1 //===- ValueMapper.cpp - Interface shared by lib/Transforms/Utils ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the MapValue function, which is shared by various parts of 10 // the lib/Transforms/Utils library. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/ValueMapper.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DenseSet.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/IR/Argument.h" 21 #include "llvm/IR/BasicBlock.h" 22 #include "llvm/IR/Constant.h" 23 #include "llvm/IR/Constants.h" 24 #include "llvm/IR/DebugInfoMetadata.h" 25 #include "llvm/IR/DerivedTypes.h" 26 #include "llvm/IR/Function.h" 27 #include "llvm/IR/GlobalAlias.h" 28 #include "llvm/IR/GlobalIFunc.h" 29 #include "llvm/IR/GlobalObject.h" 30 #include "llvm/IR/GlobalVariable.h" 31 #include "llvm/IR/InlineAsm.h" 32 #include "llvm/IR/Instruction.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/Metadata.h" 36 #include "llvm/IR/Operator.h" 37 #include "llvm/IR/Type.h" 38 #include "llvm/IR/Value.h" 39 #include "llvm/Support/Casting.h" 40 #include "llvm/Support/Debug.h" 41 #include <cassert> 42 #include <limits> 43 #include <memory> 44 #include <utility> 45 46 using namespace llvm; 47 48 #define DEBUG_TYPE "value-mapper" 49 50 // Out of line method to get vtable etc for class. 51 void ValueMapTypeRemapper::anchor() {} 52 void ValueMaterializer::anchor() {} 53 54 namespace { 55 56 /// A basic block used in a BlockAddress whose function body is not yet 57 /// materialized. 58 struct DelayedBasicBlock { 59 BasicBlock *OldBB; 60 std::unique_ptr<BasicBlock> TempBB; 61 62 DelayedBasicBlock(const BlockAddress &Old) 63 : OldBB(Old.getBasicBlock()), 64 TempBB(BasicBlock::Create(Old.getContext())) {} 65 }; 66 67 struct WorklistEntry { 68 enum EntryKind { 69 MapGlobalInit, 70 MapAppendingVar, 71 MapAliasOrIFunc, 72 RemapFunction 73 }; 74 struct GVInitTy { 75 GlobalVariable *GV; 76 Constant *Init; 77 }; 78 struct AppendingGVTy { 79 GlobalVariable *GV; 80 Constant *InitPrefix; 81 }; 82 struct AliasOrIFuncTy { 83 GlobalValue *GV; 84 Constant *Target; 85 }; 86 87 unsigned Kind : 2; 88 unsigned MCID : 29; 89 unsigned AppendingGVIsOldCtorDtor : 1; 90 unsigned AppendingGVNumNewMembers; 91 union { 92 GVInitTy GVInit; 93 AppendingGVTy AppendingGV; 94 AliasOrIFuncTy AliasOrIFunc; 95 Function *RemapF; 96 } Data; 97 }; 98 99 struct MappingContext { 100 ValueToValueMapTy *VM; 101 ValueMaterializer *Materializer = nullptr; 102 103 /// Construct a MappingContext with a value map and materializer. 104 explicit MappingContext(ValueToValueMapTy &VM, 105 ValueMaterializer *Materializer = nullptr) 106 : VM(&VM), Materializer(Materializer) {} 107 }; 108 109 class Mapper { 110 friend class MDNodeMapper; 111 112 #ifndef NDEBUG 113 DenseSet<GlobalValue *> AlreadyScheduled; 114 #endif 115 116 RemapFlags Flags; 117 ValueMapTypeRemapper *TypeMapper; 118 unsigned CurrentMCID = 0; 119 SmallVector<MappingContext, 2> MCs; 120 SmallVector<WorklistEntry, 4> Worklist; 121 SmallVector<DelayedBasicBlock, 1> DelayedBBs; 122 SmallVector<Constant *, 16> AppendingInits; 123 const MetadataSetTy *IdentityMD; 124 125 public: 126 Mapper(ValueToValueMapTy &VM, RemapFlags Flags, 127 ValueMapTypeRemapper *TypeMapper, ValueMaterializer *Materializer, 128 const MetadataSetTy *IdentityMD) 129 : Flags(Flags), TypeMapper(TypeMapper), 130 MCs(1, MappingContext(VM, Materializer)), IdentityMD(IdentityMD) {} 131 132 /// ValueMapper should explicitly call \a flush() before destruction. 133 ~Mapper() { assert(!hasWorkToDo() && "Expected to be flushed"); } 134 135 bool hasWorkToDo() const { return !Worklist.empty(); } 136 137 unsigned 138 registerAlternateMappingContext(ValueToValueMapTy &VM, 139 ValueMaterializer *Materializer = nullptr) { 140 MCs.push_back(MappingContext(VM, Materializer)); 141 return MCs.size() - 1; 142 } 143 144 void addFlags(RemapFlags Flags); 145 146 void remapGlobalObjectMetadata(GlobalObject &GO); 147 148 Value *mapValue(const Value *V); 149 void remapInstruction(Instruction *I); 150 void remapFunction(Function &F); 151 void remapDbgRecord(DbgRecord &DVR); 152 153 Constant *mapConstant(const Constant *C) { 154 return cast_or_null<Constant>(mapValue(C)); 155 } 156 157 /// Map metadata. 158 /// 159 /// Find the mapping for MD. Guarantees that the return will be resolved 160 /// (not an MDNode, or MDNode::isResolved() returns true). 161 Metadata *mapMetadata(const Metadata *MD); 162 163 void scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init, 164 unsigned MCID); 165 void scheduleMapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix, 166 bool IsOldCtorDtor, 167 ArrayRef<Constant *> NewMembers, 168 unsigned MCID); 169 void scheduleMapAliasOrIFunc(GlobalValue &GV, Constant &Target, 170 unsigned MCID); 171 void scheduleRemapFunction(Function &F, unsigned MCID); 172 173 void flush(); 174 175 private: 176 void mapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix, 177 bool IsOldCtorDtor, 178 ArrayRef<Constant *> NewMembers); 179 180 ValueToValueMapTy &getVM() { return *MCs[CurrentMCID].VM; } 181 ValueMaterializer *getMaterializer() { return MCs[CurrentMCID].Materializer; } 182 183 Value *mapBlockAddress(const BlockAddress &BA); 184 185 /// Map metadata that doesn't require visiting operands. 186 std::optional<Metadata *> mapSimpleMetadata(const Metadata *MD); 187 188 Metadata *mapToMetadata(const Metadata *Key, Metadata *Val); 189 Metadata *mapToSelf(const Metadata *MD); 190 }; 191 192 class MDNodeMapper { 193 Mapper &M; 194 195 /// Data about a node in \a UniquedGraph. 196 struct Data { 197 bool HasChanged = false; 198 unsigned ID = std::numeric_limits<unsigned>::max(); 199 TempMDNode Placeholder; 200 }; 201 202 /// A graph of uniqued nodes. 203 struct UniquedGraph { 204 SmallDenseMap<const Metadata *, Data, 32> Info; // Node properties. 205 SmallVector<MDNode *, 16> POT; // Post-order traversal. 206 207 /// Propagate changed operands through the post-order traversal. 208 /// 209 /// Iteratively update \a Data::HasChanged for each node based on \a 210 /// Data::HasChanged of its operands, until fixed point. 211 void propagateChanges(); 212 213 /// Get a forward reference to a node to use as an operand. 214 Metadata &getFwdReference(MDNode &Op); 215 }; 216 217 /// Worklist of distinct nodes whose operands need to be remapped. 218 SmallVector<MDNode *, 16> DistinctWorklist; 219 220 // Storage for a UniquedGraph. 221 SmallDenseMap<const Metadata *, Data, 32> InfoStorage; 222 SmallVector<MDNode *, 16> POTStorage; 223 224 public: 225 MDNodeMapper(Mapper &M) : M(M) {} 226 227 /// Map a metadata node (and its transitive operands). 228 /// 229 /// Map all the (unmapped) nodes in the subgraph under \c N. The iterative 230 /// algorithm handles distinct nodes and uniqued node subgraphs using 231 /// different strategies. 232 /// 233 /// Distinct nodes are immediately mapped and added to \a DistinctWorklist 234 /// using \a mapDistinctNode(). Their mapping can always be computed 235 /// immediately without visiting operands, even if their operands change. 236 /// 237 /// The mapping for uniqued nodes depends on whether their operands change. 238 /// \a mapTopLevelUniquedNode() traverses the transitive uniqued subgraph of 239 /// a node to calculate uniqued node mappings in bulk. Distinct leafs are 240 /// added to \a DistinctWorklist with \a mapDistinctNode(). 241 /// 242 /// After mapping \c N itself, this function remaps the operands of the 243 /// distinct nodes in \a DistinctWorklist until the entire subgraph under \c 244 /// N has been mapped. 245 Metadata *map(const MDNode &N); 246 247 private: 248 /// Map a top-level uniqued node and the uniqued subgraph underneath it. 249 /// 250 /// This builds up a post-order traversal of the (unmapped) uniqued subgraph 251 /// underneath \c FirstN and calculates the nodes' mapping. Each node uses 252 /// the identity mapping (\a Mapper::mapToSelf()) as long as all of its 253 /// operands uses the identity mapping. 254 /// 255 /// The algorithm works as follows: 256 /// 257 /// 1. \a createPOT(): traverse the uniqued subgraph under \c FirstN and 258 /// save the post-order traversal in the given \a UniquedGraph, tracking 259 /// nodes' operands change. 260 /// 261 /// 2. \a UniquedGraph::propagateChanges(): propagate changed operands 262 /// through the \a UniquedGraph until fixed point, following the rule 263 /// that if a node changes, any node that references must also change. 264 /// 265 /// 3. \a mapNodesInPOT(): map the uniqued nodes, creating new uniqued nodes 266 /// (referencing new operands) where necessary. 267 Metadata *mapTopLevelUniquedNode(const MDNode &FirstN); 268 269 /// Try to map the operand of an \a MDNode. 270 /// 271 /// If \c Op is already mapped, return the mapping. If it's not an \a 272 /// MDNode, compute and return the mapping. If it's a distinct \a MDNode, 273 /// return the result of \a mapDistinctNode(). 274 /// 275 /// \return std::nullopt if \c Op is an unmapped uniqued \a MDNode. 276 /// \post getMappedOp(Op) only returns std::nullopt if this returns 277 /// std::nullopt. 278 std::optional<Metadata *> tryToMapOperand(const Metadata *Op); 279 280 /// Map a distinct node. 281 /// 282 /// Return the mapping for the distinct node \c N, saving the result in \a 283 /// DistinctWorklist for later remapping. 284 /// 285 /// \pre \c N is not yet mapped. 286 /// \pre \c N.isDistinct(). 287 MDNode *mapDistinctNode(const MDNode &N); 288 289 /// Get a previously mapped node. 290 std::optional<Metadata *> getMappedOp(const Metadata *Op) const; 291 292 /// Create a post-order traversal of an unmapped uniqued node subgraph. 293 /// 294 /// This traverses the metadata graph deeply enough to map \c FirstN. It 295 /// uses \a tryToMapOperand() (via \a Mapper::mapSimplifiedNode()), so any 296 /// metadata that has already been mapped will not be part of the POT. 297 /// 298 /// Each node that has a changed operand from outside the graph (e.g., a 299 /// distinct node, an already-mapped uniqued node, or \a ConstantAsMetadata) 300 /// is marked with \a Data::HasChanged. 301 /// 302 /// \return \c true if any nodes in \c G have \a Data::HasChanged. 303 /// \post \c G.POT is a post-order traversal ending with \c FirstN. 304 /// \post \a Data::hasChanged in \c G.Info indicates whether any node needs 305 /// to change because of operands outside the graph. 306 bool createPOT(UniquedGraph &G, const MDNode &FirstN); 307 308 /// Visit the operands of a uniqued node in the POT. 309 /// 310 /// Visit the operands in the range from \c I to \c E, returning the first 311 /// uniqued node we find that isn't yet in \c G. \c I is always advanced to 312 /// where to continue the loop through the operands. 313 /// 314 /// This sets \c HasChanged if any of the visited operands change. 315 MDNode *visitOperands(UniquedGraph &G, MDNode::op_iterator &I, 316 MDNode::op_iterator E, bool &HasChanged); 317 318 /// Map all the nodes in the given uniqued graph. 319 /// 320 /// This visits all the nodes in \c G in post-order, using the identity 321 /// mapping or creating a new node depending on \a Data::HasChanged. 322 /// 323 /// \pre \a getMappedOp() returns std::nullopt for nodes in \c G, but not for 324 /// any of their operands outside of \c G. \pre \a Data::HasChanged is true 325 /// for a node in \c G iff any of its operands have changed. \post \a 326 /// getMappedOp() returns the mapped node for every node in \c G. 327 void mapNodesInPOT(UniquedGraph &G); 328 329 /// Remap a node's operands using the given functor. 330 /// 331 /// Iterate through the operands of \c N and update them in place using \c 332 /// mapOperand. 333 /// 334 /// \pre N.isDistinct() or N.isTemporary(). 335 template <class OperandMapper> 336 void remapOperands(MDNode &N, OperandMapper mapOperand); 337 }; 338 339 } // end anonymous namespace 340 341 Value *Mapper::mapValue(const Value *V) { 342 ValueToValueMapTy::iterator I = getVM().find(V); 343 344 // If the value already exists in the map, use it. 345 if (I != getVM().end()) { 346 assert(I->second && "Unexpected null mapping"); 347 return I->second; 348 } 349 350 // If we have a materializer and it can materialize a value, use that. 351 if (auto *Materializer = getMaterializer()) { 352 if (Value *NewV = Materializer->materialize(const_cast<Value *>(V))) { 353 getVM()[V] = NewV; 354 return NewV; 355 } 356 } 357 358 // Global values do not need to be seeded into the VM if they 359 // are using the identity mapping. 360 if (isa<GlobalValue>(V)) { 361 if (Flags & RF_NullMapMissingGlobalValues) 362 return nullptr; 363 return getVM()[V] = const_cast<Value *>(V); 364 } 365 366 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 367 // Inline asm may need *type* remapping. 368 FunctionType *NewTy = IA->getFunctionType(); 369 if (TypeMapper) { 370 NewTy = cast<FunctionType>(TypeMapper->remapType(NewTy)); 371 372 if (NewTy != IA->getFunctionType()) 373 V = InlineAsm::get(NewTy, IA->getAsmString(), IA->getConstraintString(), 374 IA->hasSideEffects(), IA->isAlignStack(), 375 IA->getDialect(), IA->canThrow()); 376 } 377 378 return getVM()[V] = const_cast<Value *>(V); 379 } 380 381 if (const auto *MDV = dyn_cast<MetadataAsValue>(V)) { 382 const Metadata *MD = MDV->getMetadata(); 383 384 if (auto *LAM = dyn_cast<LocalAsMetadata>(MD)) { 385 // Look through to grab the local value. 386 if (Value *LV = mapValue(LAM->getValue())) { 387 if (V == LAM->getValue()) 388 return const_cast<Value *>(V); 389 return MetadataAsValue::get(V->getContext(), ValueAsMetadata::get(LV)); 390 } 391 392 // FIXME: always return nullptr once Verifier::verifyDominatesUse() 393 // ensures metadata operands only reference defined SSA values. 394 return (Flags & RF_IgnoreMissingLocals) 395 ? nullptr 396 : MetadataAsValue::get(V->getContext(), 397 MDTuple::get(V->getContext(), {})); 398 } 399 if (auto *AL = dyn_cast<DIArgList>(MD)) { 400 SmallVector<ValueAsMetadata *, 4> MappedArgs; 401 for (auto *VAM : AL->getArgs()) { 402 // Map both Local and Constant VAMs here; they will both ultimately 403 // be mapped via mapValue. The exceptions are constants when we have no 404 // module level changes and locals when they have no existing mapped 405 // value and RF_IgnoreMissingLocals is set; these have identity 406 // mappings. 407 if ((Flags & RF_NoModuleLevelChanges) && isa<ConstantAsMetadata>(VAM)) { 408 MappedArgs.push_back(VAM); 409 } else if (Value *LV = mapValue(VAM->getValue())) { 410 MappedArgs.push_back( 411 LV == VAM->getValue() ? VAM : ValueAsMetadata::get(LV)); 412 } else if ((Flags & RF_IgnoreMissingLocals) && isa<LocalAsMetadata>(VAM)) { 413 MappedArgs.push_back(VAM); 414 } else { 415 // If we cannot map the value, set the argument as poison. 416 MappedArgs.push_back(ValueAsMetadata::get( 417 PoisonValue::get(VAM->getValue()->getType()))); 418 } 419 } 420 return MetadataAsValue::get(V->getContext(), 421 DIArgList::get(V->getContext(), MappedArgs)); 422 } 423 424 // If this is a module-level metadata and we know that nothing at the module 425 // level is changing, then use an identity mapping. 426 if (Flags & RF_NoModuleLevelChanges) 427 return getVM()[V] = const_cast<Value *>(V); 428 429 // Map the metadata and turn it into a value. 430 auto *MappedMD = mapMetadata(MD); 431 if (MD == MappedMD) 432 return getVM()[V] = const_cast<Value *>(V); 433 return getVM()[V] = MetadataAsValue::get(V->getContext(), MappedMD); 434 } 435 436 // Okay, this either must be a constant (which may or may not be mappable) or 437 // is something that is not in the mapping table. 438 Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V)); 439 if (!C) 440 return nullptr; 441 442 if (BlockAddress *BA = dyn_cast<BlockAddress>(C)) 443 return mapBlockAddress(*BA); 444 445 if (const auto *E = dyn_cast<DSOLocalEquivalent>(C)) { 446 auto *Val = mapValue(E->getGlobalValue()); 447 GlobalValue *GV = dyn_cast<GlobalValue>(Val); 448 if (GV) 449 return getVM()[E] = DSOLocalEquivalent::get(GV); 450 451 auto *Func = cast<Function>(Val->stripPointerCastsAndAliases()); 452 Type *NewTy = E->getType(); 453 if (TypeMapper) 454 NewTy = TypeMapper->remapType(NewTy); 455 return getVM()[E] = llvm::ConstantExpr::getBitCast( 456 DSOLocalEquivalent::get(Func), NewTy); 457 } 458 459 if (const auto *NC = dyn_cast<NoCFIValue>(C)) { 460 auto *Val = mapValue(NC->getGlobalValue()); 461 GlobalValue *GV = cast<GlobalValue>(Val); 462 return getVM()[NC] = NoCFIValue::get(GV); 463 } 464 465 auto mapValueOrNull = [this](Value *V) { 466 auto Mapped = mapValue(V); 467 assert((Mapped || (Flags & RF_NullMapMissingGlobalValues)) && 468 "Unexpected null mapping for constant operand without " 469 "NullMapMissingGlobalValues flag"); 470 return Mapped; 471 }; 472 473 // Otherwise, we have some other constant to remap. Start by checking to see 474 // if all operands have an identity remapping. 475 unsigned OpNo = 0, NumOperands = C->getNumOperands(); 476 Value *Mapped = nullptr; 477 for (; OpNo != NumOperands; ++OpNo) { 478 Value *Op = C->getOperand(OpNo); 479 Mapped = mapValueOrNull(Op); 480 if (!Mapped) 481 return nullptr; 482 if (Mapped != Op) 483 break; 484 } 485 486 // See if the type mapper wants to remap the type as well. 487 Type *NewTy = C->getType(); 488 if (TypeMapper) 489 NewTy = TypeMapper->remapType(NewTy); 490 491 // If the result type and all operands match up, then just insert an identity 492 // mapping. 493 if (OpNo == NumOperands && NewTy == C->getType()) 494 return getVM()[V] = C; 495 496 // Okay, we need to create a new constant. We've already processed some or 497 // all of the operands, set them all up now. 498 SmallVector<Constant*, 8> Ops; 499 Ops.reserve(NumOperands); 500 for (unsigned j = 0; j != OpNo; ++j) 501 Ops.push_back(cast<Constant>(C->getOperand(j))); 502 503 // If one of the operands mismatch, push it and the other mapped operands. 504 if (OpNo != NumOperands) { 505 Ops.push_back(cast<Constant>(Mapped)); 506 507 // Map the rest of the operands that aren't processed yet. 508 for (++OpNo; OpNo != NumOperands; ++OpNo) { 509 Mapped = mapValueOrNull(C->getOperand(OpNo)); 510 if (!Mapped) 511 return nullptr; 512 Ops.push_back(cast<Constant>(Mapped)); 513 } 514 } 515 Type *NewSrcTy = nullptr; 516 if (TypeMapper) 517 if (auto *GEPO = dyn_cast<GEPOperator>(C)) 518 NewSrcTy = TypeMapper->remapType(GEPO->getSourceElementType()); 519 520 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 521 return getVM()[V] = CE->getWithOperands(Ops, NewTy, false, NewSrcTy); 522 if (isa<ConstantArray>(C)) 523 return getVM()[V] = ConstantArray::get(cast<ArrayType>(NewTy), Ops); 524 if (isa<ConstantStruct>(C)) 525 return getVM()[V] = ConstantStruct::get(cast<StructType>(NewTy), Ops); 526 if (isa<ConstantVector>(C)) 527 return getVM()[V] = ConstantVector::get(Ops); 528 // If this is a no-operand constant, it must be because the type was remapped. 529 if (isa<PoisonValue>(C)) 530 return getVM()[V] = PoisonValue::get(NewTy); 531 if (isa<UndefValue>(C)) 532 return getVM()[V] = UndefValue::get(NewTy); 533 if (isa<ConstantAggregateZero>(C)) 534 return getVM()[V] = ConstantAggregateZero::get(NewTy); 535 if (isa<ConstantTargetNone>(C)) 536 return getVM()[V] = Constant::getNullValue(NewTy); 537 assert(isa<ConstantPointerNull>(C)); 538 return getVM()[V] = ConstantPointerNull::get(cast<PointerType>(NewTy)); 539 } 540 541 void Mapper::remapDbgRecord(DbgRecord &DR) { 542 // Remap DILocations. 543 auto *MappedDILoc = mapMetadata(DR.getDebugLoc()); 544 DR.setDebugLoc(DebugLoc(cast<DILocation>(MappedDILoc))); 545 546 if (DbgLabelRecord *DLR = dyn_cast<DbgLabelRecord>(&DR)) { 547 // Remap labels. 548 DLR->setLabel(cast<DILabel>(mapMetadata(DLR->getLabel()))); 549 return; 550 } 551 552 DbgVariableRecord &V = cast<DbgVariableRecord>(DR); 553 // Remap variables. 554 auto *MappedVar = mapMetadata(V.getVariable()); 555 V.setVariable(cast<DILocalVariable>(MappedVar)); 556 557 bool IgnoreMissingLocals = Flags & RF_IgnoreMissingLocals; 558 559 if (V.isDbgAssign()) { 560 auto *NewAddr = mapValue(V.getAddress()); 561 if (!IgnoreMissingLocals && !NewAddr) 562 V.setKillAddress(); 563 else if (NewAddr) 564 V.setAddress(NewAddr); 565 V.setAssignId(cast<DIAssignID>(mapMetadata(V.getAssignID()))); 566 } 567 568 // Find Value operands and remap those. 569 SmallVector<Value *, 4> Vals(V.location_ops()); 570 SmallVector<Value *, 4> NewVals; 571 for (Value *Val : Vals) 572 NewVals.push_back(mapValue(Val)); 573 574 // If there are no changes to the Value operands, finished. 575 if (Vals == NewVals) 576 return; 577 578 // Otherwise, do some replacement. 579 if (!IgnoreMissingLocals && llvm::is_contained(NewVals, nullptr)) { 580 V.setKillLocation(); 581 } else { 582 // Either we have all non-empty NewVals, or we're permitted to ignore 583 // missing locals. 584 for (unsigned int I = 0; I < Vals.size(); ++I) 585 if (NewVals[I]) 586 V.replaceVariableLocationOp(I, NewVals[I]); 587 } 588 } 589 590 Value *Mapper::mapBlockAddress(const BlockAddress &BA) { 591 Function *F = cast<Function>(mapValue(BA.getFunction())); 592 593 // F may not have materialized its initializer. In that case, create a 594 // dummy basic block for now, and replace it once we've materialized all 595 // the initializers. 596 BasicBlock *BB; 597 if (F->empty()) { 598 DelayedBBs.push_back(DelayedBasicBlock(BA)); 599 BB = DelayedBBs.back().TempBB.get(); 600 } else { 601 BB = cast_or_null<BasicBlock>(mapValue(BA.getBasicBlock())); 602 } 603 604 return getVM()[&BA] = BlockAddress::get(F, BB ? BB : BA.getBasicBlock()); 605 } 606 607 Metadata *Mapper::mapToMetadata(const Metadata *Key, Metadata *Val) { 608 getVM().MD()[Key].reset(Val); 609 return Val; 610 } 611 612 Metadata *Mapper::mapToSelf(const Metadata *MD) { 613 return mapToMetadata(MD, const_cast<Metadata *>(MD)); 614 } 615 616 std::optional<Metadata *> MDNodeMapper::tryToMapOperand(const Metadata *Op) { 617 if (!Op) 618 return nullptr; 619 620 if (std::optional<Metadata *> MappedOp = M.mapSimpleMetadata(Op)) { 621 #ifndef NDEBUG 622 if (auto *CMD = dyn_cast<ConstantAsMetadata>(Op)) 623 assert((!*MappedOp || M.getVM().count(CMD->getValue()) || 624 M.getVM().getMappedMD(Op)) && 625 "Expected Value to be memoized"); 626 else 627 assert((isa<MDString>(Op) || M.getVM().getMappedMD(Op)) && 628 "Expected result to be memoized"); 629 #endif 630 return *MappedOp; 631 } 632 633 const MDNode &N = *cast<MDNode>(Op); 634 if (N.isDistinct()) 635 return mapDistinctNode(N); 636 return std::nullopt; 637 } 638 639 MDNode *MDNodeMapper::mapDistinctNode(const MDNode &N) { 640 assert(N.isDistinct() && "Expected a distinct node"); 641 assert(!M.getVM().getMappedMD(&N) && "Expected an unmapped node"); 642 Metadata *NewM = nullptr; 643 644 if (M.Flags & RF_ReuseAndMutateDistinctMDs) { 645 NewM = M.mapToSelf(&N); 646 } else { 647 NewM = MDNode::replaceWithDistinct(N.clone()); 648 LLVM_DEBUG(dbgs() << "\nMap " << N << "\n" 649 << "To " << *NewM << "\n\n"); 650 M.mapToMetadata(&N, NewM); 651 } 652 DistinctWorklist.push_back(cast<MDNode>(NewM)); 653 654 return DistinctWorklist.back(); 655 } 656 657 static ConstantAsMetadata *wrapConstantAsMetadata(const ConstantAsMetadata &CMD, 658 Value *MappedV) { 659 if (CMD.getValue() == MappedV) 660 return const_cast<ConstantAsMetadata *>(&CMD); 661 return MappedV ? ConstantAsMetadata::getConstant(MappedV) : nullptr; 662 } 663 664 std::optional<Metadata *> MDNodeMapper::getMappedOp(const Metadata *Op) const { 665 if (!Op) 666 return nullptr; 667 668 if (std::optional<Metadata *> MappedOp = M.getVM().getMappedMD(Op)) 669 return *MappedOp; 670 671 if (isa<MDString>(Op)) 672 return const_cast<Metadata *>(Op); 673 674 if (auto *CMD = dyn_cast<ConstantAsMetadata>(Op)) 675 return wrapConstantAsMetadata(*CMD, M.getVM().lookup(CMD->getValue())); 676 677 return std::nullopt; 678 } 679 680 Metadata &MDNodeMapper::UniquedGraph::getFwdReference(MDNode &Op) { 681 auto Where = Info.find(&Op); 682 assert(Where != Info.end() && "Expected a valid reference"); 683 684 auto &OpD = Where->second; 685 if (!OpD.HasChanged) 686 return Op; 687 688 // Lazily construct a temporary node. 689 if (!OpD.Placeholder) 690 OpD.Placeholder = Op.clone(); 691 692 return *OpD.Placeholder; 693 } 694 695 template <class OperandMapper> 696 void MDNodeMapper::remapOperands(MDNode &N, OperandMapper mapOperand) { 697 assert(!N.isUniqued() && "Expected distinct or temporary nodes"); 698 for (unsigned I = 0, E = N.getNumOperands(); I != E; ++I) { 699 Metadata *Old = N.getOperand(I); 700 Metadata *New = mapOperand(Old); 701 if (Old != New) 702 LLVM_DEBUG(dbgs() << "Replacing Op " << Old << " with " << New << " in " 703 << N << "\n"); 704 705 if (Old != New) 706 N.replaceOperandWith(I, New); 707 } 708 } 709 710 namespace { 711 712 /// An entry in the worklist for the post-order traversal. 713 struct POTWorklistEntry { 714 MDNode *N; ///< Current node. 715 MDNode::op_iterator Op; ///< Current operand of \c N. 716 717 /// Keep a flag of whether operands have changed in the worklist to avoid 718 /// hitting the map in \a UniquedGraph. 719 bool HasChanged = false; 720 721 POTWorklistEntry(MDNode &N) : N(&N), Op(N.op_begin()) {} 722 }; 723 724 } // end anonymous namespace 725 726 bool MDNodeMapper::createPOT(UniquedGraph &G, const MDNode &FirstN) { 727 assert(G.Info.empty() && "Expected a fresh traversal"); 728 assert(FirstN.isUniqued() && "Expected uniqued node in POT"); 729 730 // Construct a post-order traversal of the uniqued subgraph under FirstN. 731 bool AnyChanges = false; 732 SmallVector<POTWorklistEntry, 16> Worklist; 733 Worklist.push_back(POTWorklistEntry(const_cast<MDNode &>(FirstN))); 734 (void)G.Info[&FirstN]; 735 while (!Worklist.empty()) { 736 // Start or continue the traversal through the this node's operands. 737 auto &WE = Worklist.back(); 738 if (MDNode *N = visitOperands(G, WE.Op, WE.N->op_end(), WE.HasChanged)) { 739 // Push a new node to traverse first. 740 Worklist.push_back(POTWorklistEntry(*N)); 741 continue; 742 } 743 744 // Push the node onto the POT. 745 assert(WE.N->isUniqued() && "Expected only uniqued nodes"); 746 assert(WE.Op == WE.N->op_end() && "Expected to visit all operands"); 747 auto &D = G.Info[WE.N]; 748 AnyChanges |= D.HasChanged = WE.HasChanged; 749 D.ID = G.POT.size(); 750 G.POT.push_back(WE.N); 751 752 // Pop the node off the worklist. 753 Worklist.pop_back(); 754 } 755 return AnyChanges; 756 } 757 758 MDNode *MDNodeMapper::visitOperands(UniquedGraph &G, MDNode::op_iterator &I, 759 MDNode::op_iterator E, bool &HasChanged) { 760 while (I != E) { 761 Metadata *Op = *I++; // Increment even on early return. 762 if (std::optional<Metadata *> MappedOp = tryToMapOperand(Op)) { 763 // Check if the operand changes. 764 HasChanged |= Op != *MappedOp; 765 continue; 766 } 767 768 // A uniqued metadata node. 769 MDNode &OpN = *cast<MDNode>(Op); 770 assert(OpN.isUniqued() && 771 "Only uniqued operands cannot be mapped immediately"); 772 if (G.Info.insert(std::make_pair(&OpN, Data())).second) 773 return &OpN; // This is a new one. Return it. 774 } 775 return nullptr; 776 } 777 778 void MDNodeMapper::UniquedGraph::propagateChanges() { 779 bool AnyChanges; 780 do { 781 AnyChanges = false; 782 for (MDNode *N : POT) { 783 auto &D = Info[N]; 784 if (D.HasChanged) 785 continue; 786 787 if (llvm::none_of(N->operands(), [&](const Metadata *Op) { 788 auto Where = Info.find(Op); 789 return Where != Info.end() && Where->second.HasChanged; 790 })) 791 continue; 792 793 AnyChanges = D.HasChanged = true; 794 } 795 } while (AnyChanges); 796 } 797 798 void MDNodeMapper::mapNodesInPOT(UniquedGraph &G) { 799 // Construct uniqued nodes, building forward references as necessary. 800 SmallVector<MDNode *, 16> CyclicNodes; 801 for (auto *N : G.POT) { 802 auto &D = G.Info[N]; 803 if (!D.HasChanged) { 804 // The node hasn't changed. 805 M.mapToSelf(N); 806 continue; 807 } 808 809 // Remember whether this node had a placeholder. 810 bool HadPlaceholder(D.Placeholder); 811 812 // Clone the uniqued node and remap the operands. 813 TempMDNode ClonedN = D.Placeholder ? std::move(D.Placeholder) : N->clone(); 814 remapOperands(*ClonedN, [this, &D, &G](Metadata *Old) { 815 if (std::optional<Metadata *> MappedOp = getMappedOp(Old)) 816 return *MappedOp; 817 (void)D; 818 assert(G.Info[Old].ID > D.ID && "Expected a forward reference"); 819 return &G.getFwdReference(*cast<MDNode>(Old)); 820 }); 821 822 auto *NewN = MDNode::replaceWithUniqued(std::move(ClonedN)); 823 if (N && NewN && N != NewN) { 824 LLVM_DEBUG(dbgs() << "\nMap " << *N << "\n" 825 << "To " << *NewN << "\n\n"); 826 } 827 828 M.mapToMetadata(N, NewN); 829 830 // Nodes that were referenced out of order in the POT are involved in a 831 // uniquing cycle. 832 if (HadPlaceholder) 833 CyclicNodes.push_back(NewN); 834 } 835 836 // Resolve cycles. 837 for (auto *N : CyclicNodes) 838 if (!N->isResolved()) 839 N->resolveCycles(); 840 } 841 842 Metadata *MDNodeMapper::map(const MDNode &N) { 843 assert(DistinctWorklist.empty() && "MDNodeMapper::map is not recursive"); 844 assert(!(M.Flags & RF_NoModuleLevelChanges) && 845 "MDNodeMapper::map assumes module-level changes"); 846 847 // Require resolved nodes whenever metadata might be remapped. 848 assert(N.isResolved() && "Unexpected unresolved node"); 849 850 Metadata *MappedN = 851 N.isUniqued() ? mapTopLevelUniquedNode(N) : mapDistinctNode(N); 852 while (!DistinctWorklist.empty()) 853 remapOperands(*DistinctWorklist.pop_back_val(), [this](Metadata *Old) { 854 if (std::optional<Metadata *> MappedOp = tryToMapOperand(Old)) 855 return *MappedOp; 856 return mapTopLevelUniquedNode(*cast<MDNode>(Old)); 857 }); 858 return MappedN; 859 } 860 861 Metadata *MDNodeMapper::mapTopLevelUniquedNode(const MDNode &FirstN) { 862 assert(FirstN.isUniqued() && "Expected uniqued node"); 863 864 // Create a post-order traversal of uniqued nodes under FirstN. 865 UniquedGraph G; 866 if (!createPOT(G, FirstN)) { 867 // Return early if no nodes have changed. 868 for (const MDNode *N : G.POT) 869 M.mapToSelf(N); 870 return &const_cast<MDNode &>(FirstN); 871 } 872 873 // Update graph with all nodes that have changed. 874 G.propagateChanges(); 875 876 // Map all the nodes in the graph. 877 mapNodesInPOT(G); 878 879 // Return the original node, remapped. 880 return *getMappedOp(&FirstN); 881 } 882 883 std::optional<Metadata *> Mapper::mapSimpleMetadata(const Metadata *MD) { 884 // If the value already exists in the map, use it. 885 if (std::optional<Metadata *> NewMD = getVM().getMappedMD(MD)) 886 return *NewMD; 887 888 if (isa<MDString>(MD)) 889 return const_cast<Metadata *>(MD); 890 891 // This is a module-level metadata. If nothing at the module level is 892 // changing, use an identity mapping. 893 if ((Flags & RF_NoModuleLevelChanges)) 894 return const_cast<Metadata *>(MD); 895 896 if (auto *CMD = dyn_cast<ConstantAsMetadata>(MD)) { 897 // Don't memoize ConstantAsMetadata. Instead of lasting until the 898 // LLVMContext is destroyed, they can be deleted when the GlobalValue they 899 // reference is destructed. These aren't super common, so the extra 900 // indirection isn't that expensive. 901 return wrapConstantAsMetadata(*CMD, mapValue(CMD->getValue())); 902 } 903 904 // Map metadata from IdentityMD on first use. We need to add these nodes to 905 // the mapping as otherwise metadata nodes numbering gets messed up. This is 906 // still economical because the amount of data in IdentityMD may be a lot 907 // larger than what will actually get used. 908 if (IdentityMD && IdentityMD->contains(MD)) 909 return getVM().MD()[MD] = TrackingMDRef(const_cast<Metadata *>(MD)); 910 911 assert(isa<MDNode>(MD) && "Expected a metadata node"); 912 913 return std::nullopt; 914 } 915 916 Metadata *Mapper::mapMetadata(const Metadata *MD) { 917 assert(MD && "Expected valid metadata"); 918 assert(!isa<LocalAsMetadata>(MD) && "Unexpected local metadata"); 919 920 if (std::optional<Metadata *> NewMD = mapSimpleMetadata(MD)) 921 return *NewMD; 922 923 return MDNodeMapper(*this).map(*cast<MDNode>(MD)); 924 } 925 926 void Mapper::flush() { 927 // Flush out the worklist of global values. 928 while (!Worklist.empty()) { 929 WorklistEntry E = Worklist.pop_back_val(); 930 CurrentMCID = E.MCID; 931 switch (E.Kind) { 932 case WorklistEntry::MapGlobalInit: 933 E.Data.GVInit.GV->setInitializer(mapConstant(E.Data.GVInit.Init)); 934 remapGlobalObjectMetadata(*E.Data.GVInit.GV); 935 break; 936 case WorklistEntry::MapAppendingVar: { 937 unsigned PrefixSize = AppendingInits.size() - E.AppendingGVNumNewMembers; 938 // mapAppendingVariable call can change AppendingInits if initalizer for 939 // the variable depends on another appending global, because of that inits 940 // need to be extracted and updated before the call. 941 SmallVector<Constant *, 8> NewInits( 942 drop_begin(AppendingInits, PrefixSize)); 943 AppendingInits.resize(PrefixSize); 944 mapAppendingVariable(*E.Data.AppendingGV.GV, 945 E.Data.AppendingGV.InitPrefix, 946 E.AppendingGVIsOldCtorDtor, ArrayRef(NewInits)); 947 break; 948 } 949 case WorklistEntry::MapAliasOrIFunc: { 950 GlobalValue *GV = E.Data.AliasOrIFunc.GV; 951 Constant *Target = mapConstant(E.Data.AliasOrIFunc.Target); 952 if (auto *GA = dyn_cast<GlobalAlias>(GV)) 953 GA->setAliasee(Target); 954 else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) 955 GI->setResolver(Target); 956 else 957 llvm_unreachable("Not alias or ifunc"); 958 break; 959 } 960 case WorklistEntry::RemapFunction: 961 remapFunction(*E.Data.RemapF); 962 break; 963 } 964 } 965 CurrentMCID = 0; 966 967 // Finish logic for block addresses now that all global values have been 968 // handled. 969 while (!DelayedBBs.empty()) { 970 DelayedBasicBlock DBB = DelayedBBs.pop_back_val(); 971 BasicBlock *BB = cast_or_null<BasicBlock>(mapValue(DBB.OldBB)); 972 DBB.TempBB->replaceAllUsesWith(BB ? BB : DBB.OldBB); 973 } 974 } 975 976 void Mapper::remapInstruction(Instruction *I) { 977 // Remap operands. 978 for (Use &Op : I->operands()) { 979 Value *V = mapValue(Op); 980 // If we aren't ignoring missing entries, assert that something happened. 981 if (V) 982 Op = V; 983 else 984 assert((Flags & RF_IgnoreMissingLocals) && 985 "Referenced value not in value map!"); 986 } 987 988 // Remap phi nodes' incoming blocks. 989 if (PHINode *PN = dyn_cast<PHINode>(I)) { 990 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 991 Value *V = mapValue(PN->getIncomingBlock(i)); 992 // If we aren't ignoring missing entries, assert that something happened. 993 if (V) 994 PN->setIncomingBlock(i, cast<BasicBlock>(V)); 995 else 996 assert((Flags & RF_IgnoreMissingLocals) && 997 "Referenced block not in value map!"); 998 } 999 } 1000 1001 // Remap attached metadata. 1002 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 1003 I->getAllMetadata(MDs); 1004 for (const auto &MI : MDs) { 1005 MDNode *Old = MI.second; 1006 MDNode *New = cast_or_null<MDNode>(mapMetadata(Old)); 1007 if (New != Old) 1008 I->setMetadata(MI.first, New); 1009 } 1010 1011 if (!TypeMapper) 1012 return; 1013 1014 // If the instruction's type is being remapped, do so now. 1015 if (auto *CB = dyn_cast<CallBase>(I)) { 1016 SmallVector<Type *, 3> Tys; 1017 FunctionType *FTy = CB->getFunctionType(); 1018 Tys.reserve(FTy->getNumParams()); 1019 for (Type *Ty : FTy->params()) 1020 Tys.push_back(TypeMapper->remapType(Ty)); 1021 CB->mutateFunctionType(FunctionType::get( 1022 TypeMapper->remapType(I->getType()), Tys, FTy->isVarArg())); 1023 1024 LLVMContext &C = CB->getContext(); 1025 AttributeList Attrs = CB->getAttributes(); 1026 for (unsigned i = 0; i < Attrs.getNumAttrSets(); ++i) { 1027 for (int AttrIdx = Attribute::FirstTypeAttr; 1028 AttrIdx <= Attribute::LastTypeAttr; AttrIdx++) { 1029 Attribute::AttrKind TypedAttr = (Attribute::AttrKind)AttrIdx; 1030 if (Type *Ty = 1031 Attrs.getAttributeAtIndex(i, TypedAttr).getValueAsType()) { 1032 Attrs = Attrs.replaceAttributeTypeAtIndex(C, i, TypedAttr, 1033 TypeMapper->remapType(Ty)); 1034 break; 1035 } 1036 } 1037 } 1038 CB->setAttributes(Attrs); 1039 return; 1040 } 1041 if (auto *AI = dyn_cast<AllocaInst>(I)) 1042 AI->setAllocatedType(TypeMapper->remapType(AI->getAllocatedType())); 1043 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 1044 GEP->setSourceElementType( 1045 TypeMapper->remapType(GEP->getSourceElementType())); 1046 GEP->setResultElementType( 1047 TypeMapper->remapType(GEP->getResultElementType())); 1048 } 1049 I->mutateType(TypeMapper->remapType(I->getType())); 1050 } 1051 1052 void Mapper::remapGlobalObjectMetadata(GlobalObject &GO) { 1053 SmallVector<std::pair<unsigned, MDNode *>, 8> MDs; 1054 GO.getAllMetadata(MDs); 1055 GO.clearMetadata(); 1056 for (const auto &I : MDs) 1057 GO.addMetadata(I.first, *cast<MDNode>(mapMetadata(I.second))); 1058 } 1059 1060 void Mapper::remapFunction(Function &F) { 1061 // Remap the operands. 1062 for (Use &Op : F.operands()) 1063 if (Op) 1064 Op = mapValue(Op); 1065 1066 // Remap the metadata attachments. 1067 remapGlobalObjectMetadata(F); 1068 1069 // Remap the argument types. 1070 if (TypeMapper) 1071 for (Argument &A : F.args()) 1072 A.mutateType(TypeMapper->remapType(A.getType())); 1073 1074 // Remap the instructions. 1075 for (BasicBlock &BB : F) { 1076 for (Instruction &I : BB) { 1077 remapInstruction(&I); 1078 for (DbgRecord &DR : I.getDbgRecordRange()) 1079 remapDbgRecord(DR); 1080 } 1081 } 1082 } 1083 1084 void Mapper::mapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix, 1085 bool IsOldCtorDtor, 1086 ArrayRef<Constant *> NewMembers) { 1087 SmallVector<Constant *, 16> Elements; 1088 if (InitPrefix) { 1089 unsigned NumElements = 1090 cast<ArrayType>(InitPrefix->getType())->getNumElements(); 1091 for (unsigned I = 0; I != NumElements; ++I) 1092 Elements.push_back(InitPrefix->getAggregateElement(I)); 1093 } 1094 1095 PointerType *VoidPtrTy; 1096 Type *EltTy; 1097 if (IsOldCtorDtor) { 1098 // FIXME: This upgrade is done during linking to support the C API. See 1099 // also IRLinker::linkAppendingVarProto() in IRMover.cpp. 1100 VoidPtrTy = PointerType::getUnqual(GV.getContext()); 1101 auto &ST = *cast<StructType>(NewMembers.front()->getType()); 1102 Type *Tys[3] = {ST.getElementType(0), ST.getElementType(1), VoidPtrTy}; 1103 EltTy = StructType::get(GV.getContext(), Tys, false); 1104 } 1105 1106 for (auto *V : NewMembers) { 1107 Constant *NewV; 1108 if (IsOldCtorDtor) { 1109 auto *S = cast<ConstantStruct>(V); 1110 auto *E1 = cast<Constant>(mapValue(S->getOperand(0))); 1111 auto *E2 = cast<Constant>(mapValue(S->getOperand(1))); 1112 Constant *Null = Constant::getNullValue(VoidPtrTy); 1113 NewV = ConstantStruct::get(cast<StructType>(EltTy), E1, E2, Null); 1114 } else { 1115 NewV = cast_or_null<Constant>(mapValue(V)); 1116 } 1117 Elements.push_back(NewV); 1118 } 1119 1120 GV.setInitializer( 1121 ConstantArray::get(cast<ArrayType>(GV.getValueType()), Elements)); 1122 } 1123 1124 void Mapper::scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init, 1125 unsigned MCID) { 1126 assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule"); 1127 assert(MCID < MCs.size() && "Invalid mapping context"); 1128 1129 WorklistEntry WE; 1130 WE.Kind = WorklistEntry::MapGlobalInit; 1131 WE.MCID = MCID; 1132 WE.Data.GVInit.GV = &GV; 1133 WE.Data.GVInit.Init = &Init; 1134 Worklist.push_back(WE); 1135 } 1136 1137 void Mapper::scheduleMapAppendingVariable(GlobalVariable &GV, 1138 Constant *InitPrefix, 1139 bool IsOldCtorDtor, 1140 ArrayRef<Constant *> NewMembers, 1141 unsigned MCID) { 1142 assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule"); 1143 assert(MCID < MCs.size() && "Invalid mapping context"); 1144 1145 WorklistEntry WE; 1146 WE.Kind = WorklistEntry::MapAppendingVar; 1147 WE.MCID = MCID; 1148 WE.Data.AppendingGV.GV = &GV; 1149 WE.Data.AppendingGV.InitPrefix = InitPrefix; 1150 WE.AppendingGVIsOldCtorDtor = IsOldCtorDtor; 1151 WE.AppendingGVNumNewMembers = NewMembers.size(); 1152 Worklist.push_back(WE); 1153 AppendingInits.append(NewMembers.begin(), NewMembers.end()); 1154 } 1155 1156 void Mapper::scheduleMapAliasOrIFunc(GlobalValue &GV, Constant &Target, 1157 unsigned MCID) { 1158 assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule"); 1159 assert((isa<GlobalAlias>(GV) || isa<GlobalIFunc>(GV)) && 1160 "Should be alias or ifunc"); 1161 assert(MCID < MCs.size() && "Invalid mapping context"); 1162 1163 WorklistEntry WE; 1164 WE.Kind = WorklistEntry::MapAliasOrIFunc; 1165 WE.MCID = MCID; 1166 WE.Data.AliasOrIFunc.GV = &GV; 1167 WE.Data.AliasOrIFunc.Target = &Target; 1168 Worklist.push_back(WE); 1169 } 1170 1171 void Mapper::scheduleRemapFunction(Function &F, unsigned MCID) { 1172 assert(AlreadyScheduled.insert(&F).second && "Should not reschedule"); 1173 assert(MCID < MCs.size() && "Invalid mapping context"); 1174 1175 WorklistEntry WE; 1176 WE.Kind = WorklistEntry::RemapFunction; 1177 WE.MCID = MCID; 1178 WE.Data.RemapF = &F; 1179 Worklist.push_back(WE); 1180 } 1181 1182 void Mapper::addFlags(RemapFlags Flags) { 1183 assert(!hasWorkToDo() && "Expected to have flushed the worklist"); 1184 this->Flags = this->Flags | Flags; 1185 } 1186 1187 static Mapper *getAsMapper(void *pImpl) { 1188 return reinterpret_cast<Mapper *>(pImpl); 1189 } 1190 1191 namespace { 1192 1193 class FlushingMapper { 1194 Mapper &M; 1195 1196 public: 1197 explicit FlushingMapper(void *pImpl) : M(*getAsMapper(pImpl)) { 1198 assert(!M.hasWorkToDo() && "Expected to be flushed"); 1199 } 1200 1201 ~FlushingMapper() { M.flush(); } 1202 1203 Mapper *operator->() const { return &M; } 1204 }; 1205 1206 } // end anonymous namespace 1207 1208 ValueMapper::ValueMapper(ValueToValueMapTy &VM, RemapFlags Flags, 1209 ValueMapTypeRemapper *TypeMapper, 1210 ValueMaterializer *Materializer, 1211 const MetadataSetTy *IdentityMD) 1212 : pImpl(new Mapper(VM, Flags, TypeMapper, Materializer, IdentityMD)) {} 1213 1214 ValueMapper::~ValueMapper() { delete getAsMapper(pImpl); } 1215 1216 unsigned 1217 ValueMapper::registerAlternateMappingContext(ValueToValueMapTy &VM, 1218 ValueMaterializer *Materializer) { 1219 return getAsMapper(pImpl)->registerAlternateMappingContext(VM, Materializer); 1220 } 1221 1222 void ValueMapper::addFlags(RemapFlags Flags) { 1223 FlushingMapper(pImpl)->addFlags(Flags); 1224 } 1225 1226 Value *ValueMapper::mapValue(const Value &V) { 1227 return FlushingMapper(pImpl)->mapValue(&V); 1228 } 1229 1230 Constant *ValueMapper::mapConstant(const Constant &C) { 1231 return cast_or_null<Constant>(mapValue(C)); 1232 } 1233 1234 Metadata *ValueMapper::mapMetadata(const Metadata &MD) { 1235 return FlushingMapper(pImpl)->mapMetadata(&MD); 1236 } 1237 1238 MDNode *ValueMapper::mapMDNode(const MDNode &N) { 1239 return cast_or_null<MDNode>(mapMetadata(N)); 1240 } 1241 1242 void ValueMapper::remapInstruction(Instruction &I) { 1243 FlushingMapper(pImpl)->remapInstruction(&I); 1244 } 1245 1246 void ValueMapper::remapDbgRecord(Module *M, DbgRecord &DR) { 1247 FlushingMapper(pImpl)->remapDbgRecord(DR); 1248 } 1249 1250 void ValueMapper::remapDbgRecordRange( 1251 Module *M, iterator_range<DbgRecord::self_iterator> Range) { 1252 for (DbgRecord &DR : Range) { 1253 remapDbgRecord(M, DR); 1254 } 1255 } 1256 1257 void ValueMapper::remapFunction(Function &F) { 1258 FlushingMapper(pImpl)->remapFunction(F); 1259 } 1260 1261 void ValueMapper::remapGlobalObjectMetadata(GlobalObject &GO) { 1262 FlushingMapper(pImpl)->remapGlobalObjectMetadata(GO); 1263 } 1264 1265 void ValueMapper::scheduleMapGlobalInitializer(GlobalVariable &GV, 1266 Constant &Init, 1267 unsigned MCID) { 1268 getAsMapper(pImpl)->scheduleMapGlobalInitializer(GV, Init, MCID); 1269 } 1270 1271 void ValueMapper::scheduleMapAppendingVariable(GlobalVariable &GV, 1272 Constant *InitPrefix, 1273 bool IsOldCtorDtor, 1274 ArrayRef<Constant *> NewMembers, 1275 unsigned MCID) { 1276 getAsMapper(pImpl)->scheduleMapAppendingVariable( 1277 GV, InitPrefix, IsOldCtorDtor, NewMembers, MCID); 1278 } 1279 1280 void ValueMapper::scheduleMapGlobalAlias(GlobalAlias &GA, Constant &Aliasee, 1281 unsigned MCID) { 1282 getAsMapper(pImpl)->scheduleMapAliasOrIFunc(GA, Aliasee, MCID); 1283 } 1284 1285 void ValueMapper::scheduleMapGlobalIFunc(GlobalIFunc &GI, Constant &Resolver, 1286 unsigned MCID) { 1287 getAsMapper(pImpl)->scheduleMapAliasOrIFunc(GI, Resolver, MCID); 1288 } 1289 1290 void ValueMapper::scheduleRemapFunction(Function &F, unsigned MCID) { 1291 getAsMapper(pImpl)->scheduleRemapFunction(F, MCID); 1292 } 1293