1 //===------- TreeTransform.h - Semantic Tree Transformation -----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //===----------------------------------------------------------------------===//
7 //
8 // This file implements a semantic tree transformation that takes a given
9 // AST and rebuilds it, possibly transforming some nodes in the process.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #ifndef LLVM_CLANG_LIB_SEMA_TREETRANSFORM_H
14 #define LLVM_CLANG_LIB_SEMA_TREETRANSFORM_H
15
16 #include "CoroutineStmtBuilder.h"
17 #include "TypeLocBuilder.h"
18 #include "clang/AST/Decl.h"
19 #include "clang/AST/DeclObjC.h"
20 #include "clang/AST/DeclTemplate.h"
21 #include "clang/AST/Expr.h"
22 #include "clang/AST/ExprConcepts.h"
23 #include "clang/AST/ExprCXX.h"
24 #include "clang/AST/ExprObjC.h"
25 #include "clang/AST/ExprOpenMP.h"
26 #include "clang/AST/OpenMPClause.h"
27 #include "clang/AST/Stmt.h"
28 #include "clang/AST/StmtCXX.h"
29 #include "clang/AST/StmtObjC.h"
30 #include "clang/AST/StmtOpenMP.h"
31 #include "clang/Basic/DiagnosticParse.h"
32 #include "clang/Basic/OpenMPKinds.h"
33 #include "clang/Sema/Designator.h"
34 #include "clang/Sema/Lookup.h"
35 #include "clang/Sema/Ownership.h"
36 #include "clang/Sema/ParsedTemplate.h"
37 #include "clang/Sema/ScopeInfo.h"
38 #include "clang/Sema/SemaDiagnostic.h"
39 #include "clang/Sema/SemaInternal.h"
40 #include "llvm/ADT/ArrayRef.h"
41 #include "llvm/Support/ErrorHandling.h"
42 #include <algorithm>
43
44 using namespace llvm::omp;
45
46 namespace clang {
47 using namespace sema;
48
49 /// A semantic tree transformation that allows one to transform one
50 /// abstract syntax tree into another.
51 ///
52 /// A new tree transformation is defined by creating a new subclass \c X of
53 /// \c TreeTransform<X> and then overriding certain operations to provide
54 /// behavior specific to that transformation. For example, template
55 /// instantiation is implemented as a tree transformation where the
56 /// transformation of TemplateTypeParmType nodes involves substituting the
57 /// template arguments for their corresponding template parameters; a similar
58 /// transformation is performed for non-type template parameters and
59 /// template template parameters.
60 ///
61 /// This tree-transformation template uses static polymorphism to allow
62 /// subclasses to customize any of its operations. Thus, a subclass can
63 /// override any of the transformation or rebuild operators by providing an
64 /// operation with the same signature as the default implementation. The
65 /// overriding function should not be virtual.
66 ///
67 /// Semantic tree transformations are split into two stages, either of which
68 /// can be replaced by a subclass. The "transform" step transforms an AST node
69 /// or the parts of an AST node using the various transformation functions,
70 /// then passes the pieces on to the "rebuild" step, which constructs a new AST
71 /// node of the appropriate kind from the pieces. The default transformation
72 /// routines recursively transform the operands to composite AST nodes (e.g.,
73 /// the pointee type of a PointerType node) and, if any of those operand nodes
74 /// were changed by the transformation, invokes the rebuild operation to create
75 /// a new AST node.
76 ///
77 /// Subclasses can customize the transformation at various levels. The
78 /// most coarse-grained transformations involve replacing TransformType(),
79 /// TransformExpr(), TransformDecl(), TransformNestedNameSpecifierLoc(),
80 /// TransformTemplateName(), or TransformTemplateArgument() with entirely
81 /// new implementations.
82 ///
83 /// For more fine-grained transformations, subclasses can replace any of the
84 /// \c TransformXXX functions (where XXX is the name of an AST node, e.g.,
85 /// PointerType, StmtExpr) to alter the transformation. As mentioned previously,
86 /// replacing TransformTemplateTypeParmType() allows template instantiation
87 /// to substitute template arguments for their corresponding template
88 /// parameters. Additionally, subclasses can override the \c RebuildXXX
89 /// functions to control how AST nodes are rebuilt when their operands change.
90 /// By default, \c TreeTransform will invoke semantic analysis to rebuild
91 /// AST nodes. However, certain other tree transformations (e.g, cloning) may
92 /// be able to use more efficient rebuild steps.
93 ///
94 /// There are a handful of other functions that can be overridden, allowing one
95 /// to avoid traversing nodes that don't need any transformation
96 /// (\c AlreadyTransformed()), force rebuilding AST nodes even when their
97 /// operands have not changed (\c AlwaysRebuild()), and customize the
98 /// default locations and entity names used for type-checking
99 /// (\c getBaseLocation(), \c getBaseEntity()).
100 template<typename Derived>
101 class TreeTransform {
102 /// Private RAII object that helps us forget and then re-remember
103 /// the template argument corresponding to a partially-substituted parameter
104 /// pack.
105 class ForgetPartiallySubstitutedPackRAII {
106 Derived &Self;
107 TemplateArgument Old;
108
109 public:
ForgetPartiallySubstitutedPackRAII(Derived & Self)110 ForgetPartiallySubstitutedPackRAII(Derived &Self) : Self(Self) {
111 Old = Self.ForgetPartiallySubstitutedPack();
112 }
113
~ForgetPartiallySubstitutedPackRAII()114 ~ForgetPartiallySubstitutedPackRAII() {
115 Self.RememberPartiallySubstitutedPack(Old);
116 }
117 };
118
119 protected:
120 Sema &SemaRef;
121
122 /// The set of local declarations that have been transformed, for
123 /// cases where we are forced to build new declarations within the transformer
124 /// rather than in the subclass (e.g., lambda closure types).
125 llvm::DenseMap<Decl *, Decl *> TransformedLocalDecls;
126
127 public:
128 /// Initializes a new tree transformer.
TreeTransform(Sema & SemaRef)129 TreeTransform(Sema &SemaRef) : SemaRef(SemaRef) { }
130
131 /// Retrieves a reference to the derived class.
getDerived()132 Derived &getDerived() { return static_cast<Derived&>(*this); }
133
134 /// Retrieves a reference to the derived class.
getDerived()135 const Derived &getDerived() const {
136 return static_cast<const Derived&>(*this);
137 }
138
Owned(Expr * E)139 static inline ExprResult Owned(Expr *E) { return E; }
Owned(Stmt * S)140 static inline StmtResult Owned(Stmt *S) { return S; }
141
142 /// Retrieves a reference to the semantic analysis object used for
143 /// this tree transform.
getSema()144 Sema &getSema() const { return SemaRef; }
145
146 /// Whether the transformation should always rebuild AST nodes, even
147 /// if none of the children have changed.
148 ///
149 /// Subclasses may override this function to specify when the transformation
150 /// should rebuild all AST nodes.
151 ///
152 /// We must always rebuild all AST nodes when performing variadic template
153 /// pack expansion, in order to avoid violating the AST invariant that each
154 /// statement node appears at most once in its containing declaration.
AlwaysRebuild()155 bool AlwaysRebuild() { return SemaRef.ArgumentPackSubstitutionIndex != -1; }
156
157 /// Whether the transformation is forming an expression or statement that
158 /// replaces the original. In this case, we'll reuse mangling numbers from
159 /// existing lambdas.
ReplacingOriginal()160 bool ReplacingOriginal() { return false; }
161
162 /// Wether CXXConstructExpr can be skipped when they are implicit.
163 /// They will be reconstructed when used if needed.
164 /// This is usefull when the user that cause rebuilding of the
165 /// CXXConstructExpr is outside of the expression at which the TreeTransform
166 /// started.
AllowSkippingCXXConstructExpr()167 bool AllowSkippingCXXConstructExpr() { return true; }
168
169 /// Returns the location of the entity being transformed, if that
170 /// information was not available elsewhere in the AST.
171 ///
172 /// By default, returns no source-location information. Subclasses can
173 /// provide an alternative implementation that provides better location
174 /// information.
getBaseLocation()175 SourceLocation getBaseLocation() { return SourceLocation(); }
176
177 /// Returns the name of the entity being transformed, if that
178 /// information was not available elsewhere in the AST.
179 ///
180 /// By default, returns an empty name. Subclasses can provide an alternative
181 /// implementation with a more precise name.
getBaseEntity()182 DeclarationName getBaseEntity() { return DeclarationName(); }
183
184 /// Sets the "base" location and entity when that
185 /// information is known based on another transformation.
186 ///
187 /// By default, the source location and entity are ignored. Subclasses can
188 /// override this function to provide a customized implementation.
setBase(SourceLocation Loc,DeclarationName Entity)189 void setBase(SourceLocation Loc, DeclarationName Entity) { }
190
191 /// RAII object that temporarily sets the base location and entity
192 /// used for reporting diagnostics in types.
193 class TemporaryBase {
194 TreeTransform &Self;
195 SourceLocation OldLocation;
196 DeclarationName OldEntity;
197
198 public:
TemporaryBase(TreeTransform & Self,SourceLocation Location,DeclarationName Entity)199 TemporaryBase(TreeTransform &Self, SourceLocation Location,
200 DeclarationName Entity) : Self(Self) {
201 OldLocation = Self.getDerived().getBaseLocation();
202 OldEntity = Self.getDerived().getBaseEntity();
203
204 if (Location.isValid())
205 Self.getDerived().setBase(Location, Entity);
206 }
207
~TemporaryBase()208 ~TemporaryBase() {
209 Self.getDerived().setBase(OldLocation, OldEntity);
210 }
211 };
212
213 /// Determine whether the given type \p T has already been
214 /// transformed.
215 ///
216 /// Subclasses can provide an alternative implementation of this routine
217 /// to short-circuit evaluation when it is known that a given type will
218 /// not change. For example, template instantiation need not traverse
219 /// non-dependent types.
AlreadyTransformed(QualType T)220 bool AlreadyTransformed(QualType T) {
221 return T.isNull();
222 }
223
224 /// Transform a template parameter depth level.
225 ///
226 /// During a transformation that transforms template parameters, this maps
227 /// an old template parameter depth to a new depth.
TransformTemplateDepth(unsigned Depth)228 unsigned TransformTemplateDepth(unsigned Depth) {
229 return Depth;
230 }
231
232 /// Determine whether the given call argument should be dropped, e.g.,
233 /// because it is a default argument.
234 ///
235 /// Subclasses can provide an alternative implementation of this routine to
236 /// determine which kinds of call arguments get dropped. By default,
237 /// CXXDefaultArgument nodes are dropped (prior to transformation).
DropCallArgument(Expr * E)238 bool DropCallArgument(Expr *E) {
239 return E->isDefaultArgument();
240 }
241
242 /// Determine whether we should expand a pack expansion with the
243 /// given set of parameter packs into separate arguments by repeatedly
244 /// transforming the pattern.
245 ///
246 /// By default, the transformer never tries to expand pack expansions.
247 /// Subclasses can override this routine to provide different behavior.
248 ///
249 /// \param EllipsisLoc The location of the ellipsis that identifies the
250 /// pack expansion.
251 ///
252 /// \param PatternRange The source range that covers the entire pattern of
253 /// the pack expansion.
254 ///
255 /// \param Unexpanded The set of unexpanded parameter packs within the
256 /// pattern.
257 ///
258 /// \param ShouldExpand Will be set to \c true if the transformer should
259 /// expand the corresponding pack expansions into separate arguments. When
260 /// set, \c NumExpansions must also be set.
261 ///
262 /// \param RetainExpansion Whether the caller should add an unexpanded
263 /// pack expansion after all of the expanded arguments. This is used
264 /// when extending explicitly-specified template argument packs per
265 /// C++0x [temp.arg.explicit]p9.
266 ///
267 /// \param NumExpansions The number of separate arguments that will be in
268 /// the expanded form of the corresponding pack expansion. This is both an
269 /// input and an output parameter, which can be set by the caller if the
270 /// number of expansions is known a priori (e.g., due to a prior substitution)
271 /// and will be set by the callee when the number of expansions is known.
272 /// The callee must set this value when \c ShouldExpand is \c true; it may
273 /// set this value in other cases.
274 ///
275 /// \returns true if an error occurred (e.g., because the parameter packs
276 /// are to be instantiated with arguments of different lengths), false
277 /// otherwise. If false, \c ShouldExpand (and possibly \c NumExpansions)
278 /// must be set.
TryExpandParameterPacks(SourceLocation EllipsisLoc,SourceRange PatternRange,ArrayRef<UnexpandedParameterPack> Unexpanded,bool & ShouldExpand,bool & RetainExpansion,Optional<unsigned> & NumExpansions)279 bool TryExpandParameterPacks(SourceLocation EllipsisLoc,
280 SourceRange PatternRange,
281 ArrayRef<UnexpandedParameterPack> Unexpanded,
282 bool &ShouldExpand,
283 bool &RetainExpansion,
284 Optional<unsigned> &NumExpansions) {
285 ShouldExpand = false;
286 return false;
287 }
288
289 /// "Forget" about the partially-substituted pack template argument,
290 /// when performing an instantiation that must preserve the parameter pack
291 /// use.
292 ///
293 /// This routine is meant to be overridden by the template instantiator.
ForgetPartiallySubstitutedPack()294 TemplateArgument ForgetPartiallySubstitutedPack() {
295 return TemplateArgument();
296 }
297
298 /// "Remember" the partially-substituted pack template argument
299 /// after performing an instantiation that must preserve the parameter pack
300 /// use.
301 ///
302 /// This routine is meant to be overridden by the template instantiator.
RememberPartiallySubstitutedPack(TemplateArgument Arg)303 void RememberPartiallySubstitutedPack(TemplateArgument Arg) { }
304
305 /// Note to the derived class when a function parameter pack is
306 /// being expanded.
ExpandingFunctionParameterPack(ParmVarDecl * Pack)307 void ExpandingFunctionParameterPack(ParmVarDecl *Pack) { }
308
309 /// Transforms the given type into another type.
310 ///
311 /// By default, this routine transforms a type by creating a
312 /// TypeSourceInfo for it and delegating to the appropriate
313 /// function. This is expensive, but we don't mind, because
314 /// this method is deprecated anyway; all users should be
315 /// switched to storing TypeSourceInfos.
316 ///
317 /// \returns the transformed type.
318 QualType TransformType(QualType T);
319
320 /// Transforms the given type-with-location into a new
321 /// type-with-location.
322 ///
323 /// By default, this routine transforms a type by delegating to the
324 /// appropriate TransformXXXType to build a new type. Subclasses
325 /// may override this function (to take over all type
326 /// transformations) or some set of the TransformXXXType functions
327 /// to alter the transformation.
328 TypeSourceInfo *TransformType(TypeSourceInfo *DI);
329
330 /// Transform the given type-with-location into a new
331 /// type, collecting location information in the given builder
332 /// as necessary.
333 ///
334 QualType TransformType(TypeLocBuilder &TLB, TypeLoc TL);
335
336 /// Transform a type that is permitted to produce a
337 /// DeducedTemplateSpecializationType.
338 ///
339 /// This is used in the (relatively rare) contexts where it is acceptable
340 /// for transformation to produce a class template type with deduced
341 /// template arguments.
342 /// @{
343 QualType TransformTypeWithDeducedTST(QualType T);
344 TypeSourceInfo *TransformTypeWithDeducedTST(TypeSourceInfo *DI);
345 /// @}
346
347 /// The reason why the value of a statement is not discarded, if any.
348 enum StmtDiscardKind {
349 SDK_Discarded,
350 SDK_NotDiscarded,
351 SDK_StmtExprResult,
352 };
353
354 /// Transform the given statement.
355 ///
356 /// By default, this routine transforms a statement by delegating to the
357 /// appropriate TransformXXXStmt function to transform a specific kind of
358 /// statement or the TransformExpr() function to transform an expression.
359 /// Subclasses may override this function to transform statements using some
360 /// other mechanism.
361 ///
362 /// \returns the transformed statement.
363 StmtResult TransformStmt(Stmt *S, StmtDiscardKind SDK = SDK_Discarded);
364
365 /// Transform the given statement.
366 ///
367 /// By default, this routine transforms a statement by delegating to the
368 /// appropriate TransformOMPXXXClause function to transform a specific kind
369 /// of clause. Subclasses may override this function to transform statements
370 /// using some other mechanism.
371 ///
372 /// \returns the transformed OpenMP clause.
373 OMPClause *TransformOMPClause(OMPClause *S);
374
375 /// Transform the given attribute.
376 ///
377 /// By default, this routine transforms a statement by delegating to the
378 /// appropriate TransformXXXAttr function to transform a specific kind
379 /// of attribute. Subclasses may override this function to transform
380 /// attributed statements using some other mechanism.
381 ///
382 /// \returns the transformed attribute
383 const Attr *TransformAttr(const Attr *S);
384
385 /// Transform the specified attribute.
386 ///
387 /// Subclasses should override the transformation of attributes with a pragma
388 /// spelling to transform expressions stored within the attribute.
389 ///
390 /// \returns the transformed attribute.
391 #define ATTR(X)
392 #define PRAGMA_SPELLING_ATTR(X) \
393 const X##Attr *Transform##X##Attr(const X##Attr *R) { return R; }
394 #include "clang/Basic/AttrList.inc"
395
396 /// Transform the given expression.
397 ///
398 /// By default, this routine transforms an expression by delegating to the
399 /// appropriate TransformXXXExpr function to build a new expression.
400 /// Subclasses may override this function to transform expressions using some
401 /// other mechanism.
402 ///
403 /// \returns the transformed expression.
404 ExprResult TransformExpr(Expr *E);
405
406 /// Transform the given initializer.
407 ///
408 /// By default, this routine transforms an initializer by stripping off the
409 /// semantic nodes added by initialization, then passing the result to
410 /// TransformExpr or TransformExprs.
411 ///
412 /// \returns the transformed initializer.
413 ExprResult TransformInitializer(Expr *Init, bool NotCopyInit);
414
415 /// Transform the given list of expressions.
416 ///
417 /// This routine transforms a list of expressions by invoking
418 /// \c TransformExpr() for each subexpression. However, it also provides
419 /// support for variadic templates by expanding any pack expansions (if the
420 /// derived class permits such expansion) along the way. When pack expansions
421 /// are present, the number of outputs may not equal the number of inputs.
422 ///
423 /// \param Inputs The set of expressions to be transformed.
424 ///
425 /// \param NumInputs The number of expressions in \c Inputs.
426 ///
427 /// \param IsCall If \c true, then this transform is being performed on
428 /// function-call arguments, and any arguments that should be dropped, will
429 /// be.
430 ///
431 /// \param Outputs The transformed input expressions will be added to this
432 /// vector.
433 ///
434 /// \param ArgChanged If non-NULL, will be set \c true if any argument changed
435 /// due to transformation.
436 ///
437 /// \returns true if an error occurred, false otherwise.
438 bool TransformExprs(Expr *const *Inputs, unsigned NumInputs, bool IsCall,
439 SmallVectorImpl<Expr *> &Outputs,
440 bool *ArgChanged = nullptr);
441
442 /// Transform the given declaration, which is referenced from a type
443 /// or expression.
444 ///
445 /// By default, acts as the identity function on declarations, unless the
446 /// transformer has had to transform the declaration itself. Subclasses
447 /// may override this function to provide alternate behavior.
TransformDecl(SourceLocation Loc,Decl * D)448 Decl *TransformDecl(SourceLocation Loc, Decl *D) {
449 llvm::DenseMap<Decl *, Decl *>::iterator Known
450 = TransformedLocalDecls.find(D);
451 if (Known != TransformedLocalDecls.end())
452 return Known->second;
453
454 return D;
455 }
456
457 /// Transform the specified condition.
458 ///
459 /// By default, this transforms the variable and expression and rebuilds
460 /// the condition.
461 Sema::ConditionResult TransformCondition(SourceLocation Loc, VarDecl *Var,
462 Expr *Expr,
463 Sema::ConditionKind Kind);
464
465 /// Transform the attributes associated with the given declaration and
466 /// place them on the new declaration.
467 ///
468 /// By default, this operation does nothing. Subclasses may override this
469 /// behavior to transform attributes.
transformAttrs(Decl * Old,Decl * New)470 void transformAttrs(Decl *Old, Decl *New) { }
471
472 /// Note that a local declaration has been transformed by this
473 /// transformer.
474 ///
475 /// Local declarations are typically transformed via a call to
476 /// TransformDefinition. However, in some cases (e.g., lambda expressions),
477 /// the transformer itself has to transform the declarations. This routine
478 /// can be overridden by a subclass that keeps track of such mappings.
transformedLocalDecl(Decl * Old,ArrayRef<Decl * > New)479 void transformedLocalDecl(Decl *Old, ArrayRef<Decl *> New) {
480 assert(New.size() == 1 &&
481 "must override transformedLocalDecl if performing pack expansion");
482 TransformedLocalDecls[Old] = New.front();
483 }
484
485 /// Transform the definition of the given declaration.
486 ///
487 /// By default, invokes TransformDecl() to transform the declaration.
488 /// Subclasses may override this function to provide alternate behavior.
TransformDefinition(SourceLocation Loc,Decl * D)489 Decl *TransformDefinition(SourceLocation Loc, Decl *D) {
490 return getDerived().TransformDecl(Loc, D);
491 }
492
493 /// Transform the given declaration, which was the first part of a
494 /// nested-name-specifier in a member access expression.
495 ///
496 /// This specific declaration transformation only applies to the first
497 /// identifier in a nested-name-specifier of a member access expression, e.g.,
498 /// the \c T in \c x->T::member
499 ///
500 /// By default, invokes TransformDecl() to transform the declaration.
501 /// Subclasses may override this function to provide alternate behavior.
TransformFirstQualifierInScope(NamedDecl * D,SourceLocation Loc)502 NamedDecl *TransformFirstQualifierInScope(NamedDecl *D, SourceLocation Loc) {
503 return cast_or_null<NamedDecl>(getDerived().TransformDecl(Loc, D));
504 }
505
506 /// Transform the set of declarations in an OverloadExpr.
507 bool TransformOverloadExprDecls(OverloadExpr *Old, bool RequiresADL,
508 LookupResult &R);
509
510 /// Transform the given nested-name-specifier with source-location
511 /// information.
512 ///
513 /// By default, transforms all of the types and declarations within the
514 /// nested-name-specifier. Subclasses may override this function to provide
515 /// alternate behavior.
516 NestedNameSpecifierLoc
517 TransformNestedNameSpecifierLoc(NestedNameSpecifierLoc NNS,
518 QualType ObjectType = QualType(),
519 NamedDecl *FirstQualifierInScope = nullptr);
520
521 /// Transform the given declaration name.
522 ///
523 /// By default, transforms the types of conversion function, constructor,
524 /// and destructor names and then (if needed) rebuilds the declaration name.
525 /// Identifiers and selectors are returned unmodified. Sublcasses may
526 /// override this function to provide alternate behavior.
527 DeclarationNameInfo
528 TransformDeclarationNameInfo(const DeclarationNameInfo &NameInfo);
529
530 bool TransformRequiresExprRequirements(ArrayRef<concepts::Requirement *> Reqs,
531 llvm::SmallVectorImpl<concepts::Requirement *> &Transformed);
532 concepts::TypeRequirement *
533 TransformTypeRequirement(concepts::TypeRequirement *Req);
534 concepts::ExprRequirement *
535 TransformExprRequirement(concepts::ExprRequirement *Req);
536 concepts::NestedRequirement *
537 TransformNestedRequirement(concepts::NestedRequirement *Req);
538
539 /// Transform the given template name.
540 ///
541 /// \param SS The nested-name-specifier that qualifies the template
542 /// name. This nested-name-specifier must already have been transformed.
543 ///
544 /// \param Name The template name to transform.
545 ///
546 /// \param NameLoc The source location of the template name.
547 ///
548 /// \param ObjectType If we're translating a template name within a member
549 /// access expression, this is the type of the object whose member template
550 /// is being referenced.
551 ///
552 /// \param FirstQualifierInScope If the first part of a nested-name-specifier
553 /// also refers to a name within the current (lexical) scope, this is the
554 /// declaration it refers to.
555 ///
556 /// By default, transforms the template name by transforming the declarations
557 /// and nested-name-specifiers that occur within the template name.
558 /// Subclasses may override this function to provide alternate behavior.
559 TemplateName
560 TransformTemplateName(CXXScopeSpec &SS, TemplateName Name,
561 SourceLocation NameLoc,
562 QualType ObjectType = QualType(),
563 NamedDecl *FirstQualifierInScope = nullptr,
564 bool AllowInjectedClassName = false);
565
566 /// Transform the given template argument.
567 ///
568 /// By default, this operation transforms the type, expression, or
569 /// declaration stored within the template argument and constructs a
570 /// new template argument from the transformed result. Subclasses may
571 /// override this function to provide alternate behavior.
572 ///
573 /// Returns true if there was an error.
574 bool TransformTemplateArgument(const TemplateArgumentLoc &Input,
575 TemplateArgumentLoc &Output,
576 bool Uneval = false);
577
578 /// Transform the given set of template arguments.
579 ///
580 /// By default, this operation transforms all of the template arguments
581 /// in the input set using \c TransformTemplateArgument(), and appends
582 /// the transformed arguments to the output list.
583 ///
584 /// Note that this overload of \c TransformTemplateArguments() is merely
585 /// a convenience function. Subclasses that wish to override this behavior
586 /// should override the iterator-based member template version.
587 ///
588 /// \param Inputs The set of template arguments to be transformed.
589 ///
590 /// \param NumInputs The number of template arguments in \p Inputs.
591 ///
592 /// \param Outputs The set of transformed template arguments output by this
593 /// routine.
594 ///
595 /// Returns true if an error occurred.
596 bool TransformTemplateArguments(const TemplateArgumentLoc *Inputs,
597 unsigned NumInputs,
598 TemplateArgumentListInfo &Outputs,
599 bool Uneval = false) {
600 return TransformTemplateArguments(Inputs, Inputs + NumInputs, Outputs,
601 Uneval);
602 }
603
604 /// Transform the given set of template arguments.
605 ///
606 /// By default, this operation transforms all of the template arguments
607 /// in the input set using \c TransformTemplateArgument(), and appends
608 /// the transformed arguments to the output list.
609 ///
610 /// \param First An iterator to the first template argument.
611 ///
612 /// \param Last An iterator one step past the last template argument.
613 ///
614 /// \param Outputs The set of transformed template arguments output by this
615 /// routine.
616 ///
617 /// Returns true if an error occurred.
618 template<typename InputIterator>
619 bool TransformTemplateArguments(InputIterator First,
620 InputIterator Last,
621 TemplateArgumentListInfo &Outputs,
622 bool Uneval = false);
623
624 /// Fakes up a TemplateArgumentLoc for a given TemplateArgument.
625 void InventTemplateArgumentLoc(const TemplateArgument &Arg,
626 TemplateArgumentLoc &ArgLoc);
627
628 /// Fakes up a TypeSourceInfo for a type.
InventTypeSourceInfo(QualType T)629 TypeSourceInfo *InventTypeSourceInfo(QualType T) {
630 return SemaRef.Context.getTrivialTypeSourceInfo(T,
631 getDerived().getBaseLocation());
632 }
633
634 #define ABSTRACT_TYPELOC(CLASS, PARENT)
635 #define TYPELOC(CLASS, PARENT) \
636 QualType Transform##CLASS##Type(TypeLocBuilder &TLB, CLASS##TypeLoc T);
637 #include "clang/AST/TypeLocNodes.def"
638
639 template<typename Fn>
640 QualType TransformFunctionProtoType(TypeLocBuilder &TLB,
641 FunctionProtoTypeLoc TL,
642 CXXRecordDecl *ThisContext,
643 Qualifiers ThisTypeQuals,
644 Fn TransformExceptionSpec);
645
646 bool TransformExceptionSpec(SourceLocation Loc,
647 FunctionProtoType::ExceptionSpecInfo &ESI,
648 SmallVectorImpl<QualType> &Exceptions,
649 bool &Changed);
650
651 StmtResult TransformSEHHandler(Stmt *Handler);
652
653 QualType
654 TransformTemplateSpecializationType(TypeLocBuilder &TLB,
655 TemplateSpecializationTypeLoc TL,
656 TemplateName Template);
657
658 QualType
659 TransformDependentTemplateSpecializationType(TypeLocBuilder &TLB,
660 DependentTemplateSpecializationTypeLoc TL,
661 TemplateName Template,
662 CXXScopeSpec &SS);
663
664 QualType TransformDependentTemplateSpecializationType(
665 TypeLocBuilder &TLB, DependentTemplateSpecializationTypeLoc TL,
666 NestedNameSpecifierLoc QualifierLoc);
667
668 /// Transforms the parameters of a function type into the
669 /// given vectors.
670 ///
671 /// The result vectors should be kept in sync; null entries in the
672 /// variables vector are acceptable.
673 ///
674 /// Return true on error.
675 bool TransformFunctionTypeParams(
676 SourceLocation Loc, ArrayRef<ParmVarDecl *> Params,
677 const QualType *ParamTypes,
678 const FunctionProtoType::ExtParameterInfo *ParamInfos,
679 SmallVectorImpl<QualType> &PTypes, SmallVectorImpl<ParmVarDecl *> *PVars,
680 Sema::ExtParameterInfoBuilder &PInfos);
681
682 /// Transforms a single function-type parameter. Return null
683 /// on error.
684 ///
685 /// \param indexAdjustment - A number to add to the parameter's
686 /// scope index; can be negative
687 ParmVarDecl *TransformFunctionTypeParam(ParmVarDecl *OldParm,
688 int indexAdjustment,
689 Optional<unsigned> NumExpansions,
690 bool ExpectParameterPack);
691
692 /// Transform the body of a lambda-expression.
693 StmtResult TransformLambdaBody(LambdaExpr *E, Stmt *Body);
694 /// Alternative implementation of TransformLambdaBody that skips transforming
695 /// the body.
696 StmtResult SkipLambdaBody(LambdaExpr *E, Stmt *Body);
697
698 QualType TransformReferenceType(TypeLocBuilder &TLB, ReferenceTypeLoc TL);
699
700 StmtResult TransformCompoundStmt(CompoundStmt *S, bool IsStmtExpr);
701 ExprResult TransformCXXNamedCastExpr(CXXNamedCastExpr *E);
702
TransformTemplateParameterList(TemplateParameterList * TPL)703 TemplateParameterList *TransformTemplateParameterList(
704 TemplateParameterList *TPL) {
705 return TPL;
706 }
707
708 ExprResult TransformAddressOfOperand(Expr *E);
709
710 ExprResult TransformDependentScopeDeclRefExpr(DependentScopeDeclRefExpr *E,
711 bool IsAddressOfOperand,
712 TypeSourceInfo **RecoveryTSI);
713
714 ExprResult TransformParenDependentScopeDeclRefExpr(
715 ParenExpr *PE, DependentScopeDeclRefExpr *DRE, bool IsAddressOfOperand,
716 TypeSourceInfo **RecoveryTSI);
717
718 StmtResult TransformOMPExecutableDirective(OMPExecutableDirective *S);
719
720 // FIXME: We use LLVM_ATTRIBUTE_NOINLINE because inlining causes a ridiculous
721 // amount of stack usage with clang.
722 #define STMT(Node, Parent) \
723 LLVM_ATTRIBUTE_NOINLINE \
724 StmtResult Transform##Node(Node *S);
725 #define VALUESTMT(Node, Parent) \
726 LLVM_ATTRIBUTE_NOINLINE \
727 StmtResult Transform##Node(Node *S, StmtDiscardKind SDK);
728 #define EXPR(Node, Parent) \
729 LLVM_ATTRIBUTE_NOINLINE \
730 ExprResult Transform##Node(Node *E);
731 #define ABSTRACT_STMT(Stmt)
732 #include "clang/AST/StmtNodes.inc"
733
734 #define GEN_CLANG_CLAUSE_CLASS
735 #define CLAUSE_CLASS(Enum, Str, Class) \
736 LLVM_ATTRIBUTE_NOINLINE \
737 OMPClause *Transform##Class(Class *S);
738 #include "llvm/Frontend/OpenMP/OMP.inc"
739
740 /// Build a new qualified type given its unqualified type and type location.
741 ///
742 /// By default, this routine adds type qualifiers only to types that can
743 /// have qualifiers, and silently suppresses those qualifiers that are not
744 /// permitted. Subclasses may override this routine to provide different
745 /// behavior.
746 QualType RebuildQualifiedType(QualType T, QualifiedTypeLoc TL);
747
748 /// Build a new pointer type given its pointee type.
749 ///
750 /// By default, performs semantic analysis when building the pointer type.
751 /// Subclasses may override this routine to provide different behavior.
752 QualType RebuildPointerType(QualType PointeeType, SourceLocation Sigil);
753
754 /// Build a new block pointer type given its pointee type.
755 ///
756 /// By default, performs semantic analysis when building the block pointer
757 /// type. Subclasses may override this routine to provide different behavior.
758 QualType RebuildBlockPointerType(QualType PointeeType, SourceLocation Sigil);
759
760 /// Build a new reference type given the type it references.
761 ///
762 /// By default, performs semantic analysis when building the
763 /// reference type. Subclasses may override this routine to provide
764 /// different behavior.
765 ///
766 /// \param LValue whether the type was written with an lvalue sigil
767 /// or an rvalue sigil.
768 QualType RebuildReferenceType(QualType ReferentType,
769 bool LValue,
770 SourceLocation Sigil);
771
772 /// Build a new member pointer type given the pointee type and the
773 /// class type it refers into.
774 ///
775 /// By default, performs semantic analysis when building the member pointer
776 /// type. Subclasses may override this routine to provide different behavior.
777 QualType RebuildMemberPointerType(QualType PointeeType, QualType ClassType,
778 SourceLocation Sigil);
779
780 QualType RebuildObjCTypeParamType(const ObjCTypeParamDecl *Decl,
781 SourceLocation ProtocolLAngleLoc,
782 ArrayRef<ObjCProtocolDecl *> Protocols,
783 ArrayRef<SourceLocation> ProtocolLocs,
784 SourceLocation ProtocolRAngleLoc);
785
786 /// Build an Objective-C object type.
787 ///
788 /// By default, performs semantic analysis when building the object type.
789 /// Subclasses may override this routine to provide different behavior.
790 QualType RebuildObjCObjectType(QualType BaseType,
791 SourceLocation Loc,
792 SourceLocation TypeArgsLAngleLoc,
793 ArrayRef<TypeSourceInfo *> TypeArgs,
794 SourceLocation TypeArgsRAngleLoc,
795 SourceLocation ProtocolLAngleLoc,
796 ArrayRef<ObjCProtocolDecl *> Protocols,
797 ArrayRef<SourceLocation> ProtocolLocs,
798 SourceLocation ProtocolRAngleLoc);
799
800 /// Build a new Objective-C object pointer type given the pointee type.
801 ///
802 /// By default, directly builds the pointer type, with no additional semantic
803 /// analysis.
804 QualType RebuildObjCObjectPointerType(QualType PointeeType,
805 SourceLocation Star);
806
807 /// Build a new array type given the element type, size
808 /// modifier, size of the array (if known), size expression, and index type
809 /// qualifiers.
810 ///
811 /// By default, performs semantic analysis when building the array type.
812 /// Subclasses may override this routine to provide different behavior.
813 /// Also by default, all of the other Rebuild*Array
814 QualType RebuildArrayType(QualType ElementType,
815 ArrayType::ArraySizeModifier SizeMod,
816 const llvm::APInt *Size,
817 Expr *SizeExpr,
818 unsigned IndexTypeQuals,
819 SourceRange BracketsRange);
820
821 /// Build a new constant array type given the element type, size
822 /// modifier, (known) size of the array, and index type qualifiers.
823 ///
824 /// By default, performs semantic analysis when building the array type.
825 /// Subclasses may override this routine to provide different behavior.
826 QualType RebuildConstantArrayType(QualType ElementType,
827 ArrayType::ArraySizeModifier SizeMod,
828 const llvm::APInt &Size,
829 Expr *SizeExpr,
830 unsigned IndexTypeQuals,
831 SourceRange BracketsRange);
832
833 /// Build a new incomplete array type given the element type, size
834 /// modifier, and index type qualifiers.
835 ///
836 /// By default, performs semantic analysis when building the array type.
837 /// Subclasses may override this routine to provide different behavior.
838 QualType RebuildIncompleteArrayType(QualType ElementType,
839 ArrayType::ArraySizeModifier SizeMod,
840 unsigned IndexTypeQuals,
841 SourceRange BracketsRange);
842
843 /// Build a new variable-length array type given the element type,
844 /// size modifier, size expression, and index type qualifiers.
845 ///
846 /// By default, performs semantic analysis when building the array type.
847 /// Subclasses may override this routine to provide different behavior.
848 QualType RebuildVariableArrayType(QualType ElementType,
849 ArrayType::ArraySizeModifier SizeMod,
850 Expr *SizeExpr,
851 unsigned IndexTypeQuals,
852 SourceRange BracketsRange);
853
854 /// Build a new dependent-sized array type given the element type,
855 /// size modifier, size expression, and index type qualifiers.
856 ///
857 /// By default, performs semantic analysis when building the array type.
858 /// Subclasses may override this routine to provide different behavior.
859 QualType RebuildDependentSizedArrayType(QualType ElementType,
860 ArrayType::ArraySizeModifier SizeMod,
861 Expr *SizeExpr,
862 unsigned IndexTypeQuals,
863 SourceRange BracketsRange);
864
865 /// Build a new vector type given the element type and
866 /// number of elements.
867 ///
868 /// By default, performs semantic analysis when building the vector type.
869 /// Subclasses may override this routine to provide different behavior.
870 QualType RebuildVectorType(QualType ElementType, unsigned NumElements,
871 VectorType::VectorKind VecKind);
872
873 /// Build a new potentially dependently-sized extended vector type
874 /// given the element type and number of elements.
875 ///
876 /// By default, performs semantic analysis when building the vector type.
877 /// Subclasses may override this routine to provide different behavior.
878 QualType RebuildDependentVectorType(QualType ElementType, Expr *SizeExpr,
879 SourceLocation AttributeLoc,
880 VectorType::VectorKind);
881
882 /// Build a new extended vector type given the element type and
883 /// number of elements.
884 ///
885 /// By default, performs semantic analysis when building the vector type.
886 /// Subclasses may override this routine to provide different behavior.
887 QualType RebuildExtVectorType(QualType ElementType, unsigned NumElements,
888 SourceLocation AttributeLoc);
889
890 /// Build a new potentially dependently-sized extended vector type
891 /// given the element type and number of elements.
892 ///
893 /// By default, performs semantic analysis when building the vector type.
894 /// Subclasses may override this routine to provide different behavior.
895 QualType RebuildDependentSizedExtVectorType(QualType ElementType,
896 Expr *SizeExpr,
897 SourceLocation AttributeLoc);
898
899 /// Build a new matrix type given the element type and dimensions.
900 QualType RebuildConstantMatrixType(QualType ElementType, unsigned NumRows,
901 unsigned NumColumns);
902
903 /// Build a new matrix type given the type and dependently-defined
904 /// dimensions.
905 QualType RebuildDependentSizedMatrixType(QualType ElementType, Expr *RowExpr,
906 Expr *ColumnExpr,
907 SourceLocation AttributeLoc);
908
909 /// Build a new DependentAddressSpaceType or return the pointee
910 /// type variable with the correct address space (retrieved from
911 /// AddrSpaceExpr) applied to it. The former will be returned in cases
912 /// where the address space remains dependent.
913 ///
914 /// By default, performs semantic analysis when building the type with address
915 /// space applied. Subclasses may override this routine to provide different
916 /// behavior.
917 QualType RebuildDependentAddressSpaceType(QualType PointeeType,
918 Expr *AddrSpaceExpr,
919 SourceLocation AttributeLoc);
920
921 /// Build a new function type.
922 ///
923 /// By default, performs semantic analysis when building the function type.
924 /// Subclasses may override this routine to provide different behavior.
925 QualType RebuildFunctionProtoType(QualType T,
926 MutableArrayRef<QualType> ParamTypes,
927 const FunctionProtoType::ExtProtoInfo &EPI);
928
929 /// Build a new unprototyped function type.
930 QualType RebuildFunctionNoProtoType(QualType ResultType);
931
932 /// Rebuild an unresolved typename type, given the decl that
933 /// the UnresolvedUsingTypenameDecl was transformed to.
934 QualType RebuildUnresolvedUsingType(SourceLocation NameLoc, Decl *D);
935
936 /// Build a new typedef type.
RebuildTypedefType(TypedefNameDecl * Typedef)937 QualType RebuildTypedefType(TypedefNameDecl *Typedef) {
938 return SemaRef.Context.getTypeDeclType(Typedef);
939 }
940
941 /// Build a new MacroDefined type.
RebuildMacroQualifiedType(QualType T,const IdentifierInfo * MacroII)942 QualType RebuildMacroQualifiedType(QualType T,
943 const IdentifierInfo *MacroII) {
944 return SemaRef.Context.getMacroQualifiedType(T, MacroII);
945 }
946
947 /// Build a new class/struct/union type.
RebuildRecordType(RecordDecl * Record)948 QualType RebuildRecordType(RecordDecl *Record) {
949 return SemaRef.Context.getTypeDeclType(Record);
950 }
951
952 /// Build a new Enum type.
RebuildEnumType(EnumDecl * Enum)953 QualType RebuildEnumType(EnumDecl *Enum) {
954 return SemaRef.Context.getTypeDeclType(Enum);
955 }
956
957 /// Build a new typeof(expr) type.
958 ///
959 /// By default, performs semantic analysis when building the typeof type.
960 /// Subclasses may override this routine to provide different behavior.
961 QualType RebuildTypeOfExprType(Expr *Underlying, SourceLocation Loc);
962
963 /// Build a new typeof(type) type.
964 ///
965 /// By default, builds a new TypeOfType with the given underlying type.
966 QualType RebuildTypeOfType(QualType Underlying);
967
968 /// Build a new unary transform type.
969 QualType RebuildUnaryTransformType(QualType BaseType,
970 UnaryTransformType::UTTKind UKind,
971 SourceLocation Loc);
972
973 /// Build a new C++11 decltype type.
974 ///
975 /// By default, performs semantic analysis when building the decltype type.
976 /// Subclasses may override this routine to provide different behavior.
977 QualType RebuildDecltypeType(Expr *Underlying, SourceLocation Loc);
978
979 /// Build a new C++11 auto type.
980 ///
981 /// By default, builds a new AutoType with the given deduced type.
RebuildAutoType(QualType Deduced,AutoTypeKeyword Keyword,ConceptDecl * TypeConstraintConcept,ArrayRef<TemplateArgument> TypeConstraintArgs)982 QualType RebuildAutoType(QualType Deduced, AutoTypeKeyword Keyword,
983 ConceptDecl *TypeConstraintConcept,
984 ArrayRef<TemplateArgument> TypeConstraintArgs) {
985 // Note, IsDependent is always false here: we implicitly convert an 'auto'
986 // which has been deduced to a dependent type into an undeduced 'auto', so
987 // that we'll retry deduction after the transformation.
988 return SemaRef.Context.getAutoType(Deduced, Keyword,
989 /*IsDependent*/ false, /*IsPack=*/false,
990 TypeConstraintConcept,
991 TypeConstraintArgs);
992 }
993
994 /// By default, builds a new DeducedTemplateSpecializationType with the given
995 /// deduced type.
RebuildDeducedTemplateSpecializationType(TemplateName Template,QualType Deduced)996 QualType RebuildDeducedTemplateSpecializationType(TemplateName Template,
997 QualType Deduced) {
998 return SemaRef.Context.getDeducedTemplateSpecializationType(
999 Template, Deduced, /*IsDependent*/ false);
1000 }
1001
1002 /// Build a new template specialization type.
1003 ///
1004 /// By default, performs semantic analysis when building the template
1005 /// specialization type. Subclasses may override this routine to provide
1006 /// different behavior.
1007 QualType RebuildTemplateSpecializationType(TemplateName Template,
1008 SourceLocation TemplateLoc,
1009 TemplateArgumentListInfo &Args);
1010
1011 /// Build a new parenthesized type.
1012 ///
1013 /// By default, builds a new ParenType type from the inner type.
1014 /// Subclasses may override this routine to provide different behavior.
RebuildParenType(QualType InnerType)1015 QualType RebuildParenType(QualType InnerType) {
1016 return SemaRef.BuildParenType(InnerType);
1017 }
1018
1019 /// Build a new qualified name type.
1020 ///
1021 /// By default, builds a new ElaboratedType type from the keyword,
1022 /// the nested-name-specifier and the named type.
1023 /// Subclasses may override this routine to provide different behavior.
RebuildElaboratedType(SourceLocation KeywordLoc,ElaboratedTypeKeyword Keyword,NestedNameSpecifierLoc QualifierLoc,QualType Named)1024 QualType RebuildElaboratedType(SourceLocation KeywordLoc,
1025 ElaboratedTypeKeyword Keyword,
1026 NestedNameSpecifierLoc QualifierLoc,
1027 QualType Named) {
1028 return SemaRef.Context.getElaboratedType(Keyword,
1029 QualifierLoc.getNestedNameSpecifier(),
1030 Named);
1031 }
1032
1033 /// Build a new typename type that refers to a template-id.
1034 ///
1035 /// By default, builds a new DependentNameType type from the
1036 /// nested-name-specifier and the given type. Subclasses may override
1037 /// this routine to provide different behavior.
RebuildDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,NestedNameSpecifierLoc QualifierLoc,SourceLocation TemplateKWLoc,const IdentifierInfo * Name,SourceLocation NameLoc,TemplateArgumentListInfo & Args,bool AllowInjectedClassName)1038 QualType RebuildDependentTemplateSpecializationType(
1039 ElaboratedTypeKeyword Keyword,
1040 NestedNameSpecifierLoc QualifierLoc,
1041 SourceLocation TemplateKWLoc,
1042 const IdentifierInfo *Name,
1043 SourceLocation NameLoc,
1044 TemplateArgumentListInfo &Args,
1045 bool AllowInjectedClassName) {
1046 // Rebuild the template name.
1047 // TODO: avoid TemplateName abstraction
1048 CXXScopeSpec SS;
1049 SS.Adopt(QualifierLoc);
1050 TemplateName InstName = getDerived().RebuildTemplateName(
1051 SS, TemplateKWLoc, *Name, NameLoc, QualType(), nullptr,
1052 AllowInjectedClassName);
1053
1054 if (InstName.isNull())
1055 return QualType();
1056
1057 // If it's still dependent, make a dependent specialization.
1058 if (InstName.getAsDependentTemplateName())
1059 return SemaRef.Context.getDependentTemplateSpecializationType(Keyword,
1060 QualifierLoc.getNestedNameSpecifier(),
1061 Name,
1062 Args);
1063
1064 // Otherwise, make an elaborated type wrapping a non-dependent
1065 // specialization.
1066 QualType T =
1067 getDerived().RebuildTemplateSpecializationType(InstName, NameLoc, Args);
1068 if (T.isNull()) return QualType();
1069
1070 if (Keyword == ETK_None && QualifierLoc.getNestedNameSpecifier() == nullptr)
1071 return T;
1072
1073 return SemaRef.Context.getElaboratedType(Keyword,
1074 QualifierLoc.getNestedNameSpecifier(),
1075 T);
1076 }
1077
1078 /// Build a new typename type that refers to an identifier.
1079 ///
1080 /// By default, performs semantic analysis when building the typename type
1081 /// (or elaborated type). Subclasses may override this routine to provide
1082 /// different behavior.
RebuildDependentNameType(ElaboratedTypeKeyword Keyword,SourceLocation KeywordLoc,NestedNameSpecifierLoc QualifierLoc,const IdentifierInfo * Id,SourceLocation IdLoc,bool DeducedTSTContext)1083 QualType RebuildDependentNameType(ElaboratedTypeKeyword Keyword,
1084 SourceLocation KeywordLoc,
1085 NestedNameSpecifierLoc QualifierLoc,
1086 const IdentifierInfo *Id,
1087 SourceLocation IdLoc,
1088 bool DeducedTSTContext) {
1089 CXXScopeSpec SS;
1090 SS.Adopt(QualifierLoc);
1091
1092 if (QualifierLoc.getNestedNameSpecifier()->isDependent()) {
1093 // If the name is still dependent, just build a new dependent name type.
1094 if (!SemaRef.computeDeclContext(SS))
1095 return SemaRef.Context.getDependentNameType(Keyword,
1096 QualifierLoc.getNestedNameSpecifier(),
1097 Id);
1098 }
1099
1100 if (Keyword == ETK_None || Keyword == ETK_Typename) {
1101 return SemaRef.CheckTypenameType(Keyword, KeywordLoc, QualifierLoc,
1102 *Id, IdLoc, DeducedTSTContext);
1103 }
1104
1105 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForKeyword(Keyword);
1106
1107 // We had a dependent elaborated-type-specifier that has been transformed
1108 // into a non-dependent elaborated-type-specifier. Find the tag we're
1109 // referring to.
1110 LookupResult Result(SemaRef, Id, IdLoc, Sema::LookupTagName);
1111 DeclContext *DC = SemaRef.computeDeclContext(SS, false);
1112 if (!DC)
1113 return QualType();
1114
1115 if (SemaRef.RequireCompleteDeclContext(SS, DC))
1116 return QualType();
1117
1118 TagDecl *Tag = nullptr;
1119 SemaRef.LookupQualifiedName(Result, DC);
1120 switch (Result.getResultKind()) {
1121 case LookupResult::NotFound:
1122 case LookupResult::NotFoundInCurrentInstantiation:
1123 break;
1124
1125 case LookupResult::Found:
1126 Tag = Result.getAsSingle<TagDecl>();
1127 break;
1128
1129 case LookupResult::FoundOverloaded:
1130 case LookupResult::FoundUnresolvedValue:
1131 llvm_unreachable("Tag lookup cannot find non-tags");
1132
1133 case LookupResult::Ambiguous:
1134 // Let the LookupResult structure handle ambiguities.
1135 return QualType();
1136 }
1137
1138 if (!Tag) {
1139 // Check where the name exists but isn't a tag type and use that to emit
1140 // better diagnostics.
1141 LookupResult Result(SemaRef, Id, IdLoc, Sema::LookupTagName);
1142 SemaRef.LookupQualifiedName(Result, DC);
1143 switch (Result.getResultKind()) {
1144 case LookupResult::Found:
1145 case LookupResult::FoundOverloaded:
1146 case LookupResult::FoundUnresolvedValue: {
1147 NamedDecl *SomeDecl = Result.getRepresentativeDecl();
1148 Sema::NonTagKind NTK = SemaRef.getNonTagTypeDeclKind(SomeDecl, Kind);
1149 SemaRef.Diag(IdLoc, diag::err_tag_reference_non_tag) << SomeDecl
1150 << NTK << Kind;
1151 SemaRef.Diag(SomeDecl->getLocation(), diag::note_declared_at);
1152 break;
1153 }
1154 default:
1155 SemaRef.Diag(IdLoc, diag::err_not_tag_in_scope)
1156 << Kind << Id << DC << QualifierLoc.getSourceRange();
1157 break;
1158 }
1159 return QualType();
1160 }
1161
1162 if (!SemaRef.isAcceptableTagRedeclaration(Tag, Kind, /*isDefinition*/false,
1163 IdLoc, Id)) {
1164 SemaRef.Diag(KeywordLoc, diag::err_use_with_wrong_tag) << Id;
1165 SemaRef.Diag(Tag->getLocation(), diag::note_previous_use);
1166 return QualType();
1167 }
1168
1169 // Build the elaborated-type-specifier type.
1170 QualType T = SemaRef.Context.getTypeDeclType(Tag);
1171 return SemaRef.Context.getElaboratedType(Keyword,
1172 QualifierLoc.getNestedNameSpecifier(),
1173 T);
1174 }
1175
1176 /// Build a new pack expansion type.
1177 ///
1178 /// By default, builds a new PackExpansionType type from the given pattern.
1179 /// Subclasses may override this routine to provide different behavior.
RebuildPackExpansionType(QualType Pattern,SourceRange PatternRange,SourceLocation EllipsisLoc,Optional<unsigned> NumExpansions)1180 QualType RebuildPackExpansionType(QualType Pattern,
1181 SourceRange PatternRange,
1182 SourceLocation EllipsisLoc,
1183 Optional<unsigned> NumExpansions) {
1184 return getSema().CheckPackExpansion(Pattern, PatternRange, EllipsisLoc,
1185 NumExpansions);
1186 }
1187
1188 /// Build a new atomic type given its value type.
1189 ///
1190 /// By default, performs semantic analysis when building the atomic type.
1191 /// Subclasses may override this routine to provide different behavior.
1192 QualType RebuildAtomicType(QualType ValueType, SourceLocation KWLoc);
1193
1194 /// Build a new pipe type given its value type.
1195 QualType RebuildPipeType(QualType ValueType, SourceLocation KWLoc,
1196 bool isReadPipe);
1197
1198 /// Build an extended int given its value type.
1199 QualType RebuildExtIntType(bool IsUnsigned, unsigned NumBits,
1200 SourceLocation Loc);
1201
1202 /// Build a dependent extended int given its value type.
1203 QualType RebuildDependentExtIntType(bool IsUnsigned, Expr *NumBitsExpr,
1204 SourceLocation Loc);
1205
1206 /// Build a new template name given a nested name specifier, a flag
1207 /// indicating whether the "template" keyword was provided, and the template
1208 /// that the template name refers to.
1209 ///
1210 /// By default, builds the new template name directly. Subclasses may override
1211 /// this routine to provide different behavior.
1212 TemplateName RebuildTemplateName(CXXScopeSpec &SS,
1213 bool TemplateKW,
1214 TemplateDecl *Template);
1215
1216 /// Build a new template name given a nested name specifier and the
1217 /// name that is referred to as a template.
1218 ///
1219 /// By default, performs semantic analysis to determine whether the name can
1220 /// be resolved to a specific template, then builds the appropriate kind of
1221 /// template name. Subclasses may override this routine to provide different
1222 /// behavior.
1223 TemplateName RebuildTemplateName(CXXScopeSpec &SS,
1224 SourceLocation TemplateKWLoc,
1225 const IdentifierInfo &Name,
1226 SourceLocation NameLoc, QualType ObjectType,
1227 NamedDecl *FirstQualifierInScope,
1228 bool AllowInjectedClassName);
1229
1230 /// Build a new template name given a nested name specifier and the
1231 /// overloaded operator name that is referred to as a template.
1232 ///
1233 /// By default, performs semantic analysis to determine whether the name can
1234 /// be resolved to a specific template, then builds the appropriate kind of
1235 /// template name. Subclasses may override this routine to provide different
1236 /// behavior.
1237 TemplateName RebuildTemplateName(CXXScopeSpec &SS,
1238 SourceLocation TemplateKWLoc,
1239 OverloadedOperatorKind Operator,
1240 SourceLocation NameLoc, QualType ObjectType,
1241 bool AllowInjectedClassName);
1242
1243 /// Build a new template name given a template template parameter pack
1244 /// and the
1245 ///
1246 /// By default, performs semantic analysis to determine whether the name can
1247 /// be resolved to a specific template, then builds the appropriate kind of
1248 /// template name. Subclasses may override this routine to provide different
1249 /// behavior.
RebuildTemplateName(TemplateTemplateParmDecl * Param,const TemplateArgument & ArgPack)1250 TemplateName RebuildTemplateName(TemplateTemplateParmDecl *Param,
1251 const TemplateArgument &ArgPack) {
1252 return getSema().Context.getSubstTemplateTemplateParmPack(Param, ArgPack);
1253 }
1254
1255 /// Build a new compound statement.
1256 ///
1257 /// By default, performs semantic analysis to build the new statement.
1258 /// Subclasses may override this routine to provide different behavior.
RebuildCompoundStmt(SourceLocation LBraceLoc,MultiStmtArg Statements,SourceLocation RBraceLoc,bool IsStmtExpr)1259 StmtResult RebuildCompoundStmt(SourceLocation LBraceLoc,
1260 MultiStmtArg Statements,
1261 SourceLocation RBraceLoc,
1262 bool IsStmtExpr) {
1263 return getSema().ActOnCompoundStmt(LBraceLoc, RBraceLoc, Statements,
1264 IsStmtExpr);
1265 }
1266
1267 /// Build a new case statement.
1268 ///
1269 /// By default, performs semantic analysis to build the new statement.
1270 /// Subclasses may override this routine to provide different behavior.
RebuildCaseStmt(SourceLocation CaseLoc,Expr * LHS,SourceLocation EllipsisLoc,Expr * RHS,SourceLocation ColonLoc)1271 StmtResult RebuildCaseStmt(SourceLocation CaseLoc,
1272 Expr *LHS,
1273 SourceLocation EllipsisLoc,
1274 Expr *RHS,
1275 SourceLocation ColonLoc) {
1276 return getSema().ActOnCaseStmt(CaseLoc, LHS, EllipsisLoc, RHS,
1277 ColonLoc);
1278 }
1279
1280 /// Attach the body to a new case statement.
1281 ///
1282 /// By default, performs semantic analysis to build the new statement.
1283 /// Subclasses may override this routine to provide different behavior.
RebuildCaseStmtBody(Stmt * S,Stmt * Body)1284 StmtResult RebuildCaseStmtBody(Stmt *S, Stmt *Body) {
1285 getSema().ActOnCaseStmtBody(S, Body);
1286 return S;
1287 }
1288
1289 /// Build a new default statement.
1290 ///
1291 /// By default, performs semantic analysis to build the new statement.
1292 /// Subclasses may override this routine to provide different behavior.
RebuildDefaultStmt(SourceLocation DefaultLoc,SourceLocation ColonLoc,Stmt * SubStmt)1293 StmtResult RebuildDefaultStmt(SourceLocation DefaultLoc,
1294 SourceLocation ColonLoc,
1295 Stmt *SubStmt) {
1296 return getSema().ActOnDefaultStmt(DefaultLoc, ColonLoc, SubStmt,
1297 /*CurScope=*/nullptr);
1298 }
1299
1300 /// Build a new label statement.
1301 ///
1302 /// By default, performs semantic analysis to build the new statement.
1303 /// Subclasses may override this routine to provide different behavior.
RebuildLabelStmt(SourceLocation IdentLoc,LabelDecl * L,SourceLocation ColonLoc,Stmt * SubStmt)1304 StmtResult RebuildLabelStmt(SourceLocation IdentLoc, LabelDecl *L,
1305 SourceLocation ColonLoc, Stmt *SubStmt) {
1306 return SemaRef.ActOnLabelStmt(IdentLoc, L, ColonLoc, SubStmt);
1307 }
1308
1309 /// Build a new attributed statement.
1310 ///
1311 /// By default, performs semantic analysis to build the new statement.
1312 /// Subclasses may override this routine to provide different behavior.
RebuildAttributedStmt(SourceLocation AttrLoc,ArrayRef<const Attr * > Attrs,Stmt * SubStmt)1313 StmtResult RebuildAttributedStmt(SourceLocation AttrLoc,
1314 ArrayRef<const Attr *> Attrs,
1315 Stmt *SubStmt) {
1316 return SemaRef.BuildAttributedStmt(AttrLoc, Attrs, SubStmt);
1317 }
1318
1319 /// Build a new "if" statement.
1320 ///
1321 /// By default, performs semantic analysis to build the new statement.
1322 /// Subclasses may override this routine to provide different behavior.
RebuildIfStmt(SourceLocation IfLoc,bool IsConstexpr,SourceLocation LParenLoc,Sema::ConditionResult Cond,SourceLocation RParenLoc,Stmt * Init,Stmt * Then,SourceLocation ElseLoc,Stmt * Else)1323 StmtResult RebuildIfStmt(SourceLocation IfLoc, bool IsConstexpr,
1324 SourceLocation LParenLoc, Sema::ConditionResult Cond,
1325 SourceLocation RParenLoc, Stmt *Init, Stmt *Then,
1326 SourceLocation ElseLoc, Stmt *Else) {
1327 return getSema().ActOnIfStmt(IfLoc, IsConstexpr, LParenLoc, Init, Cond,
1328 RParenLoc, Then, ElseLoc, Else);
1329 }
1330
1331 /// Start building a new switch statement.
1332 ///
1333 /// By default, performs semantic analysis to build the new statement.
1334 /// Subclasses may override this routine to provide different behavior.
RebuildSwitchStmtStart(SourceLocation SwitchLoc,SourceLocation LParenLoc,Stmt * Init,Sema::ConditionResult Cond,SourceLocation RParenLoc)1335 StmtResult RebuildSwitchStmtStart(SourceLocation SwitchLoc,
1336 SourceLocation LParenLoc, Stmt *Init,
1337 Sema::ConditionResult Cond,
1338 SourceLocation RParenLoc) {
1339 return getSema().ActOnStartOfSwitchStmt(SwitchLoc, LParenLoc, Init, Cond,
1340 RParenLoc);
1341 }
1342
1343 /// Attach the body to the switch statement.
1344 ///
1345 /// By default, performs semantic analysis to build the new statement.
1346 /// Subclasses may override this routine to provide different behavior.
RebuildSwitchStmtBody(SourceLocation SwitchLoc,Stmt * Switch,Stmt * Body)1347 StmtResult RebuildSwitchStmtBody(SourceLocation SwitchLoc,
1348 Stmt *Switch, Stmt *Body) {
1349 return getSema().ActOnFinishSwitchStmt(SwitchLoc, Switch, Body);
1350 }
1351
1352 /// Build a new while statement.
1353 ///
1354 /// By default, performs semantic analysis to build the new statement.
1355 /// Subclasses may override this routine to provide different behavior.
RebuildWhileStmt(SourceLocation WhileLoc,SourceLocation LParenLoc,Sema::ConditionResult Cond,SourceLocation RParenLoc,Stmt * Body)1356 StmtResult RebuildWhileStmt(SourceLocation WhileLoc, SourceLocation LParenLoc,
1357 Sema::ConditionResult Cond,
1358 SourceLocation RParenLoc, Stmt *Body) {
1359 return getSema().ActOnWhileStmt(WhileLoc, LParenLoc, Cond, RParenLoc, Body);
1360 }
1361
1362 /// Build a new do-while statement.
1363 ///
1364 /// By default, performs semantic analysis to build the new statement.
1365 /// Subclasses may override this routine to provide different behavior.
RebuildDoStmt(SourceLocation DoLoc,Stmt * Body,SourceLocation WhileLoc,SourceLocation LParenLoc,Expr * Cond,SourceLocation RParenLoc)1366 StmtResult RebuildDoStmt(SourceLocation DoLoc, Stmt *Body,
1367 SourceLocation WhileLoc, SourceLocation LParenLoc,
1368 Expr *Cond, SourceLocation RParenLoc) {
1369 return getSema().ActOnDoStmt(DoLoc, Body, WhileLoc, LParenLoc,
1370 Cond, RParenLoc);
1371 }
1372
1373 /// Build a new for statement.
1374 ///
1375 /// By default, performs semantic analysis to build the new statement.
1376 /// Subclasses may override this routine to provide different behavior.
RebuildForStmt(SourceLocation ForLoc,SourceLocation LParenLoc,Stmt * Init,Sema::ConditionResult Cond,Sema::FullExprArg Inc,SourceLocation RParenLoc,Stmt * Body)1377 StmtResult RebuildForStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
1378 Stmt *Init, Sema::ConditionResult Cond,
1379 Sema::FullExprArg Inc, SourceLocation RParenLoc,
1380 Stmt *Body) {
1381 return getSema().ActOnForStmt(ForLoc, LParenLoc, Init, Cond,
1382 Inc, RParenLoc, Body);
1383 }
1384
1385 /// Build a new goto statement.
1386 ///
1387 /// By default, performs semantic analysis to build the new statement.
1388 /// Subclasses may override this routine to provide different behavior.
RebuildGotoStmt(SourceLocation GotoLoc,SourceLocation LabelLoc,LabelDecl * Label)1389 StmtResult RebuildGotoStmt(SourceLocation GotoLoc, SourceLocation LabelLoc,
1390 LabelDecl *Label) {
1391 return getSema().ActOnGotoStmt(GotoLoc, LabelLoc, Label);
1392 }
1393
1394 /// Build a new indirect goto statement.
1395 ///
1396 /// By default, performs semantic analysis to build the new statement.
1397 /// Subclasses may override this routine to provide different behavior.
RebuildIndirectGotoStmt(SourceLocation GotoLoc,SourceLocation StarLoc,Expr * Target)1398 StmtResult RebuildIndirectGotoStmt(SourceLocation GotoLoc,
1399 SourceLocation StarLoc,
1400 Expr *Target) {
1401 return getSema().ActOnIndirectGotoStmt(GotoLoc, StarLoc, Target);
1402 }
1403
1404 /// Build a new return statement.
1405 ///
1406 /// By default, performs semantic analysis to build the new statement.
1407 /// Subclasses may override this routine to provide different behavior.
RebuildReturnStmt(SourceLocation ReturnLoc,Expr * Result)1408 StmtResult RebuildReturnStmt(SourceLocation ReturnLoc, Expr *Result) {
1409 return getSema().BuildReturnStmt(ReturnLoc, Result);
1410 }
1411
1412 /// Build a new declaration statement.
1413 ///
1414 /// By default, performs semantic analysis to build the new statement.
1415 /// Subclasses may override this routine to provide different behavior.
RebuildDeclStmt(MutableArrayRef<Decl * > Decls,SourceLocation StartLoc,SourceLocation EndLoc)1416 StmtResult RebuildDeclStmt(MutableArrayRef<Decl *> Decls,
1417 SourceLocation StartLoc, SourceLocation EndLoc) {
1418 Sema::DeclGroupPtrTy DG = getSema().BuildDeclaratorGroup(Decls);
1419 return getSema().ActOnDeclStmt(DG, StartLoc, EndLoc);
1420 }
1421
1422 /// Build a new inline asm statement.
1423 ///
1424 /// By default, performs semantic analysis to build the new statement.
1425 /// Subclasses may override this routine to provide different behavior.
RebuildGCCAsmStmt(SourceLocation AsmLoc,bool IsSimple,bool IsVolatile,unsigned NumOutputs,unsigned NumInputs,IdentifierInfo ** Names,MultiExprArg Constraints,MultiExprArg Exprs,Expr * AsmString,MultiExprArg Clobbers,unsigned NumLabels,SourceLocation RParenLoc)1426 StmtResult RebuildGCCAsmStmt(SourceLocation AsmLoc, bool IsSimple,
1427 bool IsVolatile, unsigned NumOutputs,
1428 unsigned NumInputs, IdentifierInfo **Names,
1429 MultiExprArg Constraints, MultiExprArg Exprs,
1430 Expr *AsmString, MultiExprArg Clobbers,
1431 unsigned NumLabels,
1432 SourceLocation RParenLoc) {
1433 return getSema().ActOnGCCAsmStmt(AsmLoc, IsSimple, IsVolatile, NumOutputs,
1434 NumInputs, Names, Constraints, Exprs,
1435 AsmString, Clobbers, NumLabels, RParenLoc);
1436 }
1437
1438 /// Build a new MS style inline asm statement.
1439 ///
1440 /// By default, performs semantic analysis to build the new statement.
1441 /// Subclasses may override this routine to provide different behavior.
RebuildMSAsmStmt(SourceLocation AsmLoc,SourceLocation LBraceLoc,ArrayRef<Token> AsmToks,StringRef AsmString,unsigned NumOutputs,unsigned NumInputs,ArrayRef<StringRef> Constraints,ArrayRef<StringRef> Clobbers,ArrayRef<Expr * > Exprs,SourceLocation EndLoc)1442 StmtResult RebuildMSAsmStmt(SourceLocation AsmLoc, SourceLocation LBraceLoc,
1443 ArrayRef<Token> AsmToks,
1444 StringRef AsmString,
1445 unsigned NumOutputs, unsigned NumInputs,
1446 ArrayRef<StringRef> Constraints,
1447 ArrayRef<StringRef> Clobbers,
1448 ArrayRef<Expr*> Exprs,
1449 SourceLocation EndLoc) {
1450 return getSema().ActOnMSAsmStmt(AsmLoc, LBraceLoc, AsmToks, AsmString,
1451 NumOutputs, NumInputs,
1452 Constraints, Clobbers, Exprs, EndLoc);
1453 }
1454
1455 /// Build a new co_return statement.
1456 ///
1457 /// By default, performs semantic analysis to build the new statement.
1458 /// Subclasses may override this routine to provide different behavior.
RebuildCoreturnStmt(SourceLocation CoreturnLoc,Expr * Result,bool IsImplicit)1459 StmtResult RebuildCoreturnStmt(SourceLocation CoreturnLoc, Expr *Result,
1460 bool IsImplicit) {
1461 return getSema().BuildCoreturnStmt(CoreturnLoc, Result, IsImplicit);
1462 }
1463
1464 /// Build a new co_await expression.
1465 ///
1466 /// By default, performs semantic analysis to build the new expression.
1467 /// Subclasses may override this routine to provide different behavior.
RebuildCoawaitExpr(SourceLocation CoawaitLoc,Expr * Result,bool IsImplicit)1468 ExprResult RebuildCoawaitExpr(SourceLocation CoawaitLoc, Expr *Result,
1469 bool IsImplicit) {
1470 return getSema().BuildResolvedCoawaitExpr(CoawaitLoc, Result, IsImplicit);
1471 }
1472
1473 /// Build a new co_await expression.
1474 ///
1475 /// By default, performs semantic analysis to build the new expression.
1476 /// Subclasses may override this routine to provide different behavior.
RebuildDependentCoawaitExpr(SourceLocation CoawaitLoc,Expr * Result,UnresolvedLookupExpr * Lookup)1477 ExprResult RebuildDependentCoawaitExpr(SourceLocation CoawaitLoc,
1478 Expr *Result,
1479 UnresolvedLookupExpr *Lookup) {
1480 return getSema().BuildUnresolvedCoawaitExpr(CoawaitLoc, Result, Lookup);
1481 }
1482
1483 /// Build a new co_yield expression.
1484 ///
1485 /// By default, performs semantic analysis to build the new expression.
1486 /// Subclasses may override this routine to provide different behavior.
RebuildCoyieldExpr(SourceLocation CoyieldLoc,Expr * Result)1487 ExprResult RebuildCoyieldExpr(SourceLocation CoyieldLoc, Expr *Result) {
1488 return getSema().BuildCoyieldExpr(CoyieldLoc, Result);
1489 }
1490
RebuildCoroutineBodyStmt(CoroutineBodyStmt::CtorArgs Args)1491 StmtResult RebuildCoroutineBodyStmt(CoroutineBodyStmt::CtorArgs Args) {
1492 return getSema().BuildCoroutineBodyStmt(Args);
1493 }
1494
1495 /// Build a new Objective-C \@try statement.
1496 ///
1497 /// By default, performs semantic analysis to build the new statement.
1498 /// Subclasses may override this routine to provide different behavior.
RebuildObjCAtTryStmt(SourceLocation AtLoc,Stmt * TryBody,MultiStmtArg CatchStmts,Stmt * Finally)1499 StmtResult RebuildObjCAtTryStmt(SourceLocation AtLoc,
1500 Stmt *TryBody,
1501 MultiStmtArg CatchStmts,
1502 Stmt *Finally) {
1503 return getSema().ActOnObjCAtTryStmt(AtLoc, TryBody, CatchStmts,
1504 Finally);
1505 }
1506
1507 /// Rebuild an Objective-C exception declaration.
1508 ///
1509 /// By default, performs semantic analysis to build the new declaration.
1510 /// Subclasses may override this routine to provide different behavior.
RebuildObjCExceptionDecl(VarDecl * ExceptionDecl,TypeSourceInfo * TInfo,QualType T)1511 VarDecl *RebuildObjCExceptionDecl(VarDecl *ExceptionDecl,
1512 TypeSourceInfo *TInfo, QualType T) {
1513 return getSema().BuildObjCExceptionDecl(TInfo, T,
1514 ExceptionDecl->getInnerLocStart(),
1515 ExceptionDecl->getLocation(),
1516 ExceptionDecl->getIdentifier());
1517 }
1518
1519 /// Build a new Objective-C \@catch statement.
1520 ///
1521 /// By default, performs semantic analysis to build the new statement.
1522 /// Subclasses may override this routine to provide different behavior.
RebuildObjCAtCatchStmt(SourceLocation AtLoc,SourceLocation RParenLoc,VarDecl * Var,Stmt * Body)1523 StmtResult RebuildObjCAtCatchStmt(SourceLocation AtLoc,
1524 SourceLocation RParenLoc,
1525 VarDecl *Var,
1526 Stmt *Body) {
1527 return getSema().ActOnObjCAtCatchStmt(AtLoc, RParenLoc,
1528 Var, Body);
1529 }
1530
1531 /// Build a new Objective-C \@finally statement.
1532 ///
1533 /// By default, performs semantic analysis to build the new statement.
1534 /// Subclasses may override this routine to provide different behavior.
RebuildObjCAtFinallyStmt(SourceLocation AtLoc,Stmt * Body)1535 StmtResult RebuildObjCAtFinallyStmt(SourceLocation AtLoc,
1536 Stmt *Body) {
1537 return getSema().ActOnObjCAtFinallyStmt(AtLoc, Body);
1538 }
1539
1540 /// Build a new Objective-C \@throw statement.
1541 ///
1542 /// By default, performs semantic analysis to build the new statement.
1543 /// Subclasses may override this routine to provide different behavior.
RebuildObjCAtThrowStmt(SourceLocation AtLoc,Expr * Operand)1544 StmtResult RebuildObjCAtThrowStmt(SourceLocation AtLoc,
1545 Expr *Operand) {
1546 return getSema().BuildObjCAtThrowStmt(AtLoc, Operand);
1547 }
1548
1549 /// Build a new OpenMP Canonical loop.
1550 ///
1551 /// Ensures that the outermost loop in @p LoopStmt is wrapped by a
1552 /// OMPCanonicalLoop.
RebuildOMPCanonicalLoop(Stmt * LoopStmt)1553 StmtResult RebuildOMPCanonicalLoop(Stmt *LoopStmt) {
1554 return getSema().ActOnOpenMPCanonicalLoop(LoopStmt);
1555 }
1556
1557 /// Build a new OpenMP executable directive.
1558 ///
1559 /// By default, performs semantic analysis to build the new statement.
1560 /// Subclasses may override this routine to provide different behavior.
RebuildOMPExecutableDirective(OpenMPDirectiveKind Kind,DeclarationNameInfo DirName,OpenMPDirectiveKind CancelRegion,ArrayRef<OMPClause * > Clauses,Stmt * AStmt,SourceLocation StartLoc,SourceLocation EndLoc)1561 StmtResult RebuildOMPExecutableDirective(OpenMPDirectiveKind Kind,
1562 DeclarationNameInfo DirName,
1563 OpenMPDirectiveKind CancelRegion,
1564 ArrayRef<OMPClause *> Clauses,
1565 Stmt *AStmt, SourceLocation StartLoc,
1566 SourceLocation EndLoc) {
1567 return getSema().ActOnOpenMPExecutableDirective(
1568 Kind, DirName, CancelRegion, Clauses, AStmt, StartLoc, EndLoc);
1569 }
1570
1571 /// Build a new OpenMP 'if' clause.
1572 ///
1573 /// By default, performs semantic analysis to build the new OpenMP clause.
1574 /// Subclasses may override this routine to provide different behavior.
RebuildOMPIfClause(OpenMPDirectiveKind NameModifier,Expr * Condition,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation NameModifierLoc,SourceLocation ColonLoc,SourceLocation EndLoc)1575 OMPClause *RebuildOMPIfClause(OpenMPDirectiveKind NameModifier,
1576 Expr *Condition, SourceLocation StartLoc,
1577 SourceLocation LParenLoc,
1578 SourceLocation NameModifierLoc,
1579 SourceLocation ColonLoc,
1580 SourceLocation EndLoc) {
1581 return getSema().ActOnOpenMPIfClause(NameModifier, Condition, StartLoc,
1582 LParenLoc, NameModifierLoc, ColonLoc,
1583 EndLoc);
1584 }
1585
1586 /// Build a new OpenMP 'final' clause.
1587 ///
1588 /// By default, performs semantic analysis to build the new OpenMP clause.
1589 /// Subclasses may override this routine to provide different behavior.
RebuildOMPFinalClause(Expr * Condition,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)1590 OMPClause *RebuildOMPFinalClause(Expr *Condition, SourceLocation StartLoc,
1591 SourceLocation LParenLoc,
1592 SourceLocation EndLoc) {
1593 return getSema().ActOnOpenMPFinalClause(Condition, StartLoc, LParenLoc,
1594 EndLoc);
1595 }
1596
1597 /// Build a new OpenMP 'num_threads' clause.
1598 ///
1599 /// By default, performs semantic analysis to build the new OpenMP clause.
1600 /// Subclasses may override this routine to provide different behavior.
RebuildOMPNumThreadsClause(Expr * NumThreads,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)1601 OMPClause *RebuildOMPNumThreadsClause(Expr *NumThreads,
1602 SourceLocation StartLoc,
1603 SourceLocation LParenLoc,
1604 SourceLocation EndLoc) {
1605 return getSema().ActOnOpenMPNumThreadsClause(NumThreads, StartLoc,
1606 LParenLoc, EndLoc);
1607 }
1608
1609 /// Build a new OpenMP 'safelen' clause.
1610 ///
1611 /// By default, performs semantic analysis to build the new OpenMP clause.
1612 /// Subclasses may override this routine to provide different behavior.
RebuildOMPSafelenClause(Expr * Len,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)1613 OMPClause *RebuildOMPSafelenClause(Expr *Len, SourceLocation StartLoc,
1614 SourceLocation LParenLoc,
1615 SourceLocation EndLoc) {
1616 return getSema().ActOnOpenMPSafelenClause(Len, StartLoc, LParenLoc, EndLoc);
1617 }
1618
1619 /// Build a new OpenMP 'simdlen' clause.
1620 ///
1621 /// By default, performs semantic analysis to build the new OpenMP clause.
1622 /// Subclasses may override this routine to provide different behavior.
RebuildOMPSimdlenClause(Expr * Len,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)1623 OMPClause *RebuildOMPSimdlenClause(Expr *Len, SourceLocation StartLoc,
1624 SourceLocation LParenLoc,
1625 SourceLocation EndLoc) {
1626 return getSema().ActOnOpenMPSimdlenClause(Len, StartLoc, LParenLoc, EndLoc);
1627 }
1628
RebuildOMPSizesClause(ArrayRef<Expr * > Sizes,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)1629 OMPClause *RebuildOMPSizesClause(ArrayRef<Expr *> Sizes,
1630 SourceLocation StartLoc,
1631 SourceLocation LParenLoc,
1632 SourceLocation EndLoc) {
1633 return getSema().ActOnOpenMPSizesClause(Sizes, StartLoc, LParenLoc, EndLoc);
1634 }
1635
1636 /// Build a new OpenMP 'allocator' clause.
1637 ///
1638 /// By default, performs semantic analysis to build the new OpenMP clause.
1639 /// Subclasses may override this routine to provide different behavior.
RebuildOMPAllocatorClause(Expr * A,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)1640 OMPClause *RebuildOMPAllocatorClause(Expr *A, SourceLocation StartLoc,
1641 SourceLocation LParenLoc,
1642 SourceLocation EndLoc) {
1643 return getSema().ActOnOpenMPAllocatorClause(A, StartLoc, LParenLoc, EndLoc);
1644 }
1645
1646 /// Build a new OpenMP 'collapse' clause.
1647 ///
1648 /// By default, performs semantic analysis to build the new OpenMP clause.
1649 /// Subclasses may override this routine to provide different behavior.
RebuildOMPCollapseClause(Expr * Num,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)1650 OMPClause *RebuildOMPCollapseClause(Expr *Num, SourceLocation StartLoc,
1651 SourceLocation LParenLoc,
1652 SourceLocation EndLoc) {
1653 return getSema().ActOnOpenMPCollapseClause(Num, StartLoc, LParenLoc,
1654 EndLoc);
1655 }
1656
1657 /// Build a new OpenMP 'default' clause.
1658 ///
1659 /// By default, performs semantic analysis to build the new OpenMP clause.
1660 /// Subclasses may override this routine to provide different behavior.
RebuildOMPDefaultClause(DefaultKind Kind,SourceLocation KindKwLoc,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)1661 OMPClause *RebuildOMPDefaultClause(DefaultKind Kind, SourceLocation KindKwLoc,
1662 SourceLocation StartLoc,
1663 SourceLocation LParenLoc,
1664 SourceLocation EndLoc) {
1665 return getSema().ActOnOpenMPDefaultClause(Kind, KindKwLoc,
1666 StartLoc, LParenLoc, EndLoc);
1667 }
1668
1669 /// Build a new OpenMP 'proc_bind' clause.
1670 ///
1671 /// By default, performs semantic analysis to build the new OpenMP clause.
1672 /// Subclasses may override this routine to provide different behavior.
RebuildOMPProcBindClause(ProcBindKind Kind,SourceLocation KindKwLoc,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)1673 OMPClause *RebuildOMPProcBindClause(ProcBindKind Kind,
1674 SourceLocation KindKwLoc,
1675 SourceLocation StartLoc,
1676 SourceLocation LParenLoc,
1677 SourceLocation EndLoc) {
1678 return getSema().ActOnOpenMPProcBindClause(Kind, KindKwLoc,
1679 StartLoc, LParenLoc, EndLoc);
1680 }
1681
1682 /// Build a new OpenMP 'schedule' clause.
1683 ///
1684 /// By default, performs semantic analysis to build the new OpenMP clause.
1685 /// Subclasses may override this routine to provide different behavior.
RebuildOMPScheduleClause(OpenMPScheduleClauseModifier M1,OpenMPScheduleClauseModifier M2,OpenMPScheduleClauseKind Kind,Expr * ChunkSize,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation M1Loc,SourceLocation M2Loc,SourceLocation KindLoc,SourceLocation CommaLoc,SourceLocation EndLoc)1686 OMPClause *RebuildOMPScheduleClause(
1687 OpenMPScheduleClauseModifier M1, OpenMPScheduleClauseModifier M2,
1688 OpenMPScheduleClauseKind Kind, Expr *ChunkSize, SourceLocation StartLoc,
1689 SourceLocation LParenLoc, SourceLocation M1Loc, SourceLocation M2Loc,
1690 SourceLocation KindLoc, SourceLocation CommaLoc, SourceLocation EndLoc) {
1691 return getSema().ActOnOpenMPScheduleClause(
1692 M1, M2, Kind, ChunkSize, StartLoc, LParenLoc, M1Loc, M2Loc, KindLoc,
1693 CommaLoc, EndLoc);
1694 }
1695
1696 /// Build a new OpenMP 'ordered' clause.
1697 ///
1698 /// By default, performs semantic analysis to build the new OpenMP clause.
1699 /// Subclasses may override this routine to provide different behavior.
RebuildOMPOrderedClause(SourceLocation StartLoc,SourceLocation EndLoc,SourceLocation LParenLoc,Expr * Num)1700 OMPClause *RebuildOMPOrderedClause(SourceLocation StartLoc,
1701 SourceLocation EndLoc,
1702 SourceLocation LParenLoc, Expr *Num) {
1703 return getSema().ActOnOpenMPOrderedClause(StartLoc, EndLoc, LParenLoc, Num);
1704 }
1705
1706 /// Build a new OpenMP 'private' clause.
1707 ///
1708 /// By default, performs semantic analysis to build the new OpenMP clause.
1709 /// Subclasses may override this routine to provide different behavior.
RebuildOMPPrivateClause(ArrayRef<Expr * > VarList,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)1710 OMPClause *RebuildOMPPrivateClause(ArrayRef<Expr *> VarList,
1711 SourceLocation StartLoc,
1712 SourceLocation LParenLoc,
1713 SourceLocation EndLoc) {
1714 return getSema().ActOnOpenMPPrivateClause(VarList, StartLoc, LParenLoc,
1715 EndLoc);
1716 }
1717
1718 /// Build a new OpenMP 'firstprivate' clause.
1719 ///
1720 /// By default, performs semantic analysis to build the new OpenMP clause.
1721 /// Subclasses may override this routine to provide different behavior.
RebuildOMPFirstprivateClause(ArrayRef<Expr * > VarList,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)1722 OMPClause *RebuildOMPFirstprivateClause(ArrayRef<Expr *> VarList,
1723 SourceLocation StartLoc,
1724 SourceLocation LParenLoc,
1725 SourceLocation EndLoc) {
1726 return getSema().ActOnOpenMPFirstprivateClause(VarList, StartLoc, LParenLoc,
1727 EndLoc);
1728 }
1729
1730 /// Build a new OpenMP 'lastprivate' clause.
1731 ///
1732 /// By default, performs semantic analysis to build the new OpenMP clause.
1733 /// Subclasses may override this routine to provide different behavior.
RebuildOMPLastprivateClause(ArrayRef<Expr * > VarList,OpenMPLastprivateModifier LPKind,SourceLocation LPKindLoc,SourceLocation ColonLoc,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)1734 OMPClause *RebuildOMPLastprivateClause(ArrayRef<Expr *> VarList,
1735 OpenMPLastprivateModifier LPKind,
1736 SourceLocation LPKindLoc,
1737 SourceLocation ColonLoc,
1738 SourceLocation StartLoc,
1739 SourceLocation LParenLoc,
1740 SourceLocation EndLoc) {
1741 return getSema().ActOnOpenMPLastprivateClause(
1742 VarList, LPKind, LPKindLoc, ColonLoc, StartLoc, LParenLoc, EndLoc);
1743 }
1744
1745 /// Build a new OpenMP 'shared' clause.
1746 ///
1747 /// By default, performs semantic analysis to build the new OpenMP clause.
1748 /// Subclasses may override this routine to provide different behavior.
RebuildOMPSharedClause(ArrayRef<Expr * > VarList,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)1749 OMPClause *RebuildOMPSharedClause(ArrayRef<Expr *> VarList,
1750 SourceLocation StartLoc,
1751 SourceLocation LParenLoc,
1752 SourceLocation EndLoc) {
1753 return getSema().ActOnOpenMPSharedClause(VarList, StartLoc, LParenLoc,
1754 EndLoc);
1755 }
1756
1757 /// Build a new OpenMP 'reduction' clause.
1758 ///
1759 /// By default, performs semantic analysis to build the new statement.
1760 /// Subclasses may override this routine to provide different behavior.
RebuildOMPReductionClause(ArrayRef<Expr * > VarList,OpenMPReductionClauseModifier Modifier,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation ModifierLoc,SourceLocation ColonLoc,SourceLocation EndLoc,CXXScopeSpec & ReductionIdScopeSpec,const DeclarationNameInfo & ReductionId,ArrayRef<Expr * > UnresolvedReductions)1761 OMPClause *RebuildOMPReductionClause(
1762 ArrayRef<Expr *> VarList, OpenMPReductionClauseModifier Modifier,
1763 SourceLocation StartLoc, SourceLocation LParenLoc,
1764 SourceLocation ModifierLoc, SourceLocation ColonLoc,
1765 SourceLocation EndLoc, CXXScopeSpec &ReductionIdScopeSpec,
1766 const DeclarationNameInfo &ReductionId,
1767 ArrayRef<Expr *> UnresolvedReductions) {
1768 return getSema().ActOnOpenMPReductionClause(
1769 VarList, Modifier, StartLoc, LParenLoc, ModifierLoc, ColonLoc, EndLoc,
1770 ReductionIdScopeSpec, ReductionId, UnresolvedReductions);
1771 }
1772
1773 /// Build a new OpenMP 'task_reduction' clause.
1774 ///
1775 /// By default, performs semantic analysis to build the new statement.
1776 /// Subclasses may override this routine to provide different behavior.
RebuildOMPTaskReductionClause(ArrayRef<Expr * > VarList,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation ColonLoc,SourceLocation EndLoc,CXXScopeSpec & ReductionIdScopeSpec,const DeclarationNameInfo & ReductionId,ArrayRef<Expr * > UnresolvedReductions)1777 OMPClause *RebuildOMPTaskReductionClause(
1778 ArrayRef<Expr *> VarList, SourceLocation StartLoc,
1779 SourceLocation LParenLoc, SourceLocation ColonLoc, SourceLocation EndLoc,
1780 CXXScopeSpec &ReductionIdScopeSpec,
1781 const DeclarationNameInfo &ReductionId,
1782 ArrayRef<Expr *> UnresolvedReductions) {
1783 return getSema().ActOnOpenMPTaskReductionClause(
1784 VarList, StartLoc, LParenLoc, ColonLoc, EndLoc, ReductionIdScopeSpec,
1785 ReductionId, UnresolvedReductions);
1786 }
1787
1788 /// Build a new OpenMP 'in_reduction' clause.
1789 ///
1790 /// By default, performs semantic analysis to build the new statement.
1791 /// Subclasses may override this routine to provide different behavior.
1792 OMPClause *
RebuildOMPInReductionClause(ArrayRef<Expr * > VarList,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation ColonLoc,SourceLocation EndLoc,CXXScopeSpec & ReductionIdScopeSpec,const DeclarationNameInfo & ReductionId,ArrayRef<Expr * > UnresolvedReductions)1793 RebuildOMPInReductionClause(ArrayRef<Expr *> VarList, SourceLocation StartLoc,
1794 SourceLocation LParenLoc, SourceLocation ColonLoc,
1795 SourceLocation EndLoc,
1796 CXXScopeSpec &ReductionIdScopeSpec,
1797 const DeclarationNameInfo &ReductionId,
1798 ArrayRef<Expr *> UnresolvedReductions) {
1799 return getSema().ActOnOpenMPInReductionClause(
1800 VarList, StartLoc, LParenLoc, ColonLoc, EndLoc, ReductionIdScopeSpec,
1801 ReductionId, UnresolvedReductions);
1802 }
1803
1804 /// Build a new OpenMP 'linear' clause.
1805 ///
1806 /// By default, performs semantic analysis to build the new OpenMP clause.
1807 /// Subclasses may override this routine to provide different behavior.
RebuildOMPLinearClause(ArrayRef<Expr * > VarList,Expr * Step,SourceLocation StartLoc,SourceLocation LParenLoc,OpenMPLinearClauseKind Modifier,SourceLocation ModifierLoc,SourceLocation ColonLoc,SourceLocation EndLoc)1808 OMPClause *RebuildOMPLinearClause(ArrayRef<Expr *> VarList, Expr *Step,
1809 SourceLocation StartLoc,
1810 SourceLocation LParenLoc,
1811 OpenMPLinearClauseKind Modifier,
1812 SourceLocation ModifierLoc,
1813 SourceLocation ColonLoc,
1814 SourceLocation EndLoc) {
1815 return getSema().ActOnOpenMPLinearClause(VarList, Step, StartLoc, LParenLoc,
1816 Modifier, ModifierLoc, ColonLoc,
1817 EndLoc);
1818 }
1819
1820 /// Build a new OpenMP 'aligned' clause.
1821 ///
1822 /// By default, performs semantic analysis to build the new OpenMP clause.
1823 /// Subclasses may override this routine to provide different behavior.
RebuildOMPAlignedClause(ArrayRef<Expr * > VarList,Expr * Alignment,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation ColonLoc,SourceLocation EndLoc)1824 OMPClause *RebuildOMPAlignedClause(ArrayRef<Expr *> VarList, Expr *Alignment,
1825 SourceLocation StartLoc,
1826 SourceLocation LParenLoc,
1827 SourceLocation ColonLoc,
1828 SourceLocation EndLoc) {
1829 return getSema().ActOnOpenMPAlignedClause(VarList, Alignment, StartLoc,
1830 LParenLoc, ColonLoc, EndLoc);
1831 }
1832
1833 /// Build a new OpenMP 'copyin' clause.
1834 ///
1835 /// By default, performs semantic analysis to build the new OpenMP clause.
1836 /// Subclasses may override this routine to provide different behavior.
RebuildOMPCopyinClause(ArrayRef<Expr * > VarList,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)1837 OMPClause *RebuildOMPCopyinClause(ArrayRef<Expr *> VarList,
1838 SourceLocation StartLoc,
1839 SourceLocation LParenLoc,
1840 SourceLocation EndLoc) {
1841 return getSema().ActOnOpenMPCopyinClause(VarList, StartLoc, LParenLoc,
1842 EndLoc);
1843 }
1844
1845 /// Build a new OpenMP 'copyprivate' clause.
1846 ///
1847 /// By default, performs semantic analysis to build the new OpenMP clause.
1848 /// Subclasses may override this routine to provide different behavior.
RebuildOMPCopyprivateClause(ArrayRef<Expr * > VarList,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)1849 OMPClause *RebuildOMPCopyprivateClause(ArrayRef<Expr *> VarList,
1850 SourceLocation StartLoc,
1851 SourceLocation LParenLoc,
1852 SourceLocation EndLoc) {
1853 return getSema().ActOnOpenMPCopyprivateClause(VarList, StartLoc, LParenLoc,
1854 EndLoc);
1855 }
1856
1857 /// Build a new OpenMP 'flush' pseudo clause.
1858 ///
1859 /// By default, performs semantic analysis to build the new OpenMP clause.
1860 /// Subclasses may override this routine to provide different behavior.
RebuildOMPFlushClause(ArrayRef<Expr * > VarList,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)1861 OMPClause *RebuildOMPFlushClause(ArrayRef<Expr *> VarList,
1862 SourceLocation StartLoc,
1863 SourceLocation LParenLoc,
1864 SourceLocation EndLoc) {
1865 return getSema().ActOnOpenMPFlushClause(VarList, StartLoc, LParenLoc,
1866 EndLoc);
1867 }
1868
1869 /// Build a new OpenMP 'depobj' pseudo clause.
1870 ///
1871 /// By default, performs semantic analysis to build the new OpenMP clause.
1872 /// Subclasses may override this routine to provide different behavior.
RebuildOMPDepobjClause(Expr * Depobj,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)1873 OMPClause *RebuildOMPDepobjClause(Expr *Depobj, SourceLocation StartLoc,
1874 SourceLocation LParenLoc,
1875 SourceLocation EndLoc) {
1876 return getSema().ActOnOpenMPDepobjClause(Depobj, StartLoc, LParenLoc,
1877 EndLoc);
1878 }
1879
1880 /// Build a new OpenMP 'depend' pseudo clause.
1881 ///
1882 /// By default, performs semantic analysis to build the new OpenMP clause.
1883 /// Subclasses may override this routine to provide different behavior.
1884 OMPClause *
RebuildOMPDependClause(Expr * DepModifier,OpenMPDependClauseKind DepKind,SourceLocation DepLoc,SourceLocation ColonLoc,ArrayRef<Expr * > VarList,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)1885 RebuildOMPDependClause(Expr *DepModifier, OpenMPDependClauseKind DepKind,
1886 SourceLocation DepLoc, SourceLocation ColonLoc,
1887 ArrayRef<Expr *> VarList, SourceLocation StartLoc,
1888 SourceLocation LParenLoc, SourceLocation EndLoc) {
1889 return getSema().ActOnOpenMPDependClause(DepModifier, DepKind, DepLoc,
1890 ColonLoc, VarList, StartLoc,
1891 LParenLoc, EndLoc);
1892 }
1893
1894 /// Build a new OpenMP 'device' clause.
1895 ///
1896 /// By default, performs semantic analysis to build the new statement.
1897 /// Subclasses may override this routine to provide different behavior.
RebuildOMPDeviceClause(OpenMPDeviceClauseModifier Modifier,Expr * Device,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation ModifierLoc,SourceLocation EndLoc)1898 OMPClause *RebuildOMPDeviceClause(OpenMPDeviceClauseModifier Modifier,
1899 Expr *Device, SourceLocation StartLoc,
1900 SourceLocation LParenLoc,
1901 SourceLocation ModifierLoc,
1902 SourceLocation EndLoc) {
1903 return getSema().ActOnOpenMPDeviceClause(Modifier, Device, StartLoc,
1904 LParenLoc, ModifierLoc, EndLoc);
1905 }
1906
1907 /// Build a new OpenMP 'map' clause.
1908 ///
1909 /// By default, performs semantic analysis to build the new OpenMP clause.
1910 /// Subclasses may override this routine to provide different behavior.
RebuildOMPMapClause(ArrayRef<OpenMPMapModifierKind> MapTypeModifiers,ArrayRef<SourceLocation> MapTypeModifiersLoc,CXXScopeSpec MapperIdScopeSpec,DeclarationNameInfo MapperId,OpenMPMapClauseKind MapType,bool IsMapTypeImplicit,SourceLocation MapLoc,SourceLocation ColonLoc,ArrayRef<Expr * > VarList,const OMPVarListLocTy & Locs,ArrayRef<Expr * > UnresolvedMappers)1911 OMPClause *RebuildOMPMapClause(
1912 ArrayRef<OpenMPMapModifierKind> MapTypeModifiers,
1913 ArrayRef<SourceLocation> MapTypeModifiersLoc,
1914 CXXScopeSpec MapperIdScopeSpec, DeclarationNameInfo MapperId,
1915 OpenMPMapClauseKind MapType, bool IsMapTypeImplicit,
1916 SourceLocation MapLoc, SourceLocation ColonLoc, ArrayRef<Expr *> VarList,
1917 const OMPVarListLocTy &Locs, ArrayRef<Expr *> UnresolvedMappers) {
1918 return getSema().ActOnOpenMPMapClause(MapTypeModifiers, MapTypeModifiersLoc,
1919 MapperIdScopeSpec, MapperId, MapType,
1920 IsMapTypeImplicit, MapLoc, ColonLoc,
1921 VarList, Locs, UnresolvedMappers);
1922 }
1923
1924 /// Build a new OpenMP 'allocate' clause.
1925 ///
1926 /// By default, performs semantic analysis to build the new OpenMP clause.
1927 /// Subclasses may override this routine to provide different behavior.
RebuildOMPAllocateClause(Expr * Allocate,ArrayRef<Expr * > VarList,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation ColonLoc,SourceLocation EndLoc)1928 OMPClause *RebuildOMPAllocateClause(Expr *Allocate, ArrayRef<Expr *> VarList,
1929 SourceLocation StartLoc,
1930 SourceLocation LParenLoc,
1931 SourceLocation ColonLoc,
1932 SourceLocation EndLoc) {
1933 return getSema().ActOnOpenMPAllocateClause(Allocate, VarList, StartLoc,
1934 LParenLoc, ColonLoc, EndLoc);
1935 }
1936
1937 /// Build a new OpenMP 'num_teams' clause.
1938 ///
1939 /// By default, performs semantic analysis to build the new statement.
1940 /// Subclasses may override this routine to provide different behavior.
RebuildOMPNumTeamsClause(Expr * NumTeams,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)1941 OMPClause *RebuildOMPNumTeamsClause(Expr *NumTeams, SourceLocation StartLoc,
1942 SourceLocation LParenLoc,
1943 SourceLocation EndLoc) {
1944 return getSema().ActOnOpenMPNumTeamsClause(NumTeams, StartLoc, LParenLoc,
1945 EndLoc);
1946 }
1947
1948 /// Build a new OpenMP 'thread_limit' clause.
1949 ///
1950 /// By default, performs semantic analysis to build the new statement.
1951 /// Subclasses may override this routine to provide different behavior.
RebuildOMPThreadLimitClause(Expr * ThreadLimit,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)1952 OMPClause *RebuildOMPThreadLimitClause(Expr *ThreadLimit,
1953 SourceLocation StartLoc,
1954 SourceLocation LParenLoc,
1955 SourceLocation EndLoc) {
1956 return getSema().ActOnOpenMPThreadLimitClause(ThreadLimit, StartLoc,
1957 LParenLoc, EndLoc);
1958 }
1959
1960 /// Build a new OpenMP 'priority' clause.
1961 ///
1962 /// By default, performs semantic analysis to build the new statement.
1963 /// Subclasses may override this routine to provide different behavior.
RebuildOMPPriorityClause(Expr * Priority,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)1964 OMPClause *RebuildOMPPriorityClause(Expr *Priority, SourceLocation StartLoc,
1965 SourceLocation LParenLoc,
1966 SourceLocation EndLoc) {
1967 return getSema().ActOnOpenMPPriorityClause(Priority, StartLoc, LParenLoc,
1968 EndLoc);
1969 }
1970
1971 /// Build a new OpenMP 'grainsize' clause.
1972 ///
1973 /// By default, performs semantic analysis to build the new statement.
1974 /// Subclasses may override this routine to provide different behavior.
RebuildOMPGrainsizeClause(Expr * Grainsize,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)1975 OMPClause *RebuildOMPGrainsizeClause(Expr *Grainsize, SourceLocation StartLoc,
1976 SourceLocation LParenLoc,
1977 SourceLocation EndLoc) {
1978 return getSema().ActOnOpenMPGrainsizeClause(Grainsize, StartLoc, LParenLoc,
1979 EndLoc);
1980 }
1981
1982 /// Build a new OpenMP 'num_tasks' clause.
1983 ///
1984 /// By default, performs semantic analysis to build the new statement.
1985 /// Subclasses may override this routine to provide different behavior.
RebuildOMPNumTasksClause(Expr * NumTasks,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)1986 OMPClause *RebuildOMPNumTasksClause(Expr *NumTasks, SourceLocation StartLoc,
1987 SourceLocation LParenLoc,
1988 SourceLocation EndLoc) {
1989 return getSema().ActOnOpenMPNumTasksClause(NumTasks, StartLoc, LParenLoc,
1990 EndLoc);
1991 }
1992
1993 /// Build a new OpenMP 'hint' clause.
1994 ///
1995 /// By default, performs semantic analysis to build the new statement.
1996 /// Subclasses may override this routine to provide different behavior.
RebuildOMPHintClause(Expr * Hint,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)1997 OMPClause *RebuildOMPHintClause(Expr *Hint, SourceLocation StartLoc,
1998 SourceLocation LParenLoc,
1999 SourceLocation EndLoc) {
2000 return getSema().ActOnOpenMPHintClause(Hint, StartLoc, LParenLoc, EndLoc);
2001 }
2002
2003 /// Build a new OpenMP 'detach' clause.
2004 ///
2005 /// By default, performs semantic analysis to build the new statement.
2006 /// Subclasses may override this routine to provide different behavior.
RebuildOMPDetachClause(Expr * Evt,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)2007 OMPClause *RebuildOMPDetachClause(Expr *Evt, SourceLocation StartLoc,
2008 SourceLocation LParenLoc,
2009 SourceLocation EndLoc) {
2010 return getSema().ActOnOpenMPDetachClause(Evt, StartLoc, LParenLoc, EndLoc);
2011 }
2012
2013 /// Build a new OpenMP 'dist_schedule' clause.
2014 ///
2015 /// By default, performs semantic analysis to build the new OpenMP clause.
2016 /// Subclasses may override this routine to provide different behavior.
2017 OMPClause *
RebuildOMPDistScheduleClause(OpenMPDistScheduleClauseKind Kind,Expr * ChunkSize,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation KindLoc,SourceLocation CommaLoc,SourceLocation EndLoc)2018 RebuildOMPDistScheduleClause(OpenMPDistScheduleClauseKind Kind,
2019 Expr *ChunkSize, SourceLocation StartLoc,
2020 SourceLocation LParenLoc, SourceLocation KindLoc,
2021 SourceLocation CommaLoc, SourceLocation EndLoc) {
2022 return getSema().ActOnOpenMPDistScheduleClause(
2023 Kind, ChunkSize, StartLoc, LParenLoc, KindLoc, CommaLoc, EndLoc);
2024 }
2025
2026 /// Build a new OpenMP 'to' clause.
2027 ///
2028 /// By default, performs semantic analysis to build the new statement.
2029 /// Subclasses may override this routine to provide different behavior.
2030 OMPClause *
RebuildOMPToClause(ArrayRef<OpenMPMotionModifierKind> MotionModifiers,ArrayRef<SourceLocation> MotionModifiersLoc,CXXScopeSpec & MapperIdScopeSpec,DeclarationNameInfo & MapperId,SourceLocation ColonLoc,ArrayRef<Expr * > VarList,const OMPVarListLocTy & Locs,ArrayRef<Expr * > UnresolvedMappers)2031 RebuildOMPToClause(ArrayRef<OpenMPMotionModifierKind> MotionModifiers,
2032 ArrayRef<SourceLocation> MotionModifiersLoc,
2033 CXXScopeSpec &MapperIdScopeSpec,
2034 DeclarationNameInfo &MapperId, SourceLocation ColonLoc,
2035 ArrayRef<Expr *> VarList, const OMPVarListLocTy &Locs,
2036 ArrayRef<Expr *> UnresolvedMappers) {
2037 return getSema().ActOnOpenMPToClause(MotionModifiers, MotionModifiersLoc,
2038 MapperIdScopeSpec, MapperId, ColonLoc,
2039 VarList, Locs, UnresolvedMappers);
2040 }
2041
2042 /// Build a new OpenMP 'from' clause.
2043 ///
2044 /// By default, performs semantic analysis to build the new statement.
2045 /// Subclasses may override this routine to provide different behavior.
2046 OMPClause *
RebuildOMPFromClause(ArrayRef<OpenMPMotionModifierKind> MotionModifiers,ArrayRef<SourceLocation> MotionModifiersLoc,CXXScopeSpec & MapperIdScopeSpec,DeclarationNameInfo & MapperId,SourceLocation ColonLoc,ArrayRef<Expr * > VarList,const OMPVarListLocTy & Locs,ArrayRef<Expr * > UnresolvedMappers)2047 RebuildOMPFromClause(ArrayRef<OpenMPMotionModifierKind> MotionModifiers,
2048 ArrayRef<SourceLocation> MotionModifiersLoc,
2049 CXXScopeSpec &MapperIdScopeSpec,
2050 DeclarationNameInfo &MapperId, SourceLocation ColonLoc,
2051 ArrayRef<Expr *> VarList, const OMPVarListLocTy &Locs,
2052 ArrayRef<Expr *> UnresolvedMappers) {
2053 return getSema().ActOnOpenMPFromClause(
2054 MotionModifiers, MotionModifiersLoc, MapperIdScopeSpec, MapperId,
2055 ColonLoc, VarList, Locs, UnresolvedMappers);
2056 }
2057
2058 /// Build a new OpenMP 'use_device_ptr' clause.
2059 ///
2060 /// By default, performs semantic analysis to build the new OpenMP clause.
2061 /// Subclasses may override this routine to provide different behavior.
RebuildOMPUseDevicePtrClause(ArrayRef<Expr * > VarList,const OMPVarListLocTy & Locs)2062 OMPClause *RebuildOMPUseDevicePtrClause(ArrayRef<Expr *> VarList,
2063 const OMPVarListLocTy &Locs) {
2064 return getSema().ActOnOpenMPUseDevicePtrClause(VarList, Locs);
2065 }
2066
2067 /// Build a new OpenMP 'use_device_addr' clause.
2068 ///
2069 /// By default, performs semantic analysis to build the new OpenMP clause.
2070 /// Subclasses may override this routine to provide different behavior.
RebuildOMPUseDeviceAddrClause(ArrayRef<Expr * > VarList,const OMPVarListLocTy & Locs)2071 OMPClause *RebuildOMPUseDeviceAddrClause(ArrayRef<Expr *> VarList,
2072 const OMPVarListLocTy &Locs) {
2073 return getSema().ActOnOpenMPUseDeviceAddrClause(VarList, Locs);
2074 }
2075
2076 /// Build a new OpenMP 'is_device_ptr' clause.
2077 ///
2078 /// By default, performs semantic analysis to build the new OpenMP clause.
2079 /// Subclasses may override this routine to provide different behavior.
RebuildOMPIsDevicePtrClause(ArrayRef<Expr * > VarList,const OMPVarListLocTy & Locs)2080 OMPClause *RebuildOMPIsDevicePtrClause(ArrayRef<Expr *> VarList,
2081 const OMPVarListLocTy &Locs) {
2082 return getSema().ActOnOpenMPIsDevicePtrClause(VarList, Locs);
2083 }
2084
2085 /// Build a new OpenMP 'defaultmap' clause.
2086 ///
2087 /// By default, performs semantic analysis to build the new OpenMP clause.
2088 /// Subclasses may override this routine to provide different behavior.
RebuildOMPDefaultmapClause(OpenMPDefaultmapClauseModifier M,OpenMPDefaultmapClauseKind Kind,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation MLoc,SourceLocation KindLoc,SourceLocation EndLoc)2089 OMPClause *RebuildOMPDefaultmapClause(OpenMPDefaultmapClauseModifier M,
2090 OpenMPDefaultmapClauseKind Kind,
2091 SourceLocation StartLoc,
2092 SourceLocation LParenLoc,
2093 SourceLocation MLoc,
2094 SourceLocation KindLoc,
2095 SourceLocation EndLoc) {
2096 return getSema().ActOnOpenMPDefaultmapClause(M, Kind, StartLoc, LParenLoc,
2097 MLoc, KindLoc, EndLoc);
2098 }
2099
2100 /// Build a new OpenMP 'nontemporal' clause.
2101 ///
2102 /// By default, performs semantic analysis to build the new OpenMP clause.
2103 /// Subclasses may override this routine to provide different behavior.
RebuildOMPNontemporalClause(ArrayRef<Expr * > VarList,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)2104 OMPClause *RebuildOMPNontemporalClause(ArrayRef<Expr *> VarList,
2105 SourceLocation StartLoc,
2106 SourceLocation LParenLoc,
2107 SourceLocation EndLoc) {
2108 return getSema().ActOnOpenMPNontemporalClause(VarList, StartLoc, LParenLoc,
2109 EndLoc);
2110 }
2111
2112 /// Build a new OpenMP 'inclusive' clause.
2113 ///
2114 /// By default, performs semantic analysis to build the new OpenMP clause.
2115 /// Subclasses may override this routine to provide different behavior.
RebuildOMPInclusiveClause(ArrayRef<Expr * > VarList,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)2116 OMPClause *RebuildOMPInclusiveClause(ArrayRef<Expr *> VarList,
2117 SourceLocation StartLoc,
2118 SourceLocation LParenLoc,
2119 SourceLocation EndLoc) {
2120 return getSema().ActOnOpenMPInclusiveClause(VarList, StartLoc, LParenLoc,
2121 EndLoc);
2122 }
2123
2124 /// Build a new OpenMP 'exclusive' clause.
2125 ///
2126 /// By default, performs semantic analysis to build the new OpenMP clause.
2127 /// Subclasses may override this routine to provide different behavior.
RebuildOMPExclusiveClause(ArrayRef<Expr * > VarList,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)2128 OMPClause *RebuildOMPExclusiveClause(ArrayRef<Expr *> VarList,
2129 SourceLocation StartLoc,
2130 SourceLocation LParenLoc,
2131 SourceLocation EndLoc) {
2132 return getSema().ActOnOpenMPExclusiveClause(VarList, StartLoc, LParenLoc,
2133 EndLoc);
2134 }
2135
2136 /// Build a new OpenMP 'uses_allocators' clause.
2137 ///
2138 /// By default, performs semantic analysis to build the new OpenMP clause.
2139 /// Subclasses may override this routine to provide different behavior.
RebuildOMPUsesAllocatorsClause(ArrayRef<Sema::UsesAllocatorsData> Data,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)2140 OMPClause *RebuildOMPUsesAllocatorsClause(
2141 ArrayRef<Sema::UsesAllocatorsData> Data, SourceLocation StartLoc,
2142 SourceLocation LParenLoc, SourceLocation EndLoc) {
2143 return getSema().ActOnOpenMPUsesAllocatorClause(StartLoc, LParenLoc, EndLoc,
2144 Data);
2145 }
2146
2147 /// Build a new OpenMP 'affinity' clause.
2148 ///
2149 /// By default, performs semantic analysis to build the new OpenMP clause.
2150 /// Subclasses may override this routine to provide different behavior.
RebuildOMPAffinityClause(SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation ColonLoc,SourceLocation EndLoc,Expr * Modifier,ArrayRef<Expr * > Locators)2151 OMPClause *RebuildOMPAffinityClause(SourceLocation StartLoc,
2152 SourceLocation LParenLoc,
2153 SourceLocation ColonLoc,
2154 SourceLocation EndLoc, Expr *Modifier,
2155 ArrayRef<Expr *> Locators) {
2156 return getSema().ActOnOpenMPAffinityClause(StartLoc, LParenLoc, ColonLoc,
2157 EndLoc, Modifier, Locators);
2158 }
2159
2160 /// Build a new OpenMP 'order' clause.
2161 ///
2162 /// By default, performs semantic analysis to build the new OpenMP clause.
2163 /// Subclasses may override this routine to provide different behavior.
RebuildOMPOrderClause(OpenMPOrderClauseKind Kind,SourceLocation KindKwLoc,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)2164 OMPClause *RebuildOMPOrderClause(OpenMPOrderClauseKind Kind,
2165 SourceLocation KindKwLoc,
2166 SourceLocation StartLoc,
2167 SourceLocation LParenLoc,
2168 SourceLocation EndLoc) {
2169 return getSema().ActOnOpenMPOrderClause(Kind, KindKwLoc, StartLoc,
2170 LParenLoc, EndLoc);
2171 }
2172
2173 /// Build a new OpenMP 'init' clause.
2174 ///
2175 /// By default, performs semantic analysis to build the new OpenMP clause.
2176 /// Subclasses may override this routine to provide different behavior.
RebuildOMPInitClause(Expr * InteropVar,ArrayRef<Expr * > PrefExprs,bool IsTarget,bool IsTargetSync,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation VarLoc,SourceLocation EndLoc)2177 OMPClause *RebuildOMPInitClause(Expr *InteropVar, ArrayRef<Expr *> PrefExprs,
2178 bool IsTarget, bool IsTargetSync,
2179 SourceLocation StartLoc,
2180 SourceLocation LParenLoc,
2181 SourceLocation VarLoc,
2182 SourceLocation EndLoc) {
2183 return getSema().ActOnOpenMPInitClause(InteropVar, PrefExprs, IsTarget,
2184 IsTargetSync, StartLoc, LParenLoc,
2185 VarLoc, EndLoc);
2186 }
2187
2188 /// Build a new OpenMP 'use' clause.
2189 ///
2190 /// By default, performs semantic analysis to build the new OpenMP clause.
2191 /// Subclasses may override this routine to provide different behavior.
RebuildOMPUseClause(Expr * InteropVar,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation VarLoc,SourceLocation EndLoc)2192 OMPClause *RebuildOMPUseClause(Expr *InteropVar, SourceLocation StartLoc,
2193 SourceLocation LParenLoc,
2194 SourceLocation VarLoc, SourceLocation EndLoc) {
2195 return getSema().ActOnOpenMPUseClause(InteropVar, StartLoc, LParenLoc,
2196 VarLoc, EndLoc);
2197 }
2198
2199 /// Build a new OpenMP 'destroy' clause.
2200 ///
2201 /// By default, performs semantic analysis to build the new OpenMP clause.
2202 /// Subclasses may override this routine to provide different behavior.
RebuildOMPDestroyClause(Expr * InteropVar,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation VarLoc,SourceLocation EndLoc)2203 OMPClause *RebuildOMPDestroyClause(Expr *InteropVar, SourceLocation StartLoc,
2204 SourceLocation LParenLoc,
2205 SourceLocation VarLoc,
2206 SourceLocation EndLoc) {
2207 return getSema().ActOnOpenMPDestroyClause(InteropVar, StartLoc, LParenLoc,
2208 VarLoc, EndLoc);
2209 }
2210
2211 /// Build a new OpenMP 'novariants' clause.
2212 ///
2213 /// By default, performs semantic analysis to build the new OpenMP clause.
2214 /// Subclasses may override this routine to provide different behavior.
RebuildOMPNovariantsClause(Expr * Condition,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)2215 OMPClause *RebuildOMPNovariantsClause(Expr *Condition,
2216 SourceLocation StartLoc,
2217 SourceLocation LParenLoc,
2218 SourceLocation EndLoc) {
2219 return getSema().ActOnOpenMPNovariantsClause(Condition, StartLoc, LParenLoc,
2220 EndLoc);
2221 }
2222
2223 /// Build a new OpenMP 'nocontext' clause.
2224 ///
2225 /// By default, performs semantic analysis to build the new OpenMP clause.
2226 /// Subclasses may override this routine to provide different behavior.
RebuildOMPNocontextClause(Expr * Condition,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)2227 OMPClause *RebuildOMPNocontextClause(Expr *Condition, SourceLocation StartLoc,
2228 SourceLocation LParenLoc,
2229 SourceLocation EndLoc) {
2230 return getSema().ActOnOpenMPNocontextClause(Condition, StartLoc, LParenLoc,
2231 EndLoc);
2232 }
2233
2234 /// Build a new OpenMP 'filter' clause.
2235 ///
2236 /// By default, performs semantic analysis to build the new OpenMP clause.
2237 /// Subclasses may override this routine to provide different behavior.
RebuildOMPFilterClause(Expr * ThreadID,SourceLocation StartLoc,SourceLocation LParenLoc,SourceLocation EndLoc)2238 OMPClause *RebuildOMPFilterClause(Expr *ThreadID, SourceLocation StartLoc,
2239 SourceLocation LParenLoc,
2240 SourceLocation EndLoc) {
2241 return getSema().ActOnOpenMPFilterClause(ThreadID, StartLoc, LParenLoc,
2242 EndLoc);
2243 }
2244
2245 /// Rebuild the operand to an Objective-C \@synchronized statement.
2246 ///
2247 /// By default, performs semantic analysis to build the new statement.
2248 /// Subclasses may override this routine to provide different behavior.
RebuildObjCAtSynchronizedOperand(SourceLocation atLoc,Expr * object)2249 ExprResult RebuildObjCAtSynchronizedOperand(SourceLocation atLoc,
2250 Expr *object) {
2251 return getSema().ActOnObjCAtSynchronizedOperand(atLoc, object);
2252 }
2253
2254 /// Build a new Objective-C \@synchronized statement.
2255 ///
2256 /// By default, performs semantic analysis to build the new statement.
2257 /// Subclasses may override this routine to provide different behavior.
RebuildObjCAtSynchronizedStmt(SourceLocation AtLoc,Expr * Object,Stmt * Body)2258 StmtResult RebuildObjCAtSynchronizedStmt(SourceLocation AtLoc,
2259 Expr *Object, Stmt *Body) {
2260 return getSema().ActOnObjCAtSynchronizedStmt(AtLoc, Object, Body);
2261 }
2262
2263 /// Build a new Objective-C \@autoreleasepool statement.
2264 ///
2265 /// By default, performs semantic analysis to build the new statement.
2266 /// Subclasses may override this routine to provide different behavior.
RebuildObjCAutoreleasePoolStmt(SourceLocation AtLoc,Stmt * Body)2267 StmtResult RebuildObjCAutoreleasePoolStmt(SourceLocation AtLoc,
2268 Stmt *Body) {
2269 return getSema().ActOnObjCAutoreleasePoolStmt(AtLoc, Body);
2270 }
2271
2272 /// Build a new Objective-C fast enumeration statement.
2273 ///
2274 /// By default, performs semantic analysis to build the new statement.
2275 /// Subclasses may override this routine to provide different behavior.
RebuildObjCForCollectionStmt(SourceLocation ForLoc,Stmt * Element,Expr * Collection,SourceLocation RParenLoc,Stmt * Body)2276 StmtResult RebuildObjCForCollectionStmt(SourceLocation ForLoc,
2277 Stmt *Element,
2278 Expr *Collection,
2279 SourceLocation RParenLoc,
2280 Stmt *Body) {
2281 StmtResult ForEachStmt = getSema().ActOnObjCForCollectionStmt(ForLoc,
2282 Element,
2283 Collection,
2284 RParenLoc);
2285 if (ForEachStmt.isInvalid())
2286 return StmtError();
2287
2288 return getSema().FinishObjCForCollectionStmt(ForEachStmt.get(), Body);
2289 }
2290
2291 /// Build a new C++ exception declaration.
2292 ///
2293 /// By default, performs semantic analysis to build the new decaration.
2294 /// Subclasses may override this routine to provide different behavior.
RebuildExceptionDecl(VarDecl * ExceptionDecl,TypeSourceInfo * Declarator,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id)2295 VarDecl *RebuildExceptionDecl(VarDecl *ExceptionDecl,
2296 TypeSourceInfo *Declarator,
2297 SourceLocation StartLoc,
2298 SourceLocation IdLoc,
2299 IdentifierInfo *Id) {
2300 VarDecl *Var = getSema().BuildExceptionDeclaration(nullptr, Declarator,
2301 StartLoc, IdLoc, Id);
2302 if (Var)
2303 getSema().CurContext->addDecl(Var);
2304 return Var;
2305 }
2306
2307 /// Build a new C++ catch statement.
2308 ///
2309 /// By default, performs semantic analysis to build the new statement.
2310 /// Subclasses may override this routine to provide different behavior.
RebuildCXXCatchStmt(SourceLocation CatchLoc,VarDecl * ExceptionDecl,Stmt * Handler)2311 StmtResult RebuildCXXCatchStmt(SourceLocation CatchLoc,
2312 VarDecl *ExceptionDecl,
2313 Stmt *Handler) {
2314 return Owned(new (getSema().Context) CXXCatchStmt(CatchLoc, ExceptionDecl,
2315 Handler));
2316 }
2317
2318 /// Build a new C++ try statement.
2319 ///
2320 /// By default, performs semantic analysis to build the new statement.
2321 /// Subclasses may override this routine to provide different behavior.
RebuildCXXTryStmt(SourceLocation TryLoc,Stmt * TryBlock,ArrayRef<Stmt * > Handlers)2322 StmtResult RebuildCXXTryStmt(SourceLocation TryLoc, Stmt *TryBlock,
2323 ArrayRef<Stmt *> Handlers) {
2324 return getSema().ActOnCXXTryBlock(TryLoc, TryBlock, Handlers);
2325 }
2326
2327 /// Build a new C++0x range-based for statement.
2328 ///
2329 /// By default, performs semantic analysis to build the new statement.
2330 /// Subclasses may override this routine to provide different behavior.
RebuildCXXForRangeStmt(SourceLocation ForLoc,SourceLocation CoawaitLoc,Stmt * Init,SourceLocation ColonLoc,Stmt * Range,Stmt * Begin,Stmt * End,Expr * Cond,Expr * Inc,Stmt * LoopVar,SourceLocation RParenLoc)2331 StmtResult RebuildCXXForRangeStmt(SourceLocation ForLoc,
2332 SourceLocation CoawaitLoc, Stmt *Init,
2333 SourceLocation ColonLoc, Stmt *Range,
2334 Stmt *Begin, Stmt *End, Expr *Cond,
2335 Expr *Inc, Stmt *LoopVar,
2336 SourceLocation RParenLoc) {
2337 // If we've just learned that the range is actually an Objective-C
2338 // collection, treat this as an Objective-C fast enumeration loop.
2339 if (DeclStmt *RangeStmt = dyn_cast<DeclStmt>(Range)) {
2340 if (RangeStmt->isSingleDecl()) {
2341 if (VarDecl *RangeVar = dyn_cast<VarDecl>(RangeStmt->getSingleDecl())) {
2342 if (RangeVar->isInvalidDecl())
2343 return StmtError();
2344
2345 Expr *RangeExpr = RangeVar->getInit();
2346 if (!RangeExpr->isTypeDependent() &&
2347 RangeExpr->getType()->isObjCObjectPointerType()) {
2348 // FIXME: Support init-statements in Objective-C++20 ranged for
2349 // statement.
2350 if (Init) {
2351 return SemaRef.Diag(Init->getBeginLoc(),
2352 diag::err_objc_for_range_init_stmt)
2353 << Init->getSourceRange();
2354 }
2355 return getSema().ActOnObjCForCollectionStmt(ForLoc, LoopVar,
2356 RangeExpr, RParenLoc);
2357 }
2358 }
2359 }
2360 }
2361
2362 return getSema().BuildCXXForRangeStmt(ForLoc, CoawaitLoc, Init, ColonLoc,
2363 Range, Begin, End, Cond, Inc, LoopVar,
2364 RParenLoc, Sema::BFRK_Rebuild);
2365 }
2366
2367 /// Build a new C++0x range-based for statement.
2368 ///
2369 /// By default, performs semantic analysis to build the new statement.
2370 /// Subclasses may override this routine to provide different behavior.
RebuildMSDependentExistsStmt(SourceLocation KeywordLoc,bool IsIfExists,NestedNameSpecifierLoc QualifierLoc,DeclarationNameInfo NameInfo,Stmt * Nested)2371 StmtResult RebuildMSDependentExistsStmt(SourceLocation KeywordLoc,
2372 bool IsIfExists,
2373 NestedNameSpecifierLoc QualifierLoc,
2374 DeclarationNameInfo NameInfo,
2375 Stmt *Nested) {
2376 return getSema().BuildMSDependentExistsStmt(KeywordLoc, IsIfExists,
2377 QualifierLoc, NameInfo, Nested);
2378 }
2379
2380 /// Attach body to a C++0x range-based for statement.
2381 ///
2382 /// By default, performs semantic analysis to finish the new statement.
2383 /// Subclasses may override this routine to provide different behavior.
FinishCXXForRangeStmt(Stmt * ForRange,Stmt * Body)2384 StmtResult FinishCXXForRangeStmt(Stmt *ForRange, Stmt *Body) {
2385 return getSema().FinishCXXForRangeStmt(ForRange, Body);
2386 }
2387
RebuildSEHTryStmt(bool IsCXXTry,SourceLocation TryLoc,Stmt * TryBlock,Stmt * Handler)2388 StmtResult RebuildSEHTryStmt(bool IsCXXTry, SourceLocation TryLoc,
2389 Stmt *TryBlock, Stmt *Handler) {
2390 return getSema().ActOnSEHTryBlock(IsCXXTry, TryLoc, TryBlock, Handler);
2391 }
2392
RebuildSEHExceptStmt(SourceLocation Loc,Expr * FilterExpr,Stmt * Block)2393 StmtResult RebuildSEHExceptStmt(SourceLocation Loc, Expr *FilterExpr,
2394 Stmt *Block) {
2395 return getSema().ActOnSEHExceptBlock(Loc, FilterExpr, Block);
2396 }
2397
RebuildSEHFinallyStmt(SourceLocation Loc,Stmt * Block)2398 StmtResult RebuildSEHFinallyStmt(SourceLocation Loc, Stmt *Block) {
2399 return SEHFinallyStmt::Create(getSema().getASTContext(), Loc, Block);
2400 }
2401
2402 /// Build a new predefined expression.
2403 ///
2404 /// By default, performs semantic analysis to build the new expression.
2405 /// Subclasses may override this routine to provide different behavior.
RebuildPredefinedExpr(SourceLocation Loc,PredefinedExpr::IdentKind IK)2406 ExprResult RebuildPredefinedExpr(SourceLocation Loc,
2407 PredefinedExpr::IdentKind IK) {
2408 return getSema().BuildPredefinedExpr(Loc, IK);
2409 }
2410
2411 /// Build a new expression that references a declaration.
2412 ///
2413 /// By default, performs semantic analysis to build the new expression.
2414 /// Subclasses may override this routine to provide different behavior.
RebuildDeclarationNameExpr(const CXXScopeSpec & SS,LookupResult & R,bool RequiresADL)2415 ExprResult RebuildDeclarationNameExpr(const CXXScopeSpec &SS,
2416 LookupResult &R,
2417 bool RequiresADL) {
2418 return getSema().BuildDeclarationNameExpr(SS, R, RequiresADL);
2419 }
2420
2421
2422 /// Build a new expression that references a declaration.
2423 ///
2424 /// By default, performs semantic analysis to build the new expression.
2425 /// Subclasses may override this routine to provide different behavior.
RebuildDeclRefExpr(NestedNameSpecifierLoc QualifierLoc,ValueDecl * VD,const DeclarationNameInfo & NameInfo,NamedDecl * Found,TemplateArgumentListInfo * TemplateArgs)2426 ExprResult RebuildDeclRefExpr(NestedNameSpecifierLoc QualifierLoc,
2427 ValueDecl *VD,
2428 const DeclarationNameInfo &NameInfo,
2429 NamedDecl *Found,
2430 TemplateArgumentListInfo *TemplateArgs) {
2431 CXXScopeSpec SS;
2432 SS.Adopt(QualifierLoc);
2433 return getSema().BuildDeclarationNameExpr(SS, NameInfo, VD, Found,
2434 TemplateArgs);
2435 }
2436
2437 /// Build a new expression in parentheses.
2438 ///
2439 /// By default, performs semantic analysis to build the new expression.
2440 /// Subclasses may override this routine to provide different behavior.
RebuildParenExpr(Expr * SubExpr,SourceLocation LParen,SourceLocation RParen)2441 ExprResult RebuildParenExpr(Expr *SubExpr, SourceLocation LParen,
2442 SourceLocation RParen) {
2443 return getSema().ActOnParenExpr(LParen, RParen, SubExpr);
2444 }
2445
2446 /// Build a new pseudo-destructor expression.
2447 ///
2448 /// By default, performs semantic analysis to build the new expression.
2449 /// Subclasses may override this routine to provide different behavior.
2450 ExprResult RebuildCXXPseudoDestructorExpr(Expr *Base,
2451 SourceLocation OperatorLoc,
2452 bool isArrow,
2453 CXXScopeSpec &SS,
2454 TypeSourceInfo *ScopeType,
2455 SourceLocation CCLoc,
2456 SourceLocation TildeLoc,
2457 PseudoDestructorTypeStorage Destroyed);
2458
2459 /// Build a new unary operator expression.
2460 ///
2461 /// By default, performs semantic analysis to build the new expression.
2462 /// Subclasses may override this routine to provide different behavior.
RebuildUnaryOperator(SourceLocation OpLoc,UnaryOperatorKind Opc,Expr * SubExpr)2463 ExprResult RebuildUnaryOperator(SourceLocation OpLoc,
2464 UnaryOperatorKind Opc,
2465 Expr *SubExpr) {
2466 return getSema().BuildUnaryOp(/*Scope=*/nullptr, OpLoc, Opc, SubExpr);
2467 }
2468
2469 /// Build a new builtin offsetof expression.
2470 ///
2471 /// By default, performs semantic analysis to build the new expression.
2472 /// Subclasses may override this routine to provide different behavior.
RebuildOffsetOfExpr(SourceLocation OperatorLoc,TypeSourceInfo * Type,ArrayRef<Sema::OffsetOfComponent> Components,SourceLocation RParenLoc)2473 ExprResult RebuildOffsetOfExpr(SourceLocation OperatorLoc,
2474 TypeSourceInfo *Type,
2475 ArrayRef<Sema::OffsetOfComponent> Components,
2476 SourceLocation RParenLoc) {
2477 return getSema().BuildBuiltinOffsetOf(OperatorLoc, Type, Components,
2478 RParenLoc);
2479 }
2480
2481 /// Build a new sizeof, alignof or vec_step expression with a
2482 /// type argument.
2483 ///
2484 /// By default, performs semantic analysis to build the new expression.
2485 /// Subclasses may override this routine to provide different behavior.
RebuildUnaryExprOrTypeTrait(TypeSourceInfo * TInfo,SourceLocation OpLoc,UnaryExprOrTypeTrait ExprKind,SourceRange R)2486 ExprResult RebuildUnaryExprOrTypeTrait(TypeSourceInfo *TInfo,
2487 SourceLocation OpLoc,
2488 UnaryExprOrTypeTrait ExprKind,
2489 SourceRange R) {
2490 return getSema().CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, R);
2491 }
2492
2493 /// Build a new sizeof, alignof or vec step expression with an
2494 /// expression argument.
2495 ///
2496 /// By default, performs semantic analysis to build the new expression.
2497 /// Subclasses may override this routine to provide different behavior.
RebuildUnaryExprOrTypeTrait(Expr * SubExpr,SourceLocation OpLoc,UnaryExprOrTypeTrait ExprKind,SourceRange R)2498 ExprResult RebuildUnaryExprOrTypeTrait(Expr *SubExpr, SourceLocation OpLoc,
2499 UnaryExprOrTypeTrait ExprKind,
2500 SourceRange R) {
2501 ExprResult Result
2502 = getSema().CreateUnaryExprOrTypeTraitExpr(SubExpr, OpLoc, ExprKind);
2503 if (Result.isInvalid())
2504 return ExprError();
2505
2506 return Result;
2507 }
2508
2509 /// Build a new array subscript expression.
2510 ///
2511 /// By default, performs semantic analysis to build the new expression.
2512 /// Subclasses may override this routine to provide different behavior.
RebuildArraySubscriptExpr(Expr * LHS,SourceLocation LBracketLoc,Expr * RHS,SourceLocation RBracketLoc)2513 ExprResult RebuildArraySubscriptExpr(Expr *LHS,
2514 SourceLocation LBracketLoc,
2515 Expr *RHS,
2516 SourceLocation RBracketLoc) {
2517 return getSema().ActOnArraySubscriptExpr(/*Scope=*/nullptr, LHS,
2518 LBracketLoc, RHS,
2519 RBracketLoc);
2520 }
2521
2522 /// Build a new matrix subscript expression.
2523 ///
2524 /// By default, performs semantic analysis to build the new expression.
2525 /// Subclasses may override this routine to provide different behavior.
RebuildMatrixSubscriptExpr(Expr * Base,Expr * RowIdx,Expr * ColumnIdx,SourceLocation RBracketLoc)2526 ExprResult RebuildMatrixSubscriptExpr(Expr *Base, Expr *RowIdx,
2527 Expr *ColumnIdx,
2528 SourceLocation RBracketLoc) {
2529 return getSema().CreateBuiltinMatrixSubscriptExpr(Base, RowIdx, ColumnIdx,
2530 RBracketLoc);
2531 }
2532
2533 /// Build a new array section expression.
2534 ///
2535 /// By default, performs semantic analysis to build the new expression.
2536 /// Subclasses may override this routine to provide different behavior.
RebuildOMPArraySectionExpr(Expr * Base,SourceLocation LBracketLoc,Expr * LowerBound,SourceLocation ColonLocFirst,SourceLocation ColonLocSecond,Expr * Length,Expr * Stride,SourceLocation RBracketLoc)2537 ExprResult RebuildOMPArraySectionExpr(Expr *Base, SourceLocation LBracketLoc,
2538 Expr *LowerBound,
2539 SourceLocation ColonLocFirst,
2540 SourceLocation ColonLocSecond,
2541 Expr *Length, Expr *Stride,
2542 SourceLocation RBracketLoc) {
2543 return getSema().ActOnOMPArraySectionExpr(Base, LBracketLoc, LowerBound,
2544 ColonLocFirst, ColonLocSecond,
2545 Length, Stride, RBracketLoc);
2546 }
2547
2548 /// Build a new array shaping expression.
2549 ///
2550 /// By default, performs semantic analysis to build the new expression.
2551 /// Subclasses may override this routine to provide different behavior.
RebuildOMPArrayShapingExpr(Expr * Base,SourceLocation LParenLoc,SourceLocation RParenLoc,ArrayRef<Expr * > Dims,ArrayRef<SourceRange> BracketsRanges)2552 ExprResult RebuildOMPArrayShapingExpr(Expr *Base, SourceLocation LParenLoc,
2553 SourceLocation RParenLoc,
2554 ArrayRef<Expr *> Dims,
2555 ArrayRef<SourceRange> BracketsRanges) {
2556 return getSema().ActOnOMPArrayShapingExpr(Base, LParenLoc, RParenLoc, Dims,
2557 BracketsRanges);
2558 }
2559
2560 /// Build a new iterator expression.
2561 ///
2562 /// By default, performs semantic analysis to build the new expression.
2563 /// Subclasses may override this routine to provide different behavior.
RebuildOMPIteratorExpr(SourceLocation IteratorKwLoc,SourceLocation LLoc,SourceLocation RLoc,ArrayRef<Sema::OMPIteratorData> Data)2564 ExprResult RebuildOMPIteratorExpr(
2565 SourceLocation IteratorKwLoc, SourceLocation LLoc, SourceLocation RLoc,
2566 ArrayRef<Sema::OMPIteratorData> Data) {
2567 return getSema().ActOnOMPIteratorExpr(/*Scope=*/nullptr, IteratorKwLoc,
2568 LLoc, RLoc, Data);
2569 }
2570
2571 /// Build a new call expression.
2572 ///
2573 /// By default, performs semantic analysis to build the new expression.
2574 /// Subclasses may override this routine to provide different behavior.
2575 ExprResult RebuildCallExpr(Expr *Callee, SourceLocation LParenLoc,
2576 MultiExprArg Args,
2577 SourceLocation RParenLoc,
2578 Expr *ExecConfig = nullptr) {
2579 return getSema().ActOnCallExpr(
2580 /*Scope=*/nullptr, Callee, LParenLoc, Args, RParenLoc, ExecConfig);
2581 }
2582
2583 /// Build a new member access expression.
2584 ///
2585 /// By default, performs semantic analysis to build the new expression.
2586 /// Subclasses may override this routine to provide different behavior.
RebuildMemberExpr(Expr * Base,SourceLocation OpLoc,bool isArrow,NestedNameSpecifierLoc QualifierLoc,SourceLocation TemplateKWLoc,const DeclarationNameInfo & MemberNameInfo,ValueDecl * Member,NamedDecl * FoundDecl,const TemplateArgumentListInfo * ExplicitTemplateArgs,NamedDecl * FirstQualifierInScope)2587 ExprResult RebuildMemberExpr(Expr *Base, SourceLocation OpLoc,
2588 bool isArrow,
2589 NestedNameSpecifierLoc QualifierLoc,
2590 SourceLocation TemplateKWLoc,
2591 const DeclarationNameInfo &MemberNameInfo,
2592 ValueDecl *Member,
2593 NamedDecl *FoundDecl,
2594 const TemplateArgumentListInfo *ExplicitTemplateArgs,
2595 NamedDecl *FirstQualifierInScope) {
2596 ExprResult BaseResult = getSema().PerformMemberExprBaseConversion(Base,
2597 isArrow);
2598 if (!Member->getDeclName()) {
2599 // We have a reference to an unnamed field. This is always the
2600 // base of an anonymous struct/union member access, i.e. the
2601 // field is always of record type.
2602 assert(Member->getType()->isRecordType() &&
2603 "unnamed member not of record type?");
2604
2605 BaseResult =
2606 getSema().PerformObjectMemberConversion(BaseResult.get(),
2607 QualifierLoc.getNestedNameSpecifier(),
2608 FoundDecl, Member);
2609 if (BaseResult.isInvalid())
2610 return ExprError();
2611 Base = BaseResult.get();
2612
2613 CXXScopeSpec EmptySS;
2614 return getSema().BuildFieldReferenceExpr(
2615 Base, isArrow, OpLoc, EmptySS, cast<FieldDecl>(Member),
2616 DeclAccessPair::make(FoundDecl, FoundDecl->getAccess()), MemberNameInfo);
2617 }
2618
2619 CXXScopeSpec SS;
2620 SS.Adopt(QualifierLoc);
2621
2622 Base = BaseResult.get();
2623 QualType BaseType = Base->getType();
2624
2625 if (isArrow && !BaseType->isPointerType())
2626 return ExprError();
2627
2628 // FIXME: this involves duplicating earlier analysis in a lot of
2629 // cases; we should avoid this when possible.
2630 LookupResult R(getSema(), MemberNameInfo, Sema::LookupMemberName);
2631 R.addDecl(FoundDecl);
2632 R.resolveKind();
2633
2634 return getSema().BuildMemberReferenceExpr(Base, BaseType, OpLoc, isArrow,
2635 SS, TemplateKWLoc,
2636 FirstQualifierInScope,
2637 R, ExplicitTemplateArgs,
2638 /*S*/nullptr);
2639 }
2640
2641 /// Build a new binary operator expression.
2642 ///
2643 /// By default, performs semantic analysis to build the new expression.
2644 /// Subclasses may override this routine to provide different behavior.
RebuildBinaryOperator(SourceLocation OpLoc,BinaryOperatorKind Opc,Expr * LHS,Expr * RHS)2645 ExprResult RebuildBinaryOperator(SourceLocation OpLoc,
2646 BinaryOperatorKind Opc,
2647 Expr *LHS, Expr *RHS) {
2648 return getSema().BuildBinOp(/*Scope=*/nullptr, OpLoc, Opc, LHS, RHS);
2649 }
2650
2651 /// Build a new rewritten operator expression.
2652 ///
2653 /// By default, performs semantic analysis to build the new expression.
2654 /// Subclasses may override this routine to provide different behavior.
RebuildCXXRewrittenBinaryOperator(SourceLocation OpLoc,BinaryOperatorKind Opcode,const UnresolvedSetImpl & UnqualLookups,Expr * LHS,Expr * RHS)2655 ExprResult RebuildCXXRewrittenBinaryOperator(
2656 SourceLocation OpLoc, BinaryOperatorKind Opcode,
2657 const UnresolvedSetImpl &UnqualLookups, Expr *LHS, Expr *RHS) {
2658 return getSema().CreateOverloadedBinOp(OpLoc, Opcode, UnqualLookups, LHS,
2659 RHS, /*RequiresADL*/false);
2660 }
2661
2662 /// Build a new conditional operator expression.
2663 ///
2664 /// By default, performs semantic analysis to build the new expression.
2665 /// Subclasses may override this routine to provide different behavior.
RebuildConditionalOperator(Expr * Cond,SourceLocation QuestionLoc,Expr * LHS,SourceLocation ColonLoc,Expr * RHS)2666 ExprResult RebuildConditionalOperator(Expr *Cond,
2667 SourceLocation QuestionLoc,
2668 Expr *LHS,
2669 SourceLocation ColonLoc,
2670 Expr *RHS) {
2671 return getSema().ActOnConditionalOp(QuestionLoc, ColonLoc, Cond,
2672 LHS, RHS);
2673 }
2674
2675 /// Build a new C-style cast expression.
2676 ///
2677 /// By default, performs semantic analysis to build the new expression.
2678 /// Subclasses may override this routine to provide different behavior.
RebuildCStyleCastExpr(SourceLocation LParenLoc,TypeSourceInfo * TInfo,SourceLocation RParenLoc,Expr * SubExpr)2679 ExprResult RebuildCStyleCastExpr(SourceLocation LParenLoc,
2680 TypeSourceInfo *TInfo,
2681 SourceLocation RParenLoc,
2682 Expr *SubExpr) {
2683 return getSema().BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc,
2684 SubExpr);
2685 }
2686
2687 /// Build a new compound literal expression.
2688 ///
2689 /// By default, performs semantic analysis to build the new expression.
2690 /// Subclasses may override this routine to provide different behavior.
RebuildCompoundLiteralExpr(SourceLocation LParenLoc,TypeSourceInfo * TInfo,SourceLocation RParenLoc,Expr * Init)2691 ExprResult RebuildCompoundLiteralExpr(SourceLocation LParenLoc,
2692 TypeSourceInfo *TInfo,
2693 SourceLocation RParenLoc,
2694 Expr *Init) {
2695 return getSema().BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc,
2696 Init);
2697 }
2698
2699 /// Build a new extended vector element access expression.
2700 ///
2701 /// By default, performs semantic analysis to build the new expression.
2702 /// Subclasses may override this routine to provide different behavior.
RebuildExtVectorElementExpr(Expr * Base,SourceLocation OpLoc,SourceLocation AccessorLoc,IdentifierInfo & Accessor)2703 ExprResult RebuildExtVectorElementExpr(Expr *Base,
2704 SourceLocation OpLoc,
2705 SourceLocation AccessorLoc,
2706 IdentifierInfo &Accessor) {
2707
2708 CXXScopeSpec SS;
2709 DeclarationNameInfo NameInfo(&Accessor, AccessorLoc);
2710 return getSema().BuildMemberReferenceExpr(Base, Base->getType(),
2711 OpLoc, /*IsArrow*/ false,
2712 SS, SourceLocation(),
2713 /*FirstQualifierInScope*/ nullptr,
2714 NameInfo,
2715 /* TemplateArgs */ nullptr,
2716 /*S*/ nullptr);
2717 }
2718
2719 /// Build a new initializer list expression.
2720 ///
2721 /// By default, performs semantic analysis to build the new expression.
2722 /// Subclasses may override this routine to provide different behavior.
RebuildInitList(SourceLocation LBraceLoc,MultiExprArg Inits,SourceLocation RBraceLoc)2723 ExprResult RebuildInitList(SourceLocation LBraceLoc,
2724 MultiExprArg Inits,
2725 SourceLocation RBraceLoc) {
2726 return SemaRef.BuildInitList(LBraceLoc, Inits, RBraceLoc);
2727 }
2728
2729 /// Build a new designated initializer expression.
2730 ///
2731 /// By default, performs semantic analysis to build the new expression.
2732 /// Subclasses may override this routine to provide different behavior.
RebuildDesignatedInitExpr(Designation & Desig,MultiExprArg ArrayExprs,SourceLocation EqualOrColonLoc,bool GNUSyntax,Expr * Init)2733 ExprResult RebuildDesignatedInitExpr(Designation &Desig,
2734 MultiExprArg ArrayExprs,
2735 SourceLocation EqualOrColonLoc,
2736 bool GNUSyntax,
2737 Expr *Init) {
2738 ExprResult Result
2739 = SemaRef.ActOnDesignatedInitializer(Desig, EqualOrColonLoc, GNUSyntax,
2740 Init);
2741 if (Result.isInvalid())
2742 return ExprError();
2743
2744 return Result;
2745 }
2746
2747 /// Build a new value-initialized expression.
2748 ///
2749 /// By default, builds the implicit value initialization without performing
2750 /// any semantic analysis. Subclasses may override this routine to provide
2751 /// different behavior.
RebuildImplicitValueInitExpr(QualType T)2752 ExprResult RebuildImplicitValueInitExpr(QualType T) {
2753 return new (SemaRef.Context) ImplicitValueInitExpr(T);
2754 }
2755
2756 /// Build a new \c va_arg expression.
2757 ///
2758 /// By default, performs semantic analysis to build the new expression.
2759 /// Subclasses may override this routine to provide different behavior.
RebuildVAArgExpr(SourceLocation BuiltinLoc,Expr * SubExpr,TypeSourceInfo * TInfo,SourceLocation RParenLoc)2760 ExprResult RebuildVAArgExpr(SourceLocation BuiltinLoc,
2761 Expr *SubExpr, TypeSourceInfo *TInfo,
2762 SourceLocation RParenLoc) {
2763 return getSema().BuildVAArgExpr(BuiltinLoc,
2764 SubExpr, TInfo,
2765 RParenLoc);
2766 }
2767
2768 /// Build a new expression list in parentheses.
2769 ///
2770 /// By default, performs semantic analysis to build the new expression.
2771 /// Subclasses may override this routine to provide different behavior.
RebuildParenListExpr(SourceLocation LParenLoc,MultiExprArg SubExprs,SourceLocation RParenLoc)2772 ExprResult RebuildParenListExpr(SourceLocation LParenLoc,
2773 MultiExprArg SubExprs,
2774 SourceLocation RParenLoc) {
2775 return getSema().ActOnParenListExpr(LParenLoc, RParenLoc, SubExprs);
2776 }
2777
2778 /// Build a new address-of-label expression.
2779 ///
2780 /// By default, performs semantic analysis, using the name of the label
2781 /// rather than attempting to map the label statement itself.
2782 /// Subclasses may override this routine to provide different behavior.
RebuildAddrLabelExpr(SourceLocation AmpAmpLoc,SourceLocation LabelLoc,LabelDecl * Label)2783 ExprResult RebuildAddrLabelExpr(SourceLocation AmpAmpLoc,
2784 SourceLocation LabelLoc, LabelDecl *Label) {
2785 return getSema().ActOnAddrLabel(AmpAmpLoc, LabelLoc, Label);
2786 }
2787
2788 /// Build a new GNU statement expression.
2789 ///
2790 /// By default, performs semantic analysis to build the new expression.
2791 /// Subclasses may override this routine to provide different behavior.
RebuildStmtExpr(SourceLocation LParenLoc,Stmt * SubStmt,SourceLocation RParenLoc,unsigned TemplateDepth)2792 ExprResult RebuildStmtExpr(SourceLocation LParenLoc, Stmt *SubStmt,
2793 SourceLocation RParenLoc, unsigned TemplateDepth) {
2794 return getSema().BuildStmtExpr(LParenLoc, SubStmt, RParenLoc,
2795 TemplateDepth);
2796 }
2797
2798 /// Build a new __builtin_choose_expr expression.
2799 ///
2800 /// By default, performs semantic analysis to build the new expression.
2801 /// Subclasses may override this routine to provide different behavior.
RebuildChooseExpr(SourceLocation BuiltinLoc,Expr * Cond,Expr * LHS,Expr * RHS,SourceLocation RParenLoc)2802 ExprResult RebuildChooseExpr(SourceLocation BuiltinLoc,
2803 Expr *Cond, Expr *LHS, Expr *RHS,
2804 SourceLocation RParenLoc) {
2805 return SemaRef.ActOnChooseExpr(BuiltinLoc,
2806 Cond, LHS, RHS,
2807 RParenLoc);
2808 }
2809
2810 /// Build a new generic selection expression.
2811 ///
2812 /// By default, performs semantic analysis to build the new expression.
2813 /// Subclasses may override this routine to provide different behavior.
RebuildGenericSelectionExpr(SourceLocation KeyLoc,SourceLocation DefaultLoc,SourceLocation RParenLoc,Expr * ControllingExpr,ArrayRef<TypeSourceInfo * > Types,ArrayRef<Expr * > Exprs)2814 ExprResult RebuildGenericSelectionExpr(SourceLocation KeyLoc,
2815 SourceLocation DefaultLoc,
2816 SourceLocation RParenLoc,
2817 Expr *ControllingExpr,
2818 ArrayRef<TypeSourceInfo *> Types,
2819 ArrayRef<Expr *> Exprs) {
2820 return getSema().CreateGenericSelectionExpr(KeyLoc, DefaultLoc, RParenLoc,
2821 ControllingExpr, Types, Exprs);
2822 }
2823
2824 /// Build a new overloaded operator call expression.
2825 ///
2826 /// By default, performs semantic analysis to build the new expression.
2827 /// The semantic analysis provides the behavior of template instantiation,
2828 /// copying with transformations that turn what looks like an overloaded
2829 /// operator call into a use of a builtin operator, performing
2830 /// argument-dependent lookup, etc. Subclasses may override this routine to
2831 /// provide different behavior.
2832 ExprResult RebuildCXXOperatorCallExpr(OverloadedOperatorKind Op,
2833 SourceLocation OpLoc,
2834 Expr *Callee,
2835 Expr *First,
2836 Expr *Second);
2837
2838 /// Build a new C++ "named" cast expression, such as static_cast or
2839 /// reinterpret_cast.
2840 ///
2841 /// By default, this routine dispatches to one of the more-specific routines
2842 /// for a particular named case, e.g., RebuildCXXStaticCastExpr().
2843 /// Subclasses may override this routine to provide different behavior.
RebuildCXXNamedCastExpr(SourceLocation OpLoc,Stmt::StmtClass Class,SourceLocation LAngleLoc,TypeSourceInfo * TInfo,SourceLocation RAngleLoc,SourceLocation LParenLoc,Expr * SubExpr,SourceLocation RParenLoc)2844 ExprResult RebuildCXXNamedCastExpr(SourceLocation OpLoc,
2845 Stmt::StmtClass Class,
2846 SourceLocation LAngleLoc,
2847 TypeSourceInfo *TInfo,
2848 SourceLocation RAngleLoc,
2849 SourceLocation LParenLoc,
2850 Expr *SubExpr,
2851 SourceLocation RParenLoc) {
2852 switch (Class) {
2853 case Stmt::CXXStaticCastExprClass:
2854 return getDerived().RebuildCXXStaticCastExpr(OpLoc, LAngleLoc, TInfo,
2855 RAngleLoc, LParenLoc,
2856 SubExpr, RParenLoc);
2857
2858 case Stmt::CXXDynamicCastExprClass:
2859 return getDerived().RebuildCXXDynamicCastExpr(OpLoc, LAngleLoc, TInfo,
2860 RAngleLoc, LParenLoc,
2861 SubExpr, RParenLoc);
2862
2863 case Stmt::CXXReinterpretCastExprClass:
2864 return getDerived().RebuildCXXReinterpretCastExpr(OpLoc, LAngleLoc, TInfo,
2865 RAngleLoc, LParenLoc,
2866 SubExpr,
2867 RParenLoc);
2868
2869 case Stmt::CXXConstCastExprClass:
2870 return getDerived().RebuildCXXConstCastExpr(OpLoc, LAngleLoc, TInfo,
2871 RAngleLoc, LParenLoc,
2872 SubExpr, RParenLoc);
2873
2874 case Stmt::CXXAddrspaceCastExprClass:
2875 return getDerived().RebuildCXXAddrspaceCastExpr(
2876 OpLoc, LAngleLoc, TInfo, RAngleLoc, LParenLoc, SubExpr, RParenLoc);
2877
2878 default:
2879 llvm_unreachable("Invalid C++ named cast");
2880 }
2881 }
2882
2883 /// Build a new C++ static_cast expression.
2884 ///
2885 /// By default, performs semantic analysis to build the new expression.
2886 /// Subclasses may override this routine to provide different behavior.
RebuildCXXStaticCastExpr(SourceLocation OpLoc,SourceLocation LAngleLoc,TypeSourceInfo * TInfo,SourceLocation RAngleLoc,SourceLocation LParenLoc,Expr * SubExpr,SourceLocation RParenLoc)2887 ExprResult RebuildCXXStaticCastExpr(SourceLocation OpLoc,
2888 SourceLocation LAngleLoc,
2889 TypeSourceInfo *TInfo,
2890 SourceLocation RAngleLoc,
2891 SourceLocation LParenLoc,
2892 Expr *SubExpr,
2893 SourceLocation RParenLoc) {
2894 return getSema().BuildCXXNamedCast(OpLoc, tok::kw_static_cast,
2895 TInfo, SubExpr,
2896 SourceRange(LAngleLoc, RAngleLoc),
2897 SourceRange(LParenLoc, RParenLoc));
2898 }
2899
2900 /// Build a new C++ dynamic_cast expression.
2901 ///
2902 /// By default, performs semantic analysis to build the new expression.
2903 /// Subclasses may override this routine to provide different behavior.
RebuildCXXDynamicCastExpr(SourceLocation OpLoc,SourceLocation LAngleLoc,TypeSourceInfo * TInfo,SourceLocation RAngleLoc,SourceLocation LParenLoc,Expr * SubExpr,SourceLocation RParenLoc)2904 ExprResult RebuildCXXDynamicCastExpr(SourceLocation OpLoc,
2905 SourceLocation LAngleLoc,
2906 TypeSourceInfo *TInfo,
2907 SourceLocation RAngleLoc,
2908 SourceLocation LParenLoc,
2909 Expr *SubExpr,
2910 SourceLocation RParenLoc) {
2911 return getSema().BuildCXXNamedCast(OpLoc, tok::kw_dynamic_cast,
2912 TInfo, SubExpr,
2913 SourceRange(LAngleLoc, RAngleLoc),
2914 SourceRange(LParenLoc, RParenLoc));
2915 }
2916
2917 /// Build a new C++ reinterpret_cast expression.
2918 ///
2919 /// By default, performs semantic analysis to build the new expression.
2920 /// Subclasses may override this routine to provide different behavior.
RebuildCXXReinterpretCastExpr(SourceLocation OpLoc,SourceLocation LAngleLoc,TypeSourceInfo * TInfo,SourceLocation RAngleLoc,SourceLocation LParenLoc,Expr * SubExpr,SourceLocation RParenLoc)2921 ExprResult RebuildCXXReinterpretCastExpr(SourceLocation OpLoc,
2922 SourceLocation LAngleLoc,
2923 TypeSourceInfo *TInfo,
2924 SourceLocation RAngleLoc,
2925 SourceLocation LParenLoc,
2926 Expr *SubExpr,
2927 SourceLocation RParenLoc) {
2928 return getSema().BuildCXXNamedCast(OpLoc, tok::kw_reinterpret_cast,
2929 TInfo, SubExpr,
2930 SourceRange(LAngleLoc, RAngleLoc),
2931 SourceRange(LParenLoc, RParenLoc));
2932 }
2933
2934 /// Build a new C++ const_cast expression.
2935 ///
2936 /// By default, performs semantic analysis to build the new expression.
2937 /// Subclasses may override this routine to provide different behavior.
RebuildCXXConstCastExpr(SourceLocation OpLoc,SourceLocation LAngleLoc,TypeSourceInfo * TInfo,SourceLocation RAngleLoc,SourceLocation LParenLoc,Expr * SubExpr,SourceLocation RParenLoc)2938 ExprResult RebuildCXXConstCastExpr(SourceLocation OpLoc,
2939 SourceLocation LAngleLoc,
2940 TypeSourceInfo *TInfo,
2941 SourceLocation RAngleLoc,
2942 SourceLocation LParenLoc,
2943 Expr *SubExpr,
2944 SourceLocation RParenLoc) {
2945 return getSema().BuildCXXNamedCast(OpLoc, tok::kw_const_cast,
2946 TInfo, SubExpr,
2947 SourceRange(LAngleLoc, RAngleLoc),
2948 SourceRange(LParenLoc, RParenLoc));
2949 }
2950
2951 ExprResult
RebuildCXXAddrspaceCastExpr(SourceLocation OpLoc,SourceLocation LAngleLoc,TypeSourceInfo * TInfo,SourceLocation RAngleLoc,SourceLocation LParenLoc,Expr * SubExpr,SourceLocation RParenLoc)2952 RebuildCXXAddrspaceCastExpr(SourceLocation OpLoc, SourceLocation LAngleLoc,
2953 TypeSourceInfo *TInfo, SourceLocation RAngleLoc,
2954 SourceLocation LParenLoc, Expr *SubExpr,
2955 SourceLocation RParenLoc) {
2956 return getSema().BuildCXXNamedCast(
2957 OpLoc, tok::kw_addrspace_cast, TInfo, SubExpr,
2958 SourceRange(LAngleLoc, RAngleLoc), SourceRange(LParenLoc, RParenLoc));
2959 }
2960
2961 /// Build a new C++ functional-style cast expression.
2962 ///
2963 /// By default, performs semantic analysis to build the new expression.
2964 /// Subclasses may override this routine to provide different behavior.
RebuildCXXFunctionalCastExpr(TypeSourceInfo * TInfo,SourceLocation LParenLoc,Expr * Sub,SourceLocation RParenLoc,bool ListInitialization)2965 ExprResult RebuildCXXFunctionalCastExpr(TypeSourceInfo *TInfo,
2966 SourceLocation LParenLoc,
2967 Expr *Sub,
2968 SourceLocation RParenLoc,
2969 bool ListInitialization) {
2970 return getSema().BuildCXXTypeConstructExpr(TInfo, LParenLoc,
2971 MultiExprArg(&Sub, 1), RParenLoc,
2972 ListInitialization);
2973 }
2974
2975 /// Build a new C++ __builtin_bit_cast expression.
2976 ///
2977 /// By default, performs semantic analysis to build the new expression.
2978 /// Subclasses may override this routine to provide different behavior.
RebuildBuiltinBitCastExpr(SourceLocation KWLoc,TypeSourceInfo * TSI,Expr * Sub,SourceLocation RParenLoc)2979 ExprResult RebuildBuiltinBitCastExpr(SourceLocation KWLoc,
2980 TypeSourceInfo *TSI, Expr *Sub,
2981 SourceLocation RParenLoc) {
2982 return getSema().BuildBuiltinBitCastExpr(KWLoc, TSI, Sub, RParenLoc);
2983 }
2984
2985 /// Build a new C++ typeid(type) expression.
2986 ///
2987 /// By default, performs semantic analysis to build the new expression.
2988 /// Subclasses may override this routine to provide different behavior.
RebuildCXXTypeidExpr(QualType TypeInfoType,SourceLocation TypeidLoc,TypeSourceInfo * Operand,SourceLocation RParenLoc)2989 ExprResult RebuildCXXTypeidExpr(QualType TypeInfoType,
2990 SourceLocation TypeidLoc,
2991 TypeSourceInfo *Operand,
2992 SourceLocation RParenLoc) {
2993 return getSema().BuildCXXTypeId(TypeInfoType, TypeidLoc, Operand,
2994 RParenLoc);
2995 }
2996
2997
2998 /// Build a new C++ typeid(expr) expression.
2999 ///
3000 /// By default, performs semantic analysis to build the new expression.
3001 /// Subclasses may override this routine to provide different behavior.
RebuildCXXTypeidExpr(QualType TypeInfoType,SourceLocation TypeidLoc,Expr * Operand,SourceLocation RParenLoc)3002 ExprResult RebuildCXXTypeidExpr(QualType TypeInfoType,
3003 SourceLocation TypeidLoc,
3004 Expr *Operand,
3005 SourceLocation RParenLoc) {
3006 return getSema().BuildCXXTypeId(TypeInfoType, TypeidLoc, Operand,
3007 RParenLoc);
3008 }
3009
3010 /// Build a new C++ __uuidof(type) expression.
3011 ///
3012 /// By default, performs semantic analysis to build the new expression.
3013 /// Subclasses may override this routine to provide different behavior.
RebuildCXXUuidofExpr(QualType Type,SourceLocation TypeidLoc,TypeSourceInfo * Operand,SourceLocation RParenLoc)3014 ExprResult RebuildCXXUuidofExpr(QualType Type, SourceLocation TypeidLoc,
3015 TypeSourceInfo *Operand,
3016 SourceLocation RParenLoc) {
3017 return getSema().BuildCXXUuidof(Type, TypeidLoc, Operand, RParenLoc);
3018 }
3019
3020 /// Build a new C++ __uuidof(expr) expression.
3021 ///
3022 /// By default, performs semantic analysis to build the new expression.
3023 /// Subclasses may override this routine to provide different behavior.
RebuildCXXUuidofExpr(QualType Type,SourceLocation TypeidLoc,Expr * Operand,SourceLocation RParenLoc)3024 ExprResult RebuildCXXUuidofExpr(QualType Type, SourceLocation TypeidLoc,
3025 Expr *Operand, SourceLocation RParenLoc) {
3026 return getSema().BuildCXXUuidof(Type, TypeidLoc, Operand, RParenLoc);
3027 }
3028
3029 /// Build a new C++ "this" expression.
3030 ///
3031 /// By default, builds a new "this" expression without performing any
3032 /// semantic analysis. Subclasses may override this routine to provide
3033 /// different behavior.
RebuildCXXThisExpr(SourceLocation ThisLoc,QualType ThisType,bool isImplicit)3034 ExprResult RebuildCXXThisExpr(SourceLocation ThisLoc,
3035 QualType ThisType,
3036 bool isImplicit) {
3037 return getSema().BuildCXXThisExpr(ThisLoc, ThisType, isImplicit);
3038 }
3039
3040 /// Build a new C++ throw expression.
3041 ///
3042 /// By default, performs semantic analysis to build the new expression.
3043 /// Subclasses may override this routine to provide different behavior.
RebuildCXXThrowExpr(SourceLocation ThrowLoc,Expr * Sub,bool IsThrownVariableInScope)3044 ExprResult RebuildCXXThrowExpr(SourceLocation ThrowLoc, Expr *Sub,
3045 bool IsThrownVariableInScope) {
3046 return getSema().BuildCXXThrow(ThrowLoc, Sub, IsThrownVariableInScope);
3047 }
3048
3049 /// Build a new C++ default-argument expression.
3050 ///
3051 /// By default, builds a new default-argument expression, which does not
3052 /// require any semantic analysis. Subclasses may override this routine to
3053 /// provide different behavior.
RebuildCXXDefaultArgExpr(SourceLocation Loc,ParmVarDecl * Param)3054 ExprResult RebuildCXXDefaultArgExpr(SourceLocation Loc, ParmVarDecl *Param) {
3055 return CXXDefaultArgExpr::Create(getSema().Context, Loc, Param,
3056 getSema().CurContext);
3057 }
3058
3059 /// Build a new C++11 default-initialization expression.
3060 ///
3061 /// By default, builds a new default field initialization expression, which
3062 /// does not require any semantic analysis. Subclasses may override this
3063 /// routine to provide different behavior.
RebuildCXXDefaultInitExpr(SourceLocation Loc,FieldDecl * Field)3064 ExprResult RebuildCXXDefaultInitExpr(SourceLocation Loc,
3065 FieldDecl *Field) {
3066 return CXXDefaultInitExpr::Create(getSema().Context, Loc, Field,
3067 getSema().CurContext);
3068 }
3069
3070 /// Build a new C++ zero-initialization expression.
3071 ///
3072 /// By default, performs semantic analysis to build the new expression.
3073 /// Subclasses may override this routine to provide different behavior.
RebuildCXXScalarValueInitExpr(TypeSourceInfo * TSInfo,SourceLocation LParenLoc,SourceLocation RParenLoc)3074 ExprResult RebuildCXXScalarValueInitExpr(TypeSourceInfo *TSInfo,
3075 SourceLocation LParenLoc,
3076 SourceLocation RParenLoc) {
3077 return getSema().BuildCXXTypeConstructExpr(
3078 TSInfo, LParenLoc, None, RParenLoc, /*ListInitialization=*/false);
3079 }
3080
3081 /// Build a new C++ "new" expression.
3082 ///
3083 /// By default, performs semantic analysis to build the new expression.
3084 /// Subclasses may override this routine to provide different behavior.
RebuildCXXNewExpr(SourceLocation StartLoc,bool UseGlobal,SourceLocation PlacementLParen,MultiExprArg PlacementArgs,SourceLocation PlacementRParen,SourceRange TypeIdParens,QualType AllocatedType,TypeSourceInfo * AllocatedTypeInfo,Optional<Expr * > ArraySize,SourceRange DirectInitRange,Expr * Initializer)3085 ExprResult RebuildCXXNewExpr(SourceLocation StartLoc,
3086 bool UseGlobal,
3087 SourceLocation PlacementLParen,
3088 MultiExprArg PlacementArgs,
3089 SourceLocation PlacementRParen,
3090 SourceRange TypeIdParens,
3091 QualType AllocatedType,
3092 TypeSourceInfo *AllocatedTypeInfo,
3093 Optional<Expr *> ArraySize,
3094 SourceRange DirectInitRange,
3095 Expr *Initializer) {
3096 return getSema().BuildCXXNew(StartLoc, UseGlobal,
3097 PlacementLParen,
3098 PlacementArgs,
3099 PlacementRParen,
3100 TypeIdParens,
3101 AllocatedType,
3102 AllocatedTypeInfo,
3103 ArraySize,
3104 DirectInitRange,
3105 Initializer);
3106 }
3107
3108 /// Build a new C++ "delete" expression.
3109 ///
3110 /// By default, performs semantic analysis to build the new expression.
3111 /// Subclasses may override this routine to provide different behavior.
RebuildCXXDeleteExpr(SourceLocation StartLoc,bool IsGlobalDelete,bool IsArrayForm,Expr * Operand)3112 ExprResult RebuildCXXDeleteExpr(SourceLocation StartLoc,
3113 bool IsGlobalDelete,
3114 bool IsArrayForm,
3115 Expr *Operand) {
3116 return getSema().ActOnCXXDelete(StartLoc, IsGlobalDelete, IsArrayForm,
3117 Operand);
3118 }
3119
3120 /// Build a new type trait expression.
3121 ///
3122 /// By default, performs semantic analysis to build the new expression.
3123 /// Subclasses may override this routine to provide different behavior.
RebuildTypeTrait(TypeTrait Trait,SourceLocation StartLoc,ArrayRef<TypeSourceInfo * > Args,SourceLocation RParenLoc)3124 ExprResult RebuildTypeTrait(TypeTrait Trait,
3125 SourceLocation StartLoc,
3126 ArrayRef<TypeSourceInfo *> Args,
3127 SourceLocation RParenLoc) {
3128 return getSema().BuildTypeTrait(Trait, StartLoc, Args, RParenLoc);
3129 }
3130
3131 /// Build a new array type trait expression.
3132 ///
3133 /// By default, performs semantic analysis to build the new expression.
3134 /// Subclasses may override this routine to provide different behavior.
RebuildArrayTypeTrait(ArrayTypeTrait Trait,SourceLocation StartLoc,TypeSourceInfo * TSInfo,Expr * DimExpr,SourceLocation RParenLoc)3135 ExprResult RebuildArrayTypeTrait(ArrayTypeTrait Trait,
3136 SourceLocation StartLoc,
3137 TypeSourceInfo *TSInfo,
3138 Expr *DimExpr,
3139 SourceLocation RParenLoc) {
3140 return getSema().BuildArrayTypeTrait(Trait, StartLoc, TSInfo, DimExpr, RParenLoc);
3141 }
3142
3143 /// Build a new expression trait expression.
3144 ///
3145 /// By default, performs semantic analysis to build the new expression.
3146 /// Subclasses may override this routine to provide different behavior.
RebuildExpressionTrait(ExpressionTrait Trait,SourceLocation StartLoc,Expr * Queried,SourceLocation RParenLoc)3147 ExprResult RebuildExpressionTrait(ExpressionTrait Trait,
3148 SourceLocation StartLoc,
3149 Expr *Queried,
3150 SourceLocation RParenLoc) {
3151 return getSema().BuildExpressionTrait(Trait, StartLoc, Queried, RParenLoc);
3152 }
3153
3154 /// Build a new (previously unresolved) declaration reference
3155 /// expression.
3156 ///
3157 /// By default, performs semantic analysis to build the new expression.
3158 /// Subclasses may override this routine to provide different behavior.
RebuildDependentScopeDeclRefExpr(NestedNameSpecifierLoc QualifierLoc,SourceLocation TemplateKWLoc,const DeclarationNameInfo & NameInfo,const TemplateArgumentListInfo * TemplateArgs,bool IsAddressOfOperand,TypeSourceInfo ** RecoveryTSI)3159 ExprResult RebuildDependentScopeDeclRefExpr(
3160 NestedNameSpecifierLoc QualifierLoc,
3161 SourceLocation TemplateKWLoc,
3162 const DeclarationNameInfo &NameInfo,
3163 const TemplateArgumentListInfo *TemplateArgs,
3164 bool IsAddressOfOperand,
3165 TypeSourceInfo **RecoveryTSI) {
3166 CXXScopeSpec SS;
3167 SS.Adopt(QualifierLoc);
3168
3169 if (TemplateArgs || TemplateKWLoc.isValid())
3170 return getSema().BuildQualifiedTemplateIdExpr(SS, TemplateKWLoc, NameInfo,
3171 TemplateArgs);
3172
3173 return getSema().BuildQualifiedDeclarationNameExpr(
3174 SS, NameInfo, IsAddressOfOperand, /*S*/nullptr, RecoveryTSI);
3175 }
3176
3177 /// Build a new template-id expression.
3178 ///
3179 /// By default, performs semantic analysis to build the new expression.
3180 /// Subclasses may override this routine to provide different behavior.
RebuildTemplateIdExpr(const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,LookupResult & R,bool RequiresADL,const TemplateArgumentListInfo * TemplateArgs)3181 ExprResult RebuildTemplateIdExpr(const CXXScopeSpec &SS,
3182 SourceLocation TemplateKWLoc,
3183 LookupResult &R,
3184 bool RequiresADL,
3185 const TemplateArgumentListInfo *TemplateArgs) {
3186 return getSema().BuildTemplateIdExpr(SS, TemplateKWLoc, R, RequiresADL,
3187 TemplateArgs);
3188 }
3189
3190 /// Build a new object-construction expression.
3191 ///
3192 /// By default, performs semantic analysis to build the new expression.
3193 /// Subclasses may override this routine to provide different behavior.
RebuildCXXConstructExpr(QualType T,SourceLocation Loc,CXXConstructorDecl * Constructor,bool IsElidable,MultiExprArg Args,bool HadMultipleCandidates,bool ListInitialization,bool StdInitListInitialization,bool RequiresZeroInit,CXXConstructExpr::ConstructionKind ConstructKind,SourceRange ParenRange)3194 ExprResult RebuildCXXConstructExpr(QualType T,
3195 SourceLocation Loc,
3196 CXXConstructorDecl *Constructor,
3197 bool IsElidable,
3198 MultiExprArg Args,
3199 bool HadMultipleCandidates,
3200 bool ListInitialization,
3201 bool StdInitListInitialization,
3202 bool RequiresZeroInit,
3203 CXXConstructExpr::ConstructionKind ConstructKind,
3204 SourceRange ParenRange) {
3205 // Reconstruct the constructor we originally found, which might be
3206 // different if this is a call to an inherited constructor.
3207 CXXConstructorDecl *FoundCtor = Constructor;
3208 if (Constructor->isInheritingConstructor())
3209 FoundCtor = Constructor->getInheritedConstructor().getConstructor();
3210
3211 SmallVector<Expr *, 8> ConvertedArgs;
3212 if (getSema().CompleteConstructorCall(FoundCtor, T, Args, Loc,
3213 ConvertedArgs))
3214 return ExprError();
3215
3216 return getSema().BuildCXXConstructExpr(Loc, T, Constructor,
3217 IsElidable,
3218 ConvertedArgs,
3219 HadMultipleCandidates,
3220 ListInitialization,
3221 StdInitListInitialization,
3222 RequiresZeroInit, ConstructKind,
3223 ParenRange);
3224 }
3225
3226 /// Build a new implicit construction via inherited constructor
3227 /// expression.
RebuildCXXInheritedCtorInitExpr(QualType T,SourceLocation Loc,CXXConstructorDecl * Constructor,bool ConstructsVBase,bool InheritedFromVBase)3228 ExprResult RebuildCXXInheritedCtorInitExpr(QualType T, SourceLocation Loc,
3229 CXXConstructorDecl *Constructor,
3230 bool ConstructsVBase,
3231 bool InheritedFromVBase) {
3232 return new (getSema().Context) CXXInheritedCtorInitExpr(
3233 Loc, T, Constructor, ConstructsVBase, InheritedFromVBase);
3234 }
3235
3236 /// Build a new object-construction expression.
3237 ///
3238 /// By default, performs semantic analysis to build the new expression.
3239 /// Subclasses may override this routine to provide different behavior.
RebuildCXXTemporaryObjectExpr(TypeSourceInfo * TSInfo,SourceLocation LParenOrBraceLoc,MultiExprArg Args,SourceLocation RParenOrBraceLoc,bool ListInitialization)3240 ExprResult RebuildCXXTemporaryObjectExpr(TypeSourceInfo *TSInfo,
3241 SourceLocation LParenOrBraceLoc,
3242 MultiExprArg Args,
3243 SourceLocation RParenOrBraceLoc,
3244 bool ListInitialization) {
3245 return getSema().BuildCXXTypeConstructExpr(
3246 TSInfo, LParenOrBraceLoc, Args, RParenOrBraceLoc, ListInitialization);
3247 }
3248
3249 /// Build a new object-construction expression.
3250 ///
3251 /// By default, performs semantic analysis to build the new expression.
3252 /// Subclasses may override this routine to provide different behavior.
RebuildCXXUnresolvedConstructExpr(TypeSourceInfo * TSInfo,SourceLocation LParenLoc,MultiExprArg Args,SourceLocation RParenLoc,bool ListInitialization)3253 ExprResult RebuildCXXUnresolvedConstructExpr(TypeSourceInfo *TSInfo,
3254 SourceLocation LParenLoc,
3255 MultiExprArg Args,
3256 SourceLocation RParenLoc,
3257 bool ListInitialization) {
3258 return getSema().BuildCXXTypeConstructExpr(TSInfo, LParenLoc, Args,
3259 RParenLoc, ListInitialization);
3260 }
3261
3262 /// Build a new member reference expression.
3263 ///
3264 /// By default, performs semantic analysis to build the new expression.
3265 /// Subclasses may override this routine to provide different behavior.
RebuildCXXDependentScopeMemberExpr(Expr * BaseE,QualType BaseType,bool IsArrow,SourceLocation OperatorLoc,NestedNameSpecifierLoc QualifierLoc,SourceLocation TemplateKWLoc,NamedDecl * FirstQualifierInScope,const DeclarationNameInfo & MemberNameInfo,const TemplateArgumentListInfo * TemplateArgs)3266 ExprResult RebuildCXXDependentScopeMemberExpr(Expr *BaseE,
3267 QualType BaseType,
3268 bool IsArrow,
3269 SourceLocation OperatorLoc,
3270 NestedNameSpecifierLoc QualifierLoc,
3271 SourceLocation TemplateKWLoc,
3272 NamedDecl *FirstQualifierInScope,
3273 const DeclarationNameInfo &MemberNameInfo,
3274 const TemplateArgumentListInfo *TemplateArgs) {
3275 CXXScopeSpec SS;
3276 SS.Adopt(QualifierLoc);
3277
3278 return SemaRef.BuildMemberReferenceExpr(BaseE, BaseType,
3279 OperatorLoc, IsArrow,
3280 SS, TemplateKWLoc,
3281 FirstQualifierInScope,
3282 MemberNameInfo,
3283 TemplateArgs, /*S*/nullptr);
3284 }
3285
3286 /// Build a new member reference expression.
3287 ///
3288 /// By default, performs semantic analysis to build the new expression.
3289 /// Subclasses may override this routine to provide different behavior.
RebuildUnresolvedMemberExpr(Expr * BaseE,QualType BaseType,SourceLocation OperatorLoc,bool IsArrow,NestedNameSpecifierLoc QualifierLoc,SourceLocation TemplateKWLoc,NamedDecl * FirstQualifierInScope,LookupResult & R,const TemplateArgumentListInfo * TemplateArgs)3290 ExprResult RebuildUnresolvedMemberExpr(Expr *BaseE, QualType BaseType,
3291 SourceLocation OperatorLoc,
3292 bool IsArrow,
3293 NestedNameSpecifierLoc QualifierLoc,
3294 SourceLocation TemplateKWLoc,
3295 NamedDecl *FirstQualifierInScope,
3296 LookupResult &R,
3297 const TemplateArgumentListInfo *TemplateArgs) {
3298 CXXScopeSpec SS;
3299 SS.Adopt(QualifierLoc);
3300
3301 return SemaRef.BuildMemberReferenceExpr(BaseE, BaseType,
3302 OperatorLoc, IsArrow,
3303 SS, TemplateKWLoc,
3304 FirstQualifierInScope,
3305 R, TemplateArgs, /*S*/nullptr);
3306 }
3307
3308 /// Build a new noexcept expression.
3309 ///
3310 /// By default, performs semantic analysis to build the new expression.
3311 /// Subclasses may override this routine to provide different behavior.
RebuildCXXNoexceptExpr(SourceRange Range,Expr * Arg)3312 ExprResult RebuildCXXNoexceptExpr(SourceRange Range, Expr *Arg) {
3313 return SemaRef.BuildCXXNoexceptExpr(Range.getBegin(), Arg, Range.getEnd());
3314 }
3315
3316 /// Build a new expression to compute the length of a parameter pack.
RebuildSizeOfPackExpr(SourceLocation OperatorLoc,NamedDecl * Pack,SourceLocation PackLoc,SourceLocation RParenLoc,Optional<unsigned> Length,ArrayRef<TemplateArgument> PartialArgs)3317 ExprResult RebuildSizeOfPackExpr(SourceLocation OperatorLoc,
3318 NamedDecl *Pack,
3319 SourceLocation PackLoc,
3320 SourceLocation RParenLoc,
3321 Optional<unsigned> Length,
3322 ArrayRef<TemplateArgument> PartialArgs) {
3323 return SizeOfPackExpr::Create(SemaRef.Context, OperatorLoc, Pack, PackLoc,
3324 RParenLoc, Length, PartialArgs);
3325 }
3326
3327 /// Build a new expression representing a call to a source location
3328 /// builtin.
3329 ///
3330 /// By default, performs semantic analysis to build the new expression.
3331 /// Subclasses may override this routine to provide different behavior.
RebuildSourceLocExpr(SourceLocExpr::IdentKind Kind,SourceLocation BuiltinLoc,SourceLocation RPLoc,DeclContext * ParentContext)3332 ExprResult RebuildSourceLocExpr(SourceLocExpr::IdentKind Kind,
3333 SourceLocation BuiltinLoc,
3334 SourceLocation RPLoc,
3335 DeclContext *ParentContext) {
3336 return getSema().BuildSourceLocExpr(Kind, BuiltinLoc, RPLoc, ParentContext);
3337 }
3338
3339 /// Build a new Objective-C boxed expression.
3340 ///
3341 /// By default, performs semantic analysis to build the new expression.
3342 /// Subclasses may override this routine to provide different behavior.
RebuildConceptSpecializationExpr(NestedNameSpecifierLoc NNS,SourceLocation TemplateKWLoc,DeclarationNameInfo ConceptNameInfo,NamedDecl * FoundDecl,ConceptDecl * NamedConcept,TemplateArgumentListInfo * TALI)3343 ExprResult RebuildConceptSpecializationExpr(NestedNameSpecifierLoc NNS,
3344 SourceLocation TemplateKWLoc, DeclarationNameInfo ConceptNameInfo,
3345 NamedDecl *FoundDecl, ConceptDecl *NamedConcept,
3346 TemplateArgumentListInfo *TALI) {
3347 CXXScopeSpec SS;
3348 SS.Adopt(NNS);
3349 ExprResult Result = getSema().CheckConceptTemplateId(SS, TemplateKWLoc,
3350 ConceptNameInfo,
3351 FoundDecl,
3352 NamedConcept, TALI);
3353 if (Result.isInvalid())
3354 return ExprError();
3355 return Result;
3356 }
3357
3358 /// \brief Build a new requires expression.
3359 ///
3360 /// By default, performs semantic analysis to build the new expression.
3361 /// Subclasses may override this routine to provide different behavior.
RebuildRequiresExpr(SourceLocation RequiresKWLoc,RequiresExprBodyDecl * Body,ArrayRef<ParmVarDecl * > LocalParameters,ArrayRef<concepts::Requirement * > Requirements,SourceLocation ClosingBraceLoc)3362 ExprResult RebuildRequiresExpr(SourceLocation RequiresKWLoc,
3363 RequiresExprBodyDecl *Body,
3364 ArrayRef<ParmVarDecl *> LocalParameters,
3365 ArrayRef<concepts::Requirement *> Requirements,
3366 SourceLocation ClosingBraceLoc) {
3367 return RequiresExpr::Create(SemaRef.Context, RequiresKWLoc, Body,
3368 LocalParameters, Requirements, ClosingBraceLoc);
3369 }
3370
3371 concepts::TypeRequirement *
RebuildTypeRequirement(concepts::Requirement::SubstitutionDiagnostic * SubstDiag)3372 RebuildTypeRequirement(
3373 concepts::Requirement::SubstitutionDiagnostic *SubstDiag) {
3374 return SemaRef.BuildTypeRequirement(SubstDiag);
3375 }
3376
RebuildTypeRequirement(TypeSourceInfo * T)3377 concepts::TypeRequirement *RebuildTypeRequirement(TypeSourceInfo *T) {
3378 return SemaRef.BuildTypeRequirement(T);
3379 }
3380
3381 concepts::ExprRequirement *
RebuildExprRequirement(concepts::Requirement::SubstitutionDiagnostic * SubstDiag,bool IsSimple,SourceLocation NoexceptLoc,concepts::ExprRequirement::ReturnTypeRequirement Ret)3382 RebuildExprRequirement(
3383 concepts::Requirement::SubstitutionDiagnostic *SubstDiag, bool IsSimple,
3384 SourceLocation NoexceptLoc,
3385 concepts::ExprRequirement::ReturnTypeRequirement Ret) {
3386 return SemaRef.BuildExprRequirement(SubstDiag, IsSimple, NoexceptLoc,
3387 std::move(Ret));
3388 }
3389
3390 concepts::ExprRequirement *
RebuildExprRequirement(Expr * E,bool IsSimple,SourceLocation NoexceptLoc,concepts::ExprRequirement::ReturnTypeRequirement Ret)3391 RebuildExprRequirement(Expr *E, bool IsSimple, SourceLocation NoexceptLoc,
3392 concepts::ExprRequirement::ReturnTypeRequirement Ret) {
3393 return SemaRef.BuildExprRequirement(E, IsSimple, NoexceptLoc,
3394 std::move(Ret));
3395 }
3396
3397 concepts::NestedRequirement *
RebuildNestedRequirement(concepts::Requirement::SubstitutionDiagnostic * SubstDiag)3398 RebuildNestedRequirement(
3399 concepts::Requirement::SubstitutionDiagnostic *SubstDiag) {
3400 return SemaRef.BuildNestedRequirement(SubstDiag);
3401 }
3402
RebuildNestedRequirement(Expr * Constraint)3403 concepts::NestedRequirement *RebuildNestedRequirement(Expr *Constraint) {
3404 return SemaRef.BuildNestedRequirement(Constraint);
3405 }
3406
3407 /// \brief Build a new Objective-C boxed expression.
3408 ///
3409 /// By default, performs semantic analysis to build the new expression.
3410 /// Subclasses may override this routine to provide different behavior.
RebuildObjCBoxedExpr(SourceRange SR,Expr * ValueExpr)3411 ExprResult RebuildObjCBoxedExpr(SourceRange SR, Expr *ValueExpr) {
3412 return getSema().BuildObjCBoxedExpr(SR, ValueExpr);
3413 }
3414
3415 /// Build a new Objective-C array literal.
3416 ///
3417 /// By default, performs semantic analysis to build the new expression.
3418 /// Subclasses may override this routine to provide different behavior.
RebuildObjCArrayLiteral(SourceRange Range,Expr ** Elements,unsigned NumElements)3419 ExprResult RebuildObjCArrayLiteral(SourceRange Range,
3420 Expr **Elements, unsigned NumElements) {
3421 return getSema().BuildObjCArrayLiteral(Range,
3422 MultiExprArg(Elements, NumElements));
3423 }
3424
RebuildObjCSubscriptRefExpr(SourceLocation RB,Expr * Base,Expr * Key,ObjCMethodDecl * getterMethod,ObjCMethodDecl * setterMethod)3425 ExprResult RebuildObjCSubscriptRefExpr(SourceLocation RB,
3426 Expr *Base, Expr *Key,
3427 ObjCMethodDecl *getterMethod,
3428 ObjCMethodDecl *setterMethod) {
3429 return getSema().BuildObjCSubscriptExpression(RB, Base, Key,
3430 getterMethod, setterMethod);
3431 }
3432
3433 /// Build a new Objective-C dictionary literal.
3434 ///
3435 /// By default, performs semantic analysis to build the new expression.
3436 /// Subclasses may override this routine to provide different behavior.
RebuildObjCDictionaryLiteral(SourceRange Range,MutableArrayRef<ObjCDictionaryElement> Elements)3437 ExprResult RebuildObjCDictionaryLiteral(SourceRange Range,
3438 MutableArrayRef<ObjCDictionaryElement> Elements) {
3439 return getSema().BuildObjCDictionaryLiteral(Range, Elements);
3440 }
3441
3442 /// Build a new Objective-C \@encode expression.
3443 ///
3444 /// By default, performs semantic analysis to build the new expression.
3445 /// Subclasses may override this routine to provide different behavior.
RebuildObjCEncodeExpr(SourceLocation AtLoc,TypeSourceInfo * EncodeTypeInfo,SourceLocation RParenLoc)3446 ExprResult RebuildObjCEncodeExpr(SourceLocation AtLoc,
3447 TypeSourceInfo *EncodeTypeInfo,
3448 SourceLocation RParenLoc) {
3449 return SemaRef.BuildObjCEncodeExpression(AtLoc, EncodeTypeInfo, RParenLoc);
3450 }
3451
3452 /// Build a new Objective-C class message.
RebuildObjCMessageExpr(TypeSourceInfo * ReceiverTypeInfo,Selector Sel,ArrayRef<SourceLocation> SelectorLocs,ObjCMethodDecl * Method,SourceLocation LBracLoc,MultiExprArg Args,SourceLocation RBracLoc)3453 ExprResult RebuildObjCMessageExpr(TypeSourceInfo *ReceiverTypeInfo,
3454 Selector Sel,
3455 ArrayRef<SourceLocation> SelectorLocs,
3456 ObjCMethodDecl *Method,
3457 SourceLocation LBracLoc,
3458 MultiExprArg Args,
3459 SourceLocation RBracLoc) {
3460 return SemaRef.BuildClassMessage(ReceiverTypeInfo,
3461 ReceiverTypeInfo->getType(),
3462 /*SuperLoc=*/SourceLocation(),
3463 Sel, Method, LBracLoc, SelectorLocs,
3464 RBracLoc, Args);
3465 }
3466
3467 /// Build a new Objective-C instance message.
RebuildObjCMessageExpr(Expr * Receiver,Selector Sel,ArrayRef<SourceLocation> SelectorLocs,ObjCMethodDecl * Method,SourceLocation LBracLoc,MultiExprArg Args,SourceLocation RBracLoc)3468 ExprResult RebuildObjCMessageExpr(Expr *Receiver,
3469 Selector Sel,
3470 ArrayRef<SourceLocation> SelectorLocs,
3471 ObjCMethodDecl *Method,
3472 SourceLocation LBracLoc,
3473 MultiExprArg Args,
3474 SourceLocation RBracLoc) {
3475 return SemaRef.BuildInstanceMessage(Receiver,
3476 Receiver->getType(),
3477 /*SuperLoc=*/SourceLocation(),
3478 Sel, Method, LBracLoc, SelectorLocs,
3479 RBracLoc, Args);
3480 }
3481
3482 /// Build a new Objective-C instance/class message to 'super'.
RebuildObjCMessageExpr(SourceLocation SuperLoc,Selector Sel,ArrayRef<SourceLocation> SelectorLocs,QualType SuperType,ObjCMethodDecl * Method,SourceLocation LBracLoc,MultiExprArg Args,SourceLocation RBracLoc)3483 ExprResult RebuildObjCMessageExpr(SourceLocation SuperLoc,
3484 Selector Sel,
3485 ArrayRef<SourceLocation> SelectorLocs,
3486 QualType SuperType,
3487 ObjCMethodDecl *Method,
3488 SourceLocation LBracLoc,
3489 MultiExprArg Args,
3490 SourceLocation RBracLoc) {
3491 return Method->isInstanceMethod() ? SemaRef.BuildInstanceMessage(nullptr,
3492 SuperType,
3493 SuperLoc,
3494 Sel, Method, LBracLoc, SelectorLocs,
3495 RBracLoc, Args)
3496 : SemaRef.BuildClassMessage(nullptr,
3497 SuperType,
3498 SuperLoc,
3499 Sel, Method, LBracLoc, SelectorLocs,
3500 RBracLoc, Args);
3501
3502
3503 }
3504
3505 /// Build a new Objective-C ivar reference expression.
3506 ///
3507 /// By default, performs semantic analysis to build the new expression.
3508 /// Subclasses may override this routine to provide different behavior.
RebuildObjCIvarRefExpr(Expr * BaseArg,ObjCIvarDecl * Ivar,SourceLocation IvarLoc,bool IsArrow,bool IsFreeIvar)3509 ExprResult RebuildObjCIvarRefExpr(Expr *BaseArg, ObjCIvarDecl *Ivar,
3510 SourceLocation IvarLoc,
3511 bool IsArrow, bool IsFreeIvar) {
3512 CXXScopeSpec SS;
3513 DeclarationNameInfo NameInfo(Ivar->getDeclName(), IvarLoc);
3514 ExprResult Result = getSema().BuildMemberReferenceExpr(
3515 BaseArg, BaseArg->getType(),
3516 /*FIXME:*/ IvarLoc, IsArrow, SS, SourceLocation(),
3517 /*FirstQualifierInScope=*/nullptr, NameInfo,
3518 /*TemplateArgs=*/nullptr,
3519 /*S=*/nullptr);
3520 if (IsFreeIvar && Result.isUsable())
3521 cast<ObjCIvarRefExpr>(Result.get())->setIsFreeIvar(IsFreeIvar);
3522 return Result;
3523 }
3524
3525 /// Build a new Objective-C property reference expression.
3526 ///
3527 /// By default, performs semantic analysis to build the new expression.
3528 /// Subclasses may override this routine to provide different behavior.
RebuildObjCPropertyRefExpr(Expr * BaseArg,ObjCPropertyDecl * Property,SourceLocation PropertyLoc)3529 ExprResult RebuildObjCPropertyRefExpr(Expr *BaseArg,
3530 ObjCPropertyDecl *Property,
3531 SourceLocation PropertyLoc) {
3532 CXXScopeSpec SS;
3533 DeclarationNameInfo NameInfo(Property->getDeclName(), PropertyLoc);
3534 return getSema().BuildMemberReferenceExpr(BaseArg, BaseArg->getType(),
3535 /*FIXME:*/PropertyLoc,
3536 /*IsArrow=*/false,
3537 SS, SourceLocation(),
3538 /*FirstQualifierInScope=*/nullptr,
3539 NameInfo,
3540 /*TemplateArgs=*/nullptr,
3541 /*S=*/nullptr);
3542 }
3543
3544 /// Build a new Objective-C property reference expression.
3545 ///
3546 /// By default, performs semantic analysis to build the new expression.
3547 /// Subclasses may override this routine to provide different behavior.
RebuildObjCPropertyRefExpr(Expr * Base,QualType T,ObjCMethodDecl * Getter,ObjCMethodDecl * Setter,SourceLocation PropertyLoc)3548 ExprResult RebuildObjCPropertyRefExpr(Expr *Base, QualType T,
3549 ObjCMethodDecl *Getter,
3550 ObjCMethodDecl *Setter,
3551 SourceLocation PropertyLoc) {
3552 // Since these expressions can only be value-dependent, we do not
3553 // need to perform semantic analysis again.
3554 return Owned(
3555 new (getSema().Context) ObjCPropertyRefExpr(Getter, Setter, T,
3556 VK_LValue, OK_ObjCProperty,
3557 PropertyLoc, Base));
3558 }
3559
3560 /// Build a new Objective-C "isa" expression.
3561 ///
3562 /// By default, performs semantic analysis to build the new expression.
3563 /// Subclasses may override this routine to provide different behavior.
RebuildObjCIsaExpr(Expr * BaseArg,SourceLocation IsaLoc,SourceLocation OpLoc,bool IsArrow)3564 ExprResult RebuildObjCIsaExpr(Expr *BaseArg, SourceLocation IsaLoc,
3565 SourceLocation OpLoc, bool IsArrow) {
3566 CXXScopeSpec SS;
3567 DeclarationNameInfo NameInfo(&getSema().Context.Idents.get("isa"), IsaLoc);
3568 return getSema().BuildMemberReferenceExpr(BaseArg, BaseArg->getType(),
3569 OpLoc, IsArrow,
3570 SS, SourceLocation(),
3571 /*FirstQualifierInScope=*/nullptr,
3572 NameInfo,
3573 /*TemplateArgs=*/nullptr,
3574 /*S=*/nullptr);
3575 }
3576
3577 /// Build a new shuffle vector expression.
3578 ///
3579 /// By default, performs semantic analysis to build the new expression.
3580 /// Subclasses may override this routine to provide different behavior.
RebuildShuffleVectorExpr(SourceLocation BuiltinLoc,MultiExprArg SubExprs,SourceLocation RParenLoc)3581 ExprResult RebuildShuffleVectorExpr(SourceLocation BuiltinLoc,
3582 MultiExprArg SubExprs,
3583 SourceLocation RParenLoc) {
3584 // Find the declaration for __builtin_shufflevector
3585 const IdentifierInfo &Name
3586 = SemaRef.Context.Idents.get("__builtin_shufflevector");
3587 TranslationUnitDecl *TUDecl = SemaRef.Context.getTranslationUnitDecl();
3588 DeclContext::lookup_result Lookup = TUDecl->lookup(DeclarationName(&Name));
3589 assert(!Lookup.empty() && "No __builtin_shufflevector?");
3590
3591 // Build a reference to the __builtin_shufflevector builtin
3592 FunctionDecl *Builtin = cast<FunctionDecl>(Lookup.front());
3593 Expr *Callee = new (SemaRef.Context)
3594 DeclRefExpr(SemaRef.Context, Builtin, false,
3595 SemaRef.Context.BuiltinFnTy, VK_RValue, BuiltinLoc);
3596 QualType CalleePtrTy = SemaRef.Context.getPointerType(Builtin->getType());
3597 Callee = SemaRef.ImpCastExprToType(Callee, CalleePtrTy,
3598 CK_BuiltinFnToFnPtr).get();
3599
3600 // Build the CallExpr
3601 ExprResult TheCall = CallExpr::Create(
3602 SemaRef.Context, Callee, SubExprs, Builtin->getCallResultType(),
3603 Expr::getValueKindForType(Builtin->getReturnType()), RParenLoc,
3604 FPOptionsOverride());
3605
3606 // Type-check the __builtin_shufflevector expression.
3607 return SemaRef.SemaBuiltinShuffleVector(cast<CallExpr>(TheCall.get()));
3608 }
3609
3610 /// Build a new convert vector expression.
RebuildConvertVectorExpr(SourceLocation BuiltinLoc,Expr * SrcExpr,TypeSourceInfo * DstTInfo,SourceLocation RParenLoc)3611 ExprResult RebuildConvertVectorExpr(SourceLocation BuiltinLoc,
3612 Expr *SrcExpr, TypeSourceInfo *DstTInfo,
3613 SourceLocation RParenLoc) {
3614 return SemaRef.SemaConvertVectorExpr(SrcExpr, DstTInfo,
3615 BuiltinLoc, RParenLoc);
3616 }
3617
3618 /// Build a new template argument pack expansion.
3619 ///
3620 /// By default, performs semantic analysis to build a new pack expansion
3621 /// for a template argument. Subclasses may override this routine to provide
3622 /// different behavior.
RebuildPackExpansion(TemplateArgumentLoc Pattern,SourceLocation EllipsisLoc,Optional<unsigned> NumExpansions)3623 TemplateArgumentLoc RebuildPackExpansion(TemplateArgumentLoc Pattern,
3624 SourceLocation EllipsisLoc,
3625 Optional<unsigned> NumExpansions) {
3626 switch (Pattern.getArgument().getKind()) {
3627 case TemplateArgument::Expression: {
3628 ExprResult Result
3629 = getSema().CheckPackExpansion(Pattern.getSourceExpression(),
3630 EllipsisLoc, NumExpansions);
3631 if (Result.isInvalid())
3632 return TemplateArgumentLoc();
3633
3634 return TemplateArgumentLoc(Result.get(), Result.get());
3635 }
3636
3637 case TemplateArgument::Template:
3638 return TemplateArgumentLoc(
3639 SemaRef.Context,
3640 TemplateArgument(Pattern.getArgument().getAsTemplate(),
3641 NumExpansions),
3642 Pattern.getTemplateQualifierLoc(), Pattern.getTemplateNameLoc(),
3643 EllipsisLoc);
3644
3645 case TemplateArgument::Null:
3646 case TemplateArgument::Integral:
3647 case TemplateArgument::Declaration:
3648 case TemplateArgument::Pack:
3649 case TemplateArgument::TemplateExpansion:
3650 case TemplateArgument::NullPtr:
3651 llvm_unreachable("Pack expansion pattern has no parameter packs");
3652
3653 case TemplateArgument::Type:
3654 if (TypeSourceInfo *Expansion
3655 = getSema().CheckPackExpansion(Pattern.getTypeSourceInfo(),
3656 EllipsisLoc,
3657 NumExpansions))
3658 return TemplateArgumentLoc(TemplateArgument(Expansion->getType()),
3659 Expansion);
3660 break;
3661 }
3662
3663 return TemplateArgumentLoc();
3664 }
3665
3666 /// Build a new expression pack expansion.
3667 ///
3668 /// By default, performs semantic analysis to build a new pack expansion
3669 /// for an expression. Subclasses may override this routine to provide
3670 /// different behavior.
RebuildPackExpansion(Expr * Pattern,SourceLocation EllipsisLoc,Optional<unsigned> NumExpansions)3671 ExprResult RebuildPackExpansion(Expr *Pattern, SourceLocation EllipsisLoc,
3672 Optional<unsigned> NumExpansions) {
3673 return getSema().CheckPackExpansion(Pattern, EllipsisLoc, NumExpansions);
3674 }
3675
3676 /// Build a new C++1z fold-expression.
3677 ///
3678 /// By default, performs semantic analysis in order to build a new fold
3679 /// expression.
RebuildCXXFoldExpr(UnresolvedLookupExpr * ULE,SourceLocation LParenLoc,Expr * LHS,BinaryOperatorKind Operator,SourceLocation EllipsisLoc,Expr * RHS,SourceLocation RParenLoc,Optional<unsigned> NumExpansions)3680 ExprResult RebuildCXXFoldExpr(UnresolvedLookupExpr *ULE,
3681 SourceLocation LParenLoc, Expr *LHS,
3682 BinaryOperatorKind Operator,
3683 SourceLocation EllipsisLoc, Expr *RHS,
3684 SourceLocation RParenLoc,
3685 Optional<unsigned> NumExpansions) {
3686 return getSema().BuildCXXFoldExpr(ULE, LParenLoc, LHS, Operator,
3687 EllipsisLoc, RHS, RParenLoc,
3688 NumExpansions);
3689 }
3690
3691 /// Build an empty C++1z fold-expression with the given operator.
3692 ///
3693 /// By default, produces the fallback value for the fold-expression, or
3694 /// produce an error if there is no fallback value.
RebuildEmptyCXXFoldExpr(SourceLocation EllipsisLoc,BinaryOperatorKind Operator)3695 ExprResult RebuildEmptyCXXFoldExpr(SourceLocation EllipsisLoc,
3696 BinaryOperatorKind Operator) {
3697 return getSema().BuildEmptyCXXFoldExpr(EllipsisLoc, Operator);
3698 }
3699
3700 /// Build a new atomic operation expression.
3701 ///
3702 /// By default, performs semantic analysis to build the new expression.
3703 /// Subclasses may override this routine to provide different behavior.
RebuildAtomicExpr(SourceLocation BuiltinLoc,MultiExprArg SubExprs,AtomicExpr::AtomicOp Op,SourceLocation RParenLoc)3704 ExprResult RebuildAtomicExpr(SourceLocation BuiltinLoc, MultiExprArg SubExprs,
3705 AtomicExpr::AtomicOp Op,
3706 SourceLocation RParenLoc) {
3707 // Use this for all of the locations, since we don't know the difference
3708 // between the call and the expr at this point.
3709 SourceRange Range{BuiltinLoc, RParenLoc};
3710 return getSema().BuildAtomicExpr(Range, Range, RParenLoc, SubExprs, Op,
3711 Sema::AtomicArgumentOrder::AST);
3712 }
3713
RebuildRecoveryExpr(SourceLocation BeginLoc,SourceLocation EndLoc,ArrayRef<Expr * > SubExprs,QualType Type)3714 ExprResult RebuildRecoveryExpr(SourceLocation BeginLoc, SourceLocation EndLoc,
3715 ArrayRef<Expr *> SubExprs, QualType Type) {
3716 return getSema().CreateRecoveryExpr(BeginLoc, EndLoc, SubExprs, Type);
3717 }
3718
3719 private:
3720 TypeLoc TransformTypeInObjectScope(TypeLoc TL,
3721 QualType ObjectType,
3722 NamedDecl *FirstQualifierInScope,
3723 CXXScopeSpec &SS);
3724
3725 TypeSourceInfo *TransformTypeInObjectScope(TypeSourceInfo *TSInfo,
3726 QualType ObjectType,
3727 NamedDecl *FirstQualifierInScope,
3728 CXXScopeSpec &SS);
3729
3730 TypeSourceInfo *TransformTSIInObjectScope(TypeLoc TL, QualType ObjectType,
3731 NamedDecl *FirstQualifierInScope,
3732 CXXScopeSpec &SS);
3733
3734 QualType TransformDependentNameType(TypeLocBuilder &TLB,
3735 DependentNameTypeLoc TL,
3736 bool DeducibleTSTContext);
3737 };
3738
3739 template <typename Derived>
TransformStmt(Stmt * S,StmtDiscardKind SDK)3740 StmtResult TreeTransform<Derived>::TransformStmt(Stmt *S, StmtDiscardKind SDK) {
3741 if (!S)
3742 return S;
3743
3744 switch (S->getStmtClass()) {
3745 case Stmt::NoStmtClass: break;
3746
3747 // Transform individual statement nodes
3748 // Pass SDK into statements that can produce a value
3749 #define STMT(Node, Parent) \
3750 case Stmt::Node##Class: return getDerived().Transform##Node(cast<Node>(S));
3751 #define VALUESTMT(Node, Parent) \
3752 case Stmt::Node##Class: \
3753 return getDerived().Transform##Node(cast<Node>(S), SDK);
3754 #define ABSTRACT_STMT(Node)
3755 #define EXPR(Node, Parent)
3756 #include "clang/AST/StmtNodes.inc"
3757
3758 // Transform expressions by calling TransformExpr.
3759 #define STMT(Node, Parent)
3760 #define ABSTRACT_STMT(Stmt)
3761 #define EXPR(Node, Parent) case Stmt::Node##Class:
3762 #include "clang/AST/StmtNodes.inc"
3763 {
3764 ExprResult E = getDerived().TransformExpr(cast<Expr>(S));
3765
3766 if (SDK == SDK_StmtExprResult)
3767 E = getSema().ActOnStmtExprResult(E);
3768 return getSema().ActOnExprStmt(E, SDK == SDK_Discarded);
3769 }
3770 }
3771
3772 return S;
3773 }
3774
3775 template<typename Derived>
TransformOMPClause(OMPClause * S)3776 OMPClause *TreeTransform<Derived>::TransformOMPClause(OMPClause *S) {
3777 if (!S)
3778 return S;
3779
3780 switch (S->getClauseKind()) {
3781 default: break;
3782 // Transform individual clause nodes
3783 #define GEN_CLANG_CLAUSE_CLASS
3784 #define CLAUSE_CLASS(Enum, Str, Class) \
3785 case Enum: \
3786 return getDerived().Transform##Class(cast<Class>(S));
3787 #include "llvm/Frontend/OpenMP/OMP.inc"
3788 }
3789
3790 return S;
3791 }
3792
3793
3794 template<typename Derived>
TransformExpr(Expr * E)3795 ExprResult TreeTransform<Derived>::TransformExpr(Expr *E) {
3796 if (!E)
3797 return E;
3798
3799 switch (E->getStmtClass()) {
3800 case Stmt::NoStmtClass: break;
3801 #define STMT(Node, Parent) case Stmt::Node##Class: break;
3802 #define ABSTRACT_STMT(Stmt)
3803 #define EXPR(Node, Parent) \
3804 case Stmt::Node##Class: return getDerived().Transform##Node(cast<Node>(E));
3805 #include "clang/AST/StmtNodes.inc"
3806 }
3807
3808 return E;
3809 }
3810
3811 template<typename Derived>
TransformInitializer(Expr * Init,bool NotCopyInit)3812 ExprResult TreeTransform<Derived>::TransformInitializer(Expr *Init,
3813 bool NotCopyInit) {
3814 // Initializers are instantiated like expressions, except that various outer
3815 // layers are stripped.
3816 if (!Init)
3817 return Init;
3818
3819 if (auto *FE = dyn_cast<FullExpr>(Init))
3820 Init = FE->getSubExpr();
3821
3822 if (auto *AIL = dyn_cast<ArrayInitLoopExpr>(Init))
3823 Init = AIL->getCommonExpr();
3824
3825 if (MaterializeTemporaryExpr *MTE = dyn_cast<MaterializeTemporaryExpr>(Init))
3826 Init = MTE->getSubExpr();
3827
3828 while (CXXBindTemporaryExpr *Binder = dyn_cast<CXXBindTemporaryExpr>(Init))
3829 Init = Binder->getSubExpr();
3830
3831 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Init))
3832 Init = ICE->getSubExprAsWritten();
3833
3834 if (CXXStdInitializerListExpr *ILE =
3835 dyn_cast<CXXStdInitializerListExpr>(Init))
3836 return TransformInitializer(ILE->getSubExpr(), NotCopyInit);
3837
3838 // If this is copy-initialization, we only need to reconstruct
3839 // InitListExprs. Other forms of copy-initialization will be a no-op if
3840 // the initializer is already the right type.
3841 CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init);
3842 if (!NotCopyInit && !(Construct && Construct->isListInitialization()))
3843 return getDerived().TransformExpr(Init);
3844
3845 // Revert value-initialization back to empty parens.
3846 if (CXXScalarValueInitExpr *VIE = dyn_cast<CXXScalarValueInitExpr>(Init)) {
3847 SourceRange Parens = VIE->getSourceRange();
3848 return getDerived().RebuildParenListExpr(Parens.getBegin(), None,
3849 Parens.getEnd());
3850 }
3851
3852 // FIXME: We shouldn't build ImplicitValueInitExprs for direct-initialization.
3853 if (isa<ImplicitValueInitExpr>(Init))
3854 return getDerived().RebuildParenListExpr(SourceLocation(), None,
3855 SourceLocation());
3856
3857 // Revert initialization by constructor back to a parenthesized or braced list
3858 // of expressions. Any other form of initializer can just be reused directly.
3859 if (!Construct || isa<CXXTemporaryObjectExpr>(Construct))
3860 return getDerived().TransformExpr(Init);
3861
3862 // If the initialization implicitly converted an initializer list to a
3863 // std::initializer_list object, unwrap the std::initializer_list too.
3864 if (Construct && Construct->isStdInitListInitialization())
3865 return TransformInitializer(Construct->getArg(0), NotCopyInit);
3866
3867 // Enter a list-init context if this was list initialization.
3868 EnterExpressionEvaluationContext Context(
3869 getSema(), EnterExpressionEvaluationContext::InitList,
3870 Construct->isListInitialization());
3871
3872 SmallVector<Expr*, 8> NewArgs;
3873 bool ArgChanged = false;
3874 if (getDerived().TransformExprs(Construct->getArgs(), Construct->getNumArgs(),
3875 /*IsCall*/true, NewArgs, &ArgChanged))
3876 return ExprError();
3877
3878 // If this was list initialization, revert to syntactic list form.
3879 if (Construct->isListInitialization())
3880 return getDerived().RebuildInitList(Construct->getBeginLoc(), NewArgs,
3881 Construct->getEndLoc());
3882
3883 // Build a ParenListExpr to represent anything else.
3884 SourceRange Parens = Construct->getParenOrBraceRange();
3885 if (Parens.isInvalid()) {
3886 // This was a variable declaration's initialization for which no initializer
3887 // was specified.
3888 assert(NewArgs.empty() &&
3889 "no parens or braces but have direct init with arguments?");
3890 return ExprEmpty();
3891 }
3892 return getDerived().RebuildParenListExpr(Parens.getBegin(), NewArgs,
3893 Parens.getEnd());
3894 }
3895
3896 template<typename Derived>
TransformExprs(Expr * const * Inputs,unsigned NumInputs,bool IsCall,SmallVectorImpl<Expr * > & Outputs,bool * ArgChanged)3897 bool TreeTransform<Derived>::TransformExprs(Expr *const *Inputs,
3898 unsigned NumInputs,
3899 bool IsCall,
3900 SmallVectorImpl<Expr *> &Outputs,
3901 bool *ArgChanged) {
3902 for (unsigned I = 0; I != NumInputs; ++I) {
3903 // If requested, drop call arguments that need to be dropped.
3904 if (IsCall && getDerived().DropCallArgument(Inputs[I])) {
3905 if (ArgChanged)
3906 *ArgChanged = true;
3907
3908 break;
3909 }
3910
3911 if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(Inputs[I])) {
3912 Expr *Pattern = Expansion->getPattern();
3913
3914 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
3915 getSema().collectUnexpandedParameterPacks(Pattern, Unexpanded);
3916 assert(!Unexpanded.empty() && "Pack expansion without parameter packs?");
3917
3918 // Determine whether the set of unexpanded parameter packs can and should
3919 // be expanded.
3920 bool Expand = true;
3921 bool RetainExpansion = false;
3922 Optional<unsigned> OrigNumExpansions = Expansion->getNumExpansions();
3923 Optional<unsigned> NumExpansions = OrigNumExpansions;
3924 if (getDerived().TryExpandParameterPacks(Expansion->getEllipsisLoc(),
3925 Pattern->getSourceRange(),
3926 Unexpanded,
3927 Expand, RetainExpansion,
3928 NumExpansions))
3929 return true;
3930
3931 if (!Expand) {
3932 // The transform has determined that we should perform a simple
3933 // transformation on the pack expansion, producing another pack
3934 // expansion.
3935 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1);
3936 ExprResult OutPattern = getDerived().TransformExpr(Pattern);
3937 if (OutPattern.isInvalid())
3938 return true;
3939
3940 ExprResult Out = getDerived().RebuildPackExpansion(OutPattern.get(),
3941 Expansion->getEllipsisLoc(),
3942 NumExpansions);
3943 if (Out.isInvalid())
3944 return true;
3945
3946 if (ArgChanged)
3947 *ArgChanged = true;
3948 Outputs.push_back(Out.get());
3949 continue;
3950 }
3951
3952 // Record right away that the argument was changed. This needs
3953 // to happen even if the array expands to nothing.
3954 if (ArgChanged) *ArgChanged = true;
3955
3956 // The transform has determined that we should perform an elementwise
3957 // expansion of the pattern. Do so.
3958 for (unsigned I = 0; I != *NumExpansions; ++I) {
3959 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), I);
3960 ExprResult Out = getDerived().TransformExpr(Pattern);
3961 if (Out.isInvalid())
3962 return true;
3963
3964 if (Out.get()->containsUnexpandedParameterPack()) {
3965 Out = getDerived().RebuildPackExpansion(
3966 Out.get(), Expansion->getEllipsisLoc(), OrigNumExpansions);
3967 if (Out.isInvalid())
3968 return true;
3969 }
3970
3971 Outputs.push_back(Out.get());
3972 }
3973
3974 // If we're supposed to retain a pack expansion, do so by temporarily
3975 // forgetting the partially-substituted parameter pack.
3976 if (RetainExpansion) {
3977 ForgetPartiallySubstitutedPackRAII Forget(getDerived());
3978
3979 ExprResult Out = getDerived().TransformExpr(Pattern);
3980 if (Out.isInvalid())
3981 return true;
3982
3983 Out = getDerived().RebuildPackExpansion(
3984 Out.get(), Expansion->getEllipsisLoc(), OrigNumExpansions);
3985 if (Out.isInvalid())
3986 return true;
3987
3988 Outputs.push_back(Out.get());
3989 }
3990
3991 continue;
3992 }
3993
3994 ExprResult Result =
3995 IsCall ? getDerived().TransformInitializer(Inputs[I], /*DirectInit*/false)
3996 : getDerived().TransformExpr(Inputs[I]);
3997 if (Result.isInvalid())
3998 return true;
3999
4000 if (Result.get() != Inputs[I] && ArgChanged)
4001 *ArgChanged = true;
4002
4003 Outputs.push_back(Result.get());
4004 }
4005
4006 return false;
4007 }
4008
4009 template <typename Derived>
TransformCondition(SourceLocation Loc,VarDecl * Var,Expr * Expr,Sema::ConditionKind Kind)4010 Sema::ConditionResult TreeTransform<Derived>::TransformCondition(
4011 SourceLocation Loc, VarDecl *Var, Expr *Expr, Sema::ConditionKind Kind) {
4012 if (Var) {
4013 VarDecl *ConditionVar = cast_or_null<VarDecl>(
4014 getDerived().TransformDefinition(Var->getLocation(), Var));
4015
4016 if (!ConditionVar)
4017 return Sema::ConditionError();
4018
4019 return getSema().ActOnConditionVariable(ConditionVar, Loc, Kind);
4020 }
4021
4022 if (Expr) {
4023 ExprResult CondExpr = getDerived().TransformExpr(Expr);
4024
4025 if (CondExpr.isInvalid())
4026 return Sema::ConditionError();
4027
4028 return getSema().ActOnCondition(nullptr, Loc, CondExpr.get(), Kind);
4029 }
4030
4031 return Sema::ConditionResult();
4032 }
4033
4034 template <typename Derived>
TransformNestedNameSpecifierLoc(NestedNameSpecifierLoc NNS,QualType ObjectType,NamedDecl * FirstQualifierInScope)4035 NestedNameSpecifierLoc TreeTransform<Derived>::TransformNestedNameSpecifierLoc(
4036 NestedNameSpecifierLoc NNS, QualType ObjectType,
4037 NamedDecl *FirstQualifierInScope) {
4038 SmallVector<NestedNameSpecifierLoc, 4> Qualifiers;
4039 for (NestedNameSpecifierLoc Qualifier = NNS; Qualifier;
4040 Qualifier = Qualifier.getPrefix())
4041 Qualifiers.push_back(Qualifier);
4042
4043 CXXScopeSpec SS;
4044 while (!Qualifiers.empty()) {
4045 NestedNameSpecifierLoc Q = Qualifiers.pop_back_val();
4046 NestedNameSpecifier *QNNS = Q.getNestedNameSpecifier();
4047
4048 switch (QNNS->getKind()) {
4049 case NestedNameSpecifier::Identifier: {
4050 Sema::NestedNameSpecInfo IdInfo(QNNS->getAsIdentifier(),
4051 Q.getLocalBeginLoc(), Q.getLocalEndLoc(),
4052 ObjectType);
4053 if (SemaRef.BuildCXXNestedNameSpecifier(/*Scope=*/nullptr, IdInfo, false,
4054 SS, FirstQualifierInScope, false))
4055 return NestedNameSpecifierLoc();
4056 break;
4057 }
4058
4059 case NestedNameSpecifier::Namespace: {
4060 NamespaceDecl *NS =
4061 cast_or_null<NamespaceDecl>(getDerived().TransformDecl(
4062 Q.getLocalBeginLoc(), QNNS->getAsNamespace()));
4063 SS.Extend(SemaRef.Context, NS, Q.getLocalBeginLoc(), Q.getLocalEndLoc());
4064 break;
4065 }
4066
4067 case NestedNameSpecifier::NamespaceAlias: {
4068 NamespaceAliasDecl *Alias =
4069 cast_or_null<NamespaceAliasDecl>(getDerived().TransformDecl(
4070 Q.getLocalBeginLoc(), QNNS->getAsNamespaceAlias()));
4071 SS.Extend(SemaRef.Context, Alias, Q.getLocalBeginLoc(),
4072 Q.getLocalEndLoc());
4073 break;
4074 }
4075
4076 case NestedNameSpecifier::Global:
4077 // There is no meaningful transformation that one could perform on the
4078 // global scope.
4079 SS.MakeGlobal(SemaRef.Context, Q.getBeginLoc());
4080 break;
4081
4082 case NestedNameSpecifier::Super: {
4083 CXXRecordDecl *RD =
4084 cast_or_null<CXXRecordDecl>(getDerived().TransformDecl(
4085 SourceLocation(), QNNS->getAsRecordDecl()));
4086 SS.MakeSuper(SemaRef.Context, RD, Q.getBeginLoc(), Q.getEndLoc());
4087 break;
4088 }
4089
4090 case NestedNameSpecifier::TypeSpecWithTemplate:
4091 case NestedNameSpecifier::TypeSpec: {
4092 TypeLoc TL = TransformTypeInObjectScope(Q.getTypeLoc(), ObjectType,
4093 FirstQualifierInScope, SS);
4094
4095 if (!TL)
4096 return NestedNameSpecifierLoc();
4097
4098 if (TL.getType()->isDependentType() || TL.getType()->isRecordType() ||
4099 (SemaRef.getLangOpts().CPlusPlus11 &&
4100 TL.getType()->isEnumeralType())) {
4101 assert(!TL.getType().hasLocalQualifiers() &&
4102 "Can't get cv-qualifiers here");
4103 if (TL.getType()->isEnumeralType())
4104 SemaRef.Diag(TL.getBeginLoc(),
4105 diag::warn_cxx98_compat_enum_nested_name_spec);
4106 SS.Extend(SemaRef.Context, /*FIXME:*/ SourceLocation(), TL,
4107 Q.getLocalEndLoc());
4108 break;
4109 }
4110 // If the nested-name-specifier is an invalid type def, don't emit an
4111 // error because a previous error should have already been emitted.
4112 TypedefTypeLoc TTL = TL.getAs<TypedefTypeLoc>();
4113 if (!TTL || !TTL.getTypedefNameDecl()->isInvalidDecl()) {
4114 SemaRef.Diag(TL.getBeginLoc(), diag::err_nested_name_spec_non_tag)
4115 << TL.getType() << SS.getRange();
4116 }
4117 return NestedNameSpecifierLoc();
4118 }
4119 }
4120
4121 // The qualifier-in-scope and object type only apply to the leftmost entity.
4122 FirstQualifierInScope = nullptr;
4123 ObjectType = QualType();
4124 }
4125
4126 // Don't rebuild the nested-name-specifier if we don't have to.
4127 if (SS.getScopeRep() == NNS.getNestedNameSpecifier() &&
4128 !getDerived().AlwaysRebuild())
4129 return NNS;
4130
4131 // If we can re-use the source-location data from the original
4132 // nested-name-specifier, do so.
4133 if (SS.location_size() == NNS.getDataLength() &&
4134 memcmp(SS.location_data(), NNS.getOpaqueData(), SS.location_size()) == 0)
4135 return NestedNameSpecifierLoc(SS.getScopeRep(), NNS.getOpaqueData());
4136
4137 // Allocate new nested-name-specifier location information.
4138 return SS.getWithLocInContext(SemaRef.Context);
4139 }
4140
4141 template<typename Derived>
4142 DeclarationNameInfo
4143 TreeTransform<Derived>
TransformDeclarationNameInfo(const DeclarationNameInfo & NameInfo)4144 ::TransformDeclarationNameInfo(const DeclarationNameInfo &NameInfo) {
4145 DeclarationName Name = NameInfo.getName();
4146 if (!Name)
4147 return DeclarationNameInfo();
4148
4149 switch (Name.getNameKind()) {
4150 case DeclarationName::Identifier:
4151 case DeclarationName::ObjCZeroArgSelector:
4152 case DeclarationName::ObjCOneArgSelector:
4153 case DeclarationName::ObjCMultiArgSelector:
4154 case DeclarationName::CXXOperatorName:
4155 case DeclarationName::CXXLiteralOperatorName:
4156 case DeclarationName::CXXUsingDirective:
4157 return NameInfo;
4158
4159 case DeclarationName::CXXDeductionGuideName: {
4160 TemplateDecl *OldTemplate = Name.getCXXDeductionGuideTemplate();
4161 TemplateDecl *NewTemplate = cast_or_null<TemplateDecl>(
4162 getDerived().TransformDecl(NameInfo.getLoc(), OldTemplate));
4163 if (!NewTemplate)
4164 return DeclarationNameInfo();
4165
4166 DeclarationNameInfo NewNameInfo(NameInfo);
4167 NewNameInfo.setName(
4168 SemaRef.Context.DeclarationNames.getCXXDeductionGuideName(NewTemplate));
4169 return NewNameInfo;
4170 }
4171
4172 case DeclarationName::CXXConstructorName:
4173 case DeclarationName::CXXDestructorName:
4174 case DeclarationName::CXXConversionFunctionName: {
4175 TypeSourceInfo *NewTInfo;
4176 CanQualType NewCanTy;
4177 if (TypeSourceInfo *OldTInfo = NameInfo.getNamedTypeInfo()) {
4178 NewTInfo = getDerived().TransformType(OldTInfo);
4179 if (!NewTInfo)
4180 return DeclarationNameInfo();
4181 NewCanTy = SemaRef.Context.getCanonicalType(NewTInfo->getType());
4182 }
4183 else {
4184 NewTInfo = nullptr;
4185 TemporaryBase Rebase(*this, NameInfo.getLoc(), Name);
4186 QualType NewT = getDerived().TransformType(Name.getCXXNameType());
4187 if (NewT.isNull())
4188 return DeclarationNameInfo();
4189 NewCanTy = SemaRef.Context.getCanonicalType(NewT);
4190 }
4191
4192 DeclarationName NewName
4193 = SemaRef.Context.DeclarationNames.getCXXSpecialName(Name.getNameKind(),
4194 NewCanTy);
4195 DeclarationNameInfo NewNameInfo(NameInfo);
4196 NewNameInfo.setName(NewName);
4197 NewNameInfo.setNamedTypeInfo(NewTInfo);
4198 return NewNameInfo;
4199 }
4200 }
4201
4202 llvm_unreachable("Unknown name kind.");
4203 }
4204
4205 template<typename Derived>
4206 TemplateName
TransformTemplateName(CXXScopeSpec & SS,TemplateName Name,SourceLocation NameLoc,QualType ObjectType,NamedDecl * FirstQualifierInScope,bool AllowInjectedClassName)4207 TreeTransform<Derived>::TransformTemplateName(CXXScopeSpec &SS,
4208 TemplateName Name,
4209 SourceLocation NameLoc,
4210 QualType ObjectType,
4211 NamedDecl *FirstQualifierInScope,
4212 bool AllowInjectedClassName) {
4213 if (QualifiedTemplateName *QTN = Name.getAsQualifiedTemplateName()) {
4214 TemplateDecl *Template = QTN->getTemplateDecl();
4215 assert(Template && "qualified template name must refer to a template");
4216
4217 TemplateDecl *TransTemplate
4218 = cast_or_null<TemplateDecl>(getDerived().TransformDecl(NameLoc,
4219 Template));
4220 if (!TransTemplate)
4221 return TemplateName();
4222
4223 if (!getDerived().AlwaysRebuild() &&
4224 SS.getScopeRep() == QTN->getQualifier() &&
4225 TransTemplate == Template)
4226 return Name;
4227
4228 return getDerived().RebuildTemplateName(SS, QTN->hasTemplateKeyword(),
4229 TransTemplate);
4230 }
4231
4232 if (DependentTemplateName *DTN = Name.getAsDependentTemplateName()) {
4233 if (SS.getScopeRep()) {
4234 // These apply to the scope specifier, not the template.
4235 ObjectType = QualType();
4236 FirstQualifierInScope = nullptr;
4237 }
4238
4239 if (!getDerived().AlwaysRebuild() &&
4240 SS.getScopeRep() == DTN->getQualifier() &&
4241 ObjectType.isNull())
4242 return Name;
4243
4244 // FIXME: Preserve the location of the "template" keyword.
4245 SourceLocation TemplateKWLoc = NameLoc;
4246
4247 if (DTN->isIdentifier()) {
4248 return getDerived().RebuildTemplateName(SS,
4249 TemplateKWLoc,
4250 *DTN->getIdentifier(),
4251 NameLoc,
4252 ObjectType,
4253 FirstQualifierInScope,
4254 AllowInjectedClassName);
4255 }
4256
4257 return getDerived().RebuildTemplateName(SS, TemplateKWLoc,
4258 DTN->getOperator(), NameLoc,
4259 ObjectType, AllowInjectedClassName);
4260 }
4261
4262 if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
4263 TemplateDecl *TransTemplate
4264 = cast_or_null<TemplateDecl>(getDerived().TransformDecl(NameLoc,
4265 Template));
4266 if (!TransTemplate)
4267 return TemplateName();
4268
4269 if (!getDerived().AlwaysRebuild() &&
4270 TransTemplate == Template)
4271 return Name;
4272
4273 return TemplateName(TransTemplate);
4274 }
4275
4276 if (SubstTemplateTemplateParmPackStorage *SubstPack
4277 = Name.getAsSubstTemplateTemplateParmPack()) {
4278 TemplateTemplateParmDecl *TransParam
4279 = cast_or_null<TemplateTemplateParmDecl>(
4280 getDerived().TransformDecl(NameLoc, SubstPack->getParameterPack()));
4281 if (!TransParam)
4282 return TemplateName();
4283
4284 if (!getDerived().AlwaysRebuild() &&
4285 TransParam == SubstPack->getParameterPack())
4286 return Name;
4287
4288 return getDerived().RebuildTemplateName(TransParam,
4289 SubstPack->getArgumentPack());
4290 }
4291
4292 // These should be getting filtered out before they reach the AST.
4293 llvm_unreachable("overloaded function decl survived to here");
4294 }
4295
4296 template<typename Derived>
InventTemplateArgumentLoc(const TemplateArgument & Arg,TemplateArgumentLoc & Output)4297 void TreeTransform<Derived>::InventTemplateArgumentLoc(
4298 const TemplateArgument &Arg,
4299 TemplateArgumentLoc &Output) {
4300 Output = getSema().getTrivialTemplateArgumentLoc(
4301 Arg, QualType(), getDerived().getBaseLocation());
4302 }
4303
4304 template<typename Derived>
TransformTemplateArgument(const TemplateArgumentLoc & Input,TemplateArgumentLoc & Output,bool Uneval)4305 bool TreeTransform<Derived>::TransformTemplateArgument(
4306 const TemplateArgumentLoc &Input,
4307 TemplateArgumentLoc &Output, bool Uneval) {
4308 const TemplateArgument &Arg = Input.getArgument();
4309 switch (Arg.getKind()) {
4310 case TemplateArgument::Null:
4311 case TemplateArgument::Pack:
4312 llvm_unreachable("Unexpected TemplateArgument");
4313
4314 case TemplateArgument::Integral:
4315 case TemplateArgument::NullPtr:
4316 case TemplateArgument::Declaration: {
4317 // Transform a resolved template argument straight to a resolved template
4318 // argument. We get here when substituting into an already-substituted
4319 // template type argument during concept satisfaction checking.
4320 QualType T = Arg.getNonTypeTemplateArgumentType();
4321 QualType NewT = getDerived().TransformType(T);
4322 if (NewT.isNull())
4323 return true;
4324
4325 ValueDecl *D = Arg.getKind() == TemplateArgument::Declaration
4326 ? Arg.getAsDecl()
4327 : nullptr;
4328 ValueDecl *NewD = D ? cast_or_null<ValueDecl>(getDerived().TransformDecl(
4329 getDerived().getBaseLocation(), D))
4330 : nullptr;
4331 if (D && !NewD)
4332 return true;
4333
4334 if (NewT == T && D == NewD)
4335 Output = Input;
4336 else if (Arg.getKind() == TemplateArgument::Integral)
4337 Output = TemplateArgumentLoc(
4338 TemplateArgument(getSema().Context, Arg.getAsIntegral(), NewT),
4339 TemplateArgumentLocInfo());
4340 else if (Arg.getKind() == TemplateArgument::NullPtr)
4341 Output = TemplateArgumentLoc(TemplateArgument(NewT, /*IsNullPtr=*/true),
4342 TemplateArgumentLocInfo());
4343 else
4344 Output = TemplateArgumentLoc(TemplateArgument(NewD, NewT),
4345 TemplateArgumentLocInfo());
4346
4347 return false;
4348 }
4349
4350 case TemplateArgument::Type: {
4351 TypeSourceInfo *DI = Input.getTypeSourceInfo();
4352 if (!DI)
4353 DI = InventTypeSourceInfo(Input.getArgument().getAsType());
4354
4355 DI = getDerived().TransformType(DI);
4356 if (!DI) return true;
4357
4358 Output = TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
4359 return false;
4360 }
4361
4362 case TemplateArgument::Template: {
4363 NestedNameSpecifierLoc QualifierLoc = Input.getTemplateQualifierLoc();
4364 if (QualifierLoc) {
4365 QualifierLoc = getDerived().TransformNestedNameSpecifierLoc(QualifierLoc);
4366 if (!QualifierLoc)
4367 return true;
4368 }
4369
4370 CXXScopeSpec SS;
4371 SS.Adopt(QualifierLoc);
4372 TemplateName Template
4373 = getDerived().TransformTemplateName(SS, Arg.getAsTemplate(),
4374 Input.getTemplateNameLoc());
4375 if (Template.isNull())
4376 return true;
4377
4378 Output = TemplateArgumentLoc(SemaRef.Context, TemplateArgument(Template),
4379 QualifierLoc, Input.getTemplateNameLoc());
4380 return false;
4381 }
4382
4383 case TemplateArgument::TemplateExpansion:
4384 llvm_unreachable("Caller should expand pack expansions");
4385
4386 case TemplateArgument::Expression: {
4387 // Template argument expressions are constant expressions.
4388 EnterExpressionEvaluationContext Unevaluated(
4389 getSema(),
4390 Uneval ? Sema::ExpressionEvaluationContext::Unevaluated
4391 : Sema::ExpressionEvaluationContext::ConstantEvaluated,
4392 /*LambdaContextDecl=*/nullptr, /*ExprContext=*/
4393 Sema::ExpressionEvaluationContextRecord::EK_TemplateArgument);
4394
4395 Expr *InputExpr = Input.getSourceExpression();
4396 if (!InputExpr) InputExpr = Input.getArgument().getAsExpr();
4397
4398 ExprResult E = getDerived().TransformExpr(InputExpr);
4399 E = SemaRef.ActOnConstantExpression(E);
4400 if (E.isInvalid()) return true;
4401 Output = TemplateArgumentLoc(TemplateArgument(E.get()), E.get());
4402 return false;
4403 }
4404 }
4405
4406 // Work around bogus GCC warning
4407 return true;
4408 }
4409
4410 /// Iterator adaptor that invents template argument location information
4411 /// for each of the template arguments in its underlying iterator.
4412 template<typename Derived, typename InputIterator>
4413 class TemplateArgumentLocInventIterator {
4414 TreeTransform<Derived> &Self;
4415 InputIterator Iter;
4416
4417 public:
4418 typedef TemplateArgumentLoc value_type;
4419 typedef TemplateArgumentLoc reference;
4420 typedef typename std::iterator_traits<InputIterator>::difference_type
4421 difference_type;
4422 typedef std::input_iterator_tag iterator_category;
4423
4424 class pointer {
4425 TemplateArgumentLoc Arg;
4426
4427 public:
pointer(TemplateArgumentLoc Arg)4428 explicit pointer(TemplateArgumentLoc Arg) : Arg(Arg) { }
4429
4430 const TemplateArgumentLoc *operator->() const { return &Arg; }
4431 };
4432
TemplateArgumentLocInventIterator()4433 TemplateArgumentLocInventIterator() { }
4434
TemplateArgumentLocInventIterator(TreeTransform<Derived> & Self,InputIterator Iter)4435 explicit TemplateArgumentLocInventIterator(TreeTransform<Derived> &Self,
4436 InputIterator Iter)
4437 : Self(Self), Iter(Iter) { }
4438
4439 TemplateArgumentLocInventIterator &operator++() {
4440 ++Iter;
4441 return *this;
4442 }
4443
4444 TemplateArgumentLocInventIterator operator++(int) {
4445 TemplateArgumentLocInventIterator Old(*this);
4446 ++(*this);
4447 return Old;
4448 }
4449
4450 reference operator*() const {
4451 TemplateArgumentLoc Result;
4452 Self.InventTemplateArgumentLoc(*Iter, Result);
4453 return Result;
4454 }
4455
4456 pointer operator->() const { return pointer(**this); }
4457
4458 friend bool operator==(const TemplateArgumentLocInventIterator &X,
4459 const TemplateArgumentLocInventIterator &Y) {
4460 return X.Iter == Y.Iter;
4461 }
4462
4463 friend bool operator!=(const TemplateArgumentLocInventIterator &X,
4464 const TemplateArgumentLocInventIterator &Y) {
4465 return X.Iter != Y.Iter;
4466 }
4467 };
4468
4469 template<typename Derived>
4470 template<typename InputIterator>
TransformTemplateArguments(InputIterator First,InputIterator Last,TemplateArgumentListInfo & Outputs,bool Uneval)4471 bool TreeTransform<Derived>::TransformTemplateArguments(
4472 InputIterator First, InputIterator Last, TemplateArgumentListInfo &Outputs,
4473 bool Uneval) {
4474 for (; First != Last; ++First) {
4475 TemplateArgumentLoc Out;
4476 TemplateArgumentLoc In = *First;
4477
4478 if (In.getArgument().getKind() == TemplateArgument::Pack) {
4479 // Unpack argument packs, which we translate them into separate
4480 // arguments.
4481 // FIXME: We could do much better if we could guarantee that the
4482 // TemplateArgumentLocInfo for the pack expansion would be usable for
4483 // all of the template arguments in the argument pack.
4484 typedef TemplateArgumentLocInventIterator<Derived,
4485 TemplateArgument::pack_iterator>
4486 PackLocIterator;
4487 if (TransformTemplateArguments(PackLocIterator(*this,
4488 In.getArgument().pack_begin()),
4489 PackLocIterator(*this,
4490 In.getArgument().pack_end()),
4491 Outputs, Uneval))
4492 return true;
4493
4494 continue;
4495 }
4496
4497 if (In.getArgument().isPackExpansion()) {
4498 // We have a pack expansion, for which we will be substituting into
4499 // the pattern.
4500 SourceLocation Ellipsis;
4501 Optional<unsigned> OrigNumExpansions;
4502 TemplateArgumentLoc Pattern
4503 = getSema().getTemplateArgumentPackExpansionPattern(
4504 In, Ellipsis, OrigNumExpansions);
4505
4506 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
4507 getSema().collectUnexpandedParameterPacks(Pattern, Unexpanded);
4508 assert(!Unexpanded.empty() && "Pack expansion without parameter packs?");
4509
4510 // Determine whether the set of unexpanded parameter packs can and should
4511 // be expanded.
4512 bool Expand = true;
4513 bool RetainExpansion = false;
4514 Optional<unsigned> NumExpansions = OrigNumExpansions;
4515 if (getDerived().TryExpandParameterPacks(Ellipsis,
4516 Pattern.getSourceRange(),
4517 Unexpanded,
4518 Expand,
4519 RetainExpansion,
4520 NumExpansions))
4521 return true;
4522
4523 if (!Expand) {
4524 // The transform has determined that we should perform a simple
4525 // transformation on the pack expansion, producing another pack
4526 // expansion.
4527 TemplateArgumentLoc OutPattern;
4528 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1);
4529 if (getDerived().TransformTemplateArgument(Pattern, OutPattern, Uneval))
4530 return true;
4531
4532 Out = getDerived().RebuildPackExpansion(OutPattern, Ellipsis,
4533 NumExpansions);
4534 if (Out.getArgument().isNull())
4535 return true;
4536
4537 Outputs.addArgument(Out);
4538 continue;
4539 }
4540
4541 // The transform has determined that we should perform an elementwise
4542 // expansion of the pattern. Do so.
4543 for (unsigned I = 0; I != *NumExpansions; ++I) {
4544 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), I);
4545
4546 if (getDerived().TransformTemplateArgument(Pattern, Out, Uneval))
4547 return true;
4548
4549 if (Out.getArgument().containsUnexpandedParameterPack()) {
4550 Out = getDerived().RebuildPackExpansion(Out, Ellipsis,
4551 OrigNumExpansions);
4552 if (Out.getArgument().isNull())
4553 return true;
4554 }
4555
4556 Outputs.addArgument(Out);
4557 }
4558
4559 // If we're supposed to retain a pack expansion, do so by temporarily
4560 // forgetting the partially-substituted parameter pack.
4561 if (RetainExpansion) {
4562 ForgetPartiallySubstitutedPackRAII Forget(getDerived());
4563
4564 if (getDerived().TransformTemplateArgument(Pattern, Out, Uneval))
4565 return true;
4566
4567 Out = getDerived().RebuildPackExpansion(Out, Ellipsis,
4568 OrigNumExpansions);
4569 if (Out.getArgument().isNull())
4570 return true;
4571
4572 Outputs.addArgument(Out);
4573 }
4574
4575 continue;
4576 }
4577
4578 // The simple case:
4579 if (getDerived().TransformTemplateArgument(In, Out, Uneval))
4580 return true;
4581
4582 Outputs.addArgument(Out);
4583 }
4584
4585 return false;
4586
4587 }
4588
4589 //===----------------------------------------------------------------------===//
4590 // Type transformation
4591 //===----------------------------------------------------------------------===//
4592
4593 template<typename Derived>
TransformType(QualType T)4594 QualType TreeTransform<Derived>::TransformType(QualType T) {
4595 if (getDerived().AlreadyTransformed(T))
4596 return T;
4597
4598 // Temporary workaround. All of these transformations should
4599 // eventually turn into transformations on TypeLocs.
4600 TypeSourceInfo *DI = getSema().Context.getTrivialTypeSourceInfo(T,
4601 getDerived().getBaseLocation());
4602
4603 TypeSourceInfo *NewDI = getDerived().TransformType(DI);
4604
4605 if (!NewDI)
4606 return QualType();
4607
4608 return NewDI->getType();
4609 }
4610
4611 template<typename Derived>
TransformType(TypeSourceInfo * DI)4612 TypeSourceInfo *TreeTransform<Derived>::TransformType(TypeSourceInfo *DI) {
4613 // Refine the base location to the type's location.
4614 TemporaryBase Rebase(*this, DI->getTypeLoc().getBeginLoc(),
4615 getDerived().getBaseEntity());
4616 if (getDerived().AlreadyTransformed(DI->getType()))
4617 return DI;
4618
4619 TypeLocBuilder TLB;
4620
4621 TypeLoc TL = DI->getTypeLoc();
4622 TLB.reserve(TL.getFullDataSize());
4623
4624 QualType Result = getDerived().TransformType(TLB, TL);
4625 if (Result.isNull())
4626 return nullptr;
4627
4628 return TLB.getTypeSourceInfo(SemaRef.Context, Result);
4629 }
4630
4631 template<typename Derived>
4632 QualType
TransformType(TypeLocBuilder & TLB,TypeLoc T)4633 TreeTransform<Derived>::TransformType(TypeLocBuilder &TLB, TypeLoc T) {
4634 switch (T.getTypeLocClass()) {
4635 #define ABSTRACT_TYPELOC(CLASS, PARENT)
4636 #define TYPELOC(CLASS, PARENT) \
4637 case TypeLoc::CLASS: \
4638 return getDerived().Transform##CLASS##Type(TLB, \
4639 T.castAs<CLASS##TypeLoc>());
4640 #include "clang/AST/TypeLocNodes.def"
4641 }
4642
4643 llvm_unreachable("unhandled type loc!");
4644 }
4645
4646 template<typename Derived>
TransformTypeWithDeducedTST(QualType T)4647 QualType TreeTransform<Derived>::TransformTypeWithDeducedTST(QualType T) {
4648 if (!isa<DependentNameType>(T))
4649 return TransformType(T);
4650
4651 if (getDerived().AlreadyTransformed(T))
4652 return T;
4653 TypeSourceInfo *DI = getSema().Context.getTrivialTypeSourceInfo(T,
4654 getDerived().getBaseLocation());
4655 TypeSourceInfo *NewDI = getDerived().TransformTypeWithDeducedTST(DI);
4656 return NewDI ? NewDI->getType() : QualType();
4657 }
4658
4659 template<typename Derived>
4660 TypeSourceInfo *
TransformTypeWithDeducedTST(TypeSourceInfo * DI)4661 TreeTransform<Derived>::TransformTypeWithDeducedTST(TypeSourceInfo *DI) {
4662 if (!isa<DependentNameType>(DI->getType()))
4663 return TransformType(DI);
4664
4665 // Refine the base location to the type's location.
4666 TemporaryBase Rebase(*this, DI->getTypeLoc().getBeginLoc(),
4667 getDerived().getBaseEntity());
4668 if (getDerived().AlreadyTransformed(DI->getType()))
4669 return DI;
4670
4671 TypeLocBuilder TLB;
4672
4673 TypeLoc TL = DI->getTypeLoc();
4674 TLB.reserve(TL.getFullDataSize());
4675
4676 auto QTL = TL.getAs<QualifiedTypeLoc>();
4677 if (QTL)
4678 TL = QTL.getUnqualifiedLoc();
4679
4680 auto DNTL = TL.castAs<DependentNameTypeLoc>();
4681
4682 QualType Result = getDerived().TransformDependentNameType(
4683 TLB, DNTL, /*DeducedTSTContext*/true);
4684 if (Result.isNull())
4685 return nullptr;
4686
4687 if (QTL) {
4688 Result = getDerived().RebuildQualifiedType(Result, QTL);
4689 if (Result.isNull())
4690 return nullptr;
4691 TLB.TypeWasModifiedSafely(Result);
4692 }
4693
4694 return TLB.getTypeSourceInfo(SemaRef.Context, Result);
4695 }
4696
4697 template<typename Derived>
4698 QualType
TransformQualifiedType(TypeLocBuilder & TLB,QualifiedTypeLoc T)4699 TreeTransform<Derived>::TransformQualifiedType(TypeLocBuilder &TLB,
4700 QualifiedTypeLoc T) {
4701 QualType Result = getDerived().TransformType(TLB, T.getUnqualifiedLoc());
4702 if (Result.isNull())
4703 return QualType();
4704
4705 Result = getDerived().RebuildQualifiedType(Result, T);
4706
4707 if (Result.isNull())
4708 return QualType();
4709
4710 // RebuildQualifiedType might have updated the type, but not in a way
4711 // that invalidates the TypeLoc. (There's no location information for
4712 // qualifiers.)
4713 TLB.TypeWasModifiedSafely(Result);
4714
4715 return Result;
4716 }
4717
4718 template <typename Derived>
RebuildQualifiedType(QualType T,QualifiedTypeLoc TL)4719 QualType TreeTransform<Derived>::RebuildQualifiedType(QualType T,
4720 QualifiedTypeLoc TL) {
4721
4722 SourceLocation Loc = TL.getBeginLoc();
4723 Qualifiers Quals = TL.getType().getLocalQualifiers();
4724
4725 if (((T.getAddressSpace() != LangAS::Default &&
4726 Quals.getAddressSpace() != LangAS::Default)) &&
4727 T.getAddressSpace() != Quals.getAddressSpace()) {
4728 SemaRef.Diag(Loc, diag::err_address_space_mismatch_templ_inst)
4729 << TL.getType() << T;
4730 return QualType();
4731 }
4732
4733 // C++ [dcl.fct]p7:
4734 // [When] adding cv-qualifications on top of the function type [...] the
4735 // cv-qualifiers are ignored.
4736 if (T->isFunctionType()) {
4737 T = SemaRef.getASTContext().getAddrSpaceQualType(T,
4738 Quals.getAddressSpace());
4739 return T;
4740 }
4741
4742 // C++ [dcl.ref]p1:
4743 // when the cv-qualifiers are introduced through the use of a typedef-name
4744 // or decltype-specifier [...] the cv-qualifiers are ignored.
4745 // Note that [dcl.ref]p1 lists all cases in which cv-qualifiers can be
4746 // applied to a reference type.
4747 if (T->isReferenceType()) {
4748 // The only qualifier that applies to a reference type is restrict.
4749 if (!Quals.hasRestrict())
4750 return T;
4751 Quals = Qualifiers::fromCVRMask(Qualifiers::Restrict);
4752 }
4753
4754 // Suppress Objective-C lifetime qualifiers if they don't make sense for the
4755 // resulting type.
4756 if (Quals.hasObjCLifetime()) {
4757 if (!T->isObjCLifetimeType() && !T->isDependentType())
4758 Quals.removeObjCLifetime();
4759 else if (T.getObjCLifetime()) {
4760 // Objective-C ARC:
4761 // A lifetime qualifier applied to a substituted template parameter
4762 // overrides the lifetime qualifier from the template argument.
4763 const AutoType *AutoTy;
4764 if (const SubstTemplateTypeParmType *SubstTypeParam
4765 = dyn_cast<SubstTemplateTypeParmType>(T)) {
4766 QualType Replacement = SubstTypeParam->getReplacementType();
4767 Qualifiers Qs = Replacement.getQualifiers();
4768 Qs.removeObjCLifetime();
4769 Replacement = SemaRef.Context.getQualifiedType(
4770 Replacement.getUnqualifiedType(), Qs);
4771 T = SemaRef.Context.getSubstTemplateTypeParmType(
4772 SubstTypeParam->getReplacedParameter(), Replacement);
4773 } else if ((AutoTy = dyn_cast<AutoType>(T)) && AutoTy->isDeduced()) {
4774 // 'auto' types behave the same way as template parameters.
4775 QualType Deduced = AutoTy->getDeducedType();
4776 Qualifiers Qs = Deduced.getQualifiers();
4777 Qs.removeObjCLifetime();
4778 Deduced =
4779 SemaRef.Context.getQualifiedType(Deduced.getUnqualifiedType(), Qs);
4780 T = SemaRef.Context.getAutoType(Deduced, AutoTy->getKeyword(),
4781 AutoTy->isDependentType(),
4782 /*isPack=*/false,
4783 AutoTy->getTypeConstraintConcept(),
4784 AutoTy->getTypeConstraintArguments());
4785 } else {
4786 // Otherwise, complain about the addition of a qualifier to an
4787 // already-qualified type.
4788 // FIXME: Why is this check not in Sema::BuildQualifiedType?
4789 SemaRef.Diag(Loc, diag::err_attr_objc_ownership_redundant) << T;
4790 Quals.removeObjCLifetime();
4791 }
4792 }
4793 }
4794
4795 return SemaRef.BuildQualifiedType(T, Loc, Quals);
4796 }
4797
4798 template<typename Derived>
4799 TypeLoc
TransformTypeInObjectScope(TypeLoc TL,QualType ObjectType,NamedDecl * UnqualLookup,CXXScopeSpec & SS)4800 TreeTransform<Derived>::TransformTypeInObjectScope(TypeLoc TL,
4801 QualType ObjectType,
4802 NamedDecl *UnqualLookup,
4803 CXXScopeSpec &SS) {
4804 if (getDerived().AlreadyTransformed(TL.getType()))
4805 return TL;
4806
4807 TypeSourceInfo *TSI =
4808 TransformTSIInObjectScope(TL, ObjectType, UnqualLookup, SS);
4809 if (TSI)
4810 return TSI->getTypeLoc();
4811 return TypeLoc();
4812 }
4813
4814 template<typename Derived>
4815 TypeSourceInfo *
TransformTypeInObjectScope(TypeSourceInfo * TSInfo,QualType ObjectType,NamedDecl * UnqualLookup,CXXScopeSpec & SS)4816 TreeTransform<Derived>::TransformTypeInObjectScope(TypeSourceInfo *TSInfo,
4817 QualType ObjectType,
4818 NamedDecl *UnqualLookup,
4819 CXXScopeSpec &SS) {
4820 if (getDerived().AlreadyTransformed(TSInfo->getType()))
4821 return TSInfo;
4822
4823 return TransformTSIInObjectScope(TSInfo->getTypeLoc(), ObjectType,
4824 UnqualLookup, SS);
4825 }
4826
4827 template <typename Derived>
TransformTSIInObjectScope(TypeLoc TL,QualType ObjectType,NamedDecl * UnqualLookup,CXXScopeSpec & SS)4828 TypeSourceInfo *TreeTransform<Derived>::TransformTSIInObjectScope(
4829 TypeLoc TL, QualType ObjectType, NamedDecl *UnqualLookup,
4830 CXXScopeSpec &SS) {
4831 QualType T = TL.getType();
4832 assert(!getDerived().AlreadyTransformed(T));
4833
4834 TypeLocBuilder TLB;
4835 QualType Result;
4836
4837 if (isa<TemplateSpecializationType>(T)) {
4838 TemplateSpecializationTypeLoc SpecTL =
4839 TL.castAs<TemplateSpecializationTypeLoc>();
4840
4841 TemplateName Template = getDerived().TransformTemplateName(
4842 SS, SpecTL.getTypePtr()->getTemplateName(), SpecTL.getTemplateNameLoc(),
4843 ObjectType, UnqualLookup, /*AllowInjectedClassName*/true);
4844 if (Template.isNull())
4845 return nullptr;
4846
4847 Result = getDerived().TransformTemplateSpecializationType(TLB, SpecTL,
4848 Template);
4849 } else if (isa<DependentTemplateSpecializationType>(T)) {
4850 DependentTemplateSpecializationTypeLoc SpecTL =
4851 TL.castAs<DependentTemplateSpecializationTypeLoc>();
4852
4853 TemplateName Template
4854 = getDerived().RebuildTemplateName(SS,
4855 SpecTL.getTemplateKeywordLoc(),
4856 *SpecTL.getTypePtr()->getIdentifier(),
4857 SpecTL.getTemplateNameLoc(),
4858 ObjectType, UnqualLookup,
4859 /*AllowInjectedClassName*/true);
4860 if (Template.isNull())
4861 return nullptr;
4862
4863 Result = getDerived().TransformDependentTemplateSpecializationType(TLB,
4864 SpecTL,
4865 Template,
4866 SS);
4867 } else {
4868 // Nothing special needs to be done for these.
4869 Result = getDerived().TransformType(TLB, TL);
4870 }
4871
4872 if (Result.isNull())
4873 return nullptr;
4874
4875 return TLB.getTypeSourceInfo(SemaRef.Context, Result);
4876 }
4877
4878 template <class TyLoc> static inline
TransformTypeSpecType(TypeLocBuilder & TLB,TyLoc T)4879 QualType TransformTypeSpecType(TypeLocBuilder &TLB, TyLoc T) {
4880 TyLoc NewT = TLB.push<TyLoc>(T.getType());
4881 NewT.setNameLoc(T.getNameLoc());
4882 return T.getType();
4883 }
4884
4885 template<typename Derived>
TransformBuiltinType(TypeLocBuilder & TLB,BuiltinTypeLoc T)4886 QualType TreeTransform<Derived>::TransformBuiltinType(TypeLocBuilder &TLB,
4887 BuiltinTypeLoc T) {
4888 BuiltinTypeLoc NewT = TLB.push<BuiltinTypeLoc>(T.getType());
4889 NewT.setBuiltinLoc(T.getBuiltinLoc());
4890 if (T.needsExtraLocalData())
4891 NewT.getWrittenBuiltinSpecs() = T.getWrittenBuiltinSpecs();
4892 return T.getType();
4893 }
4894
4895 template<typename Derived>
TransformComplexType(TypeLocBuilder & TLB,ComplexTypeLoc T)4896 QualType TreeTransform<Derived>::TransformComplexType(TypeLocBuilder &TLB,
4897 ComplexTypeLoc T) {
4898 // FIXME: recurse?
4899 return TransformTypeSpecType(TLB, T);
4900 }
4901
4902 template <typename Derived>
TransformAdjustedType(TypeLocBuilder & TLB,AdjustedTypeLoc TL)4903 QualType TreeTransform<Derived>::TransformAdjustedType(TypeLocBuilder &TLB,
4904 AdjustedTypeLoc TL) {
4905 // Adjustments applied during transformation are handled elsewhere.
4906 return getDerived().TransformType(TLB, TL.getOriginalLoc());
4907 }
4908
4909 template<typename Derived>
TransformDecayedType(TypeLocBuilder & TLB,DecayedTypeLoc TL)4910 QualType TreeTransform<Derived>::TransformDecayedType(TypeLocBuilder &TLB,
4911 DecayedTypeLoc TL) {
4912 QualType OriginalType = getDerived().TransformType(TLB, TL.getOriginalLoc());
4913 if (OriginalType.isNull())
4914 return QualType();
4915
4916 QualType Result = TL.getType();
4917 if (getDerived().AlwaysRebuild() ||
4918 OriginalType != TL.getOriginalLoc().getType())
4919 Result = SemaRef.Context.getDecayedType(OriginalType);
4920 TLB.push<DecayedTypeLoc>(Result);
4921 // Nothing to set for DecayedTypeLoc.
4922 return Result;
4923 }
4924
4925 template<typename Derived>
TransformPointerType(TypeLocBuilder & TLB,PointerTypeLoc TL)4926 QualType TreeTransform<Derived>::TransformPointerType(TypeLocBuilder &TLB,
4927 PointerTypeLoc TL) {
4928 QualType PointeeType
4929 = getDerived().TransformType(TLB, TL.getPointeeLoc());
4930 if (PointeeType.isNull())
4931 return QualType();
4932
4933 QualType Result = TL.getType();
4934 if (PointeeType->getAs<ObjCObjectType>()) {
4935 // A dependent pointer type 'T *' has is being transformed such
4936 // that an Objective-C class type is being replaced for 'T'. The
4937 // resulting pointer type is an ObjCObjectPointerType, not a
4938 // PointerType.
4939 Result = SemaRef.Context.getObjCObjectPointerType(PointeeType);
4940
4941 ObjCObjectPointerTypeLoc NewT = TLB.push<ObjCObjectPointerTypeLoc>(Result);
4942 NewT.setStarLoc(TL.getStarLoc());
4943 return Result;
4944 }
4945
4946 if (getDerived().AlwaysRebuild() ||
4947 PointeeType != TL.getPointeeLoc().getType()) {
4948 Result = getDerived().RebuildPointerType(PointeeType, TL.getSigilLoc());
4949 if (Result.isNull())
4950 return QualType();
4951 }
4952
4953 // Objective-C ARC can add lifetime qualifiers to the type that we're
4954 // pointing to.
4955 TLB.TypeWasModifiedSafely(Result->getPointeeType());
4956
4957 PointerTypeLoc NewT = TLB.push<PointerTypeLoc>(Result);
4958 NewT.setSigilLoc(TL.getSigilLoc());
4959 return Result;
4960 }
4961
4962 template<typename Derived>
4963 QualType
TransformBlockPointerType(TypeLocBuilder & TLB,BlockPointerTypeLoc TL)4964 TreeTransform<Derived>::TransformBlockPointerType(TypeLocBuilder &TLB,
4965 BlockPointerTypeLoc TL) {
4966 QualType PointeeType
4967 = getDerived().TransformType(TLB, TL.getPointeeLoc());
4968 if (PointeeType.isNull())
4969 return QualType();
4970
4971 QualType Result = TL.getType();
4972 if (getDerived().AlwaysRebuild() ||
4973 PointeeType != TL.getPointeeLoc().getType()) {
4974 Result = getDerived().RebuildBlockPointerType(PointeeType,
4975 TL.getSigilLoc());
4976 if (Result.isNull())
4977 return QualType();
4978 }
4979
4980 BlockPointerTypeLoc NewT = TLB.push<BlockPointerTypeLoc>(Result);
4981 NewT.setSigilLoc(TL.getSigilLoc());
4982 return Result;
4983 }
4984
4985 /// Transforms a reference type. Note that somewhat paradoxically we
4986 /// don't care whether the type itself is an l-value type or an r-value
4987 /// type; we only care if the type was *written* as an l-value type
4988 /// or an r-value type.
4989 template<typename Derived>
4990 QualType
TransformReferenceType(TypeLocBuilder & TLB,ReferenceTypeLoc TL)4991 TreeTransform<Derived>::TransformReferenceType(TypeLocBuilder &TLB,
4992 ReferenceTypeLoc TL) {
4993 const ReferenceType *T = TL.getTypePtr();
4994
4995 // Note that this works with the pointee-as-written.
4996 QualType PointeeType = getDerived().TransformType(TLB, TL.getPointeeLoc());
4997 if (PointeeType.isNull())
4998 return QualType();
4999
5000 QualType Result = TL.getType();
5001 if (getDerived().AlwaysRebuild() ||
5002 PointeeType != T->getPointeeTypeAsWritten()) {
5003 Result = getDerived().RebuildReferenceType(PointeeType,
5004 T->isSpelledAsLValue(),
5005 TL.getSigilLoc());
5006 if (Result.isNull())
5007 return QualType();
5008 }
5009
5010 // Objective-C ARC can add lifetime qualifiers to the type that we're
5011 // referring to.
5012 TLB.TypeWasModifiedSafely(
5013 Result->castAs<ReferenceType>()->getPointeeTypeAsWritten());
5014
5015 // r-value references can be rebuilt as l-value references.
5016 ReferenceTypeLoc NewTL;
5017 if (isa<LValueReferenceType>(Result))
5018 NewTL = TLB.push<LValueReferenceTypeLoc>(Result);
5019 else
5020 NewTL = TLB.push<RValueReferenceTypeLoc>(Result);
5021 NewTL.setSigilLoc(TL.getSigilLoc());
5022
5023 return Result;
5024 }
5025
5026 template<typename Derived>
5027 QualType
TransformLValueReferenceType(TypeLocBuilder & TLB,LValueReferenceTypeLoc TL)5028 TreeTransform<Derived>::TransformLValueReferenceType(TypeLocBuilder &TLB,
5029 LValueReferenceTypeLoc TL) {
5030 return TransformReferenceType(TLB, TL);
5031 }
5032
5033 template<typename Derived>
5034 QualType
TransformRValueReferenceType(TypeLocBuilder & TLB,RValueReferenceTypeLoc TL)5035 TreeTransform<Derived>::TransformRValueReferenceType(TypeLocBuilder &TLB,
5036 RValueReferenceTypeLoc TL) {
5037 return TransformReferenceType(TLB, TL);
5038 }
5039
5040 template<typename Derived>
5041 QualType
TransformMemberPointerType(TypeLocBuilder & TLB,MemberPointerTypeLoc TL)5042 TreeTransform<Derived>::TransformMemberPointerType(TypeLocBuilder &TLB,
5043 MemberPointerTypeLoc TL) {
5044 QualType PointeeType = getDerived().TransformType(TLB, TL.getPointeeLoc());
5045 if (PointeeType.isNull())
5046 return QualType();
5047
5048 TypeSourceInfo* OldClsTInfo = TL.getClassTInfo();
5049 TypeSourceInfo *NewClsTInfo = nullptr;
5050 if (OldClsTInfo) {
5051 NewClsTInfo = getDerived().TransformType(OldClsTInfo);
5052 if (!NewClsTInfo)
5053 return QualType();
5054 }
5055
5056 const MemberPointerType *T = TL.getTypePtr();
5057 QualType OldClsType = QualType(T->getClass(), 0);
5058 QualType NewClsType;
5059 if (NewClsTInfo)
5060 NewClsType = NewClsTInfo->getType();
5061 else {
5062 NewClsType = getDerived().TransformType(OldClsType);
5063 if (NewClsType.isNull())
5064 return QualType();
5065 }
5066
5067 QualType Result = TL.getType();
5068 if (getDerived().AlwaysRebuild() ||
5069 PointeeType != T->getPointeeType() ||
5070 NewClsType != OldClsType) {
5071 Result = getDerived().RebuildMemberPointerType(PointeeType, NewClsType,
5072 TL.getStarLoc());
5073 if (Result.isNull())
5074 return QualType();
5075 }
5076
5077 // If we had to adjust the pointee type when building a member pointer, make
5078 // sure to push TypeLoc info for it.
5079 const MemberPointerType *MPT = Result->getAs<MemberPointerType>();
5080 if (MPT && PointeeType != MPT->getPointeeType()) {
5081 assert(isa<AdjustedType>(MPT->getPointeeType()));
5082 TLB.push<AdjustedTypeLoc>(MPT->getPointeeType());
5083 }
5084
5085 MemberPointerTypeLoc NewTL = TLB.push<MemberPointerTypeLoc>(Result);
5086 NewTL.setSigilLoc(TL.getSigilLoc());
5087 NewTL.setClassTInfo(NewClsTInfo);
5088
5089 return Result;
5090 }
5091
5092 template<typename Derived>
5093 QualType
TransformConstantArrayType(TypeLocBuilder & TLB,ConstantArrayTypeLoc TL)5094 TreeTransform<Derived>::TransformConstantArrayType(TypeLocBuilder &TLB,
5095 ConstantArrayTypeLoc TL) {
5096 const ConstantArrayType *T = TL.getTypePtr();
5097 QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc());
5098 if (ElementType.isNull())
5099 return QualType();
5100
5101 // Prefer the expression from the TypeLoc; the other may have been uniqued.
5102 Expr *OldSize = TL.getSizeExpr();
5103 if (!OldSize)
5104 OldSize = const_cast<Expr*>(T->getSizeExpr());
5105 Expr *NewSize = nullptr;
5106 if (OldSize) {
5107 EnterExpressionEvaluationContext Unevaluated(
5108 SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated);
5109 NewSize = getDerived().TransformExpr(OldSize).template getAs<Expr>();
5110 NewSize = SemaRef.ActOnConstantExpression(NewSize).get();
5111 }
5112
5113 QualType Result = TL.getType();
5114 if (getDerived().AlwaysRebuild() ||
5115 ElementType != T->getElementType() ||
5116 (T->getSizeExpr() && NewSize != OldSize)) {
5117 Result = getDerived().RebuildConstantArrayType(ElementType,
5118 T->getSizeModifier(),
5119 T->getSize(), NewSize,
5120 T->getIndexTypeCVRQualifiers(),
5121 TL.getBracketsRange());
5122 if (Result.isNull())
5123 return QualType();
5124 }
5125
5126 // We might have either a ConstantArrayType or a VariableArrayType now:
5127 // a ConstantArrayType is allowed to have an element type which is a
5128 // VariableArrayType if the type is dependent. Fortunately, all array
5129 // types have the same location layout.
5130 ArrayTypeLoc NewTL = TLB.push<ArrayTypeLoc>(Result);
5131 NewTL.setLBracketLoc(TL.getLBracketLoc());
5132 NewTL.setRBracketLoc(TL.getRBracketLoc());
5133 NewTL.setSizeExpr(NewSize);
5134
5135 return Result;
5136 }
5137
5138 template<typename Derived>
TransformIncompleteArrayType(TypeLocBuilder & TLB,IncompleteArrayTypeLoc TL)5139 QualType TreeTransform<Derived>::TransformIncompleteArrayType(
5140 TypeLocBuilder &TLB,
5141 IncompleteArrayTypeLoc TL) {
5142 const IncompleteArrayType *T = TL.getTypePtr();
5143 QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc());
5144 if (ElementType.isNull())
5145 return QualType();
5146
5147 QualType Result = TL.getType();
5148 if (getDerived().AlwaysRebuild() ||
5149 ElementType != T->getElementType()) {
5150 Result = getDerived().RebuildIncompleteArrayType(ElementType,
5151 T->getSizeModifier(),
5152 T->getIndexTypeCVRQualifiers(),
5153 TL.getBracketsRange());
5154 if (Result.isNull())
5155 return QualType();
5156 }
5157
5158 IncompleteArrayTypeLoc NewTL = TLB.push<IncompleteArrayTypeLoc>(Result);
5159 NewTL.setLBracketLoc(TL.getLBracketLoc());
5160 NewTL.setRBracketLoc(TL.getRBracketLoc());
5161 NewTL.setSizeExpr(nullptr);
5162
5163 return Result;
5164 }
5165
5166 template<typename Derived>
5167 QualType
TransformVariableArrayType(TypeLocBuilder & TLB,VariableArrayTypeLoc TL)5168 TreeTransform<Derived>::TransformVariableArrayType(TypeLocBuilder &TLB,
5169 VariableArrayTypeLoc TL) {
5170 const VariableArrayType *T = TL.getTypePtr();
5171 QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc());
5172 if (ElementType.isNull())
5173 return QualType();
5174
5175 ExprResult SizeResult;
5176 {
5177 EnterExpressionEvaluationContext Context(
5178 SemaRef, Sema::ExpressionEvaluationContext::PotentiallyEvaluated);
5179 SizeResult = getDerived().TransformExpr(T->getSizeExpr());
5180 }
5181 if (SizeResult.isInvalid())
5182 return QualType();
5183 SizeResult =
5184 SemaRef.ActOnFinishFullExpr(SizeResult.get(), /*DiscardedValue*/ false);
5185 if (SizeResult.isInvalid())
5186 return QualType();
5187
5188 Expr *Size = SizeResult.get();
5189
5190 QualType Result = TL.getType();
5191 if (getDerived().AlwaysRebuild() ||
5192 ElementType != T->getElementType() ||
5193 Size != T->getSizeExpr()) {
5194 Result = getDerived().RebuildVariableArrayType(ElementType,
5195 T->getSizeModifier(),
5196 Size,
5197 T->getIndexTypeCVRQualifiers(),
5198 TL.getBracketsRange());
5199 if (Result.isNull())
5200 return QualType();
5201 }
5202
5203 // We might have constant size array now, but fortunately it has the same
5204 // location layout.
5205 ArrayTypeLoc NewTL = TLB.push<ArrayTypeLoc>(Result);
5206 NewTL.setLBracketLoc(TL.getLBracketLoc());
5207 NewTL.setRBracketLoc(TL.getRBracketLoc());
5208 NewTL.setSizeExpr(Size);
5209
5210 return Result;
5211 }
5212
5213 template<typename Derived>
5214 QualType
TransformDependentSizedArrayType(TypeLocBuilder & TLB,DependentSizedArrayTypeLoc TL)5215 TreeTransform<Derived>::TransformDependentSizedArrayType(TypeLocBuilder &TLB,
5216 DependentSizedArrayTypeLoc TL) {
5217 const DependentSizedArrayType *T = TL.getTypePtr();
5218 QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc());
5219 if (ElementType.isNull())
5220 return QualType();
5221
5222 // Array bounds are constant expressions.
5223 EnterExpressionEvaluationContext Unevaluated(
5224 SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated);
5225
5226 // Prefer the expression from the TypeLoc; the other may have been uniqued.
5227 Expr *origSize = TL.getSizeExpr();
5228 if (!origSize) origSize = T->getSizeExpr();
5229
5230 ExprResult sizeResult
5231 = getDerived().TransformExpr(origSize);
5232 sizeResult = SemaRef.ActOnConstantExpression(sizeResult);
5233 if (sizeResult.isInvalid())
5234 return QualType();
5235
5236 Expr *size = sizeResult.get();
5237
5238 QualType Result = TL.getType();
5239 if (getDerived().AlwaysRebuild() ||
5240 ElementType != T->getElementType() ||
5241 size != origSize) {
5242 Result = getDerived().RebuildDependentSizedArrayType(ElementType,
5243 T->getSizeModifier(),
5244 size,
5245 T->getIndexTypeCVRQualifiers(),
5246 TL.getBracketsRange());
5247 if (Result.isNull())
5248 return QualType();
5249 }
5250
5251 // We might have any sort of array type now, but fortunately they
5252 // all have the same location layout.
5253 ArrayTypeLoc NewTL = TLB.push<ArrayTypeLoc>(Result);
5254 NewTL.setLBracketLoc(TL.getLBracketLoc());
5255 NewTL.setRBracketLoc(TL.getRBracketLoc());
5256 NewTL.setSizeExpr(size);
5257
5258 return Result;
5259 }
5260
5261 template <typename Derived>
TransformDependentVectorType(TypeLocBuilder & TLB,DependentVectorTypeLoc TL)5262 QualType TreeTransform<Derived>::TransformDependentVectorType(
5263 TypeLocBuilder &TLB, DependentVectorTypeLoc TL) {
5264 const DependentVectorType *T = TL.getTypePtr();
5265 QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc());
5266 if (ElementType.isNull())
5267 return QualType();
5268
5269 EnterExpressionEvaluationContext Unevaluated(
5270 SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated);
5271
5272 ExprResult Size = getDerived().TransformExpr(T->getSizeExpr());
5273 Size = SemaRef.ActOnConstantExpression(Size);
5274 if (Size.isInvalid())
5275 return QualType();
5276
5277 QualType Result = TL.getType();
5278 if (getDerived().AlwaysRebuild() || ElementType != T->getElementType() ||
5279 Size.get() != T->getSizeExpr()) {
5280 Result = getDerived().RebuildDependentVectorType(
5281 ElementType, Size.get(), T->getAttributeLoc(), T->getVectorKind());
5282 if (Result.isNull())
5283 return QualType();
5284 }
5285
5286 // Result might be dependent or not.
5287 if (isa<DependentVectorType>(Result)) {
5288 DependentVectorTypeLoc NewTL =
5289 TLB.push<DependentVectorTypeLoc>(Result);
5290 NewTL.setNameLoc(TL.getNameLoc());
5291 } else {
5292 VectorTypeLoc NewTL = TLB.push<VectorTypeLoc>(Result);
5293 NewTL.setNameLoc(TL.getNameLoc());
5294 }
5295
5296 return Result;
5297 }
5298
5299 template<typename Derived>
TransformDependentSizedExtVectorType(TypeLocBuilder & TLB,DependentSizedExtVectorTypeLoc TL)5300 QualType TreeTransform<Derived>::TransformDependentSizedExtVectorType(
5301 TypeLocBuilder &TLB,
5302 DependentSizedExtVectorTypeLoc TL) {
5303 const DependentSizedExtVectorType *T = TL.getTypePtr();
5304
5305 // FIXME: ext vector locs should be nested
5306 QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc());
5307 if (ElementType.isNull())
5308 return QualType();
5309
5310 // Vector sizes are constant expressions.
5311 EnterExpressionEvaluationContext Unevaluated(
5312 SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated);
5313
5314 ExprResult Size = getDerived().TransformExpr(T->getSizeExpr());
5315 Size = SemaRef.ActOnConstantExpression(Size);
5316 if (Size.isInvalid())
5317 return QualType();
5318
5319 QualType Result = TL.getType();
5320 if (getDerived().AlwaysRebuild() ||
5321 ElementType != T->getElementType() ||
5322 Size.get() != T->getSizeExpr()) {
5323 Result = getDerived().RebuildDependentSizedExtVectorType(ElementType,
5324 Size.get(),
5325 T->getAttributeLoc());
5326 if (Result.isNull())
5327 return QualType();
5328 }
5329
5330 // Result might be dependent or not.
5331 if (isa<DependentSizedExtVectorType>(Result)) {
5332 DependentSizedExtVectorTypeLoc NewTL
5333 = TLB.push<DependentSizedExtVectorTypeLoc>(Result);
5334 NewTL.setNameLoc(TL.getNameLoc());
5335 } else {
5336 ExtVectorTypeLoc NewTL = TLB.push<ExtVectorTypeLoc>(Result);
5337 NewTL.setNameLoc(TL.getNameLoc());
5338 }
5339
5340 return Result;
5341 }
5342
5343 template <typename Derived>
5344 QualType
TransformConstantMatrixType(TypeLocBuilder & TLB,ConstantMatrixTypeLoc TL)5345 TreeTransform<Derived>::TransformConstantMatrixType(TypeLocBuilder &TLB,
5346 ConstantMatrixTypeLoc TL) {
5347 const ConstantMatrixType *T = TL.getTypePtr();
5348 QualType ElementType = getDerived().TransformType(T->getElementType());
5349 if (ElementType.isNull())
5350 return QualType();
5351
5352 QualType Result = TL.getType();
5353 if (getDerived().AlwaysRebuild() || ElementType != T->getElementType()) {
5354 Result = getDerived().RebuildConstantMatrixType(
5355 ElementType, T->getNumRows(), T->getNumColumns());
5356 if (Result.isNull())
5357 return QualType();
5358 }
5359
5360 ConstantMatrixTypeLoc NewTL = TLB.push<ConstantMatrixTypeLoc>(Result);
5361 NewTL.setAttrNameLoc(TL.getAttrNameLoc());
5362 NewTL.setAttrOperandParensRange(TL.getAttrOperandParensRange());
5363 NewTL.setAttrRowOperand(TL.getAttrRowOperand());
5364 NewTL.setAttrColumnOperand(TL.getAttrColumnOperand());
5365
5366 return Result;
5367 }
5368
5369 template <typename Derived>
TransformDependentSizedMatrixType(TypeLocBuilder & TLB,DependentSizedMatrixTypeLoc TL)5370 QualType TreeTransform<Derived>::TransformDependentSizedMatrixType(
5371 TypeLocBuilder &TLB, DependentSizedMatrixTypeLoc TL) {
5372 const DependentSizedMatrixType *T = TL.getTypePtr();
5373
5374 QualType ElementType = getDerived().TransformType(T->getElementType());
5375 if (ElementType.isNull()) {
5376 return QualType();
5377 }
5378
5379 // Matrix dimensions are constant expressions.
5380 EnterExpressionEvaluationContext Unevaluated(
5381 SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated);
5382
5383 Expr *origRows = TL.getAttrRowOperand();
5384 if (!origRows)
5385 origRows = T->getRowExpr();
5386 Expr *origColumns = TL.getAttrColumnOperand();
5387 if (!origColumns)
5388 origColumns = T->getColumnExpr();
5389
5390 ExprResult rowResult = getDerived().TransformExpr(origRows);
5391 rowResult = SemaRef.ActOnConstantExpression(rowResult);
5392 if (rowResult.isInvalid())
5393 return QualType();
5394
5395 ExprResult columnResult = getDerived().TransformExpr(origColumns);
5396 columnResult = SemaRef.ActOnConstantExpression(columnResult);
5397 if (columnResult.isInvalid())
5398 return QualType();
5399
5400 Expr *rows = rowResult.get();
5401 Expr *columns = columnResult.get();
5402
5403 QualType Result = TL.getType();
5404 if (getDerived().AlwaysRebuild() || ElementType != T->getElementType() ||
5405 rows != origRows || columns != origColumns) {
5406 Result = getDerived().RebuildDependentSizedMatrixType(
5407 ElementType, rows, columns, T->getAttributeLoc());
5408
5409 if (Result.isNull())
5410 return QualType();
5411 }
5412
5413 // We might have any sort of matrix type now, but fortunately they
5414 // all have the same location layout.
5415 MatrixTypeLoc NewTL = TLB.push<MatrixTypeLoc>(Result);
5416 NewTL.setAttrNameLoc(TL.getAttrNameLoc());
5417 NewTL.setAttrOperandParensRange(TL.getAttrOperandParensRange());
5418 NewTL.setAttrRowOperand(rows);
5419 NewTL.setAttrColumnOperand(columns);
5420 return Result;
5421 }
5422
5423 template <typename Derived>
TransformDependentAddressSpaceType(TypeLocBuilder & TLB,DependentAddressSpaceTypeLoc TL)5424 QualType TreeTransform<Derived>::TransformDependentAddressSpaceType(
5425 TypeLocBuilder &TLB, DependentAddressSpaceTypeLoc TL) {
5426 const DependentAddressSpaceType *T = TL.getTypePtr();
5427
5428 QualType pointeeType = getDerived().TransformType(T->getPointeeType());
5429
5430 if (pointeeType.isNull())
5431 return QualType();
5432
5433 // Address spaces are constant expressions.
5434 EnterExpressionEvaluationContext Unevaluated(
5435 SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated);
5436
5437 ExprResult AddrSpace = getDerived().TransformExpr(T->getAddrSpaceExpr());
5438 AddrSpace = SemaRef.ActOnConstantExpression(AddrSpace);
5439 if (AddrSpace.isInvalid())
5440 return QualType();
5441
5442 QualType Result = TL.getType();
5443 if (getDerived().AlwaysRebuild() || pointeeType != T->getPointeeType() ||
5444 AddrSpace.get() != T->getAddrSpaceExpr()) {
5445 Result = getDerived().RebuildDependentAddressSpaceType(
5446 pointeeType, AddrSpace.get(), T->getAttributeLoc());
5447 if (Result.isNull())
5448 return QualType();
5449 }
5450
5451 // Result might be dependent or not.
5452 if (isa<DependentAddressSpaceType>(Result)) {
5453 DependentAddressSpaceTypeLoc NewTL =
5454 TLB.push<DependentAddressSpaceTypeLoc>(Result);
5455
5456 NewTL.setAttrOperandParensRange(TL.getAttrOperandParensRange());
5457 NewTL.setAttrExprOperand(TL.getAttrExprOperand());
5458 NewTL.setAttrNameLoc(TL.getAttrNameLoc());
5459
5460 } else {
5461 TypeSourceInfo *DI = getSema().Context.getTrivialTypeSourceInfo(
5462 Result, getDerived().getBaseLocation());
5463 TransformType(TLB, DI->getTypeLoc());
5464 }
5465
5466 return Result;
5467 }
5468
5469 template <typename Derived>
TransformVectorType(TypeLocBuilder & TLB,VectorTypeLoc TL)5470 QualType TreeTransform<Derived>::TransformVectorType(TypeLocBuilder &TLB,
5471 VectorTypeLoc TL) {
5472 const VectorType *T = TL.getTypePtr();
5473 QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc());
5474 if (ElementType.isNull())
5475 return QualType();
5476
5477 QualType Result = TL.getType();
5478 if (getDerived().AlwaysRebuild() ||
5479 ElementType != T->getElementType()) {
5480 Result = getDerived().RebuildVectorType(ElementType, T->getNumElements(),
5481 T->getVectorKind());
5482 if (Result.isNull())
5483 return QualType();
5484 }
5485
5486 VectorTypeLoc NewTL = TLB.push<VectorTypeLoc>(Result);
5487 NewTL.setNameLoc(TL.getNameLoc());
5488
5489 return Result;
5490 }
5491
5492 template<typename Derived>
TransformExtVectorType(TypeLocBuilder & TLB,ExtVectorTypeLoc TL)5493 QualType TreeTransform<Derived>::TransformExtVectorType(TypeLocBuilder &TLB,
5494 ExtVectorTypeLoc TL) {
5495 const VectorType *T = TL.getTypePtr();
5496 QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc());
5497 if (ElementType.isNull())
5498 return QualType();
5499
5500 QualType Result = TL.getType();
5501 if (getDerived().AlwaysRebuild() ||
5502 ElementType != T->getElementType()) {
5503 Result = getDerived().RebuildExtVectorType(ElementType,
5504 T->getNumElements(),
5505 /*FIXME*/ SourceLocation());
5506 if (Result.isNull())
5507 return QualType();
5508 }
5509
5510 ExtVectorTypeLoc NewTL = TLB.push<ExtVectorTypeLoc>(Result);
5511 NewTL.setNameLoc(TL.getNameLoc());
5512
5513 return Result;
5514 }
5515
5516 template <typename Derived>
TransformFunctionTypeParam(ParmVarDecl * OldParm,int indexAdjustment,Optional<unsigned> NumExpansions,bool ExpectParameterPack)5517 ParmVarDecl *TreeTransform<Derived>::TransformFunctionTypeParam(
5518 ParmVarDecl *OldParm, int indexAdjustment, Optional<unsigned> NumExpansions,
5519 bool ExpectParameterPack) {
5520 TypeSourceInfo *OldDI = OldParm->getTypeSourceInfo();
5521 TypeSourceInfo *NewDI = nullptr;
5522
5523 if (NumExpansions && isa<PackExpansionType>(OldDI->getType())) {
5524 // If we're substituting into a pack expansion type and we know the
5525 // length we want to expand to, just substitute for the pattern.
5526 TypeLoc OldTL = OldDI->getTypeLoc();
5527 PackExpansionTypeLoc OldExpansionTL = OldTL.castAs<PackExpansionTypeLoc>();
5528
5529 TypeLocBuilder TLB;
5530 TypeLoc NewTL = OldDI->getTypeLoc();
5531 TLB.reserve(NewTL.getFullDataSize());
5532
5533 QualType Result = getDerived().TransformType(TLB,
5534 OldExpansionTL.getPatternLoc());
5535 if (Result.isNull())
5536 return nullptr;
5537
5538 Result = RebuildPackExpansionType(Result,
5539 OldExpansionTL.getPatternLoc().getSourceRange(),
5540 OldExpansionTL.getEllipsisLoc(),
5541 NumExpansions);
5542 if (Result.isNull())
5543 return nullptr;
5544
5545 PackExpansionTypeLoc NewExpansionTL
5546 = TLB.push<PackExpansionTypeLoc>(Result);
5547 NewExpansionTL.setEllipsisLoc(OldExpansionTL.getEllipsisLoc());
5548 NewDI = TLB.getTypeSourceInfo(SemaRef.Context, Result);
5549 } else
5550 NewDI = getDerived().TransformType(OldDI);
5551 if (!NewDI)
5552 return nullptr;
5553
5554 if (NewDI == OldDI && indexAdjustment == 0)
5555 return OldParm;
5556
5557 ParmVarDecl *newParm = ParmVarDecl::Create(SemaRef.Context,
5558 OldParm->getDeclContext(),
5559 OldParm->getInnerLocStart(),
5560 OldParm->getLocation(),
5561 OldParm->getIdentifier(),
5562 NewDI->getType(),
5563 NewDI,
5564 OldParm->getStorageClass(),
5565 /* DefArg */ nullptr);
5566 newParm->setScopeInfo(OldParm->getFunctionScopeDepth(),
5567 OldParm->getFunctionScopeIndex() + indexAdjustment);
5568 transformedLocalDecl(OldParm, {newParm});
5569 return newParm;
5570 }
5571
5572 template <typename Derived>
TransformFunctionTypeParams(SourceLocation Loc,ArrayRef<ParmVarDecl * > Params,const QualType * ParamTypes,const FunctionProtoType::ExtParameterInfo * ParamInfos,SmallVectorImpl<QualType> & OutParamTypes,SmallVectorImpl<ParmVarDecl * > * PVars,Sema::ExtParameterInfoBuilder & PInfos)5573 bool TreeTransform<Derived>::TransformFunctionTypeParams(
5574 SourceLocation Loc, ArrayRef<ParmVarDecl *> Params,
5575 const QualType *ParamTypes,
5576 const FunctionProtoType::ExtParameterInfo *ParamInfos,
5577 SmallVectorImpl<QualType> &OutParamTypes,
5578 SmallVectorImpl<ParmVarDecl *> *PVars,
5579 Sema::ExtParameterInfoBuilder &PInfos) {
5580 int indexAdjustment = 0;
5581
5582 unsigned NumParams = Params.size();
5583 for (unsigned i = 0; i != NumParams; ++i) {
5584 if (ParmVarDecl *OldParm = Params[i]) {
5585 assert(OldParm->getFunctionScopeIndex() == i);
5586
5587 Optional<unsigned> NumExpansions;
5588 ParmVarDecl *NewParm = nullptr;
5589 if (OldParm->isParameterPack()) {
5590 // We have a function parameter pack that may need to be expanded.
5591 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
5592
5593 // Find the parameter packs that could be expanded.
5594 TypeLoc TL = OldParm->getTypeSourceInfo()->getTypeLoc();
5595 PackExpansionTypeLoc ExpansionTL = TL.castAs<PackExpansionTypeLoc>();
5596 TypeLoc Pattern = ExpansionTL.getPatternLoc();
5597 SemaRef.collectUnexpandedParameterPacks(Pattern, Unexpanded);
5598
5599 // Determine whether we should expand the parameter packs.
5600 bool ShouldExpand = false;
5601 bool RetainExpansion = false;
5602 Optional<unsigned> OrigNumExpansions;
5603 if (Unexpanded.size() > 0) {
5604 OrigNumExpansions = ExpansionTL.getTypePtr()->getNumExpansions();
5605 NumExpansions = OrigNumExpansions;
5606 if (getDerived().TryExpandParameterPacks(ExpansionTL.getEllipsisLoc(),
5607 Pattern.getSourceRange(),
5608 Unexpanded,
5609 ShouldExpand,
5610 RetainExpansion,
5611 NumExpansions)) {
5612 return true;
5613 }
5614 } else {
5615 #ifndef NDEBUG
5616 const AutoType *AT =
5617 Pattern.getType().getTypePtr()->getContainedAutoType();
5618 assert((AT && (!AT->isDeduced() || AT->getDeducedType().isNull())) &&
5619 "Could not find parameter packs or undeduced auto type!");
5620 #endif
5621 }
5622
5623 if (ShouldExpand) {
5624 // Expand the function parameter pack into multiple, separate
5625 // parameters.
5626 getDerived().ExpandingFunctionParameterPack(OldParm);
5627 for (unsigned I = 0; I != *NumExpansions; ++I) {
5628 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), I);
5629 ParmVarDecl *NewParm
5630 = getDerived().TransformFunctionTypeParam(OldParm,
5631 indexAdjustment++,
5632 OrigNumExpansions,
5633 /*ExpectParameterPack=*/false);
5634 if (!NewParm)
5635 return true;
5636
5637 if (ParamInfos)
5638 PInfos.set(OutParamTypes.size(), ParamInfos[i]);
5639 OutParamTypes.push_back(NewParm->getType());
5640 if (PVars)
5641 PVars->push_back(NewParm);
5642 }
5643
5644 // If we're supposed to retain a pack expansion, do so by temporarily
5645 // forgetting the partially-substituted parameter pack.
5646 if (RetainExpansion) {
5647 ForgetPartiallySubstitutedPackRAII Forget(getDerived());
5648 ParmVarDecl *NewParm
5649 = getDerived().TransformFunctionTypeParam(OldParm,
5650 indexAdjustment++,
5651 OrigNumExpansions,
5652 /*ExpectParameterPack=*/false);
5653 if (!NewParm)
5654 return true;
5655
5656 if (ParamInfos)
5657 PInfos.set(OutParamTypes.size(), ParamInfos[i]);
5658 OutParamTypes.push_back(NewParm->getType());
5659 if (PVars)
5660 PVars->push_back(NewParm);
5661 }
5662
5663 // The next parameter should have the same adjustment as the
5664 // last thing we pushed, but we post-incremented indexAdjustment
5665 // on every push. Also, if we push nothing, the adjustment should
5666 // go down by one.
5667 indexAdjustment--;
5668
5669 // We're done with the pack expansion.
5670 continue;
5671 }
5672
5673 // We'll substitute the parameter now without expanding the pack
5674 // expansion.
5675 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1);
5676 NewParm = getDerived().TransformFunctionTypeParam(OldParm,
5677 indexAdjustment,
5678 NumExpansions,
5679 /*ExpectParameterPack=*/true);
5680 assert(NewParm->isParameterPack() &&
5681 "Parameter pack no longer a parameter pack after "
5682 "transformation.");
5683 } else {
5684 NewParm = getDerived().TransformFunctionTypeParam(
5685 OldParm, indexAdjustment, None, /*ExpectParameterPack=*/ false);
5686 }
5687
5688 if (!NewParm)
5689 return true;
5690
5691 if (ParamInfos)
5692 PInfos.set(OutParamTypes.size(), ParamInfos[i]);
5693 OutParamTypes.push_back(NewParm->getType());
5694 if (PVars)
5695 PVars->push_back(NewParm);
5696 continue;
5697 }
5698
5699 // Deal with the possibility that we don't have a parameter
5700 // declaration for this parameter.
5701 QualType OldType = ParamTypes[i];
5702 bool IsPackExpansion = false;
5703 Optional<unsigned> NumExpansions;
5704 QualType NewType;
5705 if (const PackExpansionType *Expansion
5706 = dyn_cast<PackExpansionType>(OldType)) {
5707 // We have a function parameter pack that may need to be expanded.
5708 QualType Pattern = Expansion->getPattern();
5709 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
5710 getSema().collectUnexpandedParameterPacks(Pattern, Unexpanded);
5711
5712 // Determine whether we should expand the parameter packs.
5713 bool ShouldExpand = false;
5714 bool RetainExpansion = false;
5715 if (getDerived().TryExpandParameterPacks(Loc, SourceRange(),
5716 Unexpanded,
5717 ShouldExpand,
5718 RetainExpansion,
5719 NumExpansions)) {
5720 return true;
5721 }
5722
5723 if (ShouldExpand) {
5724 // Expand the function parameter pack into multiple, separate
5725 // parameters.
5726 for (unsigned I = 0; I != *NumExpansions; ++I) {
5727 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), I);
5728 QualType NewType = getDerived().TransformType(Pattern);
5729 if (NewType.isNull())
5730 return true;
5731
5732 if (NewType->containsUnexpandedParameterPack()) {
5733 NewType =
5734 getSema().getASTContext().getPackExpansionType(NewType, None);
5735
5736 if (NewType.isNull())
5737 return true;
5738 }
5739
5740 if (ParamInfos)
5741 PInfos.set(OutParamTypes.size(), ParamInfos[i]);
5742 OutParamTypes.push_back(NewType);
5743 if (PVars)
5744 PVars->push_back(nullptr);
5745 }
5746
5747 // We're done with the pack expansion.
5748 continue;
5749 }
5750
5751 // If we're supposed to retain a pack expansion, do so by temporarily
5752 // forgetting the partially-substituted parameter pack.
5753 if (RetainExpansion) {
5754 ForgetPartiallySubstitutedPackRAII Forget(getDerived());
5755 QualType NewType = getDerived().TransformType(Pattern);
5756 if (NewType.isNull())
5757 return true;
5758
5759 if (ParamInfos)
5760 PInfos.set(OutParamTypes.size(), ParamInfos[i]);
5761 OutParamTypes.push_back(NewType);
5762 if (PVars)
5763 PVars->push_back(nullptr);
5764 }
5765
5766 // We'll substitute the parameter now without expanding the pack
5767 // expansion.
5768 OldType = Expansion->getPattern();
5769 IsPackExpansion = true;
5770 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1);
5771 NewType = getDerived().TransformType(OldType);
5772 } else {
5773 NewType = getDerived().TransformType(OldType);
5774 }
5775
5776 if (NewType.isNull())
5777 return true;
5778
5779 if (IsPackExpansion)
5780 NewType = getSema().Context.getPackExpansionType(NewType,
5781 NumExpansions);
5782
5783 if (ParamInfos)
5784 PInfos.set(OutParamTypes.size(), ParamInfos[i]);
5785 OutParamTypes.push_back(NewType);
5786 if (PVars)
5787 PVars->push_back(nullptr);
5788 }
5789
5790 #ifndef NDEBUG
5791 if (PVars) {
5792 for (unsigned i = 0, e = PVars->size(); i != e; ++i)
5793 if (ParmVarDecl *parm = (*PVars)[i])
5794 assert(parm->getFunctionScopeIndex() == i);
5795 }
5796 #endif
5797
5798 return false;
5799 }
5800
5801 template<typename Derived>
5802 QualType
TransformFunctionProtoType(TypeLocBuilder & TLB,FunctionProtoTypeLoc TL)5803 TreeTransform<Derived>::TransformFunctionProtoType(TypeLocBuilder &TLB,
5804 FunctionProtoTypeLoc TL) {
5805 SmallVector<QualType, 4> ExceptionStorage;
5806 TreeTransform *This = this; // Work around gcc.gnu.org/PR56135.
5807 return getDerived().TransformFunctionProtoType(
5808 TLB, TL, nullptr, Qualifiers(),
5809 [&](FunctionProtoType::ExceptionSpecInfo &ESI, bool &Changed) {
5810 return This->TransformExceptionSpec(TL.getBeginLoc(), ESI,
5811 ExceptionStorage, Changed);
5812 });
5813 }
5814
5815 template<typename Derived> template<typename Fn>
TransformFunctionProtoType(TypeLocBuilder & TLB,FunctionProtoTypeLoc TL,CXXRecordDecl * ThisContext,Qualifiers ThisTypeQuals,Fn TransformExceptionSpec)5816 QualType TreeTransform<Derived>::TransformFunctionProtoType(
5817 TypeLocBuilder &TLB, FunctionProtoTypeLoc TL, CXXRecordDecl *ThisContext,
5818 Qualifiers ThisTypeQuals, Fn TransformExceptionSpec) {
5819
5820 // Transform the parameters and return type.
5821 //
5822 // We are required to instantiate the params and return type in source order.
5823 // When the function has a trailing return type, we instantiate the
5824 // parameters before the return type, since the return type can then refer
5825 // to the parameters themselves (via decltype, sizeof, etc.).
5826 //
5827 SmallVector<QualType, 4> ParamTypes;
5828 SmallVector<ParmVarDecl*, 4> ParamDecls;
5829 Sema::ExtParameterInfoBuilder ExtParamInfos;
5830 const FunctionProtoType *T = TL.getTypePtr();
5831
5832 QualType ResultType;
5833
5834 if (T->hasTrailingReturn()) {
5835 if (getDerived().TransformFunctionTypeParams(
5836 TL.getBeginLoc(), TL.getParams(),
5837 TL.getTypePtr()->param_type_begin(),
5838 T->getExtParameterInfosOrNull(),
5839 ParamTypes, &ParamDecls, ExtParamInfos))
5840 return QualType();
5841
5842 {
5843 // C++11 [expr.prim.general]p3:
5844 // If a declaration declares a member function or member function
5845 // template of a class X, the expression this is a prvalue of type
5846 // "pointer to cv-qualifier-seq X" between the optional cv-qualifer-seq
5847 // and the end of the function-definition, member-declarator, or
5848 // declarator.
5849 Sema::CXXThisScopeRAII ThisScope(SemaRef, ThisContext, ThisTypeQuals);
5850
5851 ResultType = getDerived().TransformType(TLB, TL.getReturnLoc());
5852 if (ResultType.isNull())
5853 return QualType();
5854 }
5855 }
5856 else {
5857 ResultType = getDerived().TransformType(TLB, TL.getReturnLoc());
5858 if (ResultType.isNull())
5859 return QualType();
5860
5861 if (getDerived().TransformFunctionTypeParams(
5862 TL.getBeginLoc(), TL.getParams(),
5863 TL.getTypePtr()->param_type_begin(),
5864 T->getExtParameterInfosOrNull(),
5865 ParamTypes, &ParamDecls, ExtParamInfos))
5866 return QualType();
5867 }
5868
5869 FunctionProtoType::ExtProtoInfo EPI = T->getExtProtoInfo();
5870
5871 bool EPIChanged = false;
5872 if (TransformExceptionSpec(EPI.ExceptionSpec, EPIChanged))
5873 return QualType();
5874
5875 // Handle extended parameter information.
5876 if (auto NewExtParamInfos =
5877 ExtParamInfos.getPointerOrNull(ParamTypes.size())) {
5878 if (!EPI.ExtParameterInfos ||
5879 llvm::makeArrayRef(EPI.ExtParameterInfos, TL.getNumParams())
5880 != llvm::makeArrayRef(NewExtParamInfos, ParamTypes.size())) {
5881 EPIChanged = true;
5882 }
5883 EPI.ExtParameterInfos = NewExtParamInfos;
5884 } else if (EPI.ExtParameterInfos) {
5885 EPIChanged = true;
5886 EPI.ExtParameterInfos = nullptr;
5887 }
5888
5889 QualType Result = TL.getType();
5890 if (getDerived().AlwaysRebuild() || ResultType != T->getReturnType() ||
5891 T->getParamTypes() != llvm::makeArrayRef(ParamTypes) || EPIChanged) {
5892 Result = getDerived().RebuildFunctionProtoType(ResultType, ParamTypes, EPI);
5893 if (Result.isNull())
5894 return QualType();
5895 }
5896
5897 FunctionProtoTypeLoc NewTL = TLB.push<FunctionProtoTypeLoc>(Result);
5898 NewTL.setLocalRangeBegin(TL.getLocalRangeBegin());
5899 NewTL.setLParenLoc(TL.getLParenLoc());
5900 NewTL.setRParenLoc(TL.getRParenLoc());
5901 NewTL.setExceptionSpecRange(TL.getExceptionSpecRange());
5902 NewTL.setLocalRangeEnd(TL.getLocalRangeEnd());
5903 for (unsigned i = 0, e = NewTL.getNumParams(); i != e; ++i)
5904 NewTL.setParam(i, ParamDecls[i]);
5905
5906 return Result;
5907 }
5908
5909 template<typename Derived>
TransformExceptionSpec(SourceLocation Loc,FunctionProtoType::ExceptionSpecInfo & ESI,SmallVectorImpl<QualType> & Exceptions,bool & Changed)5910 bool TreeTransform<Derived>::TransformExceptionSpec(
5911 SourceLocation Loc, FunctionProtoType::ExceptionSpecInfo &ESI,
5912 SmallVectorImpl<QualType> &Exceptions, bool &Changed) {
5913 assert(ESI.Type != EST_Uninstantiated && ESI.Type != EST_Unevaluated);
5914
5915 // Instantiate a dynamic noexcept expression, if any.
5916 if (isComputedNoexcept(ESI.Type)) {
5917 EnterExpressionEvaluationContext Unevaluated(
5918 getSema(), Sema::ExpressionEvaluationContext::ConstantEvaluated);
5919 ExprResult NoexceptExpr = getDerived().TransformExpr(ESI.NoexceptExpr);
5920 if (NoexceptExpr.isInvalid())
5921 return true;
5922
5923 ExceptionSpecificationType EST = ESI.Type;
5924 NoexceptExpr =
5925 getSema().ActOnNoexceptSpec(Loc, NoexceptExpr.get(), EST);
5926 if (NoexceptExpr.isInvalid())
5927 return true;
5928
5929 if (ESI.NoexceptExpr != NoexceptExpr.get() || EST != ESI.Type)
5930 Changed = true;
5931 ESI.NoexceptExpr = NoexceptExpr.get();
5932 ESI.Type = EST;
5933 }
5934
5935 if (ESI.Type != EST_Dynamic)
5936 return false;
5937
5938 // Instantiate a dynamic exception specification's type.
5939 for (QualType T : ESI.Exceptions) {
5940 if (const PackExpansionType *PackExpansion =
5941 T->getAs<PackExpansionType>()) {
5942 Changed = true;
5943
5944 // We have a pack expansion. Instantiate it.
5945 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
5946 SemaRef.collectUnexpandedParameterPacks(PackExpansion->getPattern(),
5947 Unexpanded);
5948 assert(!Unexpanded.empty() && "Pack expansion without parameter packs?");
5949
5950 // Determine whether the set of unexpanded parameter packs can and
5951 // should
5952 // be expanded.
5953 bool Expand = false;
5954 bool RetainExpansion = false;
5955 Optional<unsigned> NumExpansions = PackExpansion->getNumExpansions();
5956 // FIXME: Track the location of the ellipsis (and track source location
5957 // information for the types in the exception specification in general).
5958 if (getDerived().TryExpandParameterPacks(
5959 Loc, SourceRange(), Unexpanded, Expand,
5960 RetainExpansion, NumExpansions))
5961 return true;
5962
5963 if (!Expand) {
5964 // We can't expand this pack expansion into separate arguments yet;
5965 // just substitute into the pattern and create a new pack expansion
5966 // type.
5967 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1);
5968 QualType U = getDerived().TransformType(PackExpansion->getPattern());
5969 if (U.isNull())
5970 return true;
5971
5972 U = SemaRef.Context.getPackExpansionType(U, NumExpansions);
5973 Exceptions.push_back(U);
5974 continue;
5975 }
5976
5977 // Substitute into the pack expansion pattern for each slice of the
5978 // pack.
5979 for (unsigned ArgIdx = 0; ArgIdx != *NumExpansions; ++ArgIdx) {
5980 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), ArgIdx);
5981
5982 QualType U = getDerived().TransformType(PackExpansion->getPattern());
5983 if (U.isNull() || SemaRef.CheckSpecifiedExceptionType(U, Loc))
5984 return true;
5985
5986 Exceptions.push_back(U);
5987 }
5988 } else {
5989 QualType U = getDerived().TransformType(T);
5990 if (U.isNull() || SemaRef.CheckSpecifiedExceptionType(U, Loc))
5991 return true;
5992 if (T != U)
5993 Changed = true;
5994
5995 Exceptions.push_back(U);
5996 }
5997 }
5998
5999 ESI.Exceptions = Exceptions;
6000 if (ESI.Exceptions.empty())
6001 ESI.Type = EST_DynamicNone;
6002 return false;
6003 }
6004
6005 template<typename Derived>
TransformFunctionNoProtoType(TypeLocBuilder & TLB,FunctionNoProtoTypeLoc TL)6006 QualType TreeTransform<Derived>::TransformFunctionNoProtoType(
6007 TypeLocBuilder &TLB,
6008 FunctionNoProtoTypeLoc TL) {
6009 const FunctionNoProtoType *T = TL.getTypePtr();
6010 QualType ResultType = getDerived().TransformType(TLB, TL.getReturnLoc());
6011 if (ResultType.isNull())
6012 return QualType();
6013
6014 QualType Result = TL.getType();
6015 if (getDerived().AlwaysRebuild() || ResultType != T->getReturnType())
6016 Result = getDerived().RebuildFunctionNoProtoType(ResultType);
6017
6018 FunctionNoProtoTypeLoc NewTL = TLB.push<FunctionNoProtoTypeLoc>(Result);
6019 NewTL.setLocalRangeBegin(TL.getLocalRangeBegin());
6020 NewTL.setLParenLoc(TL.getLParenLoc());
6021 NewTL.setRParenLoc(TL.getRParenLoc());
6022 NewTL.setLocalRangeEnd(TL.getLocalRangeEnd());
6023
6024 return Result;
6025 }
6026
6027 template<typename Derived> QualType
TransformUnresolvedUsingType(TypeLocBuilder & TLB,UnresolvedUsingTypeLoc TL)6028 TreeTransform<Derived>::TransformUnresolvedUsingType(TypeLocBuilder &TLB,
6029 UnresolvedUsingTypeLoc TL) {
6030 const UnresolvedUsingType *T = TL.getTypePtr();
6031 Decl *D = getDerived().TransformDecl(TL.getNameLoc(), T->getDecl());
6032 if (!D)
6033 return QualType();
6034
6035 QualType Result = TL.getType();
6036 if (getDerived().AlwaysRebuild() || D != T->getDecl()) {
6037 Result = getDerived().RebuildUnresolvedUsingType(TL.getNameLoc(), D);
6038 if (Result.isNull())
6039 return QualType();
6040 }
6041
6042 // We might get an arbitrary type spec type back. We should at
6043 // least always get a type spec type, though.
6044 TypeSpecTypeLoc NewTL = TLB.pushTypeSpec(Result);
6045 NewTL.setNameLoc(TL.getNameLoc());
6046
6047 return Result;
6048 }
6049
6050 template<typename Derived>
TransformTypedefType(TypeLocBuilder & TLB,TypedefTypeLoc TL)6051 QualType TreeTransform<Derived>::TransformTypedefType(TypeLocBuilder &TLB,
6052 TypedefTypeLoc TL) {
6053 const TypedefType *T = TL.getTypePtr();
6054 TypedefNameDecl *Typedef
6055 = cast_or_null<TypedefNameDecl>(getDerived().TransformDecl(TL.getNameLoc(),
6056 T->getDecl()));
6057 if (!Typedef)
6058 return QualType();
6059
6060 QualType Result = TL.getType();
6061 if (getDerived().AlwaysRebuild() ||
6062 Typedef != T->getDecl()) {
6063 Result = getDerived().RebuildTypedefType(Typedef);
6064 if (Result.isNull())
6065 return QualType();
6066 }
6067
6068 TypedefTypeLoc NewTL = TLB.push<TypedefTypeLoc>(Result);
6069 NewTL.setNameLoc(TL.getNameLoc());
6070
6071 return Result;
6072 }
6073
6074 template<typename Derived>
TransformTypeOfExprType(TypeLocBuilder & TLB,TypeOfExprTypeLoc TL)6075 QualType TreeTransform<Derived>::TransformTypeOfExprType(TypeLocBuilder &TLB,
6076 TypeOfExprTypeLoc TL) {
6077 // typeof expressions are not potentially evaluated contexts
6078 EnterExpressionEvaluationContext Unevaluated(
6079 SemaRef, Sema::ExpressionEvaluationContext::Unevaluated,
6080 Sema::ReuseLambdaContextDecl);
6081
6082 ExprResult E = getDerived().TransformExpr(TL.getUnderlyingExpr());
6083 if (E.isInvalid())
6084 return QualType();
6085
6086 E = SemaRef.HandleExprEvaluationContextForTypeof(E.get());
6087 if (E.isInvalid())
6088 return QualType();
6089
6090 QualType Result = TL.getType();
6091 if (getDerived().AlwaysRebuild() ||
6092 E.get() != TL.getUnderlyingExpr()) {
6093 Result = getDerived().RebuildTypeOfExprType(E.get(), TL.getTypeofLoc());
6094 if (Result.isNull())
6095 return QualType();
6096 }
6097 else E.get();
6098
6099 TypeOfExprTypeLoc NewTL = TLB.push<TypeOfExprTypeLoc>(Result);
6100 NewTL.setTypeofLoc(TL.getTypeofLoc());
6101 NewTL.setLParenLoc(TL.getLParenLoc());
6102 NewTL.setRParenLoc(TL.getRParenLoc());
6103
6104 return Result;
6105 }
6106
6107 template<typename Derived>
TransformTypeOfType(TypeLocBuilder & TLB,TypeOfTypeLoc TL)6108 QualType TreeTransform<Derived>::TransformTypeOfType(TypeLocBuilder &TLB,
6109 TypeOfTypeLoc TL) {
6110 TypeSourceInfo* Old_Under_TI = TL.getUnderlyingTInfo();
6111 TypeSourceInfo* New_Under_TI = getDerived().TransformType(Old_Under_TI);
6112 if (!New_Under_TI)
6113 return QualType();
6114
6115 QualType Result = TL.getType();
6116 if (getDerived().AlwaysRebuild() || New_Under_TI != Old_Under_TI) {
6117 Result = getDerived().RebuildTypeOfType(New_Under_TI->getType());
6118 if (Result.isNull())
6119 return QualType();
6120 }
6121
6122 TypeOfTypeLoc NewTL = TLB.push<TypeOfTypeLoc>(Result);
6123 NewTL.setTypeofLoc(TL.getTypeofLoc());
6124 NewTL.setLParenLoc(TL.getLParenLoc());
6125 NewTL.setRParenLoc(TL.getRParenLoc());
6126 NewTL.setUnderlyingTInfo(New_Under_TI);
6127
6128 return Result;
6129 }
6130
6131 template<typename Derived>
TransformDecltypeType(TypeLocBuilder & TLB,DecltypeTypeLoc TL)6132 QualType TreeTransform<Derived>::TransformDecltypeType(TypeLocBuilder &TLB,
6133 DecltypeTypeLoc TL) {
6134 const DecltypeType *T = TL.getTypePtr();
6135
6136 // decltype expressions are not potentially evaluated contexts
6137 EnterExpressionEvaluationContext Unevaluated(
6138 SemaRef, Sema::ExpressionEvaluationContext::Unevaluated, nullptr,
6139 Sema::ExpressionEvaluationContextRecord::EK_Decltype);
6140
6141 ExprResult E = getDerived().TransformExpr(T->getUnderlyingExpr());
6142 if (E.isInvalid())
6143 return QualType();
6144
6145 E = getSema().ActOnDecltypeExpression(E.get());
6146 if (E.isInvalid())
6147 return QualType();
6148
6149 QualType Result = TL.getType();
6150 if (getDerived().AlwaysRebuild() ||
6151 E.get() != T->getUnderlyingExpr()) {
6152 Result = getDerived().RebuildDecltypeType(E.get(), TL.getNameLoc());
6153 if (Result.isNull())
6154 return QualType();
6155 }
6156 else E.get();
6157
6158 DecltypeTypeLoc NewTL = TLB.push<DecltypeTypeLoc>(Result);
6159 NewTL.setNameLoc(TL.getNameLoc());
6160
6161 return Result;
6162 }
6163
6164 template<typename Derived>
TransformUnaryTransformType(TypeLocBuilder & TLB,UnaryTransformTypeLoc TL)6165 QualType TreeTransform<Derived>::TransformUnaryTransformType(
6166 TypeLocBuilder &TLB,
6167 UnaryTransformTypeLoc TL) {
6168 QualType Result = TL.getType();
6169 if (Result->isDependentType()) {
6170 const UnaryTransformType *T = TL.getTypePtr();
6171 QualType NewBase =
6172 getDerived().TransformType(TL.getUnderlyingTInfo())->getType();
6173 Result = getDerived().RebuildUnaryTransformType(NewBase,
6174 T->getUTTKind(),
6175 TL.getKWLoc());
6176 if (Result.isNull())
6177 return QualType();
6178 }
6179
6180 UnaryTransformTypeLoc NewTL = TLB.push<UnaryTransformTypeLoc>(Result);
6181 NewTL.setKWLoc(TL.getKWLoc());
6182 NewTL.setParensRange(TL.getParensRange());
6183 NewTL.setUnderlyingTInfo(TL.getUnderlyingTInfo());
6184 return Result;
6185 }
6186
6187 template<typename Derived>
TransformDeducedTemplateSpecializationType(TypeLocBuilder & TLB,DeducedTemplateSpecializationTypeLoc TL)6188 QualType TreeTransform<Derived>::TransformDeducedTemplateSpecializationType(
6189 TypeLocBuilder &TLB, DeducedTemplateSpecializationTypeLoc TL) {
6190 const DeducedTemplateSpecializationType *T = TL.getTypePtr();
6191
6192 CXXScopeSpec SS;
6193 TemplateName TemplateName = getDerived().TransformTemplateName(
6194 SS, T->getTemplateName(), TL.getTemplateNameLoc());
6195 if (TemplateName.isNull())
6196 return QualType();
6197
6198 QualType OldDeduced = T->getDeducedType();
6199 QualType NewDeduced;
6200 if (!OldDeduced.isNull()) {
6201 NewDeduced = getDerived().TransformType(OldDeduced);
6202 if (NewDeduced.isNull())
6203 return QualType();
6204 }
6205
6206 QualType Result = getDerived().RebuildDeducedTemplateSpecializationType(
6207 TemplateName, NewDeduced);
6208 if (Result.isNull())
6209 return QualType();
6210
6211 DeducedTemplateSpecializationTypeLoc NewTL =
6212 TLB.push<DeducedTemplateSpecializationTypeLoc>(Result);
6213 NewTL.setTemplateNameLoc(TL.getTemplateNameLoc());
6214
6215 return Result;
6216 }
6217
6218 template<typename Derived>
TransformRecordType(TypeLocBuilder & TLB,RecordTypeLoc TL)6219 QualType TreeTransform<Derived>::TransformRecordType(TypeLocBuilder &TLB,
6220 RecordTypeLoc TL) {
6221 const RecordType *T = TL.getTypePtr();
6222 RecordDecl *Record
6223 = cast_or_null<RecordDecl>(getDerived().TransformDecl(TL.getNameLoc(),
6224 T->getDecl()));
6225 if (!Record)
6226 return QualType();
6227
6228 QualType Result = TL.getType();
6229 if (getDerived().AlwaysRebuild() ||
6230 Record != T->getDecl()) {
6231 Result = getDerived().RebuildRecordType(Record);
6232 if (Result.isNull())
6233 return QualType();
6234 }
6235
6236 RecordTypeLoc NewTL = TLB.push<RecordTypeLoc>(Result);
6237 NewTL.setNameLoc(TL.getNameLoc());
6238
6239 return Result;
6240 }
6241
6242 template<typename Derived>
TransformEnumType(TypeLocBuilder & TLB,EnumTypeLoc TL)6243 QualType TreeTransform<Derived>::TransformEnumType(TypeLocBuilder &TLB,
6244 EnumTypeLoc TL) {
6245 const EnumType *T = TL.getTypePtr();
6246 EnumDecl *Enum
6247 = cast_or_null<EnumDecl>(getDerived().TransformDecl(TL.getNameLoc(),
6248 T->getDecl()));
6249 if (!Enum)
6250 return QualType();
6251
6252 QualType Result = TL.getType();
6253 if (getDerived().AlwaysRebuild() ||
6254 Enum != T->getDecl()) {
6255 Result = getDerived().RebuildEnumType(Enum);
6256 if (Result.isNull())
6257 return QualType();
6258 }
6259
6260 EnumTypeLoc NewTL = TLB.push<EnumTypeLoc>(Result);
6261 NewTL.setNameLoc(TL.getNameLoc());
6262
6263 return Result;
6264 }
6265
6266 template<typename Derived>
TransformInjectedClassNameType(TypeLocBuilder & TLB,InjectedClassNameTypeLoc TL)6267 QualType TreeTransform<Derived>::TransformInjectedClassNameType(
6268 TypeLocBuilder &TLB,
6269 InjectedClassNameTypeLoc TL) {
6270 Decl *D = getDerived().TransformDecl(TL.getNameLoc(),
6271 TL.getTypePtr()->getDecl());
6272 if (!D) return QualType();
6273
6274 QualType T = SemaRef.Context.getTypeDeclType(cast<TypeDecl>(D));
6275 TLB.pushTypeSpec(T).setNameLoc(TL.getNameLoc());
6276 return T;
6277 }
6278
6279 template<typename Derived>
TransformTemplateTypeParmType(TypeLocBuilder & TLB,TemplateTypeParmTypeLoc TL)6280 QualType TreeTransform<Derived>::TransformTemplateTypeParmType(
6281 TypeLocBuilder &TLB,
6282 TemplateTypeParmTypeLoc TL) {
6283 return TransformTypeSpecType(TLB, TL);
6284 }
6285
6286 template<typename Derived>
TransformSubstTemplateTypeParmType(TypeLocBuilder & TLB,SubstTemplateTypeParmTypeLoc TL)6287 QualType TreeTransform<Derived>::TransformSubstTemplateTypeParmType(
6288 TypeLocBuilder &TLB,
6289 SubstTemplateTypeParmTypeLoc TL) {
6290 const SubstTemplateTypeParmType *T = TL.getTypePtr();
6291
6292 // Substitute into the replacement type, which itself might involve something
6293 // that needs to be transformed. This only tends to occur with default
6294 // template arguments of template template parameters.
6295 TemporaryBase Rebase(*this, TL.getNameLoc(), DeclarationName());
6296 QualType Replacement = getDerived().TransformType(T->getReplacementType());
6297 if (Replacement.isNull())
6298 return QualType();
6299
6300 // Always canonicalize the replacement type.
6301 Replacement = SemaRef.Context.getCanonicalType(Replacement);
6302 QualType Result
6303 = SemaRef.Context.getSubstTemplateTypeParmType(T->getReplacedParameter(),
6304 Replacement);
6305
6306 // Propagate type-source information.
6307 SubstTemplateTypeParmTypeLoc NewTL
6308 = TLB.push<SubstTemplateTypeParmTypeLoc>(Result);
6309 NewTL.setNameLoc(TL.getNameLoc());
6310 return Result;
6311
6312 }
6313
6314 template<typename Derived>
TransformSubstTemplateTypeParmPackType(TypeLocBuilder & TLB,SubstTemplateTypeParmPackTypeLoc TL)6315 QualType TreeTransform<Derived>::TransformSubstTemplateTypeParmPackType(
6316 TypeLocBuilder &TLB,
6317 SubstTemplateTypeParmPackTypeLoc TL) {
6318 return TransformTypeSpecType(TLB, TL);
6319 }
6320
6321 template<typename Derived>
TransformTemplateSpecializationType(TypeLocBuilder & TLB,TemplateSpecializationTypeLoc TL)6322 QualType TreeTransform<Derived>::TransformTemplateSpecializationType(
6323 TypeLocBuilder &TLB,
6324 TemplateSpecializationTypeLoc TL) {
6325 const TemplateSpecializationType *T = TL.getTypePtr();
6326
6327 // The nested-name-specifier never matters in a TemplateSpecializationType,
6328 // because we can't have a dependent nested-name-specifier anyway.
6329 CXXScopeSpec SS;
6330 TemplateName Template
6331 = getDerived().TransformTemplateName(SS, T->getTemplateName(),
6332 TL.getTemplateNameLoc());
6333 if (Template.isNull())
6334 return QualType();
6335
6336 return getDerived().TransformTemplateSpecializationType(TLB, TL, Template);
6337 }
6338
6339 template<typename Derived>
TransformAtomicType(TypeLocBuilder & TLB,AtomicTypeLoc TL)6340 QualType TreeTransform<Derived>::TransformAtomicType(TypeLocBuilder &TLB,
6341 AtomicTypeLoc TL) {
6342 QualType ValueType = getDerived().TransformType(TLB, TL.getValueLoc());
6343 if (ValueType.isNull())
6344 return QualType();
6345
6346 QualType Result = TL.getType();
6347 if (getDerived().AlwaysRebuild() ||
6348 ValueType != TL.getValueLoc().getType()) {
6349 Result = getDerived().RebuildAtomicType(ValueType, TL.getKWLoc());
6350 if (Result.isNull())
6351 return QualType();
6352 }
6353
6354 AtomicTypeLoc NewTL = TLB.push<AtomicTypeLoc>(Result);
6355 NewTL.setKWLoc(TL.getKWLoc());
6356 NewTL.setLParenLoc(TL.getLParenLoc());
6357 NewTL.setRParenLoc(TL.getRParenLoc());
6358
6359 return Result;
6360 }
6361
6362 template <typename Derived>
TransformPipeType(TypeLocBuilder & TLB,PipeTypeLoc TL)6363 QualType TreeTransform<Derived>::TransformPipeType(TypeLocBuilder &TLB,
6364 PipeTypeLoc TL) {
6365 QualType ValueType = getDerived().TransformType(TLB, TL.getValueLoc());
6366 if (ValueType.isNull())
6367 return QualType();
6368
6369 QualType Result = TL.getType();
6370 if (getDerived().AlwaysRebuild() || ValueType != TL.getValueLoc().getType()) {
6371 const PipeType *PT = Result->castAs<PipeType>();
6372 bool isReadPipe = PT->isReadOnly();
6373 Result = getDerived().RebuildPipeType(ValueType, TL.getKWLoc(), isReadPipe);
6374 if (Result.isNull())
6375 return QualType();
6376 }
6377
6378 PipeTypeLoc NewTL = TLB.push<PipeTypeLoc>(Result);
6379 NewTL.setKWLoc(TL.getKWLoc());
6380
6381 return Result;
6382 }
6383
6384 template <typename Derived>
TransformExtIntType(TypeLocBuilder & TLB,ExtIntTypeLoc TL)6385 QualType TreeTransform<Derived>::TransformExtIntType(TypeLocBuilder &TLB,
6386 ExtIntTypeLoc TL) {
6387 const ExtIntType *EIT = TL.getTypePtr();
6388 QualType Result = TL.getType();
6389
6390 if (getDerived().AlwaysRebuild()) {
6391 Result = getDerived().RebuildExtIntType(EIT->isUnsigned(),
6392 EIT->getNumBits(), TL.getNameLoc());
6393 if (Result.isNull())
6394 return QualType();
6395 }
6396
6397 ExtIntTypeLoc NewTL = TLB.push<ExtIntTypeLoc>(Result);
6398 NewTL.setNameLoc(TL.getNameLoc());
6399 return Result;
6400 }
6401
6402 template <typename Derived>
TransformDependentExtIntType(TypeLocBuilder & TLB,DependentExtIntTypeLoc TL)6403 QualType TreeTransform<Derived>::TransformDependentExtIntType(
6404 TypeLocBuilder &TLB, DependentExtIntTypeLoc TL) {
6405 const DependentExtIntType *EIT = TL.getTypePtr();
6406
6407 EnterExpressionEvaluationContext Unevaluated(
6408 SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated);
6409 ExprResult BitsExpr = getDerived().TransformExpr(EIT->getNumBitsExpr());
6410 BitsExpr = SemaRef.ActOnConstantExpression(BitsExpr);
6411
6412 if (BitsExpr.isInvalid())
6413 return QualType();
6414
6415 QualType Result = TL.getType();
6416
6417 if (getDerived().AlwaysRebuild() || BitsExpr.get() != EIT->getNumBitsExpr()) {
6418 Result = getDerived().RebuildDependentExtIntType(
6419 EIT->isUnsigned(), BitsExpr.get(), TL.getNameLoc());
6420
6421 if (Result.isNull())
6422 return QualType();
6423 }
6424
6425 if (isa<DependentExtIntType>(Result)) {
6426 DependentExtIntTypeLoc NewTL = TLB.push<DependentExtIntTypeLoc>(Result);
6427 NewTL.setNameLoc(TL.getNameLoc());
6428 } else {
6429 ExtIntTypeLoc NewTL = TLB.push<ExtIntTypeLoc>(Result);
6430 NewTL.setNameLoc(TL.getNameLoc());
6431 }
6432 return Result;
6433 }
6434
6435 /// Simple iterator that traverses the template arguments in a
6436 /// container that provides a \c getArgLoc() member function.
6437 ///
6438 /// This iterator is intended to be used with the iterator form of
6439 /// \c TreeTransform<Derived>::TransformTemplateArguments().
6440 template<typename ArgLocContainer>
6441 class TemplateArgumentLocContainerIterator {
6442 ArgLocContainer *Container;
6443 unsigned Index;
6444
6445 public:
6446 typedef TemplateArgumentLoc value_type;
6447 typedef TemplateArgumentLoc reference;
6448 typedef int difference_type;
6449 typedef std::input_iterator_tag iterator_category;
6450
6451 class pointer {
6452 TemplateArgumentLoc Arg;
6453
6454 public:
pointer(TemplateArgumentLoc Arg)6455 explicit pointer(TemplateArgumentLoc Arg) : Arg(Arg) { }
6456
6457 const TemplateArgumentLoc *operator->() const {
6458 return &Arg;
6459 }
6460 };
6461
6462
TemplateArgumentLocContainerIterator()6463 TemplateArgumentLocContainerIterator() {}
6464
TemplateArgumentLocContainerIterator(ArgLocContainer & Container,unsigned Index)6465 TemplateArgumentLocContainerIterator(ArgLocContainer &Container,
6466 unsigned Index)
6467 : Container(&Container), Index(Index) { }
6468
6469 TemplateArgumentLocContainerIterator &operator++() {
6470 ++Index;
6471 return *this;
6472 }
6473
6474 TemplateArgumentLocContainerIterator operator++(int) {
6475 TemplateArgumentLocContainerIterator Old(*this);
6476 ++(*this);
6477 return Old;
6478 }
6479
6480 TemplateArgumentLoc operator*() const {
6481 return Container->getArgLoc(Index);
6482 }
6483
6484 pointer operator->() const {
6485 return pointer(Container->getArgLoc(Index));
6486 }
6487
6488 friend bool operator==(const TemplateArgumentLocContainerIterator &X,
6489 const TemplateArgumentLocContainerIterator &Y) {
6490 return X.Container == Y.Container && X.Index == Y.Index;
6491 }
6492
6493 friend bool operator!=(const TemplateArgumentLocContainerIterator &X,
6494 const TemplateArgumentLocContainerIterator &Y) {
6495 return !(X == Y);
6496 }
6497 };
6498
6499 template<typename Derived>
TransformAutoType(TypeLocBuilder & TLB,AutoTypeLoc TL)6500 QualType TreeTransform<Derived>::TransformAutoType(TypeLocBuilder &TLB,
6501 AutoTypeLoc TL) {
6502 const AutoType *T = TL.getTypePtr();
6503 QualType OldDeduced = T->getDeducedType();
6504 QualType NewDeduced;
6505 if (!OldDeduced.isNull()) {
6506 NewDeduced = getDerived().TransformType(OldDeduced);
6507 if (NewDeduced.isNull())
6508 return QualType();
6509 }
6510
6511 ConceptDecl *NewCD = nullptr;
6512 TemplateArgumentListInfo NewTemplateArgs;
6513 NestedNameSpecifierLoc NewNestedNameSpec;
6514 if (T->isConstrained()) {
6515 NewCD = cast_or_null<ConceptDecl>(getDerived().TransformDecl(
6516 TL.getConceptNameLoc(), T->getTypeConstraintConcept()));
6517
6518 NewTemplateArgs.setLAngleLoc(TL.getLAngleLoc());
6519 NewTemplateArgs.setRAngleLoc(TL.getRAngleLoc());
6520 typedef TemplateArgumentLocContainerIterator<AutoTypeLoc> ArgIterator;
6521 if (getDerived().TransformTemplateArguments(ArgIterator(TL, 0),
6522 ArgIterator(TL,
6523 TL.getNumArgs()),
6524 NewTemplateArgs))
6525 return QualType();
6526
6527 if (TL.getNestedNameSpecifierLoc()) {
6528 NewNestedNameSpec
6529 = getDerived().TransformNestedNameSpecifierLoc(
6530 TL.getNestedNameSpecifierLoc());
6531 if (!NewNestedNameSpec)
6532 return QualType();
6533 }
6534 }
6535
6536 QualType Result = TL.getType();
6537 if (getDerived().AlwaysRebuild() || NewDeduced != OldDeduced ||
6538 T->isDependentType() || T->isConstrained()) {
6539 // FIXME: Maybe don't rebuild if all template arguments are the same.
6540 llvm::SmallVector<TemplateArgument, 4> NewArgList;
6541 NewArgList.reserve(NewArgList.size());
6542 for (const auto &ArgLoc : NewTemplateArgs.arguments())
6543 NewArgList.push_back(ArgLoc.getArgument());
6544 Result = getDerived().RebuildAutoType(NewDeduced, T->getKeyword(), NewCD,
6545 NewArgList);
6546 if (Result.isNull())
6547 return QualType();
6548 }
6549
6550 AutoTypeLoc NewTL = TLB.push<AutoTypeLoc>(Result);
6551 NewTL.setNameLoc(TL.getNameLoc());
6552 NewTL.setNestedNameSpecifierLoc(NewNestedNameSpec);
6553 NewTL.setTemplateKWLoc(TL.getTemplateKWLoc());
6554 NewTL.setConceptNameLoc(TL.getConceptNameLoc());
6555 NewTL.setFoundDecl(TL.getFoundDecl());
6556 NewTL.setLAngleLoc(TL.getLAngleLoc());
6557 NewTL.setRAngleLoc(TL.getRAngleLoc());
6558 for (unsigned I = 0; I < TL.getNumArgs(); ++I)
6559 NewTL.setArgLocInfo(I, NewTemplateArgs.arguments()[I].getLocInfo());
6560
6561 return Result;
6562 }
6563
6564 template <typename Derived>
TransformTemplateSpecializationType(TypeLocBuilder & TLB,TemplateSpecializationTypeLoc TL,TemplateName Template)6565 QualType TreeTransform<Derived>::TransformTemplateSpecializationType(
6566 TypeLocBuilder &TLB,
6567 TemplateSpecializationTypeLoc TL,
6568 TemplateName Template) {
6569 TemplateArgumentListInfo NewTemplateArgs;
6570 NewTemplateArgs.setLAngleLoc(TL.getLAngleLoc());
6571 NewTemplateArgs.setRAngleLoc(TL.getRAngleLoc());
6572 typedef TemplateArgumentLocContainerIterator<TemplateSpecializationTypeLoc>
6573 ArgIterator;
6574 if (getDerived().TransformTemplateArguments(ArgIterator(TL, 0),
6575 ArgIterator(TL, TL.getNumArgs()),
6576 NewTemplateArgs))
6577 return QualType();
6578
6579 // FIXME: maybe don't rebuild if all the template arguments are the same.
6580
6581 QualType Result =
6582 getDerived().RebuildTemplateSpecializationType(Template,
6583 TL.getTemplateNameLoc(),
6584 NewTemplateArgs);
6585
6586 if (!Result.isNull()) {
6587 // Specializations of template template parameters are represented as
6588 // TemplateSpecializationTypes, and substitution of type alias templates
6589 // within a dependent context can transform them into
6590 // DependentTemplateSpecializationTypes.
6591 if (isa<DependentTemplateSpecializationType>(Result)) {
6592 DependentTemplateSpecializationTypeLoc NewTL
6593 = TLB.push<DependentTemplateSpecializationTypeLoc>(Result);
6594 NewTL.setElaboratedKeywordLoc(SourceLocation());
6595 NewTL.setQualifierLoc(NestedNameSpecifierLoc());
6596 NewTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc());
6597 NewTL.setTemplateNameLoc(TL.getTemplateNameLoc());
6598 NewTL.setLAngleLoc(TL.getLAngleLoc());
6599 NewTL.setRAngleLoc(TL.getRAngleLoc());
6600 for (unsigned i = 0, e = NewTemplateArgs.size(); i != e; ++i)
6601 NewTL.setArgLocInfo(i, NewTemplateArgs[i].getLocInfo());
6602 return Result;
6603 }
6604
6605 TemplateSpecializationTypeLoc NewTL
6606 = TLB.push<TemplateSpecializationTypeLoc>(Result);
6607 NewTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc());
6608 NewTL.setTemplateNameLoc(TL.getTemplateNameLoc());
6609 NewTL.setLAngleLoc(TL.getLAngleLoc());
6610 NewTL.setRAngleLoc(TL.getRAngleLoc());
6611 for (unsigned i = 0, e = NewTemplateArgs.size(); i != e; ++i)
6612 NewTL.setArgLocInfo(i, NewTemplateArgs[i].getLocInfo());
6613 }
6614
6615 return Result;
6616 }
6617
6618 template <typename Derived>
TransformDependentTemplateSpecializationType(TypeLocBuilder & TLB,DependentTemplateSpecializationTypeLoc TL,TemplateName Template,CXXScopeSpec & SS)6619 QualType TreeTransform<Derived>::TransformDependentTemplateSpecializationType(
6620 TypeLocBuilder &TLB,
6621 DependentTemplateSpecializationTypeLoc TL,
6622 TemplateName Template,
6623 CXXScopeSpec &SS) {
6624 TemplateArgumentListInfo NewTemplateArgs;
6625 NewTemplateArgs.setLAngleLoc(TL.getLAngleLoc());
6626 NewTemplateArgs.setRAngleLoc(TL.getRAngleLoc());
6627 typedef TemplateArgumentLocContainerIterator<
6628 DependentTemplateSpecializationTypeLoc> ArgIterator;
6629 if (getDerived().TransformTemplateArguments(ArgIterator(TL, 0),
6630 ArgIterator(TL, TL.getNumArgs()),
6631 NewTemplateArgs))
6632 return QualType();
6633
6634 // FIXME: maybe don't rebuild if all the template arguments are the same.
6635
6636 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
6637 QualType Result
6638 = getSema().Context.getDependentTemplateSpecializationType(
6639 TL.getTypePtr()->getKeyword(),
6640 DTN->getQualifier(),
6641 DTN->getIdentifier(),
6642 NewTemplateArgs);
6643
6644 DependentTemplateSpecializationTypeLoc NewTL
6645 = TLB.push<DependentTemplateSpecializationTypeLoc>(Result);
6646 NewTL.setElaboratedKeywordLoc(TL.getElaboratedKeywordLoc());
6647 NewTL.setQualifierLoc(SS.getWithLocInContext(SemaRef.Context));
6648 NewTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc());
6649 NewTL.setTemplateNameLoc(TL.getTemplateNameLoc());
6650 NewTL.setLAngleLoc(TL.getLAngleLoc());
6651 NewTL.setRAngleLoc(TL.getRAngleLoc());
6652 for (unsigned i = 0, e = NewTemplateArgs.size(); i != e; ++i)
6653 NewTL.setArgLocInfo(i, NewTemplateArgs[i].getLocInfo());
6654 return Result;
6655 }
6656
6657 QualType Result
6658 = getDerived().RebuildTemplateSpecializationType(Template,
6659 TL.getTemplateNameLoc(),
6660 NewTemplateArgs);
6661
6662 if (!Result.isNull()) {
6663 /// FIXME: Wrap this in an elaborated-type-specifier?
6664 TemplateSpecializationTypeLoc NewTL
6665 = TLB.push<TemplateSpecializationTypeLoc>(Result);
6666 NewTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc());
6667 NewTL.setTemplateNameLoc(TL.getTemplateNameLoc());
6668 NewTL.setLAngleLoc(TL.getLAngleLoc());
6669 NewTL.setRAngleLoc(TL.getRAngleLoc());
6670 for (unsigned i = 0, e = NewTemplateArgs.size(); i != e; ++i)
6671 NewTL.setArgLocInfo(i, NewTemplateArgs[i].getLocInfo());
6672 }
6673
6674 return Result;
6675 }
6676
6677 template<typename Derived>
6678 QualType
TransformElaboratedType(TypeLocBuilder & TLB,ElaboratedTypeLoc TL)6679 TreeTransform<Derived>::TransformElaboratedType(TypeLocBuilder &TLB,
6680 ElaboratedTypeLoc TL) {
6681 const ElaboratedType *T = TL.getTypePtr();
6682
6683 NestedNameSpecifierLoc QualifierLoc;
6684 // NOTE: the qualifier in an ElaboratedType is optional.
6685 if (TL.getQualifierLoc()) {
6686 QualifierLoc
6687 = getDerived().TransformNestedNameSpecifierLoc(TL.getQualifierLoc());
6688 if (!QualifierLoc)
6689 return QualType();
6690 }
6691
6692 QualType NamedT = getDerived().TransformType(TLB, TL.getNamedTypeLoc());
6693 if (NamedT.isNull())
6694 return QualType();
6695
6696 // C++0x [dcl.type.elab]p2:
6697 // If the identifier resolves to a typedef-name or the simple-template-id
6698 // resolves to an alias template specialization, the
6699 // elaborated-type-specifier is ill-formed.
6700 if (T->getKeyword() != ETK_None && T->getKeyword() != ETK_Typename) {
6701 if (const TemplateSpecializationType *TST =
6702 NamedT->getAs<TemplateSpecializationType>()) {
6703 TemplateName Template = TST->getTemplateName();
6704 if (TypeAliasTemplateDecl *TAT = dyn_cast_or_null<TypeAliasTemplateDecl>(
6705 Template.getAsTemplateDecl())) {
6706 SemaRef.Diag(TL.getNamedTypeLoc().getBeginLoc(),
6707 diag::err_tag_reference_non_tag)
6708 << TAT << Sema::NTK_TypeAliasTemplate
6709 << ElaboratedType::getTagTypeKindForKeyword(T->getKeyword());
6710 SemaRef.Diag(TAT->getLocation(), diag::note_declared_at);
6711 }
6712 }
6713 }
6714
6715 QualType Result = TL.getType();
6716 if (getDerived().AlwaysRebuild() ||
6717 QualifierLoc != TL.getQualifierLoc() ||
6718 NamedT != T->getNamedType()) {
6719 Result = getDerived().RebuildElaboratedType(TL.getElaboratedKeywordLoc(),
6720 T->getKeyword(),
6721 QualifierLoc, NamedT);
6722 if (Result.isNull())
6723 return QualType();
6724 }
6725
6726 ElaboratedTypeLoc NewTL = TLB.push<ElaboratedTypeLoc>(Result);
6727 NewTL.setElaboratedKeywordLoc(TL.getElaboratedKeywordLoc());
6728 NewTL.setQualifierLoc(QualifierLoc);
6729 return Result;
6730 }
6731
6732 template<typename Derived>
TransformAttributedType(TypeLocBuilder & TLB,AttributedTypeLoc TL)6733 QualType TreeTransform<Derived>::TransformAttributedType(
6734 TypeLocBuilder &TLB,
6735 AttributedTypeLoc TL) {
6736 const AttributedType *oldType = TL.getTypePtr();
6737 QualType modifiedType = getDerived().TransformType(TLB, TL.getModifiedLoc());
6738 if (modifiedType.isNull())
6739 return QualType();
6740
6741 // oldAttr can be null if we started with a QualType rather than a TypeLoc.
6742 const Attr *oldAttr = TL.getAttr();
6743 const Attr *newAttr = oldAttr ? getDerived().TransformAttr(oldAttr) : nullptr;
6744 if (oldAttr && !newAttr)
6745 return QualType();
6746
6747 QualType result = TL.getType();
6748
6749 // FIXME: dependent operand expressions?
6750 if (getDerived().AlwaysRebuild() ||
6751 modifiedType != oldType->getModifiedType()) {
6752 // TODO: this is really lame; we should really be rebuilding the
6753 // equivalent type from first principles.
6754 QualType equivalentType
6755 = getDerived().TransformType(oldType->getEquivalentType());
6756 if (equivalentType.isNull())
6757 return QualType();
6758
6759 // Check whether we can add nullability; it is only represented as
6760 // type sugar, and therefore cannot be diagnosed in any other way.
6761 if (auto nullability = oldType->getImmediateNullability()) {
6762 if (!modifiedType->canHaveNullability()) {
6763 SemaRef.Diag(TL.getAttr()->getLocation(),
6764 diag::err_nullability_nonpointer)
6765 << DiagNullabilityKind(*nullability, false) << modifiedType;
6766 return QualType();
6767 }
6768 }
6769
6770 result = SemaRef.Context.getAttributedType(TL.getAttrKind(),
6771 modifiedType,
6772 equivalentType);
6773 }
6774
6775 AttributedTypeLoc newTL = TLB.push<AttributedTypeLoc>(result);
6776 newTL.setAttr(newAttr);
6777 return result;
6778 }
6779
6780 template<typename Derived>
6781 QualType
TransformParenType(TypeLocBuilder & TLB,ParenTypeLoc TL)6782 TreeTransform<Derived>::TransformParenType(TypeLocBuilder &TLB,
6783 ParenTypeLoc TL) {
6784 QualType Inner = getDerived().TransformType(TLB, TL.getInnerLoc());
6785 if (Inner.isNull())
6786 return QualType();
6787
6788 QualType Result = TL.getType();
6789 if (getDerived().AlwaysRebuild() ||
6790 Inner != TL.getInnerLoc().getType()) {
6791 Result = getDerived().RebuildParenType(Inner);
6792 if (Result.isNull())
6793 return QualType();
6794 }
6795
6796 ParenTypeLoc NewTL = TLB.push<ParenTypeLoc>(Result);
6797 NewTL.setLParenLoc(TL.getLParenLoc());
6798 NewTL.setRParenLoc(TL.getRParenLoc());
6799 return Result;
6800 }
6801
6802 template <typename Derived>
6803 QualType
TransformMacroQualifiedType(TypeLocBuilder & TLB,MacroQualifiedTypeLoc TL)6804 TreeTransform<Derived>::TransformMacroQualifiedType(TypeLocBuilder &TLB,
6805 MacroQualifiedTypeLoc TL) {
6806 QualType Inner = getDerived().TransformType(TLB, TL.getInnerLoc());
6807 if (Inner.isNull())
6808 return QualType();
6809
6810 QualType Result = TL.getType();
6811 if (getDerived().AlwaysRebuild() || Inner != TL.getInnerLoc().getType()) {
6812 Result =
6813 getDerived().RebuildMacroQualifiedType(Inner, TL.getMacroIdentifier());
6814 if (Result.isNull())
6815 return QualType();
6816 }
6817
6818 MacroQualifiedTypeLoc NewTL = TLB.push<MacroQualifiedTypeLoc>(Result);
6819 NewTL.setExpansionLoc(TL.getExpansionLoc());
6820 return Result;
6821 }
6822
6823 template<typename Derived>
TransformDependentNameType(TypeLocBuilder & TLB,DependentNameTypeLoc TL)6824 QualType TreeTransform<Derived>::TransformDependentNameType(
6825 TypeLocBuilder &TLB, DependentNameTypeLoc TL) {
6826 return TransformDependentNameType(TLB, TL, false);
6827 }
6828
6829 template<typename Derived>
TransformDependentNameType(TypeLocBuilder & TLB,DependentNameTypeLoc TL,bool DeducedTSTContext)6830 QualType TreeTransform<Derived>::TransformDependentNameType(
6831 TypeLocBuilder &TLB, DependentNameTypeLoc TL, bool DeducedTSTContext) {
6832 const DependentNameType *T = TL.getTypePtr();
6833
6834 NestedNameSpecifierLoc QualifierLoc
6835 = getDerived().TransformNestedNameSpecifierLoc(TL.getQualifierLoc());
6836 if (!QualifierLoc)
6837 return QualType();
6838
6839 QualType Result
6840 = getDerived().RebuildDependentNameType(T->getKeyword(),
6841 TL.getElaboratedKeywordLoc(),
6842 QualifierLoc,
6843 T->getIdentifier(),
6844 TL.getNameLoc(),
6845 DeducedTSTContext);
6846 if (Result.isNull())
6847 return QualType();
6848
6849 if (const ElaboratedType* ElabT = Result->getAs<ElaboratedType>()) {
6850 QualType NamedT = ElabT->getNamedType();
6851 TLB.pushTypeSpec(NamedT).setNameLoc(TL.getNameLoc());
6852
6853 ElaboratedTypeLoc NewTL = TLB.push<ElaboratedTypeLoc>(Result);
6854 NewTL.setElaboratedKeywordLoc(TL.getElaboratedKeywordLoc());
6855 NewTL.setQualifierLoc(QualifierLoc);
6856 } else {
6857 DependentNameTypeLoc NewTL = TLB.push<DependentNameTypeLoc>(Result);
6858 NewTL.setElaboratedKeywordLoc(TL.getElaboratedKeywordLoc());
6859 NewTL.setQualifierLoc(QualifierLoc);
6860 NewTL.setNameLoc(TL.getNameLoc());
6861 }
6862 return Result;
6863 }
6864
6865 template<typename Derived>
6866 QualType TreeTransform<Derived>::
TransformDependentTemplateSpecializationType(TypeLocBuilder & TLB,DependentTemplateSpecializationTypeLoc TL)6867 TransformDependentTemplateSpecializationType(TypeLocBuilder &TLB,
6868 DependentTemplateSpecializationTypeLoc TL) {
6869 NestedNameSpecifierLoc QualifierLoc;
6870 if (TL.getQualifierLoc()) {
6871 QualifierLoc
6872 = getDerived().TransformNestedNameSpecifierLoc(TL.getQualifierLoc());
6873 if (!QualifierLoc)
6874 return QualType();
6875 }
6876
6877 return getDerived()
6878 .TransformDependentTemplateSpecializationType(TLB, TL, QualifierLoc);
6879 }
6880
6881 template<typename Derived>
6882 QualType TreeTransform<Derived>::
TransformDependentTemplateSpecializationType(TypeLocBuilder & TLB,DependentTemplateSpecializationTypeLoc TL,NestedNameSpecifierLoc QualifierLoc)6883 TransformDependentTemplateSpecializationType(TypeLocBuilder &TLB,
6884 DependentTemplateSpecializationTypeLoc TL,
6885 NestedNameSpecifierLoc QualifierLoc) {
6886 const DependentTemplateSpecializationType *T = TL.getTypePtr();
6887
6888 TemplateArgumentListInfo NewTemplateArgs;
6889 NewTemplateArgs.setLAngleLoc(TL.getLAngleLoc());
6890 NewTemplateArgs.setRAngleLoc(TL.getRAngleLoc());
6891
6892 typedef TemplateArgumentLocContainerIterator<
6893 DependentTemplateSpecializationTypeLoc> ArgIterator;
6894 if (getDerived().TransformTemplateArguments(ArgIterator(TL, 0),
6895 ArgIterator(TL, TL.getNumArgs()),
6896 NewTemplateArgs))
6897 return QualType();
6898
6899 QualType Result = getDerived().RebuildDependentTemplateSpecializationType(
6900 T->getKeyword(), QualifierLoc, TL.getTemplateKeywordLoc(),
6901 T->getIdentifier(), TL.getTemplateNameLoc(), NewTemplateArgs,
6902 /*AllowInjectedClassName*/ false);
6903 if (Result.isNull())
6904 return QualType();
6905
6906 if (const ElaboratedType *ElabT = dyn_cast<ElaboratedType>(Result)) {
6907 QualType NamedT = ElabT->getNamedType();
6908
6909 // Copy information relevant to the template specialization.
6910 TemplateSpecializationTypeLoc NamedTL
6911 = TLB.push<TemplateSpecializationTypeLoc>(NamedT);
6912 NamedTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc());
6913 NamedTL.setTemplateNameLoc(TL.getTemplateNameLoc());
6914 NamedTL.setLAngleLoc(TL.getLAngleLoc());
6915 NamedTL.setRAngleLoc(TL.getRAngleLoc());
6916 for (unsigned I = 0, E = NewTemplateArgs.size(); I != E; ++I)
6917 NamedTL.setArgLocInfo(I, NewTemplateArgs[I].getLocInfo());
6918
6919 // Copy information relevant to the elaborated type.
6920 ElaboratedTypeLoc NewTL = TLB.push<ElaboratedTypeLoc>(Result);
6921 NewTL.setElaboratedKeywordLoc(TL.getElaboratedKeywordLoc());
6922 NewTL.setQualifierLoc(QualifierLoc);
6923 } else if (isa<DependentTemplateSpecializationType>(Result)) {
6924 DependentTemplateSpecializationTypeLoc SpecTL
6925 = TLB.push<DependentTemplateSpecializationTypeLoc>(Result);
6926 SpecTL.setElaboratedKeywordLoc(TL.getElaboratedKeywordLoc());
6927 SpecTL.setQualifierLoc(QualifierLoc);
6928 SpecTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc());
6929 SpecTL.setTemplateNameLoc(TL.getTemplateNameLoc());
6930 SpecTL.setLAngleLoc(TL.getLAngleLoc());
6931 SpecTL.setRAngleLoc(TL.getRAngleLoc());
6932 for (unsigned I = 0, E = NewTemplateArgs.size(); I != E; ++I)
6933 SpecTL.setArgLocInfo(I, NewTemplateArgs[I].getLocInfo());
6934 } else {
6935 TemplateSpecializationTypeLoc SpecTL
6936 = TLB.push<TemplateSpecializationTypeLoc>(Result);
6937 SpecTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc());
6938 SpecTL.setTemplateNameLoc(TL.getTemplateNameLoc());
6939 SpecTL.setLAngleLoc(TL.getLAngleLoc());
6940 SpecTL.setRAngleLoc(TL.getRAngleLoc());
6941 for (unsigned I = 0, E = NewTemplateArgs.size(); I != E; ++I)
6942 SpecTL.setArgLocInfo(I, NewTemplateArgs[I].getLocInfo());
6943 }
6944 return Result;
6945 }
6946
6947 template<typename Derived>
TransformPackExpansionType(TypeLocBuilder & TLB,PackExpansionTypeLoc TL)6948 QualType TreeTransform<Derived>::TransformPackExpansionType(TypeLocBuilder &TLB,
6949 PackExpansionTypeLoc TL) {
6950 QualType Pattern
6951 = getDerived().TransformType(TLB, TL.getPatternLoc());
6952 if (Pattern.isNull())
6953 return QualType();
6954
6955 QualType Result = TL.getType();
6956 if (getDerived().AlwaysRebuild() ||
6957 Pattern != TL.getPatternLoc().getType()) {
6958 Result = getDerived().RebuildPackExpansionType(Pattern,
6959 TL.getPatternLoc().getSourceRange(),
6960 TL.getEllipsisLoc(),
6961 TL.getTypePtr()->getNumExpansions());
6962 if (Result.isNull())
6963 return QualType();
6964 }
6965
6966 PackExpansionTypeLoc NewT = TLB.push<PackExpansionTypeLoc>(Result);
6967 NewT.setEllipsisLoc(TL.getEllipsisLoc());
6968 return Result;
6969 }
6970
6971 template<typename Derived>
6972 QualType
TransformObjCInterfaceType(TypeLocBuilder & TLB,ObjCInterfaceTypeLoc TL)6973 TreeTransform<Derived>::TransformObjCInterfaceType(TypeLocBuilder &TLB,
6974 ObjCInterfaceTypeLoc TL) {
6975 // ObjCInterfaceType is never dependent.
6976 TLB.pushFullCopy(TL);
6977 return TL.getType();
6978 }
6979
6980 template<typename Derived>
6981 QualType
TransformObjCTypeParamType(TypeLocBuilder & TLB,ObjCTypeParamTypeLoc TL)6982 TreeTransform<Derived>::TransformObjCTypeParamType(TypeLocBuilder &TLB,
6983 ObjCTypeParamTypeLoc TL) {
6984 const ObjCTypeParamType *T = TL.getTypePtr();
6985 ObjCTypeParamDecl *OTP = cast_or_null<ObjCTypeParamDecl>(
6986 getDerived().TransformDecl(T->getDecl()->getLocation(), T->getDecl()));
6987 if (!OTP)
6988 return QualType();
6989
6990 QualType Result = TL.getType();
6991 if (getDerived().AlwaysRebuild() ||
6992 OTP != T->getDecl()) {
6993 Result = getDerived().RebuildObjCTypeParamType(OTP,
6994 TL.getProtocolLAngleLoc(),
6995 llvm::makeArrayRef(TL.getTypePtr()->qual_begin(),
6996 TL.getNumProtocols()),
6997 TL.getProtocolLocs(),
6998 TL.getProtocolRAngleLoc());
6999 if (Result.isNull())
7000 return QualType();
7001 }
7002
7003 ObjCTypeParamTypeLoc NewTL = TLB.push<ObjCTypeParamTypeLoc>(Result);
7004 if (TL.getNumProtocols()) {
7005 NewTL.setProtocolLAngleLoc(TL.getProtocolLAngleLoc());
7006 for (unsigned i = 0, n = TL.getNumProtocols(); i != n; ++i)
7007 NewTL.setProtocolLoc(i, TL.getProtocolLoc(i));
7008 NewTL.setProtocolRAngleLoc(TL.getProtocolRAngleLoc());
7009 }
7010 return Result;
7011 }
7012
7013 template<typename Derived>
7014 QualType
TransformObjCObjectType(TypeLocBuilder & TLB,ObjCObjectTypeLoc TL)7015 TreeTransform<Derived>::TransformObjCObjectType(TypeLocBuilder &TLB,
7016 ObjCObjectTypeLoc TL) {
7017 // Transform base type.
7018 QualType BaseType = getDerived().TransformType(TLB, TL.getBaseLoc());
7019 if (BaseType.isNull())
7020 return QualType();
7021
7022 bool AnyChanged = BaseType != TL.getBaseLoc().getType();
7023
7024 // Transform type arguments.
7025 SmallVector<TypeSourceInfo *, 4> NewTypeArgInfos;
7026 for (unsigned i = 0, n = TL.getNumTypeArgs(); i != n; ++i) {
7027 TypeSourceInfo *TypeArgInfo = TL.getTypeArgTInfo(i);
7028 TypeLoc TypeArgLoc = TypeArgInfo->getTypeLoc();
7029 QualType TypeArg = TypeArgInfo->getType();
7030 if (auto PackExpansionLoc = TypeArgLoc.getAs<PackExpansionTypeLoc>()) {
7031 AnyChanged = true;
7032
7033 // We have a pack expansion. Instantiate it.
7034 const auto *PackExpansion = PackExpansionLoc.getType()
7035 ->castAs<PackExpansionType>();
7036 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
7037 SemaRef.collectUnexpandedParameterPacks(PackExpansion->getPattern(),
7038 Unexpanded);
7039 assert(!Unexpanded.empty() && "Pack expansion without parameter packs?");
7040
7041 // Determine whether the set of unexpanded parameter packs can
7042 // and should be expanded.
7043 TypeLoc PatternLoc = PackExpansionLoc.getPatternLoc();
7044 bool Expand = false;
7045 bool RetainExpansion = false;
7046 Optional<unsigned> NumExpansions = PackExpansion->getNumExpansions();
7047 if (getDerived().TryExpandParameterPacks(
7048 PackExpansionLoc.getEllipsisLoc(), PatternLoc.getSourceRange(),
7049 Unexpanded, Expand, RetainExpansion, NumExpansions))
7050 return QualType();
7051
7052 if (!Expand) {
7053 // We can't expand this pack expansion into separate arguments yet;
7054 // just substitute into the pattern and create a new pack expansion
7055 // type.
7056 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1);
7057
7058 TypeLocBuilder TypeArgBuilder;
7059 TypeArgBuilder.reserve(PatternLoc.getFullDataSize());
7060 QualType NewPatternType = getDerived().TransformType(TypeArgBuilder,
7061 PatternLoc);
7062 if (NewPatternType.isNull())
7063 return QualType();
7064
7065 QualType NewExpansionType = SemaRef.Context.getPackExpansionType(
7066 NewPatternType, NumExpansions);
7067 auto NewExpansionLoc = TLB.push<PackExpansionTypeLoc>(NewExpansionType);
7068 NewExpansionLoc.setEllipsisLoc(PackExpansionLoc.getEllipsisLoc());
7069 NewTypeArgInfos.push_back(
7070 TypeArgBuilder.getTypeSourceInfo(SemaRef.Context, NewExpansionType));
7071 continue;
7072 }
7073
7074 // Substitute into the pack expansion pattern for each slice of the
7075 // pack.
7076 for (unsigned ArgIdx = 0; ArgIdx != *NumExpansions; ++ArgIdx) {
7077 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), ArgIdx);
7078
7079 TypeLocBuilder TypeArgBuilder;
7080 TypeArgBuilder.reserve(PatternLoc.getFullDataSize());
7081
7082 QualType NewTypeArg = getDerived().TransformType(TypeArgBuilder,
7083 PatternLoc);
7084 if (NewTypeArg.isNull())
7085 return QualType();
7086
7087 NewTypeArgInfos.push_back(
7088 TypeArgBuilder.getTypeSourceInfo(SemaRef.Context, NewTypeArg));
7089 }
7090
7091 continue;
7092 }
7093
7094 TypeLocBuilder TypeArgBuilder;
7095 TypeArgBuilder.reserve(TypeArgLoc.getFullDataSize());
7096 QualType NewTypeArg = getDerived().TransformType(TypeArgBuilder, TypeArgLoc);
7097 if (NewTypeArg.isNull())
7098 return QualType();
7099
7100 // If nothing changed, just keep the old TypeSourceInfo.
7101 if (NewTypeArg == TypeArg) {
7102 NewTypeArgInfos.push_back(TypeArgInfo);
7103 continue;
7104 }
7105
7106 NewTypeArgInfos.push_back(
7107 TypeArgBuilder.getTypeSourceInfo(SemaRef.Context, NewTypeArg));
7108 AnyChanged = true;
7109 }
7110
7111 QualType Result = TL.getType();
7112 if (getDerived().AlwaysRebuild() || AnyChanged) {
7113 // Rebuild the type.
7114 Result = getDerived().RebuildObjCObjectType(
7115 BaseType, TL.getBeginLoc(), TL.getTypeArgsLAngleLoc(), NewTypeArgInfos,
7116 TL.getTypeArgsRAngleLoc(), TL.getProtocolLAngleLoc(),
7117 llvm::makeArrayRef(TL.getTypePtr()->qual_begin(), TL.getNumProtocols()),
7118 TL.getProtocolLocs(), TL.getProtocolRAngleLoc());
7119
7120 if (Result.isNull())
7121 return QualType();
7122 }
7123
7124 ObjCObjectTypeLoc NewT = TLB.push<ObjCObjectTypeLoc>(Result);
7125 NewT.setHasBaseTypeAsWritten(true);
7126 NewT.setTypeArgsLAngleLoc(TL.getTypeArgsLAngleLoc());
7127 for (unsigned i = 0, n = TL.getNumTypeArgs(); i != n; ++i)
7128 NewT.setTypeArgTInfo(i, NewTypeArgInfos[i]);
7129 NewT.setTypeArgsRAngleLoc(TL.getTypeArgsRAngleLoc());
7130 NewT.setProtocolLAngleLoc(TL.getProtocolLAngleLoc());
7131 for (unsigned i = 0, n = TL.getNumProtocols(); i != n; ++i)
7132 NewT.setProtocolLoc(i, TL.getProtocolLoc(i));
7133 NewT.setProtocolRAngleLoc(TL.getProtocolRAngleLoc());
7134 return Result;
7135 }
7136
7137 template<typename Derived>
7138 QualType
TransformObjCObjectPointerType(TypeLocBuilder & TLB,ObjCObjectPointerTypeLoc TL)7139 TreeTransform<Derived>::TransformObjCObjectPointerType(TypeLocBuilder &TLB,
7140 ObjCObjectPointerTypeLoc TL) {
7141 QualType PointeeType = getDerived().TransformType(TLB, TL.getPointeeLoc());
7142 if (PointeeType.isNull())
7143 return QualType();
7144
7145 QualType Result = TL.getType();
7146 if (getDerived().AlwaysRebuild() ||
7147 PointeeType != TL.getPointeeLoc().getType()) {
7148 Result = getDerived().RebuildObjCObjectPointerType(PointeeType,
7149 TL.getStarLoc());
7150 if (Result.isNull())
7151 return QualType();
7152 }
7153
7154 ObjCObjectPointerTypeLoc NewT = TLB.push<ObjCObjectPointerTypeLoc>(Result);
7155 NewT.setStarLoc(TL.getStarLoc());
7156 return Result;
7157 }
7158
7159 //===----------------------------------------------------------------------===//
7160 // Statement transformation
7161 //===----------------------------------------------------------------------===//
7162 template<typename Derived>
7163 StmtResult
TransformNullStmt(NullStmt * S)7164 TreeTransform<Derived>::TransformNullStmt(NullStmt *S) {
7165 return S;
7166 }
7167
7168 template<typename Derived>
7169 StmtResult
TransformCompoundStmt(CompoundStmt * S)7170 TreeTransform<Derived>::TransformCompoundStmt(CompoundStmt *S) {
7171 return getDerived().TransformCompoundStmt(S, false);
7172 }
7173
7174 template<typename Derived>
7175 StmtResult
TransformCompoundStmt(CompoundStmt * S,bool IsStmtExpr)7176 TreeTransform<Derived>::TransformCompoundStmt(CompoundStmt *S,
7177 bool IsStmtExpr) {
7178 Sema::CompoundScopeRAII CompoundScope(getSema());
7179
7180 const Stmt *ExprResult = S->getStmtExprResult();
7181 bool SubStmtInvalid = false;
7182 bool SubStmtChanged = false;
7183 SmallVector<Stmt*, 8> Statements;
7184 for (auto *B : S->body()) {
7185 StmtResult Result = getDerived().TransformStmt(
7186 B, IsStmtExpr && B == ExprResult ? SDK_StmtExprResult : SDK_Discarded);
7187
7188 if (Result.isInvalid()) {
7189 // Immediately fail if this was a DeclStmt, since it's very
7190 // likely that this will cause problems for future statements.
7191 if (isa<DeclStmt>(B))
7192 return StmtError();
7193
7194 // Otherwise, just keep processing substatements and fail later.
7195 SubStmtInvalid = true;
7196 continue;
7197 }
7198
7199 SubStmtChanged = SubStmtChanged || Result.get() != B;
7200 Statements.push_back(Result.getAs<Stmt>());
7201 }
7202
7203 if (SubStmtInvalid)
7204 return StmtError();
7205
7206 if (!getDerived().AlwaysRebuild() &&
7207 !SubStmtChanged)
7208 return S;
7209
7210 return getDerived().RebuildCompoundStmt(S->getLBracLoc(),
7211 Statements,
7212 S->getRBracLoc(),
7213 IsStmtExpr);
7214 }
7215
7216 template<typename Derived>
7217 StmtResult
TransformCaseStmt(CaseStmt * S)7218 TreeTransform<Derived>::TransformCaseStmt(CaseStmt *S) {
7219 ExprResult LHS, RHS;
7220 {
7221 EnterExpressionEvaluationContext Unevaluated(
7222 SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated);
7223
7224 // Transform the left-hand case value.
7225 LHS = getDerived().TransformExpr(S->getLHS());
7226 LHS = SemaRef.ActOnCaseExpr(S->getCaseLoc(), LHS);
7227 if (LHS.isInvalid())
7228 return StmtError();
7229
7230 // Transform the right-hand case value (for the GNU case-range extension).
7231 RHS = getDerived().TransformExpr(S->getRHS());
7232 RHS = SemaRef.ActOnCaseExpr(S->getCaseLoc(), RHS);
7233 if (RHS.isInvalid())
7234 return StmtError();
7235 }
7236
7237 // Build the case statement.
7238 // Case statements are always rebuilt so that they will attached to their
7239 // transformed switch statement.
7240 StmtResult Case = getDerived().RebuildCaseStmt(S->getCaseLoc(),
7241 LHS.get(),
7242 S->getEllipsisLoc(),
7243 RHS.get(),
7244 S->getColonLoc());
7245 if (Case.isInvalid())
7246 return StmtError();
7247
7248 // Transform the statement following the case
7249 StmtResult SubStmt =
7250 getDerived().TransformStmt(S->getSubStmt());
7251 if (SubStmt.isInvalid())
7252 return StmtError();
7253
7254 // Attach the body to the case statement
7255 return getDerived().RebuildCaseStmtBody(Case.get(), SubStmt.get());
7256 }
7257
7258 template <typename Derived>
TransformDefaultStmt(DefaultStmt * S)7259 StmtResult TreeTransform<Derived>::TransformDefaultStmt(DefaultStmt *S) {
7260 // Transform the statement following the default case
7261 StmtResult SubStmt =
7262 getDerived().TransformStmt(S->getSubStmt());
7263 if (SubStmt.isInvalid())
7264 return StmtError();
7265
7266 // Default statements are always rebuilt
7267 return getDerived().RebuildDefaultStmt(S->getDefaultLoc(), S->getColonLoc(),
7268 SubStmt.get());
7269 }
7270
7271 template<typename Derived>
7272 StmtResult
TransformLabelStmt(LabelStmt * S,StmtDiscardKind SDK)7273 TreeTransform<Derived>::TransformLabelStmt(LabelStmt *S, StmtDiscardKind SDK) {
7274 StmtResult SubStmt = getDerived().TransformStmt(S->getSubStmt(), SDK);
7275 if (SubStmt.isInvalid())
7276 return StmtError();
7277
7278 Decl *LD = getDerived().TransformDecl(S->getDecl()->getLocation(),
7279 S->getDecl());
7280 if (!LD)
7281 return StmtError();
7282
7283 // If we're transforming "in-place" (we're not creating new local
7284 // declarations), assume we're replacing the old label statement
7285 // and clear out the reference to it.
7286 if (LD == S->getDecl())
7287 S->getDecl()->setStmt(nullptr);
7288
7289 // FIXME: Pass the real colon location in.
7290 return getDerived().RebuildLabelStmt(S->getIdentLoc(),
7291 cast<LabelDecl>(LD), SourceLocation(),
7292 SubStmt.get());
7293 }
7294
7295 template <typename Derived>
TransformAttr(const Attr * R)7296 const Attr *TreeTransform<Derived>::TransformAttr(const Attr *R) {
7297 if (!R)
7298 return R;
7299
7300 switch (R->getKind()) {
7301 // Transform attributes with a pragma spelling by calling TransformXXXAttr.
7302 #define ATTR(X)
7303 #define PRAGMA_SPELLING_ATTR(X) \
7304 case attr::X: \
7305 return getDerived().Transform##X##Attr(cast<X##Attr>(R));
7306 #include "clang/Basic/AttrList.inc"
7307 default:
7308 return R;
7309 }
7310 }
7311
7312 template <typename Derived>
7313 StmtResult
TransformAttributedStmt(AttributedStmt * S,StmtDiscardKind SDK)7314 TreeTransform<Derived>::TransformAttributedStmt(AttributedStmt *S,
7315 StmtDiscardKind SDK) {
7316 bool AttrsChanged = false;
7317 SmallVector<const Attr *, 1> Attrs;
7318
7319 // Visit attributes and keep track if any are transformed.
7320 for (const auto *I : S->getAttrs()) {
7321 const Attr *R = getDerived().TransformAttr(I);
7322 AttrsChanged |= (I != R);
7323 if (R)
7324 Attrs.push_back(R);
7325 }
7326
7327 StmtResult SubStmt = getDerived().TransformStmt(S->getSubStmt(), SDK);
7328 if (SubStmt.isInvalid())
7329 return StmtError();
7330
7331 if (SubStmt.get() == S->getSubStmt() && !AttrsChanged)
7332 return S;
7333
7334 // If transforming the attributes failed for all of the attributes in the
7335 // statement, don't make an AttributedStmt without attributes.
7336 if (Attrs.empty())
7337 return SubStmt;
7338
7339 return getDerived().RebuildAttributedStmt(S->getAttrLoc(), Attrs,
7340 SubStmt.get());
7341 }
7342
7343 template<typename Derived>
7344 StmtResult
TransformIfStmt(IfStmt * S)7345 TreeTransform<Derived>::TransformIfStmt(IfStmt *S) {
7346 // Transform the initialization statement
7347 StmtResult Init = getDerived().TransformStmt(S->getInit());
7348 if (Init.isInvalid())
7349 return StmtError();
7350
7351 // Transform the condition
7352 Sema::ConditionResult Cond = getDerived().TransformCondition(
7353 S->getIfLoc(), S->getConditionVariable(), S->getCond(),
7354 S->isConstexpr() ? Sema::ConditionKind::ConstexprIf
7355 : Sema::ConditionKind::Boolean);
7356 if (Cond.isInvalid())
7357 return StmtError();
7358
7359 // If this is a constexpr if, determine which arm we should instantiate.
7360 llvm::Optional<bool> ConstexprConditionValue;
7361 if (S->isConstexpr())
7362 ConstexprConditionValue = Cond.getKnownValue();
7363
7364 // Transform the "then" branch.
7365 StmtResult Then;
7366 if (!ConstexprConditionValue || *ConstexprConditionValue) {
7367 Then = getDerived().TransformStmt(S->getThen());
7368 if (Then.isInvalid())
7369 return StmtError();
7370 } else {
7371 Then = new (getSema().Context) NullStmt(S->getThen()->getBeginLoc());
7372 }
7373
7374 // Transform the "else" branch.
7375 StmtResult Else;
7376 if (!ConstexprConditionValue || !*ConstexprConditionValue) {
7377 Else = getDerived().TransformStmt(S->getElse());
7378 if (Else.isInvalid())
7379 return StmtError();
7380 }
7381
7382 if (!getDerived().AlwaysRebuild() &&
7383 Init.get() == S->getInit() &&
7384 Cond.get() == std::make_pair(S->getConditionVariable(), S->getCond()) &&
7385 Then.get() == S->getThen() &&
7386 Else.get() == S->getElse())
7387 return S;
7388
7389 return getDerived().RebuildIfStmt(
7390 S->getIfLoc(), S->isConstexpr(), S->getLParenLoc(), Cond,
7391 S->getRParenLoc(), Init.get(), Then.get(), S->getElseLoc(), Else.get());
7392 }
7393
7394 template<typename Derived>
7395 StmtResult
TransformSwitchStmt(SwitchStmt * S)7396 TreeTransform<Derived>::TransformSwitchStmt(SwitchStmt *S) {
7397 // Transform the initialization statement
7398 StmtResult Init = getDerived().TransformStmt(S->getInit());
7399 if (Init.isInvalid())
7400 return StmtError();
7401
7402 // Transform the condition.
7403 Sema::ConditionResult Cond = getDerived().TransformCondition(
7404 S->getSwitchLoc(), S->getConditionVariable(), S->getCond(),
7405 Sema::ConditionKind::Switch);
7406 if (Cond.isInvalid())
7407 return StmtError();
7408
7409 // Rebuild the switch statement.
7410 StmtResult Switch =
7411 getDerived().RebuildSwitchStmtStart(S->getSwitchLoc(), S->getLParenLoc(),
7412 Init.get(), Cond, S->getRParenLoc());
7413 if (Switch.isInvalid())
7414 return StmtError();
7415
7416 // Transform the body of the switch statement.
7417 StmtResult Body = getDerived().TransformStmt(S->getBody());
7418 if (Body.isInvalid())
7419 return StmtError();
7420
7421 // Complete the switch statement.
7422 return getDerived().RebuildSwitchStmtBody(S->getSwitchLoc(), Switch.get(),
7423 Body.get());
7424 }
7425
7426 template<typename Derived>
7427 StmtResult
TransformWhileStmt(WhileStmt * S)7428 TreeTransform<Derived>::TransformWhileStmt(WhileStmt *S) {
7429 // Transform the condition
7430 Sema::ConditionResult Cond = getDerived().TransformCondition(
7431 S->getWhileLoc(), S->getConditionVariable(), S->getCond(),
7432 Sema::ConditionKind::Boolean);
7433 if (Cond.isInvalid())
7434 return StmtError();
7435
7436 // Transform the body
7437 StmtResult Body = getDerived().TransformStmt(S->getBody());
7438 if (Body.isInvalid())
7439 return StmtError();
7440
7441 if (!getDerived().AlwaysRebuild() &&
7442 Cond.get() == std::make_pair(S->getConditionVariable(), S->getCond()) &&
7443 Body.get() == S->getBody())
7444 return Owned(S);
7445
7446 return getDerived().RebuildWhileStmt(S->getWhileLoc(), S->getLParenLoc(),
7447 Cond, S->getRParenLoc(), Body.get());
7448 }
7449
7450 template<typename Derived>
7451 StmtResult
TransformDoStmt(DoStmt * S)7452 TreeTransform<Derived>::TransformDoStmt(DoStmt *S) {
7453 // Transform the body
7454 StmtResult Body = getDerived().TransformStmt(S->getBody());
7455 if (Body.isInvalid())
7456 return StmtError();
7457
7458 // Transform the condition
7459 ExprResult Cond = getDerived().TransformExpr(S->getCond());
7460 if (Cond.isInvalid())
7461 return StmtError();
7462
7463 if (!getDerived().AlwaysRebuild() &&
7464 Cond.get() == S->getCond() &&
7465 Body.get() == S->getBody())
7466 return S;
7467
7468 return getDerived().RebuildDoStmt(S->getDoLoc(), Body.get(), S->getWhileLoc(),
7469 /*FIXME:*/S->getWhileLoc(), Cond.get(),
7470 S->getRParenLoc());
7471 }
7472
7473 template<typename Derived>
7474 StmtResult
TransformForStmt(ForStmt * S)7475 TreeTransform<Derived>::TransformForStmt(ForStmt *S) {
7476 if (getSema().getLangOpts().OpenMP)
7477 getSema().startOpenMPLoop();
7478
7479 // Transform the initialization statement
7480 StmtResult Init = getDerived().TransformStmt(S->getInit());
7481 if (Init.isInvalid())
7482 return StmtError();
7483
7484 // In OpenMP loop region loop control variable must be captured and be
7485 // private. Perform analysis of first part (if any).
7486 if (getSema().getLangOpts().OpenMP && Init.isUsable())
7487 getSema().ActOnOpenMPLoopInitialization(S->getForLoc(), Init.get());
7488
7489 // Transform the condition
7490 Sema::ConditionResult Cond = getDerived().TransformCondition(
7491 S->getForLoc(), S->getConditionVariable(), S->getCond(),
7492 Sema::ConditionKind::Boolean);
7493 if (Cond.isInvalid())
7494 return StmtError();
7495
7496 // Transform the increment
7497 ExprResult Inc = getDerived().TransformExpr(S->getInc());
7498 if (Inc.isInvalid())
7499 return StmtError();
7500
7501 Sema::FullExprArg FullInc(getSema().MakeFullDiscardedValueExpr(Inc.get()));
7502 if (S->getInc() && !FullInc.get())
7503 return StmtError();
7504
7505 // Transform the body
7506 StmtResult Body = getDerived().TransformStmt(S->getBody());
7507 if (Body.isInvalid())
7508 return StmtError();
7509
7510 if (!getDerived().AlwaysRebuild() &&
7511 Init.get() == S->getInit() &&
7512 Cond.get() == std::make_pair(S->getConditionVariable(), S->getCond()) &&
7513 Inc.get() == S->getInc() &&
7514 Body.get() == S->getBody())
7515 return S;
7516
7517 return getDerived().RebuildForStmt(S->getForLoc(), S->getLParenLoc(),
7518 Init.get(), Cond, FullInc,
7519 S->getRParenLoc(), Body.get());
7520 }
7521
7522 template<typename Derived>
7523 StmtResult
TransformGotoStmt(GotoStmt * S)7524 TreeTransform<Derived>::TransformGotoStmt(GotoStmt *S) {
7525 Decl *LD = getDerived().TransformDecl(S->getLabel()->getLocation(),
7526 S->getLabel());
7527 if (!LD)
7528 return StmtError();
7529
7530 // Goto statements must always be rebuilt, to resolve the label.
7531 return getDerived().RebuildGotoStmt(S->getGotoLoc(), S->getLabelLoc(),
7532 cast<LabelDecl>(LD));
7533 }
7534
7535 template<typename Derived>
7536 StmtResult
TransformIndirectGotoStmt(IndirectGotoStmt * S)7537 TreeTransform<Derived>::TransformIndirectGotoStmt(IndirectGotoStmt *S) {
7538 ExprResult Target = getDerived().TransformExpr(S->getTarget());
7539 if (Target.isInvalid())
7540 return StmtError();
7541 Target = SemaRef.MaybeCreateExprWithCleanups(Target.get());
7542
7543 if (!getDerived().AlwaysRebuild() &&
7544 Target.get() == S->getTarget())
7545 return S;
7546
7547 return getDerived().RebuildIndirectGotoStmt(S->getGotoLoc(), S->getStarLoc(),
7548 Target.get());
7549 }
7550
7551 template<typename Derived>
7552 StmtResult
TransformContinueStmt(ContinueStmt * S)7553 TreeTransform<Derived>::TransformContinueStmt(ContinueStmt *S) {
7554 return S;
7555 }
7556
7557 template<typename Derived>
7558 StmtResult
TransformBreakStmt(BreakStmt * S)7559 TreeTransform<Derived>::TransformBreakStmt(BreakStmt *S) {
7560 return S;
7561 }
7562
7563 template<typename Derived>
7564 StmtResult
TransformReturnStmt(ReturnStmt * S)7565 TreeTransform<Derived>::TransformReturnStmt(ReturnStmt *S) {
7566 ExprResult Result = getDerived().TransformInitializer(S->getRetValue(),
7567 /*NotCopyInit*/false);
7568 if (Result.isInvalid())
7569 return StmtError();
7570
7571 // FIXME: We always rebuild the return statement because there is no way
7572 // to tell whether the return type of the function has changed.
7573 return getDerived().RebuildReturnStmt(S->getReturnLoc(), Result.get());
7574 }
7575
7576 template<typename Derived>
7577 StmtResult
TransformDeclStmt(DeclStmt * S)7578 TreeTransform<Derived>::TransformDeclStmt(DeclStmt *S) {
7579 bool DeclChanged = false;
7580 SmallVector<Decl *, 4> Decls;
7581 for (auto *D : S->decls()) {
7582 Decl *Transformed = getDerived().TransformDefinition(D->getLocation(), D);
7583 if (!Transformed)
7584 return StmtError();
7585
7586 if (Transformed != D)
7587 DeclChanged = true;
7588
7589 Decls.push_back(Transformed);
7590 }
7591
7592 if (!getDerived().AlwaysRebuild() && !DeclChanged)
7593 return S;
7594
7595 return getDerived().RebuildDeclStmt(Decls, S->getBeginLoc(), S->getEndLoc());
7596 }
7597
7598 template<typename Derived>
7599 StmtResult
TransformGCCAsmStmt(GCCAsmStmt * S)7600 TreeTransform<Derived>::TransformGCCAsmStmt(GCCAsmStmt *S) {
7601
7602 SmallVector<Expr*, 8> Constraints;
7603 SmallVector<Expr*, 8> Exprs;
7604 SmallVector<IdentifierInfo *, 4> Names;
7605
7606 ExprResult AsmString;
7607 SmallVector<Expr*, 8> Clobbers;
7608
7609 bool ExprsChanged = false;
7610
7611 // Go through the outputs.
7612 for (unsigned I = 0, E = S->getNumOutputs(); I != E; ++I) {
7613 Names.push_back(S->getOutputIdentifier(I));
7614
7615 // No need to transform the constraint literal.
7616 Constraints.push_back(S->getOutputConstraintLiteral(I));
7617
7618 // Transform the output expr.
7619 Expr *OutputExpr = S->getOutputExpr(I);
7620 ExprResult Result = getDerived().TransformExpr(OutputExpr);
7621 if (Result.isInvalid())
7622 return StmtError();
7623
7624 ExprsChanged |= Result.get() != OutputExpr;
7625
7626 Exprs.push_back(Result.get());
7627 }
7628
7629 // Go through the inputs.
7630 for (unsigned I = 0, E = S->getNumInputs(); I != E; ++I) {
7631 Names.push_back(S->getInputIdentifier(I));
7632
7633 // No need to transform the constraint literal.
7634 Constraints.push_back(S->getInputConstraintLiteral(I));
7635
7636 // Transform the input expr.
7637 Expr *InputExpr = S->getInputExpr(I);
7638 ExprResult Result = getDerived().TransformExpr(InputExpr);
7639 if (Result.isInvalid())
7640 return StmtError();
7641
7642 ExprsChanged |= Result.get() != InputExpr;
7643
7644 Exprs.push_back(Result.get());
7645 }
7646
7647 // Go through the Labels.
7648 for (unsigned I = 0, E = S->getNumLabels(); I != E; ++I) {
7649 Names.push_back(S->getLabelIdentifier(I));
7650
7651 ExprResult Result = getDerived().TransformExpr(S->getLabelExpr(I));
7652 if (Result.isInvalid())
7653 return StmtError();
7654 ExprsChanged |= Result.get() != S->getLabelExpr(I);
7655 Exprs.push_back(Result.get());
7656 }
7657 if (!getDerived().AlwaysRebuild() && !ExprsChanged)
7658 return S;
7659
7660 // Go through the clobbers.
7661 for (unsigned I = 0, E = S->getNumClobbers(); I != E; ++I)
7662 Clobbers.push_back(S->getClobberStringLiteral(I));
7663
7664 // No need to transform the asm string literal.
7665 AsmString = S->getAsmString();
7666 return getDerived().RebuildGCCAsmStmt(S->getAsmLoc(), S->isSimple(),
7667 S->isVolatile(), S->getNumOutputs(),
7668 S->getNumInputs(), Names.data(),
7669 Constraints, Exprs, AsmString.get(),
7670 Clobbers, S->getNumLabels(),
7671 S->getRParenLoc());
7672 }
7673
7674 template<typename Derived>
7675 StmtResult
TransformMSAsmStmt(MSAsmStmt * S)7676 TreeTransform<Derived>::TransformMSAsmStmt(MSAsmStmt *S) {
7677 ArrayRef<Token> AsmToks =
7678 llvm::makeArrayRef(S->getAsmToks(), S->getNumAsmToks());
7679
7680 bool HadError = false, HadChange = false;
7681
7682 ArrayRef<Expr*> SrcExprs = S->getAllExprs();
7683 SmallVector<Expr*, 8> TransformedExprs;
7684 TransformedExprs.reserve(SrcExprs.size());
7685 for (unsigned i = 0, e = SrcExprs.size(); i != e; ++i) {
7686 ExprResult Result = getDerived().TransformExpr(SrcExprs[i]);
7687 if (!Result.isUsable()) {
7688 HadError = true;
7689 } else {
7690 HadChange |= (Result.get() != SrcExprs[i]);
7691 TransformedExprs.push_back(Result.get());
7692 }
7693 }
7694
7695 if (HadError) return StmtError();
7696 if (!HadChange && !getDerived().AlwaysRebuild())
7697 return Owned(S);
7698
7699 return getDerived().RebuildMSAsmStmt(S->getAsmLoc(), S->getLBraceLoc(),
7700 AsmToks, S->getAsmString(),
7701 S->getNumOutputs(), S->getNumInputs(),
7702 S->getAllConstraints(), S->getClobbers(),
7703 TransformedExprs, S->getEndLoc());
7704 }
7705
7706 // C++ Coroutines TS
7707
7708 template<typename Derived>
7709 StmtResult
TransformCoroutineBodyStmt(CoroutineBodyStmt * S)7710 TreeTransform<Derived>::TransformCoroutineBodyStmt(CoroutineBodyStmt *S) {
7711 auto *ScopeInfo = SemaRef.getCurFunction();
7712 auto *FD = cast<FunctionDecl>(SemaRef.CurContext);
7713 assert(FD && ScopeInfo && !ScopeInfo->CoroutinePromise &&
7714 ScopeInfo->NeedsCoroutineSuspends &&
7715 ScopeInfo->CoroutineSuspends.first == nullptr &&
7716 ScopeInfo->CoroutineSuspends.second == nullptr &&
7717 "expected clean scope info");
7718
7719 // Set that we have (possibly-invalid) suspend points before we do anything
7720 // that may fail.
7721 ScopeInfo->setNeedsCoroutineSuspends(false);
7722
7723 // We re-build the coroutine promise object (and the coroutine parameters its
7724 // type and constructor depend on) based on the types used in our current
7725 // function. We must do so, and set it on the current FunctionScopeInfo,
7726 // before attempting to transform the other parts of the coroutine body
7727 // statement, such as the implicit suspend statements (because those
7728 // statements reference the FunctionScopeInfo::CoroutinePromise).
7729 if (!SemaRef.buildCoroutineParameterMoves(FD->getLocation()))
7730 return StmtError();
7731 auto *Promise = SemaRef.buildCoroutinePromise(FD->getLocation());
7732 if (!Promise)
7733 return StmtError();
7734 getDerived().transformedLocalDecl(S->getPromiseDecl(), {Promise});
7735 ScopeInfo->CoroutinePromise = Promise;
7736
7737 // Transform the implicit coroutine statements constructed using dependent
7738 // types during the previous parse: initial and final suspensions, the return
7739 // object, and others. We also transform the coroutine function's body.
7740 StmtResult InitSuspend = getDerived().TransformStmt(S->getInitSuspendStmt());
7741 if (InitSuspend.isInvalid())
7742 return StmtError();
7743 StmtResult FinalSuspend =
7744 getDerived().TransformStmt(S->getFinalSuspendStmt());
7745 if (FinalSuspend.isInvalid() ||
7746 !SemaRef.checkFinalSuspendNoThrow(FinalSuspend.get()))
7747 return StmtError();
7748 ScopeInfo->setCoroutineSuspends(InitSuspend.get(), FinalSuspend.get());
7749 assert(isa<Expr>(InitSuspend.get()) && isa<Expr>(FinalSuspend.get()));
7750
7751 StmtResult BodyRes = getDerived().TransformStmt(S->getBody());
7752 if (BodyRes.isInvalid())
7753 return StmtError();
7754
7755 CoroutineStmtBuilder Builder(SemaRef, *FD, *ScopeInfo, BodyRes.get());
7756 if (Builder.isInvalid())
7757 return StmtError();
7758
7759 Expr *ReturnObject = S->getReturnValueInit();
7760 assert(ReturnObject && "the return object is expected to be valid");
7761 ExprResult Res = getDerived().TransformInitializer(ReturnObject,
7762 /*NoCopyInit*/ false);
7763 if (Res.isInvalid())
7764 return StmtError();
7765 Builder.ReturnValue = Res.get();
7766
7767 // If during the previous parse the coroutine still had a dependent promise
7768 // statement, we may need to build some implicit coroutine statements
7769 // (such as exception and fallthrough handlers) for the first time.
7770 if (S->hasDependentPromiseType()) {
7771 // We can only build these statements, however, if the current promise type
7772 // is not dependent.
7773 if (!Promise->getType()->isDependentType()) {
7774 assert(!S->getFallthroughHandler() && !S->getExceptionHandler() &&
7775 !S->getReturnStmtOnAllocFailure() && !S->getDeallocate() &&
7776 "these nodes should not have been built yet");
7777 if (!Builder.buildDependentStatements())
7778 return StmtError();
7779 }
7780 } else {
7781 if (auto *OnFallthrough = S->getFallthroughHandler()) {
7782 StmtResult Res = getDerived().TransformStmt(OnFallthrough);
7783 if (Res.isInvalid())
7784 return StmtError();
7785 Builder.OnFallthrough = Res.get();
7786 }
7787
7788 if (auto *OnException = S->getExceptionHandler()) {
7789 StmtResult Res = getDerived().TransformStmt(OnException);
7790 if (Res.isInvalid())
7791 return StmtError();
7792 Builder.OnException = Res.get();
7793 }
7794
7795 if (auto *OnAllocFailure = S->getReturnStmtOnAllocFailure()) {
7796 StmtResult Res = getDerived().TransformStmt(OnAllocFailure);
7797 if (Res.isInvalid())
7798 return StmtError();
7799 Builder.ReturnStmtOnAllocFailure = Res.get();
7800 }
7801
7802 // Transform any additional statements we may have already built
7803 assert(S->getAllocate() && S->getDeallocate() &&
7804 "allocation and deallocation calls must already be built");
7805 ExprResult AllocRes = getDerived().TransformExpr(S->getAllocate());
7806 if (AllocRes.isInvalid())
7807 return StmtError();
7808 Builder.Allocate = AllocRes.get();
7809
7810 ExprResult DeallocRes = getDerived().TransformExpr(S->getDeallocate());
7811 if (DeallocRes.isInvalid())
7812 return StmtError();
7813 Builder.Deallocate = DeallocRes.get();
7814
7815 assert(S->getResultDecl() && "ResultDecl must already be built");
7816 StmtResult ResultDecl = getDerived().TransformStmt(S->getResultDecl());
7817 if (ResultDecl.isInvalid())
7818 return StmtError();
7819 Builder.ResultDecl = ResultDecl.get();
7820
7821 if (auto *ReturnStmt = S->getReturnStmt()) {
7822 StmtResult Res = getDerived().TransformStmt(ReturnStmt);
7823 if (Res.isInvalid())
7824 return StmtError();
7825 Builder.ReturnStmt = Res.get();
7826 }
7827 }
7828
7829 return getDerived().RebuildCoroutineBodyStmt(Builder);
7830 }
7831
7832 template<typename Derived>
7833 StmtResult
TransformCoreturnStmt(CoreturnStmt * S)7834 TreeTransform<Derived>::TransformCoreturnStmt(CoreturnStmt *S) {
7835 ExprResult Result = getDerived().TransformInitializer(S->getOperand(),
7836 /*NotCopyInit*/false);
7837 if (Result.isInvalid())
7838 return StmtError();
7839
7840 // Always rebuild; we don't know if this needs to be injected into a new
7841 // context or if the promise type has changed.
7842 return getDerived().RebuildCoreturnStmt(S->getKeywordLoc(), Result.get(),
7843 S->isImplicit());
7844 }
7845
7846 template<typename Derived>
7847 ExprResult
TransformCoawaitExpr(CoawaitExpr * E)7848 TreeTransform<Derived>::TransformCoawaitExpr(CoawaitExpr *E) {
7849 ExprResult Result = getDerived().TransformInitializer(E->getOperand(),
7850 /*NotCopyInit*/false);
7851 if (Result.isInvalid())
7852 return ExprError();
7853
7854 // Always rebuild; we don't know if this needs to be injected into a new
7855 // context or if the promise type has changed.
7856 return getDerived().RebuildCoawaitExpr(E->getKeywordLoc(), Result.get(),
7857 E->isImplicit());
7858 }
7859
7860 template <typename Derived>
7861 ExprResult
TransformDependentCoawaitExpr(DependentCoawaitExpr * E)7862 TreeTransform<Derived>::TransformDependentCoawaitExpr(DependentCoawaitExpr *E) {
7863 ExprResult OperandResult = getDerived().TransformInitializer(E->getOperand(),
7864 /*NotCopyInit*/ false);
7865 if (OperandResult.isInvalid())
7866 return ExprError();
7867
7868 ExprResult LookupResult = getDerived().TransformUnresolvedLookupExpr(
7869 E->getOperatorCoawaitLookup());
7870
7871 if (LookupResult.isInvalid())
7872 return ExprError();
7873
7874 // Always rebuild; we don't know if this needs to be injected into a new
7875 // context or if the promise type has changed.
7876 return getDerived().RebuildDependentCoawaitExpr(
7877 E->getKeywordLoc(), OperandResult.get(),
7878 cast<UnresolvedLookupExpr>(LookupResult.get()));
7879 }
7880
7881 template<typename Derived>
7882 ExprResult
TransformCoyieldExpr(CoyieldExpr * E)7883 TreeTransform<Derived>::TransformCoyieldExpr(CoyieldExpr *E) {
7884 ExprResult Result = getDerived().TransformInitializer(E->getOperand(),
7885 /*NotCopyInit*/false);
7886 if (Result.isInvalid())
7887 return ExprError();
7888
7889 // Always rebuild; we don't know if this needs to be injected into a new
7890 // context or if the promise type has changed.
7891 return getDerived().RebuildCoyieldExpr(E->getKeywordLoc(), Result.get());
7892 }
7893
7894 // Objective-C Statements.
7895
7896 template<typename Derived>
7897 StmtResult
TransformObjCAtTryStmt(ObjCAtTryStmt * S)7898 TreeTransform<Derived>::TransformObjCAtTryStmt(ObjCAtTryStmt *S) {
7899 // Transform the body of the @try.
7900 StmtResult TryBody = getDerived().TransformStmt(S->getTryBody());
7901 if (TryBody.isInvalid())
7902 return StmtError();
7903
7904 // Transform the @catch statements (if present).
7905 bool AnyCatchChanged = false;
7906 SmallVector<Stmt*, 8> CatchStmts;
7907 for (unsigned I = 0, N = S->getNumCatchStmts(); I != N; ++I) {
7908 StmtResult Catch = getDerived().TransformStmt(S->getCatchStmt(I));
7909 if (Catch.isInvalid())
7910 return StmtError();
7911 if (Catch.get() != S->getCatchStmt(I))
7912 AnyCatchChanged = true;
7913 CatchStmts.push_back(Catch.get());
7914 }
7915
7916 // Transform the @finally statement (if present).
7917 StmtResult Finally;
7918 if (S->getFinallyStmt()) {
7919 Finally = getDerived().TransformStmt(S->getFinallyStmt());
7920 if (Finally.isInvalid())
7921 return StmtError();
7922 }
7923
7924 // If nothing changed, just retain this statement.
7925 if (!getDerived().AlwaysRebuild() &&
7926 TryBody.get() == S->getTryBody() &&
7927 !AnyCatchChanged &&
7928 Finally.get() == S->getFinallyStmt())
7929 return S;
7930
7931 // Build a new statement.
7932 return getDerived().RebuildObjCAtTryStmt(S->getAtTryLoc(), TryBody.get(),
7933 CatchStmts, Finally.get());
7934 }
7935
7936 template<typename Derived>
7937 StmtResult
TransformObjCAtCatchStmt(ObjCAtCatchStmt * S)7938 TreeTransform<Derived>::TransformObjCAtCatchStmt(ObjCAtCatchStmt *S) {
7939 // Transform the @catch parameter, if there is one.
7940 VarDecl *Var = nullptr;
7941 if (VarDecl *FromVar = S->getCatchParamDecl()) {
7942 TypeSourceInfo *TSInfo = nullptr;
7943 if (FromVar->getTypeSourceInfo()) {
7944 TSInfo = getDerived().TransformType(FromVar->getTypeSourceInfo());
7945 if (!TSInfo)
7946 return StmtError();
7947 }
7948
7949 QualType T;
7950 if (TSInfo)
7951 T = TSInfo->getType();
7952 else {
7953 T = getDerived().TransformType(FromVar->getType());
7954 if (T.isNull())
7955 return StmtError();
7956 }
7957
7958 Var = getDerived().RebuildObjCExceptionDecl(FromVar, TSInfo, T);
7959 if (!Var)
7960 return StmtError();
7961 }
7962
7963 StmtResult Body = getDerived().TransformStmt(S->getCatchBody());
7964 if (Body.isInvalid())
7965 return StmtError();
7966
7967 return getDerived().RebuildObjCAtCatchStmt(S->getAtCatchLoc(),
7968 S->getRParenLoc(),
7969 Var, Body.get());
7970 }
7971
7972 template<typename Derived>
7973 StmtResult
TransformObjCAtFinallyStmt(ObjCAtFinallyStmt * S)7974 TreeTransform<Derived>::TransformObjCAtFinallyStmt(ObjCAtFinallyStmt *S) {
7975 // Transform the body.
7976 StmtResult Body = getDerived().TransformStmt(S->getFinallyBody());
7977 if (Body.isInvalid())
7978 return StmtError();
7979
7980 // If nothing changed, just retain this statement.
7981 if (!getDerived().AlwaysRebuild() &&
7982 Body.get() == S->getFinallyBody())
7983 return S;
7984
7985 // Build a new statement.
7986 return getDerived().RebuildObjCAtFinallyStmt(S->getAtFinallyLoc(),
7987 Body.get());
7988 }
7989
7990 template<typename Derived>
7991 StmtResult
TransformObjCAtThrowStmt(ObjCAtThrowStmt * S)7992 TreeTransform<Derived>::TransformObjCAtThrowStmt(ObjCAtThrowStmt *S) {
7993 ExprResult Operand;
7994 if (S->getThrowExpr()) {
7995 Operand = getDerived().TransformExpr(S->getThrowExpr());
7996 if (Operand.isInvalid())
7997 return StmtError();
7998 }
7999
8000 if (!getDerived().AlwaysRebuild() &&
8001 Operand.get() == S->getThrowExpr())
8002 return S;
8003
8004 return getDerived().RebuildObjCAtThrowStmt(S->getThrowLoc(), Operand.get());
8005 }
8006
8007 template<typename Derived>
8008 StmtResult
TransformObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt * S)8009 TreeTransform<Derived>::TransformObjCAtSynchronizedStmt(
8010 ObjCAtSynchronizedStmt *S) {
8011 // Transform the object we are locking.
8012 ExprResult Object = getDerived().TransformExpr(S->getSynchExpr());
8013 if (Object.isInvalid())
8014 return StmtError();
8015 Object =
8016 getDerived().RebuildObjCAtSynchronizedOperand(S->getAtSynchronizedLoc(),
8017 Object.get());
8018 if (Object.isInvalid())
8019 return StmtError();
8020
8021 // Transform the body.
8022 StmtResult Body = getDerived().TransformStmt(S->getSynchBody());
8023 if (Body.isInvalid())
8024 return StmtError();
8025
8026 // If nothing change, just retain the current statement.
8027 if (!getDerived().AlwaysRebuild() &&
8028 Object.get() == S->getSynchExpr() &&
8029 Body.get() == S->getSynchBody())
8030 return S;
8031
8032 // Build a new statement.
8033 return getDerived().RebuildObjCAtSynchronizedStmt(S->getAtSynchronizedLoc(),
8034 Object.get(), Body.get());
8035 }
8036
8037 template<typename Derived>
8038 StmtResult
TransformObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt * S)8039 TreeTransform<Derived>::TransformObjCAutoreleasePoolStmt(
8040 ObjCAutoreleasePoolStmt *S) {
8041 // Transform the body.
8042 StmtResult Body = getDerived().TransformStmt(S->getSubStmt());
8043 if (Body.isInvalid())
8044 return StmtError();
8045
8046 // If nothing changed, just retain this statement.
8047 if (!getDerived().AlwaysRebuild() &&
8048 Body.get() == S->getSubStmt())
8049 return S;
8050
8051 // Build a new statement.
8052 return getDerived().RebuildObjCAutoreleasePoolStmt(
8053 S->getAtLoc(), Body.get());
8054 }
8055
8056 template<typename Derived>
8057 StmtResult
TransformObjCForCollectionStmt(ObjCForCollectionStmt * S)8058 TreeTransform<Derived>::TransformObjCForCollectionStmt(
8059 ObjCForCollectionStmt *S) {
8060 // Transform the element statement.
8061 StmtResult Element =
8062 getDerived().TransformStmt(S->getElement(), SDK_NotDiscarded);
8063 if (Element.isInvalid())
8064 return StmtError();
8065
8066 // Transform the collection expression.
8067 ExprResult Collection = getDerived().TransformExpr(S->getCollection());
8068 if (Collection.isInvalid())
8069 return StmtError();
8070
8071 // Transform the body.
8072 StmtResult Body = getDerived().TransformStmt(S->getBody());
8073 if (Body.isInvalid())
8074 return StmtError();
8075
8076 // If nothing changed, just retain this statement.
8077 if (!getDerived().AlwaysRebuild() &&
8078 Element.get() == S->getElement() &&
8079 Collection.get() == S->getCollection() &&
8080 Body.get() == S->getBody())
8081 return S;
8082
8083 // Build a new statement.
8084 return getDerived().RebuildObjCForCollectionStmt(S->getForLoc(),
8085 Element.get(),
8086 Collection.get(),
8087 S->getRParenLoc(),
8088 Body.get());
8089 }
8090
8091 template <typename Derived>
TransformCXXCatchStmt(CXXCatchStmt * S)8092 StmtResult TreeTransform<Derived>::TransformCXXCatchStmt(CXXCatchStmt *S) {
8093 // Transform the exception declaration, if any.
8094 VarDecl *Var = nullptr;
8095 if (VarDecl *ExceptionDecl = S->getExceptionDecl()) {
8096 TypeSourceInfo *T =
8097 getDerived().TransformType(ExceptionDecl->getTypeSourceInfo());
8098 if (!T)
8099 return StmtError();
8100
8101 Var = getDerived().RebuildExceptionDecl(
8102 ExceptionDecl, T, ExceptionDecl->getInnerLocStart(),
8103 ExceptionDecl->getLocation(), ExceptionDecl->getIdentifier());
8104 if (!Var || Var->isInvalidDecl())
8105 return StmtError();
8106 }
8107
8108 // Transform the actual exception handler.
8109 StmtResult Handler = getDerived().TransformStmt(S->getHandlerBlock());
8110 if (Handler.isInvalid())
8111 return StmtError();
8112
8113 if (!getDerived().AlwaysRebuild() && !Var &&
8114 Handler.get() == S->getHandlerBlock())
8115 return S;
8116
8117 return getDerived().RebuildCXXCatchStmt(S->getCatchLoc(), Var, Handler.get());
8118 }
8119
8120 template <typename Derived>
TransformCXXTryStmt(CXXTryStmt * S)8121 StmtResult TreeTransform<Derived>::TransformCXXTryStmt(CXXTryStmt *S) {
8122 // Transform the try block itself.
8123 StmtResult TryBlock = getDerived().TransformCompoundStmt(S->getTryBlock());
8124 if (TryBlock.isInvalid())
8125 return StmtError();
8126
8127 // Transform the handlers.
8128 bool HandlerChanged = false;
8129 SmallVector<Stmt *, 8> Handlers;
8130 for (unsigned I = 0, N = S->getNumHandlers(); I != N; ++I) {
8131 StmtResult Handler = getDerived().TransformCXXCatchStmt(S->getHandler(I));
8132 if (Handler.isInvalid())
8133 return StmtError();
8134
8135 HandlerChanged = HandlerChanged || Handler.get() != S->getHandler(I);
8136 Handlers.push_back(Handler.getAs<Stmt>());
8137 }
8138
8139 if (!getDerived().AlwaysRebuild() && TryBlock.get() == S->getTryBlock() &&
8140 !HandlerChanged)
8141 return S;
8142
8143 return getDerived().RebuildCXXTryStmt(S->getTryLoc(), TryBlock.get(),
8144 Handlers);
8145 }
8146
8147 template<typename Derived>
8148 StmtResult
TransformCXXForRangeStmt(CXXForRangeStmt * S)8149 TreeTransform<Derived>::TransformCXXForRangeStmt(CXXForRangeStmt *S) {
8150 StmtResult Init =
8151 S->getInit() ? getDerived().TransformStmt(S->getInit()) : StmtResult();
8152 if (Init.isInvalid())
8153 return StmtError();
8154
8155 StmtResult Range = getDerived().TransformStmt(S->getRangeStmt());
8156 if (Range.isInvalid())
8157 return StmtError();
8158
8159 StmtResult Begin = getDerived().TransformStmt(S->getBeginStmt());
8160 if (Begin.isInvalid())
8161 return StmtError();
8162 StmtResult End = getDerived().TransformStmt(S->getEndStmt());
8163 if (End.isInvalid())
8164 return StmtError();
8165
8166 ExprResult Cond = getDerived().TransformExpr(S->getCond());
8167 if (Cond.isInvalid())
8168 return StmtError();
8169 if (Cond.get())
8170 Cond = SemaRef.CheckBooleanCondition(S->getColonLoc(), Cond.get());
8171 if (Cond.isInvalid())
8172 return StmtError();
8173 if (Cond.get())
8174 Cond = SemaRef.MaybeCreateExprWithCleanups(Cond.get());
8175
8176 ExprResult Inc = getDerived().TransformExpr(S->getInc());
8177 if (Inc.isInvalid())
8178 return StmtError();
8179 if (Inc.get())
8180 Inc = SemaRef.MaybeCreateExprWithCleanups(Inc.get());
8181
8182 StmtResult LoopVar = getDerived().TransformStmt(S->getLoopVarStmt());
8183 if (LoopVar.isInvalid())
8184 return StmtError();
8185
8186 StmtResult NewStmt = S;
8187 if (getDerived().AlwaysRebuild() ||
8188 Init.get() != S->getInit() ||
8189 Range.get() != S->getRangeStmt() ||
8190 Begin.get() != S->getBeginStmt() ||
8191 End.get() != S->getEndStmt() ||
8192 Cond.get() != S->getCond() ||
8193 Inc.get() != S->getInc() ||
8194 LoopVar.get() != S->getLoopVarStmt()) {
8195 NewStmt = getDerived().RebuildCXXForRangeStmt(S->getForLoc(),
8196 S->getCoawaitLoc(), Init.get(),
8197 S->getColonLoc(), Range.get(),
8198 Begin.get(), End.get(),
8199 Cond.get(),
8200 Inc.get(), LoopVar.get(),
8201 S->getRParenLoc());
8202 if (NewStmt.isInvalid() && LoopVar.get() != S->getLoopVarStmt()) {
8203 // Might not have attached any initializer to the loop variable.
8204 getSema().ActOnInitializerError(
8205 cast<DeclStmt>(LoopVar.get())->getSingleDecl());
8206 return StmtError();
8207 }
8208 }
8209
8210 StmtResult Body = getDerived().TransformStmt(S->getBody());
8211 if (Body.isInvalid())
8212 return StmtError();
8213
8214 // Body has changed but we didn't rebuild the for-range statement. Rebuild
8215 // it now so we have a new statement to attach the body to.
8216 if (Body.get() != S->getBody() && NewStmt.get() == S) {
8217 NewStmt = getDerived().RebuildCXXForRangeStmt(S->getForLoc(),
8218 S->getCoawaitLoc(), Init.get(),
8219 S->getColonLoc(), Range.get(),
8220 Begin.get(), End.get(),
8221 Cond.get(),
8222 Inc.get(), LoopVar.get(),
8223 S->getRParenLoc());
8224 if (NewStmt.isInvalid())
8225 return StmtError();
8226 }
8227
8228 if (NewStmt.get() == S)
8229 return S;
8230
8231 return FinishCXXForRangeStmt(NewStmt.get(), Body.get());
8232 }
8233
8234 template<typename Derived>
8235 StmtResult
TransformMSDependentExistsStmt(MSDependentExistsStmt * S)8236 TreeTransform<Derived>::TransformMSDependentExistsStmt(
8237 MSDependentExistsStmt *S) {
8238 // Transform the nested-name-specifier, if any.
8239 NestedNameSpecifierLoc QualifierLoc;
8240 if (S->getQualifierLoc()) {
8241 QualifierLoc
8242 = getDerived().TransformNestedNameSpecifierLoc(S->getQualifierLoc());
8243 if (!QualifierLoc)
8244 return StmtError();
8245 }
8246
8247 // Transform the declaration name.
8248 DeclarationNameInfo NameInfo = S->getNameInfo();
8249 if (NameInfo.getName()) {
8250 NameInfo = getDerived().TransformDeclarationNameInfo(NameInfo);
8251 if (!NameInfo.getName())
8252 return StmtError();
8253 }
8254
8255 // Check whether anything changed.
8256 if (!getDerived().AlwaysRebuild() &&
8257 QualifierLoc == S->getQualifierLoc() &&
8258 NameInfo.getName() == S->getNameInfo().getName())
8259 return S;
8260
8261 // Determine whether this name exists, if we can.
8262 CXXScopeSpec SS;
8263 SS.Adopt(QualifierLoc);
8264 bool Dependent = false;
8265 switch (getSema().CheckMicrosoftIfExistsSymbol(/*S=*/nullptr, SS, NameInfo)) {
8266 case Sema::IER_Exists:
8267 if (S->isIfExists())
8268 break;
8269
8270 return new (getSema().Context) NullStmt(S->getKeywordLoc());
8271
8272 case Sema::IER_DoesNotExist:
8273 if (S->isIfNotExists())
8274 break;
8275
8276 return new (getSema().Context) NullStmt(S->getKeywordLoc());
8277
8278 case Sema::IER_Dependent:
8279 Dependent = true;
8280 break;
8281
8282 case Sema::IER_Error:
8283 return StmtError();
8284 }
8285
8286 // We need to continue with the instantiation, so do so now.
8287 StmtResult SubStmt = getDerived().TransformCompoundStmt(S->getSubStmt());
8288 if (SubStmt.isInvalid())
8289 return StmtError();
8290
8291 // If we have resolved the name, just transform to the substatement.
8292 if (!Dependent)
8293 return SubStmt;
8294
8295 // The name is still dependent, so build a dependent expression again.
8296 return getDerived().RebuildMSDependentExistsStmt(S->getKeywordLoc(),
8297 S->isIfExists(),
8298 QualifierLoc,
8299 NameInfo,
8300 SubStmt.get());
8301 }
8302
8303 template<typename Derived>
8304 ExprResult
TransformMSPropertyRefExpr(MSPropertyRefExpr * E)8305 TreeTransform<Derived>::TransformMSPropertyRefExpr(MSPropertyRefExpr *E) {
8306 NestedNameSpecifierLoc QualifierLoc;
8307 if (E->getQualifierLoc()) {
8308 QualifierLoc
8309 = getDerived().TransformNestedNameSpecifierLoc(E->getQualifierLoc());
8310 if (!QualifierLoc)
8311 return ExprError();
8312 }
8313
8314 MSPropertyDecl *PD = cast_or_null<MSPropertyDecl>(
8315 getDerived().TransformDecl(E->getMemberLoc(), E->getPropertyDecl()));
8316 if (!PD)
8317 return ExprError();
8318
8319 ExprResult Base = getDerived().TransformExpr(E->getBaseExpr());
8320 if (Base.isInvalid())
8321 return ExprError();
8322
8323 return new (SemaRef.getASTContext())
8324 MSPropertyRefExpr(Base.get(), PD, E->isArrow(),
8325 SemaRef.getASTContext().PseudoObjectTy, VK_LValue,
8326 QualifierLoc, E->getMemberLoc());
8327 }
8328
8329 template <typename Derived>
TransformMSPropertySubscriptExpr(MSPropertySubscriptExpr * E)8330 ExprResult TreeTransform<Derived>::TransformMSPropertySubscriptExpr(
8331 MSPropertySubscriptExpr *E) {
8332 auto BaseRes = getDerived().TransformExpr(E->getBase());
8333 if (BaseRes.isInvalid())
8334 return ExprError();
8335 auto IdxRes = getDerived().TransformExpr(E->getIdx());
8336 if (IdxRes.isInvalid())
8337 return ExprError();
8338
8339 if (!getDerived().AlwaysRebuild() &&
8340 BaseRes.get() == E->getBase() &&
8341 IdxRes.get() == E->getIdx())
8342 return E;
8343
8344 return getDerived().RebuildArraySubscriptExpr(
8345 BaseRes.get(), SourceLocation(), IdxRes.get(), E->getRBracketLoc());
8346 }
8347
8348 template <typename Derived>
TransformSEHTryStmt(SEHTryStmt * S)8349 StmtResult TreeTransform<Derived>::TransformSEHTryStmt(SEHTryStmt *S) {
8350 StmtResult TryBlock = getDerived().TransformCompoundStmt(S->getTryBlock());
8351 if (TryBlock.isInvalid())
8352 return StmtError();
8353
8354 StmtResult Handler = getDerived().TransformSEHHandler(S->getHandler());
8355 if (Handler.isInvalid())
8356 return StmtError();
8357
8358 if (!getDerived().AlwaysRebuild() && TryBlock.get() == S->getTryBlock() &&
8359 Handler.get() == S->getHandler())
8360 return S;
8361
8362 return getDerived().RebuildSEHTryStmt(S->getIsCXXTry(), S->getTryLoc(),
8363 TryBlock.get(), Handler.get());
8364 }
8365
8366 template <typename Derived>
TransformSEHFinallyStmt(SEHFinallyStmt * S)8367 StmtResult TreeTransform<Derived>::TransformSEHFinallyStmt(SEHFinallyStmt *S) {
8368 StmtResult Block = getDerived().TransformCompoundStmt(S->getBlock());
8369 if (Block.isInvalid())
8370 return StmtError();
8371
8372 return getDerived().RebuildSEHFinallyStmt(S->getFinallyLoc(), Block.get());
8373 }
8374
8375 template <typename Derived>
TransformSEHExceptStmt(SEHExceptStmt * S)8376 StmtResult TreeTransform<Derived>::TransformSEHExceptStmt(SEHExceptStmt *S) {
8377 ExprResult FilterExpr = getDerived().TransformExpr(S->getFilterExpr());
8378 if (FilterExpr.isInvalid())
8379 return StmtError();
8380
8381 StmtResult Block = getDerived().TransformCompoundStmt(S->getBlock());
8382 if (Block.isInvalid())
8383 return StmtError();
8384
8385 return getDerived().RebuildSEHExceptStmt(S->getExceptLoc(), FilterExpr.get(),
8386 Block.get());
8387 }
8388
8389 template <typename Derived>
TransformSEHHandler(Stmt * Handler)8390 StmtResult TreeTransform<Derived>::TransformSEHHandler(Stmt *Handler) {
8391 if (isa<SEHFinallyStmt>(Handler))
8392 return getDerived().TransformSEHFinallyStmt(cast<SEHFinallyStmt>(Handler));
8393 else
8394 return getDerived().TransformSEHExceptStmt(cast<SEHExceptStmt>(Handler));
8395 }
8396
8397 template<typename Derived>
8398 StmtResult
TransformSEHLeaveStmt(SEHLeaveStmt * S)8399 TreeTransform<Derived>::TransformSEHLeaveStmt(SEHLeaveStmt *S) {
8400 return S;
8401 }
8402
8403 //===----------------------------------------------------------------------===//
8404 // OpenMP directive transformation
8405 //===----------------------------------------------------------------------===//
8406
8407 template <typename Derived>
8408 StmtResult
TransformOMPCanonicalLoop(OMPCanonicalLoop * L)8409 TreeTransform<Derived>::TransformOMPCanonicalLoop(OMPCanonicalLoop *L) {
8410 // OMPCanonicalLoops are eliminated during transformation, since they will be
8411 // recomputed by semantic analysis of the associated OMPLoopBasedDirective
8412 // after transformation.
8413 return getDerived().TransformStmt(L->getLoopStmt());
8414 }
8415
8416 template <typename Derived>
TransformOMPExecutableDirective(OMPExecutableDirective * D)8417 StmtResult TreeTransform<Derived>::TransformOMPExecutableDirective(
8418 OMPExecutableDirective *D) {
8419
8420 // Transform the clauses
8421 llvm::SmallVector<OMPClause *, 16> TClauses;
8422 ArrayRef<OMPClause *> Clauses = D->clauses();
8423 TClauses.reserve(Clauses.size());
8424 for (ArrayRef<OMPClause *>::iterator I = Clauses.begin(), E = Clauses.end();
8425 I != E; ++I) {
8426 if (*I) {
8427 getDerived().getSema().StartOpenMPClause((*I)->getClauseKind());
8428 OMPClause *Clause = getDerived().TransformOMPClause(*I);
8429 getDerived().getSema().EndOpenMPClause();
8430 if (Clause)
8431 TClauses.push_back(Clause);
8432 } else {
8433 TClauses.push_back(nullptr);
8434 }
8435 }
8436 StmtResult AssociatedStmt;
8437 if (D->hasAssociatedStmt() && D->getAssociatedStmt()) {
8438 getDerived().getSema().ActOnOpenMPRegionStart(D->getDirectiveKind(),
8439 /*CurScope=*/nullptr);
8440 StmtResult Body;
8441 {
8442 Sema::CompoundScopeRAII CompoundScope(getSema());
8443 Stmt *CS;
8444 if (D->getDirectiveKind() == OMPD_atomic ||
8445 D->getDirectiveKind() == OMPD_critical ||
8446 D->getDirectiveKind() == OMPD_section ||
8447 D->getDirectiveKind() == OMPD_master)
8448 CS = D->getAssociatedStmt();
8449 else
8450 CS = D->getRawStmt();
8451 Body = getDerived().TransformStmt(CS);
8452 if (Body.isUsable() && isOpenMPLoopDirective(D->getDirectiveKind()) &&
8453 getSema().getLangOpts().OpenMPIRBuilder)
8454 Body = getDerived().RebuildOMPCanonicalLoop(Body.get());
8455 }
8456 AssociatedStmt =
8457 getDerived().getSema().ActOnOpenMPRegionEnd(Body, TClauses);
8458 if (AssociatedStmt.isInvalid()) {
8459 return StmtError();
8460 }
8461 }
8462 if (TClauses.size() != Clauses.size()) {
8463 return StmtError();
8464 }
8465
8466 // Transform directive name for 'omp critical' directive.
8467 DeclarationNameInfo DirName;
8468 if (D->getDirectiveKind() == OMPD_critical) {
8469 DirName = cast<OMPCriticalDirective>(D)->getDirectiveName();
8470 DirName = getDerived().TransformDeclarationNameInfo(DirName);
8471 }
8472 OpenMPDirectiveKind CancelRegion = OMPD_unknown;
8473 if (D->getDirectiveKind() == OMPD_cancellation_point) {
8474 CancelRegion = cast<OMPCancellationPointDirective>(D)->getCancelRegion();
8475 } else if (D->getDirectiveKind() == OMPD_cancel) {
8476 CancelRegion = cast<OMPCancelDirective>(D)->getCancelRegion();
8477 }
8478
8479 return getDerived().RebuildOMPExecutableDirective(
8480 D->getDirectiveKind(), DirName, CancelRegion, TClauses,
8481 AssociatedStmt.get(), D->getBeginLoc(), D->getEndLoc());
8482 }
8483
8484 template <typename Derived>
8485 StmtResult
TransformOMPParallelDirective(OMPParallelDirective * D)8486 TreeTransform<Derived>::TransformOMPParallelDirective(OMPParallelDirective *D) {
8487 DeclarationNameInfo DirName;
8488 getDerived().getSema().StartOpenMPDSABlock(OMPD_parallel, DirName, nullptr,
8489 D->getBeginLoc());
8490 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8491 getDerived().getSema().EndOpenMPDSABlock(Res.get());
8492 return Res;
8493 }
8494
8495 template <typename Derived>
8496 StmtResult
TransformOMPSimdDirective(OMPSimdDirective * D)8497 TreeTransform<Derived>::TransformOMPSimdDirective(OMPSimdDirective *D) {
8498 DeclarationNameInfo DirName;
8499 getDerived().getSema().StartOpenMPDSABlock(OMPD_simd, DirName, nullptr,
8500 D->getBeginLoc());
8501 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8502 getDerived().getSema().EndOpenMPDSABlock(Res.get());
8503 return Res;
8504 }
8505
8506 template <typename Derived>
8507 StmtResult
TransformOMPTileDirective(OMPTileDirective * D)8508 TreeTransform<Derived>::TransformOMPTileDirective(OMPTileDirective *D) {
8509 DeclarationNameInfo DirName;
8510 getDerived().getSema().StartOpenMPDSABlock(D->getDirectiveKind(), DirName,
8511 nullptr, D->getBeginLoc());
8512 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8513 getDerived().getSema().EndOpenMPDSABlock(Res.get());
8514 return Res;
8515 }
8516
8517 template <typename Derived>
8518 StmtResult
TransformOMPForDirective(OMPForDirective * D)8519 TreeTransform<Derived>::TransformOMPForDirective(OMPForDirective *D) {
8520 DeclarationNameInfo DirName;
8521 getDerived().getSema().StartOpenMPDSABlock(OMPD_for, DirName, nullptr,
8522 D->getBeginLoc());
8523 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8524 getDerived().getSema().EndOpenMPDSABlock(Res.get());
8525 return Res;
8526 }
8527
8528 template <typename Derived>
8529 StmtResult
TransformOMPForSimdDirective(OMPForSimdDirective * D)8530 TreeTransform<Derived>::TransformOMPForSimdDirective(OMPForSimdDirective *D) {
8531 DeclarationNameInfo DirName;
8532 getDerived().getSema().StartOpenMPDSABlock(OMPD_for_simd, DirName, nullptr,
8533 D->getBeginLoc());
8534 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8535 getDerived().getSema().EndOpenMPDSABlock(Res.get());
8536 return Res;
8537 }
8538
8539 template <typename Derived>
8540 StmtResult
TransformOMPSectionsDirective(OMPSectionsDirective * D)8541 TreeTransform<Derived>::TransformOMPSectionsDirective(OMPSectionsDirective *D) {
8542 DeclarationNameInfo DirName;
8543 getDerived().getSema().StartOpenMPDSABlock(OMPD_sections, DirName, nullptr,
8544 D->getBeginLoc());
8545 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8546 getDerived().getSema().EndOpenMPDSABlock(Res.get());
8547 return Res;
8548 }
8549
8550 template <typename Derived>
8551 StmtResult
TransformOMPSectionDirective(OMPSectionDirective * D)8552 TreeTransform<Derived>::TransformOMPSectionDirective(OMPSectionDirective *D) {
8553 DeclarationNameInfo DirName;
8554 getDerived().getSema().StartOpenMPDSABlock(OMPD_section, DirName, nullptr,
8555 D->getBeginLoc());
8556 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8557 getDerived().getSema().EndOpenMPDSABlock(Res.get());
8558 return Res;
8559 }
8560
8561 template <typename Derived>
8562 StmtResult
TransformOMPSingleDirective(OMPSingleDirective * D)8563 TreeTransform<Derived>::TransformOMPSingleDirective(OMPSingleDirective *D) {
8564 DeclarationNameInfo DirName;
8565 getDerived().getSema().StartOpenMPDSABlock(OMPD_single, DirName, nullptr,
8566 D->getBeginLoc());
8567 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8568 getDerived().getSema().EndOpenMPDSABlock(Res.get());
8569 return Res;
8570 }
8571
8572 template <typename Derived>
8573 StmtResult
TransformOMPMasterDirective(OMPMasterDirective * D)8574 TreeTransform<Derived>::TransformOMPMasterDirective(OMPMasterDirective *D) {
8575 DeclarationNameInfo DirName;
8576 getDerived().getSema().StartOpenMPDSABlock(OMPD_master, DirName, nullptr,
8577 D->getBeginLoc());
8578 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8579 getDerived().getSema().EndOpenMPDSABlock(Res.get());
8580 return Res;
8581 }
8582
8583 template <typename Derived>
8584 StmtResult
TransformOMPCriticalDirective(OMPCriticalDirective * D)8585 TreeTransform<Derived>::TransformOMPCriticalDirective(OMPCriticalDirective *D) {
8586 getDerived().getSema().StartOpenMPDSABlock(
8587 OMPD_critical, D->getDirectiveName(), nullptr, D->getBeginLoc());
8588 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8589 getDerived().getSema().EndOpenMPDSABlock(Res.get());
8590 return Res;
8591 }
8592
8593 template <typename Derived>
TransformOMPParallelForDirective(OMPParallelForDirective * D)8594 StmtResult TreeTransform<Derived>::TransformOMPParallelForDirective(
8595 OMPParallelForDirective *D) {
8596 DeclarationNameInfo DirName;
8597 getDerived().getSema().StartOpenMPDSABlock(OMPD_parallel_for, DirName,
8598 nullptr, D->getBeginLoc());
8599 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8600 getDerived().getSema().EndOpenMPDSABlock(Res.get());
8601 return Res;
8602 }
8603
8604 template <typename Derived>
TransformOMPParallelForSimdDirective(OMPParallelForSimdDirective * D)8605 StmtResult TreeTransform<Derived>::TransformOMPParallelForSimdDirective(
8606 OMPParallelForSimdDirective *D) {
8607 DeclarationNameInfo DirName;
8608 getDerived().getSema().StartOpenMPDSABlock(OMPD_parallel_for_simd, DirName,
8609 nullptr, D->getBeginLoc());
8610 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8611 getDerived().getSema().EndOpenMPDSABlock(Res.get());
8612 return Res;
8613 }
8614
8615 template <typename Derived>
TransformOMPParallelMasterDirective(OMPParallelMasterDirective * D)8616 StmtResult TreeTransform<Derived>::TransformOMPParallelMasterDirective(
8617 OMPParallelMasterDirective *D) {
8618 DeclarationNameInfo DirName;
8619 getDerived().getSema().StartOpenMPDSABlock(OMPD_parallel_master, DirName,
8620 nullptr, D->getBeginLoc());
8621 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8622 getDerived().getSema().EndOpenMPDSABlock(Res.get());
8623 return Res;
8624 }
8625
8626 template <typename Derived>
TransformOMPParallelSectionsDirective(OMPParallelSectionsDirective * D)8627 StmtResult TreeTransform<Derived>::TransformOMPParallelSectionsDirective(
8628 OMPParallelSectionsDirective *D) {
8629 DeclarationNameInfo DirName;
8630 getDerived().getSema().StartOpenMPDSABlock(OMPD_parallel_sections, DirName,
8631 nullptr, D->getBeginLoc());
8632 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8633 getDerived().getSema().EndOpenMPDSABlock(Res.get());
8634 return Res;
8635 }
8636
8637 template <typename Derived>
8638 StmtResult
TransformOMPTaskDirective(OMPTaskDirective * D)8639 TreeTransform<Derived>::TransformOMPTaskDirective(OMPTaskDirective *D) {
8640 DeclarationNameInfo DirName;
8641 getDerived().getSema().StartOpenMPDSABlock(OMPD_task, DirName, nullptr,
8642 D->getBeginLoc());
8643 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8644 getDerived().getSema().EndOpenMPDSABlock(Res.get());
8645 return Res;
8646 }
8647
8648 template <typename Derived>
TransformOMPTaskyieldDirective(OMPTaskyieldDirective * D)8649 StmtResult TreeTransform<Derived>::TransformOMPTaskyieldDirective(
8650 OMPTaskyieldDirective *D) {
8651 DeclarationNameInfo DirName;
8652 getDerived().getSema().StartOpenMPDSABlock(OMPD_taskyield, DirName, nullptr,
8653 D->getBeginLoc());
8654 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8655 getDerived().getSema().EndOpenMPDSABlock(Res.get());
8656 return Res;
8657 }
8658
8659 template <typename Derived>
8660 StmtResult
TransformOMPBarrierDirective(OMPBarrierDirective * D)8661 TreeTransform<Derived>::TransformOMPBarrierDirective(OMPBarrierDirective *D) {
8662 DeclarationNameInfo DirName;
8663 getDerived().getSema().StartOpenMPDSABlock(OMPD_barrier, DirName, nullptr,
8664 D->getBeginLoc());
8665 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8666 getDerived().getSema().EndOpenMPDSABlock(Res.get());
8667 return Res;
8668 }
8669
8670 template <typename Derived>
8671 StmtResult
TransformOMPTaskwaitDirective(OMPTaskwaitDirective * D)8672 TreeTransform<Derived>::TransformOMPTaskwaitDirective(OMPTaskwaitDirective *D) {
8673 DeclarationNameInfo DirName;
8674 getDerived().getSema().StartOpenMPDSABlock(OMPD_taskwait, DirName, nullptr,
8675 D->getBeginLoc());
8676 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8677 getDerived().getSema().EndOpenMPDSABlock(Res.get());
8678 return Res;
8679 }
8680
8681 template <typename Derived>
TransformOMPTaskgroupDirective(OMPTaskgroupDirective * D)8682 StmtResult TreeTransform<Derived>::TransformOMPTaskgroupDirective(
8683 OMPTaskgroupDirective *D) {
8684 DeclarationNameInfo DirName;
8685 getDerived().getSema().StartOpenMPDSABlock(OMPD_taskgroup, DirName, nullptr,
8686 D->getBeginLoc());
8687 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8688 getDerived().getSema().EndOpenMPDSABlock(Res.get());
8689 return Res;
8690 }
8691
8692 template <typename Derived>
8693 StmtResult
TransformOMPFlushDirective(OMPFlushDirective * D)8694 TreeTransform<Derived>::TransformOMPFlushDirective(OMPFlushDirective *D) {
8695 DeclarationNameInfo DirName;
8696 getDerived().getSema().StartOpenMPDSABlock(OMPD_flush, DirName, nullptr,
8697 D->getBeginLoc());
8698 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8699 getDerived().getSema().EndOpenMPDSABlock(Res.get());
8700 return Res;
8701 }
8702
8703 template <typename Derived>
8704 StmtResult
TransformOMPDepobjDirective(OMPDepobjDirective * D)8705 TreeTransform<Derived>::TransformOMPDepobjDirective(OMPDepobjDirective *D) {
8706 DeclarationNameInfo DirName;
8707 getDerived().getSema().StartOpenMPDSABlock(OMPD_depobj, DirName, nullptr,
8708 D->getBeginLoc());
8709 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8710 getDerived().getSema().EndOpenMPDSABlock(Res.get());
8711 return Res;
8712 }
8713
8714 template <typename Derived>
8715 StmtResult
TransformOMPScanDirective(OMPScanDirective * D)8716 TreeTransform<Derived>::TransformOMPScanDirective(OMPScanDirective *D) {
8717 DeclarationNameInfo DirName;
8718 getDerived().getSema().StartOpenMPDSABlock(OMPD_scan, DirName, nullptr,
8719 D->getBeginLoc());
8720 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8721 getDerived().getSema().EndOpenMPDSABlock(Res.get());
8722 return Res;
8723 }
8724
8725 template <typename Derived>
8726 StmtResult
TransformOMPOrderedDirective(OMPOrderedDirective * D)8727 TreeTransform<Derived>::TransformOMPOrderedDirective(OMPOrderedDirective *D) {
8728 DeclarationNameInfo DirName;
8729 getDerived().getSema().StartOpenMPDSABlock(OMPD_ordered, DirName, nullptr,
8730 D->getBeginLoc());
8731 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8732 getDerived().getSema().EndOpenMPDSABlock(Res.get());
8733 return Res;
8734 }
8735
8736 template <typename Derived>
8737 StmtResult
TransformOMPAtomicDirective(OMPAtomicDirective * D)8738 TreeTransform<Derived>::TransformOMPAtomicDirective(OMPAtomicDirective *D) {
8739 DeclarationNameInfo DirName;
8740 getDerived().getSema().StartOpenMPDSABlock(OMPD_atomic, DirName, nullptr,
8741 D->getBeginLoc());
8742 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8743 getDerived().getSema().EndOpenMPDSABlock(Res.get());
8744 return Res;
8745 }
8746
8747 template <typename Derived>
8748 StmtResult
TransformOMPTargetDirective(OMPTargetDirective * D)8749 TreeTransform<Derived>::TransformOMPTargetDirective(OMPTargetDirective *D) {
8750 DeclarationNameInfo DirName;
8751 getDerived().getSema().StartOpenMPDSABlock(OMPD_target, DirName, nullptr,
8752 D->getBeginLoc());
8753 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8754 getDerived().getSema().EndOpenMPDSABlock(Res.get());
8755 return Res;
8756 }
8757
8758 template <typename Derived>
TransformOMPTargetDataDirective(OMPTargetDataDirective * D)8759 StmtResult TreeTransform<Derived>::TransformOMPTargetDataDirective(
8760 OMPTargetDataDirective *D) {
8761 DeclarationNameInfo DirName;
8762 getDerived().getSema().StartOpenMPDSABlock(OMPD_target_data, DirName, nullptr,
8763 D->getBeginLoc());
8764 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8765 getDerived().getSema().EndOpenMPDSABlock(Res.get());
8766 return Res;
8767 }
8768
8769 template <typename Derived>
TransformOMPTargetEnterDataDirective(OMPTargetEnterDataDirective * D)8770 StmtResult TreeTransform<Derived>::TransformOMPTargetEnterDataDirective(
8771 OMPTargetEnterDataDirective *D) {
8772 DeclarationNameInfo DirName;
8773 getDerived().getSema().StartOpenMPDSABlock(OMPD_target_enter_data, DirName,
8774 nullptr, D->getBeginLoc());
8775 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8776 getDerived().getSema().EndOpenMPDSABlock(Res.get());
8777 return Res;
8778 }
8779
8780 template <typename Derived>
TransformOMPTargetExitDataDirective(OMPTargetExitDataDirective * D)8781 StmtResult TreeTransform<Derived>::TransformOMPTargetExitDataDirective(
8782 OMPTargetExitDataDirective *D) {
8783 DeclarationNameInfo DirName;
8784 getDerived().getSema().StartOpenMPDSABlock(OMPD_target_exit_data, DirName,
8785 nullptr, D->getBeginLoc());
8786 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8787 getDerived().getSema().EndOpenMPDSABlock(Res.get());
8788 return Res;
8789 }
8790
8791 template <typename Derived>
TransformOMPTargetParallelDirective(OMPTargetParallelDirective * D)8792 StmtResult TreeTransform<Derived>::TransformOMPTargetParallelDirective(
8793 OMPTargetParallelDirective *D) {
8794 DeclarationNameInfo DirName;
8795 getDerived().getSema().StartOpenMPDSABlock(OMPD_target_parallel, DirName,
8796 nullptr, D->getBeginLoc());
8797 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8798 getDerived().getSema().EndOpenMPDSABlock(Res.get());
8799 return Res;
8800 }
8801
8802 template <typename Derived>
TransformOMPTargetParallelForDirective(OMPTargetParallelForDirective * D)8803 StmtResult TreeTransform<Derived>::TransformOMPTargetParallelForDirective(
8804 OMPTargetParallelForDirective *D) {
8805 DeclarationNameInfo DirName;
8806 getDerived().getSema().StartOpenMPDSABlock(OMPD_target_parallel_for, DirName,
8807 nullptr, D->getBeginLoc());
8808 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8809 getDerived().getSema().EndOpenMPDSABlock(Res.get());
8810 return Res;
8811 }
8812
8813 template <typename Derived>
TransformOMPTargetUpdateDirective(OMPTargetUpdateDirective * D)8814 StmtResult TreeTransform<Derived>::TransformOMPTargetUpdateDirective(
8815 OMPTargetUpdateDirective *D) {
8816 DeclarationNameInfo DirName;
8817 getDerived().getSema().StartOpenMPDSABlock(OMPD_target_update, DirName,
8818 nullptr, D->getBeginLoc());
8819 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8820 getDerived().getSema().EndOpenMPDSABlock(Res.get());
8821 return Res;
8822 }
8823
8824 template <typename Derived>
8825 StmtResult
TransformOMPTeamsDirective(OMPTeamsDirective * D)8826 TreeTransform<Derived>::TransformOMPTeamsDirective(OMPTeamsDirective *D) {
8827 DeclarationNameInfo DirName;
8828 getDerived().getSema().StartOpenMPDSABlock(OMPD_teams, DirName, nullptr,
8829 D->getBeginLoc());
8830 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8831 getDerived().getSema().EndOpenMPDSABlock(Res.get());
8832 return Res;
8833 }
8834
8835 template <typename Derived>
TransformOMPCancellationPointDirective(OMPCancellationPointDirective * D)8836 StmtResult TreeTransform<Derived>::TransformOMPCancellationPointDirective(
8837 OMPCancellationPointDirective *D) {
8838 DeclarationNameInfo DirName;
8839 getDerived().getSema().StartOpenMPDSABlock(OMPD_cancellation_point, DirName,
8840 nullptr, D->getBeginLoc());
8841 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8842 getDerived().getSema().EndOpenMPDSABlock(Res.get());
8843 return Res;
8844 }
8845
8846 template <typename Derived>
8847 StmtResult
TransformOMPCancelDirective(OMPCancelDirective * D)8848 TreeTransform<Derived>::TransformOMPCancelDirective(OMPCancelDirective *D) {
8849 DeclarationNameInfo DirName;
8850 getDerived().getSema().StartOpenMPDSABlock(OMPD_cancel, DirName, nullptr,
8851 D->getBeginLoc());
8852 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8853 getDerived().getSema().EndOpenMPDSABlock(Res.get());
8854 return Res;
8855 }
8856
8857 template <typename Derived>
8858 StmtResult
TransformOMPTaskLoopDirective(OMPTaskLoopDirective * D)8859 TreeTransform<Derived>::TransformOMPTaskLoopDirective(OMPTaskLoopDirective *D) {
8860 DeclarationNameInfo DirName;
8861 getDerived().getSema().StartOpenMPDSABlock(OMPD_taskloop, DirName, nullptr,
8862 D->getBeginLoc());
8863 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8864 getDerived().getSema().EndOpenMPDSABlock(Res.get());
8865 return Res;
8866 }
8867
8868 template <typename Derived>
TransformOMPTaskLoopSimdDirective(OMPTaskLoopSimdDirective * D)8869 StmtResult TreeTransform<Derived>::TransformOMPTaskLoopSimdDirective(
8870 OMPTaskLoopSimdDirective *D) {
8871 DeclarationNameInfo DirName;
8872 getDerived().getSema().StartOpenMPDSABlock(OMPD_taskloop_simd, DirName,
8873 nullptr, D->getBeginLoc());
8874 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8875 getDerived().getSema().EndOpenMPDSABlock(Res.get());
8876 return Res;
8877 }
8878
8879 template <typename Derived>
TransformOMPMasterTaskLoopDirective(OMPMasterTaskLoopDirective * D)8880 StmtResult TreeTransform<Derived>::TransformOMPMasterTaskLoopDirective(
8881 OMPMasterTaskLoopDirective *D) {
8882 DeclarationNameInfo DirName;
8883 getDerived().getSema().StartOpenMPDSABlock(OMPD_master_taskloop, DirName,
8884 nullptr, D->getBeginLoc());
8885 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8886 getDerived().getSema().EndOpenMPDSABlock(Res.get());
8887 return Res;
8888 }
8889
8890 template <typename Derived>
TransformOMPMasterTaskLoopSimdDirective(OMPMasterTaskLoopSimdDirective * D)8891 StmtResult TreeTransform<Derived>::TransformOMPMasterTaskLoopSimdDirective(
8892 OMPMasterTaskLoopSimdDirective *D) {
8893 DeclarationNameInfo DirName;
8894 getDerived().getSema().StartOpenMPDSABlock(OMPD_master_taskloop_simd, DirName,
8895 nullptr, D->getBeginLoc());
8896 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8897 getDerived().getSema().EndOpenMPDSABlock(Res.get());
8898 return Res;
8899 }
8900
8901 template <typename Derived>
TransformOMPParallelMasterTaskLoopDirective(OMPParallelMasterTaskLoopDirective * D)8902 StmtResult TreeTransform<Derived>::TransformOMPParallelMasterTaskLoopDirective(
8903 OMPParallelMasterTaskLoopDirective *D) {
8904 DeclarationNameInfo DirName;
8905 getDerived().getSema().StartOpenMPDSABlock(
8906 OMPD_parallel_master_taskloop, DirName, nullptr, D->getBeginLoc());
8907 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8908 getDerived().getSema().EndOpenMPDSABlock(Res.get());
8909 return Res;
8910 }
8911
8912 template <typename Derived>
8913 StmtResult
TransformOMPParallelMasterTaskLoopSimdDirective(OMPParallelMasterTaskLoopSimdDirective * D)8914 TreeTransform<Derived>::TransformOMPParallelMasterTaskLoopSimdDirective(
8915 OMPParallelMasterTaskLoopSimdDirective *D) {
8916 DeclarationNameInfo DirName;
8917 getDerived().getSema().StartOpenMPDSABlock(
8918 OMPD_parallel_master_taskloop_simd, DirName, nullptr, D->getBeginLoc());
8919 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8920 getDerived().getSema().EndOpenMPDSABlock(Res.get());
8921 return Res;
8922 }
8923
8924 template <typename Derived>
TransformOMPDistributeDirective(OMPDistributeDirective * D)8925 StmtResult TreeTransform<Derived>::TransformOMPDistributeDirective(
8926 OMPDistributeDirective *D) {
8927 DeclarationNameInfo DirName;
8928 getDerived().getSema().StartOpenMPDSABlock(OMPD_distribute, DirName, nullptr,
8929 D->getBeginLoc());
8930 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8931 getDerived().getSema().EndOpenMPDSABlock(Res.get());
8932 return Res;
8933 }
8934
8935 template <typename Derived>
TransformOMPDistributeParallelForDirective(OMPDistributeParallelForDirective * D)8936 StmtResult TreeTransform<Derived>::TransformOMPDistributeParallelForDirective(
8937 OMPDistributeParallelForDirective *D) {
8938 DeclarationNameInfo DirName;
8939 getDerived().getSema().StartOpenMPDSABlock(
8940 OMPD_distribute_parallel_for, DirName, nullptr, D->getBeginLoc());
8941 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8942 getDerived().getSema().EndOpenMPDSABlock(Res.get());
8943 return Res;
8944 }
8945
8946 template <typename Derived>
8947 StmtResult
TransformOMPDistributeParallelForSimdDirective(OMPDistributeParallelForSimdDirective * D)8948 TreeTransform<Derived>::TransformOMPDistributeParallelForSimdDirective(
8949 OMPDistributeParallelForSimdDirective *D) {
8950 DeclarationNameInfo DirName;
8951 getDerived().getSema().StartOpenMPDSABlock(
8952 OMPD_distribute_parallel_for_simd, DirName, nullptr, D->getBeginLoc());
8953 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8954 getDerived().getSema().EndOpenMPDSABlock(Res.get());
8955 return Res;
8956 }
8957
8958 template <typename Derived>
TransformOMPDistributeSimdDirective(OMPDistributeSimdDirective * D)8959 StmtResult TreeTransform<Derived>::TransformOMPDistributeSimdDirective(
8960 OMPDistributeSimdDirective *D) {
8961 DeclarationNameInfo DirName;
8962 getDerived().getSema().StartOpenMPDSABlock(OMPD_distribute_simd, DirName,
8963 nullptr, D->getBeginLoc());
8964 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8965 getDerived().getSema().EndOpenMPDSABlock(Res.get());
8966 return Res;
8967 }
8968
8969 template <typename Derived>
TransformOMPTargetParallelForSimdDirective(OMPTargetParallelForSimdDirective * D)8970 StmtResult TreeTransform<Derived>::TransformOMPTargetParallelForSimdDirective(
8971 OMPTargetParallelForSimdDirective *D) {
8972 DeclarationNameInfo DirName;
8973 getDerived().getSema().StartOpenMPDSABlock(
8974 OMPD_target_parallel_for_simd, DirName, nullptr, D->getBeginLoc());
8975 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8976 getDerived().getSema().EndOpenMPDSABlock(Res.get());
8977 return Res;
8978 }
8979
8980 template <typename Derived>
TransformOMPTargetSimdDirective(OMPTargetSimdDirective * D)8981 StmtResult TreeTransform<Derived>::TransformOMPTargetSimdDirective(
8982 OMPTargetSimdDirective *D) {
8983 DeclarationNameInfo DirName;
8984 getDerived().getSema().StartOpenMPDSABlock(OMPD_target_simd, DirName, nullptr,
8985 D->getBeginLoc());
8986 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8987 getDerived().getSema().EndOpenMPDSABlock(Res.get());
8988 return Res;
8989 }
8990
8991 template <typename Derived>
TransformOMPTeamsDistributeDirective(OMPTeamsDistributeDirective * D)8992 StmtResult TreeTransform<Derived>::TransformOMPTeamsDistributeDirective(
8993 OMPTeamsDistributeDirective *D) {
8994 DeclarationNameInfo DirName;
8995 getDerived().getSema().StartOpenMPDSABlock(OMPD_teams_distribute, DirName,
8996 nullptr, D->getBeginLoc());
8997 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
8998 getDerived().getSema().EndOpenMPDSABlock(Res.get());
8999 return Res;
9000 }
9001
9002 template <typename Derived>
TransformOMPTeamsDistributeSimdDirective(OMPTeamsDistributeSimdDirective * D)9003 StmtResult TreeTransform<Derived>::TransformOMPTeamsDistributeSimdDirective(
9004 OMPTeamsDistributeSimdDirective *D) {
9005 DeclarationNameInfo DirName;
9006 getDerived().getSema().StartOpenMPDSABlock(
9007 OMPD_teams_distribute_simd, DirName, nullptr, D->getBeginLoc());
9008 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
9009 getDerived().getSema().EndOpenMPDSABlock(Res.get());
9010 return Res;
9011 }
9012
9013 template <typename Derived>
TransformOMPTeamsDistributeParallelForSimdDirective(OMPTeamsDistributeParallelForSimdDirective * D)9014 StmtResult TreeTransform<Derived>::TransformOMPTeamsDistributeParallelForSimdDirective(
9015 OMPTeamsDistributeParallelForSimdDirective *D) {
9016 DeclarationNameInfo DirName;
9017 getDerived().getSema().StartOpenMPDSABlock(
9018 OMPD_teams_distribute_parallel_for_simd, DirName, nullptr,
9019 D->getBeginLoc());
9020 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
9021 getDerived().getSema().EndOpenMPDSABlock(Res.get());
9022 return Res;
9023 }
9024
9025 template <typename Derived>
TransformOMPTeamsDistributeParallelForDirective(OMPTeamsDistributeParallelForDirective * D)9026 StmtResult TreeTransform<Derived>::TransformOMPTeamsDistributeParallelForDirective(
9027 OMPTeamsDistributeParallelForDirective *D) {
9028 DeclarationNameInfo DirName;
9029 getDerived().getSema().StartOpenMPDSABlock(
9030 OMPD_teams_distribute_parallel_for, DirName, nullptr, D->getBeginLoc());
9031 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
9032 getDerived().getSema().EndOpenMPDSABlock(Res.get());
9033 return Res;
9034 }
9035
9036 template <typename Derived>
TransformOMPTargetTeamsDirective(OMPTargetTeamsDirective * D)9037 StmtResult TreeTransform<Derived>::TransformOMPTargetTeamsDirective(
9038 OMPTargetTeamsDirective *D) {
9039 DeclarationNameInfo DirName;
9040 getDerived().getSema().StartOpenMPDSABlock(OMPD_target_teams, DirName,
9041 nullptr, D->getBeginLoc());
9042 auto Res = getDerived().TransformOMPExecutableDirective(D);
9043 getDerived().getSema().EndOpenMPDSABlock(Res.get());
9044 return Res;
9045 }
9046
9047 template <typename Derived>
TransformOMPTargetTeamsDistributeDirective(OMPTargetTeamsDistributeDirective * D)9048 StmtResult TreeTransform<Derived>::TransformOMPTargetTeamsDistributeDirective(
9049 OMPTargetTeamsDistributeDirective *D) {
9050 DeclarationNameInfo DirName;
9051 getDerived().getSema().StartOpenMPDSABlock(
9052 OMPD_target_teams_distribute, DirName, nullptr, D->getBeginLoc());
9053 auto Res = getDerived().TransformOMPExecutableDirective(D);
9054 getDerived().getSema().EndOpenMPDSABlock(Res.get());
9055 return Res;
9056 }
9057
9058 template <typename Derived>
9059 StmtResult
TransformOMPTargetTeamsDistributeParallelForDirective(OMPTargetTeamsDistributeParallelForDirective * D)9060 TreeTransform<Derived>::TransformOMPTargetTeamsDistributeParallelForDirective(
9061 OMPTargetTeamsDistributeParallelForDirective *D) {
9062 DeclarationNameInfo DirName;
9063 getDerived().getSema().StartOpenMPDSABlock(
9064 OMPD_target_teams_distribute_parallel_for, DirName, nullptr,
9065 D->getBeginLoc());
9066 auto Res = getDerived().TransformOMPExecutableDirective(D);
9067 getDerived().getSema().EndOpenMPDSABlock(Res.get());
9068 return Res;
9069 }
9070
9071 template <typename Derived>
9072 StmtResult TreeTransform<Derived>::
TransformOMPTargetTeamsDistributeParallelForSimdDirective(OMPTargetTeamsDistributeParallelForSimdDirective * D)9073 TransformOMPTargetTeamsDistributeParallelForSimdDirective(
9074 OMPTargetTeamsDistributeParallelForSimdDirective *D) {
9075 DeclarationNameInfo DirName;
9076 getDerived().getSema().StartOpenMPDSABlock(
9077 OMPD_target_teams_distribute_parallel_for_simd, DirName, nullptr,
9078 D->getBeginLoc());
9079 auto Res = getDerived().TransformOMPExecutableDirective(D);
9080 getDerived().getSema().EndOpenMPDSABlock(Res.get());
9081 return Res;
9082 }
9083
9084 template <typename Derived>
9085 StmtResult
TransformOMPTargetTeamsDistributeSimdDirective(OMPTargetTeamsDistributeSimdDirective * D)9086 TreeTransform<Derived>::TransformOMPTargetTeamsDistributeSimdDirective(
9087 OMPTargetTeamsDistributeSimdDirective *D) {
9088 DeclarationNameInfo DirName;
9089 getDerived().getSema().StartOpenMPDSABlock(
9090 OMPD_target_teams_distribute_simd, DirName, nullptr, D->getBeginLoc());
9091 auto Res = getDerived().TransformOMPExecutableDirective(D);
9092 getDerived().getSema().EndOpenMPDSABlock(Res.get());
9093 return Res;
9094 }
9095
9096 template <typename Derived>
9097 StmtResult
TransformOMPInteropDirective(OMPInteropDirective * D)9098 TreeTransform<Derived>::TransformOMPInteropDirective(OMPInteropDirective *D) {
9099 DeclarationNameInfo DirName;
9100 getDerived().getSema().StartOpenMPDSABlock(OMPD_interop, DirName, nullptr,
9101 D->getBeginLoc());
9102 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
9103 getDerived().getSema().EndOpenMPDSABlock(Res.get());
9104 return Res;
9105 }
9106
9107 template <typename Derived>
9108 StmtResult
TransformOMPDispatchDirective(OMPDispatchDirective * D)9109 TreeTransform<Derived>::TransformOMPDispatchDirective(OMPDispatchDirective *D) {
9110 DeclarationNameInfo DirName;
9111 getDerived().getSema().StartOpenMPDSABlock(OMPD_dispatch, DirName, nullptr,
9112 D->getBeginLoc());
9113 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
9114 getDerived().getSema().EndOpenMPDSABlock(Res.get());
9115 return Res;
9116 }
9117
9118 template <typename Derived>
9119 StmtResult
TransformOMPMaskedDirective(OMPMaskedDirective * D)9120 TreeTransform<Derived>::TransformOMPMaskedDirective(OMPMaskedDirective *D) {
9121 DeclarationNameInfo DirName;
9122 getDerived().getSema().StartOpenMPDSABlock(OMPD_masked, DirName, nullptr,
9123 D->getBeginLoc());
9124 StmtResult Res = getDerived().TransformOMPExecutableDirective(D);
9125 getDerived().getSema().EndOpenMPDSABlock(Res.get());
9126 return Res;
9127 }
9128
9129 //===----------------------------------------------------------------------===//
9130 // OpenMP clause transformation
9131 //===----------------------------------------------------------------------===//
9132 template <typename Derived>
TransformOMPIfClause(OMPIfClause * C)9133 OMPClause *TreeTransform<Derived>::TransformOMPIfClause(OMPIfClause *C) {
9134 ExprResult Cond = getDerived().TransformExpr(C->getCondition());
9135 if (Cond.isInvalid())
9136 return nullptr;
9137 return getDerived().RebuildOMPIfClause(
9138 C->getNameModifier(), Cond.get(), C->getBeginLoc(), C->getLParenLoc(),
9139 C->getNameModifierLoc(), C->getColonLoc(), C->getEndLoc());
9140 }
9141
9142 template <typename Derived>
TransformOMPFinalClause(OMPFinalClause * C)9143 OMPClause *TreeTransform<Derived>::TransformOMPFinalClause(OMPFinalClause *C) {
9144 ExprResult Cond = getDerived().TransformExpr(C->getCondition());
9145 if (Cond.isInvalid())
9146 return nullptr;
9147 return getDerived().RebuildOMPFinalClause(Cond.get(), C->getBeginLoc(),
9148 C->getLParenLoc(), C->getEndLoc());
9149 }
9150
9151 template <typename Derived>
9152 OMPClause *
TransformOMPNumThreadsClause(OMPNumThreadsClause * C)9153 TreeTransform<Derived>::TransformOMPNumThreadsClause(OMPNumThreadsClause *C) {
9154 ExprResult NumThreads = getDerived().TransformExpr(C->getNumThreads());
9155 if (NumThreads.isInvalid())
9156 return nullptr;
9157 return getDerived().RebuildOMPNumThreadsClause(
9158 NumThreads.get(), C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
9159 }
9160
9161 template <typename Derived>
9162 OMPClause *
TransformOMPSafelenClause(OMPSafelenClause * C)9163 TreeTransform<Derived>::TransformOMPSafelenClause(OMPSafelenClause *C) {
9164 ExprResult E = getDerived().TransformExpr(C->getSafelen());
9165 if (E.isInvalid())
9166 return nullptr;
9167 return getDerived().RebuildOMPSafelenClause(
9168 E.get(), C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
9169 }
9170
9171 template <typename Derived>
9172 OMPClause *
TransformOMPAllocatorClause(OMPAllocatorClause * C)9173 TreeTransform<Derived>::TransformOMPAllocatorClause(OMPAllocatorClause *C) {
9174 ExprResult E = getDerived().TransformExpr(C->getAllocator());
9175 if (E.isInvalid())
9176 return nullptr;
9177 return getDerived().RebuildOMPAllocatorClause(
9178 E.get(), C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
9179 }
9180
9181 template <typename Derived>
9182 OMPClause *
TransformOMPSimdlenClause(OMPSimdlenClause * C)9183 TreeTransform<Derived>::TransformOMPSimdlenClause(OMPSimdlenClause *C) {
9184 ExprResult E = getDerived().TransformExpr(C->getSimdlen());
9185 if (E.isInvalid())
9186 return nullptr;
9187 return getDerived().RebuildOMPSimdlenClause(
9188 E.get(), C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
9189 }
9190
9191 template <typename Derived>
TransformOMPSizesClause(OMPSizesClause * C)9192 OMPClause *TreeTransform<Derived>::TransformOMPSizesClause(OMPSizesClause *C) {
9193 SmallVector<Expr *, 4> TransformedSizes;
9194 TransformedSizes.reserve(C->getNumSizes());
9195 bool Changed = false;
9196 for (Expr *E : C->getSizesRefs()) {
9197 if (!E) {
9198 TransformedSizes.push_back(nullptr);
9199 continue;
9200 }
9201
9202 ExprResult T = getDerived().TransformExpr(E);
9203 if (T.isInvalid())
9204 return nullptr;
9205 if (E != T.get())
9206 Changed = true;
9207 TransformedSizes.push_back(T.get());
9208 }
9209
9210 if (!Changed && !getDerived().AlwaysRebuild())
9211 return C;
9212 return RebuildOMPSizesClause(TransformedSizes, C->getBeginLoc(),
9213 C->getLParenLoc(), C->getEndLoc());
9214 }
9215
9216 template <typename Derived>
9217 OMPClause *
TransformOMPCollapseClause(OMPCollapseClause * C)9218 TreeTransform<Derived>::TransformOMPCollapseClause(OMPCollapseClause *C) {
9219 ExprResult E = getDerived().TransformExpr(C->getNumForLoops());
9220 if (E.isInvalid())
9221 return nullptr;
9222 return getDerived().RebuildOMPCollapseClause(
9223 E.get(), C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
9224 }
9225
9226 template <typename Derived>
9227 OMPClause *
TransformOMPDefaultClause(OMPDefaultClause * C)9228 TreeTransform<Derived>::TransformOMPDefaultClause(OMPDefaultClause *C) {
9229 return getDerived().RebuildOMPDefaultClause(
9230 C->getDefaultKind(), C->getDefaultKindKwLoc(), C->getBeginLoc(),
9231 C->getLParenLoc(), C->getEndLoc());
9232 }
9233
9234 template <typename Derived>
9235 OMPClause *
TransformOMPProcBindClause(OMPProcBindClause * C)9236 TreeTransform<Derived>::TransformOMPProcBindClause(OMPProcBindClause *C) {
9237 return getDerived().RebuildOMPProcBindClause(
9238 C->getProcBindKind(), C->getProcBindKindKwLoc(), C->getBeginLoc(),
9239 C->getLParenLoc(), C->getEndLoc());
9240 }
9241
9242 template <typename Derived>
9243 OMPClause *
TransformOMPScheduleClause(OMPScheduleClause * C)9244 TreeTransform<Derived>::TransformOMPScheduleClause(OMPScheduleClause *C) {
9245 ExprResult E = getDerived().TransformExpr(C->getChunkSize());
9246 if (E.isInvalid())
9247 return nullptr;
9248 return getDerived().RebuildOMPScheduleClause(
9249 C->getFirstScheduleModifier(), C->getSecondScheduleModifier(),
9250 C->getScheduleKind(), E.get(), C->getBeginLoc(), C->getLParenLoc(),
9251 C->getFirstScheduleModifierLoc(), C->getSecondScheduleModifierLoc(),
9252 C->getScheduleKindLoc(), C->getCommaLoc(), C->getEndLoc());
9253 }
9254
9255 template <typename Derived>
9256 OMPClause *
TransformOMPOrderedClause(OMPOrderedClause * C)9257 TreeTransform<Derived>::TransformOMPOrderedClause(OMPOrderedClause *C) {
9258 ExprResult E;
9259 if (auto *Num = C->getNumForLoops()) {
9260 E = getDerived().TransformExpr(Num);
9261 if (E.isInvalid())
9262 return nullptr;
9263 }
9264 return getDerived().RebuildOMPOrderedClause(C->getBeginLoc(), C->getEndLoc(),
9265 C->getLParenLoc(), E.get());
9266 }
9267
9268 template <typename Derived>
9269 OMPClause *
TransformOMPDetachClause(OMPDetachClause * C)9270 TreeTransform<Derived>::TransformOMPDetachClause(OMPDetachClause *C) {
9271 ExprResult E;
9272 if (Expr *Evt = C->getEventHandler()) {
9273 E = getDerived().TransformExpr(Evt);
9274 if (E.isInvalid())
9275 return nullptr;
9276 }
9277 return getDerived().RebuildOMPDetachClause(E.get(), C->getBeginLoc(),
9278 C->getLParenLoc(), C->getEndLoc());
9279 }
9280
9281 template <typename Derived>
9282 OMPClause *
TransformOMPNowaitClause(OMPNowaitClause * C)9283 TreeTransform<Derived>::TransformOMPNowaitClause(OMPNowaitClause *C) {
9284 // No need to rebuild this clause, no template-dependent parameters.
9285 return C;
9286 }
9287
9288 template <typename Derived>
9289 OMPClause *
TransformOMPUntiedClause(OMPUntiedClause * C)9290 TreeTransform<Derived>::TransformOMPUntiedClause(OMPUntiedClause *C) {
9291 // No need to rebuild this clause, no template-dependent parameters.
9292 return C;
9293 }
9294
9295 template <typename Derived>
9296 OMPClause *
TransformOMPMergeableClause(OMPMergeableClause * C)9297 TreeTransform<Derived>::TransformOMPMergeableClause(OMPMergeableClause *C) {
9298 // No need to rebuild this clause, no template-dependent parameters.
9299 return C;
9300 }
9301
9302 template <typename Derived>
TransformOMPReadClause(OMPReadClause * C)9303 OMPClause *TreeTransform<Derived>::TransformOMPReadClause(OMPReadClause *C) {
9304 // No need to rebuild this clause, no template-dependent parameters.
9305 return C;
9306 }
9307
9308 template <typename Derived>
TransformOMPWriteClause(OMPWriteClause * C)9309 OMPClause *TreeTransform<Derived>::TransformOMPWriteClause(OMPWriteClause *C) {
9310 // No need to rebuild this clause, no template-dependent parameters.
9311 return C;
9312 }
9313
9314 template <typename Derived>
9315 OMPClause *
TransformOMPUpdateClause(OMPUpdateClause * C)9316 TreeTransform<Derived>::TransformOMPUpdateClause(OMPUpdateClause *C) {
9317 // No need to rebuild this clause, no template-dependent parameters.
9318 return C;
9319 }
9320
9321 template <typename Derived>
9322 OMPClause *
TransformOMPCaptureClause(OMPCaptureClause * C)9323 TreeTransform<Derived>::TransformOMPCaptureClause(OMPCaptureClause *C) {
9324 // No need to rebuild this clause, no template-dependent parameters.
9325 return C;
9326 }
9327
9328 template <typename Derived>
9329 OMPClause *
TransformOMPSeqCstClause(OMPSeqCstClause * C)9330 TreeTransform<Derived>::TransformOMPSeqCstClause(OMPSeqCstClause *C) {
9331 // No need to rebuild this clause, no template-dependent parameters.
9332 return C;
9333 }
9334
9335 template <typename Derived>
9336 OMPClause *
TransformOMPAcqRelClause(OMPAcqRelClause * C)9337 TreeTransform<Derived>::TransformOMPAcqRelClause(OMPAcqRelClause *C) {
9338 // No need to rebuild this clause, no template-dependent parameters.
9339 return C;
9340 }
9341
9342 template <typename Derived>
9343 OMPClause *
TransformOMPAcquireClause(OMPAcquireClause * C)9344 TreeTransform<Derived>::TransformOMPAcquireClause(OMPAcquireClause *C) {
9345 // No need to rebuild this clause, no template-dependent parameters.
9346 return C;
9347 }
9348
9349 template <typename Derived>
9350 OMPClause *
TransformOMPReleaseClause(OMPReleaseClause * C)9351 TreeTransform<Derived>::TransformOMPReleaseClause(OMPReleaseClause *C) {
9352 // No need to rebuild this clause, no template-dependent parameters.
9353 return C;
9354 }
9355
9356 template <typename Derived>
9357 OMPClause *
TransformOMPRelaxedClause(OMPRelaxedClause * C)9358 TreeTransform<Derived>::TransformOMPRelaxedClause(OMPRelaxedClause *C) {
9359 // No need to rebuild this clause, no template-dependent parameters.
9360 return C;
9361 }
9362
9363 template <typename Derived>
9364 OMPClause *
TransformOMPThreadsClause(OMPThreadsClause * C)9365 TreeTransform<Derived>::TransformOMPThreadsClause(OMPThreadsClause *C) {
9366 // No need to rebuild this clause, no template-dependent parameters.
9367 return C;
9368 }
9369
9370 template <typename Derived>
TransformOMPSIMDClause(OMPSIMDClause * C)9371 OMPClause *TreeTransform<Derived>::TransformOMPSIMDClause(OMPSIMDClause *C) {
9372 // No need to rebuild this clause, no template-dependent parameters.
9373 return C;
9374 }
9375
9376 template <typename Derived>
9377 OMPClause *
TransformOMPNogroupClause(OMPNogroupClause * C)9378 TreeTransform<Derived>::TransformOMPNogroupClause(OMPNogroupClause *C) {
9379 // No need to rebuild this clause, no template-dependent parameters.
9380 return C;
9381 }
9382
9383 template <typename Derived>
TransformOMPInitClause(OMPInitClause * C)9384 OMPClause *TreeTransform<Derived>::TransformOMPInitClause(OMPInitClause *C) {
9385 ExprResult IVR = getDerived().TransformExpr(C->getInteropVar());
9386 if (IVR.isInvalid())
9387 return nullptr;
9388
9389 llvm::SmallVector<Expr *, 8> PrefExprs;
9390 PrefExprs.reserve(C->varlist_size() - 1);
9391 for (Expr *E : llvm::drop_begin(C->varlists())) {
9392 ExprResult ER = getDerived().TransformExpr(cast<Expr>(E));
9393 if (ER.isInvalid())
9394 return nullptr;
9395 PrefExprs.push_back(ER.get());
9396 }
9397 return getDerived().RebuildOMPInitClause(
9398 IVR.get(), PrefExprs, C->getIsTarget(), C->getIsTargetSync(),
9399 C->getBeginLoc(), C->getLParenLoc(), C->getVarLoc(), C->getEndLoc());
9400 }
9401
9402 template <typename Derived>
TransformOMPUseClause(OMPUseClause * C)9403 OMPClause *TreeTransform<Derived>::TransformOMPUseClause(OMPUseClause *C) {
9404 ExprResult ER = getDerived().TransformExpr(C->getInteropVar());
9405 if (ER.isInvalid())
9406 return nullptr;
9407 return getDerived().RebuildOMPUseClause(ER.get(), C->getBeginLoc(),
9408 C->getLParenLoc(), C->getVarLoc(),
9409 C->getEndLoc());
9410 }
9411
9412 template <typename Derived>
9413 OMPClause *
TransformOMPDestroyClause(OMPDestroyClause * C)9414 TreeTransform<Derived>::TransformOMPDestroyClause(OMPDestroyClause *C) {
9415 ExprResult ER;
9416 if (Expr *IV = C->getInteropVar()) {
9417 ER = getDerived().TransformExpr(IV);
9418 if (ER.isInvalid())
9419 return nullptr;
9420 }
9421 return getDerived().RebuildOMPDestroyClause(ER.get(), C->getBeginLoc(),
9422 C->getLParenLoc(), C->getVarLoc(),
9423 C->getEndLoc());
9424 }
9425
9426 template <typename Derived>
9427 OMPClause *
TransformOMPNovariantsClause(OMPNovariantsClause * C)9428 TreeTransform<Derived>::TransformOMPNovariantsClause(OMPNovariantsClause *C) {
9429 ExprResult Cond = getDerived().TransformExpr(C->getCondition());
9430 if (Cond.isInvalid())
9431 return nullptr;
9432 return getDerived().RebuildOMPNovariantsClause(
9433 Cond.get(), C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
9434 }
9435
9436 template <typename Derived>
9437 OMPClause *
TransformOMPNocontextClause(OMPNocontextClause * C)9438 TreeTransform<Derived>::TransformOMPNocontextClause(OMPNocontextClause *C) {
9439 ExprResult Cond = getDerived().TransformExpr(C->getCondition());
9440 if (Cond.isInvalid())
9441 return nullptr;
9442 return getDerived().RebuildOMPNocontextClause(
9443 Cond.get(), C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
9444 }
9445
9446 template <typename Derived>
9447 OMPClause *
TransformOMPFilterClause(OMPFilterClause * C)9448 TreeTransform<Derived>::TransformOMPFilterClause(OMPFilterClause *C) {
9449 ExprResult ThreadID = getDerived().TransformExpr(C->getThreadID());
9450 if (ThreadID.isInvalid())
9451 return nullptr;
9452 return getDerived().RebuildOMPFilterClause(ThreadID.get(), C->getBeginLoc(),
9453 C->getLParenLoc(), C->getEndLoc());
9454 }
9455
9456 template <typename Derived>
TransformOMPUnifiedAddressClause(OMPUnifiedAddressClause * C)9457 OMPClause *TreeTransform<Derived>::TransformOMPUnifiedAddressClause(
9458 OMPUnifiedAddressClause *C) {
9459 llvm_unreachable("unified_address clause cannot appear in dependent context");
9460 }
9461
9462 template <typename Derived>
TransformOMPUnifiedSharedMemoryClause(OMPUnifiedSharedMemoryClause * C)9463 OMPClause *TreeTransform<Derived>::TransformOMPUnifiedSharedMemoryClause(
9464 OMPUnifiedSharedMemoryClause *C) {
9465 llvm_unreachable(
9466 "unified_shared_memory clause cannot appear in dependent context");
9467 }
9468
9469 template <typename Derived>
TransformOMPReverseOffloadClause(OMPReverseOffloadClause * C)9470 OMPClause *TreeTransform<Derived>::TransformOMPReverseOffloadClause(
9471 OMPReverseOffloadClause *C) {
9472 llvm_unreachable("reverse_offload clause cannot appear in dependent context");
9473 }
9474
9475 template <typename Derived>
TransformOMPDynamicAllocatorsClause(OMPDynamicAllocatorsClause * C)9476 OMPClause *TreeTransform<Derived>::TransformOMPDynamicAllocatorsClause(
9477 OMPDynamicAllocatorsClause *C) {
9478 llvm_unreachable(
9479 "dynamic_allocators clause cannot appear in dependent context");
9480 }
9481
9482 template <typename Derived>
TransformOMPAtomicDefaultMemOrderClause(OMPAtomicDefaultMemOrderClause * C)9483 OMPClause *TreeTransform<Derived>::TransformOMPAtomicDefaultMemOrderClause(
9484 OMPAtomicDefaultMemOrderClause *C) {
9485 llvm_unreachable(
9486 "atomic_default_mem_order clause cannot appear in dependent context");
9487 }
9488
9489 template <typename Derived>
9490 OMPClause *
TransformOMPPrivateClause(OMPPrivateClause * C)9491 TreeTransform<Derived>::TransformOMPPrivateClause(OMPPrivateClause *C) {
9492 llvm::SmallVector<Expr *, 16> Vars;
9493 Vars.reserve(C->varlist_size());
9494 for (auto *VE : C->varlists()) {
9495 ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
9496 if (EVar.isInvalid())
9497 return nullptr;
9498 Vars.push_back(EVar.get());
9499 }
9500 return getDerived().RebuildOMPPrivateClause(
9501 Vars, C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
9502 }
9503
9504 template <typename Derived>
TransformOMPFirstprivateClause(OMPFirstprivateClause * C)9505 OMPClause *TreeTransform<Derived>::TransformOMPFirstprivateClause(
9506 OMPFirstprivateClause *C) {
9507 llvm::SmallVector<Expr *, 16> Vars;
9508 Vars.reserve(C->varlist_size());
9509 for (auto *VE : C->varlists()) {
9510 ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
9511 if (EVar.isInvalid())
9512 return nullptr;
9513 Vars.push_back(EVar.get());
9514 }
9515 return getDerived().RebuildOMPFirstprivateClause(
9516 Vars, C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
9517 }
9518
9519 template <typename Derived>
9520 OMPClause *
TransformOMPLastprivateClause(OMPLastprivateClause * C)9521 TreeTransform<Derived>::TransformOMPLastprivateClause(OMPLastprivateClause *C) {
9522 llvm::SmallVector<Expr *, 16> Vars;
9523 Vars.reserve(C->varlist_size());
9524 for (auto *VE : C->varlists()) {
9525 ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
9526 if (EVar.isInvalid())
9527 return nullptr;
9528 Vars.push_back(EVar.get());
9529 }
9530 return getDerived().RebuildOMPLastprivateClause(
9531 Vars, C->getKind(), C->getKindLoc(), C->getColonLoc(), C->getBeginLoc(),
9532 C->getLParenLoc(), C->getEndLoc());
9533 }
9534
9535 template <typename Derived>
9536 OMPClause *
TransformOMPSharedClause(OMPSharedClause * C)9537 TreeTransform<Derived>::TransformOMPSharedClause(OMPSharedClause *C) {
9538 llvm::SmallVector<Expr *, 16> Vars;
9539 Vars.reserve(C->varlist_size());
9540 for (auto *VE : C->varlists()) {
9541 ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
9542 if (EVar.isInvalid())
9543 return nullptr;
9544 Vars.push_back(EVar.get());
9545 }
9546 return getDerived().RebuildOMPSharedClause(Vars, C->getBeginLoc(),
9547 C->getLParenLoc(), C->getEndLoc());
9548 }
9549
9550 template <typename Derived>
9551 OMPClause *
TransformOMPReductionClause(OMPReductionClause * C)9552 TreeTransform<Derived>::TransformOMPReductionClause(OMPReductionClause *C) {
9553 llvm::SmallVector<Expr *, 16> Vars;
9554 Vars.reserve(C->varlist_size());
9555 for (auto *VE : C->varlists()) {
9556 ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
9557 if (EVar.isInvalid())
9558 return nullptr;
9559 Vars.push_back(EVar.get());
9560 }
9561 CXXScopeSpec ReductionIdScopeSpec;
9562 ReductionIdScopeSpec.Adopt(C->getQualifierLoc());
9563
9564 DeclarationNameInfo NameInfo = C->getNameInfo();
9565 if (NameInfo.getName()) {
9566 NameInfo = getDerived().TransformDeclarationNameInfo(NameInfo);
9567 if (!NameInfo.getName())
9568 return nullptr;
9569 }
9570 // Build a list of all UDR decls with the same names ranged by the Scopes.
9571 // The Scope boundary is a duplication of the previous decl.
9572 llvm::SmallVector<Expr *, 16> UnresolvedReductions;
9573 for (auto *E : C->reduction_ops()) {
9574 // Transform all the decls.
9575 if (E) {
9576 auto *ULE = cast<UnresolvedLookupExpr>(E);
9577 UnresolvedSet<8> Decls;
9578 for (auto *D : ULE->decls()) {
9579 NamedDecl *InstD =
9580 cast<NamedDecl>(getDerived().TransformDecl(E->getExprLoc(), D));
9581 Decls.addDecl(InstD, InstD->getAccess());
9582 }
9583 UnresolvedReductions.push_back(
9584 UnresolvedLookupExpr::Create(
9585 SemaRef.Context, /*NamingClass=*/nullptr,
9586 ReductionIdScopeSpec.getWithLocInContext(SemaRef.Context),
9587 NameInfo, /*ADL=*/true, ULE->isOverloaded(),
9588 Decls.begin(), Decls.end()));
9589 } else
9590 UnresolvedReductions.push_back(nullptr);
9591 }
9592 return getDerived().RebuildOMPReductionClause(
9593 Vars, C->getModifier(), C->getBeginLoc(), C->getLParenLoc(),
9594 C->getModifierLoc(), C->getColonLoc(), C->getEndLoc(),
9595 ReductionIdScopeSpec, NameInfo, UnresolvedReductions);
9596 }
9597
9598 template <typename Derived>
TransformOMPTaskReductionClause(OMPTaskReductionClause * C)9599 OMPClause *TreeTransform<Derived>::TransformOMPTaskReductionClause(
9600 OMPTaskReductionClause *C) {
9601 llvm::SmallVector<Expr *, 16> Vars;
9602 Vars.reserve(C->varlist_size());
9603 for (auto *VE : C->varlists()) {
9604 ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
9605 if (EVar.isInvalid())
9606 return nullptr;
9607 Vars.push_back(EVar.get());
9608 }
9609 CXXScopeSpec ReductionIdScopeSpec;
9610 ReductionIdScopeSpec.Adopt(C->getQualifierLoc());
9611
9612 DeclarationNameInfo NameInfo = C->getNameInfo();
9613 if (NameInfo.getName()) {
9614 NameInfo = getDerived().TransformDeclarationNameInfo(NameInfo);
9615 if (!NameInfo.getName())
9616 return nullptr;
9617 }
9618 // Build a list of all UDR decls with the same names ranged by the Scopes.
9619 // The Scope boundary is a duplication of the previous decl.
9620 llvm::SmallVector<Expr *, 16> UnresolvedReductions;
9621 for (auto *E : C->reduction_ops()) {
9622 // Transform all the decls.
9623 if (E) {
9624 auto *ULE = cast<UnresolvedLookupExpr>(E);
9625 UnresolvedSet<8> Decls;
9626 for (auto *D : ULE->decls()) {
9627 NamedDecl *InstD =
9628 cast<NamedDecl>(getDerived().TransformDecl(E->getExprLoc(), D));
9629 Decls.addDecl(InstD, InstD->getAccess());
9630 }
9631 UnresolvedReductions.push_back(UnresolvedLookupExpr::Create(
9632 SemaRef.Context, /*NamingClass=*/nullptr,
9633 ReductionIdScopeSpec.getWithLocInContext(SemaRef.Context), NameInfo,
9634 /*ADL=*/true, ULE->isOverloaded(), Decls.begin(), Decls.end()));
9635 } else
9636 UnresolvedReductions.push_back(nullptr);
9637 }
9638 return getDerived().RebuildOMPTaskReductionClause(
9639 Vars, C->getBeginLoc(), C->getLParenLoc(), C->getColonLoc(),
9640 C->getEndLoc(), ReductionIdScopeSpec, NameInfo, UnresolvedReductions);
9641 }
9642
9643 template <typename Derived>
9644 OMPClause *
TransformOMPInReductionClause(OMPInReductionClause * C)9645 TreeTransform<Derived>::TransformOMPInReductionClause(OMPInReductionClause *C) {
9646 llvm::SmallVector<Expr *, 16> Vars;
9647 Vars.reserve(C->varlist_size());
9648 for (auto *VE : C->varlists()) {
9649 ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
9650 if (EVar.isInvalid())
9651 return nullptr;
9652 Vars.push_back(EVar.get());
9653 }
9654 CXXScopeSpec ReductionIdScopeSpec;
9655 ReductionIdScopeSpec.Adopt(C->getQualifierLoc());
9656
9657 DeclarationNameInfo NameInfo = C->getNameInfo();
9658 if (NameInfo.getName()) {
9659 NameInfo = getDerived().TransformDeclarationNameInfo(NameInfo);
9660 if (!NameInfo.getName())
9661 return nullptr;
9662 }
9663 // Build a list of all UDR decls with the same names ranged by the Scopes.
9664 // The Scope boundary is a duplication of the previous decl.
9665 llvm::SmallVector<Expr *, 16> UnresolvedReductions;
9666 for (auto *E : C->reduction_ops()) {
9667 // Transform all the decls.
9668 if (E) {
9669 auto *ULE = cast<UnresolvedLookupExpr>(E);
9670 UnresolvedSet<8> Decls;
9671 for (auto *D : ULE->decls()) {
9672 NamedDecl *InstD =
9673 cast<NamedDecl>(getDerived().TransformDecl(E->getExprLoc(), D));
9674 Decls.addDecl(InstD, InstD->getAccess());
9675 }
9676 UnresolvedReductions.push_back(UnresolvedLookupExpr::Create(
9677 SemaRef.Context, /*NamingClass=*/nullptr,
9678 ReductionIdScopeSpec.getWithLocInContext(SemaRef.Context), NameInfo,
9679 /*ADL=*/true, ULE->isOverloaded(), Decls.begin(), Decls.end()));
9680 } else
9681 UnresolvedReductions.push_back(nullptr);
9682 }
9683 return getDerived().RebuildOMPInReductionClause(
9684 Vars, C->getBeginLoc(), C->getLParenLoc(), C->getColonLoc(),
9685 C->getEndLoc(), ReductionIdScopeSpec, NameInfo, UnresolvedReductions);
9686 }
9687
9688 template <typename Derived>
9689 OMPClause *
TransformOMPLinearClause(OMPLinearClause * C)9690 TreeTransform<Derived>::TransformOMPLinearClause(OMPLinearClause *C) {
9691 llvm::SmallVector<Expr *, 16> Vars;
9692 Vars.reserve(C->varlist_size());
9693 for (auto *VE : C->varlists()) {
9694 ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
9695 if (EVar.isInvalid())
9696 return nullptr;
9697 Vars.push_back(EVar.get());
9698 }
9699 ExprResult Step = getDerived().TransformExpr(C->getStep());
9700 if (Step.isInvalid())
9701 return nullptr;
9702 return getDerived().RebuildOMPLinearClause(
9703 Vars, Step.get(), C->getBeginLoc(), C->getLParenLoc(), C->getModifier(),
9704 C->getModifierLoc(), C->getColonLoc(), C->getEndLoc());
9705 }
9706
9707 template <typename Derived>
9708 OMPClause *
TransformOMPAlignedClause(OMPAlignedClause * C)9709 TreeTransform<Derived>::TransformOMPAlignedClause(OMPAlignedClause *C) {
9710 llvm::SmallVector<Expr *, 16> Vars;
9711 Vars.reserve(C->varlist_size());
9712 for (auto *VE : C->varlists()) {
9713 ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
9714 if (EVar.isInvalid())
9715 return nullptr;
9716 Vars.push_back(EVar.get());
9717 }
9718 ExprResult Alignment = getDerived().TransformExpr(C->getAlignment());
9719 if (Alignment.isInvalid())
9720 return nullptr;
9721 return getDerived().RebuildOMPAlignedClause(
9722 Vars, Alignment.get(), C->getBeginLoc(), C->getLParenLoc(),
9723 C->getColonLoc(), C->getEndLoc());
9724 }
9725
9726 template <typename Derived>
9727 OMPClause *
TransformOMPCopyinClause(OMPCopyinClause * C)9728 TreeTransform<Derived>::TransformOMPCopyinClause(OMPCopyinClause *C) {
9729 llvm::SmallVector<Expr *, 16> Vars;
9730 Vars.reserve(C->varlist_size());
9731 for (auto *VE : C->varlists()) {
9732 ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
9733 if (EVar.isInvalid())
9734 return nullptr;
9735 Vars.push_back(EVar.get());
9736 }
9737 return getDerived().RebuildOMPCopyinClause(Vars, C->getBeginLoc(),
9738 C->getLParenLoc(), C->getEndLoc());
9739 }
9740
9741 template <typename Derived>
9742 OMPClause *
TransformOMPCopyprivateClause(OMPCopyprivateClause * C)9743 TreeTransform<Derived>::TransformOMPCopyprivateClause(OMPCopyprivateClause *C) {
9744 llvm::SmallVector<Expr *, 16> Vars;
9745 Vars.reserve(C->varlist_size());
9746 for (auto *VE : C->varlists()) {
9747 ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
9748 if (EVar.isInvalid())
9749 return nullptr;
9750 Vars.push_back(EVar.get());
9751 }
9752 return getDerived().RebuildOMPCopyprivateClause(
9753 Vars, C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
9754 }
9755
9756 template <typename Derived>
TransformOMPFlushClause(OMPFlushClause * C)9757 OMPClause *TreeTransform<Derived>::TransformOMPFlushClause(OMPFlushClause *C) {
9758 llvm::SmallVector<Expr *, 16> Vars;
9759 Vars.reserve(C->varlist_size());
9760 for (auto *VE : C->varlists()) {
9761 ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
9762 if (EVar.isInvalid())
9763 return nullptr;
9764 Vars.push_back(EVar.get());
9765 }
9766 return getDerived().RebuildOMPFlushClause(Vars, C->getBeginLoc(),
9767 C->getLParenLoc(), C->getEndLoc());
9768 }
9769
9770 template <typename Derived>
9771 OMPClause *
TransformOMPDepobjClause(OMPDepobjClause * C)9772 TreeTransform<Derived>::TransformOMPDepobjClause(OMPDepobjClause *C) {
9773 ExprResult E = getDerived().TransformExpr(C->getDepobj());
9774 if (E.isInvalid())
9775 return nullptr;
9776 return getDerived().RebuildOMPDepobjClause(E.get(), C->getBeginLoc(),
9777 C->getLParenLoc(), C->getEndLoc());
9778 }
9779
9780 template <typename Derived>
9781 OMPClause *
TransformOMPDependClause(OMPDependClause * C)9782 TreeTransform<Derived>::TransformOMPDependClause(OMPDependClause *C) {
9783 llvm::SmallVector<Expr *, 16> Vars;
9784 Expr *DepModifier = C->getModifier();
9785 if (DepModifier) {
9786 ExprResult DepModRes = getDerived().TransformExpr(DepModifier);
9787 if (DepModRes.isInvalid())
9788 return nullptr;
9789 DepModifier = DepModRes.get();
9790 }
9791 Vars.reserve(C->varlist_size());
9792 for (auto *VE : C->varlists()) {
9793 ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
9794 if (EVar.isInvalid())
9795 return nullptr;
9796 Vars.push_back(EVar.get());
9797 }
9798 return getDerived().RebuildOMPDependClause(
9799 DepModifier, C->getDependencyKind(), C->getDependencyLoc(),
9800 C->getColonLoc(), Vars, C->getBeginLoc(), C->getLParenLoc(),
9801 C->getEndLoc());
9802 }
9803
9804 template <typename Derived>
9805 OMPClause *
TransformOMPDeviceClause(OMPDeviceClause * C)9806 TreeTransform<Derived>::TransformOMPDeviceClause(OMPDeviceClause *C) {
9807 ExprResult E = getDerived().TransformExpr(C->getDevice());
9808 if (E.isInvalid())
9809 return nullptr;
9810 return getDerived().RebuildOMPDeviceClause(
9811 C->getModifier(), E.get(), C->getBeginLoc(), C->getLParenLoc(),
9812 C->getModifierLoc(), C->getEndLoc());
9813 }
9814
9815 template <typename Derived, class T>
transformOMPMappableExprListClause(TreeTransform<Derived> & TT,OMPMappableExprListClause<T> * C,llvm::SmallVectorImpl<Expr * > & Vars,CXXScopeSpec & MapperIdScopeSpec,DeclarationNameInfo & MapperIdInfo,llvm::SmallVectorImpl<Expr * > & UnresolvedMappers)9816 bool transformOMPMappableExprListClause(
9817 TreeTransform<Derived> &TT, OMPMappableExprListClause<T> *C,
9818 llvm::SmallVectorImpl<Expr *> &Vars, CXXScopeSpec &MapperIdScopeSpec,
9819 DeclarationNameInfo &MapperIdInfo,
9820 llvm::SmallVectorImpl<Expr *> &UnresolvedMappers) {
9821 // Transform expressions in the list.
9822 Vars.reserve(C->varlist_size());
9823 for (auto *VE : C->varlists()) {
9824 ExprResult EVar = TT.getDerived().TransformExpr(cast<Expr>(VE));
9825 if (EVar.isInvalid())
9826 return true;
9827 Vars.push_back(EVar.get());
9828 }
9829 // Transform mapper scope specifier and identifier.
9830 NestedNameSpecifierLoc QualifierLoc;
9831 if (C->getMapperQualifierLoc()) {
9832 QualifierLoc = TT.getDerived().TransformNestedNameSpecifierLoc(
9833 C->getMapperQualifierLoc());
9834 if (!QualifierLoc)
9835 return true;
9836 }
9837 MapperIdScopeSpec.Adopt(QualifierLoc);
9838 MapperIdInfo = C->getMapperIdInfo();
9839 if (MapperIdInfo.getName()) {
9840 MapperIdInfo = TT.getDerived().TransformDeclarationNameInfo(MapperIdInfo);
9841 if (!MapperIdInfo.getName())
9842 return true;
9843 }
9844 // Build a list of all candidate OMPDeclareMapperDecls, which is provided by
9845 // the previous user-defined mapper lookup in dependent environment.
9846 for (auto *E : C->mapperlists()) {
9847 // Transform all the decls.
9848 if (E) {
9849 auto *ULE = cast<UnresolvedLookupExpr>(E);
9850 UnresolvedSet<8> Decls;
9851 for (auto *D : ULE->decls()) {
9852 NamedDecl *InstD =
9853 cast<NamedDecl>(TT.getDerived().TransformDecl(E->getExprLoc(), D));
9854 Decls.addDecl(InstD, InstD->getAccess());
9855 }
9856 UnresolvedMappers.push_back(UnresolvedLookupExpr::Create(
9857 TT.getSema().Context, /*NamingClass=*/nullptr,
9858 MapperIdScopeSpec.getWithLocInContext(TT.getSema().Context),
9859 MapperIdInfo, /*ADL=*/true, ULE->isOverloaded(), Decls.begin(),
9860 Decls.end()));
9861 } else {
9862 UnresolvedMappers.push_back(nullptr);
9863 }
9864 }
9865 return false;
9866 }
9867
9868 template <typename Derived>
TransformOMPMapClause(OMPMapClause * C)9869 OMPClause *TreeTransform<Derived>::TransformOMPMapClause(OMPMapClause *C) {
9870 OMPVarListLocTy Locs(C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
9871 llvm::SmallVector<Expr *, 16> Vars;
9872 CXXScopeSpec MapperIdScopeSpec;
9873 DeclarationNameInfo MapperIdInfo;
9874 llvm::SmallVector<Expr *, 16> UnresolvedMappers;
9875 if (transformOMPMappableExprListClause<Derived, OMPMapClause>(
9876 *this, C, Vars, MapperIdScopeSpec, MapperIdInfo, UnresolvedMappers))
9877 return nullptr;
9878 return getDerived().RebuildOMPMapClause(
9879 C->getMapTypeModifiers(), C->getMapTypeModifiersLoc(), MapperIdScopeSpec,
9880 MapperIdInfo, C->getMapType(), C->isImplicitMapType(), C->getMapLoc(),
9881 C->getColonLoc(), Vars, Locs, UnresolvedMappers);
9882 }
9883
9884 template <typename Derived>
9885 OMPClause *
TransformOMPAllocateClause(OMPAllocateClause * C)9886 TreeTransform<Derived>::TransformOMPAllocateClause(OMPAllocateClause *C) {
9887 Expr *Allocator = C->getAllocator();
9888 if (Allocator) {
9889 ExprResult AllocatorRes = getDerived().TransformExpr(Allocator);
9890 if (AllocatorRes.isInvalid())
9891 return nullptr;
9892 Allocator = AllocatorRes.get();
9893 }
9894 llvm::SmallVector<Expr *, 16> Vars;
9895 Vars.reserve(C->varlist_size());
9896 for (auto *VE : C->varlists()) {
9897 ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
9898 if (EVar.isInvalid())
9899 return nullptr;
9900 Vars.push_back(EVar.get());
9901 }
9902 return getDerived().RebuildOMPAllocateClause(
9903 Allocator, Vars, C->getBeginLoc(), C->getLParenLoc(), C->getColonLoc(),
9904 C->getEndLoc());
9905 }
9906
9907 template <typename Derived>
9908 OMPClause *
TransformOMPNumTeamsClause(OMPNumTeamsClause * C)9909 TreeTransform<Derived>::TransformOMPNumTeamsClause(OMPNumTeamsClause *C) {
9910 ExprResult E = getDerived().TransformExpr(C->getNumTeams());
9911 if (E.isInvalid())
9912 return nullptr;
9913 return getDerived().RebuildOMPNumTeamsClause(
9914 E.get(), C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
9915 }
9916
9917 template <typename Derived>
9918 OMPClause *
TransformOMPThreadLimitClause(OMPThreadLimitClause * C)9919 TreeTransform<Derived>::TransformOMPThreadLimitClause(OMPThreadLimitClause *C) {
9920 ExprResult E = getDerived().TransformExpr(C->getThreadLimit());
9921 if (E.isInvalid())
9922 return nullptr;
9923 return getDerived().RebuildOMPThreadLimitClause(
9924 E.get(), C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
9925 }
9926
9927 template <typename Derived>
9928 OMPClause *
TransformOMPPriorityClause(OMPPriorityClause * C)9929 TreeTransform<Derived>::TransformOMPPriorityClause(OMPPriorityClause *C) {
9930 ExprResult E = getDerived().TransformExpr(C->getPriority());
9931 if (E.isInvalid())
9932 return nullptr;
9933 return getDerived().RebuildOMPPriorityClause(
9934 E.get(), C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
9935 }
9936
9937 template <typename Derived>
9938 OMPClause *
TransformOMPGrainsizeClause(OMPGrainsizeClause * C)9939 TreeTransform<Derived>::TransformOMPGrainsizeClause(OMPGrainsizeClause *C) {
9940 ExprResult E = getDerived().TransformExpr(C->getGrainsize());
9941 if (E.isInvalid())
9942 return nullptr;
9943 return getDerived().RebuildOMPGrainsizeClause(
9944 E.get(), C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
9945 }
9946
9947 template <typename Derived>
9948 OMPClause *
TransformOMPNumTasksClause(OMPNumTasksClause * C)9949 TreeTransform<Derived>::TransformOMPNumTasksClause(OMPNumTasksClause *C) {
9950 ExprResult E = getDerived().TransformExpr(C->getNumTasks());
9951 if (E.isInvalid())
9952 return nullptr;
9953 return getDerived().RebuildOMPNumTasksClause(
9954 E.get(), C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
9955 }
9956
9957 template <typename Derived>
TransformOMPHintClause(OMPHintClause * C)9958 OMPClause *TreeTransform<Derived>::TransformOMPHintClause(OMPHintClause *C) {
9959 ExprResult E = getDerived().TransformExpr(C->getHint());
9960 if (E.isInvalid())
9961 return nullptr;
9962 return getDerived().RebuildOMPHintClause(E.get(), C->getBeginLoc(),
9963 C->getLParenLoc(), C->getEndLoc());
9964 }
9965
9966 template <typename Derived>
TransformOMPDistScheduleClause(OMPDistScheduleClause * C)9967 OMPClause *TreeTransform<Derived>::TransformOMPDistScheduleClause(
9968 OMPDistScheduleClause *C) {
9969 ExprResult E = getDerived().TransformExpr(C->getChunkSize());
9970 if (E.isInvalid())
9971 return nullptr;
9972 return getDerived().RebuildOMPDistScheduleClause(
9973 C->getDistScheduleKind(), E.get(), C->getBeginLoc(), C->getLParenLoc(),
9974 C->getDistScheduleKindLoc(), C->getCommaLoc(), C->getEndLoc());
9975 }
9976
9977 template <typename Derived>
9978 OMPClause *
TransformOMPDefaultmapClause(OMPDefaultmapClause * C)9979 TreeTransform<Derived>::TransformOMPDefaultmapClause(OMPDefaultmapClause *C) {
9980 // Rebuild Defaultmap Clause since we need to invoke the checking of
9981 // defaultmap(none:variable-category) after template initialization.
9982 return getDerived().RebuildOMPDefaultmapClause(C->getDefaultmapModifier(),
9983 C->getDefaultmapKind(),
9984 C->getBeginLoc(),
9985 C->getLParenLoc(),
9986 C->getDefaultmapModifierLoc(),
9987 C->getDefaultmapKindLoc(),
9988 C->getEndLoc());
9989 }
9990
9991 template <typename Derived>
TransformOMPToClause(OMPToClause * C)9992 OMPClause *TreeTransform<Derived>::TransformOMPToClause(OMPToClause *C) {
9993 OMPVarListLocTy Locs(C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
9994 llvm::SmallVector<Expr *, 16> Vars;
9995 CXXScopeSpec MapperIdScopeSpec;
9996 DeclarationNameInfo MapperIdInfo;
9997 llvm::SmallVector<Expr *, 16> UnresolvedMappers;
9998 if (transformOMPMappableExprListClause<Derived, OMPToClause>(
9999 *this, C, Vars, MapperIdScopeSpec, MapperIdInfo, UnresolvedMappers))
10000 return nullptr;
10001 return getDerived().RebuildOMPToClause(
10002 C->getMotionModifiers(), C->getMotionModifiersLoc(), MapperIdScopeSpec,
10003 MapperIdInfo, C->getColonLoc(), Vars, Locs, UnresolvedMappers);
10004 }
10005
10006 template <typename Derived>
TransformOMPFromClause(OMPFromClause * C)10007 OMPClause *TreeTransform<Derived>::TransformOMPFromClause(OMPFromClause *C) {
10008 OMPVarListLocTy Locs(C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
10009 llvm::SmallVector<Expr *, 16> Vars;
10010 CXXScopeSpec MapperIdScopeSpec;
10011 DeclarationNameInfo MapperIdInfo;
10012 llvm::SmallVector<Expr *, 16> UnresolvedMappers;
10013 if (transformOMPMappableExprListClause<Derived, OMPFromClause>(
10014 *this, C, Vars, MapperIdScopeSpec, MapperIdInfo, UnresolvedMappers))
10015 return nullptr;
10016 return getDerived().RebuildOMPFromClause(
10017 C->getMotionModifiers(), C->getMotionModifiersLoc(), MapperIdScopeSpec,
10018 MapperIdInfo, C->getColonLoc(), Vars, Locs, UnresolvedMappers);
10019 }
10020
10021 template <typename Derived>
TransformOMPUseDevicePtrClause(OMPUseDevicePtrClause * C)10022 OMPClause *TreeTransform<Derived>::TransformOMPUseDevicePtrClause(
10023 OMPUseDevicePtrClause *C) {
10024 llvm::SmallVector<Expr *, 16> Vars;
10025 Vars.reserve(C->varlist_size());
10026 for (auto *VE : C->varlists()) {
10027 ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
10028 if (EVar.isInvalid())
10029 return nullptr;
10030 Vars.push_back(EVar.get());
10031 }
10032 OMPVarListLocTy Locs(C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
10033 return getDerived().RebuildOMPUseDevicePtrClause(Vars, Locs);
10034 }
10035
10036 template <typename Derived>
TransformOMPUseDeviceAddrClause(OMPUseDeviceAddrClause * C)10037 OMPClause *TreeTransform<Derived>::TransformOMPUseDeviceAddrClause(
10038 OMPUseDeviceAddrClause *C) {
10039 llvm::SmallVector<Expr *, 16> Vars;
10040 Vars.reserve(C->varlist_size());
10041 for (auto *VE : C->varlists()) {
10042 ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
10043 if (EVar.isInvalid())
10044 return nullptr;
10045 Vars.push_back(EVar.get());
10046 }
10047 OMPVarListLocTy Locs(C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
10048 return getDerived().RebuildOMPUseDeviceAddrClause(Vars, Locs);
10049 }
10050
10051 template <typename Derived>
10052 OMPClause *
TransformOMPIsDevicePtrClause(OMPIsDevicePtrClause * C)10053 TreeTransform<Derived>::TransformOMPIsDevicePtrClause(OMPIsDevicePtrClause *C) {
10054 llvm::SmallVector<Expr *, 16> Vars;
10055 Vars.reserve(C->varlist_size());
10056 for (auto *VE : C->varlists()) {
10057 ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
10058 if (EVar.isInvalid())
10059 return nullptr;
10060 Vars.push_back(EVar.get());
10061 }
10062 OMPVarListLocTy Locs(C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
10063 return getDerived().RebuildOMPIsDevicePtrClause(Vars, Locs);
10064 }
10065
10066 template <typename Derived>
10067 OMPClause *
TransformOMPNontemporalClause(OMPNontemporalClause * C)10068 TreeTransform<Derived>::TransformOMPNontemporalClause(OMPNontemporalClause *C) {
10069 llvm::SmallVector<Expr *, 16> Vars;
10070 Vars.reserve(C->varlist_size());
10071 for (auto *VE : C->varlists()) {
10072 ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
10073 if (EVar.isInvalid())
10074 return nullptr;
10075 Vars.push_back(EVar.get());
10076 }
10077 return getDerived().RebuildOMPNontemporalClause(
10078 Vars, C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
10079 }
10080
10081 template <typename Derived>
10082 OMPClause *
TransformOMPInclusiveClause(OMPInclusiveClause * C)10083 TreeTransform<Derived>::TransformOMPInclusiveClause(OMPInclusiveClause *C) {
10084 llvm::SmallVector<Expr *, 16> Vars;
10085 Vars.reserve(C->varlist_size());
10086 for (auto *VE : C->varlists()) {
10087 ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
10088 if (EVar.isInvalid())
10089 return nullptr;
10090 Vars.push_back(EVar.get());
10091 }
10092 return getDerived().RebuildOMPInclusiveClause(
10093 Vars, C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
10094 }
10095
10096 template <typename Derived>
10097 OMPClause *
TransformOMPExclusiveClause(OMPExclusiveClause * C)10098 TreeTransform<Derived>::TransformOMPExclusiveClause(OMPExclusiveClause *C) {
10099 llvm::SmallVector<Expr *, 16> Vars;
10100 Vars.reserve(C->varlist_size());
10101 for (auto *VE : C->varlists()) {
10102 ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE));
10103 if (EVar.isInvalid())
10104 return nullptr;
10105 Vars.push_back(EVar.get());
10106 }
10107 return getDerived().RebuildOMPExclusiveClause(
10108 Vars, C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
10109 }
10110
10111 template <typename Derived>
TransformOMPUsesAllocatorsClause(OMPUsesAllocatorsClause * C)10112 OMPClause *TreeTransform<Derived>::TransformOMPUsesAllocatorsClause(
10113 OMPUsesAllocatorsClause *C) {
10114 SmallVector<Sema::UsesAllocatorsData, 16> Data;
10115 Data.reserve(C->getNumberOfAllocators());
10116 for (unsigned I = 0, E = C->getNumberOfAllocators(); I < E; ++I) {
10117 OMPUsesAllocatorsClause::Data D = C->getAllocatorData(I);
10118 ExprResult Allocator = getDerived().TransformExpr(D.Allocator);
10119 if (Allocator.isInvalid())
10120 continue;
10121 ExprResult AllocatorTraits;
10122 if (Expr *AT = D.AllocatorTraits) {
10123 AllocatorTraits = getDerived().TransformExpr(AT);
10124 if (AllocatorTraits.isInvalid())
10125 continue;
10126 }
10127 Sema::UsesAllocatorsData &NewD = Data.emplace_back();
10128 NewD.Allocator = Allocator.get();
10129 NewD.AllocatorTraits = AllocatorTraits.get();
10130 NewD.LParenLoc = D.LParenLoc;
10131 NewD.RParenLoc = D.RParenLoc;
10132 }
10133 return getDerived().RebuildOMPUsesAllocatorsClause(
10134 Data, C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc());
10135 }
10136
10137 template <typename Derived>
10138 OMPClause *
TransformOMPAffinityClause(OMPAffinityClause * C)10139 TreeTransform<Derived>::TransformOMPAffinityClause(OMPAffinityClause *C) {
10140 SmallVector<Expr *, 4> Locators;
10141 Locators.reserve(C->varlist_size());
10142 ExprResult ModifierRes;
10143 if (Expr *Modifier = C->getModifier()) {
10144 ModifierRes = getDerived().TransformExpr(Modifier);
10145 if (ModifierRes.isInvalid())
10146 return nullptr;
10147 }
10148 for (Expr *E : C->varlists()) {
10149 ExprResult Locator = getDerived().TransformExpr(E);
10150 if (Locator.isInvalid())
10151 continue;
10152 Locators.push_back(Locator.get());
10153 }
10154 return getDerived().RebuildOMPAffinityClause(
10155 C->getBeginLoc(), C->getLParenLoc(), C->getColonLoc(), C->getEndLoc(),
10156 ModifierRes.get(), Locators);
10157 }
10158
10159 template <typename Derived>
TransformOMPOrderClause(OMPOrderClause * C)10160 OMPClause *TreeTransform<Derived>::TransformOMPOrderClause(OMPOrderClause *C) {
10161 return getDerived().RebuildOMPOrderClause(C->getKind(), C->getKindKwLoc(),
10162 C->getBeginLoc(), C->getLParenLoc(),
10163 C->getEndLoc());
10164 }
10165
10166 //===----------------------------------------------------------------------===//
10167 // Expression transformation
10168 //===----------------------------------------------------------------------===//
10169 template<typename Derived>
10170 ExprResult
TransformConstantExpr(ConstantExpr * E)10171 TreeTransform<Derived>::TransformConstantExpr(ConstantExpr *E) {
10172 return TransformExpr(E->getSubExpr());
10173 }
10174
10175 template<typename Derived>
10176 ExprResult
TransformPredefinedExpr(PredefinedExpr * E)10177 TreeTransform<Derived>::TransformPredefinedExpr(PredefinedExpr *E) {
10178 if (!E->isTypeDependent())
10179 return E;
10180
10181 return getDerived().RebuildPredefinedExpr(E->getLocation(),
10182 E->getIdentKind());
10183 }
10184
10185 template<typename Derived>
10186 ExprResult
TransformDeclRefExpr(DeclRefExpr * E)10187 TreeTransform<Derived>::TransformDeclRefExpr(DeclRefExpr *E) {
10188 NestedNameSpecifierLoc QualifierLoc;
10189 if (E->getQualifierLoc()) {
10190 QualifierLoc
10191 = getDerived().TransformNestedNameSpecifierLoc(E->getQualifierLoc());
10192 if (!QualifierLoc)
10193 return ExprError();
10194 }
10195
10196 ValueDecl *ND
10197 = cast_or_null<ValueDecl>(getDerived().TransformDecl(E->getLocation(),
10198 E->getDecl()));
10199 if (!ND)
10200 return ExprError();
10201
10202 NamedDecl *Found = ND;
10203 if (E->getFoundDecl() != E->getDecl()) {
10204 Found = cast_or_null<NamedDecl>(
10205 getDerived().TransformDecl(E->getLocation(), E->getFoundDecl()));
10206 if (!Found)
10207 return ExprError();
10208 }
10209
10210 DeclarationNameInfo NameInfo = E->getNameInfo();
10211 if (NameInfo.getName()) {
10212 NameInfo = getDerived().TransformDeclarationNameInfo(NameInfo);
10213 if (!NameInfo.getName())
10214 return ExprError();
10215 }
10216
10217 if (!getDerived().AlwaysRebuild() &&
10218 QualifierLoc == E->getQualifierLoc() &&
10219 ND == E->getDecl() &&
10220 Found == E->getFoundDecl() &&
10221 NameInfo.getName() == E->getDecl()->getDeclName() &&
10222 !E->hasExplicitTemplateArgs()) {
10223
10224 // Mark it referenced in the new context regardless.
10225 // FIXME: this is a bit instantiation-specific.
10226 SemaRef.MarkDeclRefReferenced(E);
10227
10228 return E;
10229 }
10230
10231 TemplateArgumentListInfo TransArgs, *TemplateArgs = nullptr;
10232 if (E->hasExplicitTemplateArgs()) {
10233 TemplateArgs = &TransArgs;
10234 TransArgs.setLAngleLoc(E->getLAngleLoc());
10235 TransArgs.setRAngleLoc(E->getRAngleLoc());
10236 if (getDerived().TransformTemplateArguments(E->getTemplateArgs(),
10237 E->getNumTemplateArgs(),
10238 TransArgs))
10239 return ExprError();
10240 }
10241
10242 return getDerived().RebuildDeclRefExpr(QualifierLoc, ND, NameInfo,
10243 Found, TemplateArgs);
10244 }
10245
10246 template<typename Derived>
10247 ExprResult
TransformIntegerLiteral(IntegerLiteral * E)10248 TreeTransform<Derived>::TransformIntegerLiteral(IntegerLiteral *E) {
10249 return E;
10250 }
10251
10252 template <typename Derived>
TransformFixedPointLiteral(FixedPointLiteral * E)10253 ExprResult TreeTransform<Derived>::TransformFixedPointLiteral(
10254 FixedPointLiteral *E) {
10255 return E;
10256 }
10257
10258 template<typename Derived>
10259 ExprResult
TransformFloatingLiteral(FloatingLiteral * E)10260 TreeTransform<Derived>::TransformFloatingLiteral(FloatingLiteral *E) {
10261 return E;
10262 }
10263
10264 template<typename Derived>
10265 ExprResult
TransformImaginaryLiteral(ImaginaryLiteral * E)10266 TreeTransform<Derived>::TransformImaginaryLiteral(ImaginaryLiteral *E) {
10267 return E;
10268 }
10269
10270 template<typename Derived>
10271 ExprResult
TransformStringLiteral(StringLiteral * E)10272 TreeTransform<Derived>::TransformStringLiteral(StringLiteral *E) {
10273 return E;
10274 }
10275
10276 template<typename Derived>
10277 ExprResult
TransformCharacterLiteral(CharacterLiteral * E)10278 TreeTransform<Derived>::TransformCharacterLiteral(CharacterLiteral *E) {
10279 return E;
10280 }
10281
10282 template<typename Derived>
10283 ExprResult
TransformUserDefinedLiteral(UserDefinedLiteral * E)10284 TreeTransform<Derived>::TransformUserDefinedLiteral(UserDefinedLiteral *E) {
10285 if (FunctionDecl *FD = E->getDirectCallee())
10286 SemaRef.MarkFunctionReferenced(E->getBeginLoc(), FD);
10287 return SemaRef.MaybeBindToTemporary(E);
10288 }
10289
10290 template<typename Derived>
10291 ExprResult
TransformGenericSelectionExpr(GenericSelectionExpr * E)10292 TreeTransform<Derived>::TransformGenericSelectionExpr(GenericSelectionExpr *E) {
10293 ExprResult ControllingExpr =
10294 getDerived().TransformExpr(E->getControllingExpr());
10295 if (ControllingExpr.isInvalid())
10296 return ExprError();
10297
10298 SmallVector<Expr *, 4> AssocExprs;
10299 SmallVector<TypeSourceInfo *, 4> AssocTypes;
10300 for (const GenericSelectionExpr::Association Assoc : E->associations()) {
10301 TypeSourceInfo *TSI = Assoc.getTypeSourceInfo();
10302 if (TSI) {
10303 TypeSourceInfo *AssocType = getDerived().TransformType(TSI);
10304 if (!AssocType)
10305 return ExprError();
10306 AssocTypes.push_back(AssocType);
10307 } else {
10308 AssocTypes.push_back(nullptr);
10309 }
10310
10311 ExprResult AssocExpr =
10312 getDerived().TransformExpr(Assoc.getAssociationExpr());
10313 if (AssocExpr.isInvalid())
10314 return ExprError();
10315 AssocExprs.push_back(AssocExpr.get());
10316 }
10317
10318 return getDerived().RebuildGenericSelectionExpr(E->getGenericLoc(),
10319 E->getDefaultLoc(),
10320 E->getRParenLoc(),
10321 ControllingExpr.get(),
10322 AssocTypes,
10323 AssocExprs);
10324 }
10325
10326 template<typename Derived>
10327 ExprResult
TransformParenExpr(ParenExpr * E)10328 TreeTransform<Derived>::TransformParenExpr(ParenExpr *E) {
10329 ExprResult SubExpr = getDerived().TransformExpr(E->getSubExpr());
10330 if (SubExpr.isInvalid())
10331 return ExprError();
10332
10333 if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getSubExpr())
10334 return E;
10335
10336 return getDerived().RebuildParenExpr(SubExpr.get(), E->getLParen(),
10337 E->getRParen());
10338 }
10339
10340 /// The operand of a unary address-of operator has special rules: it's
10341 /// allowed to refer to a non-static member of a class even if there's no 'this'
10342 /// object available.
10343 template<typename Derived>
10344 ExprResult
TransformAddressOfOperand(Expr * E)10345 TreeTransform<Derived>::TransformAddressOfOperand(Expr *E) {
10346 if (DependentScopeDeclRefExpr *DRE = dyn_cast<DependentScopeDeclRefExpr>(E))
10347 return getDerived().TransformDependentScopeDeclRefExpr(DRE, true, nullptr);
10348 else
10349 return getDerived().TransformExpr(E);
10350 }
10351
10352 template<typename Derived>
10353 ExprResult
TransformUnaryOperator(UnaryOperator * E)10354 TreeTransform<Derived>::TransformUnaryOperator(UnaryOperator *E) {
10355 ExprResult SubExpr;
10356 if (E->getOpcode() == UO_AddrOf)
10357 SubExpr = TransformAddressOfOperand(E->getSubExpr());
10358 else
10359 SubExpr = TransformExpr(E->getSubExpr());
10360 if (SubExpr.isInvalid())
10361 return ExprError();
10362
10363 if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getSubExpr())
10364 return E;
10365
10366 return getDerived().RebuildUnaryOperator(E->getOperatorLoc(),
10367 E->getOpcode(),
10368 SubExpr.get());
10369 }
10370
10371 template<typename Derived>
10372 ExprResult
TransformOffsetOfExpr(OffsetOfExpr * E)10373 TreeTransform<Derived>::TransformOffsetOfExpr(OffsetOfExpr *E) {
10374 // Transform the type.
10375 TypeSourceInfo *Type = getDerived().TransformType(E->getTypeSourceInfo());
10376 if (!Type)
10377 return ExprError();
10378
10379 // Transform all of the components into components similar to what the
10380 // parser uses.
10381 // FIXME: It would be slightly more efficient in the non-dependent case to
10382 // just map FieldDecls, rather than requiring the rebuilder to look for
10383 // the fields again. However, __builtin_offsetof is rare enough in
10384 // template code that we don't care.
10385 bool ExprChanged = false;
10386 typedef Sema::OffsetOfComponent Component;
10387 SmallVector<Component, 4> Components;
10388 for (unsigned I = 0, N = E->getNumComponents(); I != N; ++I) {
10389 const OffsetOfNode &ON = E->getComponent(I);
10390 Component Comp;
10391 Comp.isBrackets = true;
10392 Comp.LocStart = ON.getSourceRange().getBegin();
10393 Comp.LocEnd = ON.getSourceRange().getEnd();
10394 switch (ON.getKind()) {
10395 case OffsetOfNode::Array: {
10396 Expr *FromIndex = E->getIndexExpr(ON.getArrayExprIndex());
10397 ExprResult Index = getDerived().TransformExpr(FromIndex);
10398 if (Index.isInvalid())
10399 return ExprError();
10400
10401 ExprChanged = ExprChanged || Index.get() != FromIndex;
10402 Comp.isBrackets = true;
10403 Comp.U.E = Index.get();
10404 break;
10405 }
10406
10407 case OffsetOfNode::Field:
10408 case OffsetOfNode::Identifier:
10409 Comp.isBrackets = false;
10410 Comp.U.IdentInfo = ON.getFieldName();
10411 if (!Comp.U.IdentInfo)
10412 continue;
10413
10414 break;
10415
10416 case OffsetOfNode::Base:
10417 // Will be recomputed during the rebuild.
10418 continue;
10419 }
10420
10421 Components.push_back(Comp);
10422 }
10423
10424 // If nothing changed, retain the existing expression.
10425 if (!getDerived().AlwaysRebuild() &&
10426 Type == E->getTypeSourceInfo() &&
10427 !ExprChanged)
10428 return E;
10429
10430 // Build a new offsetof expression.
10431 return getDerived().RebuildOffsetOfExpr(E->getOperatorLoc(), Type,
10432 Components, E->getRParenLoc());
10433 }
10434
10435 template<typename Derived>
10436 ExprResult
TransformOpaqueValueExpr(OpaqueValueExpr * E)10437 TreeTransform<Derived>::TransformOpaqueValueExpr(OpaqueValueExpr *E) {
10438 assert((!E->getSourceExpr() || getDerived().AlreadyTransformed(E->getType())) &&
10439 "opaque value expression requires transformation");
10440 return E;
10441 }
10442
10443 template<typename Derived>
10444 ExprResult
TransformTypoExpr(TypoExpr * E)10445 TreeTransform<Derived>::TransformTypoExpr(TypoExpr *E) {
10446 return E;
10447 }
10448
10449 template <typename Derived>
TransformRecoveryExpr(RecoveryExpr * E)10450 ExprResult TreeTransform<Derived>::TransformRecoveryExpr(RecoveryExpr *E) {
10451 llvm::SmallVector<Expr *, 8> Children;
10452 bool Changed = false;
10453 for (Expr *C : E->subExpressions()) {
10454 ExprResult NewC = getDerived().TransformExpr(C);
10455 if (NewC.isInvalid())
10456 return ExprError();
10457 Children.push_back(NewC.get());
10458
10459 Changed |= NewC.get() != C;
10460 }
10461 if (!getDerived().AlwaysRebuild() && !Changed)
10462 return E;
10463 return getDerived().RebuildRecoveryExpr(E->getBeginLoc(), E->getEndLoc(),
10464 Children, E->getType());
10465 }
10466
10467 template<typename Derived>
10468 ExprResult
TransformPseudoObjectExpr(PseudoObjectExpr * E)10469 TreeTransform<Derived>::TransformPseudoObjectExpr(PseudoObjectExpr *E) {
10470 // Rebuild the syntactic form. The original syntactic form has
10471 // opaque-value expressions in it, so strip those away and rebuild
10472 // the result. This is a really awful way of doing this, but the
10473 // better solution (rebuilding the semantic expressions and
10474 // rebinding OVEs as necessary) doesn't work; we'd need
10475 // TreeTransform to not strip away implicit conversions.
10476 Expr *newSyntacticForm = SemaRef.recreateSyntacticForm(E);
10477 ExprResult result = getDerived().TransformExpr(newSyntacticForm);
10478 if (result.isInvalid()) return ExprError();
10479
10480 // If that gives us a pseudo-object result back, the pseudo-object
10481 // expression must have been an lvalue-to-rvalue conversion which we
10482 // should reapply.
10483 if (result.get()->hasPlaceholderType(BuiltinType::PseudoObject))
10484 result = SemaRef.checkPseudoObjectRValue(result.get());
10485
10486 return result;
10487 }
10488
10489 template<typename Derived>
10490 ExprResult
TransformUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr * E)10491 TreeTransform<Derived>::TransformUnaryExprOrTypeTraitExpr(
10492 UnaryExprOrTypeTraitExpr *E) {
10493 if (E->isArgumentType()) {
10494 TypeSourceInfo *OldT = E->getArgumentTypeInfo();
10495
10496 TypeSourceInfo *NewT = getDerived().TransformType(OldT);
10497 if (!NewT)
10498 return ExprError();
10499
10500 if (!getDerived().AlwaysRebuild() && OldT == NewT)
10501 return E;
10502
10503 return getDerived().RebuildUnaryExprOrTypeTrait(NewT, E->getOperatorLoc(),
10504 E->getKind(),
10505 E->getSourceRange());
10506 }
10507
10508 // C++0x [expr.sizeof]p1:
10509 // The operand is either an expression, which is an unevaluated operand
10510 // [...]
10511 EnterExpressionEvaluationContext Unevaluated(
10512 SemaRef, Sema::ExpressionEvaluationContext::Unevaluated,
10513 Sema::ReuseLambdaContextDecl);
10514
10515 // Try to recover if we have something like sizeof(T::X) where X is a type.
10516 // Notably, there must be *exactly* one set of parens if X is a type.
10517 TypeSourceInfo *RecoveryTSI = nullptr;
10518 ExprResult SubExpr;
10519 auto *PE = dyn_cast<ParenExpr>(E->getArgumentExpr());
10520 if (auto *DRE =
10521 PE ? dyn_cast<DependentScopeDeclRefExpr>(PE->getSubExpr()) : nullptr)
10522 SubExpr = getDerived().TransformParenDependentScopeDeclRefExpr(
10523 PE, DRE, false, &RecoveryTSI);
10524 else
10525 SubExpr = getDerived().TransformExpr(E->getArgumentExpr());
10526
10527 if (RecoveryTSI) {
10528 return getDerived().RebuildUnaryExprOrTypeTrait(
10529 RecoveryTSI, E->getOperatorLoc(), E->getKind(), E->getSourceRange());
10530 } else if (SubExpr.isInvalid())
10531 return ExprError();
10532
10533 if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getArgumentExpr())
10534 return E;
10535
10536 return getDerived().RebuildUnaryExprOrTypeTrait(SubExpr.get(),
10537 E->getOperatorLoc(),
10538 E->getKind(),
10539 E->getSourceRange());
10540 }
10541
10542 template<typename Derived>
10543 ExprResult
TransformArraySubscriptExpr(ArraySubscriptExpr * E)10544 TreeTransform<Derived>::TransformArraySubscriptExpr(ArraySubscriptExpr *E) {
10545 ExprResult LHS = getDerived().TransformExpr(E->getLHS());
10546 if (LHS.isInvalid())
10547 return ExprError();
10548
10549 ExprResult RHS = getDerived().TransformExpr(E->getRHS());
10550 if (RHS.isInvalid())
10551 return ExprError();
10552
10553
10554 if (!getDerived().AlwaysRebuild() &&
10555 LHS.get() == E->getLHS() &&
10556 RHS.get() == E->getRHS())
10557 return E;
10558
10559 return getDerived().RebuildArraySubscriptExpr(
10560 LHS.get(),
10561 /*FIXME:*/ E->getLHS()->getBeginLoc(), RHS.get(), E->getRBracketLoc());
10562 }
10563
10564 template <typename Derived>
10565 ExprResult
TransformMatrixSubscriptExpr(MatrixSubscriptExpr * E)10566 TreeTransform<Derived>::TransformMatrixSubscriptExpr(MatrixSubscriptExpr *E) {
10567 ExprResult Base = getDerived().TransformExpr(E->getBase());
10568 if (Base.isInvalid())
10569 return ExprError();
10570
10571 ExprResult RowIdx = getDerived().TransformExpr(E->getRowIdx());
10572 if (RowIdx.isInvalid())
10573 return ExprError();
10574
10575 ExprResult ColumnIdx = getDerived().TransformExpr(E->getColumnIdx());
10576 if (ColumnIdx.isInvalid())
10577 return ExprError();
10578
10579 if (!getDerived().AlwaysRebuild() && Base.get() == E->getBase() &&
10580 RowIdx.get() == E->getRowIdx() && ColumnIdx.get() == E->getColumnIdx())
10581 return E;
10582
10583 return getDerived().RebuildMatrixSubscriptExpr(
10584 Base.get(), RowIdx.get(), ColumnIdx.get(), E->getRBracketLoc());
10585 }
10586
10587 template <typename Derived>
10588 ExprResult
TransformOMPArraySectionExpr(OMPArraySectionExpr * E)10589 TreeTransform<Derived>::TransformOMPArraySectionExpr(OMPArraySectionExpr *E) {
10590 ExprResult Base = getDerived().TransformExpr(E->getBase());
10591 if (Base.isInvalid())
10592 return ExprError();
10593
10594 ExprResult LowerBound;
10595 if (E->getLowerBound()) {
10596 LowerBound = getDerived().TransformExpr(E->getLowerBound());
10597 if (LowerBound.isInvalid())
10598 return ExprError();
10599 }
10600
10601 ExprResult Length;
10602 if (E->getLength()) {
10603 Length = getDerived().TransformExpr(E->getLength());
10604 if (Length.isInvalid())
10605 return ExprError();
10606 }
10607
10608 ExprResult Stride;
10609 if (Expr *Str = E->getStride()) {
10610 Stride = getDerived().TransformExpr(Str);
10611 if (Stride.isInvalid())
10612 return ExprError();
10613 }
10614
10615 if (!getDerived().AlwaysRebuild() && Base.get() == E->getBase() &&
10616 LowerBound.get() == E->getLowerBound() && Length.get() == E->getLength())
10617 return E;
10618
10619 return getDerived().RebuildOMPArraySectionExpr(
10620 Base.get(), E->getBase()->getEndLoc(), LowerBound.get(),
10621 E->getColonLocFirst(), E->getColonLocSecond(), Length.get(), Stride.get(),
10622 E->getRBracketLoc());
10623 }
10624
10625 template <typename Derived>
10626 ExprResult
TransformOMPArrayShapingExpr(OMPArrayShapingExpr * E)10627 TreeTransform<Derived>::TransformOMPArrayShapingExpr(OMPArrayShapingExpr *E) {
10628 ExprResult Base = getDerived().TransformExpr(E->getBase());
10629 if (Base.isInvalid())
10630 return ExprError();
10631
10632 SmallVector<Expr *, 4> Dims;
10633 bool ErrorFound = false;
10634 for (Expr *Dim : E->getDimensions()) {
10635 ExprResult DimRes = getDerived().TransformExpr(Dim);
10636 if (DimRes.isInvalid()) {
10637 ErrorFound = true;
10638 continue;
10639 }
10640 Dims.push_back(DimRes.get());
10641 }
10642
10643 if (ErrorFound)
10644 return ExprError();
10645 return getDerived().RebuildOMPArrayShapingExpr(Base.get(), E->getLParenLoc(),
10646 E->getRParenLoc(), Dims,
10647 E->getBracketsRanges());
10648 }
10649
10650 template <typename Derived>
10651 ExprResult
TransformOMPIteratorExpr(OMPIteratorExpr * E)10652 TreeTransform<Derived>::TransformOMPIteratorExpr(OMPIteratorExpr *E) {
10653 unsigned NumIterators = E->numOfIterators();
10654 SmallVector<Sema::OMPIteratorData, 4> Data(NumIterators);
10655
10656 bool ErrorFound = false;
10657 bool NeedToRebuild = getDerived().AlwaysRebuild();
10658 for (unsigned I = 0; I < NumIterators; ++I) {
10659 auto *D = cast<VarDecl>(E->getIteratorDecl(I));
10660 Data[I].DeclIdent = D->getIdentifier();
10661 Data[I].DeclIdentLoc = D->getLocation();
10662 if (D->getLocation() == D->getBeginLoc()) {
10663 assert(SemaRef.Context.hasSameType(D->getType(), SemaRef.Context.IntTy) &&
10664 "Implicit type must be int.");
10665 } else {
10666 TypeSourceInfo *TSI = getDerived().TransformType(D->getTypeSourceInfo());
10667 QualType DeclTy = getDerived().TransformType(D->getType());
10668 Data[I].Type = SemaRef.CreateParsedType(DeclTy, TSI);
10669 }
10670 OMPIteratorExpr::IteratorRange Range = E->getIteratorRange(I);
10671 ExprResult Begin = getDerived().TransformExpr(Range.Begin);
10672 ExprResult End = getDerived().TransformExpr(Range.End);
10673 ExprResult Step = getDerived().TransformExpr(Range.Step);
10674 ErrorFound = ErrorFound ||
10675 !(!D->getTypeSourceInfo() || (Data[I].Type.getAsOpaquePtr() &&
10676 !Data[I].Type.get().isNull())) ||
10677 Begin.isInvalid() || End.isInvalid() || Step.isInvalid();
10678 if (ErrorFound)
10679 continue;
10680 Data[I].Range.Begin = Begin.get();
10681 Data[I].Range.End = End.get();
10682 Data[I].Range.Step = Step.get();
10683 Data[I].AssignLoc = E->getAssignLoc(I);
10684 Data[I].ColonLoc = E->getColonLoc(I);
10685 Data[I].SecColonLoc = E->getSecondColonLoc(I);
10686 NeedToRebuild =
10687 NeedToRebuild ||
10688 (D->getTypeSourceInfo() && Data[I].Type.get().getTypePtrOrNull() !=
10689 D->getType().getTypePtrOrNull()) ||
10690 Range.Begin != Data[I].Range.Begin || Range.End != Data[I].Range.End ||
10691 Range.Step != Data[I].Range.Step;
10692 }
10693 if (ErrorFound)
10694 return ExprError();
10695 if (!NeedToRebuild)
10696 return E;
10697
10698 ExprResult Res = getDerived().RebuildOMPIteratorExpr(
10699 E->getIteratorKwLoc(), E->getLParenLoc(), E->getRParenLoc(), Data);
10700 if (!Res.isUsable())
10701 return Res;
10702 auto *IE = cast<OMPIteratorExpr>(Res.get());
10703 for (unsigned I = 0; I < NumIterators; ++I)
10704 getDerived().transformedLocalDecl(E->getIteratorDecl(I),
10705 IE->getIteratorDecl(I));
10706 return Res;
10707 }
10708
10709 template<typename Derived>
10710 ExprResult
TransformCallExpr(CallExpr * E)10711 TreeTransform<Derived>::TransformCallExpr(CallExpr *E) {
10712 // Transform the callee.
10713 ExprResult Callee = getDerived().TransformExpr(E->getCallee());
10714 if (Callee.isInvalid())
10715 return ExprError();
10716
10717 // Transform arguments.
10718 bool ArgChanged = false;
10719 SmallVector<Expr*, 8> Args;
10720 if (getDerived().TransformExprs(E->getArgs(), E->getNumArgs(), true, Args,
10721 &ArgChanged))
10722 return ExprError();
10723
10724 if (!getDerived().AlwaysRebuild() &&
10725 Callee.get() == E->getCallee() &&
10726 !ArgChanged)
10727 return SemaRef.MaybeBindToTemporary(E);
10728
10729 // FIXME: Wrong source location information for the '('.
10730 SourceLocation FakeLParenLoc
10731 = ((Expr *)Callee.get())->getSourceRange().getBegin();
10732
10733 Sema::FPFeaturesStateRAII FPFeaturesState(getSema());
10734 if (E->hasStoredFPFeatures()) {
10735 FPOptionsOverride NewOverrides = E->getFPFeatures();
10736 getSema().CurFPFeatures =
10737 NewOverrides.applyOverrides(getSema().getLangOpts());
10738 getSema().FpPragmaStack.CurrentValue = NewOverrides;
10739 }
10740
10741 return getDerived().RebuildCallExpr(Callee.get(), FakeLParenLoc,
10742 Args,
10743 E->getRParenLoc());
10744 }
10745
10746 template<typename Derived>
10747 ExprResult
TransformMemberExpr(MemberExpr * E)10748 TreeTransform<Derived>::TransformMemberExpr(MemberExpr *E) {
10749 ExprResult Base = getDerived().TransformExpr(E->getBase());
10750 if (Base.isInvalid())
10751 return ExprError();
10752
10753 NestedNameSpecifierLoc QualifierLoc;
10754 if (E->hasQualifier()) {
10755 QualifierLoc
10756 = getDerived().TransformNestedNameSpecifierLoc(E->getQualifierLoc());
10757
10758 if (!QualifierLoc)
10759 return ExprError();
10760 }
10761 SourceLocation TemplateKWLoc = E->getTemplateKeywordLoc();
10762
10763 ValueDecl *Member
10764 = cast_or_null<ValueDecl>(getDerived().TransformDecl(E->getMemberLoc(),
10765 E->getMemberDecl()));
10766 if (!Member)
10767 return ExprError();
10768
10769 NamedDecl *FoundDecl = E->getFoundDecl();
10770 if (FoundDecl == E->getMemberDecl()) {
10771 FoundDecl = Member;
10772 } else {
10773 FoundDecl = cast_or_null<NamedDecl>(
10774 getDerived().TransformDecl(E->getMemberLoc(), FoundDecl));
10775 if (!FoundDecl)
10776 return ExprError();
10777 }
10778
10779 if (!getDerived().AlwaysRebuild() &&
10780 Base.get() == E->getBase() &&
10781 QualifierLoc == E->getQualifierLoc() &&
10782 Member == E->getMemberDecl() &&
10783 FoundDecl == E->getFoundDecl() &&
10784 !E->hasExplicitTemplateArgs()) {
10785
10786 // Mark it referenced in the new context regardless.
10787 // FIXME: this is a bit instantiation-specific.
10788 SemaRef.MarkMemberReferenced(E);
10789
10790 return E;
10791 }
10792
10793 TemplateArgumentListInfo TransArgs;
10794 if (E->hasExplicitTemplateArgs()) {
10795 TransArgs.setLAngleLoc(E->getLAngleLoc());
10796 TransArgs.setRAngleLoc(E->getRAngleLoc());
10797 if (getDerived().TransformTemplateArguments(E->getTemplateArgs(),
10798 E->getNumTemplateArgs(),
10799 TransArgs))
10800 return ExprError();
10801 }
10802
10803 // FIXME: Bogus source location for the operator
10804 SourceLocation FakeOperatorLoc =
10805 SemaRef.getLocForEndOfToken(E->getBase()->getSourceRange().getEnd());
10806
10807 // FIXME: to do this check properly, we will need to preserve the
10808 // first-qualifier-in-scope here, just in case we had a dependent
10809 // base (and therefore couldn't do the check) and a
10810 // nested-name-qualifier (and therefore could do the lookup).
10811 NamedDecl *FirstQualifierInScope = nullptr;
10812 DeclarationNameInfo MemberNameInfo = E->getMemberNameInfo();
10813 if (MemberNameInfo.getName()) {
10814 MemberNameInfo = getDerived().TransformDeclarationNameInfo(MemberNameInfo);
10815 if (!MemberNameInfo.getName())
10816 return ExprError();
10817 }
10818
10819 return getDerived().RebuildMemberExpr(Base.get(), FakeOperatorLoc,
10820 E->isArrow(),
10821 QualifierLoc,
10822 TemplateKWLoc,
10823 MemberNameInfo,
10824 Member,
10825 FoundDecl,
10826 (E->hasExplicitTemplateArgs()
10827 ? &TransArgs : nullptr),
10828 FirstQualifierInScope);
10829 }
10830
10831 template<typename Derived>
10832 ExprResult
TransformBinaryOperator(BinaryOperator * E)10833 TreeTransform<Derived>::TransformBinaryOperator(BinaryOperator *E) {
10834 ExprResult LHS = getDerived().TransformExpr(E->getLHS());
10835 if (LHS.isInvalid())
10836 return ExprError();
10837
10838 ExprResult RHS = getDerived().TransformExpr(E->getRHS());
10839 if (RHS.isInvalid())
10840 return ExprError();
10841
10842 if (!getDerived().AlwaysRebuild() &&
10843 LHS.get() == E->getLHS() &&
10844 RHS.get() == E->getRHS())
10845 return E;
10846
10847 if (E->isCompoundAssignmentOp())
10848 // FPFeatures has already been established from trailing storage
10849 return getDerived().RebuildBinaryOperator(
10850 E->getOperatorLoc(), E->getOpcode(), LHS.get(), RHS.get());
10851 Sema::FPFeaturesStateRAII FPFeaturesState(getSema());
10852 FPOptionsOverride NewOverrides(E->getFPFeatures(getSema().getLangOpts()));
10853 getSema().CurFPFeatures =
10854 NewOverrides.applyOverrides(getSema().getLangOpts());
10855 getSema().FpPragmaStack.CurrentValue = NewOverrides;
10856 return getDerived().RebuildBinaryOperator(E->getOperatorLoc(), E->getOpcode(),
10857 LHS.get(), RHS.get());
10858 }
10859
10860 template <typename Derived>
TransformCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator * E)10861 ExprResult TreeTransform<Derived>::TransformCXXRewrittenBinaryOperator(
10862 CXXRewrittenBinaryOperator *E) {
10863 CXXRewrittenBinaryOperator::DecomposedForm Decomp = E->getDecomposedForm();
10864
10865 ExprResult LHS = getDerived().TransformExpr(const_cast<Expr*>(Decomp.LHS));
10866 if (LHS.isInvalid())
10867 return ExprError();
10868
10869 ExprResult RHS = getDerived().TransformExpr(const_cast<Expr*>(Decomp.RHS));
10870 if (RHS.isInvalid())
10871 return ExprError();
10872
10873 if (!getDerived().AlwaysRebuild() &&
10874 LHS.get() == Decomp.LHS &&
10875 RHS.get() == Decomp.RHS)
10876 return E;
10877
10878 // Extract the already-resolved callee declarations so that we can restrict
10879 // ourselves to using them as the unqualified lookup results when rebuilding.
10880 UnresolvedSet<2> UnqualLookups;
10881 Expr *PossibleBinOps[] = {E->getSemanticForm(),
10882 const_cast<Expr *>(Decomp.InnerBinOp)};
10883 for (Expr *PossibleBinOp : PossibleBinOps) {
10884 auto *Op = dyn_cast<CXXOperatorCallExpr>(PossibleBinOp->IgnoreImplicit());
10885 if (!Op)
10886 continue;
10887 auto *Callee = dyn_cast<DeclRefExpr>(Op->getCallee()->IgnoreImplicit());
10888 if (!Callee || isa<CXXMethodDecl>(Callee->getDecl()))
10889 continue;
10890
10891 // Transform the callee in case we built a call to a local extern
10892 // declaration.
10893 NamedDecl *Found = cast_or_null<NamedDecl>(getDerived().TransformDecl(
10894 E->getOperatorLoc(), Callee->getFoundDecl()));
10895 if (!Found)
10896 return ExprError();
10897 UnqualLookups.addDecl(Found);
10898 }
10899
10900 return getDerived().RebuildCXXRewrittenBinaryOperator(
10901 E->getOperatorLoc(), Decomp.Opcode, UnqualLookups, LHS.get(), RHS.get());
10902 }
10903
10904 template<typename Derived>
10905 ExprResult
TransformCompoundAssignOperator(CompoundAssignOperator * E)10906 TreeTransform<Derived>::TransformCompoundAssignOperator(
10907 CompoundAssignOperator *E) {
10908 Sema::FPFeaturesStateRAII FPFeaturesState(getSema());
10909 FPOptionsOverride NewOverrides(E->getFPFeatures(getSema().getLangOpts()));
10910 getSema().CurFPFeatures =
10911 NewOverrides.applyOverrides(getSema().getLangOpts());
10912 getSema().FpPragmaStack.CurrentValue = NewOverrides;
10913 return getDerived().TransformBinaryOperator(E);
10914 }
10915
10916 template<typename Derived>
10917 ExprResult TreeTransform<Derived>::
TransformBinaryConditionalOperator(BinaryConditionalOperator * e)10918 TransformBinaryConditionalOperator(BinaryConditionalOperator *e) {
10919 // Just rebuild the common and RHS expressions and see whether we
10920 // get any changes.
10921
10922 ExprResult commonExpr = getDerived().TransformExpr(e->getCommon());
10923 if (commonExpr.isInvalid())
10924 return ExprError();
10925
10926 ExprResult rhs = getDerived().TransformExpr(e->getFalseExpr());
10927 if (rhs.isInvalid())
10928 return ExprError();
10929
10930 if (!getDerived().AlwaysRebuild() &&
10931 commonExpr.get() == e->getCommon() &&
10932 rhs.get() == e->getFalseExpr())
10933 return e;
10934
10935 return getDerived().RebuildConditionalOperator(commonExpr.get(),
10936 e->getQuestionLoc(),
10937 nullptr,
10938 e->getColonLoc(),
10939 rhs.get());
10940 }
10941
10942 template<typename Derived>
10943 ExprResult
TransformConditionalOperator(ConditionalOperator * E)10944 TreeTransform<Derived>::TransformConditionalOperator(ConditionalOperator *E) {
10945 ExprResult Cond = getDerived().TransformExpr(E->getCond());
10946 if (Cond.isInvalid())
10947 return ExprError();
10948
10949 ExprResult LHS = getDerived().TransformExpr(E->getLHS());
10950 if (LHS.isInvalid())
10951 return ExprError();
10952
10953 ExprResult RHS = getDerived().TransformExpr(E->getRHS());
10954 if (RHS.isInvalid())
10955 return ExprError();
10956
10957 if (!getDerived().AlwaysRebuild() &&
10958 Cond.get() == E->getCond() &&
10959 LHS.get() == E->getLHS() &&
10960 RHS.get() == E->getRHS())
10961 return E;
10962
10963 return getDerived().RebuildConditionalOperator(Cond.get(),
10964 E->getQuestionLoc(),
10965 LHS.get(),
10966 E->getColonLoc(),
10967 RHS.get());
10968 }
10969
10970 template<typename Derived>
10971 ExprResult
TransformImplicitCastExpr(ImplicitCastExpr * E)10972 TreeTransform<Derived>::TransformImplicitCastExpr(ImplicitCastExpr *E) {
10973 // Implicit casts are eliminated during transformation, since they
10974 // will be recomputed by semantic analysis after transformation.
10975 return getDerived().TransformExpr(E->getSubExprAsWritten());
10976 }
10977
10978 template<typename Derived>
10979 ExprResult
TransformCStyleCastExpr(CStyleCastExpr * E)10980 TreeTransform<Derived>::TransformCStyleCastExpr(CStyleCastExpr *E) {
10981 TypeSourceInfo *Type = getDerived().TransformType(E->getTypeInfoAsWritten());
10982 if (!Type)
10983 return ExprError();
10984
10985 ExprResult SubExpr
10986 = getDerived().TransformExpr(E->getSubExprAsWritten());
10987 if (SubExpr.isInvalid())
10988 return ExprError();
10989
10990 if (!getDerived().AlwaysRebuild() &&
10991 Type == E->getTypeInfoAsWritten() &&
10992 SubExpr.get() == E->getSubExpr())
10993 return E;
10994
10995 return getDerived().RebuildCStyleCastExpr(E->getLParenLoc(),
10996 Type,
10997 E->getRParenLoc(),
10998 SubExpr.get());
10999 }
11000
11001 template<typename Derived>
11002 ExprResult
TransformCompoundLiteralExpr(CompoundLiteralExpr * E)11003 TreeTransform<Derived>::TransformCompoundLiteralExpr(CompoundLiteralExpr *E) {
11004 TypeSourceInfo *OldT = E->getTypeSourceInfo();
11005 TypeSourceInfo *NewT = getDerived().TransformType(OldT);
11006 if (!NewT)
11007 return ExprError();
11008
11009 ExprResult Init = getDerived().TransformExpr(E->getInitializer());
11010 if (Init.isInvalid())
11011 return ExprError();
11012
11013 if (!getDerived().AlwaysRebuild() &&
11014 OldT == NewT &&
11015 Init.get() == E->getInitializer())
11016 return SemaRef.MaybeBindToTemporary(E);
11017
11018 // Note: the expression type doesn't necessarily match the
11019 // type-as-written, but that's okay, because it should always be
11020 // derivable from the initializer.
11021
11022 return getDerived().RebuildCompoundLiteralExpr(
11023 E->getLParenLoc(), NewT,
11024 /*FIXME:*/ E->getInitializer()->getEndLoc(), Init.get());
11025 }
11026
11027 template<typename Derived>
11028 ExprResult
TransformExtVectorElementExpr(ExtVectorElementExpr * E)11029 TreeTransform<Derived>::TransformExtVectorElementExpr(ExtVectorElementExpr *E) {
11030 ExprResult Base = getDerived().TransformExpr(E->getBase());
11031 if (Base.isInvalid())
11032 return ExprError();
11033
11034 if (!getDerived().AlwaysRebuild() &&
11035 Base.get() == E->getBase())
11036 return E;
11037
11038 // FIXME: Bad source location
11039 SourceLocation FakeOperatorLoc =
11040 SemaRef.getLocForEndOfToken(E->getBase()->getEndLoc());
11041 return getDerived().RebuildExtVectorElementExpr(Base.get(), FakeOperatorLoc,
11042 E->getAccessorLoc(),
11043 E->getAccessor());
11044 }
11045
11046 template<typename Derived>
11047 ExprResult
TransformInitListExpr(InitListExpr * E)11048 TreeTransform<Derived>::TransformInitListExpr(InitListExpr *E) {
11049 if (InitListExpr *Syntactic = E->getSyntacticForm())
11050 E = Syntactic;
11051
11052 bool InitChanged = false;
11053
11054 EnterExpressionEvaluationContext Context(
11055 getSema(), EnterExpressionEvaluationContext::InitList);
11056
11057 SmallVector<Expr*, 4> Inits;
11058 if (getDerived().TransformExprs(E->getInits(), E->getNumInits(), false,
11059 Inits, &InitChanged))
11060 return ExprError();
11061
11062 if (!getDerived().AlwaysRebuild() && !InitChanged) {
11063 // FIXME: Attempt to reuse the existing syntactic form of the InitListExpr
11064 // in some cases. We can't reuse it in general, because the syntactic and
11065 // semantic forms are linked, and we can't know that semantic form will
11066 // match even if the syntactic form does.
11067 }
11068
11069 return getDerived().RebuildInitList(E->getLBraceLoc(), Inits,
11070 E->getRBraceLoc());
11071 }
11072
11073 template<typename Derived>
11074 ExprResult
TransformDesignatedInitExpr(DesignatedInitExpr * E)11075 TreeTransform<Derived>::TransformDesignatedInitExpr(DesignatedInitExpr *E) {
11076 Designation Desig;
11077
11078 // transform the initializer value
11079 ExprResult Init = getDerived().TransformExpr(E->getInit());
11080 if (Init.isInvalid())
11081 return ExprError();
11082
11083 // transform the designators.
11084 SmallVector<Expr*, 4> ArrayExprs;
11085 bool ExprChanged = false;
11086 for (const DesignatedInitExpr::Designator &D : E->designators()) {
11087 if (D.isFieldDesignator()) {
11088 Desig.AddDesignator(Designator::getField(D.getFieldName(),
11089 D.getDotLoc(),
11090 D.getFieldLoc()));
11091 if (D.getField()) {
11092 FieldDecl *Field = cast_or_null<FieldDecl>(
11093 getDerived().TransformDecl(D.getFieldLoc(), D.getField()));
11094 if (Field != D.getField())
11095 // Rebuild the expression when the transformed FieldDecl is
11096 // different to the already assigned FieldDecl.
11097 ExprChanged = true;
11098 } else {
11099 // Ensure that the designator expression is rebuilt when there isn't
11100 // a resolved FieldDecl in the designator as we don't want to assign
11101 // a FieldDecl to a pattern designator that will be instantiated again.
11102 ExprChanged = true;
11103 }
11104 continue;
11105 }
11106
11107 if (D.isArrayDesignator()) {
11108 ExprResult Index = getDerived().TransformExpr(E->getArrayIndex(D));
11109 if (Index.isInvalid())
11110 return ExprError();
11111
11112 Desig.AddDesignator(
11113 Designator::getArray(Index.get(), D.getLBracketLoc()));
11114
11115 ExprChanged = ExprChanged || Init.get() != E->getArrayIndex(D);
11116 ArrayExprs.push_back(Index.get());
11117 continue;
11118 }
11119
11120 assert(D.isArrayRangeDesignator() && "New kind of designator?");
11121 ExprResult Start
11122 = getDerived().TransformExpr(E->getArrayRangeStart(D));
11123 if (Start.isInvalid())
11124 return ExprError();
11125
11126 ExprResult End = getDerived().TransformExpr(E->getArrayRangeEnd(D));
11127 if (End.isInvalid())
11128 return ExprError();
11129
11130 Desig.AddDesignator(Designator::getArrayRange(Start.get(),
11131 End.get(),
11132 D.getLBracketLoc(),
11133 D.getEllipsisLoc()));
11134
11135 ExprChanged = ExprChanged || Start.get() != E->getArrayRangeStart(D) ||
11136 End.get() != E->getArrayRangeEnd(D);
11137
11138 ArrayExprs.push_back(Start.get());
11139 ArrayExprs.push_back(End.get());
11140 }
11141
11142 if (!getDerived().AlwaysRebuild() &&
11143 Init.get() == E->getInit() &&
11144 !ExprChanged)
11145 return E;
11146
11147 return getDerived().RebuildDesignatedInitExpr(Desig, ArrayExprs,
11148 E->getEqualOrColonLoc(),
11149 E->usesGNUSyntax(), Init.get());
11150 }
11151
11152 // Seems that if TransformInitListExpr() only works on the syntactic form of an
11153 // InitListExpr, then a DesignatedInitUpdateExpr is not encountered.
11154 template<typename Derived>
11155 ExprResult
TransformDesignatedInitUpdateExpr(DesignatedInitUpdateExpr * E)11156 TreeTransform<Derived>::TransformDesignatedInitUpdateExpr(
11157 DesignatedInitUpdateExpr *E) {
11158 llvm_unreachable("Unexpected DesignatedInitUpdateExpr in syntactic form of "
11159 "initializer");
11160 return ExprError();
11161 }
11162
11163 template<typename Derived>
11164 ExprResult
TransformNoInitExpr(NoInitExpr * E)11165 TreeTransform<Derived>::TransformNoInitExpr(
11166 NoInitExpr *E) {
11167 llvm_unreachable("Unexpected NoInitExpr in syntactic form of initializer");
11168 return ExprError();
11169 }
11170
11171 template<typename Derived>
11172 ExprResult
TransformArrayInitLoopExpr(ArrayInitLoopExpr * E)11173 TreeTransform<Derived>::TransformArrayInitLoopExpr(ArrayInitLoopExpr *E) {
11174 llvm_unreachable("Unexpected ArrayInitLoopExpr outside of initializer");
11175 return ExprError();
11176 }
11177
11178 template<typename Derived>
11179 ExprResult
TransformArrayInitIndexExpr(ArrayInitIndexExpr * E)11180 TreeTransform<Derived>::TransformArrayInitIndexExpr(ArrayInitIndexExpr *E) {
11181 llvm_unreachable("Unexpected ArrayInitIndexExpr outside of initializer");
11182 return ExprError();
11183 }
11184
11185 template<typename Derived>
11186 ExprResult
TransformImplicitValueInitExpr(ImplicitValueInitExpr * E)11187 TreeTransform<Derived>::TransformImplicitValueInitExpr(
11188 ImplicitValueInitExpr *E) {
11189 TemporaryBase Rebase(*this, E->getBeginLoc(), DeclarationName());
11190
11191 // FIXME: Will we ever have proper type location here? Will we actually
11192 // need to transform the type?
11193 QualType T = getDerived().TransformType(E->getType());
11194 if (T.isNull())
11195 return ExprError();
11196
11197 if (!getDerived().AlwaysRebuild() &&
11198 T == E->getType())
11199 return E;
11200
11201 return getDerived().RebuildImplicitValueInitExpr(T);
11202 }
11203
11204 template<typename Derived>
11205 ExprResult
TransformVAArgExpr(VAArgExpr * E)11206 TreeTransform<Derived>::TransformVAArgExpr(VAArgExpr *E) {
11207 TypeSourceInfo *TInfo = getDerived().TransformType(E->getWrittenTypeInfo());
11208 if (!TInfo)
11209 return ExprError();
11210
11211 ExprResult SubExpr = getDerived().TransformExpr(E->getSubExpr());
11212 if (SubExpr.isInvalid())
11213 return ExprError();
11214
11215 if (!getDerived().AlwaysRebuild() &&
11216 TInfo == E->getWrittenTypeInfo() &&
11217 SubExpr.get() == E->getSubExpr())
11218 return E;
11219
11220 return getDerived().RebuildVAArgExpr(E->getBuiltinLoc(), SubExpr.get(),
11221 TInfo, E->getRParenLoc());
11222 }
11223
11224 template<typename Derived>
11225 ExprResult
TransformParenListExpr(ParenListExpr * E)11226 TreeTransform<Derived>::TransformParenListExpr(ParenListExpr *E) {
11227 bool ArgumentChanged = false;
11228 SmallVector<Expr*, 4> Inits;
11229 if (TransformExprs(E->getExprs(), E->getNumExprs(), true, Inits,
11230 &ArgumentChanged))
11231 return ExprError();
11232
11233 return getDerived().RebuildParenListExpr(E->getLParenLoc(),
11234 Inits,
11235 E->getRParenLoc());
11236 }
11237
11238 /// Transform an address-of-label expression.
11239 ///
11240 /// By default, the transformation of an address-of-label expression always
11241 /// rebuilds the expression, so that the label identifier can be resolved to
11242 /// the corresponding label statement by semantic analysis.
11243 template<typename Derived>
11244 ExprResult
TransformAddrLabelExpr(AddrLabelExpr * E)11245 TreeTransform<Derived>::TransformAddrLabelExpr(AddrLabelExpr *E) {
11246 Decl *LD = getDerived().TransformDecl(E->getLabel()->getLocation(),
11247 E->getLabel());
11248 if (!LD)
11249 return ExprError();
11250
11251 return getDerived().RebuildAddrLabelExpr(E->getAmpAmpLoc(), E->getLabelLoc(),
11252 cast<LabelDecl>(LD));
11253 }
11254
11255 template<typename Derived>
11256 ExprResult
TransformStmtExpr(StmtExpr * E)11257 TreeTransform<Derived>::TransformStmtExpr(StmtExpr *E) {
11258 SemaRef.ActOnStartStmtExpr();
11259 StmtResult SubStmt
11260 = getDerived().TransformCompoundStmt(E->getSubStmt(), true);
11261 if (SubStmt.isInvalid()) {
11262 SemaRef.ActOnStmtExprError();
11263 return ExprError();
11264 }
11265
11266 unsigned OldDepth = E->getTemplateDepth();
11267 unsigned NewDepth = getDerived().TransformTemplateDepth(OldDepth);
11268
11269 if (!getDerived().AlwaysRebuild() && OldDepth == NewDepth &&
11270 SubStmt.get() == E->getSubStmt()) {
11271 // Calling this an 'error' is unintuitive, but it does the right thing.
11272 SemaRef.ActOnStmtExprError();
11273 return SemaRef.MaybeBindToTemporary(E);
11274 }
11275
11276 return getDerived().RebuildStmtExpr(E->getLParenLoc(), SubStmt.get(),
11277 E->getRParenLoc(), NewDepth);
11278 }
11279
11280 template<typename Derived>
11281 ExprResult
TransformChooseExpr(ChooseExpr * E)11282 TreeTransform<Derived>::TransformChooseExpr(ChooseExpr *E) {
11283 ExprResult Cond = getDerived().TransformExpr(E->getCond());
11284 if (Cond.isInvalid())
11285 return ExprError();
11286
11287 ExprResult LHS = getDerived().TransformExpr(E->getLHS());
11288 if (LHS.isInvalid())
11289 return ExprError();
11290
11291 ExprResult RHS = getDerived().TransformExpr(E->getRHS());
11292 if (RHS.isInvalid())
11293 return ExprError();
11294
11295 if (!getDerived().AlwaysRebuild() &&
11296 Cond.get() == E->getCond() &&
11297 LHS.get() == E->getLHS() &&
11298 RHS.get() == E->getRHS())
11299 return E;
11300
11301 return getDerived().RebuildChooseExpr(E->getBuiltinLoc(),
11302 Cond.get(), LHS.get(), RHS.get(),
11303 E->getRParenLoc());
11304 }
11305
11306 template<typename Derived>
11307 ExprResult
TransformGNUNullExpr(GNUNullExpr * E)11308 TreeTransform<Derived>::TransformGNUNullExpr(GNUNullExpr *E) {
11309 return E;
11310 }
11311
11312 template<typename Derived>
11313 ExprResult
TransformCXXOperatorCallExpr(CXXOperatorCallExpr * E)11314 TreeTransform<Derived>::TransformCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
11315 switch (E->getOperator()) {
11316 case OO_New:
11317 case OO_Delete:
11318 case OO_Array_New:
11319 case OO_Array_Delete:
11320 llvm_unreachable("new and delete operators cannot use CXXOperatorCallExpr");
11321
11322 case OO_Call: {
11323 // This is a call to an object's operator().
11324 assert(E->getNumArgs() >= 1 && "Object call is missing arguments");
11325
11326 // Transform the object itself.
11327 ExprResult Object = getDerived().TransformExpr(E->getArg(0));
11328 if (Object.isInvalid())
11329 return ExprError();
11330
11331 // FIXME: Poor location information
11332 SourceLocation FakeLParenLoc = SemaRef.getLocForEndOfToken(
11333 static_cast<Expr *>(Object.get())->getEndLoc());
11334
11335 // Transform the call arguments.
11336 SmallVector<Expr*, 8> Args;
11337 if (getDerived().TransformExprs(E->getArgs() + 1, E->getNumArgs() - 1, true,
11338 Args))
11339 return ExprError();
11340
11341 return getDerived().RebuildCallExpr(Object.get(), FakeLParenLoc, Args,
11342 E->getEndLoc());
11343 }
11344
11345 #define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
11346 case OO_##Name:
11347 #define OVERLOADED_OPERATOR_MULTI(Name,Spelling,Unary,Binary,MemberOnly)
11348 #include "clang/Basic/OperatorKinds.def"
11349 case OO_Subscript:
11350 // Handled below.
11351 break;
11352
11353 case OO_Conditional:
11354 llvm_unreachable("conditional operator is not actually overloadable");
11355
11356 case OO_None:
11357 case NUM_OVERLOADED_OPERATORS:
11358 llvm_unreachable("not an overloaded operator?");
11359 }
11360
11361 ExprResult Callee = getDerived().TransformExpr(E->getCallee());
11362 if (Callee.isInvalid())
11363 return ExprError();
11364
11365 ExprResult First;
11366 if (E->getOperator() == OO_Amp)
11367 First = getDerived().TransformAddressOfOperand(E->getArg(0));
11368 else
11369 First = getDerived().TransformExpr(E->getArg(0));
11370 if (First.isInvalid())
11371 return ExprError();
11372
11373 ExprResult Second;
11374 if (E->getNumArgs() == 2) {
11375 Second = getDerived().TransformExpr(E->getArg(1));
11376 if (Second.isInvalid())
11377 return ExprError();
11378 }
11379
11380 if (!getDerived().AlwaysRebuild() &&
11381 Callee.get() == E->getCallee() &&
11382 First.get() == E->getArg(0) &&
11383 (E->getNumArgs() != 2 || Second.get() == E->getArg(1)))
11384 return SemaRef.MaybeBindToTemporary(E);
11385
11386 Sema::FPFeaturesStateRAII FPFeaturesState(getSema());
11387 FPOptionsOverride NewOverrides(E->getFPFeatures());
11388 getSema().CurFPFeatures =
11389 NewOverrides.applyOverrides(getSema().getLangOpts());
11390 getSema().FpPragmaStack.CurrentValue = NewOverrides;
11391
11392 return getDerived().RebuildCXXOperatorCallExpr(E->getOperator(),
11393 E->getOperatorLoc(),
11394 Callee.get(),
11395 First.get(),
11396 Second.get());
11397 }
11398
11399 template<typename Derived>
11400 ExprResult
TransformCXXMemberCallExpr(CXXMemberCallExpr * E)11401 TreeTransform<Derived>::TransformCXXMemberCallExpr(CXXMemberCallExpr *E) {
11402 return getDerived().TransformCallExpr(E);
11403 }
11404
11405 template <typename Derived>
TransformSourceLocExpr(SourceLocExpr * E)11406 ExprResult TreeTransform<Derived>::TransformSourceLocExpr(SourceLocExpr *E) {
11407 bool NeedRebuildFunc = E->getIdentKind() == SourceLocExpr::Function &&
11408 getSema().CurContext != E->getParentContext();
11409
11410 if (!getDerived().AlwaysRebuild() && !NeedRebuildFunc)
11411 return E;
11412
11413 return getDerived().RebuildSourceLocExpr(E->getIdentKind(), E->getBeginLoc(),
11414 E->getEndLoc(),
11415 getSema().CurContext);
11416 }
11417
11418 template<typename Derived>
11419 ExprResult
TransformCUDAKernelCallExpr(CUDAKernelCallExpr * E)11420 TreeTransform<Derived>::TransformCUDAKernelCallExpr(CUDAKernelCallExpr *E) {
11421 // Transform the callee.
11422 ExprResult Callee = getDerived().TransformExpr(E->getCallee());
11423 if (Callee.isInvalid())
11424 return ExprError();
11425
11426 // Transform exec config.
11427 ExprResult EC = getDerived().TransformCallExpr(E->getConfig());
11428 if (EC.isInvalid())
11429 return ExprError();
11430
11431 // Transform arguments.
11432 bool ArgChanged = false;
11433 SmallVector<Expr*, 8> Args;
11434 if (getDerived().TransformExprs(E->getArgs(), E->getNumArgs(), true, Args,
11435 &ArgChanged))
11436 return ExprError();
11437
11438 if (!getDerived().AlwaysRebuild() &&
11439 Callee.get() == E->getCallee() &&
11440 !ArgChanged)
11441 return SemaRef.MaybeBindToTemporary(E);
11442
11443 // FIXME: Wrong source location information for the '('.
11444 SourceLocation FakeLParenLoc
11445 = ((Expr *)Callee.get())->getSourceRange().getBegin();
11446 return getDerived().RebuildCallExpr(Callee.get(), FakeLParenLoc,
11447 Args,
11448 E->getRParenLoc(), EC.get());
11449 }
11450
11451 template<typename Derived>
11452 ExprResult
TransformCXXNamedCastExpr(CXXNamedCastExpr * E)11453 TreeTransform<Derived>::TransformCXXNamedCastExpr(CXXNamedCastExpr *E) {
11454 TypeSourceInfo *Type = getDerived().TransformType(E->getTypeInfoAsWritten());
11455 if (!Type)
11456 return ExprError();
11457
11458 ExprResult SubExpr
11459 = getDerived().TransformExpr(E->getSubExprAsWritten());
11460 if (SubExpr.isInvalid())
11461 return ExprError();
11462
11463 if (!getDerived().AlwaysRebuild() &&
11464 Type == E->getTypeInfoAsWritten() &&
11465 SubExpr.get() == E->getSubExpr())
11466 return E;
11467 return getDerived().RebuildCXXNamedCastExpr(
11468 E->getOperatorLoc(), E->getStmtClass(), E->getAngleBrackets().getBegin(),
11469 Type, E->getAngleBrackets().getEnd(),
11470 // FIXME. this should be '(' location
11471 E->getAngleBrackets().getEnd(), SubExpr.get(), E->getRParenLoc());
11472 }
11473
11474 template<typename Derived>
11475 ExprResult
TransformBuiltinBitCastExpr(BuiltinBitCastExpr * BCE)11476 TreeTransform<Derived>::TransformBuiltinBitCastExpr(BuiltinBitCastExpr *BCE) {
11477 TypeSourceInfo *TSI =
11478 getDerived().TransformType(BCE->getTypeInfoAsWritten());
11479 if (!TSI)
11480 return ExprError();
11481
11482 ExprResult Sub = getDerived().TransformExpr(BCE->getSubExpr());
11483 if (Sub.isInvalid())
11484 return ExprError();
11485
11486 return getDerived().RebuildBuiltinBitCastExpr(BCE->getBeginLoc(), TSI,
11487 Sub.get(), BCE->getEndLoc());
11488 }
11489
11490 template<typename Derived>
11491 ExprResult
TransformCXXStaticCastExpr(CXXStaticCastExpr * E)11492 TreeTransform<Derived>::TransformCXXStaticCastExpr(CXXStaticCastExpr *E) {
11493 return getDerived().TransformCXXNamedCastExpr(E);
11494 }
11495
11496 template<typename Derived>
11497 ExprResult
TransformCXXDynamicCastExpr(CXXDynamicCastExpr * E)11498 TreeTransform<Derived>::TransformCXXDynamicCastExpr(CXXDynamicCastExpr *E) {
11499 return getDerived().TransformCXXNamedCastExpr(E);
11500 }
11501
11502 template<typename Derived>
11503 ExprResult
TransformCXXReinterpretCastExpr(CXXReinterpretCastExpr * E)11504 TreeTransform<Derived>::TransformCXXReinterpretCastExpr(
11505 CXXReinterpretCastExpr *E) {
11506 return getDerived().TransformCXXNamedCastExpr(E);
11507 }
11508
11509 template<typename Derived>
11510 ExprResult
TransformCXXConstCastExpr(CXXConstCastExpr * E)11511 TreeTransform<Derived>::TransformCXXConstCastExpr(CXXConstCastExpr *E) {
11512 return getDerived().TransformCXXNamedCastExpr(E);
11513 }
11514
11515 template<typename Derived>
11516 ExprResult
TransformCXXAddrspaceCastExpr(CXXAddrspaceCastExpr * E)11517 TreeTransform<Derived>::TransformCXXAddrspaceCastExpr(CXXAddrspaceCastExpr *E) {
11518 return getDerived().TransformCXXNamedCastExpr(E);
11519 }
11520
11521 template<typename Derived>
11522 ExprResult
TransformCXXFunctionalCastExpr(CXXFunctionalCastExpr * E)11523 TreeTransform<Derived>::TransformCXXFunctionalCastExpr(
11524 CXXFunctionalCastExpr *E) {
11525 TypeSourceInfo *Type =
11526 getDerived().TransformTypeWithDeducedTST(E->getTypeInfoAsWritten());
11527 if (!Type)
11528 return ExprError();
11529
11530 ExprResult SubExpr
11531 = getDerived().TransformExpr(E->getSubExprAsWritten());
11532 if (SubExpr.isInvalid())
11533 return ExprError();
11534
11535 if (!getDerived().AlwaysRebuild() &&
11536 Type == E->getTypeInfoAsWritten() &&
11537 SubExpr.get() == E->getSubExpr())
11538 return E;
11539
11540 return getDerived().RebuildCXXFunctionalCastExpr(Type,
11541 E->getLParenLoc(),
11542 SubExpr.get(),
11543 E->getRParenLoc(),
11544 E->isListInitialization());
11545 }
11546
11547 template<typename Derived>
11548 ExprResult
TransformCXXTypeidExpr(CXXTypeidExpr * E)11549 TreeTransform<Derived>::TransformCXXTypeidExpr(CXXTypeidExpr *E) {
11550 if (E->isTypeOperand()) {
11551 TypeSourceInfo *TInfo
11552 = getDerived().TransformType(E->getTypeOperandSourceInfo());
11553 if (!TInfo)
11554 return ExprError();
11555
11556 if (!getDerived().AlwaysRebuild() &&
11557 TInfo == E->getTypeOperandSourceInfo())
11558 return E;
11559
11560 return getDerived().RebuildCXXTypeidExpr(E->getType(), E->getBeginLoc(),
11561 TInfo, E->getEndLoc());
11562 }
11563
11564 // We don't know whether the subexpression is potentially evaluated until
11565 // after we perform semantic analysis. We speculatively assume it is
11566 // unevaluated; it will get fixed later if the subexpression is in fact
11567 // potentially evaluated.
11568 EnterExpressionEvaluationContext Unevaluated(
11569 SemaRef, Sema::ExpressionEvaluationContext::Unevaluated,
11570 Sema::ReuseLambdaContextDecl);
11571
11572 ExprResult SubExpr = getDerived().TransformExpr(E->getExprOperand());
11573 if (SubExpr.isInvalid())
11574 return ExprError();
11575
11576 if (!getDerived().AlwaysRebuild() &&
11577 SubExpr.get() == E->getExprOperand())
11578 return E;
11579
11580 return getDerived().RebuildCXXTypeidExpr(E->getType(), E->getBeginLoc(),
11581 SubExpr.get(), E->getEndLoc());
11582 }
11583
11584 template<typename Derived>
11585 ExprResult
TransformCXXUuidofExpr(CXXUuidofExpr * E)11586 TreeTransform<Derived>::TransformCXXUuidofExpr(CXXUuidofExpr *E) {
11587 if (E->isTypeOperand()) {
11588 TypeSourceInfo *TInfo
11589 = getDerived().TransformType(E->getTypeOperandSourceInfo());
11590 if (!TInfo)
11591 return ExprError();
11592
11593 if (!getDerived().AlwaysRebuild() &&
11594 TInfo == E->getTypeOperandSourceInfo())
11595 return E;
11596
11597 return getDerived().RebuildCXXUuidofExpr(E->getType(), E->getBeginLoc(),
11598 TInfo, E->getEndLoc());
11599 }
11600
11601 EnterExpressionEvaluationContext Unevaluated(
11602 SemaRef, Sema::ExpressionEvaluationContext::Unevaluated);
11603
11604 ExprResult SubExpr = getDerived().TransformExpr(E->getExprOperand());
11605 if (SubExpr.isInvalid())
11606 return ExprError();
11607
11608 if (!getDerived().AlwaysRebuild() &&
11609 SubExpr.get() == E->getExprOperand())
11610 return E;
11611
11612 return getDerived().RebuildCXXUuidofExpr(E->getType(), E->getBeginLoc(),
11613 SubExpr.get(), E->getEndLoc());
11614 }
11615
11616 template<typename Derived>
11617 ExprResult
TransformCXXBoolLiteralExpr(CXXBoolLiteralExpr * E)11618 TreeTransform<Derived>::TransformCXXBoolLiteralExpr(CXXBoolLiteralExpr *E) {
11619 return E;
11620 }
11621
11622 template<typename Derived>
11623 ExprResult
TransformCXXNullPtrLiteralExpr(CXXNullPtrLiteralExpr * E)11624 TreeTransform<Derived>::TransformCXXNullPtrLiteralExpr(
11625 CXXNullPtrLiteralExpr *E) {
11626 return E;
11627 }
11628
11629 template<typename Derived>
11630 ExprResult
TransformCXXThisExpr(CXXThisExpr * E)11631 TreeTransform<Derived>::TransformCXXThisExpr(CXXThisExpr *E) {
11632 QualType T = getSema().getCurrentThisType();
11633
11634 if (!getDerived().AlwaysRebuild() && T == E->getType()) {
11635 // Mark it referenced in the new context regardless.
11636 // FIXME: this is a bit instantiation-specific.
11637 getSema().MarkThisReferenced(E);
11638 return E;
11639 }
11640
11641 return getDerived().RebuildCXXThisExpr(E->getBeginLoc(), T, E->isImplicit());
11642 }
11643
11644 template<typename Derived>
11645 ExprResult
TransformCXXThrowExpr(CXXThrowExpr * E)11646 TreeTransform<Derived>::TransformCXXThrowExpr(CXXThrowExpr *E) {
11647 ExprResult SubExpr = getDerived().TransformExpr(E->getSubExpr());
11648 if (SubExpr.isInvalid())
11649 return ExprError();
11650
11651 if (!getDerived().AlwaysRebuild() &&
11652 SubExpr.get() == E->getSubExpr())
11653 return E;
11654
11655 return getDerived().RebuildCXXThrowExpr(E->getThrowLoc(), SubExpr.get(),
11656 E->isThrownVariableInScope());
11657 }
11658
11659 template<typename Derived>
11660 ExprResult
TransformCXXDefaultArgExpr(CXXDefaultArgExpr * E)11661 TreeTransform<Derived>::TransformCXXDefaultArgExpr(CXXDefaultArgExpr *E) {
11662 ParmVarDecl *Param = cast_or_null<ParmVarDecl>(
11663 getDerived().TransformDecl(E->getBeginLoc(), E->getParam()));
11664 if (!Param)
11665 return ExprError();
11666
11667 if (!getDerived().AlwaysRebuild() && Param == E->getParam() &&
11668 E->getUsedContext() == SemaRef.CurContext)
11669 return E;
11670
11671 return getDerived().RebuildCXXDefaultArgExpr(E->getUsedLocation(), Param);
11672 }
11673
11674 template<typename Derived>
11675 ExprResult
TransformCXXDefaultInitExpr(CXXDefaultInitExpr * E)11676 TreeTransform<Derived>::TransformCXXDefaultInitExpr(CXXDefaultInitExpr *E) {
11677 FieldDecl *Field = cast_or_null<FieldDecl>(
11678 getDerived().TransformDecl(E->getBeginLoc(), E->getField()));
11679 if (!Field)
11680 return ExprError();
11681
11682 if (!getDerived().AlwaysRebuild() && Field == E->getField() &&
11683 E->getUsedContext() == SemaRef.CurContext)
11684 return E;
11685
11686 return getDerived().RebuildCXXDefaultInitExpr(E->getExprLoc(), Field);
11687 }
11688
11689 template<typename Derived>
11690 ExprResult
TransformCXXScalarValueInitExpr(CXXScalarValueInitExpr * E)11691 TreeTransform<Derived>::TransformCXXScalarValueInitExpr(
11692 CXXScalarValueInitExpr *E) {
11693 TypeSourceInfo *T = getDerived().TransformType(E->getTypeSourceInfo());
11694 if (!T)
11695 return ExprError();
11696
11697 if (!getDerived().AlwaysRebuild() &&
11698 T == E->getTypeSourceInfo())
11699 return E;
11700
11701 return getDerived().RebuildCXXScalarValueInitExpr(T,
11702 /*FIXME:*/T->getTypeLoc().getEndLoc(),
11703 E->getRParenLoc());
11704 }
11705
11706 template<typename Derived>
11707 ExprResult
TransformCXXNewExpr(CXXNewExpr * E)11708 TreeTransform<Derived>::TransformCXXNewExpr(CXXNewExpr *E) {
11709 // Transform the type that we're allocating
11710 TypeSourceInfo *AllocTypeInfo =
11711 getDerived().TransformTypeWithDeducedTST(E->getAllocatedTypeSourceInfo());
11712 if (!AllocTypeInfo)
11713 return ExprError();
11714
11715 // Transform the size of the array we're allocating (if any).
11716 Optional<Expr *> ArraySize;
11717 if (Optional<Expr *> OldArraySize = E->getArraySize()) {
11718 ExprResult NewArraySize;
11719 if (*OldArraySize) {
11720 NewArraySize = getDerived().TransformExpr(*OldArraySize);
11721 if (NewArraySize.isInvalid())
11722 return ExprError();
11723 }
11724 ArraySize = NewArraySize.get();
11725 }
11726
11727 // Transform the placement arguments (if any).
11728 bool ArgumentChanged = false;
11729 SmallVector<Expr*, 8> PlacementArgs;
11730 if (getDerived().TransformExprs(E->getPlacementArgs(),
11731 E->getNumPlacementArgs(), true,
11732 PlacementArgs, &ArgumentChanged))
11733 return ExprError();
11734
11735 // Transform the initializer (if any).
11736 Expr *OldInit = E->getInitializer();
11737 ExprResult NewInit;
11738 if (OldInit)
11739 NewInit = getDerived().TransformInitializer(OldInit, true);
11740 if (NewInit.isInvalid())
11741 return ExprError();
11742
11743 // Transform new operator and delete operator.
11744 FunctionDecl *OperatorNew = nullptr;
11745 if (E->getOperatorNew()) {
11746 OperatorNew = cast_or_null<FunctionDecl>(
11747 getDerived().TransformDecl(E->getBeginLoc(), E->getOperatorNew()));
11748 if (!OperatorNew)
11749 return ExprError();
11750 }
11751
11752 FunctionDecl *OperatorDelete = nullptr;
11753 if (E->getOperatorDelete()) {
11754 OperatorDelete = cast_or_null<FunctionDecl>(
11755 getDerived().TransformDecl(E->getBeginLoc(), E->getOperatorDelete()));
11756 if (!OperatorDelete)
11757 return ExprError();
11758 }
11759
11760 if (!getDerived().AlwaysRebuild() &&
11761 AllocTypeInfo == E->getAllocatedTypeSourceInfo() &&
11762 ArraySize == E->getArraySize() &&
11763 NewInit.get() == OldInit &&
11764 OperatorNew == E->getOperatorNew() &&
11765 OperatorDelete == E->getOperatorDelete() &&
11766 !ArgumentChanged) {
11767 // Mark any declarations we need as referenced.
11768 // FIXME: instantiation-specific.
11769 if (OperatorNew)
11770 SemaRef.MarkFunctionReferenced(E->getBeginLoc(), OperatorNew);
11771 if (OperatorDelete)
11772 SemaRef.MarkFunctionReferenced(E->getBeginLoc(), OperatorDelete);
11773
11774 if (E->isArray() && !E->getAllocatedType()->isDependentType()) {
11775 QualType ElementType
11776 = SemaRef.Context.getBaseElementType(E->getAllocatedType());
11777 if (const RecordType *RecordT = ElementType->getAs<RecordType>()) {
11778 CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordT->getDecl());
11779 if (CXXDestructorDecl *Destructor = SemaRef.LookupDestructor(Record)) {
11780 SemaRef.MarkFunctionReferenced(E->getBeginLoc(), Destructor);
11781 }
11782 }
11783 }
11784
11785 return E;
11786 }
11787
11788 QualType AllocType = AllocTypeInfo->getType();
11789 if (!ArraySize) {
11790 // If no array size was specified, but the new expression was
11791 // instantiated with an array type (e.g., "new T" where T is
11792 // instantiated with "int[4]"), extract the outer bound from the
11793 // array type as our array size. We do this with constant and
11794 // dependently-sized array types.
11795 const ArrayType *ArrayT = SemaRef.Context.getAsArrayType(AllocType);
11796 if (!ArrayT) {
11797 // Do nothing
11798 } else if (const ConstantArrayType *ConsArrayT
11799 = dyn_cast<ConstantArrayType>(ArrayT)) {
11800 ArraySize = IntegerLiteral::Create(SemaRef.Context, ConsArrayT->getSize(),
11801 SemaRef.Context.getSizeType(),
11802 /*FIXME:*/ E->getBeginLoc());
11803 AllocType = ConsArrayT->getElementType();
11804 } else if (const DependentSizedArrayType *DepArrayT
11805 = dyn_cast<DependentSizedArrayType>(ArrayT)) {
11806 if (DepArrayT->getSizeExpr()) {
11807 ArraySize = DepArrayT->getSizeExpr();
11808 AllocType = DepArrayT->getElementType();
11809 }
11810 }
11811 }
11812
11813 return getDerived().RebuildCXXNewExpr(
11814 E->getBeginLoc(), E->isGlobalNew(),
11815 /*FIXME:*/ E->getBeginLoc(), PlacementArgs,
11816 /*FIXME:*/ E->getBeginLoc(), E->getTypeIdParens(), AllocType,
11817 AllocTypeInfo, ArraySize, E->getDirectInitRange(), NewInit.get());
11818 }
11819
11820 template<typename Derived>
11821 ExprResult
TransformCXXDeleteExpr(CXXDeleteExpr * E)11822 TreeTransform<Derived>::TransformCXXDeleteExpr(CXXDeleteExpr *E) {
11823 ExprResult Operand = getDerived().TransformExpr(E->getArgument());
11824 if (Operand.isInvalid())
11825 return ExprError();
11826
11827 // Transform the delete operator, if known.
11828 FunctionDecl *OperatorDelete = nullptr;
11829 if (E->getOperatorDelete()) {
11830 OperatorDelete = cast_or_null<FunctionDecl>(
11831 getDerived().TransformDecl(E->getBeginLoc(), E->getOperatorDelete()));
11832 if (!OperatorDelete)
11833 return ExprError();
11834 }
11835
11836 if (!getDerived().AlwaysRebuild() &&
11837 Operand.get() == E->getArgument() &&
11838 OperatorDelete == E->getOperatorDelete()) {
11839 // Mark any declarations we need as referenced.
11840 // FIXME: instantiation-specific.
11841 if (OperatorDelete)
11842 SemaRef.MarkFunctionReferenced(E->getBeginLoc(), OperatorDelete);
11843
11844 if (!E->getArgument()->isTypeDependent()) {
11845 QualType Destroyed = SemaRef.Context.getBaseElementType(
11846 E->getDestroyedType());
11847 if (const RecordType *DestroyedRec = Destroyed->getAs<RecordType>()) {
11848 CXXRecordDecl *Record = cast<CXXRecordDecl>(DestroyedRec->getDecl());
11849 SemaRef.MarkFunctionReferenced(E->getBeginLoc(),
11850 SemaRef.LookupDestructor(Record));
11851 }
11852 }
11853
11854 return E;
11855 }
11856
11857 return getDerived().RebuildCXXDeleteExpr(
11858 E->getBeginLoc(), E->isGlobalDelete(), E->isArrayForm(), Operand.get());
11859 }
11860
11861 template<typename Derived>
11862 ExprResult
TransformCXXPseudoDestructorExpr(CXXPseudoDestructorExpr * E)11863 TreeTransform<Derived>::TransformCXXPseudoDestructorExpr(
11864 CXXPseudoDestructorExpr *E) {
11865 ExprResult Base = getDerived().TransformExpr(E->getBase());
11866 if (Base.isInvalid())
11867 return ExprError();
11868
11869 ParsedType ObjectTypePtr;
11870 bool MayBePseudoDestructor = false;
11871 Base = SemaRef.ActOnStartCXXMemberReference(nullptr, Base.get(),
11872 E->getOperatorLoc(),
11873 E->isArrow()? tok::arrow : tok::period,
11874 ObjectTypePtr,
11875 MayBePseudoDestructor);
11876 if (Base.isInvalid())
11877 return ExprError();
11878
11879 QualType ObjectType = ObjectTypePtr.get();
11880 NestedNameSpecifierLoc QualifierLoc = E->getQualifierLoc();
11881 if (QualifierLoc) {
11882 QualifierLoc
11883 = getDerived().TransformNestedNameSpecifierLoc(QualifierLoc, ObjectType);
11884 if (!QualifierLoc)
11885 return ExprError();
11886 }
11887 CXXScopeSpec SS;
11888 SS.Adopt(QualifierLoc);
11889
11890 PseudoDestructorTypeStorage Destroyed;
11891 if (E->getDestroyedTypeInfo()) {
11892 TypeSourceInfo *DestroyedTypeInfo
11893 = getDerived().TransformTypeInObjectScope(E->getDestroyedTypeInfo(),
11894 ObjectType, nullptr, SS);
11895 if (!DestroyedTypeInfo)
11896 return ExprError();
11897 Destroyed = DestroyedTypeInfo;
11898 } else if (!ObjectType.isNull() && ObjectType->isDependentType()) {
11899 // We aren't likely to be able to resolve the identifier down to a type
11900 // now anyway, so just retain the identifier.
11901 Destroyed = PseudoDestructorTypeStorage(E->getDestroyedTypeIdentifier(),
11902 E->getDestroyedTypeLoc());
11903 } else {
11904 // Look for a destructor known with the given name.
11905 ParsedType T = SemaRef.getDestructorName(E->getTildeLoc(),
11906 *E->getDestroyedTypeIdentifier(),
11907 E->getDestroyedTypeLoc(),
11908 /*Scope=*/nullptr,
11909 SS, ObjectTypePtr,
11910 false);
11911 if (!T)
11912 return ExprError();
11913
11914 Destroyed
11915 = SemaRef.Context.getTrivialTypeSourceInfo(SemaRef.GetTypeFromParser(T),
11916 E->getDestroyedTypeLoc());
11917 }
11918
11919 TypeSourceInfo *ScopeTypeInfo = nullptr;
11920 if (E->getScopeTypeInfo()) {
11921 CXXScopeSpec EmptySS;
11922 ScopeTypeInfo = getDerived().TransformTypeInObjectScope(
11923 E->getScopeTypeInfo(), ObjectType, nullptr, EmptySS);
11924 if (!ScopeTypeInfo)
11925 return ExprError();
11926 }
11927
11928 return getDerived().RebuildCXXPseudoDestructorExpr(Base.get(),
11929 E->getOperatorLoc(),
11930 E->isArrow(),
11931 SS,
11932 ScopeTypeInfo,
11933 E->getColonColonLoc(),
11934 E->getTildeLoc(),
11935 Destroyed);
11936 }
11937
11938 template <typename Derived>
TransformOverloadExprDecls(OverloadExpr * Old,bool RequiresADL,LookupResult & R)11939 bool TreeTransform<Derived>::TransformOverloadExprDecls(OverloadExpr *Old,
11940 bool RequiresADL,
11941 LookupResult &R) {
11942 // Transform all the decls.
11943 bool AllEmptyPacks = true;
11944 for (auto *OldD : Old->decls()) {
11945 Decl *InstD = getDerived().TransformDecl(Old->getNameLoc(), OldD);
11946 if (!InstD) {
11947 // Silently ignore these if a UsingShadowDecl instantiated to nothing.
11948 // This can happen because of dependent hiding.
11949 if (isa<UsingShadowDecl>(OldD))
11950 continue;
11951 else {
11952 R.clear();
11953 return true;
11954 }
11955 }
11956
11957 // Expand using pack declarations.
11958 NamedDecl *SingleDecl = cast<NamedDecl>(InstD);
11959 ArrayRef<NamedDecl*> Decls = SingleDecl;
11960 if (auto *UPD = dyn_cast<UsingPackDecl>(InstD))
11961 Decls = UPD->expansions();
11962
11963 // Expand using declarations.
11964 for (auto *D : Decls) {
11965 if (auto *UD = dyn_cast<UsingDecl>(D)) {
11966 for (auto *SD : UD->shadows())
11967 R.addDecl(SD);
11968 } else {
11969 R.addDecl(D);
11970 }
11971 }
11972
11973 AllEmptyPacks &= Decls.empty();
11974 };
11975
11976 // C++ [temp.res]/8.4.2:
11977 // The program is ill-formed, no diagnostic required, if [...] lookup for
11978 // a name in the template definition found a using-declaration, but the
11979 // lookup in the corresponding scope in the instantiation odoes not find
11980 // any declarations because the using-declaration was a pack expansion and
11981 // the corresponding pack is empty
11982 if (AllEmptyPacks && !RequiresADL) {
11983 getSema().Diag(Old->getNameLoc(), diag::err_using_pack_expansion_empty)
11984 << isa<UnresolvedMemberExpr>(Old) << Old->getName();
11985 return true;
11986 }
11987
11988 // Resolve a kind, but don't do any further analysis. If it's
11989 // ambiguous, the callee needs to deal with it.
11990 R.resolveKind();
11991 return false;
11992 }
11993
11994 template<typename Derived>
11995 ExprResult
TransformUnresolvedLookupExpr(UnresolvedLookupExpr * Old)11996 TreeTransform<Derived>::TransformUnresolvedLookupExpr(
11997 UnresolvedLookupExpr *Old) {
11998 LookupResult R(SemaRef, Old->getName(), Old->getNameLoc(),
11999 Sema::LookupOrdinaryName);
12000
12001 // Transform the declaration set.
12002 if (TransformOverloadExprDecls(Old, Old->requiresADL(), R))
12003 return ExprError();
12004
12005 // Rebuild the nested-name qualifier, if present.
12006 CXXScopeSpec SS;
12007 if (Old->getQualifierLoc()) {
12008 NestedNameSpecifierLoc QualifierLoc
12009 = getDerived().TransformNestedNameSpecifierLoc(Old->getQualifierLoc());
12010 if (!QualifierLoc)
12011 return ExprError();
12012
12013 SS.Adopt(QualifierLoc);
12014 }
12015
12016 if (Old->getNamingClass()) {
12017 CXXRecordDecl *NamingClass
12018 = cast_or_null<CXXRecordDecl>(getDerived().TransformDecl(
12019 Old->getNameLoc(),
12020 Old->getNamingClass()));
12021 if (!NamingClass) {
12022 R.clear();
12023 return ExprError();
12024 }
12025
12026 R.setNamingClass(NamingClass);
12027 }
12028
12029 SourceLocation TemplateKWLoc = Old->getTemplateKeywordLoc();
12030
12031 // If we have neither explicit template arguments, nor the template keyword,
12032 // it's a normal declaration name or member reference.
12033 if (!Old->hasExplicitTemplateArgs() && !TemplateKWLoc.isValid()) {
12034 NamedDecl *D = R.getAsSingle<NamedDecl>();
12035 // In a C++11 unevaluated context, an UnresolvedLookupExpr might refer to an
12036 // instance member. In other contexts, BuildPossibleImplicitMemberExpr will
12037 // give a good diagnostic.
12038 if (D && D->isCXXInstanceMember()) {
12039 return SemaRef.BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc, R,
12040 /*TemplateArgs=*/nullptr,
12041 /*Scope=*/nullptr);
12042 }
12043
12044 return getDerived().RebuildDeclarationNameExpr(SS, R, Old->requiresADL());
12045 }
12046
12047 // If we have template arguments, rebuild them, then rebuild the
12048 // templateid expression.
12049 TemplateArgumentListInfo TransArgs(Old->getLAngleLoc(), Old->getRAngleLoc());
12050 if (Old->hasExplicitTemplateArgs() &&
12051 getDerived().TransformTemplateArguments(Old->getTemplateArgs(),
12052 Old->getNumTemplateArgs(),
12053 TransArgs)) {
12054 R.clear();
12055 return ExprError();
12056 }
12057
12058 return getDerived().RebuildTemplateIdExpr(SS, TemplateKWLoc, R,
12059 Old->requiresADL(), &TransArgs);
12060 }
12061
12062 template<typename Derived>
12063 ExprResult
TransformTypeTraitExpr(TypeTraitExpr * E)12064 TreeTransform<Derived>::TransformTypeTraitExpr(TypeTraitExpr *E) {
12065 bool ArgChanged = false;
12066 SmallVector<TypeSourceInfo *, 4> Args;
12067 for (unsigned I = 0, N = E->getNumArgs(); I != N; ++I) {
12068 TypeSourceInfo *From = E->getArg(I);
12069 TypeLoc FromTL = From->getTypeLoc();
12070 if (!FromTL.getAs<PackExpansionTypeLoc>()) {
12071 TypeLocBuilder TLB;
12072 TLB.reserve(FromTL.getFullDataSize());
12073 QualType To = getDerived().TransformType(TLB, FromTL);
12074 if (To.isNull())
12075 return ExprError();
12076
12077 if (To == From->getType())
12078 Args.push_back(From);
12079 else {
12080 Args.push_back(TLB.getTypeSourceInfo(SemaRef.Context, To));
12081 ArgChanged = true;
12082 }
12083 continue;
12084 }
12085
12086 ArgChanged = true;
12087
12088 // We have a pack expansion. Instantiate it.
12089 PackExpansionTypeLoc ExpansionTL = FromTL.castAs<PackExpansionTypeLoc>();
12090 TypeLoc PatternTL = ExpansionTL.getPatternLoc();
12091 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
12092 SemaRef.collectUnexpandedParameterPacks(PatternTL, Unexpanded);
12093
12094 // Determine whether the set of unexpanded parameter packs can and should
12095 // be expanded.
12096 bool Expand = true;
12097 bool RetainExpansion = false;
12098 Optional<unsigned> OrigNumExpansions =
12099 ExpansionTL.getTypePtr()->getNumExpansions();
12100 Optional<unsigned> NumExpansions = OrigNumExpansions;
12101 if (getDerived().TryExpandParameterPacks(ExpansionTL.getEllipsisLoc(),
12102 PatternTL.getSourceRange(),
12103 Unexpanded,
12104 Expand, RetainExpansion,
12105 NumExpansions))
12106 return ExprError();
12107
12108 if (!Expand) {
12109 // The transform has determined that we should perform a simple
12110 // transformation on the pack expansion, producing another pack
12111 // expansion.
12112 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1);
12113
12114 TypeLocBuilder TLB;
12115 TLB.reserve(From->getTypeLoc().getFullDataSize());
12116
12117 QualType To = getDerived().TransformType(TLB, PatternTL);
12118 if (To.isNull())
12119 return ExprError();
12120
12121 To = getDerived().RebuildPackExpansionType(To,
12122 PatternTL.getSourceRange(),
12123 ExpansionTL.getEllipsisLoc(),
12124 NumExpansions);
12125 if (To.isNull())
12126 return ExprError();
12127
12128 PackExpansionTypeLoc ToExpansionTL
12129 = TLB.push<PackExpansionTypeLoc>(To);
12130 ToExpansionTL.setEllipsisLoc(ExpansionTL.getEllipsisLoc());
12131 Args.push_back(TLB.getTypeSourceInfo(SemaRef.Context, To));
12132 continue;
12133 }
12134
12135 // Expand the pack expansion by substituting for each argument in the
12136 // pack(s).
12137 for (unsigned I = 0; I != *NumExpansions; ++I) {
12138 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, I);
12139 TypeLocBuilder TLB;
12140 TLB.reserve(PatternTL.getFullDataSize());
12141 QualType To = getDerived().TransformType(TLB, PatternTL);
12142 if (To.isNull())
12143 return ExprError();
12144
12145 if (To->containsUnexpandedParameterPack()) {
12146 To = getDerived().RebuildPackExpansionType(To,
12147 PatternTL.getSourceRange(),
12148 ExpansionTL.getEllipsisLoc(),
12149 NumExpansions);
12150 if (To.isNull())
12151 return ExprError();
12152
12153 PackExpansionTypeLoc ToExpansionTL
12154 = TLB.push<PackExpansionTypeLoc>(To);
12155 ToExpansionTL.setEllipsisLoc(ExpansionTL.getEllipsisLoc());
12156 }
12157
12158 Args.push_back(TLB.getTypeSourceInfo(SemaRef.Context, To));
12159 }
12160
12161 if (!RetainExpansion)
12162 continue;
12163
12164 // If we're supposed to retain a pack expansion, do so by temporarily
12165 // forgetting the partially-substituted parameter pack.
12166 ForgetPartiallySubstitutedPackRAII Forget(getDerived());
12167
12168 TypeLocBuilder TLB;
12169 TLB.reserve(From->getTypeLoc().getFullDataSize());
12170
12171 QualType To = getDerived().TransformType(TLB, PatternTL);
12172 if (To.isNull())
12173 return ExprError();
12174
12175 To = getDerived().RebuildPackExpansionType(To,
12176 PatternTL.getSourceRange(),
12177 ExpansionTL.getEllipsisLoc(),
12178 NumExpansions);
12179 if (To.isNull())
12180 return ExprError();
12181
12182 PackExpansionTypeLoc ToExpansionTL
12183 = TLB.push<PackExpansionTypeLoc>(To);
12184 ToExpansionTL.setEllipsisLoc(ExpansionTL.getEllipsisLoc());
12185 Args.push_back(TLB.getTypeSourceInfo(SemaRef.Context, To));
12186 }
12187
12188 if (!getDerived().AlwaysRebuild() && !ArgChanged)
12189 return E;
12190
12191 return getDerived().RebuildTypeTrait(E->getTrait(), E->getBeginLoc(), Args,
12192 E->getEndLoc());
12193 }
12194
12195 template<typename Derived>
12196 ExprResult
TransformConceptSpecializationExpr(ConceptSpecializationExpr * E)12197 TreeTransform<Derived>::TransformConceptSpecializationExpr(
12198 ConceptSpecializationExpr *E) {
12199 const ASTTemplateArgumentListInfo *Old = E->getTemplateArgsAsWritten();
12200 TemplateArgumentListInfo TransArgs(Old->LAngleLoc, Old->RAngleLoc);
12201 if (getDerived().TransformTemplateArguments(Old->getTemplateArgs(),
12202 Old->NumTemplateArgs, TransArgs))
12203 return ExprError();
12204
12205 return getDerived().RebuildConceptSpecializationExpr(
12206 E->getNestedNameSpecifierLoc(), E->getTemplateKWLoc(),
12207 E->getConceptNameInfo(), E->getFoundDecl(), E->getNamedConcept(),
12208 &TransArgs);
12209 }
12210
12211 template<typename Derived>
12212 ExprResult
TransformRequiresExpr(RequiresExpr * E)12213 TreeTransform<Derived>::TransformRequiresExpr(RequiresExpr *E) {
12214 SmallVector<ParmVarDecl*, 4> TransParams;
12215 SmallVector<QualType, 4> TransParamTypes;
12216 Sema::ExtParameterInfoBuilder ExtParamInfos;
12217
12218 // C++2a [expr.prim.req]p2
12219 // Expressions appearing within a requirement-body are unevaluated operands.
12220 EnterExpressionEvaluationContext Ctx(
12221 SemaRef, Sema::ExpressionEvaluationContext::Unevaluated);
12222
12223 RequiresExprBodyDecl *Body = RequiresExprBodyDecl::Create(
12224 getSema().Context, getSema().CurContext,
12225 E->getBody()->getBeginLoc());
12226
12227 Sema::ContextRAII SavedContext(getSema(), Body, /*NewThisContext*/false);
12228
12229 if (getDerived().TransformFunctionTypeParams(E->getRequiresKWLoc(),
12230 E->getLocalParameters(),
12231 /*ParamTypes=*/nullptr,
12232 /*ParamInfos=*/nullptr,
12233 TransParamTypes, &TransParams,
12234 ExtParamInfos))
12235 return ExprError();
12236
12237 for (ParmVarDecl *Param : TransParams)
12238 Param->setDeclContext(Body);
12239
12240 SmallVector<concepts::Requirement *, 4> TransReqs;
12241 if (getDerived().TransformRequiresExprRequirements(E->getRequirements(),
12242 TransReqs))
12243 return ExprError();
12244
12245 for (concepts::Requirement *Req : TransReqs) {
12246 if (auto *ER = dyn_cast<concepts::ExprRequirement>(Req)) {
12247 if (ER->getReturnTypeRequirement().isTypeConstraint()) {
12248 ER->getReturnTypeRequirement()
12249 .getTypeConstraintTemplateParameterList()->getParam(0)
12250 ->setDeclContext(Body);
12251 }
12252 }
12253 }
12254
12255 return getDerived().RebuildRequiresExpr(E->getRequiresKWLoc(), Body,
12256 TransParams, TransReqs,
12257 E->getRBraceLoc());
12258 }
12259
12260 template<typename Derived>
TransformRequiresExprRequirements(ArrayRef<concepts::Requirement * > Reqs,SmallVectorImpl<concepts::Requirement * > & Transformed)12261 bool TreeTransform<Derived>::TransformRequiresExprRequirements(
12262 ArrayRef<concepts::Requirement *> Reqs,
12263 SmallVectorImpl<concepts::Requirement *> &Transformed) {
12264 for (concepts::Requirement *Req : Reqs) {
12265 concepts::Requirement *TransReq = nullptr;
12266 if (auto *TypeReq = dyn_cast<concepts::TypeRequirement>(Req))
12267 TransReq = getDerived().TransformTypeRequirement(TypeReq);
12268 else if (auto *ExprReq = dyn_cast<concepts::ExprRequirement>(Req))
12269 TransReq = getDerived().TransformExprRequirement(ExprReq);
12270 else
12271 TransReq = getDerived().TransformNestedRequirement(
12272 cast<concepts::NestedRequirement>(Req));
12273 if (!TransReq)
12274 return true;
12275 Transformed.push_back(TransReq);
12276 }
12277 return false;
12278 }
12279
12280 template<typename Derived>
12281 concepts::TypeRequirement *
TransformTypeRequirement(concepts::TypeRequirement * Req)12282 TreeTransform<Derived>::TransformTypeRequirement(
12283 concepts::TypeRequirement *Req) {
12284 if (Req->isSubstitutionFailure()) {
12285 if (getDerived().AlwaysRebuild())
12286 return getDerived().RebuildTypeRequirement(
12287 Req->getSubstitutionDiagnostic());
12288 return Req;
12289 }
12290 TypeSourceInfo *TransType = getDerived().TransformType(Req->getType());
12291 if (!TransType)
12292 return nullptr;
12293 return getDerived().RebuildTypeRequirement(TransType);
12294 }
12295
12296 template<typename Derived>
12297 concepts::ExprRequirement *
TransformExprRequirement(concepts::ExprRequirement * Req)12298 TreeTransform<Derived>::TransformExprRequirement(concepts::ExprRequirement *Req) {
12299 llvm::PointerUnion<Expr *, concepts::Requirement::SubstitutionDiagnostic *> TransExpr;
12300 if (Req->isExprSubstitutionFailure())
12301 TransExpr = Req->getExprSubstitutionDiagnostic();
12302 else {
12303 ExprResult TransExprRes = getDerived().TransformExpr(Req->getExpr());
12304 if (TransExprRes.isInvalid())
12305 return nullptr;
12306 TransExpr = TransExprRes.get();
12307 }
12308
12309 llvm::Optional<concepts::ExprRequirement::ReturnTypeRequirement> TransRetReq;
12310 const auto &RetReq = Req->getReturnTypeRequirement();
12311 if (RetReq.isEmpty())
12312 TransRetReq.emplace();
12313 else if (RetReq.isSubstitutionFailure())
12314 TransRetReq.emplace(RetReq.getSubstitutionDiagnostic());
12315 else if (RetReq.isTypeConstraint()) {
12316 TemplateParameterList *OrigTPL =
12317 RetReq.getTypeConstraintTemplateParameterList();
12318 TemplateParameterList *TPL =
12319 getDerived().TransformTemplateParameterList(OrigTPL);
12320 if (!TPL)
12321 return nullptr;
12322 TransRetReq.emplace(TPL);
12323 }
12324 assert(TransRetReq.hasValue() &&
12325 "All code paths leading here must set TransRetReq");
12326 if (Expr *E = TransExpr.dyn_cast<Expr *>())
12327 return getDerived().RebuildExprRequirement(E, Req->isSimple(),
12328 Req->getNoexceptLoc(),
12329 std::move(*TransRetReq));
12330 return getDerived().RebuildExprRequirement(
12331 TransExpr.get<concepts::Requirement::SubstitutionDiagnostic *>(),
12332 Req->isSimple(), Req->getNoexceptLoc(), std::move(*TransRetReq));
12333 }
12334
12335 template<typename Derived>
12336 concepts::NestedRequirement *
TransformNestedRequirement(concepts::NestedRequirement * Req)12337 TreeTransform<Derived>::TransformNestedRequirement(
12338 concepts::NestedRequirement *Req) {
12339 if (Req->isSubstitutionFailure()) {
12340 if (getDerived().AlwaysRebuild())
12341 return getDerived().RebuildNestedRequirement(
12342 Req->getSubstitutionDiagnostic());
12343 return Req;
12344 }
12345 ExprResult TransConstraint =
12346 getDerived().TransformExpr(Req->getConstraintExpr());
12347 if (TransConstraint.isInvalid())
12348 return nullptr;
12349 return getDerived().RebuildNestedRequirement(TransConstraint.get());
12350 }
12351
12352 template<typename Derived>
12353 ExprResult
TransformArrayTypeTraitExpr(ArrayTypeTraitExpr * E)12354 TreeTransform<Derived>::TransformArrayTypeTraitExpr(ArrayTypeTraitExpr *E) {
12355 TypeSourceInfo *T = getDerived().TransformType(E->getQueriedTypeSourceInfo());
12356 if (!T)
12357 return ExprError();
12358
12359 if (!getDerived().AlwaysRebuild() &&
12360 T == E->getQueriedTypeSourceInfo())
12361 return E;
12362
12363 ExprResult SubExpr;
12364 {
12365 EnterExpressionEvaluationContext Unevaluated(
12366 SemaRef, Sema::ExpressionEvaluationContext::Unevaluated);
12367 SubExpr = getDerived().TransformExpr(E->getDimensionExpression());
12368 if (SubExpr.isInvalid())
12369 return ExprError();
12370
12371 if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getDimensionExpression())
12372 return E;
12373 }
12374
12375 return getDerived().RebuildArrayTypeTrait(E->getTrait(), E->getBeginLoc(), T,
12376 SubExpr.get(), E->getEndLoc());
12377 }
12378
12379 template<typename Derived>
12380 ExprResult
TransformExpressionTraitExpr(ExpressionTraitExpr * E)12381 TreeTransform<Derived>::TransformExpressionTraitExpr(ExpressionTraitExpr *E) {
12382 ExprResult SubExpr;
12383 {
12384 EnterExpressionEvaluationContext Unevaluated(
12385 SemaRef, Sema::ExpressionEvaluationContext::Unevaluated);
12386 SubExpr = getDerived().TransformExpr(E->getQueriedExpression());
12387 if (SubExpr.isInvalid())
12388 return ExprError();
12389
12390 if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getQueriedExpression())
12391 return E;
12392 }
12393
12394 return getDerived().RebuildExpressionTrait(E->getTrait(), E->getBeginLoc(),
12395 SubExpr.get(), E->getEndLoc());
12396 }
12397
12398 template <typename Derived>
TransformParenDependentScopeDeclRefExpr(ParenExpr * PE,DependentScopeDeclRefExpr * DRE,bool AddrTaken,TypeSourceInfo ** RecoveryTSI)12399 ExprResult TreeTransform<Derived>::TransformParenDependentScopeDeclRefExpr(
12400 ParenExpr *PE, DependentScopeDeclRefExpr *DRE, bool AddrTaken,
12401 TypeSourceInfo **RecoveryTSI) {
12402 ExprResult NewDRE = getDerived().TransformDependentScopeDeclRefExpr(
12403 DRE, AddrTaken, RecoveryTSI);
12404
12405 // Propagate both errors and recovered types, which return ExprEmpty.
12406 if (!NewDRE.isUsable())
12407 return NewDRE;
12408
12409 // We got an expr, wrap it up in parens.
12410 if (!getDerived().AlwaysRebuild() && NewDRE.get() == DRE)
12411 return PE;
12412 return getDerived().RebuildParenExpr(NewDRE.get(), PE->getLParen(),
12413 PE->getRParen());
12414 }
12415
12416 template <typename Derived>
TransformDependentScopeDeclRefExpr(DependentScopeDeclRefExpr * E)12417 ExprResult TreeTransform<Derived>::TransformDependentScopeDeclRefExpr(
12418 DependentScopeDeclRefExpr *E) {
12419 return TransformDependentScopeDeclRefExpr(E, /*IsAddressOfOperand=*/false,
12420 nullptr);
12421 }
12422
12423 template<typename Derived>
12424 ExprResult
TransformDependentScopeDeclRefExpr(DependentScopeDeclRefExpr * E,bool IsAddressOfOperand,TypeSourceInfo ** RecoveryTSI)12425 TreeTransform<Derived>::TransformDependentScopeDeclRefExpr(
12426 DependentScopeDeclRefExpr *E,
12427 bool IsAddressOfOperand,
12428 TypeSourceInfo **RecoveryTSI) {
12429 assert(E->getQualifierLoc());
12430 NestedNameSpecifierLoc QualifierLoc
12431 = getDerived().TransformNestedNameSpecifierLoc(E->getQualifierLoc());
12432 if (!QualifierLoc)
12433 return ExprError();
12434 SourceLocation TemplateKWLoc = E->getTemplateKeywordLoc();
12435
12436 // TODO: If this is a conversion-function-id, verify that the
12437 // destination type name (if present) resolves the same way after
12438 // instantiation as it did in the local scope.
12439
12440 DeclarationNameInfo NameInfo
12441 = getDerived().TransformDeclarationNameInfo(E->getNameInfo());
12442 if (!NameInfo.getName())
12443 return ExprError();
12444
12445 if (!E->hasExplicitTemplateArgs()) {
12446 if (!getDerived().AlwaysRebuild() &&
12447 QualifierLoc == E->getQualifierLoc() &&
12448 // Note: it is sufficient to compare the Name component of NameInfo:
12449 // if name has not changed, DNLoc has not changed either.
12450 NameInfo.getName() == E->getDeclName())
12451 return E;
12452
12453 return getDerived().RebuildDependentScopeDeclRefExpr(
12454 QualifierLoc, TemplateKWLoc, NameInfo, /*TemplateArgs=*/nullptr,
12455 IsAddressOfOperand, RecoveryTSI);
12456 }
12457
12458 TemplateArgumentListInfo TransArgs(E->getLAngleLoc(), E->getRAngleLoc());
12459 if (getDerived().TransformTemplateArguments(E->getTemplateArgs(),
12460 E->getNumTemplateArgs(),
12461 TransArgs))
12462 return ExprError();
12463
12464 return getDerived().RebuildDependentScopeDeclRefExpr(
12465 QualifierLoc, TemplateKWLoc, NameInfo, &TransArgs, IsAddressOfOperand,
12466 RecoveryTSI);
12467 }
12468
12469 template<typename Derived>
12470 ExprResult
TransformCXXConstructExpr(CXXConstructExpr * E)12471 TreeTransform<Derived>::TransformCXXConstructExpr(CXXConstructExpr *E) {
12472 // CXXConstructExprs other than for list-initialization and
12473 // CXXTemporaryObjectExpr are always implicit, so when we have
12474 // a 1-argument construction we just transform that argument.
12475 if (getDerived().AllowSkippingCXXConstructExpr() &&
12476 ((E->getNumArgs() == 1 ||
12477 (E->getNumArgs() > 1 && getDerived().DropCallArgument(E->getArg(1)))) &&
12478 (!getDerived().DropCallArgument(E->getArg(0))) &&
12479 !E->isListInitialization()))
12480 return getDerived().TransformInitializer(E->getArg(0),
12481 /*DirectInit*/ false);
12482
12483 TemporaryBase Rebase(*this, /*FIXME*/ E->getBeginLoc(), DeclarationName());
12484
12485 QualType T = getDerived().TransformType(E->getType());
12486 if (T.isNull())
12487 return ExprError();
12488
12489 CXXConstructorDecl *Constructor = cast_or_null<CXXConstructorDecl>(
12490 getDerived().TransformDecl(E->getBeginLoc(), E->getConstructor()));
12491 if (!Constructor)
12492 return ExprError();
12493
12494 bool ArgumentChanged = false;
12495 SmallVector<Expr*, 8> Args;
12496 {
12497 EnterExpressionEvaluationContext Context(
12498 getSema(), EnterExpressionEvaluationContext::InitList,
12499 E->isListInitialization());
12500 if (getDerived().TransformExprs(E->getArgs(), E->getNumArgs(), true, Args,
12501 &ArgumentChanged))
12502 return ExprError();
12503 }
12504
12505 if (!getDerived().AlwaysRebuild() &&
12506 T == E->getType() &&
12507 Constructor == E->getConstructor() &&
12508 !ArgumentChanged) {
12509 // Mark the constructor as referenced.
12510 // FIXME: Instantiation-specific
12511 SemaRef.MarkFunctionReferenced(E->getBeginLoc(), Constructor);
12512 return E;
12513 }
12514
12515 return getDerived().RebuildCXXConstructExpr(
12516 T, /*FIXME:*/ E->getBeginLoc(), Constructor, E->isElidable(), Args,
12517 E->hadMultipleCandidates(), E->isListInitialization(),
12518 E->isStdInitListInitialization(), E->requiresZeroInitialization(),
12519 E->getConstructionKind(), E->getParenOrBraceRange());
12520 }
12521
12522 template<typename Derived>
TransformCXXInheritedCtorInitExpr(CXXInheritedCtorInitExpr * E)12523 ExprResult TreeTransform<Derived>::TransformCXXInheritedCtorInitExpr(
12524 CXXInheritedCtorInitExpr *E) {
12525 QualType T = getDerived().TransformType(E->getType());
12526 if (T.isNull())
12527 return ExprError();
12528
12529 CXXConstructorDecl *Constructor = cast_or_null<CXXConstructorDecl>(
12530 getDerived().TransformDecl(E->getBeginLoc(), E->getConstructor()));
12531 if (!Constructor)
12532 return ExprError();
12533
12534 if (!getDerived().AlwaysRebuild() &&
12535 T == E->getType() &&
12536 Constructor == E->getConstructor()) {
12537 // Mark the constructor as referenced.
12538 // FIXME: Instantiation-specific
12539 SemaRef.MarkFunctionReferenced(E->getBeginLoc(), Constructor);
12540 return E;
12541 }
12542
12543 return getDerived().RebuildCXXInheritedCtorInitExpr(
12544 T, E->getLocation(), Constructor,
12545 E->constructsVBase(), E->inheritedFromVBase());
12546 }
12547
12548 /// Transform a C++ temporary-binding expression.
12549 ///
12550 /// Since CXXBindTemporaryExpr nodes are implicitly generated, we just
12551 /// transform the subexpression and return that.
12552 template<typename Derived>
12553 ExprResult
TransformCXXBindTemporaryExpr(CXXBindTemporaryExpr * E)12554 TreeTransform<Derived>::TransformCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
12555 return getDerived().TransformExpr(E->getSubExpr());
12556 }
12557
12558 /// Transform a C++ expression that contains cleanups that should
12559 /// be run after the expression is evaluated.
12560 ///
12561 /// Since ExprWithCleanups nodes are implicitly generated, we
12562 /// just transform the subexpression and return that.
12563 template<typename Derived>
12564 ExprResult
TransformExprWithCleanups(ExprWithCleanups * E)12565 TreeTransform<Derived>::TransformExprWithCleanups(ExprWithCleanups *E) {
12566 return getDerived().TransformExpr(E->getSubExpr());
12567 }
12568
12569 template<typename Derived>
12570 ExprResult
TransformCXXTemporaryObjectExpr(CXXTemporaryObjectExpr * E)12571 TreeTransform<Derived>::TransformCXXTemporaryObjectExpr(
12572 CXXTemporaryObjectExpr *E) {
12573 TypeSourceInfo *T =
12574 getDerived().TransformTypeWithDeducedTST(E->getTypeSourceInfo());
12575 if (!T)
12576 return ExprError();
12577
12578 CXXConstructorDecl *Constructor = cast_or_null<CXXConstructorDecl>(
12579 getDerived().TransformDecl(E->getBeginLoc(), E->getConstructor()));
12580 if (!Constructor)
12581 return ExprError();
12582
12583 bool ArgumentChanged = false;
12584 SmallVector<Expr*, 8> Args;
12585 Args.reserve(E->getNumArgs());
12586 {
12587 EnterExpressionEvaluationContext Context(
12588 getSema(), EnterExpressionEvaluationContext::InitList,
12589 E->isListInitialization());
12590 if (TransformExprs(E->getArgs(), E->getNumArgs(), true, Args,
12591 &ArgumentChanged))
12592 return ExprError();
12593 }
12594
12595 if (!getDerived().AlwaysRebuild() &&
12596 T == E->getTypeSourceInfo() &&
12597 Constructor == E->getConstructor() &&
12598 !ArgumentChanged) {
12599 // FIXME: Instantiation-specific
12600 SemaRef.MarkFunctionReferenced(E->getBeginLoc(), Constructor);
12601 return SemaRef.MaybeBindToTemporary(E);
12602 }
12603
12604 // FIXME: We should just pass E->isListInitialization(), but we're not
12605 // prepared to handle list-initialization without a child InitListExpr.
12606 SourceLocation LParenLoc = T->getTypeLoc().getEndLoc();
12607 return getDerived().RebuildCXXTemporaryObjectExpr(
12608 T, LParenLoc, Args, E->getEndLoc(),
12609 /*ListInitialization=*/LParenLoc.isInvalid());
12610 }
12611
12612 template<typename Derived>
12613 ExprResult
TransformLambdaExpr(LambdaExpr * E)12614 TreeTransform<Derived>::TransformLambdaExpr(LambdaExpr *E) {
12615 // Transform any init-capture expressions before entering the scope of the
12616 // lambda body, because they are not semantically within that scope.
12617 typedef std::pair<ExprResult, QualType> InitCaptureInfoTy;
12618 struct TransformedInitCapture {
12619 // The location of the ... if the result is retaining a pack expansion.
12620 SourceLocation EllipsisLoc;
12621 // Zero or more expansions of the init-capture.
12622 SmallVector<InitCaptureInfoTy, 4> Expansions;
12623 };
12624 SmallVector<TransformedInitCapture, 4> InitCaptures;
12625 InitCaptures.resize(E->explicit_capture_end() - E->explicit_capture_begin());
12626 for (LambdaExpr::capture_iterator C = E->capture_begin(),
12627 CEnd = E->capture_end();
12628 C != CEnd; ++C) {
12629 if (!E->isInitCapture(C))
12630 continue;
12631
12632 TransformedInitCapture &Result = InitCaptures[C - E->capture_begin()];
12633 VarDecl *OldVD = C->getCapturedVar();
12634
12635 auto SubstInitCapture = [&](SourceLocation EllipsisLoc,
12636 Optional<unsigned> NumExpansions) {
12637 ExprResult NewExprInitResult = getDerived().TransformInitializer(
12638 OldVD->getInit(), OldVD->getInitStyle() == VarDecl::CallInit);
12639
12640 if (NewExprInitResult.isInvalid()) {
12641 Result.Expansions.push_back(InitCaptureInfoTy(ExprError(), QualType()));
12642 return;
12643 }
12644 Expr *NewExprInit = NewExprInitResult.get();
12645
12646 QualType NewInitCaptureType =
12647 getSema().buildLambdaInitCaptureInitialization(
12648 C->getLocation(), OldVD->getType()->isReferenceType(),
12649 EllipsisLoc, NumExpansions, OldVD->getIdentifier(),
12650 C->getCapturedVar()->getInitStyle() != VarDecl::CInit,
12651 NewExprInit);
12652 Result.Expansions.push_back(
12653 InitCaptureInfoTy(NewExprInit, NewInitCaptureType));
12654 };
12655
12656 // If this is an init-capture pack, consider expanding the pack now.
12657 if (OldVD->isParameterPack()) {
12658 PackExpansionTypeLoc ExpansionTL = OldVD->getTypeSourceInfo()
12659 ->getTypeLoc()
12660 .castAs<PackExpansionTypeLoc>();
12661 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
12662 SemaRef.collectUnexpandedParameterPacks(OldVD->getInit(), Unexpanded);
12663
12664 // Determine whether the set of unexpanded parameter packs can and should
12665 // be expanded.
12666 bool Expand = true;
12667 bool RetainExpansion = false;
12668 Optional<unsigned> OrigNumExpansions =
12669 ExpansionTL.getTypePtr()->getNumExpansions();
12670 Optional<unsigned> NumExpansions = OrigNumExpansions;
12671 if (getDerived().TryExpandParameterPacks(
12672 ExpansionTL.getEllipsisLoc(),
12673 OldVD->getInit()->getSourceRange(), Unexpanded, Expand,
12674 RetainExpansion, NumExpansions))
12675 return ExprError();
12676 if (Expand) {
12677 for (unsigned I = 0; I != *NumExpansions; ++I) {
12678 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), I);
12679 SubstInitCapture(SourceLocation(), None);
12680 }
12681 }
12682 if (!Expand || RetainExpansion) {
12683 ForgetPartiallySubstitutedPackRAII Forget(getDerived());
12684 SubstInitCapture(ExpansionTL.getEllipsisLoc(), NumExpansions);
12685 Result.EllipsisLoc = ExpansionTL.getEllipsisLoc();
12686 }
12687 } else {
12688 SubstInitCapture(SourceLocation(), None);
12689 }
12690 }
12691
12692 LambdaScopeInfo *LSI = getSema().PushLambdaScope();
12693 Sema::FunctionScopeRAII FuncScopeCleanup(getSema());
12694
12695 // Transform the template parameters, and add them to the current
12696 // instantiation scope. The null case is handled correctly.
12697 auto TPL = getDerived().TransformTemplateParameterList(
12698 E->getTemplateParameterList());
12699 LSI->GLTemplateParameterList = TPL;
12700
12701 // Transform the type of the original lambda's call operator.
12702 // The transformation MUST be done in the CurrentInstantiationScope since
12703 // it introduces a mapping of the original to the newly created
12704 // transformed parameters.
12705 TypeSourceInfo *NewCallOpTSI = nullptr;
12706 {
12707 TypeSourceInfo *OldCallOpTSI = E->getCallOperator()->getTypeSourceInfo();
12708 FunctionProtoTypeLoc OldCallOpFPTL =
12709 OldCallOpTSI->getTypeLoc().getAs<FunctionProtoTypeLoc>();
12710
12711 TypeLocBuilder NewCallOpTLBuilder;
12712 SmallVector<QualType, 4> ExceptionStorage;
12713 TreeTransform *This = this; // Work around gcc.gnu.org/PR56135.
12714 QualType NewCallOpType = TransformFunctionProtoType(
12715 NewCallOpTLBuilder, OldCallOpFPTL, nullptr, Qualifiers(),
12716 [&](FunctionProtoType::ExceptionSpecInfo &ESI, bool &Changed) {
12717 return This->TransformExceptionSpec(OldCallOpFPTL.getBeginLoc(), ESI,
12718 ExceptionStorage, Changed);
12719 });
12720 if (NewCallOpType.isNull())
12721 return ExprError();
12722 NewCallOpTSI = NewCallOpTLBuilder.getTypeSourceInfo(getSema().Context,
12723 NewCallOpType);
12724 }
12725
12726 // Transform the trailing requires clause
12727 ExprResult NewTrailingRequiresClause;
12728 if (Expr *TRC = E->getCallOperator()->getTrailingRequiresClause())
12729 // FIXME: Concepts: Substitution into requires clause should only happen
12730 // when checking satisfaction.
12731 NewTrailingRequiresClause = getDerived().TransformExpr(TRC);
12732
12733 // Create the local class that will describe the lambda.
12734 // FIXME: KnownDependent below is wrong when substituting inside a templated
12735 // context that isn't a DeclContext (such as a variable template).
12736 CXXRecordDecl *OldClass = E->getLambdaClass();
12737 CXXRecordDecl *Class
12738 = getSema().createLambdaClosureType(E->getIntroducerRange(),
12739 NewCallOpTSI,
12740 /*KnownDependent=*/false,
12741 E->getCaptureDefault());
12742 getDerived().transformedLocalDecl(OldClass, {Class});
12743
12744 Optional<std::tuple<bool, unsigned, unsigned, Decl *>> Mangling;
12745 if (getDerived().ReplacingOriginal())
12746 Mangling = std::make_tuple(OldClass->hasKnownLambdaInternalLinkage(),
12747 OldClass->getLambdaManglingNumber(),
12748 OldClass->getDeviceLambdaManglingNumber(),
12749 OldClass->getLambdaContextDecl());
12750
12751 // Build the call operator.
12752 CXXMethodDecl *NewCallOperator = getSema().startLambdaDefinition(
12753 Class, E->getIntroducerRange(), NewCallOpTSI,
12754 E->getCallOperator()->getEndLoc(),
12755 NewCallOpTSI->getTypeLoc().castAs<FunctionProtoTypeLoc>().getParams(),
12756 E->getCallOperator()->getConstexprKind(),
12757 NewTrailingRequiresClause.get());
12758
12759 LSI->CallOperator = NewCallOperator;
12760
12761 getDerived().transformAttrs(E->getCallOperator(), NewCallOperator);
12762 getDerived().transformedLocalDecl(E->getCallOperator(), {NewCallOperator});
12763
12764 // Number the lambda for linkage purposes if necessary.
12765 getSema().handleLambdaNumbering(Class, NewCallOperator, Mangling);
12766
12767 // Introduce the context of the call operator.
12768 Sema::ContextRAII SavedContext(getSema(), NewCallOperator,
12769 /*NewThisContext*/false);
12770
12771 // Enter the scope of the lambda.
12772 getSema().buildLambdaScope(LSI, NewCallOperator,
12773 E->getIntroducerRange(),
12774 E->getCaptureDefault(),
12775 E->getCaptureDefaultLoc(),
12776 E->hasExplicitParameters(),
12777 E->hasExplicitResultType(),
12778 E->isMutable());
12779
12780 bool Invalid = false;
12781
12782 // Transform captures.
12783 for (LambdaExpr::capture_iterator C = E->capture_begin(),
12784 CEnd = E->capture_end();
12785 C != CEnd; ++C) {
12786 // When we hit the first implicit capture, tell Sema that we've finished
12787 // the list of explicit captures.
12788 if (C->isImplicit())
12789 break;
12790
12791 // Capturing 'this' is trivial.
12792 if (C->capturesThis()) {
12793 getSema().CheckCXXThisCapture(C->getLocation(), C->isExplicit(),
12794 /*BuildAndDiagnose*/ true, nullptr,
12795 C->getCaptureKind() == LCK_StarThis);
12796 continue;
12797 }
12798 // Captured expression will be recaptured during captured variables
12799 // rebuilding.
12800 if (C->capturesVLAType())
12801 continue;
12802
12803 // Rebuild init-captures, including the implied field declaration.
12804 if (E->isInitCapture(C)) {
12805 TransformedInitCapture &NewC = InitCaptures[C - E->capture_begin()];
12806
12807 VarDecl *OldVD = C->getCapturedVar();
12808 llvm::SmallVector<Decl*, 4> NewVDs;
12809
12810 for (InitCaptureInfoTy &Info : NewC.Expansions) {
12811 ExprResult Init = Info.first;
12812 QualType InitQualType = Info.second;
12813 if (Init.isInvalid() || InitQualType.isNull()) {
12814 Invalid = true;
12815 break;
12816 }
12817 VarDecl *NewVD = getSema().createLambdaInitCaptureVarDecl(
12818 OldVD->getLocation(), InitQualType, NewC.EllipsisLoc,
12819 OldVD->getIdentifier(), OldVD->getInitStyle(), Init.get());
12820 if (!NewVD) {
12821 Invalid = true;
12822 break;
12823 }
12824 NewVDs.push_back(NewVD);
12825 getSema().addInitCapture(LSI, NewVD);
12826 }
12827
12828 if (Invalid)
12829 break;
12830
12831 getDerived().transformedLocalDecl(OldVD, NewVDs);
12832 continue;
12833 }
12834
12835 assert(C->capturesVariable() && "unexpected kind of lambda capture");
12836
12837 // Determine the capture kind for Sema.
12838 Sema::TryCaptureKind Kind
12839 = C->isImplicit()? Sema::TryCapture_Implicit
12840 : C->getCaptureKind() == LCK_ByCopy
12841 ? Sema::TryCapture_ExplicitByVal
12842 : Sema::TryCapture_ExplicitByRef;
12843 SourceLocation EllipsisLoc;
12844 if (C->isPackExpansion()) {
12845 UnexpandedParameterPack Unexpanded(C->getCapturedVar(), C->getLocation());
12846 bool ShouldExpand = false;
12847 bool RetainExpansion = false;
12848 Optional<unsigned> NumExpansions;
12849 if (getDerived().TryExpandParameterPacks(C->getEllipsisLoc(),
12850 C->getLocation(),
12851 Unexpanded,
12852 ShouldExpand, RetainExpansion,
12853 NumExpansions)) {
12854 Invalid = true;
12855 continue;
12856 }
12857
12858 if (ShouldExpand) {
12859 // The transform has determined that we should perform an expansion;
12860 // transform and capture each of the arguments.
12861 // expansion of the pattern. Do so.
12862 VarDecl *Pack = C->getCapturedVar();
12863 for (unsigned I = 0; I != *NumExpansions; ++I) {
12864 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), I);
12865 VarDecl *CapturedVar
12866 = cast_or_null<VarDecl>(getDerived().TransformDecl(C->getLocation(),
12867 Pack));
12868 if (!CapturedVar) {
12869 Invalid = true;
12870 continue;
12871 }
12872
12873 // Capture the transformed variable.
12874 getSema().tryCaptureVariable(CapturedVar, C->getLocation(), Kind);
12875 }
12876
12877 // FIXME: Retain a pack expansion if RetainExpansion is true.
12878
12879 continue;
12880 }
12881
12882 EllipsisLoc = C->getEllipsisLoc();
12883 }
12884
12885 // Transform the captured variable.
12886 VarDecl *CapturedVar
12887 = cast_or_null<VarDecl>(getDerived().TransformDecl(C->getLocation(),
12888 C->getCapturedVar()));
12889 if (!CapturedVar || CapturedVar->isInvalidDecl()) {
12890 Invalid = true;
12891 continue;
12892 }
12893
12894 // Capture the transformed variable.
12895 getSema().tryCaptureVariable(CapturedVar, C->getLocation(), Kind,
12896 EllipsisLoc);
12897 }
12898 getSema().finishLambdaExplicitCaptures(LSI);
12899
12900 // FIXME: Sema's lambda-building mechanism expects us to push an expression
12901 // evaluation context even if we're not transforming the function body.
12902 getSema().PushExpressionEvaluationContext(
12903 Sema::ExpressionEvaluationContext::PotentiallyEvaluated);
12904
12905 // Instantiate the body of the lambda expression.
12906 StmtResult Body =
12907 Invalid ? StmtError() : getDerived().TransformLambdaBody(E, E->getBody());
12908
12909 // ActOnLambda* will pop the function scope for us.
12910 FuncScopeCleanup.disable();
12911
12912 if (Body.isInvalid()) {
12913 SavedContext.pop();
12914 getSema().ActOnLambdaError(E->getBeginLoc(), /*CurScope=*/nullptr,
12915 /*IsInstantiation=*/true);
12916 return ExprError();
12917 }
12918
12919 // Copy the LSI before ActOnFinishFunctionBody removes it.
12920 // FIXME: This is dumb. Store the lambda information somewhere that outlives
12921 // the call operator.
12922 auto LSICopy = *LSI;
12923 getSema().ActOnFinishFunctionBody(NewCallOperator, Body.get(),
12924 /*IsInstantiation*/ true);
12925 SavedContext.pop();
12926
12927 return getSema().BuildLambdaExpr(E->getBeginLoc(), Body.get()->getEndLoc(),
12928 &LSICopy);
12929 }
12930
12931 template<typename Derived>
12932 StmtResult
TransformLambdaBody(LambdaExpr * E,Stmt * S)12933 TreeTransform<Derived>::TransformLambdaBody(LambdaExpr *E, Stmt *S) {
12934 return TransformStmt(S);
12935 }
12936
12937 template<typename Derived>
12938 StmtResult
SkipLambdaBody(LambdaExpr * E,Stmt * S)12939 TreeTransform<Derived>::SkipLambdaBody(LambdaExpr *E, Stmt *S) {
12940 // Transform captures.
12941 for (LambdaExpr::capture_iterator C = E->capture_begin(),
12942 CEnd = E->capture_end();
12943 C != CEnd; ++C) {
12944 // When we hit the first implicit capture, tell Sema that we've finished
12945 // the list of explicit captures.
12946 if (!C->isImplicit())
12947 continue;
12948
12949 // Capturing 'this' is trivial.
12950 if (C->capturesThis()) {
12951 getSema().CheckCXXThisCapture(C->getLocation(), C->isExplicit(),
12952 /*BuildAndDiagnose*/ true, nullptr,
12953 C->getCaptureKind() == LCK_StarThis);
12954 continue;
12955 }
12956 // Captured expression will be recaptured during captured variables
12957 // rebuilding.
12958 if (C->capturesVLAType())
12959 continue;
12960
12961 assert(C->capturesVariable() && "unexpected kind of lambda capture");
12962 assert(!E->isInitCapture(C) && "implicit init-capture?");
12963
12964 // Transform the captured variable.
12965 VarDecl *CapturedVar = cast_or_null<VarDecl>(
12966 getDerived().TransformDecl(C->getLocation(), C->getCapturedVar()));
12967 if (!CapturedVar || CapturedVar->isInvalidDecl())
12968 return StmtError();
12969
12970 // Capture the transformed variable.
12971 getSema().tryCaptureVariable(CapturedVar, C->getLocation());
12972 }
12973
12974 return S;
12975 }
12976
12977 template<typename Derived>
12978 ExprResult
TransformCXXUnresolvedConstructExpr(CXXUnresolvedConstructExpr * E)12979 TreeTransform<Derived>::TransformCXXUnresolvedConstructExpr(
12980 CXXUnresolvedConstructExpr *E) {
12981 TypeSourceInfo *T =
12982 getDerived().TransformTypeWithDeducedTST(E->getTypeSourceInfo());
12983 if (!T)
12984 return ExprError();
12985
12986 bool ArgumentChanged = false;
12987 SmallVector<Expr*, 8> Args;
12988 Args.reserve(E->getNumArgs());
12989 {
12990 EnterExpressionEvaluationContext Context(
12991 getSema(), EnterExpressionEvaluationContext::InitList,
12992 E->isListInitialization());
12993 if (getDerived().TransformExprs(E->arg_begin(), E->getNumArgs(), true, Args,
12994 &ArgumentChanged))
12995 return ExprError();
12996 }
12997
12998 if (!getDerived().AlwaysRebuild() &&
12999 T == E->getTypeSourceInfo() &&
13000 !ArgumentChanged)
13001 return E;
13002
13003 // FIXME: we're faking the locations of the commas
13004 return getDerived().RebuildCXXUnresolvedConstructExpr(
13005 T, E->getLParenLoc(), Args, E->getRParenLoc(), E->isListInitialization());
13006 }
13007
13008 template<typename Derived>
13009 ExprResult
TransformCXXDependentScopeMemberExpr(CXXDependentScopeMemberExpr * E)13010 TreeTransform<Derived>::TransformCXXDependentScopeMemberExpr(
13011 CXXDependentScopeMemberExpr *E) {
13012 // Transform the base of the expression.
13013 ExprResult Base((Expr*) nullptr);
13014 Expr *OldBase;
13015 QualType BaseType;
13016 QualType ObjectType;
13017 if (!E->isImplicitAccess()) {
13018 OldBase = E->getBase();
13019 Base = getDerived().TransformExpr(OldBase);
13020 if (Base.isInvalid())
13021 return ExprError();
13022
13023 // Start the member reference and compute the object's type.
13024 ParsedType ObjectTy;
13025 bool MayBePseudoDestructor = false;
13026 Base = SemaRef.ActOnStartCXXMemberReference(nullptr, Base.get(),
13027 E->getOperatorLoc(),
13028 E->isArrow()? tok::arrow : tok::period,
13029 ObjectTy,
13030 MayBePseudoDestructor);
13031 if (Base.isInvalid())
13032 return ExprError();
13033
13034 ObjectType = ObjectTy.get();
13035 BaseType = ((Expr*) Base.get())->getType();
13036 } else {
13037 OldBase = nullptr;
13038 BaseType = getDerived().TransformType(E->getBaseType());
13039 ObjectType = BaseType->castAs<PointerType>()->getPointeeType();
13040 }
13041
13042 // Transform the first part of the nested-name-specifier that qualifies
13043 // the member name.
13044 NamedDecl *FirstQualifierInScope
13045 = getDerived().TransformFirstQualifierInScope(
13046 E->getFirstQualifierFoundInScope(),
13047 E->getQualifierLoc().getBeginLoc());
13048
13049 NestedNameSpecifierLoc QualifierLoc;
13050 if (E->getQualifier()) {
13051 QualifierLoc
13052 = getDerived().TransformNestedNameSpecifierLoc(E->getQualifierLoc(),
13053 ObjectType,
13054 FirstQualifierInScope);
13055 if (!QualifierLoc)
13056 return ExprError();
13057 }
13058
13059 SourceLocation TemplateKWLoc = E->getTemplateKeywordLoc();
13060
13061 // TODO: If this is a conversion-function-id, verify that the
13062 // destination type name (if present) resolves the same way after
13063 // instantiation as it did in the local scope.
13064
13065 DeclarationNameInfo NameInfo
13066 = getDerived().TransformDeclarationNameInfo(E->getMemberNameInfo());
13067 if (!NameInfo.getName())
13068 return ExprError();
13069
13070 if (!E->hasExplicitTemplateArgs()) {
13071 // This is a reference to a member without an explicitly-specified
13072 // template argument list. Optimize for this common case.
13073 if (!getDerived().AlwaysRebuild() &&
13074 Base.get() == OldBase &&
13075 BaseType == E->getBaseType() &&
13076 QualifierLoc == E->getQualifierLoc() &&
13077 NameInfo.getName() == E->getMember() &&
13078 FirstQualifierInScope == E->getFirstQualifierFoundInScope())
13079 return E;
13080
13081 return getDerived().RebuildCXXDependentScopeMemberExpr(Base.get(),
13082 BaseType,
13083 E->isArrow(),
13084 E->getOperatorLoc(),
13085 QualifierLoc,
13086 TemplateKWLoc,
13087 FirstQualifierInScope,
13088 NameInfo,
13089 /*TemplateArgs*/nullptr);
13090 }
13091
13092 TemplateArgumentListInfo TransArgs(E->getLAngleLoc(), E->getRAngleLoc());
13093 if (getDerived().TransformTemplateArguments(E->getTemplateArgs(),
13094 E->getNumTemplateArgs(),
13095 TransArgs))
13096 return ExprError();
13097
13098 return getDerived().RebuildCXXDependentScopeMemberExpr(Base.get(),
13099 BaseType,
13100 E->isArrow(),
13101 E->getOperatorLoc(),
13102 QualifierLoc,
13103 TemplateKWLoc,
13104 FirstQualifierInScope,
13105 NameInfo,
13106 &TransArgs);
13107 }
13108
13109 template<typename Derived>
13110 ExprResult
TransformUnresolvedMemberExpr(UnresolvedMemberExpr * Old)13111 TreeTransform<Derived>::TransformUnresolvedMemberExpr(UnresolvedMemberExpr *Old) {
13112 // Transform the base of the expression.
13113 ExprResult Base((Expr*) nullptr);
13114 QualType BaseType;
13115 if (!Old->isImplicitAccess()) {
13116 Base = getDerived().TransformExpr(Old->getBase());
13117 if (Base.isInvalid())
13118 return ExprError();
13119 Base = getSema().PerformMemberExprBaseConversion(Base.get(),
13120 Old->isArrow());
13121 if (Base.isInvalid())
13122 return ExprError();
13123 BaseType = Base.get()->getType();
13124 } else {
13125 BaseType = getDerived().TransformType(Old->getBaseType());
13126 }
13127
13128 NestedNameSpecifierLoc QualifierLoc;
13129 if (Old->getQualifierLoc()) {
13130 QualifierLoc
13131 = getDerived().TransformNestedNameSpecifierLoc(Old->getQualifierLoc());
13132 if (!QualifierLoc)
13133 return ExprError();
13134 }
13135
13136 SourceLocation TemplateKWLoc = Old->getTemplateKeywordLoc();
13137
13138 LookupResult R(SemaRef, Old->getMemberNameInfo(),
13139 Sema::LookupOrdinaryName);
13140
13141 // Transform the declaration set.
13142 if (TransformOverloadExprDecls(Old, /*RequiresADL*/false, R))
13143 return ExprError();
13144
13145 // Determine the naming class.
13146 if (Old->getNamingClass()) {
13147 CXXRecordDecl *NamingClass
13148 = cast_or_null<CXXRecordDecl>(getDerived().TransformDecl(
13149 Old->getMemberLoc(),
13150 Old->getNamingClass()));
13151 if (!NamingClass)
13152 return ExprError();
13153
13154 R.setNamingClass(NamingClass);
13155 }
13156
13157 TemplateArgumentListInfo TransArgs;
13158 if (Old->hasExplicitTemplateArgs()) {
13159 TransArgs.setLAngleLoc(Old->getLAngleLoc());
13160 TransArgs.setRAngleLoc(Old->getRAngleLoc());
13161 if (getDerived().TransformTemplateArguments(Old->getTemplateArgs(),
13162 Old->getNumTemplateArgs(),
13163 TransArgs))
13164 return ExprError();
13165 }
13166
13167 // FIXME: to do this check properly, we will need to preserve the
13168 // first-qualifier-in-scope here, just in case we had a dependent
13169 // base (and therefore couldn't do the check) and a
13170 // nested-name-qualifier (and therefore could do the lookup).
13171 NamedDecl *FirstQualifierInScope = nullptr;
13172
13173 return getDerived().RebuildUnresolvedMemberExpr(Base.get(),
13174 BaseType,
13175 Old->getOperatorLoc(),
13176 Old->isArrow(),
13177 QualifierLoc,
13178 TemplateKWLoc,
13179 FirstQualifierInScope,
13180 R,
13181 (Old->hasExplicitTemplateArgs()
13182 ? &TransArgs : nullptr));
13183 }
13184
13185 template<typename Derived>
13186 ExprResult
TransformCXXNoexceptExpr(CXXNoexceptExpr * E)13187 TreeTransform<Derived>::TransformCXXNoexceptExpr(CXXNoexceptExpr *E) {
13188 EnterExpressionEvaluationContext Unevaluated(
13189 SemaRef, Sema::ExpressionEvaluationContext::Unevaluated);
13190 ExprResult SubExpr = getDerived().TransformExpr(E->getOperand());
13191 if (SubExpr.isInvalid())
13192 return ExprError();
13193
13194 if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getOperand())
13195 return E;
13196
13197 return getDerived().RebuildCXXNoexceptExpr(E->getSourceRange(),SubExpr.get());
13198 }
13199
13200 template<typename Derived>
13201 ExprResult
TransformPackExpansionExpr(PackExpansionExpr * E)13202 TreeTransform<Derived>::TransformPackExpansionExpr(PackExpansionExpr *E) {
13203 ExprResult Pattern = getDerived().TransformExpr(E->getPattern());
13204 if (Pattern.isInvalid())
13205 return ExprError();
13206
13207 if (!getDerived().AlwaysRebuild() && Pattern.get() == E->getPattern())
13208 return E;
13209
13210 return getDerived().RebuildPackExpansion(Pattern.get(), E->getEllipsisLoc(),
13211 E->getNumExpansions());
13212 }
13213
13214 template<typename Derived>
13215 ExprResult
TransformSizeOfPackExpr(SizeOfPackExpr * E)13216 TreeTransform<Derived>::TransformSizeOfPackExpr(SizeOfPackExpr *E) {
13217 // If E is not value-dependent, then nothing will change when we transform it.
13218 // Note: This is an instantiation-centric view.
13219 if (!E->isValueDependent())
13220 return E;
13221
13222 EnterExpressionEvaluationContext Unevaluated(
13223 getSema(), Sema::ExpressionEvaluationContext::Unevaluated);
13224
13225 ArrayRef<TemplateArgument> PackArgs;
13226 TemplateArgument ArgStorage;
13227
13228 // Find the argument list to transform.
13229 if (E->isPartiallySubstituted()) {
13230 PackArgs = E->getPartialArguments();
13231 } else if (E->isValueDependent()) {
13232 UnexpandedParameterPack Unexpanded(E->getPack(), E->getPackLoc());
13233 bool ShouldExpand = false;
13234 bool RetainExpansion = false;
13235 Optional<unsigned> NumExpansions;
13236 if (getDerived().TryExpandParameterPacks(E->getOperatorLoc(), E->getPackLoc(),
13237 Unexpanded,
13238 ShouldExpand, RetainExpansion,
13239 NumExpansions))
13240 return ExprError();
13241
13242 // If we need to expand the pack, build a template argument from it and
13243 // expand that.
13244 if (ShouldExpand) {
13245 auto *Pack = E->getPack();
13246 if (auto *TTPD = dyn_cast<TemplateTypeParmDecl>(Pack)) {
13247 ArgStorage = getSema().Context.getPackExpansionType(
13248 getSema().Context.getTypeDeclType(TTPD), None);
13249 } else if (auto *TTPD = dyn_cast<TemplateTemplateParmDecl>(Pack)) {
13250 ArgStorage = TemplateArgument(TemplateName(TTPD), None);
13251 } else {
13252 auto *VD = cast<ValueDecl>(Pack);
13253 ExprResult DRE = getSema().BuildDeclRefExpr(
13254 VD, VD->getType().getNonLValueExprType(getSema().Context),
13255 VD->getType()->isReferenceType() ? VK_LValue : VK_RValue,
13256 E->getPackLoc());
13257 if (DRE.isInvalid())
13258 return ExprError();
13259 ArgStorage = new (getSema().Context) PackExpansionExpr(
13260 getSema().Context.DependentTy, DRE.get(), E->getPackLoc(), None);
13261 }
13262 PackArgs = ArgStorage;
13263 }
13264 }
13265
13266 // If we're not expanding the pack, just transform the decl.
13267 if (!PackArgs.size()) {
13268 auto *Pack = cast_or_null<NamedDecl>(
13269 getDerived().TransformDecl(E->getPackLoc(), E->getPack()));
13270 if (!Pack)
13271 return ExprError();
13272 return getDerived().RebuildSizeOfPackExpr(E->getOperatorLoc(), Pack,
13273 E->getPackLoc(),
13274 E->getRParenLoc(), None, None);
13275 }
13276
13277 // Try to compute the result without performing a partial substitution.
13278 Optional<unsigned> Result = 0;
13279 for (const TemplateArgument &Arg : PackArgs) {
13280 if (!Arg.isPackExpansion()) {
13281 Result = *Result + 1;
13282 continue;
13283 }
13284
13285 TemplateArgumentLoc ArgLoc;
13286 InventTemplateArgumentLoc(Arg, ArgLoc);
13287
13288 // Find the pattern of the pack expansion.
13289 SourceLocation Ellipsis;
13290 Optional<unsigned> OrigNumExpansions;
13291 TemplateArgumentLoc Pattern =
13292 getSema().getTemplateArgumentPackExpansionPattern(ArgLoc, Ellipsis,
13293 OrigNumExpansions);
13294
13295 // Substitute under the pack expansion. Do not expand the pack (yet).
13296 TemplateArgumentLoc OutPattern;
13297 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1);
13298 if (getDerived().TransformTemplateArgument(Pattern, OutPattern,
13299 /*Uneval*/ true))
13300 return true;
13301
13302 // See if we can determine the number of arguments from the result.
13303 Optional<unsigned> NumExpansions =
13304 getSema().getFullyPackExpandedSize(OutPattern.getArgument());
13305 if (!NumExpansions) {
13306 // No: we must be in an alias template expansion, and we're going to need
13307 // to actually expand the packs.
13308 Result = None;
13309 break;
13310 }
13311
13312 Result = *Result + *NumExpansions;
13313 }
13314
13315 // Common case: we could determine the number of expansions without
13316 // substituting.
13317 if (Result)
13318 return getDerived().RebuildSizeOfPackExpr(E->getOperatorLoc(), E->getPack(),
13319 E->getPackLoc(),
13320 E->getRParenLoc(), *Result, None);
13321
13322 TemplateArgumentListInfo TransformedPackArgs(E->getPackLoc(),
13323 E->getPackLoc());
13324 {
13325 TemporaryBase Rebase(*this, E->getPackLoc(), getBaseEntity());
13326 typedef TemplateArgumentLocInventIterator<
13327 Derived, const TemplateArgument*> PackLocIterator;
13328 if (TransformTemplateArguments(PackLocIterator(*this, PackArgs.begin()),
13329 PackLocIterator(*this, PackArgs.end()),
13330 TransformedPackArgs, /*Uneval*/true))
13331 return ExprError();
13332 }
13333
13334 // Check whether we managed to fully-expand the pack.
13335 // FIXME: Is it possible for us to do so and not hit the early exit path?
13336 SmallVector<TemplateArgument, 8> Args;
13337 bool PartialSubstitution = false;
13338 for (auto &Loc : TransformedPackArgs.arguments()) {
13339 Args.push_back(Loc.getArgument());
13340 if (Loc.getArgument().isPackExpansion())
13341 PartialSubstitution = true;
13342 }
13343
13344 if (PartialSubstitution)
13345 return getDerived().RebuildSizeOfPackExpr(E->getOperatorLoc(), E->getPack(),
13346 E->getPackLoc(),
13347 E->getRParenLoc(), None, Args);
13348
13349 return getDerived().RebuildSizeOfPackExpr(E->getOperatorLoc(), E->getPack(),
13350 E->getPackLoc(), E->getRParenLoc(),
13351 Args.size(), None);
13352 }
13353
13354 template<typename Derived>
13355 ExprResult
TransformSubstNonTypeTemplateParmPackExpr(SubstNonTypeTemplateParmPackExpr * E)13356 TreeTransform<Derived>::TransformSubstNonTypeTemplateParmPackExpr(
13357 SubstNonTypeTemplateParmPackExpr *E) {
13358 // Default behavior is to do nothing with this transformation.
13359 return E;
13360 }
13361
13362 template<typename Derived>
13363 ExprResult
TransformSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr * E)13364 TreeTransform<Derived>::TransformSubstNonTypeTemplateParmExpr(
13365 SubstNonTypeTemplateParmExpr *E) {
13366 // Default behavior is to do nothing with this transformation.
13367 return E;
13368 }
13369
13370 template<typename Derived>
13371 ExprResult
TransformFunctionParmPackExpr(FunctionParmPackExpr * E)13372 TreeTransform<Derived>::TransformFunctionParmPackExpr(FunctionParmPackExpr *E) {
13373 // Default behavior is to do nothing with this transformation.
13374 return E;
13375 }
13376
13377 template<typename Derived>
13378 ExprResult
TransformMaterializeTemporaryExpr(MaterializeTemporaryExpr * E)13379 TreeTransform<Derived>::TransformMaterializeTemporaryExpr(
13380 MaterializeTemporaryExpr *E) {
13381 return getDerived().TransformExpr(E->getSubExpr());
13382 }
13383
13384 template<typename Derived>
13385 ExprResult
TransformCXXFoldExpr(CXXFoldExpr * E)13386 TreeTransform<Derived>::TransformCXXFoldExpr(CXXFoldExpr *E) {
13387 UnresolvedLookupExpr *Callee = nullptr;
13388 if (Expr *OldCallee = E->getCallee()) {
13389 ExprResult CalleeResult = getDerived().TransformExpr(OldCallee);
13390 if (CalleeResult.isInvalid())
13391 return ExprError();
13392 Callee = cast<UnresolvedLookupExpr>(CalleeResult.get());
13393 }
13394
13395 Expr *Pattern = E->getPattern();
13396
13397 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
13398 getSema().collectUnexpandedParameterPacks(Pattern, Unexpanded);
13399 assert(!Unexpanded.empty() && "Pack expansion without parameter packs?");
13400
13401 // Determine whether the set of unexpanded parameter packs can and should
13402 // be expanded.
13403 bool Expand = true;
13404 bool RetainExpansion = false;
13405 Optional<unsigned> OrigNumExpansions = E->getNumExpansions(),
13406 NumExpansions = OrigNumExpansions;
13407 if (getDerived().TryExpandParameterPacks(E->getEllipsisLoc(),
13408 Pattern->getSourceRange(),
13409 Unexpanded,
13410 Expand, RetainExpansion,
13411 NumExpansions))
13412 return true;
13413
13414 if (!Expand) {
13415 // Do not expand any packs here, just transform and rebuild a fold
13416 // expression.
13417 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1);
13418
13419 ExprResult LHS =
13420 E->getLHS() ? getDerived().TransformExpr(E->getLHS()) : ExprResult();
13421 if (LHS.isInvalid())
13422 return true;
13423
13424 ExprResult RHS =
13425 E->getRHS() ? getDerived().TransformExpr(E->getRHS()) : ExprResult();
13426 if (RHS.isInvalid())
13427 return true;
13428
13429 if (!getDerived().AlwaysRebuild() &&
13430 LHS.get() == E->getLHS() && RHS.get() == E->getRHS())
13431 return E;
13432
13433 return getDerived().RebuildCXXFoldExpr(
13434 Callee, E->getBeginLoc(), LHS.get(), E->getOperator(),
13435 E->getEllipsisLoc(), RHS.get(), E->getEndLoc(), NumExpansions);
13436 }
13437
13438 // Formally a fold expression expands to nested parenthesized expressions.
13439 // Enforce this limit to avoid creating trees so deep we can't safely traverse
13440 // them.
13441 if (NumExpansions && SemaRef.getLangOpts().BracketDepth < NumExpansions) {
13442 SemaRef.Diag(E->getEllipsisLoc(),
13443 clang::diag::err_fold_expression_limit_exceeded)
13444 << *NumExpansions << SemaRef.getLangOpts().BracketDepth
13445 << E->getSourceRange();
13446 SemaRef.Diag(E->getEllipsisLoc(), diag::note_bracket_depth);
13447 return ExprError();
13448 }
13449
13450 // The transform has determined that we should perform an elementwise
13451 // expansion of the pattern. Do so.
13452 ExprResult Result = getDerived().TransformExpr(E->getInit());
13453 if (Result.isInvalid())
13454 return true;
13455 bool LeftFold = E->isLeftFold();
13456
13457 // If we're retaining an expansion for a right fold, it is the innermost
13458 // component and takes the init (if any).
13459 if (!LeftFold && RetainExpansion) {
13460 ForgetPartiallySubstitutedPackRAII Forget(getDerived());
13461
13462 ExprResult Out = getDerived().TransformExpr(Pattern);
13463 if (Out.isInvalid())
13464 return true;
13465
13466 Result = getDerived().RebuildCXXFoldExpr(
13467 Callee, E->getBeginLoc(), Out.get(), E->getOperator(),
13468 E->getEllipsisLoc(), Result.get(), E->getEndLoc(), OrigNumExpansions);
13469 if (Result.isInvalid())
13470 return true;
13471 }
13472
13473 for (unsigned I = 0; I != *NumExpansions; ++I) {
13474 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(
13475 getSema(), LeftFold ? I : *NumExpansions - I - 1);
13476 ExprResult Out = getDerived().TransformExpr(Pattern);
13477 if (Out.isInvalid())
13478 return true;
13479
13480 if (Out.get()->containsUnexpandedParameterPack()) {
13481 // We still have a pack; retain a pack expansion for this slice.
13482 Result = getDerived().RebuildCXXFoldExpr(
13483 Callee, E->getBeginLoc(), LeftFold ? Result.get() : Out.get(),
13484 E->getOperator(), E->getEllipsisLoc(),
13485 LeftFold ? Out.get() : Result.get(), E->getEndLoc(),
13486 OrigNumExpansions);
13487 } else if (Result.isUsable()) {
13488 // We've got down to a single element; build a binary operator.
13489 Expr *LHS = LeftFold ? Result.get() : Out.get();
13490 Expr *RHS = LeftFold ? Out.get() : Result.get();
13491 if (Callee)
13492 Result = getDerived().RebuildCXXOperatorCallExpr(
13493 BinaryOperator::getOverloadedOperator(E->getOperator()),
13494 E->getEllipsisLoc(), Callee, LHS, RHS);
13495 else
13496 Result = getDerived().RebuildBinaryOperator(E->getEllipsisLoc(),
13497 E->getOperator(), LHS, RHS);
13498 } else
13499 Result = Out;
13500
13501 if (Result.isInvalid())
13502 return true;
13503 }
13504
13505 // If we're retaining an expansion for a left fold, it is the outermost
13506 // component and takes the complete expansion so far as its init (if any).
13507 if (LeftFold && RetainExpansion) {
13508 ForgetPartiallySubstitutedPackRAII Forget(getDerived());
13509
13510 ExprResult Out = getDerived().TransformExpr(Pattern);
13511 if (Out.isInvalid())
13512 return true;
13513
13514 Result = getDerived().RebuildCXXFoldExpr(
13515 Callee, E->getBeginLoc(), Result.get(), E->getOperator(),
13516 E->getEllipsisLoc(), Out.get(), E->getEndLoc(), OrigNumExpansions);
13517 if (Result.isInvalid())
13518 return true;
13519 }
13520
13521 // If we had no init and an empty pack, and we're not retaining an expansion,
13522 // then produce a fallback value or error.
13523 if (Result.isUnset())
13524 return getDerived().RebuildEmptyCXXFoldExpr(E->getEllipsisLoc(),
13525 E->getOperator());
13526
13527 return Result;
13528 }
13529
13530 template<typename Derived>
13531 ExprResult
TransformCXXStdInitializerListExpr(CXXStdInitializerListExpr * E)13532 TreeTransform<Derived>::TransformCXXStdInitializerListExpr(
13533 CXXStdInitializerListExpr *E) {
13534 return getDerived().TransformExpr(E->getSubExpr());
13535 }
13536
13537 template<typename Derived>
13538 ExprResult
TransformObjCStringLiteral(ObjCStringLiteral * E)13539 TreeTransform<Derived>::TransformObjCStringLiteral(ObjCStringLiteral *E) {
13540 return SemaRef.MaybeBindToTemporary(E);
13541 }
13542
13543 template<typename Derived>
13544 ExprResult
TransformObjCBoolLiteralExpr(ObjCBoolLiteralExpr * E)13545 TreeTransform<Derived>::TransformObjCBoolLiteralExpr(ObjCBoolLiteralExpr *E) {
13546 return E;
13547 }
13548
13549 template<typename Derived>
13550 ExprResult
TransformObjCBoxedExpr(ObjCBoxedExpr * E)13551 TreeTransform<Derived>::TransformObjCBoxedExpr(ObjCBoxedExpr *E) {
13552 ExprResult SubExpr = getDerived().TransformExpr(E->getSubExpr());
13553 if (SubExpr.isInvalid())
13554 return ExprError();
13555
13556 if (!getDerived().AlwaysRebuild() &&
13557 SubExpr.get() == E->getSubExpr())
13558 return E;
13559
13560 return getDerived().RebuildObjCBoxedExpr(E->getSourceRange(), SubExpr.get());
13561 }
13562
13563 template<typename Derived>
13564 ExprResult
TransformObjCArrayLiteral(ObjCArrayLiteral * E)13565 TreeTransform<Derived>::TransformObjCArrayLiteral(ObjCArrayLiteral *E) {
13566 // Transform each of the elements.
13567 SmallVector<Expr *, 8> Elements;
13568 bool ArgChanged = false;
13569 if (getDerived().TransformExprs(E->getElements(), E->getNumElements(),
13570 /*IsCall=*/false, Elements, &ArgChanged))
13571 return ExprError();
13572
13573 if (!getDerived().AlwaysRebuild() && !ArgChanged)
13574 return SemaRef.MaybeBindToTemporary(E);
13575
13576 return getDerived().RebuildObjCArrayLiteral(E->getSourceRange(),
13577 Elements.data(),
13578 Elements.size());
13579 }
13580
13581 template<typename Derived>
13582 ExprResult
TransformObjCDictionaryLiteral(ObjCDictionaryLiteral * E)13583 TreeTransform<Derived>::TransformObjCDictionaryLiteral(
13584 ObjCDictionaryLiteral *E) {
13585 // Transform each of the elements.
13586 SmallVector<ObjCDictionaryElement, 8> Elements;
13587 bool ArgChanged = false;
13588 for (unsigned I = 0, N = E->getNumElements(); I != N; ++I) {
13589 ObjCDictionaryElement OrigElement = E->getKeyValueElement(I);
13590
13591 if (OrigElement.isPackExpansion()) {
13592 // This key/value element is a pack expansion.
13593 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
13594 getSema().collectUnexpandedParameterPacks(OrigElement.Key, Unexpanded);
13595 getSema().collectUnexpandedParameterPacks(OrigElement.Value, Unexpanded);
13596 assert(!Unexpanded.empty() && "Pack expansion without parameter packs?");
13597
13598 // Determine whether the set of unexpanded parameter packs can
13599 // and should be expanded.
13600 bool Expand = true;
13601 bool RetainExpansion = false;
13602 Optional<unsigned> OrigNumExpansions = OrigElement.NumExpansions;
13603 Optional<unsigned> NumExpansions = OrigNumExpansions;
13604 SourceRange PatternRange(OrigElement.Key->getBeginLoc(),
13605 OrigElement.Value->getEndLoc());
13606 if (getDerived().TryExpandParameterPacks(OrigElement.EllipsisLoc,
13607 PatternRange, Unexpanded, Expand,
13608 RetainExpansion, NumExpansions))
13609 return ExprError();
13610
13611 if (!Expand) {
13612 // The transform has determined that we should perform a simple
13613 // transformation on the pack expansion, producing another pack
13614 // expansion.
13615 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1);
13616 ExprResult Key = getDerived().TransformExpr(OrigElement.Key);
13617 if (Key.isInvalid())
13618 return ExprError();
13619
13620 if (Key.get() != OrigElement.Key)
13621 ArgChanged = true;
13622
13623 ExprResult Value = getDerived().TransformExpr(OrigElement.Value);
13624 if (Value.isInvalid())
13625 return ExprError();
13626
13627 if (Value.get() != OrigElement.Value)
13628 ArgChanged = true;
13629
13630 ObjCDictionaryElement Expansion = {
13631 Key.get(), Value.get(), OrigElement.EllipsisLoc, NumExpansions
13632 };
13633 Elements.push_back(Expansion);
13634 continue;
13635 }
13636
13637 // Record right away that the argument was changed. This needs
13638 // to happen even if the array expands to nothing.
13639 ArgChanged = true;
13640
13641 // The transform has determined that we should perform an elementwise
13642 // expansion of the pattern. Do so.
13643 for (unsigned I = 0; I != *NumExpansions; ++I) {
13644 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), I);
13645 ExprResult Key = getDerived().TransformExpr(OrigElement.Key);
13646 if (Key.isInvalid())
13647 return ExprError();
13648
13649 ExprResult Value = getDerived().TransformExpr(OrigElement.Value);
13650 if (Value.isInvalid())
13651 return ExprError();
13652
13653 ObjCDictionaryElement Element = {
13654 Key.get(), Value.get(), SourceLocation(), NumExpansions
13655 };
13656
13657 // If any unexpanded parameter packs remain, we still have a
13658 // pack expansion.
13659 // FIXME: Can this really happen?
13660 if (Key.get()->containsUnexpandedParameterPack() ||
13661 Value.get()->containsUnexpandedParameterPack())
13662 Element.EllipsisLoc = OrigElement.EllipsisLoc;
13663
13664 Elements.push_back(Element);
13665 }
13666
13667 // FIXME: Retain a pack expansion if RetainExpansion is true.
13668
13669 // We've finished with this pack expansion.
13670 continue;
13671 }
13672
13673 // Transform and check key.
13674 ExprResult Key = getDerived().TransformExpr(OrigElement.Key);
13675 if (Key.isInvalid())
13676 return ExprError();
13677
13678 if (Key.get() != OrigElement.Key)
13679 ArgChanged = true;
13680
13681 // Transform and check value.
13682 ExprResult Value
13683 = getDerived().TransformExpr(OrigElement.Value);
13684 if (Value.isInvalid())
13685 return ExprError();
13686
13687 if (Value.get() != OrigElement.Value)
13688 ArgChanged = true;
13689
13690 ObjCDictionaryElement Element = {
13691 Key.get(), Value.get(), SourceLocation(), None
13692 };
13693 Elements.push_back(Element);
13694 }
13695
13696 if (!getDerived().AlwaysRebuild() && !ArgChanged)
13697 return SemaRef.MaybeBindToTemporary(E);
13698
13699 return getDerived().RebuildObjCDictionaryLiteral(E->getSourceRange(),
13700 Elements);
13701 }
13702
13703 template<typename Derived>
13704 ExprResult
TransformObjCEncodeExpr(ObjCEncodeExpr * E)13705 TreeTransform<Derived>::TransformObjCEncodeExpr(ObjCEncodeExpr *E) {
13706 TypeSourceInfo *EncodedTypeInfo
13707 = getDerived().TransformType(E->getEncodedTypeSourceInfo());
13708 if (!EncodedTypeInfo)
13709 return ExprError();
13710
13711 if (!getDerived().AlwaysRebuild() &&
13712 EncodedTypeInfo == E->getEncodedTypeSourceInfo())
13713 return E;
13714
13715 return getDerived().RebuildObjCEncodeExpr(E->getAtLoc(),
13716 EncodedTypeInfo,
13717 E->getRParenLoc());
13718 }
13719
13720 template<typename Derived>
13721 ExprResult TreeTransform<Derived>::
TransformObjCIndirectCopyRestoreExpr(ObjCIndirectCopyRestoreExpr * E)13722 TransformObjCIndirectCopyRestoreExpr(ObjCIndirectCopyRestoreExpr *E) {
13723 // This is a kind of implicit conversion, and it needs to get dropped
13724 // and recomputed for the same general reasons that ImplicitCastExprs
13725 // do, as well a more specific one: this expression is only valid when
13726 // it appears *immediately* as an argument expression.
13727 return getDerived().TransformExpr(E->getSubExpr());
13728 }
13729
13730 template<typename Derived>
13731 ExprResult TreeTransform<Derived>::
TransformObjCBridgedCastExpr(ObjCBridgedCastExpr * E)13732 TransformObjCBridgedCastExpr(ObjCBridgedCastExpr *E) {
13733 TypeSourceInfo *TSInfo
13734 = getDerived().TransformType(E->getTypeInfoAsWritten());
13735 if (!TSInfo)
13736 return ExprError();
13737
13738 ExprResult Result = getDerived().TransformExpr(E->getSubExpr());
13739 if (Result.isInvalid())
13740 return ExprError();
13741
13742 if (!getDerived().AlwaysRebuild() &&
13743 TSInfo == E->getTypeInfoAsWritten() &&
13744 Result.get() == E->getSubExpr())
13745 return E;
13746
13747 return SemaRef.BuildObjCBridgedCast(E->getLParenLoc(), E->getBridgeKind(),
13748 E->getBridgeKeywordLoc(), TSInfo,
13749 Result.get());
13750 }
13751
13752 template <typename Derived>
TransformObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr * E)13753 ExprResult TreeTransform<Derived>::TransformObjCAvailabilityCheckExpr(
13754 ObjCAvailabilityCheckExpr *E) {
13755 return E;
13756 }
13757
13758 template<typename Derived>
13759 ExprResult
TransformObjCMessageExpr(ObjCMessageExpr * E)13760 TreeTransform<Derived>::TransformObjCMessageExpr(ObjCMessageExpr *E) {
13761 // Transform arguments.
13762 bool ArgChanged = false;
13763 SmallVector<Expr*, 8> Args;
13764 Args.reserve(E->getNumArgs());
13765 if (getDerived().TransformExprs(E->getArgs(), E->getNumArgs(), false, Args,
13766 &ArgChanged))
13767 return ExprError();
13768
13769 if (E->getReceiverKind() == ObjCMessageExpr::Class) {
13770 // Class message: transform the receiver type.
13771 TypeSourceInfo *ReceiverTypeInfo
13772 = getDerived().TransformType(E->getClassReceiverTypeInfo());
13773 if (!ReceiverTypeInfo)
13774 return ExprError();
13775
13776 // If nothing changed, just retain the existing message send.
13777 if (!getDerived().AlwaysRebuild() &&
13778 ReceiverTypeInfo == E->getClassReceiverTypeInfo() && !ArgChanged)
13779 return SemaRef.MaybeBindToTemporary(E);
13780
13781 // Build a new class message send.
13782 SmallVector<SourceLocation, 16> SelLocs;
13783 E->getSelectorLocs(SelLocs);
13784 return getDerived().RebuildObjCMessageExpr(ReceiverTypeInfo,
13785 E->getSelector(),
13786 SelLocs,
13787 E->getMethodDecl(),
13788 E->getLeftLoc(),
13789 Args,
13790 E->getRightLoc());
13791 }
13792 else if (E->getReceiverKind() == ObjCMessageExpr::SuperClass ||
13793 E->getReceiverKind() == ObjCMessageExpr::SuperInstance) {
13794 if (!E->getMethodDecl())
13795 return ExprError();
13796
13797 // Build a new class message send to 'super'.
13798 SmallVector<SourceLocation, 16> SelLocs;
13799 E->getSelectorLocs(SelLocs);
13800 return getDerived().RebuildObjCMessageExpr(E->getSuperLoc(),
13801 E->getSelector(),
13802 SelLocs,
13803 E->getReceiverType(),
13804 E->getMethodDecl(),
13805 E->getLeftLoc(),
13806 Args,
13807 E->getRightLoc());
13808 }
13809
13810 // Instance message: transform the receiver
13811 assert(E->getReceiverKind() == ObjCMessageExpr::Instance &&
13812 "Only class and instance messages may be instantiated");
13813 ExprResult Receiver
13814 = getDerived().TransformExpr(E->getInstanceReceiver());
13815 if (Receiver.isInvalid())
13816 return ExprError();
13817
13818 // If nothing changed, just retain the existing message send.
13819 if (!getDerived().AlwaysRebuild() &&
13820 Receiver.get() == E->getInstanceReceiver() && !ArgChanged)
13821 return SemaRef.MaybeBindToTemporary(E);
13822
13823 // Build a new instance message send.
13824 SmallVector<SourceLocation, 16> SelLocs;
13825 E->getSelectorLocs(SelLocs);
13826 return getDerived().RebuildObjCMessageExpr(Receiver.get(),
13827 E->getSelector(),
13828 SelLocs,
13829 E->getMethodDecl(),
13830 E->getLeftLoc(),
13831 Args,
13832 E->getRightLoc());
13833 }
13834
13835 template<typename Derived>
13836 ExprResult
TransformObjCSelectorExpr(ObjCSelectorExpr * E)13837 TreeTransform<Derived>::TransformObjCSelectorExpr(ObjCSelectorExpr *E) {
13838 return E;
13839 }
13840
13841 template<typename Derived>
13842 ExprResult
TransformObjCProtocolExpr(ObjCProtocolExpr * E)13843 TreeTransform<Derived>::TransformObjCProtocolExpr(ObjCProtocolExpr *E) {
13844 return E;
13845 }
13846
13847 template<typename Derived>
13848 ExprResult
TransformObjCIvarRefExpr(ObjCIvarRefExpr * E)13849 TreeTransform<Derived>::TransformObjCIvarRefExpr(ObjCIvarRefExpr *E) {
13850 // Transform the base expression.
13851 ExprResult Base = getDerived().TransformExpr(E->getBase());
13852 if (Base.isInvalid())
13853 return ExprError();
13854
13855 // We don't need to transform the ivar; it will never change.
13856
13857 // If nothing changed, just retain the existing expression.
13858 if (!getDerived().AlwaysRebuild() &&
13859 Base.get() == E->getBase())
13860 return E;
13861
13862 return getDerived().RebuildObjCIvarRefExpr(Base.get(), E->getDecl(),
13863 E->getLocation(),
13864 E->isArrow(), E->isFreeIvar());
13865 }
13866
13867 template<typename Derived>
13868 ExprResult
TransformObjCPropertyRefExpr(ObjCPropertyRefExpr * E)13869 TreeTransform<Derived>::TransformObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
13870 // 'super' and types never change. Property never changes. Just
13871 // retain the existing expression.
13872 if (!E->isObjectReceiver())
13873 return E;
13874
13875 // Transform the base expression.
13876 ExprResult Base = getDerived().TransformExpr(E->getBase());
13877 if (Base.isInvalid())
13878 return ExprError();
13879
13880 // We don't need to transform the property; it will never change.
13881
13882 // If nothing changed, just retain the existing expression.
13883 if (!getDerived().AlwaysRebuild() &&
13884 Base.get() == E->getBase())
13885 return E;
13886
13887 if (E->isExplicitProperty())
13888 return getDerived().RebuildObjCPropertyRefExpr(Base.get(),
13889 E->getExplicitProperty(),
13890 E->getLocation());
13891
13892 return getDerived().RebuildObjCPropertyRefExpr(Base.get(),
13893 SemaRef.Context.PseudoObjectTy,
13894 E->getImplicitPropertyGetter(),
13895 E->getImplicitPropertySetter(),
13896 E->getLocation());
13897 }
13898
13899 template<typename Derived>
13900 ExprResult
TransformObjCSubscriptRefExpr(ObjCSubscriptRefExpr * E)13901 TreeTransform<Derived>::TransformObjCSubscriptRefExpr(ObjCSubscriptRefExpr *E) {
13902 // Transform the base expression.
13903 ExprResult Base = getDerived().TransformExpr(E->getBaseExpr());
13904 if (Base.isInvalid())
13905 return ExprError();
13906
13907 // Transform the key expression.
13908 ExprResult Key = getDerived().TransformExpr(E->getKeyExpr());
13909 if (Key.isInvalid())
13910 return ExprError();
13911
13912 // If nothing changed, just retain the existing expression.
13913 if (!getDerived().AlwaysRebuild() &&
13914 Key.get() == E->getKeyExpr() && Base.get() == E->getBaseExpr())
13915 return E;
13916
13917 return getDerived().RebuildObjCSubscriptRefExpr(E->getRBracket(),
13918 Base.get(), Key.get(),
13919 E->getAtIndexMethodDecl(),
13920 E->setAtIndexMethodDecl());
13921 }
13922
13923 template<typename Derived>
13924 ExprResult
TransformObjCIsaExpr(ObjCIsaExpr * E)13925 TreeTransform<Derived>::TransformObjCIsaExpr(ObjCIsaExpr *E) {
13926 // Transform the base expression.
13927 ExprResult Base = getDerived().TransformExpr(E->getBase());
13928 if (Base.isInvalid())
13929 return ExprError();
13930
13931 // If nothing changed, just retain the existing expression.
13932 if (!getDerived().AlwaysRebuild() &&
13933 Base.get() == E->getBase())
13934 return E;
13935
13936 return getDerived().RebuildObjCIsaExpr(Base.get(), E->getIsaMemberLoc(),
13937 E->getOpLoc(),
13938 E->isArrow());
13939 }
13940
13941 template<typename Derived>
13942 ExprResult
TransformShuffleVectorExpr(ShuffleVectorExpr * E)13943 TreeTransform<Derived>::TransformShuffleVectorExpr(ShuffleVectorExpr *E) {
13944 bool ArgumentChanged = false;
13945 SmallVector<Expr*, 8> SubExprs;
13946 SubExprs.reserve(E->getNumSubExprs());
13947 if (getDerived().TransformExprs(E->getSubExprs(), E->getNumSubExprs(), false,
13948 SubExprs, &ArgumentChanged))
13949 return ExprError();
13950
13951 if (!getDerived().AlwaysRebuild() &&
13952 !ArgumentChanged)
13953 return E;
13954
13955 return getDerived().RebuildShuffleVectorExpr(E->getBuiltinLoc(),
13956 SubExprs,
13957 E->getRParenLoc());
13958 }
13959
13960 template<typename Derived>
13961 ExprResult
TransformConvertVectorExpr(ConvertVectorExpr * E)13962 TreeTransform<Derived>::TransformConvertVectorExpr(ConvertVectorExpr *E) {
13963 ExprResult SrcExpr = getDerived().TransformExpr(E->getSrcExpr());
13964 if (SrcExpr.isInvalid())
13965 return ExprError();
13966
13967 TypeSourceInfo *Type = getDerived().TransformType(E->getTypeSourceInfo());
13968 if (!Type)
13969 return ExprError();
13970
13971 if (!getDerived().AlwaysRebuild() &&
13972 Type == E->getTypeSourceInfo() &&
13973 SrcExpr.get() == E->getSrcExpr())
13974 return E;
13975
13976 return getDerived().RebuildConvertVectorExpr(E->getBuiltinLoc(),
13977 SrcExpr.get(), Type,
13978 E->getRParenLoc());
13979 }
13980
13981 template<typename Derived>
13982 ExprResult
TransformBlockExpr(BlockExpr * E)13983 TreeTransform<Derived>::TransformBlockExpr(BlockExpr *E) {
13984 BlockDecl *oldBlock = E->getBlockDecl();
13985
13986 SemaRef.ActOnBlockStart(E->getCaretLocation(), /*Scope=*/nullptr);
13987 BlockScopeInfo *blockScope = SemaRef.getCurBlock();
13988
13989 blockScope->TheDecl->setIsVariadic(oldBlock->isVariadic());
13990 blockScope->TheDecl->setBlockMissingReturnType(
13991 oldBlock->blockMissingReturnType());
13992
13993 SmallVector<ParmVarDecl*, 4> params;
13994 SmallVector<QualType, 4> paramTypes;
13995
13996 const FunctionProtoType *exprFunctionType = E->getFunctionType();
13997
13998 // Parameter substitution.
13999 Sema::ExtParameterInfoBuilder extParamInfos;
14000 if (getDerived().TransformFunctionTypeParams(
14001 E->getCaretLocation(), oldBlock->parameters(), nullptr,
14002 exprFunctionType->getExtParameterInfosOrNull(), paramTypes, ¶ms,
14003 extParamInfos)) {
14004 getSema().ActOnBlockError(E->getCaretLocation(), /*Scope=*/nullptr);
14005 return ExprError();
14006 }
14007
14008 QualType exprResultType =
14009 getDerived().TransformType(exprFunctionType->getReturnType());
14010
14011 auto epi = exprFunctionType->getExtProtoInfo();
14012 epi.ExtParameterInfos = extParamInfos.getPointerOrNull(paramTypes.size());
14013
14014 QualType functionType =
14015 getDerived().RebuildFunctionProtoType(exprResultType, paramTypes, epi);
14016 blockScope->FunctionType = functionType;
14017
14018 // Set the parameters on the block decl.
14019 if (!params.empty())
14020 blockScope->TheDecl->setParams(params);
14021
14022 if (!oldBlock->blockMissingReturnType()) {
14023 blockScope->HasImplicitReturnType = false;
14024 blockScope->ReturnType = exprResultType;
14025 }
14026
14027 // Transform the body
14028 StmtResult body = getDerived().TransformStmt(E->getBody());
14029 if (body.isInvalid()) {
14030 getSema().ActOnBlockError(E->getCaretLocation(), /*Scope=*/nullptr);
14031 return ExprError();
14032 }
14033
14034 #ifndef NDEBUG
14035 // In builds with assertions, make sure that we captured everything we
14036 // captured before.
14037 if (!SemaRef.getDiagnostics().hasErrorOccurred()) {
14038 for (const auto &I : oldBlock->captures()) {
14039 VarDecl *oldCapture = I.getVariable();
14040
14041 // Ignore parameter packs.
14042 if (oldCapture->isParameterPack())
14043 continue;
14044
14045 VarDecl *newCapture =
14046 cast<VarDecl>(getDerived().TransformDecl(E->getCaretLocation(),
14047 oldCapture));
14048 assert(blockScope->CaptureMap.count(newCapture));
14049 }
14050 assert(oldBlock->capturesCXXThis() == blockScope->isCXXThisCaptured());
14051 }
14052 #endif
14053
14054 return SemaRef.ActOnBlockStmtExpr(E->getCaretLocation(), body.get(),
14055 /*Scope=*/nullptr);
14056 }
14057
14058 template<typename Derived>
14059 ExprResult
TransformAsTypeExpr(AsTypeExpr * E)14060 TreeTransform<Derived>::TransformAsTypeExpr(AsTypeExpr *E) {
14061 ExprResult SrcExpr = getDerived().TransformExpr(E->getSrcExpr());
14062 if (SrcExpr.isInvalid())
14063 return ExprError();
14064
14065 QualType Type = getDerived().TransformType(E->getType());
14066
14067 return SemaRef.BuildAsTypeExpr(SrcExpr.get(), Type, E->getBuiltinLoc(),
14068 E->getRParenLoc());
14069 }
14070
14071 template<typename Derived>
14072 ExprResult
TransformAtomicExpr(AtomicExpr * E)14073 TreeTransform<Derived>::TransformAtomicExpr(AtomicExpr *E) {
14074 bool ArgumentChanged = false;
14075 SmallVector<Expr*, 8> SubExprs;
14076 SubExprs.reserve(E->getNumSubExprs());
14077 if (getDerived().TransformExprs(E->getSubExprs(), E->getNumSubExprs(), false,
14078 SubExprs, &ArgumentChanged))
14079 return ExprError();
14080
14081 if (!getDerived().AlwaysRebuild() &&
14082 !ArgumentChanged)
14083 return E;
14084
14085 return getDerived().RebuildAtomicExpr(E->getBuiltinLoc(), SubExprs,
14086 E->getOp(), E->getRParenLoc());
14087 }
14088
14089 //===----------------------------------------------------------------------===//
14090 // Type reconstruction
14091 //===----------------------------------------------------------------------===//
14092
14093 template<typename Derived>
RebuildPointerType(QualType PointeeType,SourceLocation Star)14094 QualType TreeTransform<Derived>::RebuildPointerType(QualType PointeeType,
14095 SourceLocation Star) {
14096 return SemaRef.BuildPointerType(PointeeType, Star,
14097 getDerived().getBaseEntity());
14098 }
14099
14100 template<typename Derived>
RebuildBlockPointerType(QualType PointeeType,SourceLocation Star)14101 QualType TreeTransform<Derived>::RebuildBlockPointerType(QualType PointeeType,
14102 SourceLocation Star) {
14103 return SemaRef.BuildBlockPointerType(PointeeType, Star,
14104 getDerived().getBaseEntity());
14105 }
14106
14107 template<typename Derived>
14108 QualType
RebuildReferenceType(QualType ReferentType,bool WrittenAsLValue,SourceLocation Sigil)14109 TreeTransform<Derived>::RebuildReferenceType(QualType ReferentType,
14110 bool WrittenAsLValue,
14111 SourceLocation Sigil) {
14112 return SemaRef.BuildReferenceType(ReferentType, WrittenAsLValue,
14113 Sigil, getDerived().getBaseEntity());
14114 }
14115
14116 template<typename Derived>
14117 QualType
RebuildMemberPointerType(QualType PointeeType,QualType ClassType,SourceLocation Sigil)14118 TreeTransform<Derived>::RebuildMemberPointerType(QualType PointeeType,
14119 QualType ClassType,
14120 SourceLocation Sigil) {
14121 return SemaRef.BuildMemberPointerType(PointeeType, ClassType, Sigil,
14122 getDerived().getBaseEntity());
14123 }
14124
14125 template<typename Derived>
RebuildObjCTypeParamType(const ObjCTypeParamDecl * Decl,SourceLocation ProtocolLAngleLoc,ArrayRef<ObjCProtocolDecl * > Protocols,ArrayRef<SourceLocation> ProtocolLocs,SourceLocation ProtocolRAngleLoc)14126 QualType TreeTransform<Derived>::RebuildObjCTypeParamType(
14127 const ObjCTypeParamDecl *Decl,
14128 SourceLocation ProtocolLAngleLoc,
14129 ArrayRef<ObjCProtocolDecl *> Protocols,
14130 ArrayRef<SourceLocation> ProtocolLocs,
14131 SourceLocation ProtocolRAngleLoc) {
14132 return SemaRef.BuildObjCTypeParamType(Decl,
14133 ProtocolLAngleLoc, Protocols,
14134 ProtocolLocs, ProtocolRAngleLoc,
14135 /*FailOnError=*/true);
14136 }
14137
14138 template<typename Derived>
RebuildObjCObjectType(QualType BaseType,SourceLocation Loc,SourceLocation TypeArgsLAngleLoc,ArrayRef<TypeSourceInfo * > TypeArgs,SourceLocation TypeArgsRAngleLoc,SourceLocation ProtocolLAngleLoc,ArrayRef<ObjCProtocolDecl * > Protocols,ArrayRef<SourceLocation> ProtocolLocs,SourceLocation ProtocolRAngleLoc)14139 QualType TreeTransform<Derived>::RebuildObjCObjectType(
14140 QualType BaseType,
14141 SourceLocation Loc,
14142 SourceLocation TypeArgsLAngleLoc,
14143 ArrayRef<TypeSourceInfo *> TypeArgs,
14144 SourceLocation TypeArgsRAngleLoc,
14145 SourceLocation ProtocolLAngleLoc,
14146 ArrayRef<ObjCProtocolDecl *> Protocols,
14147 ArrayRef<SourceLocation> ProtocolLocs,
14148 SourceLocation ProtocolRAngleLoc) {
14149 return SemaRef.BuildObjCObjectType(BaseType, Loc, TypeArgsLAngleLoc,
14150 TypeArgs, TypeArgsRAngleLoc,
14151 ProtocolLAngleLoc, Protocols, ProtocolLocs,
14152 ProtocolRAngleLoc,
14153 /*FailOnError=*/true);
14154 }
14155
14156 template<typename Derived>
RebuildObjCObjectPointerType(QualType PointeeType,SourceLocation Star)14157 QualType TreeTransform<Derived>::RebuildObjCObjectPointerType(
14158 QualType PointeeType,
14159 SourceLocation Star) {
14160 return SemaRef.Context.getObjCObjectPointerType(PointeeType);
14161 }
14162
14163 template<typename Derived>
14164 QualType
RebuildArrayType(QualType ElementType,ArrayType::ArraySizeModifier SizeMod,const llvm::APInt * Size,Expr * SizeExpr,unsigned IndexTypeQuals,SourceRange BracketsRange)14165 TreeTransform<Derived>::RebuildArrayType(QualType ElementType,
14166 ArrayType::ArraySizeModifier SizeMod,
14167 const llvm::APInt *Size,
14168 Expr *SizeExpr,
14169 unsigned IndexTypeQuals,
14170 SourceRange BracketsRange) {
14171 if (SizeExpr || !Size)
14172 return SemaRef.BuildArrayType(ElementType, SizeMod, SizeExpr,
14173 IndexTypeQuals, BracketsRange,
14174 getDerived().getBaseEntity());
14175
14176 QualType Types[] = {
14177 SemaRef.Context.UnsignedCharTy, SemaRef.Context.UnsignedShortTy,
14178 SemaRef.Context.UnsignedIntTy, SemaRef.Context.UnsignedLongTy,
14179 SemaRef.Context.UnsignedLongLongTy, SemaRef.Context.UnsignedInt128Ty
14180 };
14181 const unsigned NumTypes = llvm::array_lengthof(Types);
14182 QualType SizeType;
14183 for (unsigned I = 0; I != NumTypes; ++I)
14184 if (Size->getBitWidth() == SemaRef.Context.getIntWidth(Types[I])) {
14185 SizeType = Types[I];
14186 break;
14187 }
14188
14189 // Note that we can return a VariableArrayType here in the case where
14190 // the element type was a dependent VariableArrayType.
14191 IntegerLiteral *ArraySize
14192 = IntegerLiteral::Create(SemaRef.Context, *Size, SizeType,
14193 /*FIXME*/BracketsRange.getBegin());
14194 return SemaRef.BuildArrayType(ElementType, SizeMod, ArraySize,
14195 IndexTypeQuals, BracketsRange,
14196 getDerived().getBaseEntity());
14197 }
14198
14199 template<typename Derived>
14200 QualType
RebuildConstantArrayType(QualType ElementType,ArrayType::ArraySizeModifier SizeMod,const llvm::APInt & Size,Expr * SizeExpr,unsigned IndexTypeQuals,SourceRange BracketsRange)14201 TreeTransform<Derived>::RebuildConstantArrayType(QualType ElementType,
14202 ArrayType::ArraySizeModifier SizeMod,
14203 const llvm::APInt &Size,
14204 Expr *SizeExpr,
14205 unsigned IndexTypeQuals,
14206 SourceRange BracketsRange) {
14207 return getDerived().RebuildArrayType(ElementType, SizeMod, &Size, SizeExpr,
14208 IndexTypeQuals, BracketsRange);
14209 }
14210
14211 template<typename Derived>
14212 QualType
RebuildIncompleteArrayType(QualType ElementType,ArrayType::ArraySizeModifier SizeMod,unsigned IndexTypeQuals,SourceRange BracketsRange)14213 TreeTransform<Derived>::RebuildIncompleteArrayType(QualType ElementType,
14214 ArrayType::ArraySizeModifier SizeMod,
14215 unsigned IndexTypeQuals,
14216 SourceRange BracketsRange) {
14217 return getDerived().RebuildArrayType(ElementType, SizeMod, nullptr, nullptr,
14218 IndexTypeQuals, BracketsRange);
14219 }
14220
14221 template<typename Derived>
14222 QualType
RebuildVariableArrayType(QualType ElementType,ArrayType::ArraySizeModifier SizeMod,Expr * SizeExpr,unsigned IndexTypeQuals,SourceRange BracketsRange)14223 TreeTransform<Derived>::RebuildVariableArrayType(QualType ElementType,
14224 ArrayType::ArraySizeModifier SizeMod,
14225 Expr *SizeExpr,
14226 unsigned IndexTypeQuals,
14227 SourceRange BracketsRange) {
14228 return getDerived().RebuildArrayType(ElementType, SizeMod, nullptr,
14229 SizeExpr,
14230 IndexTypeQuals, BracketsRange);
14231 }
14232
14233 template<typename Derived>
14234 QualType
RebuildDependentSizedArrayType(QualType ElementType,ArrayType::ArraySizeModifier SizeMod,Expr * SizeExpr,unsigned IndexTypeQuals,SourceRange BracketsRange)14235 TreeTransform<Derived>::RebuildDependentSizedArrayType(QualType ElementType,
14236 ArrayType::ArraySizeModifier SizeMod,
14237 Expr *SizeExpr,
14238 unsigned IndexTypeQuals,
14239 SourceRange BracketsRange) {
14240 return getDerived().RebuildArrayType(ElementType, SizeMod, nullptr,
14241 SizeExpr,
14242 IndexTypeQuals, BracketsRange);
14243 }
14244
14245 template <typename Derived>
RebuildDependentAddressSpaceType(QualType PointeeType,Expr * AddrSpaceExpr,SourceLocation AttributeLoc)14246 QualType TreeTransform<Derived>::RebuildDependentAddressSpaceType(
14247 QualType PointeeType, Expr *AddrSpaceExpr, SourceLocation AttributeLoc) {
14248 return SemaRef.BuildAddressSpaceAttr(PointeeType, AddrSpaceExpr,
14249 AttributeLoc);
14250 }
14251
14252 template <typename Derived>
14253 QualType
RebuildVectorType(QualType ElementType,unsigned NumElements,VectorType::VectorKind VecKind)14254 TreeTransform<Derived>::RebuildVectorType(QualType ElementType,
14255 unsigned NumElements,
14256 VectorType::VectorKind VecKind) {
14257 // FIXME: semantic checking!
14258 return SemaRef.Context.getVectorType(ElementType, NumElements, VecKind);
14259 }
14260
14261 template <typename Derived>
RebuildDependentVectorType(QualType ElementType,Expr * SizeExpr,SourceLocation AttributeLoc,VectorType::VectorKind VecKind)14262 QualType TreeTransform<Derived>::RebuildDependentVectorType(
14263 QualType ElementType, Expr *SizeExpr, SourceLocation AttributeLoc,
14264 VectorType::VectorKind VecKind) {
14265 return SemaRef.BuildVectorType(ElementType, SizeExpr, AttributeLoc);
14266 }
14267
14268 template<typename Derived>
RebuildExtVectorType(QualType ElementType,unsigned NumElements,SourceLocation AttributeLoc)14269 QualType TreeTransform<Derived>::RebuildExtVectorType(QualType ElementType,
14270 unsigned NumElements,
14271 SourceLocation AttributeLoc) {
14272 llvm::APInt numElements(SemaRef.Context.getIntWidth(SemaRef.Context.IntTy),
14273 NumElements, true);
14274 IntegerLiteral *VectorSize
14275 = IntegerLiteral::Create(SemaRef.Context, numElements, SemaRef.Context.IntTy,
14276 AttributeLoc);
14277 return SemaRef.BuildExtVectorType(ElementType, VectorSize, AttributeLoc);
14278 }
14279
14280 template<typename Derived>
14281 QualType
RebuildDependentSizedExtVectorType(QualType ElementType,Expr * SizeExpr,SourceLocation AttributeLoc)14282 TreeTransform<Derived>::RebuildDependentSizedExtVectorType(QualType ElementType,
14283 Expr *SizeExpr,
14284 SourceLocation AttributeLoc) {
14285 return SemaRef.BuildExtVectorType(ElementType, SizeExpr, AttributeLoc);
14286 }
14287
14288 template <typename Derived>
RebuildConstantMatrixType(QualType ElementType,unsigned NumRows,unsigned NumColumns)14289 QualType TreeTransform<Derived>::RebuildConstantMatrixType(
14290 QualType ElementType, unsigned NumRows, unsigned NumColumns) {
14291 return SemaRef.Context.getConstantMatrixType(ElementType, NumRows,
14292 NumColumns);
14293 }
14294
14295 template <typename Derived>
RebuildDependentSizedMatrixType(QualType ElementType,Expr * RowExpr,Expr * ColumnExpr,SourceLocation AttributeLoc)14296 QualType TreeTransform<Derived>::RebuildDependentSizedMatrixType(
14297 QualType ElementType, Expr *RowExpr, Expr *ColumnExpr,
14298 SourceLocation AttributeLoc) {
14299 return SemaRef.BuildMatrixType(ElementType, RowExpr, ColumnExpr,
14300 AttributeLoc);
14301 }
14302
14303 template<typename Derived>
RebuildFunctionProtoType(QualType T,MutableArrayRef<QualType> ParamTypes,const FunctionProtoType::ExtProtoInfo & EPI)14304 QualType TreeTransform<Derived>::RebuildFunctionProtoType(
14305 QualType T,
14306 MutableArrayRef<QualType> ParamTypes,
14307 const FunctionProtoType::ExtProtoInfo &EPI) {
14308 return SemaRef.BuildFunctionType(T, ParamTypes,
14309 getDerived().getBaseLocation(),
14310 getDerived().getBaseEntity(),
14311 EPI);
14312 }
14313
14314 template<typename Derived>
RebuildFunctionNoProtoType(QualType T)14315 QualType TreeTransform<Derived>::RebuildFunctionNoProtoType(QualType T) {
14316 return SemaRef.Context.getFunctionNoProtoType(T);
14317 }
14318
14319 template<typename Derived>
RebuildUnresolvedUsingType(SourceLocation Loc,Decl * D)14320 QualType TreeTransform<Derived>::RebuildUnresolvedUsingType(SourceLocation Loc,
14321 Decl *D) {
14322 assert(D && "no decl found");
14323 if (D->isInvalidDecl()) return QualType();
14324
14325 // FIXME: Doesn't account for ObjCInterfaceDecl!
14326 TypeDecl *Ty;
14327 if (auto *UPD = dyn_cast<UsingPackDecl>(D)) {
14328 // A valid resolved using typename pack expansion decl can have multiple
14329 // UsingDecls, but they must each have exactly one type, and it must be
14330 // the same type in every case. But we must have at least one expansion!
14331 if (UPD->expansions().empty()) {
14332 getSema().Diag(Loc, diag::err_using_pack_expansion_empty)
14333 << UPD->isCXXClassMember() << UPD;
14334 return QualType();
14335 }
14336
14337 // We might still have some unresolved types. Try to pick a resolved type
14338 // if we can. The final instantiation will check that the remaining
14339 // unresolved types instantiate to the type we pick.
14340 QualType FallbackT;
14341 QualType T;
14342 for (auto *E : UPD->expansions()) {
14343 QualType ThisT = RebuildUnresolvedUsingType(Loc, E);
14344 if (ThisT.isNull())
14345 continue;
14346 else if (ThisT->getAs<UnresolvedUsingType>())
14347 FallbackT = ThisT;
14348 else if (T.isNull())
14349 T = ThisT;
14350 else
14351 assert(getSema().Context.hasSameType(ThisT, T) &&
14352 "mismatched resolved types in using pack expansion");
14353 }
14354 return T.isNull() ? FallbackT : T;
14355 } else if (auto *Using = dyn_cast<UsingDecl>(D)) {
14356 assert(Using->hasTypename() &&
14357 "UnresolvedUsingTypenameDecl transformed to non-typename using");
14358
14359 // A valid resolved using typename decl points to exactly one type decl.
14360 assert(++Using->shadow_begin() == Using->shadow_end());
14361 Ty = cast<TypeDecl>((*Using->shadow_begin())->getTargetDecl());
14362 } else {
14363 assert(isa<UnresolvedUsingTypenameDecl>(D) &&
14364 "UnresolvedUsingTypenameDecl transformed to non-using decl");
14365 Ty = cast<UnresolvedUsingTypenameDecl>(D);
14366 }
14367
14368 return SemaRef.Context.getTypeDeclType(Ty);
14369 }
14370
14371 template<typename Derived>
RebuildTypeOfExprType(Expr * E,SourceLocation Loc)14372 QualType TreeTransform<Derived>::RebuildTypeOfExprType(Expr *E,
14373 SourceLocation Loc) {
14374 return SemaRef.BuildTypeofExprType(E, Loc);
14375 }
14376
14377 template<typename Derived>
RebuildTypeOfType(QualType Underlying)14378 QualType TreeTransform<Derived>::RebuildTypeOfType(QualType Underlying) {
14379 return SemaRef.Context.getTypeOfType(Underlying);
14380 }
14381
14382 template<typename Derived>
RebuildDecltypeType(Expr * E,SourceLocation Loc)14383 QualType TreeTransform<Derived>::RebuildDecltypeType(Expr *E,
14384 SourceLocation Loc) {
14385 return SemaRef.BuildDecltypeType(E, Loc);
14386 }
14387
14388 template<typename Derived>
RebuildUnaryTransformType(QualType BaseType,UnaryTransformType::UTTKind UKind,SourceLocation Loc)14389 QualType TreeTransform<Derived>::RebuildUnaryTransformType(QualType BaseType,
14390 UnaryTransformType::UTTKind UKind,
14391 SourceLocation Loc) {
14392 return SemaRef.BuildUnaryTransformType(BaseType, UKind, Loc);
14393 }
14394
14395 template<typename Derived>
RebuildTemplateSpecializationType(TemplateName Template,SourceLocation TemplateNameLoc,TemplateArgumentListInfo & TemplateArgs)14396 QualType TreeTransform<Derived>::RebuildTemplateSpecializationType(
14397 TemplateName Template,
14398 SourceLocation TemplateNameLoc,
14399 TemplateArgumentListInfo &TemplateArgs) {
14400 return SemaRef.CheckTemplateIdType(Template, TemplateNameLoc, TemplateArgs);
14401 }
14402
14403 template<typename Derived>
RebuildAtomicType(QualType ValueType,SourceLocation KWLoc)14404 QualType TreeTransform<Derived>::RebuildAtomicType(QualType ValueType,
14405 SourceLocation KWLoc) {
14406 return SemaRef.BuildAtomicType(ValueType, KWLoc);
14407 }
14408
14409 template<typename Derived>
RebuildPipeType(QualType ValueType,SourceLocation KWLoc,bool isReadPipe)14410 QualType TreeTransform<Derived>::RebuildPipeType(QualType ValueType,
14411 SourceLocation KWLoc,
14412 bool isReadPipe) {
14413 return isReadPipe ? SemaRef.BuildReadPipeType(ValueType, KWLoc)
14414 : SemaRef.BuildWritePipeType(ValueType, KWLoc);
14415 }
14416
14417 template <typename Derived>
RebuildExtIntType(bool IsUnsigned,unsigned NumBits,SourceLocation Loc)14418 QualType TreeTransform<Derived>::RebuildExtIntType(bool IsUnsigned,
14419 unsigned NumBits,
14420 SourceLocation Loc) {
14421 llvm::APInt NumBitsAP(SemaRef.Context.getIntWidth(SemaRef.Context.IntTy),
14422 NumBits, true);
14423 IntegerLiteral *Bits = IntegerLiteral::Create(SemaRef.Context, NumBitsAP,
14424 SemaRef.Context.IntTy, Loc);
14425 return SemaRef.BuildExtIntType(IsUnsigned, Bits, Loc);
14426 }
14427
14428 template <typename Derived>
RebuildDependentExtIntType(bool IsUnsigned,Expr * NumBitsExpr,SourceLocation Loc)14429 QualType TreeTransform<Derived>::RebuildDependentExtIntType(
14430 bool IsUnsigned, Expr *NumBitsExpr, SourceLocation Loc) {
14431 return SemaRef.BuildExtIntType(IsUnsigned, NumBitsExpr, Loc);
14432 }
14433
14434 template<typename Derived>
14435 TemplateName
RebuildTemplateName(CXXScopeSpec & SS,bool TemplateKW,TemplateDecl * Template)14436 TreeTransform<Derived>::RebuildTemplateName(CXXScopeSpec &SS,
14437 bool TemplateKW,
14438 TemplateDecl *Template) {
14439 return SemaRef.Context.getQualifiedTemplateName(SS.getScopeRep(), TemplateKW,
14440 Template);
14441 }
14442
14443 template<typename Derived>
14444 TemplateName
RebuildTemplateName(CXXScopeSpec & SS,SourceLocation TemplateKWLoc,const IdentifierInfo & Name,SourceLocation NameLoc,QualType ObjectType,NamedDecl * FirstQualifierInScope,bool AllowInjectedClassName)14445 TreeTransform<Derived>::RebuildTemplateName(CXXScopeSpec &SS,
14446 SourceLocation TemplateKWLoc,
14447 const IdentifierInfo &Name,
14448 SourceLocation NameLoc,
14449 QualType ObjectType,
14450 NamedDecl *FirstQualifierInScope,
14451 bool AllowInjectedClassName) {
14452 UnqualifiedId TemplateName;
14453 TemplateName.setIdentifier(&Name, NameLoc);
14454 Sema::TemplateTy Template;
14455 getSema().ActOnTemplateName(/*Scope=*/nullptr, SS, TemplateKWLoc,
14456 TemplateName, ParsedType::make(ObjectType),
14457 /*EnteringContext=*/false, Template,
14458 AllowInjectedClassName);
14459 return Template.get();
14460 }
14461
14462 template<typename Derived>
14463 TemplateName
RebuildTemplateName(CXXScopeSpec & SS,SourceLocation TemplateKWLoc,OverloadedOperatorKind Operator,SourceLocation NameLoc,QualType ObjectType,bool AllowInjectedClassName)14464 TreeTransform<Derived>::RebuildTemplateName(CXXScopeSpec &SS,
14465 SourceLocation TemplateKWLoc,
14466 OverloadedOperatorKind Operator,
14467 SourceLocation NameLoc,
14468 QualType ObjectType,
14469 bool AllowInjectedClassName) {
14470 UnqualifiedId Name;
14471 // FIXME: Bogus location information.
14472 SourceLocation SymbolLocations[3] = { NameLoc, NameLoc, NameLoc };
14473 Name.setOperatorFunctionId(NameLoc, Operator, SymbolLocations);
14474 Sema::TemplateTy Template;
14475 getSema().ActOnTemplateName(
14476 /*Scope=*/nullptr, SS, TemplateKWLoc, Name, ParsedType::make(ObjectType),
14477 /*EnteringContext=*/false, Template, AllowInjectedClassName);
14478 return Template.get();
14479 }
14480
14481 template<typename Derived>
14482 ExprResult
RebuildCXXOperatorCallExpr(OverloadedOperatorKind Op,SourceLocation OpLoc,Expr * OrigCallee,Expr * First,Expr * Second)14483 TreeTransform<Derived>::RebuildCXXOperatorCallExpr(OverloadedOperatorKind Op,
14484 SourceLocation OpLoc,
14485 Expr *OrigCallee,
14486 Expr *First,
14487 Expr *Second) {
14488 Expr *Callee = OrigCallee->IgnoreParenCasts();
14489 bool isPostIncDec = Second && (Op == OO_PlusPlus || Op == OO_MinusMinus);
14490
14491 if (First->getObjectKind() == OK_ObjCProperty) {
14492 BinaryOperatorKind Opc = BinaryOperator::getOverloadedOpcode(Op);
14493 if (BinaryOperator::isAssignmentOp(Opc))
14494 return SemaRef.checkPseudoObjectAssignment(/*Scope=*/nullptr, OpLoc, Opc,
14495 First, Second);
14496 ExprResult Result = SemaRef.CheckPlaceholderExpr(First);
14497 if (Result.isInvalid())
14498 return ExprError();
14499 First = Result.get();
14500 }
14501
14502 if (Second && Second->getObjectKind() == OK_ObjCProperty) {
14503 ExprResult Result = SemaRef.CheckPlaceholderExpr(Second);
14504 if (Result.isInvalid())
14505 return ExprError();
14506 Second = Result.get();
14507 }
14508
14509 // Determine whether this should be a builtin operation.
14510 if (Op == OO_Subscript) {
14511 if (!First->getType()->isOverloadableType() &&
14512 !Second->getType()->isOverloadableType())
14513 return getSema().CreateBuiltinArraySubscriptExpr(
14514 First, Callee->getBeginLoc(), Second, OpLoc);
14515 } else if (Op == OO_Arrow) {
14516 // -> is never a builtin operation.
14517 return SemaRef.BuildOverloadedArrowExpr(nullptr, First, OpLoc);
14518 } else if (Second == nullptr || isPostIncDec) {
14519 if (!First->getType()->isOverloadableType() ||
14520 (Op == OO_Amp && getSema().isQualifiedMemberAccess(First))) {
14521 // The argument is not of overloadable type, or this is an expression
14522 // of the form &Class::member, so try to create a built-in unary
14523 // operation.
14524 UnaryOperatorKind Opc
14525 = UnaryOperator::getOverloadedOpcode(Op, isPostIncDec);
14526
14527 return getSema().CreateBuiltinUnaryOp(OpLoc, Opc, First);
14528 }
14529 } else {
14530 if (!First->getType()->isOverloadableType() &&
14531 !Second->getType()->isOverloadableType()) {
14532 // Neither of the arguments is an overloadable type, so try to
14533 // create a built-in binary operation.
14534 BinaryOperatorKind Opc = BinaryOperator::getOverloadedOpcode(Op);
14535 ExprResult Result
14536 = SemaRef.CreateBuiltinBinOp(OpLoc, Opc, First, Second);
14537 if (Result.isInvalid())
14538 return ExprError();
14539
14540 return Result;
14541 }
14542 }
14543
14544 // Compute the transformed set of functions (and function templates) to be
14545 // used during overload resolution.
14546 UnresolvedSet<16> Functions;
14547 bool RequiresADL;
14548
14549 if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(Callee)) {
14550 Functions.append(ULE->decls_begin(), ULE->decls_end());
14551 // If the overload could not be resolved in the template definition
14552 // (because we had a dependent argument), ADL is performed as part of
14553 // template instantiation.
14554 RequiresADL = ULE->requiresADL();
14555 } else {
14556 // If we've resolved this to a particular non-member function, just call
14557 // that function. If we resolved it to a member function,
14558 // CreateOverloaded* will find that function for us.
14559 NamedDecl *ND = cast<DeclRefExpr>(Callee)->getDecl();
14560 if (!isa<CXXMethodDecl>(ND))
14561 Functions.addDecl(ND);
14562 RequiresADL = false;
14563 }
14564
14565 // Add any functions found via argument-dependent lookup.
14566 Expr *Args[2] = { First, Second };
14567 unsigned NumArgs = 1 + (Second != nullptr);
14568
14569 // Create the overloaded operator invocation for unary operators.
14570 if (NumArgs == 1 || isPostIncDec) {
14571 UnaryOperatorKind Opc
14572 = UnaryOperator::getOverloadedOpcode(Op, isPostIncDec);
14573 return SemaRef.CreateOverloadedUnaryOp(OpLoc, Opc, Functions, First,
14574 RequiresADL);
14575 }
14576
14577 if (Op == OO_Subscript) {
14578 SourceLocation LBrace;
14579 SourceLocation RBrace;
14580
14581 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Callee)) {
14582 DeclarationNameLoc NameLoc = DRE->getNameInfo().getInfo();
14583 LBrace = NameLoc.getCXXOperatorNameBeginLoc();
14584 RBrace = NameLoc.getCXXOperatorNameEndLoc();
14585 } else {
14586 LBrace = Callee->getBeginLoc();
14587 RBrace = OpLoc;
14588 }
14589
14590 return SemaRef.CreateOverloadedArraySubscriptExpr(LBrace, RBrace,
14591 First, Second);
14592 }
14593
14594 // Create the overloaded operator invocation for binary operators.
14595 BinaryOperatorKind Opc = BinaryOperator::getOverloadedOpcode(Op);
14596 ExprResult Result = SemaRef.CreateOverloadedBinOp(
14597 OpLoc, Opc, Functions, Args[0], Args[1], RequiresADL);
14598 if (Result.isInvalid())
14599 return ExprError();
14600
14601 return Result;
14602 }
14603
14604 template<typename Derived>
14605 ExprResult
RebuildCXXPseudoDestructorExpr(Expr * Base,SourceLocation OperatorLoc,bool isArrow,CXXScopeSpec & SS,TypeSourceInfo * ScopeType,SourceLocation CCLoc,SourceLocation TildeLoc,PseudoDestructorTypeStorage Destroyed)14606 TreeTransform<Derived>::RebuildCXXPseudoDestructorExpr(Expr *Base,
14607 SourceLocation OperatorLoc,
14608 bool isArrow,
14609 CXXScopeSpec &SS,
14610 TypeSourceInfo *ScopeType,
14611 SourceLocation CCLoc,
14612 SourceLocation TildeLoc,
14613 PseudoDestructorTypeStorage Destroyed) {
14614 QualType BaseType = Base->getType();
14615 if (Base->isTypeDependent() || Destroyed.getIdentifier() ||
14616 (!isArrow && !BaseType->getAs<RecordType>()) ||
14617 (isArrow && BaseType->getAs<PointerType>() &&
14618 !BaseType->castAs<PointerType>()->getPointeeType()
14619 ->template getAs<RecordType>())){
14620 // This pseudo-destructor expression is still a pseudo-destructor.
14621 return SemaRef.BuildPseudoDestructorExpr(
14622 Base, OperatorLoc, isArrow ? tok::arrow : tok::period, SS, ScopeType,
14623 CCLoc, TildeLoc, Destroyed);
14624 }
14625
14626 TypeSourceInfo *DestroyedType = Destroyed.getTypeSourceInfo();
14627 DeclarationName Name(SemaRef.Context.DeclarationNames.getCXXDestructorName(
14628 SemaRef.Context.getCanonicalType(DestroyedType->getType())));
14629 DeclarationNameInfo NameInfo(Name, Destroyed.getLocation());
14630 NameInfo.setNamedTypeInfo(DestroyedType);
14631
14632 // The scope type is now known to be a valid nested name specifier
14633 // component. Tack it on to the end of the nested name specifier.
14634 if (ScopeType) {
14635 if (!ScopeType->getType()->getAs<TagType>()) {
14636 getSema().Diag(ScopeType->getTypeLoc().getBeginLoc(),
14637 diag::err_expected_class_or_namespace)
14638 << ScopeType->getType() << getSema().getLangOpts().CPlusPlus;
14639 return ExprError();
14640 }
14641 SS.Extend(SemaRef.Context, SourceLocation(), ScopeType->getTypeLoc(),
14642 CCLoc);
14643 }
14644
14645 SourceLocation TemplateKWLoc; // FIXME: retrieve it from caller.
14646 return getSema().BuildMemberReferenceExpr(Base, BaseType,
14647 OperatorLoc, isArrow,
14648 SS, TemplateKWLoc,
14649 /*FIXME: FirstQualifier*/ nullptr,
14650 NameInfo,
14651 /*TemplateArgs*/ nullptr,
14652 /*S*/nullptr);
14653 }
14654
14655 template<typename Derived>
14656 StmtResult
TransformCapturedStmt(CapturedStmt * S)14657 TreeTransform<Derived>::TransformCapturedStmt(CapturedStmt *S) {
14658 SourceLocation Loc = S->getBeginLoc();
14659 CapturedDecl *CD = S->getCapturedDecl();
14660 unsigned NumParams = CD->getNumParams();
14661 unsigned ContextParamPos = CD->getContextParamPosition();
14662 SmallVector<Sema::CapturedParamNameType, 4> Params;
14663 for (unsigned I = 0; I < NumParams; ++I) {
14664 if (I != ContextParamPos) {
14665 Params.push_back(
14666 std::make_pair(
14667 CD->getParam(I)->getName(),
14668 getDerived().TransformType(CD->getParam(I)->getType())));
14669 } else {
14670 Params.push_back(std::make_pair(StringRef(), QualType()));
14671 }
14672 }
14673 getSema().ActOnCapturedRegionStart(Loc, /*CurScope*/nullptr,
14674 S->getCapturedRegionKind(), Params);
14675 StmtResult Body;
14676 {
14677 Sema::CompoundScopeRAII CompoundScope(getSema());
14678 Body = getDerived().TransformStmt(S->getCapturedStmt());
14679 }
14680
14681 if (Body.isInvalid()) {
14682 getSema().ActOnCapturedRegionError();
14683 return StmtError();
14684 }
14685
14686 return getSema().ActOnCapturedRegionEnd(Body.get());
14687 }
14688
14689 } // end namespace clang
14690
14691 #endif // LLVM_CLANG_LIB_SEMA_TREETRANSFORM_H
14692