xref: /netbsd-src/external/apache2/llvm/dist/llvm/lib/Transforms/IPO/ThinLTOBitcodeWriter.cpp (revision 82d56013d7b633d116a93943de88e08335357a7c)
1 //===- ThinLTOBitcodeWriter.cpp - Bitcode writing pass for ThinLTO --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h"
10 #include "llvm/Analysis/BasicAliasAnalysis.h"
11 #include "llvm/Analysis/ModuleSummaryAnalysis.h"
12 #include "llvm/Analysis/ProfileSummaryInfo.h"
13 #include "llvm/Analysis/TypeMetadataUtils.h"
14 #include "llvm/Bitcode/BitcodeWriter.h"
15 #include "llvm/IR/Constants.h"
16 #include "llvm/IR/DebugInfo.h"
17 #include "llvm/IR/Instructions.h"
18 #include "llvm/IR/Intrinsics.h"
19 #include "llvm/IR/Module.h"
20 #include "llvm/IR/PassManager.h"
21 #include "llvm/InitializePasses.h"
22 #include "llvm/Object/ModuleSymbolTable.h"
23 #include "llvm/Pass.h"
24 #include "llvm/Support/ScopedPrinter.h"
25 #include "llvm/Support/raw_ostream.h"
26 #include "llvm/Transforms/IPO.h"
27 #include "llvm/Transforms/IPO/FunctionAttrs.h"
28 #include "llvm/Transforms/IPO/FunctionImport.h"
29 #include "llvm/Transforms/IPO/LowerTypeTests.h"
30 #include "llvm/Transforms/Utils/Cloning.h"
31 #include "llvm/Transforms/Utils/ModuleUtils.h"
32 using namespace llvm;
33 
34 namespace {
35 
36 // Promote each local-linkage entity defined by ExportM and used by ImportM by
37 // changing visibility and appending the given ModuleId.
promoteInternals(Module & ExportM,Module & ImportM,StringRef ModuleId,SetVector<GlobalValue * > & PromoteExtra)38 void promoteInternals(Module &ExportM, Module &ImportM, StringRef ModuleId,
39                       SetVector<GlobalValue *> &PromoteExtra) {
40   DenseMap<const Comdat *, Comdat *> RenamedComdats;
41   for (auto &ExportGV : ExportM.global_values()) {
42     if (!ExportGV.hasLocalLinkage())
43       continue;
44 
45     auto Name = ExportGV.getName();
46     GlobalValue *ImportGV = nullptr;
47     if (!PromoteExtra.count(&ExportGV)) {
48       ImportGV = ImportM.getNamedValue(Name);
49       if (!ImportGV)
50         continue;
51       ImportGV->removeDeadConstantUsers();
52       if (ImportGV->use_empty()) {
53         ImportGV->eraseFromParent();
54         continue;
55       }
56     }
57 
58     std::string NewName = (Name + ModuleId).str();
59 
60     if (const auto *C = ExportGV.getComdat())
61       if (C->getName() == Name)
62         RenamedComdats.try_emplace(C, ExportM.getOrInsertComdat(NewName));
63 
64     ExportGV.setName(NewName);
65     ExportGV.setLinkage(GlobalValue::ExternalLinkage);
66     ExportGV.setVisibility(GlobalValue::HiddenVisibility);
67 
68     if (ImportGV) {
69       ImportGV->setName(NewName);
70       ImportGV->setVisibility(GlobalValue::HiddenVisibility);
71     }
72   }
73 
74   if (!RenamedComdats.empty())
75     for (auto &GO : ExportM.global_objects())
76       if (auto *C = GO.getComdat()) {
77         auto Replacement = RenamedComdats.find(C);
78         if (Replacement != RenamedComdats.end())
79           GO.setComdat(Replacement->second);
80       }
81 }
82 
83 // Promote all internal (i.e. distinct) type ids used by the module by replacing
84 // them with external type ids formed using the module id.
85 //
86 // Note that this needs to be done before we clone the module because each clone
87 // will receive its own set of distinct metadata nodes.
promoteTypeIds(Module & M,StringRef ModuleId)88 void promoteTypeIds(Module &M, StringRef ModuleId) {
89   DenseMap<Metadata *, Metadata *> LocalToGlobal;
90   auto ExternalizeTypeId = [&](CallInst *CI, unsigned ArgNo) {
91     Metadata *MD =
92         cast<MetadataAsValue>(CI->getArgOperand(ArgNo))->getMetadata();
93 
94     if (isa<MDNode>(MD) && cast<MDNode>(MD)->isDistinct()) {
95       Metadata *&GlobalMD = LocalToGlobal[MD];
96       if (!GlobalMD) {
97         std::string NewName = (Twine(LocalToGlobal.size()) + ModuleId).str();
98         GlobalMD = MDString::get(M.getContext(), NewName);
99       }
100 
101       CI->setArgOperand(ArgNo,
102                         MetadataAsValue::get(M.getContext(), GlobalMD));
103     }
104   };
105 
106   if (Function *TypeTestFunc =
107           M.getFunction(Intrinsic::getName(Intrinsic::type_test))) {
108     for (const Use &U : TypeTestFunc->uses()) {
109       auto CI = cast<CallInst>(U.getUser());
110       ExternalizeTypeId(CI, 1);
111     }
112   }
113 
114   if (Function *TypeCheckedLoadFunc =
115           M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load))) {
116     for (const Use &U : TypeCheckedLoadFunc->uses()) {
117       auto CI = cast<CallInst>(U.getUser());
118       ExternalizeTypeId(CI, 2);
119     }
120   }
121 
122   for (GlobalObject &GO : M.global_objects()) {
123     SmallVector<MDNode *, 1> MDs;
124     GO.getMetadata(LLVMContext::MD_type, MDs);
125 
126     GO.eraseMetadata(LLVMContext::MD_type);
127     for (auto MD : MDs) {
128       auto I = LocalToGlobal.find(MD->getOperand(1));
129       if (I == LocalToGlobal.end()) {
130         GO.addMetadata(LLVMContext::MD_type, *MD);
131         continue;
132       }
133       GO.addMetadata(
134           LLVMContext::MD_type,
135           *MDNode::get(M.getContext(), {MD->getOperand(0), I->second}));
136     }
137   }
138 }
139 
140 // Drop unused globals, and drop type information from function declarations.
141 // FIXME: If we made functions typeless then there would be no need to do this.
simplifyExternals(Module & M)142 void simplifyExternals(Module &M) {
143   FunctionType *EmptyFT =
144       FunctionType::get(Type::getVoidTy(M.getContext()), false);
145 
146   for (auto I = M.begin(), E = M.end(); I != E;) {
147     Function &F = *I++;
148     if (F.isDeclaration() && F.use_empty()) {
149       F.eraseFromParent();
150       continue;
151     }
152 
153     if (!F.isDeclaration() || F.getFunctionType() == EmptyFT ||
154         // Changing the type of an intrinsic may invalidate the IR.
155         F.getName().startswith("llvm."))
156       continue;
157 
158     Function *NewF =
159         Function::Create(EmptyFT, GlobalValue::ExternalLinkage,
160                          F.getAddressSpace(), "", &M);
161     NewF->copyAttributesFrom(&F);
162     // Only copy function attribtues.
163     NewF->setAttributes(
164         AttributeList::get(M.getContext(), AttributeList::FunctionIndex,
165                            F.getAttributes().getFnAttributes()));
166     NewF->takeName(&F);
167     F.replaceAllUsesWith(ConstantExpr::getBitCast(NewF, F.getType()));
168     F.eraseFromParent();
169   }
170 
171   for (auto I = M.global_begin(), E = M.global_end(); I != E;) {
172     GlobalVariable &GV = *I++;
173     if (GV.isDeclaration() && GV.use_empty()) {
174       GV.eraseFromParent();
175       continue;
176     }
177   }
178 }
179 
180 static void
filterModule(Module * M,function_ref<bool (const GlobalValue *)> ShouldKeepDefinition)181 filterModule(Module *M,
182              function_ref<bool(const GlobalValue *)> ShouldKeepDefinition) {
183   std::vector<GlobalValue *> V;
184   for (GlobalValue &GV : M->global_values())
185     if (!ShouldKeepDefinition(&GV))
186       V.push_back(&GV);
187 
188   for (GlobalValue *GV : V)
189     if (!convertToDeclaration(*GV))
190       GV->eraseFromParent();
191 }
192 
forEachVirtualFunction(Constant * C,function_ref<void (Function *)> Fn)193 void forEachVirtualFunction(Constant *C, function_ref<void(Function *)> Fn) {
194   if (auto *F = dyn_cast<Function>(C))
195     return Fn(F);
196   if (isa<GlobalValue>(C))
197     return;
198   for (Value *Op : C->operands())
199     forEachVirtualFunction(cast<Constant>(Op), Fn);
200 }
201 
202 // Clone any @llvm[.compiler].used over to the new module and append
203 // values whose defs were cloned into that module.
cloneUsedGlobalVariables(const Module & SrcM,Module & DestM,bool CompilerUsed)204 static void cloneUsedGlobalVariables(const Module &SrcM, Module &DestM,
205                                      bool CompilerUsed) {
206   SmallVector<GlobalValue *, 4> Used, NewUsed;
207   // First collect those in the llvm[.compiler].used set.
208   collectUsedGlobalVariables(SrcM, Used, CompilerUsed);
209   // Next build a set of the equivalent values defined in DestM.
210   for (auto *V : Used) {
211     auto *GV = DestM.getNamedValue(V->getName());
212     if (GV && !GV->isDeclaration())
213       NewUsed.push_back(GV);
214   }
215   // Finally, add them to a llvm[.compiler].used variable in DestM.
216   if (CompilerUsed)
217     appendToCompilerUsed(DestM, NewUsed);
218   else
219     appendToUsed(DestM, NewUsed);
220 }
221 
222 // If it's possible to split M into regular and thin LTO parts, do so and write
223 // a multi-module bitcode file with the two parts to OS. Otherwise, write only a
224 // regular LTO bitcode file to OS.
splitAndWriteThinLTOBitcode(raw_ostream & OS,raw_ostream * ThinLinkOS,function_ref<AAResults & (Function &)> AARGetter,Module & M)225 void splitAndWriteThinLTOBitcode(
226     raw_ostream &OS, raw_ostream *ThinLinkOS,
227     function_ref<AAResults &(Function &)> AARGetter, Module &M) {
228   std::string ModuleId = getUniqueModuleId(&M);
229   if (ModuleId.empty()) {
230     // We couldn't generate a module ID for this module, write it out as a
231     // regular LTO module with an index for summary-based dead stripping.
232     ProfileSummaryInfo PSI(M);
233     M.addModuleFlag(Module::Error, "ThinLTO", uint32_t(0));
234     ModuleSummaryIndex Index = buildModuleSummaryIndex(M, nullptr, &PSI);
235     WriteBitcodeToFile(M, OS, /*ShouldPreserveUseListOrder=*/false, &Index);
236 
237     if (ThinLinkOS)
238       // We don't have a ThinLTO part, but still write the module to the
239       // ThinLinkOS if requested so that the expected output file is produced.
240       WriteBitcodeToFile(M, *ThinLinkOS, /*ShouldPreserveUseListOrder=*/false,
241                          &Index);
242 
243     return;
244   }
245 
246   promoteTypeIds(M, ModuleId);
247 
248   // Returns whether a global or its associated global has attached type
249   // metadata. The former may participate in CFI or whole-program
250   // devirtualization, so they need to appear in the merged module instead of
251   // the thin LTO module. Similarly, globals that are associated with globals
252   // with type metadata need to appear in the merged module because they will
253   // reference the global's section directly.
254   auto HasTypeMetadata = [](const GlobalObject *GO) {
255     if (MDNode *MD = GO->getMetadata(LLVMContext::MD_associated))
256       if (auto *AssocVM = dyn_cast_or_null<ValueAsMetadata>(MD->getOperand(0)))
257         if (auto *AssocGO = dyn_cast<GlobalObject>(AssocVM->getValue()))
258           if (AssocGO->hasMetadata(LLVMContext::MD_type))
259             return true;
260     return GO->hasMetadata(LLVMContext::MD_type);
261   };
262 
263   // Collect the set of virtual functions that are eligible for virtual constant
264   // propagation. Each eligible function must not access memory, must return
265   // an integer of width <=64 bits, must take at least one argument, must not
266   // use its first argument (assumed to be "this") and all arguments other than
267   // the first one must be of <=64 bit integer type.
268   //
269   // Note that we test whether this copy of the function is readnone, rather
270   // than testing function attributes, which must hold for any copy of the
271   // function, even a less optimized version substituted at link time. This is
272   // sound because the virtual constant propagation optimizations effectively
273   // inline all implementations of the virtual function into each call site,
274   // rather than using function attributes to perform local optimization.
275   DenseSet<const Function *> EligibleVirtualFns;
276   // If any member of a comdat lives in MergedM, put all members of that
277   // comdat in MergedM to keep the comdat together.
278   DenseSet<const Comdat *> MergedMComdats;
279   for (GlobalVariable &GV : M.globals())
280     if (HasTypeMetadata(&GV)) {
281       if (const auto *C = GV.getComdat())
282         MergedMComdats.insert(C);
283       forEachVirtualFunction(GV.getInitializer(), [&](Function *F) {
284         auto *RT = dyn_cast<IntegerType>(F->getReturnType());
285         if (!RT || RT->getBitWidth() > 64 || F->arg_empty() ||
286             !F->arg_begin()->use_empty())
287           return;
288         for (auto &Arg : drop_begin(F->args())) {
289           auto *ArgT = dyn_cast<IntegerType>(Arg.getType());
290           if (!ArgT || ArgT->getBitWidth() > 64)
291             return;
292         }
293         if (!F->isDeclaration() &&
294             computeFunctionBodyMemoryAccess(*F, AARGetter(*F)) == MAK_ReadNone)
295           EligibleVirtualFns.insert(F);
296       });
297     }
298 
299   ValueToValueMapTy VMap;
300   std::unique_ptr<Module> MergedM(
301       CloneModule(M, VMap, [&](const GlobalValue *GV) -> bool {
302         if (const auto *C = GV->getComdat())
303           if (MergedMComdats.count(C))
304             return true;
305         if (auto *F = dyn_cast<Function>(GV))
306           return EligibleVirtualFns.count(F);
307         if (auto *GVar = dyn_cast_or_null<GlobalVariable>(GV->getBaseObject()))
308           return HasTypeMetadata(GVar);
309         return false;
310       }));
311   StripDebugInfo(*MergedM);
312   MergedM->setModuleInlineAsm("");
313 
314   // Clone any llvm.*used globals to ensure the included values are
315   // not deleted.
316   cloneUsedGlobalVariables(M, *MergedM, /*CompilerUsed*/ false);
317   cloneUsedGlobalVariables(M, *MergedM, /*CompilerUsed*/ true);
318 
319   for (Function &F : *MergedM)
320     if (!F.isDeclaration()) {
321       // Reset the linkage of all functions eligible for virtual constant
322       // propagation. The canonical definitions live in the thin LTO module so
323       // that they can be imported.
324       F.setLinkage(GlobalValue::AvailableExternallyLinkage);
325       F.setComdat(nullptr);
326     }
327 
328   SetVector<GlobalValue *> CfiFunctions;
329   for (auto &F : M)
330     if ((!F.hasLocalLinkage() || F.hasAddressTaken()) && HasTypeMetadata(&F))
331       CfiFunctions.insert(&F);
332 
333   // Remove all globals with type metadata, globals with comdats that live in
334   // MergedM, and aliases pointing to such globals from the thin LTO module.
335   filterModule(&M, [&](const GlobalValue *GV) {
336     if (auto *GVar = dyn_cast_or_null<GlobalVariable>(GV->getBaseObject()))
337       if (HasTypeMetadata(GVar))
338         return false;
339     if (const auto *C = GV->getComdat())
340       if (MergedMComdats.count(C))
341         return false;
342     return true;
343   });
344 
345   promoteInternals(*MergedM, M, ModuleId, CfiFunctions);
346   promoteInternals(M, *MergedM, ModuleId, CfiFunctions);
347 
348   auto &Ctx = MergedM->getContext();
349   SmallVector<MDNode *, 8> CfiFunctionMDs;
350   for (auto V : CfiFunctions) {
351     Function &F = *cast<Function>(V);
352     SmallVector<MDNode *, 2> Types;
353     F.getMetadata(LLVMContext::MD_type, Types);
354 
355     SmallVector<Metadata *, 4> Elts;
356     Elts.push_back(MDString::get(Ctx, F.getName()));
357     CfiFunctionLinkage Linkage;
358     if (lowertypetests::isJumpTableCanonical(&F))
359       Linkage = CFL_Definition;
360     else if (F.hasExternalWeakLinkage())
361       Linkage = CFL_WeakDeclaration;
362     else
363       Linkage = CFL_Declaration;
364     Elts.push_back(ConstantAsMetadata::get(
365         llvm::ConstantInt::get(Type::getInt8Ty(Ctx), Linkage)));
366     append_range(Elts, Types);
367     CfiFunctionMDs.push_back(MDTuple::get(Ctx, Elts));
368   }
369 
370   if(!CfiFunctionMDs.empty()) {
371     NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("cfi.functions");
372     for (auto MD : CfiFunctionMDs)
373       NMD->addOperand(MD);
374   }
375 
376   SmallVector<MDNode *, 8> FunctionAliases;
377   for (auto &A : M.aliases()) {
378     if (!isa<Function>(A.getAliasee()))
379       continue;
380 
381     auto *F = cast<Function>(A.getAliasee());
382 
383     Metadata *Elts[] = {
384         MDString::get(Ctx, A.getName()),
385         MDString::get(Ctx, F->getName()),
386         ConstantAsMetadata::get(
387             ConstantInt::get(Type::getInt8Ty(Ctx), A.getVisibility())),
388         ConstantAsMetadata::get(
389             ConstantInt::get(Type::getInt8Ty(Ctx), A.isWeakForLinker())),
390     };
391 
392     FunctionAliases.push_back(MDTuple::get(Ctx, Elts));
393   }
394 
395   if (!FunctionAliases.empty()) {
396     NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("aliases");
397     for (auto MD : FunctionAliases)
398       NMD->addOperand(MD);
399   }
400 
401   SmallVector<MDNode *, 8> Symvers;
402   ModuleSymbolTable::CollectAsmSymvers(M, [&](StringRef Name, StringRef Alias) {
403     Function *F = M.getFunction(Name);
404     if (!F || F->use_empty())
405       return;
406 
407     Symvers.push_back(MDTuple::get(
408         Ctx, {MDString::get(Ctx, Name), MDString::get(Ctx, Alias)}));
409   });
410 
411   if (!Symvers.empty()) {
412     NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("symvers");
413     for (auto MD : Symvers)
414       NMD->addOperand(MD);
415   }
416 
417   simplifyExternals(*MergedM);
418 
419   // FIXME: Try to re-use BSI and PFI from the original module here.
420   ProfileSummaryInfo PSI(M);
421   ModuleSummaryIndex Index = buildModuleSummaryIndex(M, nullptr, &PSI);
422 
423   // Mark the merged module as requiring full LTO. We still want an index for
424   // it though, so that it can participate in summary-based dead stripping.
425   MergedM->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0));
426   ModuleSummaryIndex MergedMIndex =
427       buildModuleSummaryIndex(*MergedM, nullptr, &PSI);
428 
429   SmallVector<char, 0> Buffer;
430 
431   BitcodeWriter W(Buffer);
432   // Save the module hash produced for the full bitcode, which will
433   // be used in the backends, and use that in the minimized bitcode
434   // produced for the full link.
435   ModuleHash ModHash = {{0}};
436   W.writeModule(M, /*ShouldPreserveUseListOrder=*/false, &Index,
437                 /*GenerateHash=*/true, &ModHash);
438   W.writeModule(*MergedM, /*ShouldPreserveUseListOrder=*/false, &MergedMIndex);
439   W.writeSymtab();
440   W.writeStrtab();
441   OS << Buffer;
442 
443   // If a minimized bitcode module was requested for the thin link, only
444   // the information that is needed by thin link will be written in the
445   // given OS (the merged module will be written as usual).
446   if (ThinLinkOS) {
447     Buffer.clear();
448     BitcodeWriter W2(Buffer);
449     StripDebugInfo(M);
450     W2.writeThinLinkBitcode(M, Index, ModHash);
451     W2.writeModule(*MergedM, /*ShouldPreserveUseListOrder=*/false,
452                    &MergedMIndex);
453     W2.writeSymtab();
454     W2.writeStrtab();
455     *ThinLinkOS << Buffer;
456   }
457 }
458 
459 // Check if the LTO Unit splitting has been enabled.
enableSplitLTOUnit(Module & M)460 bool enableSplitLTOUnit(Module &M) {
461   bool EnableSplitLTOUnit = false;
462   if (auto *MD = mdconst::extract_or_null<ConstantInt>(
463           M.getModuleFlag("EnableSplitLTOUnit")))
464     EnableSplitLTOUnit = MD->getZExtValue();
465   return EnableSplitLTOUnit;
466 }
467 
468 // Returns whether this module needs to be split because it uses type metadata.
hasTypeMetadata(Module & M)469 bool hasTypeMetadata(Module &M) {
470   for (auto &GO : M.global_objects()) {
471     if (GO.hasMetadata(LLVMContext::MD_type))
472       return true;
473   }
474   return false;
475 }
476 
writeThinLTOBitcode(raw_ostream & OS,raw_ostream * ThinLinkOS,function_ref<AAResults & (Function &)> AARGetter,Module & M,const ModuleSummaryIndex * Index)477 void writeThinLTOBitcode(raw_ostream &OS, raw_ostream *ThinLinkOS,
478                          function_ref<AAResults &(Function &)> AARGetter,
479                          Module &M, const ModuleSummaryIndex *Index) {
480   std::unique_ptr<ModuleSummaryIndex> NewIndex = nullptr;
481   // See if this module has any type metadata. If so, we try to split it
482   // or at least promote type ids to enable WPD.
483   if (hasTypeMetadata(M)) {
484     if (enableSplitLTOUnit(M))
485       return splitAndWriteThinLTOBitcode(OS, ThinLinkOS, AARGetter, M);
486     // Promote type ids as needed for index-based WPD.
487     std::string ModuleId = getUniqueModuleId(&M);
488     if (!ModuleId.empty()) {
489       promoteTypeIds(M, ModuleId);
490       // Need to rebuild the index so that it contains type metadata
491       // for the newly promoted type ids.
492       // FIXME: Probably should not bother building the index at all
493       // in the caller of writeThinLTOBitcode (which does so via the
494       // ModuleSummaryIndexAnalysis pass), since we have to rebuild it
495       // anyway whenever there is type metadata (here or in
496       // splitAndWriteThinLTOBitcode). Just always build it once via the
497       // buildModuleSummaryIndex when Module(s) are ready.
498       ProfileSummaryInfo PSI(M);
499       NewIndex = std::make_unique<ModuleSummaryIndex>(
500           buildModuleSummaryIndex(M, nullptr, &PSI));
501       Index = NewIndex.get();
502     }
503   }
504 
505   // Write it out as an unsplit ThinLTO module.
506 
507   // Save the module hash produced for the full bitcode, which will
508   // be used in the backends, and use that in the minimized bitcode
509   // produced for the full link.
510   ModuleHash ModHash = {{0}};
511   WriteBitcodeToFile(M, OS, /*ShouldPreserveUseListOrder=*/false, Index,
512                      /*GenerateHash=*/true, &ModHash);
513   // If a minimized bitcode module was requested for the thin link, only
514   // the information that is needed by thin link will be written in the
515   // given OS.
516   if (ThinLinkOS && Index)
517     WriteThinLinkBitcodeToFile(M, *ThinLinkOS, *Index, ModHash);
518 }
519 
520 class WriteThinLTOBitcode : public ModulePass {
521   raw_ostream &OS; // raw_ostream to print on
522   // The output stream on which to emit a minimized module for use
523   // just in the thin link, if requested.
524   raw_ostream *ThinLinkOS;
525 
526 public:
527   static char ID; // Pass identification, replacement for typeid
WriteThinLTOBitcode()528   WriteThinLTOBitcode() : ModulePass(ID), OS(dbgs()), ThinLinkOS(nullptr) {
529     initializeWriteThinLTOBitcodePass(*PassRegistry::getPassRegistry());
530   }
531 
WriteThinLTOBitcode(raw_ostream & o,raw_ostream * ThinLinkOS)532   explicit WriteThinLTOBitcode(raw_ostream &o, raw_ostream *ThinLinkOS)
533       : ModulePass(ID), OS(o), ThinLinkOS(ThinLinkOS) {
534     initializeWriteThinLTOBitcodePass(*PassRegistry::getPassRegistry());
535   }
536 
getPassName() const537   StringRef getPassName() const override { return "ThinLTO Bitcode Writer"; }
538 
runOnModule(Module & M)539   bool runOnModule(Module &M) override {
540     const ModuleSummaryIndex *Index =
541         &(getAnalysis<ModuleSummaryIndexWrapperPass>().getIndex());
542     writeThinLTOBitcode(OS, ThinLinkOS, LegacyAARGetter(*this), M, Index);
543     return true;
544   }
getAnalysisUsage(AnalysisUsage & AU) const545   void getAnalysisUsage(AnalysisUsage &AU) const override {
546     AU.setPreservesAll();
547     AU.addRequired<AssumptionCacheTracker>();
548     AU.addRequired<ModuleSummaryIndexWrapperPass>();
549     AU.addRequired<TargetLibraryInfoWrapperPass>();
550   }
551 };
552 } // anonymous namespace
553 
554 char WriteThinLTOBitcode::ID = 0;
555 INITIALIZE_PASS_BEGIN(WriteThinLTOBitcode, "write-thinlto-bitcode",
556                       "Write ThinLTO Bitcode", false, true)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)557 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
558 INITIALIZE_PASS_DEPENDENCY(ModuleSummaryIndexWrapperPass)
559 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
560 INITIALIZE_PASS_END(WriteThinLTOBitcode, "write-thinlto-bitcode",
561                     "Write ThinLTO Bitcode", false, true)
562 
563 ModulePass *llvm::createWriteThinLTOBitcodePass(raw_ostream &Str,
564                                                 raw_ostream *ThinLinkOS) {
565   return new WriteThinLTOBitcode(Str, ThinLinkOS);
566 }
567 
568 PreservedAnalyses
run(Module & M,ModuleAnalysisManager & AM)569 llvm::ThinLTOBitcodeWriterPass::run(Module &M, ModuleAnalysisManager &AM) {
570   FunctionAnalysisManager &FAM =
571       AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
572   writeThinLTOBitcode(OS, ThinLinkOS,
573                       [&FAM](Function &F) -> AAResults & {
574                         return FAM.getResult<AAManager>(F);
575                       },
576                       M, &AM.getResult<ModuleSummaryIndexAnalysis>(M));
577   return PreservedAnalyses::all();
578 }
579