CreateCmp(Pred, X, ConstantVector::get(CmpC));
753
754 Value *Shuf = createShiftShuffle(VCmp, ExpensiveIndex, CheapIndex, Builder);
755 Value *VecLogic = Builder.CreateBinOp(cast<BinaryOperator>(I).getOpcode(),
756 VCmp, Shuf);
757 Value *NewExt = Builder.CreateExtractElement(VecLogic, CheapIndex);
758 replaceValue(I, *NewExt);
759 ++NumVecCmpBO;
760 return true;
761 }
762
763 // Check if memory loc modified between two instrs in the same BB
isMemModifiedBetween(BasicBlock::iterator Begin,BasicBlock::iterator End,const MemoryLocation & Loc,AAResults & AA)764 static bool isMemModifiedBetween(BasicBlock::iterator Begin,
765 BasicBlock::iterator End,
766 const MemoryLocation &Loc, AAResults &AA) {
767 unsigned NumScanned = 0;
768 return std::any_of(Begin, End, [&](const Instruction &Instr) {
769 return isModSet(AA.getModRefInfo(&Instr, Loc)) ||
770 ++NumScanned > MaxInstrsToScan;
771 });
772 }
773
774 // Combine patterns like:
775 // %0 = load <4 x i32>, <4 x i32>* %a
776 // %1 = insertelement <4 x i32> %0, i32 %b, i32 1
777 // store <4 x i32> %1, <4 x i32>* %a
778 // to:
779 // %0 = bitcast <4 x i32>* %a to i32*
780 // %1 = getelementptr inbounds i32, i32* %0, i64 0, i64 1
781 // store i32 %b, i32* %1
foldSingleElementStore(Instruction & I)782 bool VectorCombine::foldSingleElementStore(Instruction &I) {
783 StoreInst *SI = dyn_cast<StoreInst>(&I);
784 if (!SI || !SI->isSimple() ||
785 !isa<FixedVectorType>(SI->getValueOperand()->getType()))
786 return false;
787
788 // TODO: Combine more complicated patterns (multiple insert) by referencing
789 // TargetTransformInfo.
790 Instruction *Source;
791 Value *NewElement;
792 ConstantInt *Idx;
793 if (!match(SI->getValueOperand(),
794 m_InsertElt(m_Instruction(Source), m_Value(NewElement),
795 m_ConstantInt(Idx))))
796 return false;
797
798 if (auto *Load = dyn_cast<LoadInst>(Source)) {
799 auto VecTy = cast<FixedVectorType>(SI->getValueOperand()->getType());
800 const DataLayout &DL = I.getModule()->getDataLayout();
801 Value *SrcAddr = Load->getPointerOperand()->stripPointerCasts();
802 // Don't optimize for atomic/volatile load or store. Ensure memory is not
803 // modified between, vector type matches store size, and index is inbounds.
804 if (!Load->isSimple() || Load->getParent() != SI->getParent() ||
805 !DL.typeSizeEqualsStoreSize(Load->getType()) ||
806 Idx->uge(VecTy->getNumElements()) ||
807 SrcAddr != SI->getPointerOperand()->stripPointerCasts() ||
808 isMemModifiedBetween(Load->getIterator(), SI->getIterator(),
809 MemoryLocation::get(SI), AA))
810 return false;
811
812 Value *GEP = GetElementPtrInst::CreateInBounds(
813 SI->getPointerOperand(), {ConstantInt::get(Idx->getType(), 0), Idx});
814 Builder.Insert(GEP);
815 StoreInst *NSI = Builder.CreateStore(NewElement, GEP);
816 NSI->copyMetadata(*SI);
817 if (SI->getAlign() < NSI->getAlign())
818 NSI->setAlignment(SI->getAlign());
819 replaceValue(I, *NSI);
820 // Need erasing the store manually.
821 I.eraseFromParent();
822 return true;
823 }
824
825 return false;
826 }
827
828 /// This is the entry point for all transforms. Pass manager differences are
829 /// handled in the callers of this function.
run()830 bool VectorCombine::run() {
831 if (DisableVectorCombine)
832 return false;
833
834 // Don't attempt vectorization if the target does not support vectors.
835 if (!TTI.getNumberOfRegisters(TTI.getRegisterClassForType(/*Vector*/ true)))
836 return false;
837
838 bool MadeChange = false;
839 for (BasicBlock &BB : F) {
840 // Ignore unreachable basic blocks.
841 if (!DT.isReachableFromEntry(&BB))
842 continue;
843 // Use early increment range so that we can erase instructions in loop.
844 for (Instruction &I : make_early_inc_range(BB)) {
845 if (isa<DbgInfoIntrinsic>(I))
846 continue;
847 Builder.SetInsertPoint(&I);
848 MadeChange |= vectorizeLoadInsert(I);
849 MadeChange |= foldExtractExtract(I);
850 MadeChange |= foldBitcastShuf(I);
851 MadeChange |= scalarizeBinopOrCmp(I);
852 MadeChange |= foldExtractedCmps(I);
853 MadeChange |= foldSingleElementStore(I);
854 }
855 }
856
857 // We're done with transforms, so remove dead instructions.
858 if (MadeChange)
859 for (BasicBlock &BB : F)
860 SimplifyInstructionsInBlock(&BB);
861
862 return MadeChange;
863 }
864
865 // Pass manager boilerplate below here.
866
867 namespace {
868 class VectorCombineLegacyPass : public FunctionPass {
869 public:
870 static char ID;
VectorCombineLegacyPass()871 VectorCombineLegacyPass() : FunctionPass(ID) {
872 initializeVectorCombineLegacyPassPass(*PassRegistry::getPassRegistry());
873 }
874
getAnalysisUsage(AnalysisUsage & AU) const875 void getAnalysisUsage(AnalysisUsage &AU) const override {
876 AU.addRequired<DominatorTreeWrapperPass>();
877 AU.addRequired<TargetTransformInfoWrapperPass>();
878 AU.addRequired<AAResultsWrapperPass>();
879 AU.setPreservesCFG();
880 AU.addPreserved<DominatorTreeWrapperPass>();
881 AU.addPreserved<GlobalsAAWrapperPass>();
882 AU.addPreserved<AAResultsWrapperPass>();
883 AU.addPreserved<BasicAAWrapperPass>();
884 FunctionPass::getAnalysisUsage(AU);
885 }
886
runOnFunction(Function & F)887 bool runOnFunction(Function &F) override {
888 if (skipFunction(F))
889 return false;
890 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
891 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
892 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
893 VectorCombine Combiner(F, TTI, DT, AA);
894 return Combiner.run();
895 }
896 };
897 } // namespace
898
899 char VectorCombineLegacyPass::ID = 0;
900 INITIALIZE_PASS_BEGIN(VectorCombineLegacyPass, "vector-combine",
901 "Optimize scalar/vector ops", false,
902 false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)903 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
904 INITIALIZE_PASS_END(VectorCombineLegacyPass, "vector-combine",
905 "Optimize scalar/vector ops", false, false)
906 Pass *llvm::createVectorCombinePass() {
907 return new VectorCombineLegacyPass();
908 }
909
run(Function & F,FunctionAnalysisManager & FAM)910 PreservedAnalyses VectorCombinePass::run(Function &F,
911 FunctionAnalysisManager &FAM) {
912 TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(F);
913 DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F);
914 AAResults &AA = FAM.getResult<AAManager>(F);
915 VectorCombine Combiner(F, TTI, DT, AA);
916 if (!Combiner.run())
917 return PreservedAnalyses::all();
918 PreservedAnalyses PA;
919 PA.preserveSet<CFGAnalyses>();
920 return PA;
921 }
922