1 //===- llvm/ADT/SmallVector.h - 'Normally small' vectors --------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file defines the SmallVector class. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #ifndef LLVM_ADT_SMALLVECTOR_H 15 #define LLVM_ADT_SMALLVECTOR_H 16 17 #include "llvm/Support/Compiler.h" 18 #include "llvm/Support/type_traits.h" 19 #include <algorithm> 20 #include <cassert> 21 #include <cstddef> 22 #include <cstdint> 23 #include <cstdlib> 24 #include <cstring> 25 #include <functional> 26 #include <initializer_list> 27 #include <iterator> 28 #include <limits> 29 #include <memory> 30 #include <new> 31 #include <type_traits> 32 #include <utility> 33 34 namespace llvm { 35 36 template <typename T> class ArrayRef; 37 38 template <typename IteratorT> class iterator_range; 39 40 template <class Iterator> 41 using EnableIfConvertibleToInputIterator = std::enable_if_t<std::is_convertible< 42 typename std::iterator_traits<Iterator>::iterator_category, 43 std::input_iterator_tag>::value>; 44 45 /// This is all the stuff common to all SmallVectors. 46 /// 47 /// The template parameter specifies the type which should be used to hold the 48 /// Size and Capacity of the SmallVector, so it can be adjusted. 49 /// Using 32 bit size is desirable to shrink the size of the SmallVector. 50 /// Using 64 bit size is desirable for cases like SmallVector<char>, where a 51 /// 32 bit size would limit the vector to ~4GB. SmallVectors are used for 52 /// buffering bitcode output - which can exceed 4GB. 53 template <class Size_T> class SmallVectorBase { 54 protected: 55 void *BeginX; 56 Size_T Size = 0, Capacity; 57 58 /// The maximum value of the Size_T used. 59 static constexpr size_t SizeTypeMax() { 60 return std::numeric_limits<Size_T>::max(); 61 } 62 63 SmallVectorBase() = delete; 64 SmallVectorBase(void *FirstEl, size_t TotalCapacity) 65 : BeginX(FirstEl), Capacity(static_cast<Size_T>(TotalCapacity)) {} 66 67 /// This is a helper for \a grow() that's out of line to reduce code 68 /// duplication. This function will report a fatal error if it can't grow at 69 /// least to \p MinSize. 70 void *mallocForGrow(void *FirstEl, size_t MinSize, size_t TSize, 71 size_t &NewCapacity); 72 73 /// This is an implementation of the grow() method which only works 74 /// on POD-like data types and is out of line to reduce code duplication. 75 /// This function will report a fatal error if it cannot increase capacity. 76 void grow_pod(void *FirstEl, size_t MinSize, size_t TSize); 77 78 /// If vector was first created with capacity 0, getFirstEl() points to the 79 /// memory right after, an area unallocated. If a subsequent allocation, 80 /// that grows the vector, happens to return the same pointer as getFirstEl(), 81 /// get a new allocation, otherwise isSmall() will falsely return that no 82 /// allocation was done (true) and the memory will not be freed in the 83 /// destructor. If a VSize is given (vector size), also copy that many 84 /// elements to the new allocation - used if realloca fails to increase 85 /// space, and happens to allocate precisely at BeginX. 86 /// This is unlikely to be called often, but resolves a memory leak when the 87 /// situation does occur. 88 void *replaceAllocation(void *NewElts, size_t TSize, size_t NewCapacity, 89 size_t VSize = 0); 90 91 public: 92 size_t size() const { return Size; } 93 size_t capacity() const { return Capacity; } 94 95 [[nodiscard]] bool empty() const { return !Size; } 96 97 protected: 98 /// Set the array size to \p N, which the current array must have enough 99 /// capacity for. 100 /// 101 /// This does not construct or destroy any elements in the vector. 102 void set_size(size_t N) { 103 assert(N <= capacity()); // implies no overflow in assignment 104 Size = static_cast<Size_T>(N); 105 } 106 107 /// Set the array data pointer to \p Begin and capacity to \p N. 108 /// 109 /// This does not construct or destroy any elements in the vector. 110 // This does not clean up any existing allocation. 111 void set_allocation_range(void *Begin, size_t N) { 112 assert(N <= SizeTypeMax()); 113 BeginX = Begin; 114 Capacity = static_cast<Size_T>(N); 115 } 116 }; 117 118 template <class T> 119 using SmallVectorSizeType = 120 std::conditional_t<sizeof(T) < 4 && sizeof(void *) >= 8, uint64_t, 121 uint32_t>; 122 123 /// Figure out the offset of the first element. 124 template <class T, typename = void> struct SmallVectorAlignmentAndSize { 125 alignas(SmallVectorBase<SmallVectorSizeType<T>>) char Base[sizeof( 126 SmallVectorBase<SmallVectorSizeType<T>>)]; 127 alignas(T) char FirstEl[sizeof(T)]; 128 }; 129 130 /// This is the part of SmallVectorTemplateBase which does not depend on whether 131 /// the type T is a POD. The extra dummy template argument is used by ArrayRef 132 /// to avoid unnecessarily requiring T to be complete. 133 template <typename T, typename = void> 134 class SmallVectorTemplateCommon 135 : public SmallVectorBase<SmallVectorSizeType<T>> { 136 using Base = SmallVectorBase<SmallVectorSizeType<T>>; 137 138 protected: 139 /// Find the address of the first element. For this pointer math to be valid 140 /// with small-size of 0 for T with lots of alignment, it's important that 141 /// SmallVectorStorage is properly-aligned even for small-size of 0. 142 void *getFirstEl() const { 143 return const_cast<void *>(reinterpret_cast<const void *>( 144 reinterpret_cast<const char *>(this) + 145 offsetof(SmallVectorAlignmentAndSize<T>, FirstEl))); 146 } 147 // Space after 'FirstEl' is clobbered, do not add any instance vars after it. 148 149 SmallVectorTemplateCommon(size_t Size) : Base(getFirstEl(), Size) {} 150 151 void grow_pod(size_t MinSize, size_t TSize) { 152 Base::grow_pod(getFirstEl(), MinSize, TSize); 153 } 154 155 /// Return true if this is a smallvector which has not had dynamic 156 /// memory allocated for it. 157 bool isSmall() const { return this->BeginX == getFirstEl(); } 158 159 /// Put this vector in a state of being small. 160 void resetToSmall() { 161 this->BeginX = getFirstEl(); 162 this->Size = this->Capacity = 0; // FIXME: Setting Capacity to 0 is suspect. 163 } 164 165 /// Return true if V is an internal reference to the given range. 166 bool isReferenceToRange(const void *V, const void *First, const void *Last) const { 167 // Use std::less to avoid UB. 168 std::less<> LessThan; 169 return !LessThan(V, First) && LessThan(V, Last); 170 } 171 172 /// Return true if V is an internal reference to this vector. 173 bool isReferenceToStorage(const void *V) const { 174 return isReferenceToRange(V, this->begin(), this->end()); 175 } 176 177 /// Return true if First and Last form a valid (possibly empty) range in this 178 /// vector's storage. 179 bool isRangeInStorage(const void *First, const void *Last) const { 180 // Use std::less to avoid UB. 181 std::less<> LessThan; 182 return !LessThan(First, this->begin()) && !LessThan(Last, First) && 183 !LessThan(this->end(), Last); 184 } 185 186 /// Return true unless Elt will be invalidated by resizing the vector to 187 /// NewSize. 188 bool isSafeToReferenceAfterResize(const void *Elt, size_t NewSize) { 189 // Past the end. 190 if (LLVM_LIKELY(!isReferenceToStorage(Elt))) 191 return true; 192 193 // Return false if Elt will be destroyed by shrinking. 194 if (NewSize <= this->size()) 195 return Elt < this->begin() + NewSize; 196 197 // Return false if we need to grow. 198 return NewSize <= this->capacity(); 199 } 200 201 /// Check whether Elt will be invalidated by resizing the vector to NewSize. 202 void assertSafeToReferenceAfterResize(const void *Elt, size_t NewSize) { 203 assert(isSafeToReferenceAfterResize(Elt, NewSize) && 204 "Attempting to reference an element of the vector in an operation " 205 "that invalidates it"); 206 } 207 208 /// Check whether Elt will be invalidated by increasing the size of the 209 /// vector by N. 210 void assertSafeToAdd(const void *Elt, size_t N = 1) { 211 this->assertSafeToReferenceAfterResize(Elt, this->size() + N); 212 } 213 214 /// Check whether any part of the range will be invalidated by clearing. 215 void assertSafeToReferenceAfterClear(const T *From, const T *To) { 216 if (From == To) 217 return; 218 this->assertSafeToReferenceAfterResize(From, 0); 219 this->assertSafeToReferenceAfterResize(To - 1, 0); 220 } 221 template < 222 class ItTy, 223 std::enable_if_t<!std::is_same<std::remove_const_t<ItTy>, T *>::value, 224 bool> = false> 225 void assertSafeToReferenceAfterClear(ItTy, ItTy) {} 226 227 /// Check whether any part of the range will be invalidated by growing. 228 void assertSafeToAddRange(const T *From, const T *To) { 229 if (From == To) 230 return; 231 this->assertSafeToAdd(From, To - From); 232 this->assertSafeToAdd(To - 1, To - From); 233 } 234 template < 235 class ItTy, 236 std::enable_if_t<!std::is_same<std::remove_const_t<ItTy>, T *>::value, 237 bool> = false> 238 void assertSafeToAddRange(ItTy, ItTy) {} 239 240 /// Reserve enough space to add one element, and return the updated element 241 /// pointer in case it was a reference to the storage. 242 template <class U> 243 static const T *reserveForParamAndGetAddressImpl(U *This, const T &Elt, 244 size_t N) { 245 size_t NewSize = This->size() + N; 246 if (LLVM_LIKELY(NewSize <= This->capacity())) 247 return &Elt; 248 249 bool ReferencesStorage = false; 250 int64_t Index = -1; 251 if (!U::TakesParamByValue) { 252 if (LLVM_UNLIKELY(This->isReferenceToStorage(&Elt))) { 253 ReferencesStorage = true; 254 Index = &Elt - This->begin(); 255 } 256 } 257 This->grow(NewSize); 258 return ReferencesStorage ? This->begin() + Index : &Elt; 259 } 260 261 public: 262 using size_type = size_t; 263 using difference_type = ptrdiff_t; 264 using value_type = T; 265 using iterator = T *; 266 using const_iterator = const T *; 267 268 using const_reverse_iterator = std::reverse_iterator<const_iterator>; 269 using reverse_iterator = std::reverse_iterator<iterator>; 270 271 using reference = T &; 272 using const_reference = const T &; 273 using pointer = T *; 274 using const_pointer = const T *; 275 276 using Base::capacity; 277 using Base::empty; 278 using Base::size; 279 280 // forward iterator creation methods. 281 iterator begin() { return (iterator)this->BeginX; } 282 const_iterator begin() const { return (const_iterator)this->BeginX; } 283 iterator end() { return begin() + size(); } 284 const_iterator end() const { return begin() + size(); } 285 286 // reverse iterator creation methods. 287 reverse_iterator rbegin() { return reverse_iterator(end()); } 288 const_reverse_iterator rbegin() const{ return const_reverse_iterator(end()); } 289 reverse_iterator rend() { return reverse_iterator(begin()); } 290 const_reverse_iterator rend() const { return const_reverse_iterator(begin());} 291 292 size_type size_in_bytes() const { return size() * sizeof(T); } 293 size_type max_size() const { 294 return std::min(this->SizeTypeMax(), size_type(-1) / sizeof(T)); 295 } 296 297 size_t capacity_in_bytes() const { return capacity() * sizeof(T); } 298 299 /// Return a pointer to the vector's buffer, even if empty(). 300 pointer data() { return pointer(begin()); } 301 /// Return a pointer to the vector's buffer, even if empty(). 302 const_pointer data() const { return const_pointer(begin()); } 303 304 reference operator[](size_type idx) { 305 assert(idx < size()); 306 return begin()[idx]; 307 } 308 const_reference operator[](size_type idx) const { 309 assert(idx < size()); 310 return begin()[idx]; 311 } 312 313 reference front() { 314 assert(!empty()); 315 return begin()[0]; 316 } 317 const_reference front() const { 318 assert(!empty()); 319 return begin()[0]; 320 } 321 322 reference back() { 323 assert(!empty()); 324 return end()[-1]; 325 } 326 const_reference back() const { 327 assert(!empty()); 328 return end()[-1]; 329 } 330 }; 331 332 /// SmallVectorTemplateBase<TriviallyCopyable = false> - This is where we put 333 /// method implementations that are designed to work with non-trivial T's. 334 /// 335 /// We approximate is_trivially_copyable with trivial move/copy construction and 336 /// trivial destruction. While the standard doesn't specify that you're allowed 337 /// copy these types with memcpy, there is no way for the type to observe this. 338 /// This catches the important case of std::pair<POD, POD>, which is not 339 /// trivially assignable. 340 template <typename T, bool = (std::is_trivially_copy_constructible<T>::value) && 341 (std::is_trivially_move_constructible<T>::value) && 342 std::is_trivially_destructible<T>::value> 343 class SmallVectorTemplateBase : public SmallVectorTemplateCommon<T> { 344 friend class SmallVectorTemplateCommon<T>; 345 346 protected: 347 static constexpr bool TakesParamByValue = false; 348 using ValueParamT = const T &; 349 350 SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {} 351 352 static void destroy_range(T *S, T *E) { 353 while (S != E) { 354 --E; 355 E->~T(); 356 } 357 } 358 359 /// Move the range [I, E) into the uninitialized memory starting with "Dest", 360 /// constructing elements as needed. 361 template<typename It1, typename It2> 362 static void uninitialized_move(It1 I, It1 E, It2 Dest) { 363 std::uninitialized_move(I, E, Dest); 364 } 365 366 /// Copy the range [I, E) onto the uninitialized memory starting with "Dest", 367 /// constructing elements as needed. 368 template<typename It1, typename It2> 369 static void uninitialized_copy(It1 I, It1 E, It2 Dest) { 370 std::uninitialized_copy(I, E, Dest); 371 } 372 373 /// Grow the allocated memory (without initializing new elements), doubling 374 /// the size of the allocated memory. Guarantees space for at least one more 375 /// element, or MinSize more elements if specified. 376 void grow(size_t MinSize = 0); 377 378 /// Create a new allocation big enough for \p MinSize and pass back its size 379 /// in \p NewCapacity. This is the first section of \a grow(). 380 T *mallocForGrow(size_t MinSize, size_t &NewCapacity); 381 382 /// Move existing elements over to the new allocation \p NewElts, the middle 383 /// section of \a grow(). 384 void moveElementsForGrow(T *NewElts); 385 386 /// Transfer ownership of the allocation, finishing up \a grow(). 387 void takeAllocationForGrow(T *NewElts, size_t NewCapacity); 388 389 /// Reserve enough space to add one element, and return the updated element 390 /// pointer in case it was a reference to the storage. 391 const T *reserveForParamAndGetAddress(const T &Elt, size_t N = 1) { 392 return this->reserveForParamAndGetAddressImpl(this, Elt, N); 393 } 394 395 /// Reserve enough space to add one element, and return the updated element 396 /// pointer in case it was a reference to the storage. 397 T *reserveForParamAndGetAddress(T &Elt, size_t N = 1) { 398 return const_cast<T *>( 399 this->reserveForParamAndGetAddressImpl(this, Elt, N)); 400 } 401 402 static T &&forward_value_param(T &&V) { return std::move(V); } 403 static const T &forward_value_param(const T &V) { return V; } 404 405 void growAndAssign(size_t NumElts, const T &Elt) { 406 // Grow manually in case Elt is an internal reference. 407 size_t NewCapacity; 408 T *NewElts = mallocForGrow(NumElts, NewCapacity); 409 std::uninitialized_fill_n(NewElts, NumElts, Elt); 410 this->destroy_range(this->begin(), this->end()); 411 takeAllocationForGrow(NewElts, NewCapacity); 412 this->set_size(NumElts); 413 } 414 415 template <typename... ArgTypes> T &growAndEmplaceBack(ArgTypes &&... Args) { 416 // Grow manually in case one of Args is an internal reference. 417 size_t NewCapacity; 418 T *NewElts = mallocForGrow(0, NewCapacity); 419 ::new ((void *)(NewElts + this->size())) T(std::forward<ArgTypes>(Args)...); 420 moveElementsForGrow(NewElts); 421 takeAllocationForGrow(NewElts, NewCapacity); 422 this->set_size(this->size() + 1); 423 return this->back(); 424 } 425 426 public: 427 void push_back(const T &Elt) { 428 const T *EltPtr = reserveForParamAndGetAddress(Elt); 429 ::new ((void *)this->end()) T(*EltPtr); 430 this->set_size(this->size() + 1); 431 } 432 433 void push_back(T &&Elt) { 434 T *EltPtr = reserveForParamAndGetAddress(Elt); 435 ::new ((void *)this->end()) T(::std::move(*EltPtr)); 436 this->set_size(this->size() + 1); 437 } 438 439 void pop_back() { 440 this->set_size(this->size() - 1); 441 this->end()->~T(); 442 } 443 }; 444 445 // Define this out-of-line to dissuade the C++ compiler from inlining it. 446 template <typename T, bool TriviallyCopyable> 447 void SmallVectorTemplateBase<T, TriviallyCopyable>::grow(size_t MinSize) { 448 size_t NewCapacity; 449 T *NewElts = mallocForGrow(MinSize, NewCapacity); 450 moveElementsForGrow(NewElts); 451 takeAllocationForGrow(NewElts, NewCapacity); 452 } 453 454 template <typename T, bool TriviallyCopyable> 455 T *SmallVectorTemplateBase<T, TriviallyCopyable>::mallocForGrow( 456 size_t MinSize, size_t &NewCapacity) { 457 return static_cast<T *>( 458 SmallVectorBase<SmallVectorSizeType<T>>::mallocForGrow( 459 this->getFirstEl(), MinSize, sizeof(T), NewCapacity)); 460 } 461 462 // Define this out-of-line to dissuade the C++ compiler from inlining it. 463 template <typename T, bool TriviallyCopyable> 464 void SmallVectorTemplateBase<T, TriviallyCopyable>::moveElementsForGrow( 465 T *NewElts) { 466 // Move the elements over. 467 this->uninitialized_move(this->begin(), this->end(), NewElts); 468 469 // Destroy the original elements. 470 destroy_range(this->begin(), this->end()); 471 } 472 473 // Define this out-of-line to dissuade the C++ compiler from inlining it. 474 template <typename T, bool TriviallyCopyable> 475 void SmallVectorTemplateBase<T, TriviallyCopyable>::takeAllocationForGrow( 476 T *NewElts, size_t NewCapacity) { 477 // If this wasn't grown from the inline copy, deallocate the old space. 478 if (!this->isSmall()) 479 free(this->begin()); 480 481 this->set_allocation_range(NewElts, NewCapacity); 482 } 483 484 /// SmallVectorTemplateBase<TriviallyCopyable = true> - This is where we put 485 /// method implementations that are designed to work with trivially copyable 486 /// T's. This allows using memcpy in place of copy/move construction and 487 /// skipping destruction. 488 template <typename T> 489 class SmallVectorTemplateBase<T, true> : public SmallVectorTemplateCommon<T> { 490 friend class SmallVectorTemplateCommon<T>; 491 492 protected: 493 /// True if it's cheap enough to take parameters by value. Doing so avoids 494 /// overhead related to mitigations for reference invalidation. 495 static constexpr bool TakesParamByValue = sizeof(T) <= 2 * sizeof(void *); 496 497 /// Either const T& or T, depending on whether it's cheap enough to take 498 /// parameters by value. 499 using ValueParamT = std::conditional_t<TakesParamByValue, T, const T &>; 500 501 SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {} 502 503 // No need to do a destroy loop for POD's. 504 static void destroy_range(T *, T *) {} 505 506 /// Move the range [I, E) onto the uninitialized memory 507 /// starting with "Dest", constructing elements into it as needed. 508 template<typename It1, typename It2> 509 static void uninitialized_move(It1 I, It1 E, It2 Dest) { 510 // Just do a copy. 511 uninitialized_copy(I, E, Dest); 512 } 513 514 /// Copy the range [I, E) onto the uninitialized memory 515 /// starting with "Dest", constructing elements into it as needed. 516 template<typename It1, typename It2> 517 static void uninitialized_copy(It1 I, It1 E, It2 Dest) { 518 // Arbitrary iterator types; just use the basic implementation. 519 std::uninitialized_copy(I, E, Dest); 520 } 521 522 /// Copy the range [I, E) onto the uninitialized memory 523 /// starting with "Dest", constructing elements into it as needed. 524 template <typename T1, typename T2> 525 static void uninitialized_copy( 526 T1 *I, T1 *E, T2 *Dest, 527 std::enable_if_t<std::is_same<std::remove_const_t<T1>, T2>::value> * = 528 nullptr) { 529 // Use memcpy for PODs iterated by pointers (which includes SmallVector 530 // iterators): std::uninitialized_copy optimizes to memmove, but we can 531 // use memcpy here. Note that I and E are iterators and thus might be 532 // invalid for memcpy if they are equal. 533 if (I != E) 534 memcpy(reinterpret_cast<void *>(Dest), I, (E - I) * sizeof(T)); 535 } 536 537 /// Double the size of the allocated memory, guaranteeing space for at 538 /// least one more element or MinSize if specified. 539 void grow(size_t MinSize = 0) { this->grow_pod(MinSize, sizeof(T)); } 540 541 /// Reserve enough space to add one element, and return the updated element 542 /// pointer in case it was a reference to the storage. 543 const T *reserveForParamAndGetAddress(const T &Elt, size_t N = 1) { 544 return this->reserveForParamAndGetAddressImpl(this, Elt, N); 545 } 546 547 /// Reserve enough space to add one element, and return the updated element 548 /// pointer in case it was a reference to the storage. 549 T *reserveForParamAndGetAddress(T &Elt, size_t N = 1) { 550 return const_cast<T *>( 551 this->reserveForParamAndGetAddressImpl(this, Elt, N)); 552 } 553 554 /// Copy \p V or return a reference, depending on \a ValueParamT. 555 static ValueParamT forward_value_param(ValueParamT V) { return V; } 556 557 void growAndAssign(size_t NumElts, T Elt) { 558 // Elt has been copied in case it's an internal reference, side-stepping 559 // reference invalidation problems without losing the realloc optimization. 560 this->set_size(0); 561 this->grow(NumElts); 562 std::uninitialized_fill_n(this->begin(), NumElts, Elt); 563 this->set_size(NumElts); 564 } 565 566 template <typename... ArgTypes> T &growAndEmplaceBack(ArgTypes &&... Args) { 567 // Use push_back with a copy in case Args has an internal reference, 568 // side-stepping reference invalidation problems without losing the realloc 569 // optimization. 570 push_back(T(std::forward<ArgTypes>(Args)...)); 571 return this->back(); 572 } 573 574 public: 575 void push_back(ValueParamT Elt) { 576 const T *EltPtr = reserveForParamAndGetAddress(Elt); 577 memcpy(reinterpret_cast<void *>(this->end()), EltPtr, sizeof(T)); 578 this->set_size(this->size() + 1); 579 } 580 581 void pop_back() { this->set_size(this->size() - 1); } 582 }; 583 584 /// This class consists of common code factored out of the SmallVector class to 585 /// reduce code duplication based on the SmallVector 'N' template parameter. 586 template <typename T> 587 class SmallVectorImpl : public SmallVectorTemplateBase<T> { 588 using SuperClass = SmallVectorTemplateBase<T>; 589 590 public: 591 using iterator = typename SuperClass::iterator; 592 using const_iterator = typename SuperClass::const_iterator; 593 using reference = typename SuperClass::reference; 594 using size_type = typename SuperClass::size_type; 595 596 protected: 597 using SmallVectorTemplateBase<T>::TakesParamByValue; 598 using ValueParamT = typename SuperClass::ValueParamT; 599 600 // Default ctor - Initialize to empty. 601 explicit SmallVectorImpl(unsigned N) 602 : SmallVectorTemplateBase<T>(N) {} 603 604 void assignRemote(SmallVectorImpl &&RHS) { 605 this->destroy_range(this->begin(), this->end()); 606 if (!this->isSmall()) 607 free(this->begin()); 608 this->BeginX = RHS.BeginX; 609 this->Size = RHS.Size; 610 this->Capacity = RHS.Capacity; 611 RHS.resetToSmall(); 612 } 613 614 ~SmallVectorImpl() { 615 // Subclass has already destructed this vector's elements. 616 // If this wasn't grown from the inline copy, deallocate the old space. 617 if (!this->isSmall()) 618 free(this->begin()); 619 } 620 621 public: 622 SmallVectorImpl(const SmallVectorImpl &) = delete; 623 624 void clear() { 625 this->destroy_range(this->begin(), this->end()); 626 this->Size = 0; 627 } 628 629 private: 630 // Make set_size() private to avoid misuse in subclasses. 631 using SuperClass::set_size; 632 633 template <bool ForOverwrite> void resizeImpl(size_type N) { 634 if (N == this->size()) 635 return; 636 637 if (N < this->size()) { 638 this->truncate(N); 639 return; 640 } 641 642 this->reserve(N); 643 for (auto I = this->end(), E = this->begin() + N; I != E; ++I) 644 if (ForOverwrite) 645 new (&*I) T; 646 else 647 new (&*I) T(); 648 this->set_size(N); 649 } 650 651 public: 652 void resize(size_type N) { resizeImpl<false>(N); } 653 654 /// Like resize, but \ref T is POD, the new values won't be initialized. 655 void resize_for_overwrite(size_type N) { resizeImpl<true>(N); } 656 657 /// Like resize, but requires that \p N is less than \a size(). 658 void truncate(size_type N) { 659 assert(this->size() >= N && "Cannot increase size with truncate"); 660 this->destroy_range(this->begin() + N, this->end()); 661 this->set_size(N); 662 } 663 664 void resize(size_type N, ValueParamT NV) { 665 if (N == this->size()) 666 return; 667 668 if (N < this->size()) { 669 this->truncate(N); 670 return; 671 } 672 673 // N > this->size(). Defer to append. 674 this->append(N - this->size(), NV); 675 } 676 677 void reserve(size_type N) { 678 if (this->capacity() < N) 679 this->grow(N); 680 } 681 682 void pop_back_n(size_type NumItems) { 683 assert(this->size() >= NumItems); 684 truncate(this->size() - NumItems); 685 } 686 687 [[nodiscard]] T pop_back_val() { 688 T Result = ::std::move(this->back()); 689 this->pop_back(); 690 return Result; 691 } 692 693 void swap(SmallVectorImpl &RHS); 694 695 /// Add the specified range to the end of the SmallVector. 696 template <typename ItTy, typename = EnableIfConvertibleToInputIterator<ItTy>> 697 void append(ItTy in_start, ItTy in_end) { 698 this->assertSafeToAddRange(in_start, in_end); 699 size_type NumInputs = std::distance(in_start, in_end); 700 this->reserve(this->size() + NumInputs); 701 this->uninitialized_copy(in_start, in_end, this->end()); 702 this->set_size(this->size() + NumInputs); 703 } 704 705 /// Append \p NumInputs copies of \p Elt to the end. 706 void append(size_type NumInputs, ValueParamT Elt) { 707 const T *EltPtr = this->reserveForParamAndGetAddress(Elt, NumInputs); 708 std::uninitialized_fill_n(this->end(), NumInputs, *EltPtr); 709 this->set_size(this->size() + NumInputs); 710 } 711 712 void append(std::initializer_list<T> IL) { 713 append(IL.begin(), IL.end()); 714 } 715 716 void append(const SmallVectorImpl &RHS) { append(RHS.begin(), RHS.end()); } 717 718 void assign(size_type NumElts, ValueParamT Elt) { 719 // Note that Elt could be an internal reference. 720 if (NumElts > this->capacity()) { 721 this->growAndAssign(NumElts, Elt); 722 return; 723 } 724 725 // Assign over existing elements. 726 std::fill_n(this->begin(), std::min(NumElts, this->size()), Elt); 727 if (NumElts > this->size()) 728 std::uninitialized_fill_n(this->end(), NumElts - this->size(), Elt); 729 else if (NumElts < this->size()) 730 this->destroy_range(this->begin() + NumElts, this->end()); 731 this->set_size(NumElts); 732 } 733 734 // FIXME: Consider assigning over existing elements, rather than clearing & 735 // re-initializing them - for all assign(...) variants. 736 737 template <typename ItTy, typename = EnableIfConvertibleToInputIterator<ItTy>> 738 void assign(ItTy in_start, ItTy in_end) { 739 this->assertSafeToReferenceAfterClear(in_start, in_end); 740 clear(); 741 append(in_start, in_end); 742 } 743 744 void assign(std::initializer_list<T> IL) { 745 clear(); 746 append(IL); 747 } 748 749 void assign(const SmallVectorImpl &RHS) { assign(RHS.begin(), RHS.end()); } 750 751 iterator erase(const_iterator CI) { 752 // Just cast away constness because this is a non-const member function. 753 iterator I = const_cast<iterator>(CI); 754 755 assert(this->isReferenceToStorage(CI) && "Iterator to erase is out of bounds."); 756 757 iterator N = I; 758 // Shift all elts down one. 759 std::move(I+1, this->end(), I); 760 // Drop the last elt. 761 this->pop_back(); 762 return(N); 763 } 764 765 iterator erase(const_iterator CS, const_iterator CE) { 766 // Just cast away constness because this is a non-const member function. 767 iterator S = const_cast<iterator>(CS); 768 iterator E = const_cast<iterator>(CE); 769 770 assert(this->isRangeInStorage(S, E) && "Range to erase is out of bounds."); 771 772 iterator N = S; 773 // Shift all elts down. 774 iterator I = std::move(E, this->end(), S); 775 // Drop the last elts. 776 this->destroy_range(I, this->end()); 777 this->set_size(I - this->begin()); 778 return(N); 779 } 780 781 private: 782 template <class ArgType> iterator insert_one_impl(iterator I, ArgType &&Elt) { 783 // Callers ensure that ArgType is derived from T. 784 static_assert( 785 std::is_same<std::remove_const_t<std::remove_reference_t<ArgType>>, 786 T>::value, 787 "ArgType must be derived from T!"); 788 789 if (I == this->end()) { // Important special case for empty vector. 790 this->push_back(::std::forward<ArgType>(Elt)); 791 return this->end()-1; 792 } 793 794 assert(this->isReferenceToStorage(I) && "Insertion iterator is out of bounds."); 795 796 // Grow if necessary. 797 size_t Index = I - this->begin(); 798 std::remove_reference_t<ArgType> *EltPtr = 799 this->reserveForParamAndGetAddress(Elt); 800 I = this->begin() + Index; 801 802 ::new ((void*) this->end()) T(::std::move(this->back())); 803 // Push everything else over. 804 std::move_backward(I, this->end()-1, this->end()); 805 this->set_size(this->size() + 1); 806 807 // If we just moved the element we're inserting, be sure to update 808 // the reference (never happens if TakesParamByValue). 809 static_assert(!TakesParamByValue || std::is_same<ArgType, T>::value, 810 "ArgType must be 'T' when taking by value!"); 811 if (!TakesParamByValue && this->isReferenceToRange(EltPtr, I, this->end())) 812 ++EltPtr; 813 814 *I = ::std::forward<ArgType>(*EltPtr); 815 return I; 816 } 817 818 public: 819 iterator insert(iterator I, T &&Elt) { 820 return insert_one_impl(I, this->forward_value_param(std::move(Elt))); 821 } 822 823 iterator insert(iterator I, const T &Elt) { 824 return insert_one_impl(I, this->forward_value_param(Elt)); 825 } 826 827 iterator insert(iterator I, size_type NumToInsert, ValueParamT Elt) { 828 // Convert iterator to elt# to avoid invalidating iterator when we reserve() 829 size_t InsertElt = I - this->begin(); 830 831 if (I == this->end()) { // Important special case for empty vector. 832 append(NumToInsert, Elt); 833 return this->begin()+InsertElt; 834 } 835 836 assert(this->isReferenceToStorage(I) && "Insertion iterator is out of bounds."); 837 838 // Ensure there is enough space, and get the (maybe updated) address of 839 // Elt. 840 const T *EltPtr = this->reserveForParamAndGetAddress(Elt, NumToInsert); 841 842 // Uninvalidate the iterator. 843 I = this->begin()+InsertElt; 844 845 // If there are more elements between the insertion point and the end of the 846 // range than there are being inserted, we can use a simple approach to 847 // insertion. Since we already reserved space, we know that this won't 848 // reallocate the vector. 849 if (size_t(this->end()-I) >= NumToInsert) { 850 T *OldEnd = this->end(); 851 append(std::move_iterator<iterator>(this->end() - NumToInsert), 852 std::move_iterator<iterator>(this->end())); 853 854 // Copy the existing elements that get replaced. 855 std::move_backward(I, OldEnd-NumToInsert, OldEnd); 856 857 // If we just moved the element we're inserting, be sure to update 858 // the reference (never happens if TakesParamByValue). 859 if (!TakesParamByValue && I <= EltPtr && EltPtr < this->end()) 860 EltPtr += NumToInsert; 861 862 std::fill_n(I, NumToInsert, *EltPtr); 863 return I; 864 } 865 866 // Otherwise, we're inserting more elements than exist already, and we're 867 // not inserting at the end. 868 869 // Move over the elements that we're about to overwrite. 870 T *OldEnd = this->end(); 871 this->set_size(this->size() + NumToInsert); 872 size_t NumOverwritten = OldEnd-I; 873 this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten); 874 875 // If we just moved the element we're inserting, be sure to update 876 // the reference (never happens if TakesParamByValue). 877 if (!TakesParamByValue && I <= EltPtr && EltPtr < this->end()) 878 EltPtr += NumToInsert; 879 880 // Replace the overwritten part. 881 std::fill_n(I, NumOverwritten, *EltPtr); 882 883 // Insert the non-overwritten middle part. 884 std::uninitialized_fill_n(OldEnd, NumToInsert - NumOverwritten, *EltPtr); 885 return I; 886 } 887 888 template <typename ItTy, typename = EnableIfConvertibleToInputIterator<ItTy>> 889 iterator insert(iterator I, ItTy From, ItTy To) { 890 // Convert iterator to elt# to avoid invalidating iterator when we reserve() 891 size_t InsertElt = I - this->begin(); 892 893 if (I == this->end()) { // Important special case for empty vector. 894 append(From, To); 895 return this->begin()+InsertElt; 896 } 897 898 assert(this->isReferenceToStorage(I) && "Insertion iterator is out of bounds."); 899 900 // Check that the reserve that follows doesn't invalidate the iterators. 901 this->assertSafeToAddRange(From, To); 902 903 size_t NumToInsert = std::distance(From, To); 904 905 // Ensure there is enough space. 906 reserve(this->size() + NumToInsert); 907 908 // Uninvalidate the iterator. 909 I = this->begin()+InsertElt; 910 911 // If there are more elements between the insertion point and the end of the 912 // range than there are being inserted, we can use a simple approach to 913 // insertion. Since we already reserved space, we know that this won't 914 // reallocate the vector. 915 if (size_t(this->end()-I) >= NumToInsert) { 916 T *OldEnd = this->end(); 917 append(std::move_iterator<iterator>(this->end() - NumToInsert), 918 std::move_iterator<iterator>(this->end())); 919 920 // Copy the existing elements that get replaced. 921 std::move_backward(I, OldEnd-NumToInsert, OldEnd); 922 923 std::copy(From, To, I); 924 return I; 925 } 926 927 // Otherwise, we're inserting more elements than exist already, and we're 928 // not inserting at the end. 929 930 // Move over the elements that we're about to overwrite. 931 T *OldEnd = this->end(); 932 this->set_size(this->size() + NumToInsert); 933 size_t NumOverwritten = OldEnd-I; 934 this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten); 935 936 // Replace the overwritten part. 937 for (T *J = I; NumOverwritten > 0; --NumOverwritten) { 938 *J = *From; 939 ++J; ++From; 940 } 941 942 // Insert the non-overwritten middle part. 943 this->uninitialized_copy(From, To, OldEnd); 944 return I; 945 } 946 947 void insert(iterator I, std::initializer_list<T> IL) { 948 insert(I, IL.begin(), IL.end()); 949 } 950 951 template <typename... ArgTypes> reference emplace_back(ArgTypes &&... Args) { 952 if (LLVM_UNLIKELY(this->size() >= this->capacity())) 953 return this->growAndEmplaceBack(std::forward<ArgTypes>(Args)...); 954 955 ::new ((void *)this->end()) T(std::forward<ArgTypes>(Args)...); 956 this->set_size(this->size() + 1); 957 return this->back(); 958 } 959 960 SmallVectorImpl &operator=(const SmallVectorImpl &RHS); 961 962 SmallVectorImpl &operator=(SmallVectorImpl &&RHS); 963 964 bool operator==(const SmallVectorImpl &RHS) const { 965 if (this->size() != RHS.size()) return false; 966 return std::equal(this->begin(), this->end(), RHS.begin()); 967 } 968 bool operator!=(const SmallVectorImpl &RHS) const { 969 return !(*this == RHS); 970 } 971 972 bool operator<(const SmallVectorImpl &RHS) const { 973 return std::lexicographical_compare(this->begin(), this->end(), 974 RHS.begin(), RHS.end()); 975 } 976 bool operator>(const SmallVectorImpl &RHS) const { return RHS < *this; } 977 bool operator<=(const SmallVectorImpl &RHS) const { return !(*this > RHS); } 978 bool operator>=(const SmallVectorImpl &RHS) const { return !(*this < RHS); } 979 }; 980 981 template <typename T> 982 void SmallVectorImpl<T>::swap(SmallVectorImpl<T> &RHS) { 983 if (this == &RHS) return; 984 985 // We can only avoid copying elements if neither vector is small. 986 if (!this->isSmall() && !RHS.isSmall()) { 987 std::swap(this->BeginX, RHS.BeginX); 988 std::swap(this->Size, RHS.Size); 989 std::swap(this->Capacity, RHS.Capacity); 990 return; 991 } 992 this->reserve(RHS.size()); 993 RHS.reserve(this->size()); 994 995 // Swap the shared elements. 996 size_t NumShared = this->size(); 997 if (NumShared > RHS.size()) NumShared = RHS.size(); 998 for (size_type i = 0; i != NumShared; ++i) 999 std::swap((*this)[i], RHS[i]); 1000 1001 // Copy over the extra elts. 1002 if (this->size() > RHS.size()) { 1003 size_t EltDiff = this->size() - RHS.size(); 1004 this->uninitialized_copy(this->begin()+NumShared, this->end(), RHS.end()); 1005 RHS.set_size(RHS.size() + EltDiff); 1006 this->destroy_range(this->begin()+NumShared, this->end()); 1007 this->set_size(NumShared); 1008 } else if (RHS.size() > this->size()) { 1009 size_t EltDiff = RHS.size() - this->size(); 1010 this->uninitialized_copy(RHS.begin()+NumShared, RHS.end(), this->end()); 1011 this->set_size(this->size() + EltDiff); 1012 this->destroy_range(RHS.begin()+NumShared, RHS.end()); 1013 RHS.set_size(NumShared); 1014 } 1015 } 1016 1017 template <typename T> 1018 SmallVectorImpl<T> &SmallVectorImpl<T>:: 1019 operator=(const SmallVectorImpl<T> &RHS) { 1020 // Avoid self-assignment. 1021 if (this == &RHS) return *this; 1022 1023 // If we already have sufficient space, assign the common elements, then 1024 // destroy any excess. 1025 size_t RHSSize = RHS.size(); 1026 size_t CurSize = this->size(); 1027 if (CurSize >= RHSSize) { 1028 // Assign common elements. 1029 iterator NewEnd; 1030 if (RHSSize) 1031 NewEnd = std::copy(RHS.begin(), RHS.begin()+RHSSize, this->begin()); 1032 else 1033 NewEnd = this->begin(); 1034 1035 // Destroy excess elements. 1036 this->destroy_range(NewEnd, this->end()); 1037 1038 // Trim. 1039 this->set_size(RHSSize); 1040 return *this; 1041 } 1042 1043 // If we have to grow to have enough elements, destroy the current elements. 1044 // This allows us to avoid copying them during the grow. 1045 // FIXME: don't do this if they're efficiently moveable. 1046 if (this->capacity() < RHSSize) { 1047 // Destroy current elements. 1048 this->clear(); 1049 CurSize = 0; 1050 this->grow(RHSSize); 1051 } else if (CurSize) { 1052 // Otherwise, use assignment for the already-constructed elements. 1053 std::copy(RHS.begin(), RHS.begin()+CurSize, this->begin()); 1054 } 1055 1056 // Copy construct the new elements in place. 1057 this->uninitialized_copy(RHS.begin()+CurSize, RHS.end(), 1058 this->begin()+CurSize); 1059 1060 // Set end. 1061 this->set_size(RHSSize); 1062 return *this; 1063 } 1064 1065 template <typename T> 1066 SmallVectorImpl<T> &SmallVectorImpl<T>::operator=(SmallVectorImpl<T> &&RHS) { 1067 // Avoid self-assignment. 1068 if (this == &RHS) return *this; 1069 1070 // If the RHS isn't small, clear this vector and then steal its buffer. 1071 if (!RHS.isSmall()) { 1072 this->assignRemote(std::move(RHS)); 1073 return *this; 1074 } 1075 1076 // If we already have sufficient space, assign the common elements, then 1077 // destroy any excess. 1078 size_t RHSSize = RHS.size(); 1079 size_t CurSize = this->size(); 1080 if (CurSize >= RHSSize) { 1081 // Assign common elements. 1082 iterator NewEnd = this->begin(); 1083 if (RHSSize) 1084 NewEnd = std::move(RHS.begin(), RHS.end(), NewEnd); 1085 1086 // Destroy excess elements and trim the bounds. 1087 this->destroy_range(NewEnd, this->end()); 1088 this->set_size(RHSSize); 1089 1090 // Clear the RHS. 1091 RHS.clear(); 1092 1093 return *this; 1094 } 1095 1096 // If we have to grow to have enough elements, destroy the current elements. 1097 // This allows us to avoid copying them during the grow. 1098 // FIXME: this may not actually make any sense if we can efficiently move 1099 // elements. 1100 if (this->capacity() < RHSSize) { 1101 // Destroy current elements. 1102 this->clear(); 1103 CurSize = 0; 1104 this->grow(RHSSize); 1105 } else if (CurSize) { 1106 // Otherwise, use assignment for the already-constructed elements. 1107 std::move(RHS.begin(), RHS.begin()+CurSize, this->begin()); 1108 } 1109 1110 // Move-construct the new elements in place. 1111 this->uninitialized_move(RHS.begin()+CurSize, RHS.end(), 1112 this->begin()+CurSize); 1113 1114 // Set end. 1115 this->set_size(RHSSize); 1116 1117 RHS.clear(); 1118 return *this; 1119 } 1120 1121 /// Storage for the SmallVector elements. This is specialized for the N=0 case 1122 /// to avoid allocating unnecessary storage. 1123 template <typename T, unsigned N> 1124 struct SmallVectorStorage { 1125 alignas(T) char InlineElts[N * sizeof(T)]; 1126 }; 1127 1128 /// We need the storage to be properly aligned even for small-size of 0 so that 1129 /// the pointer math in \a SmallVectorTemplateCommon::getFirstEl() is 1130 /// well-defined. 1131 template <typename T> struct alignas(T) SmallVectorStorage<T, 0> {}; 1132 1133 /// Forward declaration of SmallVector so that 1134 /// calculateSmallVectorDefaultInlinedElements can reference 1135 /// `sizeof(SmallVector<T, 0>)`. 1136 template <typename T, unsigned N> class LLVM_GSL_OWNER SmallVector; 1137 1138 /// Helper class for calculating the default number of inline elements for 1139 /// `SmallVector<T>`. 1140 /// 1141 /// This should be migrated to a constexpr function when our minimum 1142 /// compiler support is enough for multi-statement constexpr functions. 1143 template <typename T> struct CalculateSmallVectorDefaultInlinedElements { 1144 // Parameter controlling the default number of inlined elements 1145 // for `SmallVector<T>`. 1146 // 1147 // The default number of inlined elements ensures that 1148 // 1. There is at least one inlined element. 1149 // 2. `sizeof(SmallVector<T>) <= kPreferredSmallVectorSizeof` unless 1150 // it contradicts 1. 1151 static constexpr size_t kPreferredSmallVectorSizeof = 64; 1152 1153 // static_assert that sizeof(T) is not "too big". 1154 // 1155 // Because our policy guarantees at least one inlined element, it is possible 1156 // for an arbitrarily large inlined element to allocate an arbitrarily large 1157 // amount of inline storage. We generally consider it an antipattern for a 1158 // SmallVector to allocate an excessive amount of inline storage, so we want 1159 // to call attention to these cases and make sure that users are making an 1160 // intentional decision if they request a lot of inline storage. 1161 // 1162 // We want this assertion to trigger in pathological cases, but otherwise 1163 // not be too easy to hit. To accomplish that, the cutoff is actually somewhat 1164 // larger than kPreferredSmallVectorSizeof (otherwise, 1165 // `SmallVector<SmallVector<T>>` would be one easy way to trip it, and that 1166 // pattern seems useful in practice). 1167 // 1168 // One wrinkle is that this assertion is in theory non-portable, since 1169 // sizeof(T) is in general platform-dependent. However, we don't expect this 1170 // to be much of an issue, because most LLVM development happens on 64-bit 1171 // hosts, and therefore sizeof(T) is expected to *decrease* when compiled for 1172 // 32-bit hosts, dodging the issue. The reverse situation, where development 1173 // happens on a 32-bit host and then fails due to sizeof(T) *increasing* on a 1174 // 64-bit host, is expected to be very rare. 1175 static_assert( 1176 sizeof(T) <= 256, 1177 "You are trying to use a default number of inlined elements for " 1178 "`SmallVector<T>` but `sizeof(T)` is really big! Please use an " 1179 "explicit number of inlined elements with `SmallVector<T, N>` to make " 1180 "sure you really want that much inline storage."); 1181 1182 // Discount the size of the header itself when calculating the maximum inline 1183 // bytes. 1184 static constexpr size_t PreferredInlineBytes = 1185 kPreferredSmallVectorSizeof - sizeof(SmallVector<T, 0>); 1186 static constexpr size_t NumElementsThatFit = PreferredInlineBytes / sizeof(T); 1187 static constexpr size_t value = 1188 NumElementsThatFit == 0 ? 1 : NumElementsThatFit; 1189 }; 1190 1191 /// This is a 'vector' (really, a variable-sized array), optimized 1192 /// for the case when the array is small. It contains some number of elements 1193 /// in-place, which allows it to avoid heap allocation when the actual number of 1194 /// elements is below that threshold. This allows normal "small" cases to be 1195 /// fast without losing generality for large inputs. 1196 /// 1197 /// \note 1198 /// In the absence of a well-motivated choice for the number of inlined 1199 /// elements \p N, it is recommended to use \c SmallVector<T> (that is, 1200 /// omitting the \p N). This will choose a default number of inlined elements 1201 /// reasonable for allocation on the stack (for example, trying to keep \c 1202 /// sizeof(SmallVector<T>) around 64 bytes). 1203 /// 1204 /// \warning This does not attempt to be exception safe. 1205 /// 1206 /// \see https://llvm.org/docs/ProgrammersManual.html#llvm-adt-smallvector-h 1207 template <typename T, 1208 unsigned N = CalculateSmallVectorDefaultInlinedElements<T>::value> 1209 class LLVM_GSL_OWNER SmallVector : public SmallVectorImpl<T>, 1210 SmallVectorStorage<T, N> { 1211 public: 1212 SmallVector() : SmallVectorImpl<T>(N) {} 1213 1214 ~SmallVector() { 1215 // Destroy the constructed elements in the vector. 1216 this->destroy_range(this->begin(), this->end()); 1217 } 1218 1219 explicit SmallVector(size_t Size) 1220 : SmallVectorImpl<T>(N) { 1221 this->resize(Size); 1222 } 1223 1224 SmallVector(size_t Size, const T &Value) 1225 : SmallVectorImpl<T>(N) { 1226 this->assign(Size, Value); 1227 } 1228 1229 template <typename ItTy, typename = EnableIfConvertibleToInputIterator<ItTy>> 1230 SmallVector(ItTy S, ItTy E) : SmallVectorImpl<T>(N) { 1231 this->append(S, E); 1232 } 1233 1234 template <typename RangeTy> 1235 explicit SmallVector(const iterator_range<RangeTy> &R) 1236 : SmallVectorImpl<T>(N) { 1237 this->append(R.begin(), R.end()); 1238 } 1239 1240 SmallVector(std::initializer_list<T> IL) : SmallVectorImpl<T>(N) { 1241 this->append(IL); 1242 } 1243 1244 template <typename U, 1245 typename = std::enable_if_t<std::is_convertible<U, T>::value>> 1246 explicit SmallVector(ArrayRef<U> A) : SmallVectorImpl<T>(N) { 1247 this->append(A.begin(), A.end()); 1248 } 1249 1250 SmallVector(const SmallVector &RHS) : SmallVectorImpl<T>(N) { 1251 if (!RHS.empty()) 1252 SmallVectorImpl<T>::operator=(RHS); 1253 } 1254 1255 SmallVector &operator=(const SmallVector &RHS) { 1256 SmallVectorImpl<T>::operator=(RHS); 1257 return *this; 1258 } 1259 1260 SmallVector(SmallVector &&RHS) : SmallVectorImpl<T>(N) { 1261 if (!RHS.empty()) 1262 SmallVectorImpl<T>::operator=(::std::move(RHS)); 1263 } 1264 1265 SmallVector(SmallVectorImpl<T> &&RHS) : SmallVectorImpl<T>(N) { 1266 if (!RHS.empty()) 1267 SmallVectorImpl<T>::operator=(::std::move(RHS)); 1268 } 1269 1270 SmallVector &operator=(SmallVector &&RHS) { 1271 if (N) { 1272 SmallVectorImpl<T>::operator=(::std::move(RHS)); 1273 return *this; 1274 } 1275 // SmallVectorImpl<T>::operator= does not leverage N==0. Optimize the 1276 // case. 1277 if (this == &RHS) 1278 return *this; 1279 if (RHS.empty()) { 1280 this->destroy_range(this->begin(), this->end()); 1281 this->Size = 0; 1282 } else { 1283 this->assignRemote(std::move(RHS)); 1284 } 1285 return *this; 1286 } 1287 1288 SmallVector &operator=(SmallVectorImpl<T> &&RHS) { 1289 SmallVectorImpl<T>::operator=(::std::move(RHS)); 1290 return *this; 1291 } 1292 1293 SmallVector &operator=(std::initializer_list<T> IL) { 1294 this->assign(IL); 1295 return *this; 1296 } 1297 }; 1298 1299 template <typename T, unsigned N> 1300 inline size_t capacity_in_bytes(const SmallVector<T, N> &X) { 1301 return X.capacity_in_bytes(); 1302 } 1303 1304 template <typename RangeType> 1305 using ValueTypeFromRangeType = 1306 std::remove_const_t<std::remove_reference_t<decltype(*std::begin( 1307 std::declval<RangeType &>()))>>; 1308 1309 /// Given a range of type R, iterate the entire range and return a 1310 /// SmallVector with elements of the vector. This is useful, for example, 1311 /// when you want to iterate a range and then sort the results. 1312 template <unsigned Size, typename R> 1313 SmallVector<ValueTypeFromRangeType<R>, Size> to_vector(R &&Range) { 1314 return {std::begin(Range), std::end(Range)}; 1315 } 1316 template <typename R> 1317 SmallVector<ValueTypeFromRangeType<R>> to_vector(R &&Range) { 1318 return {std::begin(Range), std::end(Range)}; 1319 } 1320 1321 template <typename Out, unsigned Size, typename R> 1322 SmallVector<Out, Size> to_vector_of(R &&Range) { 1323 return {std::begin(Range), std::end(Range)}; 1324 } 1325 1326 template <typename Out, typename R> SmallVector<Out> to_vector_of(R &&Range) { 1327 return {std::begin(Range), std::end(Range)}; 1328 } 1329 1330 // Explicit instantiations 1331 extern template class llvm::SmallVectorBase<uint32_t>; 1332 #if SIZE_MAX > UINT32_MAX 1333 extern template class llvm::SmallVectorBase<uint64_t>; 1334 #endif 1335 1336 } // end namespace llvm 1337 1338 namespace std { 1339 1340 /// Implement std::swap in terms of SmallVector swap. 1341 template<typename T> 1342 inline void 1343 swap(llvm::SmallVectorImpl<T> &LHS, llvm::SmallVectorImpl<T> &RHS) { 1344 LHS.swap(RHS); 1345 } 1346 1347 /// Implement std::swap in terms of SmallVector swap. 1348 template<typename T, unsigned N> 1349 inline void 1350 swap(llvm::SmallVector<T, N> &LHS, llvm::SmallVector<T, N> &RHS) { 1351 LHS.swap(RHS); 1352 } 1353 1354 } // end namespace std 1355 1356 #endif // LLVM_ADT_SMALLVECTOR_H 1357