1 //===-- SimplifyIndVar.cpp - Induction variable simplification ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements induction variable simplification. It does
10 // not define any actual pass or policy, but provides a single function to
11 // simplify a loop's induction variables based on ScalarEvolution.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/IR/DataLayout.h"
21 #include "llvm/IR/Dominators.h"
22 #include "llvm/IR/IRBuilder.h"
23 #include "llvm/IR/Instructions.h"
24 #include "llvm/IR/IntrinsicInst.h"
25 #include "llvm/IR/PatternMatch.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include "llvm/Transforms/Utils/Local.h"
29 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
30
31 using namespace llvm;
32
33 #define DEBUG_TYPE "indvars"
34
35 STATISTIC(NumElimIdentity, "Number of IV identities eliminated");
36 STATISTIC(NumElimOperand, "Number of IV operands folded into a use");
37 STATISTIC(NumFoldedUser, "Number of IV users folded into a constant");
38 STATISTIC(NumElimRem , "Number of IV remainder operations eliminated");
39 STATISTIC(
40 NumSimplifiedSDiv,
41 "Number of IV signed division operations converted to unsigned division");
42 STATISTIC(
43 NumSimplifiedSRem,
44 "Number of IV signed remainder operations converted to unsigned remainder");
45 STATISTIC(NumElimCmp , "Number of IV comparisons eliminated");
46
47 namespace {
48 /// This is a utility for simplifying induction variables
49 /// based on ScalarEvolution. It is the primary instrument of the
50 /// IndvarSimplify pass, but it may also be directly invoked to cleanup after
51 /// other loop passes that preserve SCEV.
52 class SimplifyIndvar {
53 Loop *L;
54 LoopInfo *LI;
55 ScalarEvolution *SE;
56 DominatorTree *DT;
57 const TargetTransformInfo *TTI;
58 SCEVExpander &Rewriter;
59 SmallVectorImpl<WeakTrackingVH> &DeadInsts;
60
61 bool Changed;
62
63 public:
SimplifyIndvar(Loop * Loop,ScalarEvolution * SE,DominatorTree * DT,LoopInfo * LI,const TargetTransformInfo * TTI,SCEVExpander & Rewriter,SmallVectorImpl<WeakTrackingVH> & Dead)64 SimplifyIndvar(Loop *Loop, ScalarEvolution *SE, DominatorTree *DT,
65 LoopInfo *LI, const TargetTransformInfo *TTI,
66 SCEVExpander &Rewriter,
67 SmallVectorImpl<WeakTrackingVH> &Dead)
68 : L(Loop), LI(LI), SE(SE), DT(DT), TTI(TTI), Rewriter(Rewriter),
69 DeadInsts(Dead), Changed(false) {
70 assert(LI && "IV simplification requires LoopInfo");
71 }
72
hasChanged() const73 bool hasChanged() const { return Changed; }
74
75 /// Iteratively perform simplification on a worklist of users of the
76 /// specified induction variable. This is the top-level driver that applies
77 /// all simplifications to users of an IV.
78 void simplifyUsers(PHINode *CurrIV, IVVisitor *V = nullptr);
79
80 Value *foldIVUser(Instruction *UseInst, Instruction *IVOperand);
81
82 bool eliminateIdentitySCEV(Instruction *UseInst, Instruction *IVOperand);
83 bool replaceIVUserWithLoopInvariant(Instruction *UseInst);
84
85 bool eliminateOverflowIntrinsic(WithOverflowInst *WO);
86 bool eliminateSaturatingIntrinsic(SaturatingInst *SI);
87 bool eliminateTrunc(TruncInst *TI);
88 bool eliminateIVUser(Instruction *UseInst, Instruction *IVOperand);
89 bool makeIVComparisonInvariant(ICmpInst *ICmp, Value *IVOperand);
90 void eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand);
91 void simplifyIVRemainder(BinaryOperator *Rem, Value *IVOperand,
92 bool IsSigned);
93 void replaceRemWithNumerator(BinaryOperator *Rem);
94 void replaceRemWithNumeratorOrZero(BinaryOperator *Rem);
95 void replaceSRemWithURem(BinaryOperator *Rem);
96 bool eliminateSDiv(BinaryOperator *SDiv);
97 bool strengthenOverflowingOperation(BinaryOperator *OBO, Value *IVOperand);
98 bool strengthenRightShift(BinaryOperator *BO, Value *IVOperand);
99 };
100 }
101
102 /// Find a point in code which dominates all given instructions. We can safely
103 /// assume that, whatever fact we can prove at the found point, this fact is
104 /// also true for each of the given instructions.
findCommonDominator(ArrayRef<Instruction * > Instructions,DominatorTree & DT)105 static Instruction *findCommonDominator(ArrayRef<Instruction *> Instructions,
106 DominatorTree &DT) {
107 Instruction *CommonDom = nullptr;
108 for (auto *Insn : Instructions)
109 if (!CommonDom || DT.dominates(Insn, CommonDom))
110 CommonDom = Insn;
111 else if (!DT.dominates(CommonDom, Insn))
112 // If there is no dominance relation, use common dominator.
113 CommonDom =
114 DT.findNearestCommonDominator(CommonDom->getParent(),
115 Insn->getParent())->getTerminator();
116 assert(CommonDom && "Common dominator not found?");
117 return CommonDom;
118 }
119
120 /// Fold an IV operand into its use. This removes increments of an
121 /// aligned IV when used by a instruction that ignores the low bits.
122 ///
123 /// IVOperand is guaranteed SCEVable, but UseInst may not be.
124 ///
125 /// Return the operand of IVOperand for this induction variable if IVOperand can
126 /// be folded (in case more folding opportunities have been exposed).
127 /// Otherwise return null.
foldIVUser(Instruction * UseInst,Instruction * IVOperand)128 Value *SimplifyIndvar::foldIVUser(Instruction *UseInst, Instruction *IVOperand) {
129 Value *IVSrc = nullptr;
130 const unsigned OperIdx = 0;
131 const SCEV *FoldedExpr = nullptr;
132 bool MustDropExactFlag = false;
133 switch (UseInst->getOpcode()) {
134 default:
135 return nullptr;
136 case Instruction::UDiv:
137 case Instruction::LShr:
138 // We're only interested in the case where we know something about
139 // the numerator and have a constant denominator.
140 if (IVOperand != UseInst->getOperand(OperIdx) ||
141 !isa<ConstantInt>(UseInst->getOperand(1)))
142 return nullptr;
143
144 // Attempt to fold a binary operator with constant operand.
145 // e.g. ((I + 1) >> 2) => I >> 2
146 if (!isa<BinaryOperator>(IVOperand)
147 || !isa<ConstantInt>(IVOperand->getOperand(1)))
148 return nullptr;
149
150 IVSrc = IVOperand->getOperand(0);
151 // IVSrc must be the (SCEVable) IV, since the other operand is const.
152 assert(SE->isSCEVable(IVSrc->getType()) && "Expect SCEVable IV operand");
153
154 ConstantInt *D = cast<ConstantInt>(UseInst->getOperand(1));
155 if (UseInst->getOpcode() == Instruction::LShr) {
156 // Get a constant for the divisor. See createSCEV.
157 uint32_t BitWidth = cast<IntegerType>(UseInst->getType())->getBitWidth();
158 if (D->getValue().uge(BitWidth))
159 return nullptr;
160
161 D = ConstantInt::get(UseInst->getContext(),
162 APInt::getOneBitSet(BitWidth, D->getZExtValue()));
163 }
164 FoldedExpr = SE->getUDivExpr(SE->getSCEV(IVSrc), SE->getSCEV(D));
165 // We might have 'exact' flag set at this point which will no longer be
166 // correct after we make the replacement.
167 if (UseInst->isExact() &&
168 SE->getSCEV(IVSrc) != SE->getMulExpr(FoldedExpr, SE->getSCEV(D)))
169 MustDropExactFlag = true;
170 }
171 // We have something that might fold it's operand. Compare SCEVs.
172 if (!SE->isSCEVable(UseInst->getType()))
173 return nullptr;
174
175 // Bypass the operand if SCEV can prove it has no effect.
176 if (SE->getSCEV(UseInst) != FoldedExpr)
177 return nullptr;
178
179 LLVM_DEBUG(dbgs() << "INDVARS: Eliminated IV operand: " << *IVOperand
180 << " -> " << *UseInst << '\n');
181
182 UseInst->setOperand(OperIdx, IVSrc);
183 assert(SE->getSCEV(UseInst) == FoldedExpr && "bad SCEV with folded oper");
184
185 if (MustDropExactFlag)
186 UseInst->dropPoisonGeneratingFlags();
187
188 ++NumElimOperand;
189 Changed = true;
190 if (IVOperand->use_empty())
191 DeadInsts.emplace_back(IVOperand);
192 return IVSrc;
193 }
194
makeIVComparisonInvariant(ICmpInst * ICmp,Value * IVOperand)195 bool SimplifyIndvar::makeIVComparisonInvariant(ICmpInst *ICmp,
196 Value *IVOperand) {
197 unsigned IVOperIdx = 0;
198 ICmpInst::Predicate Pred = ICmp->getPredicate();
199 if (IVOperand != ICmp->getOperand(0)) {
200 // Swapped
201 assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand");
202 IVOperIdx = 1;
203 Pred = ICmpInst::getSwappedPredicate(Pred);
204 }
205
206 // Get the SCEVs for the ICmp operands (in the specific context of the
207 // current loop)
208 const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent());
209 const SCEV *S = SE->getSCEVAtScope(ICmp->getOperand(IVOperIdx), ICmpLoop);
210 const SCEV *X = SE->getSCEVAtScope(ICmp->getOperand(1 - IVOperIdx), ICmpLoop);
211
212 auto *PN = dyn_cast<PHINode>(IVOperand);
213 if (!PN)
214 return false;
215 auto LIP = SE->getLoopInvariantPredicate(Pred, S, X, L);
216 if (!LIP)
217 return false;
218 ICmpInst::Predicate InvariantPredicate = LIP->Pred;
219 const SCEV *InvariantLHS = LIP->LHS;
220 const SCEV *InvariantRHS = LIP->RHS;
221
222 // Rewrite the comparison to a loop invariant comparison if it can be done
223 // cheaply, where cheaply means "we don't need to emit any new
224 // instructions".
225
226 SmallDenseMap<const SCEV*, Value*> CheapExpansions;
227 CheapExpansions[S] = ICmp->getOperand(IVOperIdx);
228 CheapExpansions[X] = ICmp->getOperand(1 - IVOperIdx);
229
230 // TODO: Support multiple entry loops? (We currently bail out of these in
231 // the IndVarSimplify pass)
232 if (auto *BB = L->getLoopPredecessor()) {
233 const int Idx = PN->getBasicBlockIndex(BB);
234 if (Idx >= 0) {
235 Value *Incoming = PN->getIncomingValue(Idx);
236 const SCEV *IncomingS = SE->getSCEV(Incoming);
237 CheapExpansions[IncomingS] = Incoming;
238 }
239 }
240 Value *NewLHS = CheapExpansions[InvariantLHS];
241 Value *NewRHS = CheapExpansions[InvariantRHS];
242
243 if (!NewLHS)
244 if (auto *ConstLHS = dyn_cast<SCEVConstant>(InvariantLHS))
245 NewLHS = ConstLHS->getValue();
246 if (!NewRHS)
247 if (auto *ConstRHS = dyn_cast<SCEVConstant>(InvariantRHS))
248 NewRHS = ConstRHS->getValue();
249
250 if (!NewLHS || !NewRHS)
251 // We could not find an existing value to replace either LHS or RHS.
252 // Generating new instructions has subtler tradeoffs, so avoid doing that
253 // for now.
254 return false;
255
256 LLVM_DEBUG(dbgs() << "INDVARS: Simplified comparison: " << *ICmp << '\n');
257 ICmp->setPredicate(InvariantPredicate);
258 ICmp->setOperand(0, NewLHS);
259 ICmp->setOperand(1, NewRHS);
260 return true;
261 }
262
263 /// SimplifyIVUsers helper for eliminating useless
264 /// comparisons against an induction variable.
eliminateIVComparison(ICmpInst * ICmp,Value * IVOperand)265 void SimplifyIndvar::eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand) {
266 unsigned IVOperIdx = 0;
267 ICmpInst::Predicate Pred = ICmp->getPredicate();
268 ICmpInst::Predicate OriginalPred = Pred;
269 if (IVOperand != ICmp->getOperand(0)) {
270 // Swapped
271 assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand");
272 IVOperIdx = 1;
273 Pred = ICmpInst::getSwappedPredicate(Pred);
274 }
275
276 // Get the SCEVs for the ICmp operands (in the specific context of the
277 // current loop)
278 const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent());
279 const SCEV *S = SE->getSCEVAtScope(ICmp->getOperand(IVOperIdx), ICmpLoop);
280 const SCEV *X = SE->getSCEVAtScope(ICmp->getOperand(1 - IVOperIdx), ICmpLoop);
281
282 // If the condition is always true or always false in the given context,
283 // replace it with a constant value.
284 SmallVector<Instruction *, 4> Users;
285 for (auto *U : ICmp->users())
286 Users.push_back(cast<Instruction>(U));
287 const Instruction *CtxI = findCommonDominator(Users, *DT);
288 if (auto Ev = SE->evaluatePredicateAt(Pred, S, X, CtxI)) {
289 ICmp->replaceAllUsesWith(ConstantInt::getBool(ICmp->getContext(), *Ev));
290 DeadInsts.emplace_back(ICmp);
291 LLVM_DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n');
292 } else if (makeIVComparisonInvariant(ICmp, IVOperand)) {
293 // fallthrough to end of function
294 } else if (ICmpInst::isSigned(OriginalPred) &&
295 SE->isKnownNonNegative(S) && SE->isKnownNonNegative(X)) {
296 // If we were unable to make anything above, all we can is to canonicalize
297 // the comparison hoping that it will open the doors for other
298 // optimizations. If we find out that we compare two non-negative values,
299 // we turn the instruction's predicate to its unsigned version. Note that
300 // we cannot rely on Pred here unless we check if we have swapped it.
301 assert(ICmp->getPredicate() == OriginalPred && "Predicate changed?");
302 LLVM_DEBUG(dbgs() << "INDVARS: Turn to unsigned comparison: " << *ICmp
303 << '\n');
304 ICmp->setPredicate(ICmpInst::getUnsignedPredicate(OriginalPred));
305 } else
306 return;
307
308 ++NumElimCmp;
309 Changed = true;
310 }
311
eliminateSDiv(BinaryOperator * SDiv)312 bool SimplifyIndvar::eliminateSDiv(BinaryOperator *SDiv) {
313 // Get the SCEVs for the ICmp operands.
314 auto *N = SE->getSCEV(SDiv->getOperand(0));
315 auto *D = SE->getSCEV(SDiv->getOperand(1));
316
317 // Simplify unnecessary loops away.
318 const Loop *L = LI->getLoopFor(SDiv->getParent());
319 N = SE->getSCEVAtScope(N, L);
320 D = SE->getSCEVAtScope(D, L);
321
322 // Replace sdiv by udiv if both of the operands are non-negative
323 if (SE->isKnownNonNegative(N) && SE->isKnownNonNegative(D)) {
324 auto *UDiv = BinaryOperator::Create(
325 BinaryOperator::UDiv, SDiv->getOperand(0), SDiv->getOperand(1),
326 SDiv->getName() + ".udiv", SDiv);
327 UDiv->setIsExact(SDiv->isExact());
328 SDiv->replaceAllUsesWith(UDiv);
329 LLVM_DEBUG(dbgs() << "INDVARS: Simplified sdiv: " << *SDiv << '\n');
330 ++NumSimplifiedSDiv;
331 Changed = true;
332 DeadInsts.push_back(SDiv);
333 return true;
334 }
335
336 return false;
337 }
338
339 // i %s n -> i %u n if i >= 0 and n >= 0
replaceSRemWithURem(BinaryOperator * Rem)340 void SimplifyIndvar::replaceSRemWithURem(BinaryOperator *Rem) {
341 auto *N = Rem->getOperand(0), *D = Rem->getOperand(1);
342 auto *URem = BinaryOperator::Create(BinaryOperator::URem, N, D,
343 Rem->getName() + ".urem", Rem);
344 Rem->replaceAllUsesWith(URem);
345 LLVM_DEBUG(dbgs() << "INDVARS: Simplified srem: " << *Rem << '\n');
346 ++NumSimplifiedSRem;
347 Changed = true;
348 DeadInsts.emplace_back(Rem);
349 }
350
351 // i % n --> i if i is in [0,n).
replaceRemWithNumerator(BinaryOperator * Rem)352 void SimplifyIndvar::replaceRemWithNumerator(BinaryOperator *Rem) {
353 Rem->replaceAllUsesWith(Rem->getOperand(0));
354 LLVM_DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n');
355 ++NumElimRem;
356 Changed = true;
357 DeadInsts.emplace_back(Rem);
358 }
359
360 // (i+1) % n --> (i+1)==n?0:(i+1) if i is in [0,n).
replaceRemWithNumeratorOrZero(BinaryOperator * Rem)361 void SimplifyIndvar::replaceRemWithNumeratorOrZero(BinaryOperator *Rem) {
362 auto *T = Rem->getType();
363 auto *N = Rem->getOperand(0), *D = Rem->getOperand(1);
364 ICmpInst *ICmp = new ICmpInst(Rem, ICmpInst::ICMP_EQ, N, D);
365 SelectInst *Sel =
366 SelectInst::Create(ICmp, ConstantInt::get(T, 0), N, "iv.rem", Rem);
367 Rem->replaceAllUsesWith(Sel);
368 LLVM_DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n');
369 ++NumElimRem;
370 Changed = true;
371 DeadInsts.emplace_back(Rem);
372 }
373
374 /// SimplifyIVUsers helper for eliminating useless remainder operations
375 /// operating on an induction variable or replacing srem by urem.
simplifyIVRemainder(BinaryOperator * Rem,Value * IVOperand,bool IsSigned)376 void SimplifyIndvar::simplifyIVRemainder(BinaryOperator *Rem, Value *IVOperand,
377 bool IsSigned) {
378 auto *NValue = Rem->getOperand(0);
379 auto *DValue = Rem->getOperand(1);
380 // We're only interested in the case where we know something about
381 // the numerator, unless it is a srem, because we want to replace srem by urem
382 // in general.
383 bool UsedAsNumerator = IVOperand == NValue;
384 if (!UsedAsNumerator && !IsSigned)
385 return;
386
387 const SCEV *N = SE->getSCEV(NValue);
388
389 // Simplify unnecessary loops away.
390 const Loop *ICmpLoop = LI->getLoopFor(Rem->getParent());
391 N = SE->getSCEVAtScope(N, ICmpLoop);
392
393 bool IsNumeratorNonNegative = !IsSigned || SE->isKnownNonNegative(N);
394
395 // Do not proceed if the Numerator may be negative
396 if (!IsNumeratorNonNegative)
397 return;
398
399 const SCEV *D = SE->getSCEV(DValue);
400 D = SE->getSCEVAtScope(D, ICmpLoop);
401
402 if (UsedAsNumerator) {
403 auto LT = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
404 if (SE->isKnownPredicate(LT, N, D)) {
405 replaceRemWithNumerator(Rem);
406 return;
407 }
408
409 auto *T = Rem->getType();
410 const auto *NLessOne = SE->getMinusSCEV(N, SE->getOne(T));
411 if (SE->isKnownPredicate(LT, NLessOne, D)) {
412 replaceRemWithNumeratorOrZero(Rem);
413 return;
414 }
415 }
416
417 // Try to replace SRem with URem, if both N and D are known non-negative.
418 // Since we had already check N, we only need to check D now
419 if (!IsSigned || !SE->isKnownNonNegative(D))
420 return;
421
422 replaceSRemWithURem(Rem);
423 }
424
willNotOverflow(ScalarEvolution * SE,Instruction::BinaryOps BinOp,bool Signed,const SCEV * LHS,const SCEV * RHS)425 static bool willNotOverflow(ScalarEvolution *SE, Instruction::BinaryOps BinOp,
426 bool Signed, const SCEV *LHS, const SCEV *RHS) {
427 const SCEV *(ScalarEvolution::*Operation)(const SCEV *, const SCEV *,
428 SCEV::NoWrapFlags, unsigned);
429 switch (BinOp) {
430 default:
431 llvm_unreachable("Unsupported binary op");
432 case Instruction::Add:
433 Operation = &ScalarEvolution::getAddExpr;
434 break;
435 case Instruction::Sub:
436 Operation = &ScalarEvolution::getMinusSCEV;
437 break;
438 case Instruction::Mul:
439 Operation = &ScalarEvolution::getMulExpr;
440 break;
441 }
442
443 const SCEV *(ScalarEvolution::*Extension)(const SCEV *, Type *, unsigned) =
444 Signed ? &ScalarEvolution::getSignExtendExpr
445 : &ScalarEvolution::getZeroExtendExpr;
446
447 // Check ext(LHS op RHS) == ext(LHS) op ext(RHS)
448 auto *NarrowTy = cast<IntegerType>(LHS->getType());
449 auto *WideTy =
450 IntegerType::get(NarrowTy->getContext(), NarrowTy->getBitWidth() * 2);
451
452 const SCEV *A =
453 (SE->*Extension)((SE->*Operation)(LHS, RHS, SCEV::FlagAnyWrap, 0),
454 WideTy, 0);
455 const SCEV *B =
456 (SE->*Operation)((SE->*Extension)(LHS, WideTy, 0),
457 (SE->*Extension)(RHS, WideTy, 0), SCEV::FlagAnyWrap, 0);
458 return A == B;
459 }
460
eliminateOverflowIntrinsic(WithOverflowInst * WO)461 bool SimplifyIndvar::eliminateOverflowIntrinsic(WithOverflowInst *WO) {
462 const SCEV *LHS = SE->getSCEV(WO->getLHS());
463 const SCEV *RHS = SE->getSCEV(WO->getRHS());
464 if (!willNotOverflow(SE, WO->getBinaryOp(), WO->isSigned(), LHS, RHS))
465 return false;
466
467 // Proved no overflow, nuke the overflow check and, if possible, the overflow
468 // intrinsic as well.
469
470 BinaryOperator *NewResult = BinaryOperator::Create(
471 WO->getBinaryOp(), WO->getLHS(), WO->getRHS(), "", WO);
472
473 if (WO->isSigned())
474 NewResult->setHasNoSignedWrap(true);
475 else
476 NewResult->setHasNoUnsignedWrap(true);
477
478 SmallVector<ExtractValueInst *, 4> ToDelete;
479
480 for (auto *U : WO->users()) {
481 if (auto *EVI = dyn_cast<ExtractValueInst>(U)) {
482 if (EVI->getIndices()[0] == 1)
483 EVI->replaceAllUsesWith(ConstantInt::getFalse(WO->getContext()));
484 else {
485 assert(EVI->getIndices()[0] == 0 && "Only two possibilities!");
486 EVI->replaceAllUsesWith(NewResult);
487 }
488 ToDelete.push_back(EVI);
489 }
490 }
491
492 for (auto *EVI : ToDelete)
493 EVI->eraseFromParent();
494
495 if (WO->use_empty())
496 WO->eraseFromParent();
497
498 Changed = true;
499 return true;
500 }
501
eliminateSaturatingIntrinsic(SaturatingInst * SI)502 bool SimplifyIndvar::eliminateSaturatingIntrinsic(SaturatingInst *SI) {
503 const SCEV *LHS = SE->getSCEV(SI->getLHS());
504 const SCEV *RHS = SE->getSCEV(SI->getRHS());
505 if (!willNotOverflow(SE, SI->getBinaryOp(), SI->isSigned(), LHS, RHS))
506 return false;
507
508 BinaryOperator *BO = BinaryOperator::Create(
509 SI->getBinaryOp(), SI->getLHS(), SI->getRHS(), SI->getName(), SI);
510 if (SI->isSigned())
511 BO->setHasNoSignedWrap();
512 else
513 BO->setHasNoUnsignedWrap();
514
515 SI->replaceAllUsesWith(BO);
516 DeadInsts.emplace_back(SI);
517 Changed = true;
518 return true;
519 }
520
eliminateTrunc(TruncInst * TI)521 bool SimplifyIndvar::eliminateTrunc(TruncInst *TI) {
522 // It is always legal to replace
523 // icmp <pred> i32 trunc(iv), n
524 // with
525 // icmp <pred> i64 sext(trunc(iv)), sext(n), if pred is signed predicate.
526 // Or with
527 // icmp <pred> i64 zext(trunc(iv)), zext(n), if pred is unsigned predicate.
528 // Or with either of these if pred is an equality predicate.
529 //
530 // If we can prove that iv == sext(trunc(iv)) or iv == zext(trunc(iv)) for
531 // every comparison which uses trunc, it means that we can replace each of
532 // them with comparison of iv against sext/zext(n). We no longer need trunc
533 // after that.
534 //
535 // TODO: Should we do this if we can widen *some* comparisons, but not all
536 // of them? Sometimes it is enough to enable other optimizations, but the
537 // trunc instruction will stay in the loop.
538 Value *IV = TI->getOperand(0);
539 Type *IVTy = IV->getType();
540 const SCEV *IVSCEV = SE->getSCEV(IV);
541 const SCEV *TISCEV = SE->getSCEV(TI);
542
543 // Check if iv == zext(trunc(iv)) and if iv == sext(trunc(iv)). If so, we can
544 // get rid of trunc
545 bool DoesSExtCollapse = false;
546 bool DoesZExtCollapse = false;
547 if (IVSCEV == SE->getSignExtendExpr(TISCEV, IVTy))
548 DoesSExtCollapse = true;
549 if (IVSCEV == SE->getZeroExtendExpr(TISCEV, IVTy))
550 DoesZExtCollapse = true;
551
552 // If neither sext nor zext does collapse, it is not profitable to do any
553 // transform. Bail.
554 if (!DoesSExtCollapse && !DoesZExtCollapse)
555 return false;
556
557 // Collect users of the trunc that look like comparisons against invariants.
558 // Bail if we find something different.
559 SmallVector<ICmpInst *, 4> ICmpUsers;
560 for (auto *U : TI->users()) {
561 // We don't care about users in unreachable blocks.
562 if (isa<Instruction>(U) &&
563 !DT->isReachableFromEntry(cast<Instruction>(U)->getParent()))
564 continue;
565 ICmpInst *ICI = dyn_cast<ICmpInst>(U);
566 if (!ICI) return false;
567 assert(L->contains(ICI->getParent()) && "LCSSA form broken?");
568 if (!(ICI->getOperand(0) == TI && L->isLoopInvariant(ICI->getOperand(1))) &&
569 !(ICI->getOperand(1) == TI && L->isLoopInvariant(ICI->getOperand(0))))
570 return false;
571 // If we cannot get rid of trunc, bail.
572 if (ICI->isSigned() && !DoesSExtCollapse)
573 return false;
574 if (ICI->isUnsigned() && !DoesZExtCollapse)
575 return false;
576 // For equality, either signed or unsigned works.
577 ICmpUsers.push_back(ICI);
578 }
579
580 auto CanUseZExt = [&](ICmpInst *ICI) {
581 // Unsigned comparison can be widened as unsigned.
582 if (ICI->isUnsigned())
583 return true;
584 // Is it profitable to do zext?
585 if (!DoesZExtCollapse)
586 return false;
587 // For equality, we can safely zext both parts.
588 if (ICI->isEquality())
589 return true;
590 // Otherwise we can only use zext when comparing two non-negative or two
591 // negative values. But in practice, we will never pass DoesZExtCollapse
592 // check for a negative value, because zext(trunc(x)) is non-negative. So
593 // it only make sense to check for non-negativity here.
594 const SCEV *SCEVOP1 = SE->getSCEV(ICI->getOperand(0));
595 const SCEV *SCEVOP2 = SE->getSCEV(ICI->getOperand(1));
596 return SE->isKnownNonNegative(SCEVOP1) && SE->isKnownNonNegative(SCEVOP2);
597 };
598 // Replace all comparisons against trunc with comparisons against IV.
599 for (auto *ICI : ICmpUsers) {
600 bool IsSwapped = L->isLoopInvariant(ICI->getOperand(0));
601 auto *Op1 = IsSwapped ? ICI->getOperand(0) : ICI->getOperand(1);
602 Instruction *Ext = nullptr;
603 // For signed/unsigned predicate, replace the old comparison with comparison
604 // of immediate IV against sext/zext of the invariant argument. If we can
605 // use either sext or zext (i.e. we are dealing with equality predicate),
606 // then prefer zext as a more canonical form.
607 // TODO: If we see a signed comparison which can be turned into unsigned,
608 // we can do it here for canonicalization purposes.
609 ICmpInst::Predicate Pred = ICI->getPredicate();
610 if (IsSwapped) Pred = ICmpInst::getSwappedPredicate(Pred);
611 if (CanUseZExt(ICI)) {
612 assert(DoesZExtCollapse && "Unprofitable zext?");
613 Ext = new ZExtInst(Op1, IVTy, "zext", ICI);
614 Pred = ICmpInst::getUnsignedPredicate(Pred);
615 } else {
616 assert(DoesSExtCollapse && "Unprofitable sext?");
617 Ext = new SExtInst(Op1, IVTy, "sext", ICI);
618 assert(Pred == ICmpInst::getSignedPredicate(Pred) && "Must be signed!");
619 }
620 bool Changed;
621 L->makeLoopInvariant(Ext, Changed);
622 (void)Changed;
623 ICmpInst *NewICI = new ICmpInst(ICI, Pred, IV, Ext);
624 ICI->replaceAllUsesWith(NewICI);
625 DeadInsts.emplace_back(ICI);
626 }
627
628 // Trunc no longer needed.
629 TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
630 DeadInsts.emplace_back(TI);
631 return true;
632 }
633
634 /// Eliminate an operation that consumes a simple IV and has no observable
635 /// side-effect given the range of IV values. IVOperand is guaranteed SCEVable,
636 /// but UseInst may not be.
eliminateIVUser(Instruction * UseInst,Instruction * IVOperand)637 bool SimplifyIndvar::eliminateIVUser(Instruction *UseInst,
638 Instruction *IVOperand) {
639 if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) {
640 eliminateIVComparison(ICmp, IVOperand);
641 return true;
642 }
643 if (BinaryOperator *Bin = dyn_cast<BinaryOperator>(UseInst)) {
644 bool IsSRem = Bin->getOpcode() == Instruction::SRem;
645 if (IsSRem || Bin->getOpcode() == Instruction::URem) {
646 simplifyIVRemainder(Bin, IVOperand, IsSRem);
647 return true;
648 }
649
650 if (Bin->getOpcode() == Instruction::SDiv)
651 return eliminateSDiv(Bin);
652 }
653
654 if (auto *WO = dyn_cast<WithOverflowInst>(UseInst))
655 if (eliminateOverflowIntrinsic(WO))
656 return true;
657
658 if (auto *SI = dyn_cast<SaturatingInst>(UseInst))
659 if (eliminateSaturatingIntrinsic(SI))
660 return true;
661
662 if (auto *TI = dyn_cast<TruncInst>(UseInst))
663 if (eliminateTrunc(TI))
664 return true;
665
666 if (eliminateIdentitySCEV(UseInst, IVOperand))
667 return true;
668
669 return false;
670 }
671
GetLoopInvariantInsertPosition(Loop * L,Instruction * Hint)672 static Instruction *GetLoopInvariantInsertPosition(Loop *L, Instruction *Hint) {
673 if (auto *BB = L->getLoopPreheader())
674 return BB->getTerminator();
675
676 return Hint;
677 }
678
679 /// Replace the UseInst with a loop invariant expression if it is safe.
replaceIVUserWithLoopInvariant(Instruction * I)680 bool SimplifyIndvar::replaceIVUserWithLoopInvariant(Instruction *I) {
681 if (!SE->isSCEVable(I->getType()))
682 return false;
683
684 // Get the symbolic expression for this instruction.
685 const SCEV *S = SE->getSCEV(I);
686
687 if (!SE->isLoopInvariant(S, L))
688 return false;
689
690 // Do not generate something ridiculous even if S is loop invariant.
691 if (Rewriter.isHighCostExpansion(S, L, SCEVCheapExpansionBudget, TTI, I))
692 return false;
693
694 auto *IP = GetLoopInvariantInsertPosition(L, I);
695
696 if (!isSafeToExpandAt(S, IP, *SE)) {
697 LLVM_DEBUG(dbgs() << "INDVARS: Can not replace IV user: " << *I
698 << " with non-speculable loop invariant: " << *S << '\n');
699 return false;
700 }
701
702 auto *Invariant = Rewriter.expandCodeFor(S, I->getType(), IP);
703
704 I->replaceAllUsesWith(Invariant);
705 LLVM_DEBUG(dbgs() << "INDVARS: Replace IV user: " << *I
706 << " with loop invariant: " << *S << '\n');
707 ++NumFoldedUser;
708 Changed = true;
709 DeadInsts.emplace_back(I);
710 return true;
711 }
712
713 /// Eliminate any operation that SCEV can prove is an identity function.
eliminateIdentitySCEV(Instruction * UseInst,Instruction * IVOperand)714 bool SimplifyIndvar::eliminateIdentitySCEV(Instruction *UseInst,
715 Instruction *IVOperand) {
716 if (!SE->isSCEVable(UseInst->getType()) ||
717 (UseInst->getType() != IVOperand->getType()) ||
718 (SE->getSCEV(UseInst) != SE->getSCEV(IVOperand)))
719 return false;
720
721 // getSCEV(X) == getSCEV(Y) does not guarantee that X and Y are related in the
722 // dominator tree, even if X is an operand to Y. For instance, in
723 //
724 // %iv = phi i32 {0,+,1}
725 // br %cond, label %left, label %merge
726 //
727 // left:
728 // %X = add i32 %iv, 0
729 // br label %merge
730 //
731 // merge:
732 // %M = phi (%X, %iv)
733 //
734 // getSCEV(%M) == getSCEV(%X) == {0,+,1}, but %X does not dominate %M, and
735 // %M.replaceAllUsesWith(%X) would be incorrect.
736
737 if (isa<PHINode>(UseInst))
738 // If UseInst is not a PHI node then we know that IVOperand dominates
739 // UseInst directly from the legality of SSA.
740 if (!DT || !DT->dominates(IVOperand, UseInst))
741 return false;
742
743 if (!LI->replacementPreservesLCSSAForm(UseInst, IVOperand))
744 return false;
745
746 LLVM_DEBUG(dbgs() << "INDVARS: Eliminated identity: " << *UseInst << '\n');
747
748 UseInst->replaceAllUsesWith(IVOperand);
749 ++NumElimIdentity;
750 Changed = true;
751 DeadInsts.emplace_back(UseInst);
752 return true;
753 }
754
755 /// Annotate BO with nsw / nuw if it provably does not signed-overflow /
756 /// unsigned-overflow. Returns true if anything changed, false otherwise.
strengthenOverflowingOperation(BinaryOperator * BO,Value * IVOperand)757 bool SimplifyIndvar::strengthenOverflowingOperation(BinaryOperator *BO,
758 Value *IVOperand) {
759 // Fastpath: we don't have any work to do if `BO` is `nuw` and `nsw`.
760 if (BO->hasNoUnsignedWrap() && BO->hasNoSignedWrap())
761 return false;
762
763 if (BO->getOpcode() != Instruction::Add &&
764 BO->getOpcode() != Instruction::Sub &&
765 BO->getOpcode() != Instruction::Mul)
766 return false;
767
768 const SCEV *LHS = SE->getSCEV(BO->getOperand(0));
769 const SCEV *RHS = SE->getSCEV(BO->getOperand(1));
770 bool Changed = false;
771
772 if (!BO->hasNoUnsignedWrap() &&
773 willNotOverflow(SE, BO->getOpcode(), /* Signed */ false, LHS, RHS)) {
774 BO->setHasNoUnsignedWrap();
775 SE->forgetValue(BO);
776 Changed = true;
777 }
778
779 if (!BO->hasNoSignedWrap() &&
780 willNotOverflow(SE, BO->getOpcode(), /* Signed */ true, LHS, RHS)) {
781 BO->setHasNoSignedWrap();
782 SE->forgetValue(BO);
783 Changed = true;
784 }
785
786 return Changed;
787 }
788
789 /// Annotate the Shr in (X << IVOperand) >> C as exact using the
790 /// information from the IV's range. Returns true if anything changed, false
791 /// otherwise.
strengthenRightShift(BinaryOperator * BO,Value * IVOperand)792 bool SimplifyIndvar::strengthenRightShift(BinaryOperator *BO,
793 Value *IVOperand) {
794 using namespace llvm::PatternMatch;
795
796 if (BO->getOpcode() == Instruction::Shl) {
797 bool Changed = false;
798 ConstantRange IVRange = SE->getUnsignedRange(SE->getSCEV(IVOperand));
799 for (auto *U : BO->users()) {
800 const APInt *C;
801 if (match(U,
802 m_AShr(m_Shl(m_Value(), m_Specific(IVOperand)), m_APInt(C))) ||
803 match(U,
804 m_LShr(m_Shl(m_Value(), m_Specific(IVOperand)), m_APInt(C)))) {
805 BinaryOperator *Shr = cast<BinaryOperator>(U);
806 if (!Shr->isExact() && IVRange.getUnsignedMin().uge(*C)) {
807 Shr->setIsExact(true);
808 Changed = true;
809 }
810 }
811 }
812 return Changed;
813 }
814
815 return false;
816 }
817
818 /// Add all uses of Def to the current IV's worklist.
pushIVUsers(Instruction * Def,Loop * L,SmallPtrSet<Instruction *,16> & Simplified,SmallVectorImpl<std::pair<Instruction *,Instruction * >> & SimpleIVUsers)819 static void pushIVUsers(
820 Instruction *Def, Loop *L,
821 SmallPtrSet<Instruction*,16> &Simplified,
822 SmallVectorImpl< std::pair<Instruction*,Instruction*> > &SimpleIVUsers) {
823
824 for (User *U : Def->users()) {
825 Instruction *UI = cast<Instruction>(U);
826
827 // Avoid infinite or exponential worklist processing.
828 // Also ensure unique worklist users.
829 // If Def is a LoopPhi, it may not be in the Simplified set, so check for
830 // self edges first.
831 if (UI == Def)
832 continue;
833
834 // Only change the current Loop, do not change the other parts (e.g. other
835 // Loops).
836 if (!L->contains(UI))
837 continue;
838
839 // Do not push the same instruction more than once.
840 if (!Simplified.insert(UI).second)
841 continue;
842
843 SimpleIVUsers.push_back(std::make_pair(UI, Def));
844 }
845 }
846
847 /// Return true if this instruction generates a simple SCEV
848 /// expression in terms of that IV.
849 ///
850 /// This is similar to IVUsers' isInteresting() but processes each instruction
851 /// non-recursively when the operand is already known to be a simpleIVUser.
852 ///
isSimpleIVUser(Instruction * I,const Loop * L,ScalarEvolution * SE)853 static bool isSimpleIVUser(Instruction *I, const Loop *L, ScalarEvolution *SE) {
854 if (!SE->isSCEVable(I->getType()))
855 return false;
856
857 // Get the symbolic expression for this instruction.
858 const SCEV *S = SE->getSCEV(I);
859
860 // Only consider affine recurrences.
861 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S);
862 if (AR && AR->getLoop() == L)
863 return true;
864
865 return false;
866 }
867
868 /// Iteratively perform simplification on a worklist of users
869 /// of the specified induction variable. Each successive simplification may push
870 /// more users which may themselves be candidates for simplification.
871 ///
872 /// This algorithm does not require IVUsers analysis. Instead, it simplifies
873 /// instructions in-place during analysis. Rather than rewriting induction
874 /// variables bottom-up from their users, it transforms a chain of IVUsers
875 /// top-down, updating the IR only when it encounters a clear optimization
876 /// opportunity.
877 ///
878 /// Once DisableIVRewrite is default, LSR will be the only client of IVUsers.
879 ///
simplifyUsers(PHINode * CurrIV,IVVisitor * V)880 void SimplifyIndvar::simplifyUsers(PHINode *CurrIV, IVVisitor *V) {
881 if (!SE->isSCEVable(CurrIV->getType()))
882 return;
883
884 // Instructions processed by SimplifyIndvar for CurrIV.
885 SmallPtrSet<Instruction*,16> Simplified;
886
887 // Use-def pairs if IV users waiting to be processed for CurrIV.
888 SmallVector<std::pair<Instruction*, Instruction*>, 8> SimpleIVUsers;
889
890 // Push users of the current LoopPhi. In rare cases, pushIVUsers may be
891 // called multiple times for the same LoopPhi. This is the proper thing to
892 // do for loop header phis that use each other.
893 pushIVUsers(CurrIV, L, Simplified, SimpleIVUsers);
894
895 while (!SimpleIVUsers.empty()) {
896 std::pair<Instruction*, Instruction*> UseOper =
897 SimpleIVUsers.pop_back_val();
898 Instruction *UseInst = UseOper.first;
899
900 // If a user of the IndVar is trivially dead, we prefer just to mark it dead
901 // rather than try to do some complex analysis or transformation (such as
902 // widening) basing on it.
903 // TODO: Propagate TLI and pass it here to handle more cases.
904 if (isInstructionTriviallyDead(UseInst, /* TLI */ nullptr)) {
905 DeadInsts.emplace_back(UseInst);
906 continue;
907 }
908
909 // Bypass back edges to avoid extra work.
910 if (UseInst == CurrIV) continue;
911
912 // Try to replace UseInst with a loop invariant before any other
913 // simplifications.
914 if (replaceIVUserWithLoopInvariant(UseInst))
915 continue;
916
917 Instruction *IVOperand = UseOper.second;
918 for (unsigned N = 0; IVOperand; ++N) {
919 assert(N <= Simplified.size() && "runaway iteration");
920
921 Value *NewOper = foldIVUser(UseInst, IVOperand);
922 if (!NewOper)
923 break; // done folding
924 IVOperand = dyn_cast<Instruction>(NewOper);
925 }
926 if (!IVOperand)
927 continue;
928
929 if (eliminateIVUser(UseInst, IVOperand)) {
930 pushIVUsers(IVOperand, L, Simplified, SimpleIVUsers);
931 continue;
932 }
933
934 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(UseInst)) {
935 if ((isa<OverflowingBinaryOperator>(BO) &&
936 strengthenOverflowingOperation(BO, IVOperand)) ||
937 (isa<ShlOperator>(BO) && strengthenRightShift(BO, IVOperand))) {
938 // re-queue uses of the now modified binary operator and fall
939 // through to the checks that remain.
940 pushIVUsers(IVOperand, L, Simplified, SimpleIVUsers);
941 }
942 }
943
944 CastInst *Cast = dyn_cast<CastInst>(UseInst);
945 if (V && Cast) {
946 V->visitCast(Cast);
947 continue;
948 }
949 if (isSimpleIVUser(UseInst, L, SE)) {
950 pushIVUsers(UseInst, L, Simplified, SimpleIVUsers);
951 }
952 }
953 }
954
955 namespace llvm {
956
anchor()957 void IVVisitor::anchor() { }
958
959 /// Simplify instructions that use this induction variable
960 /// by using ScalarEvolution to analyze the IV's recurrence.
simplifyUsersOfIV(PHINode * CurrIV,ScalarEvolution * SE,DominatorTree * DT,LoopInfo * LI,const TargetTransformInfo * TTI,SmallVectorImpl<WeakTrackingVH> & Dead,SCEVExpander & Rewriter,IVVisitor * V)961 bool simplifyUsersOfIV(PHINode *CurrIV, ScalarEvolution *SE, DominatorTree *DT,
962 LoopInfo *LI, const TargetTransformInfo *TTI,
963 SmallVectorImpl<WeakTrackingVH> &Dead,
964 SCEVExpander &Rewriter, IVVisitor *V) {
965 SimplifyIndvar SIV(LI->getLoopFor(CurrIV->getParent()), SE, DT, LI, TTI,
966 Rewriter, Dead);
967 SIV.simplifyUsers(CurrIV, V);
968 return SIV.hasChanged();
969 }
970
971 /// Simplify users of induction variables within this
972 /// loop. This does not actually change or add IVs.
simplifyLoopIVs(Loop * L,ScalarEvolution * SE,DominatorTree * DT,LoopInfo * LI,const TargetTransformInfo * TTI,SmallVectorImpl<WeakTrackingVH> & Dead)973 bool simplifyLoopIVs(Loop *L, ScalarEvolution *SE, DominatorTree *DT,
974 LoopInfo *LI, const TargetTransformInfo *TTI,
975 SmallVectorImpl<WeakTrackingVH> &Dead) {
976 SCEVExpander Rewriter(*SE, SE->getDataLayout(), "indvars");
977 #ifndef NDEBUG
978 Rewriter.setDebugType(DEBUG_TYPE);
979 #endif
980 bool Changed = false;
981 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
982 Changed |=
983 simplifyUsersOfIV(cast<PHINode>(I), SE, DT, LI, TTI, Dead, Rewriter);
984 }
985 return Changed;
986 }
987
988 } // namespace llvm
989
990 //===----------------------------------------------------------------------===//
991 // Widen Induction Variables - Extend the width of an IV to cover its
992 // widest uses.
993 //===----------------------------------------------------------------------===//
994
995 class WidenIV {
996 // Parameters
997 PHINode *OrigPhi;
998 Type *WideType;
999
1000 // Context
1001 LoopInfo *LI;
1002 Loop *L;
1003 ScalarEvolution *SE;
1004 DominatorTree *DT;
1005
1006 // Does the module have any calls to the llvm.experimental.guard intrinsic
1007 // at all? If not we can avoid scanning instructions looking for guards.
1008 bool HasGuards;
1009
1010 bool UsePostIncrementRanges;
1011
1012 // Statistics
1013 unsigned NumElimExt = 0;
1014 unsigned NumWidened = 0;
1015
1016 // Result
1017 PHINode *WidePhi = nullptr;
1018 Instruction *WideInc = nullptr;
1019 const SCEV *WideIncExpr = nullptr;
1020 SmallVectorImpl<WeakTrackingVH> &DeadInsts;
1021
1022 SmallPtrSet<Instruction *,16> Widened;
1023
1024 enum ExtendKind { ZeroExtended, SignExtended, Unknown };
1025
1026 // A map tracking the kind of extension used to widen each narrow IV
1027 // and narrow IV user.
1028 // Key: pointer to a narrow IV or IV user.
1029 // Value: the kind of extension used to widen this Instruction.
1030 DenseMap<AssertingVH<Instruction>, ExtendKind> ExtendKindMap;
1031
1032 using DefUserPair = std::pair<AssertingVH<Value>, AssertingVH<Instruction>>;
1033
1034 // A map with control-dependent ranges for post increment IV uses. The key is
1035 // a pair of IV def and a use of this def denoting the context. The value is
1036 // a ConstantRange representing possible values of the def at the given
1037 // context.
1038 DenseMap<DefUserPair, ConstantRange> PostIncRangeInfos;
1039
getPostIncRangeInfo(Value * Def,Instruction * UseI)1040 Optional<ConstantRange> getPostIncRangeInfo(Value *Def,
1041 Instruction *UseI) {
1042 DefUserPair Key(Def, UseI);
1043 auto It = PostIncRangeInfos.find(Key);
1044 return It == PostIncRangeInfos.end()
1045 ? Optional<ConstantRange>(None)
1046 : Optional<ConstantRange>(It->second);
1047 }
1048
1049 void calculatePostIncRanges(PHINode *OrigPhi);
1050 void calculatePostIncRange(Instruction *NarrowDef, Instruction *NarrowUser);
1051
updatePostIncRangeInfo(Value * Def,Instruction * UseI,ConstantRange R)1052 void updatePostIncRangeInfo(Value *Def, Instruction *UseI, ConstantRange R) {
1053 DefUserPair Key(Def, UseI);
1054 auto It = PostIncRangeInfos.find(Key);
1055 if (It == PostIncRangeInfos.end())
1056 PostIncRangeInfos.insert({Key, R});
1057 else
1058 It->second = R.intersectWith(It->second);
1059 }
1060
1061 public:
1062 /// Record a link in the Narrow IV def-use chain along with the WideIV that
1063 /// computes the same value as the Narrow IV def. This avoids caching Use*
1064 /// pointers.
1065 struct NarrowIVDefUse {
1066 Instruction *NarrowDef = nullptr;
1067 Instruction *NarrowUse = nullptr;
1068 Instruction *WideDef = nullptr;
1069
1070 // True if the narrow def is never negative. Tracking this information lets
1071 // us use a sign extension instead of a zero extension or vice versa, when
1072 // profitable and legal.
1073 bool NeverNegative = false;
1074
NarrowIVDefUseWidenIV::NarrowIVDefUse1075 NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD,
1076 bool NeverNegative)
1077 : NarrowDef(ND), NarrowUse(NU), WideDef(WD),
1078 NeverNegative(NeverNegative) {}
1079 };
1080
1081 WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv,
1082 DominatorTree *DTree, SmallVectorImpl<WeakTrackingVH> &DI,
1083 bool HasGuards, bool UsePostIncrementRanges = true);
1084
1085 PHINode *createWideIV(SCEVExpander &Rewriter);
1086
getNumElimExt()1087 unsigned getNumElimExt() { return NumElimExt; };
getNumWidened()1088 unsigned getNumWidened() { return NumWidened; };
1089
1090 protected:
1091 Value *createExtendInst(Value *NarrowOper, Type *WideType, bool IsSigned,
1092 Instruction *Use);
1093
1094 Instruction *cloneIVUser(NarrowIVDefUse DU, const SCEVAddRecExpr *WideAR);
1095 Instruction *cloneArithmeticIVUser(NarrowIVDefUse DU,
1096 const SCEVAddRecExpr *WideAR);
1097 Instruction *cloneBitwiseIVUser(NarrowIVDefUse DU);
1098
1099 ExtendKind getExtendKind(Instruction *I);
1100
1101 using WidenedRecTy = std::pair<const SCEVAddRecExpr *, ExtendKind>;
1102
1103 WidenedRecTy getWideRecurrence(NarrowIVDefUse DU);
1104
1105 WidenedRecTy getExtendedOperandRecurrence(NarrowIVDefUse DU);
1106
1107 const SCEV *getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
1108 unsigned OpCode) const;
1109
1110 Instruction *widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter);
1111
1112 bool widenLoopCompare(NarrowIVDefUse DU);
1113 bool widenWithVariantUse(NarrowIVDefUse DU);
1114
1115 void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef);
1116
1117 private:
1118 SmallVector<NarrowIVDefUse, 8> NarrowIVUsers;
1119 };
1120
1121
1122 /// Determine the insertion point for this user. By default, insert immediately
1123 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the
1124 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest
1125 /// common dominator for the incoming blocks. A nullptr can be returned if no
1126 /// viable location is found: it may happen if User is a PHI and Def only comes
1127 /// to this PHI from unreachable blocks.
getInsertPointForUses(Instruction * User,Value * Def,DominatorTree * DT,LoopInfo * LI)1128 static Instruction *getInsertPointForUses(Instruction *User, Value *Def,
1129 DominatorTree *DT, LoopInfo *LI) {
1130 PHINode *PHI = dyn_cast<PHINode>(User);
1131 if (!PHI)
1132 return User;
1133
1134 Instruction *InsertPt = nullptr;
1135 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) {
1136 if (PHI->getIncomingValue(i) != Def)
1137 continue;
1138
1139 BasicBlock *InsertBB = PHI->getIncomingBlock(i);
1140
1141 if (!DT->isReachableFromEntry(InsertBB))
1142 continue;
1143
1144 if (!InsertPt) {
1145 InsertPt = InsertBB->getTerminator();
1146 continue;
1147 }
1148 InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB);
1149 InsertPt = InsertBB->getTerminator();
1150 }
1151
1152 // If we have skipped all inputs, it means that Def only comes to Phi from
1153 // unreachable blocks.
1154 if (!InsertPt)
1155 return nullptr;
1156
1157 auto *DefI = dyn_cast<Instruction>(Def);
1158 if (!DefI)
1159 return InsertPt;
1160
1161 assert(DT->dominates(DefI, InsertPt) && "def does not dominate all uses");
1162
1163 auto *L = LI->getLoopFor(DefI->getParent());
1164 assert(!L || L->contains(LI->getLoopFor(InsertPt->getParent())));
1165
1166 for (auto *DTN = (*DT)[InsertPt->getParent()]; DTN; DTN = DTN->getIDom())
1167 if (LI->getLoopFor(DTN->getBlock()) == L)
1168 return DTN->getBlock()->getTerminator();
1169
1170 llvm_unreachable("DefI dominates InsertPt!");
1171 }
1172
WidenIV(const WideIVInfo & WI,LoopInfo * LInfo,ScalarEvolution * SEv,DominatorTree * DTree,SmallVectorImpl<WeakTrackingVH> & DI,bool HasGuards,bool UsePostIncrementRanges)1173 WidenIV::WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv,
1174 DominatorTree *DTree, SmallVectorImpl<WeakTrackingVH> &DI,
1175 bool HasGuards, bool UsePostIncrementRanges)
1176 : OrigPhi(WI.NarrowIV), WideType(WI.WidestNativeType), LI(LInfo),
1177 L(LI->getLoopFor(OrigPhi->getParent())), SE(SEv), DT(DTree),
1178 HasGuards(HasGuards), UsePostIncrementRanges(UsePostIncrementRanges),
1179 DeadInsts(DI) {
1180 assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV");
1181 ExtendKindMap[OrigPhi] = WI.IsSigned ? SignExtended : ZeroExtended;
1182 }
1183
createExtendInst(Value * NarrowOper,Type * WideType,bool IsSigned,Instruction * Use)1184 Value *WidenIV::createExtendInst(Value *NarrowOper, Type *WideType,
1185 bool IsSigned, Instruction *Use) {
1186 // Set the debug location and conservative insertion point.
1187 IRBuilder<> Builder(Use);
1188 // Hoist the insertion point into loop preheaders as far as possible.
1189 for (const Loop *L = LI->getLoopFor(Use->getParent());
1190 L && L->getLoopPreheader() && L->isLoopInvariant(NarrowOper);
1191 L = L->getParentLoop())
1192 Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator());
1193
1194 return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) :
1195 Builder.CreateZExt(NarrowOper, WideType);
1196 }
1197
1198 /// Instantiate a wide operation to replace a narrow operation. This only needs
1199 /// to handle operations that can evaluation to SCEVAddRec. It can safely return
1200 /// 0 for any operation we decide not to clone.
cloneIVUser(WidenIV::NarrowIVDefUse DU,const SCEVAddRecExpr * WideAR)1201 Instruction *WidenIV::cloneIVUser(WidenIV::NarrowIVDefUse DU,
1202 const SCEVAddRecExpr *WideAR) {
1203 unsigned Opcode = DU.NarrowUse->getOpcode();
1204 switch (Opcode) {
1205 default:
1206 return nullptr;
1207 case Instruction::Add:
1208 case Instruction::Mul:
1209 case Instruction::UDiv:
1210 case Instruction::Sub:
1211 return cloneArithmeticIVUser(DU, WideAR);
1212
1213 case Instruction::And:
1214 case Instruction::Or:
1215 case Instruction::Xor:
1216 case Instruction::Shl:
1217 case Instruction::LShr:
1218 case Instruction::AShr:
1219 return cloneBitwiseIVUser(DU);
1220 }
1221 }
1222
cloneBitwiseIVUser(WidenIV::NarrowIVDefUse DU)1223 Instruction *WidenIV::cloneBitwiseIVUser(WidenIV::NarrowIVDefUse DU) {
1224 Instruction *NarrowUse = DU.NarrowUse;
1225 Instruction *NarrowDef = DU.NarrowDef;
1226 Instruction *WideDef = DU.WideDef;
1227
1228 LLVM_DEBUG(dbgs() << "Cloning bitwise IVUser: " << *NarrowUse << "\n");
1229
1230 // Replace NarrowDef operands with WideDef. Otherwise, we don't know anything
1231 // about the narrow operand yet so must insert a [sz]ext. It is probably loop
1232 // invariant and will be folded or hoisted. If it actually comes from a
1233 // widened IV, it should be removed during a future call to widenIVUse.
1234 bool IsSigned = getExtendKind(NarrowDef) == SignExtended;
1235 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
1236 ? WideDef
1237 : createExtendInst(NarrowUse->getOperand(0), WideType,
1238 IsSigned, NarrowUse);
1239 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
1240 ? WideDef
1241 : createExtendInst(NarrowUse->getOperand(1), WideType,
1242 IsSigned, NarrowUse);
1243
1244 auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
1245 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
1246 NarrowBO->getName());
1247 IRBuilder<> Builder(NarrowUse);
1248 Builder.Insert(WideBO);
1249 WideBO->copyIRFlags(NarrowBO);
1250 return WideBO;
1251 }
1252
cloneArithmeticIVUser(WidenIV::NarrowIVDefUse DU,const SCEVAddRecExpr * WideAR)1253 Instruction *WidenIV::cloneArithmeticIVUser(WidenIV::NarrowIVDefUse DU,
1254 const SCEVAddRecExpr *WideAR) {
1255 Instruction *NarrowUse = DU.NarrowUse;
1256 Instruction *NarrowDef = DU.NarrowDef;
1257 Instruction *WideDef = DU.WideDef;
1258
1259 LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n");
1260
1261 unsigned IVOpIdx = (NarrowUse->getOperand(0) == NarrowDef) ? 0 : 1;
1262
1263 // We're trying to find X such that
1264 //
1265 // Widen(NarrowDef `op` NonIVNarrowDef) == WideAR == WideDef `op.wide` X
1266 //
1267 // We guess two solutions to X, sext(NonIVNarrowDef) and zext(NonIVNarrowDef),
1268 // and check using SCEV if any of them are correct.
1269
1270 // Returns true if extending NonIVNarrowDef according to `SignExt` is a
1271 // correct solution to X.
1272 auto GuessNonIVOperand = [&](bool SignExt) {
1273 const SCEV *WideLHS;
1274 const SCEV *WideRHS;
1275
1276 auto GetExtend = [this, SignExt](const SCEV *S, Type *Ty) {
1277 if (SignExt)
1278 return SE->getSignExtendExpr(S, Ty);
1279 return SE->getZeroExtendExpr(S, Ty);
1280 };
1281
1282 if (IVOpIdx == 0) {
1283 WideLHS = SE->getSCEV(WideDef);
1284 const SCEV *NarrowRHS = SE->getSCEV(NarrowUse->getOperand(1));
1285 WideRHS = GetExtend(NarrowRHS, WideType);
1286 } else {
1287 const SCEV *NarrowLHS = SE->getSCEV(NarrowUse->getOperand(0));
1288 WideLHS = GetExtend(NarrowLHS, WideType);
1289 WideRHS = SE->getSCEV(WideDef);
1290 }
1291
1292 // WideUse is "WideDef `op.wide` X" as described in the comment.
1293 const SCEV *WideUse =
1294 getSCEVByOpCode(WideLHS, WideRHS, NarrowUse->getOpcode());
1295
1296 return WideUse == WideAR;
1297 };
1298
1299 bool SignExtend = getExtendKind(NarrowDef) == SignExtended;
1300 if (!GuessNonIVOperand(SignExtend)) {
1301 SignExtend = !SignExtend;
1302 if (!GuessNonIVOperand(SignExtend))
1303 return nullptr;
1304 }
1305
1306 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
1307 ? WideDef
1308 : createExtendInst(NarrowUse->getOperand(0), WideType,
1309 SignExtend, NarrowUse);
1310 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
1311 ? WideDef
1312 : createExtendInst(NarrowUse->getOperand(1), WideType,
1313 SignExtend, NarrowUse);
1314
1315 auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
1316 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
1317 NarrowBO->getName());
1318
1319 IRBuilder<> Builder(NarrowUse);
1320 Builder.Insert(WideBO);
1321 WideBO->copyIRFlags(NarrowBO);
1322 return WideBO;
1323 }
1324
getExtendKind(Instruction * I)1325 WidenIV::ExtendKind WidenIV::getExtendKind(Instruction *I) {
1326 auto It = ExtendKindMap.find(I);
1327 assert(It != ExtendKindMap.end() && "Instruction not yet extended!");
1328 return It->second;
1329 }
1330
getSCEVByOpCode(const SCEV * LHS,const SCEV * RHS,unsigned OpCode) const1331 const SCEV *WidenIV::getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
1332 unsigned OpCode) const {
1333 switch (OpCode) {
1334 case Instruction::Add:
1335 return SE->getAddExpr(LHS, RHS);
1336 case Instruction::Sub:
1337 return SE->getMinusSCEV(LHS, RHS);
1338 case Instruction::Mul:
1339 return SE->getMulExpr(LHS, RHS);
1340 case Instruction::UDiv:
1341 return SE->getUDivExpr(LHS, RHS);
1342 default:
1343 llvm_unreachable("Unsupported opcode.");
1344 };
1345 }
1346
1347 /// No-wrap operations can transfer sign extension of their result to their
1348 /// operands. Generate the SCEV value for the widened operation without
1349 /// actually modifying the IR yet. If the expression after extending the
1350 /// operands is an AddRec for this loop, return the AddRec and the kind of
1351 /// extension used.
1352 WidenIV::WidenedRecTy
getExtendedOperandRecurrence(WidenIV::NarrowIVDefUse DU)1353 WidenIV::getExtendedOperandRecurrence(WidenIV::NarrowIVDefUse DU) {
1354 // Handle the common case of add<nsw/nuw>
1355 const unsigned OpCode = DU.NarrowUse->getOpcode();
1356 // Only Add/Sub/Mul instructions supported yet.
1357 if (OpCode != Instruction::Add && OpCode != Instruction::Sub &&
1358 OpCode != Instruction::Mul)
1359 return {nullptr, Unknown};
1360
1361 // One operand (NarrowDef) has already been extended to WideDef. Now determine
1362 // if extending the other will lead to a recurrence.
1363 const unsigned ExtendOperIdx =
1364 DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0;
1365 assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU");
1366
1367 const SCEV *ExtendOperExpr = nullptr;
1368 const OverflowingBinaryOperator *OBO =
1369 cast<OverflowingBinaryOperator>(DU.NarrowUse);
1370 ExtendKind ExtKind = getExtendKind(DU.NarrowDef);
1371 if (ExtKind == SignExtended && OBO->hasNoSignedWrap())
1372 ExtendOperExpr = SE->getSignExtendExpr(
1373 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
1374 else if(ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap())
1375 ExtendOperExpr = SE->getZeroExtendExpr(
1376 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
1377 else
1378 return {nullptr, Unknown};
1379
1380 // When creating this SCEV expr, don't apply the current operations NSW or NUW
1381 // flags. This instruction may be guarded by control flow that the no-wrap
1382 // behavior depends on. Non-control-equivalent instructions can be mapped to
1383 // the same SCEV expression, and it would be incorrect to transfer NSW/NUW
1384 // semantics to those operations.
1385 const SCEV *lhs = SE->getSCEV(DU.WideDef);
1386 const SCEV *rhs = ExtendOperExpr;
1387
1388 // Let's swap operands to the initial order for the case of non-commutative
1389 // operations, like SUB. See PR21014.
1390 if (ExtendOperIdx == 0)
1391 std::swap(lhs, rhs);
1392 const SCEVAddRecExpr *AddRec =
1393 dyn_cast<SCEVAddRecExpr>(getSCEVByOpCode(lhs, rhs, OpCode));
1394
1395 if (!AddRec || AddRec->getLoop() != L)
1396 return {nullptr, Unknown};
1397
1398 return {AddRec, ExtKind};
1399 }
1400
1401 /// Is this instruction potentially interesting for further simplification after
1402 /// widening it's type? In other words, can the extend be safely hoisted out of
1403 /// the loop with SCEV reducing the value to a recurrence on the same loop. If
1404 /// so, return the extended recurrence and the kind of extension used. Otherwise
1405 /// return {nullptr, Unknown}.
getWideRecurrence(WidenIV::NarrowIVDefUse DU)1406 WidenIV::WidenedRecTy WidenIV::getWideRecurrence(WidenIV::NarrowIVDefUse DU) {
1407 if (!SE->isSCEVable(DU.NarrowUse->getType()))
1408 return {nullptr, Unknown};
1409
1410 const SCEV *NarrowExpr = SE->getSCEV(DU.NarrowUse);
1411 if (SE->getTypeSizeInBits(NarrowExpr->getType()) >=
1412 SE->getTypeSizeInBits(WideType)) {
1413 // NarrowUse implicitly widens its operand. e.g. a gep with a narrow
1414 // index. So don't follow this use.
1415 return {nullptr, Unknown};
1416 }
1417
1418 const SCEV *WideExpr;
1419 ExtendKind ExtKind;
1420 if (DU.NeverNegative) {
1421 WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType);
1422 if (isa<SCEVAddRecExpr>(WideExpr))
1423 ExtKind = SignExtended;
1424 else {
1425 WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType);
1426 ExtKind = ZeroExtended;
1427 }
1428 } else if (getExtendKind(DU.NarrowDef) == SignExtended) {
1429 WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType);
1430 ExtKind = SignExtended;
1431 } else {
1432 WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType);
1433 ExtKind = ZeroExtended;
1434 }
1435 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr);
1436 if (!AddRec || AddRec->getLoop() != L)
1437 return {nullptr, Unknown};
1438 return {AddRec, ExtKind};
1439 }
1440
1441 /// This IV user cannot be widened. Replace this use of the original narrow IV
1442 /// with a truncation of the new wide IV to isolate and eliminate the narrow IV.
truncateIVUse(WidenIV::NarrowIVDefUse DU,DominatorTree * DT,LoopInfo * LI)1443 static void truncateIVUse(WidenIV::NarrowIVDefUse DU, DominatorTree *DT,
1444 LoopInfo *LI) {
1445 auto *InsertPt = getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI);
1446 if (!InsertPt)
1447 return;
1448 LLVM_DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef << " for user "
1449 << *DU.NarrowUse << "\n");
1450 IRBuilder<> Builder(InsertPt);
1451 Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType());
1452 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc);
1453 }
1454
1455 /// If the narrow use is a compare instruction, then widen the compare
1456 // (and possibly the other operand). The extend operation is hoisted into the
1457 // loop preheader as far as possible.
widenLoopCompare(WidenIV::NarrowIVDefUse DU)1458 bool WidenIV::widenLoopCompare(WidenIV::NarrowIVDefUse DU) {
1459 ICmpInst *Cmp = dyn_cast<ICmpInst>(DU.NarrowUse);
1460 if (!Cmp)
1461 return false;
1462
1463 // We can legally widen the comparison in the following two cases:
1464 //
1465 // - The signedness of the IV extension and comparison match
1466 //
1467 // - The narrow IV is always positive (and thus its sign extension is equal
1468 // to its zero extension). For instance, let's say we're zero extending
1469 // %narrow for the following use
1470 //
1471 // icmp slt i32 %narrow, %val ... (A)
1472 //
1473 // and %narrow is always positive. Then
1474 //
1475 // (A) == icmp slt i32 sext(%narrow), sext(%val)
1476 // == icmp slt i32 zext(%narrow), sext(%val)
1477 bool IsSigned = getExtendKind(DU.NarrowDef) == SignExtended;
1478 if (!(DU.NeverNegative || IsSigned == Cmp->isSigned()))
1479 return false;
1480
1481 Value *Op = Cmp->getOperand(Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0);
1482 unsigned CastWidth = SE->getTypeSizeInBits(Op->getType());
1483 unsigned IVWidth = SE->getTypeSizeInBits(WideType);
1484 assert(CastWidth <= IVWidth && "Unexpected width while widening compare.");
1485
1486 // Widen the compare instruction.
1487 auto *InsertPt = getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI);
1488 if (!InsertPt)
1489 return false;
1490 IRBuilder<> Builder(InsertPt);
1491 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
1492
1493 // Widen the other operand of the compare, if necessary.
1494 if (CastWidth < IVWidth) {
1495 Value *ExtOp = createExtendInst(Op, WideType, Cmp->isSigned(), Cmp);
1496 DU.NarrowUse->replaceUsesOfWith(Op, ExtOp);
1497 }
1498 return true;
1499 }
1500
1501 // The widenIVUse avoids generating trunc by evaluating the use as AddRec, this
1502 // will not work when:
1503 // 1) SCEV traces back to an instruction inside the loop that SCEV can not
1504 // expand, eg. add %indvar, (load %addr)
1505 // 2) SCEV finds a loop variant, eg. add %indvar, %loopvariant
1506 // While SCEV fails to avoid trunc, we can still try to use instruction
1507 // combining approach to prove trunc is not required. This can be further
1508 // extended with other instruction combining checks, but for now we handle the
1509 // following case (sub can be "add" and "mul", "nsw + sext" can be "nus + zext")
1510 //
1511 // Src:
1512 // %c = sub nsw %b, %indvar
1513 // %d = sext %c to i64
1514 // Dst:
1515 // %indvar.ext1 = sext %indvar to i64
1516 // %m = sext %b to i64
1517 // %d = sub nsw i64 %m, %indvar.ext1
1518 // Therefore, as long as the result of add/sub/mul is extended to wide type, no
1519 // trunc is required regardless of how %b is generated. This pattern is common
1520 // when calculating address in 64 bit architecture
widenWithVariantUse(WidenIV::NarrowIVDefUse DU)1521 bool WidenIV::widenWithVariantUse(WidenIV::NarrowIVDefUse DU) {
1522 Instruction *NarrowUse = DU.NarrowUse;
1523 Instruction *NarrowDef = DU.NarrowDef;
1524 Instruction *WideDef = DU.WideDef;
1525
1526 // Handle the common case of add<nsw/nuw>
1527 const unsigned OpCode = NarrowUse->getOpcode();
1528 // Only Add/Sub/Mul instructions are supported.
1529 if (OpCode != Instruction::Add && OpCode != Instruction::Sub &&
1530 OpCode != Instruction::Mul)
1531 return false;
1532
1533 // The operand that is not defined by NarrowDef of DU. Let's call it the
1534 // other operand.
1535 assert((NarrowUse->getOperand(0) == NarrowDef ||
1536 NarrowUse->getOperand(1) == NarrowDef) &&
1537 "bad DU");
1538
1539 const OverflowingBinaryOperator *OBO =
1540 cast<OverflowingBinaryOperator>(NarrowUse);
1541 ExtendKind ExtKind = getExtendKind(NarrowDef);
1542 bool CanSignExtend = ExtKind == SignExtended && OBO->hasNoSignedWrap();
1543 bool CanZeroExtend = ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap();
1544 auto AnotherOpExtKind = ExtKind;
1545
1546 // Check that all uses are either:
1547 // - narrow def (in case of we are widening the IV increment);
1548 // - single-input LCSSA Phis;
1549 // - comparison of the chosen type;
1550 // - extend of the chosen type (raison d'etre).
1551 SmallVector<Instruction *, 4> ExtUsers;
1552 SmallVector<PHINode *, 4> LCSSAPhiUsers;
1553 SmallVector<ICmpInst *, 4> ICmpUsers;
1554 for (Use &U : NarrowUse->uses()) {
1555 Instruction *User = cast<Instruction>(U.getUser());
1556 if (User == NarrowDef)
1557 continue;
1558 if (!L->contains(User)) {
1559 auto *LCSSAPhi = cast<PHINode>(User);
1560 // Make sure there is only 1 input, so that we don't have to split
1561 // critical edges.
1562 if (LCSSAPhi->getNumOperands() != 1)
1563 return false;
1564 LCSSAPhiUsers.push_back(LCSSAPhi);
1565 continue;
1566 }
1567 if (auto *ICmp = dyn_cast<ICmpInst>(User)) {
1568 auto Pred = ICmp->getPredicate();
1569 // We have 3 types of predicates: signed, unsigned and equality
1570 // predicates. For equality, it's legal to widen icmp for either sign and
1571 // zero extend. For sign extend, we can also do so for signed predicates,
1572 // likeweise for zero extend we can widen icmp for unsigned predicates.
1573 if (ExtKind == ZeroExtended && ICmpInst::isSigned(Pred))
1574 return false;
1575 if (ExtKind == SignExtended && ICmpInst::isUnsigned(Pred))
1576 return false;
1577 ICmpUsers.push_back(ICmp);
1578 continue;
1579 }
1580 if (ExtKind == SignExtended)
1581 User = dyn_cast<SExtInst>(User);
1582 else
1583 User = dyn_cast<ZExtInst>(User);
1584 if (!User || User->getType() != WideType)
1585 return false;
1586 ExtUsers.push_back(User);
1587 }
1588 if (ExtUsers.empty()) {
1589 DeadInsts.emplace_back(NarrowUse);
1590 return true;
1591 }
1592
1593 // We'll prove some facts that should be true in the context of ext users. If
1594 // there is no users, we are done now. If there are some, pick their common
1595 // dominator as context.
1596 const Instruction *CtxI = findCommonDominator(ExtUsers, *DT);
1597
1598 if (!CanSignExtend && !CanZeroExtend) {
1599 // Because InstCombine turns 'sub nuw' to 'add' losing the no-wrap flag, we
1600 // will most likely not see it. Let's try to prove it.
1601 if (OpCode != Instruction::Add)
1602 return false;
1603 if (ExtKind != ZeroExtended)
1604 return false;
1605 const SCEV *LHS = SE->getSCEV(OBO->getOperand(0));
1606 const SCEV *RHS = SE->getSCEV(OBO->getOperand(1));
1607 // TODO: Support case for NarrowDef = NarrowUse->getOperand(1).
1608 if (NarrowUse->getOperand(0) != NarrowDef)
1609 return false;
1610 if (!SE->isKnownNegative(RHS))
1611 return false;
1612 bool ProvedSubNUW = SE->isKnownPredicateAt(ICmpInst::ICMP_UGE, LHS,
1613 SE->getNegativeSCEV(RHS), CtxI);
1614 if (!ProvedSubNUW)
1615 return false;
1616 // In fact, our 'add' is 'sub nuw'. We will need to widen the 2nd operand as
1617 // neg(zext(neg(op))), which is basically sext(op).
1618 AnotherOpExtKind = SignExtended;
1619 }
1620
1621 // Verifying that Defining operand is an AddRec
1622 const SCEV *Op1 = SE->getSCEV(WideDef);
1623 const SCEVAddRecExpr *AddRecOp1 = dyn_cast<SCEVAddRecExpr>(Op1);
1624 if (!AddRecOp1 || AddRecOp1->getLoop() != L)
1625 return false;
1626
1627 LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n");
1628
1629 // Generating a widening use instruction.
1630 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
1631 ? WideDef
1632 : createExtendInst(NarrowUse->getOperand(0), WideType,
1633 AnotherOpExtKind, NarrowUse);
1634 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
1635 ? WideDef
1636 : createExtendInst(NarrowUse->getOperand(1), WideType,
1637 AnotherOpExtKind, NarrowUse);
1638
1639 auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
1640 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
1641 NarrowBO->getName());
1642 IRBuilder<> Builder(NarrowUse);
1643 Builder.Insert(WideBO);
1644 WideBO->copyIRFlags(NarrowBO);
1645 ExtendKindMap[NarrowUse] = ExtKind;
1646
1647 for (Instruction *User : ExtUsers) {
1648 assert(User->getType() == WideType && "Checked before!");
1649 LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *User << " replaced by "
1650 << *WideBO << "\n");
1651 ++NumElimExt;
1652 User->replaceAllUsesWith(WideBO);
1653 DeadInsts.emplace_back(User);
1654 }
1655
1656 for (PHINode *User : LCSSAPhiUsers) {
1657 assert(User->getNumOperands() == 1 && "Checked before!");
1658 Builder.SetInsertPoint(User);
1659 auto *WidePN =
1660 Builder.CreatePHI(WideBO->getType(), 1, User->getName() + ".wide");
1661 BasicBlock *LoopExitingBlock = User->getParent()->getSinglePredecessor();
1662 assert(LoopExitingBlock && L->contains(LoopExitingBlock) &&
1663 "Not a LCSSA Phi?");
1664 WidePN->addIncoming(WideBO, LoopExitingBlock);
1665 Builder.SetInsertPoint(&*User->getParent()->getFirstInsertionPt());
1666 auto *TruncPN = Builder.CreateTrunc(WidePN, User->getType());
1667 User->replaceAllUsesWith(TruncPN);
1668 DeadInsts.emplace_back(User);
1669 }
1670
1671 for (ICmpInst *User : ICmpUsers) {
1672 Builder.SetInsertPoint(User);
1673 auto ExtendedOp = [&](Value * V)->Value * {
1674 if (V == NarrowUse)
1675 return WideBO;
1676 if (ExtKind == ZeroExtended)
1677 return Builder.CreateZExt(V, WideBO->getType());
1678 else
1679 return Builder.CreateSExt(V, WideBO->getType());
1680 };
1681 auto Pred = User->getPredicate();
1682 auto *LHS = ExtendedOp(User->getOperand(0));
1683 auto *RHS = ExtendedOp(User->getOperand(1));
1684 auto *WideCmp =
1685 Builder.CreateICmp(Pred, LHS, RHS, User->getName() + ".wide");
1686 User->replaceAllUsesWith(WideCmp);
1687 DeadInsts.emplace_back(User);
1688 }
1689
1690 return true;
1691 }
1692
1693 /// Determine whether an individual user of the narrow IV can be widened. If so,
1694 /// return the wide clone of the user.
widenIVUse(WidenIV::NarrowIVDefUse DU,SCEVExpander & Rewriter)1695 Instruction *WidenIV::widenIVUse(WidenIV::NarrowIVDefUse DU, SCEVExpander &Rewriter) {
1696 assert(ExtendKindMap.count(DU.NarrowDef) &&
1697 "Should already know the kind of extension used to widen NarrowDef");
1698
1699 // Stop traversing the def-use chain at inner-loop phis or post-loop phis.
1700 if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) {
1701 if (LI->getLoopFor(UsePhi->getParent()) != L) {
1702 // For LCSSA phis, sink the truncate outside the loop.
1703 // After SimplifyCFG most loop exit targets have a single predecessor.
1704 // Otherwise fall back to a truncate within the loop.
1705 if (UsePhi->getNumOperands() != 1)
1706 truncateIVUse(DU, DT, LI);
1707 else {
1708 // Widening the PHI requires us to insert a trunc. The logical place
1709 // for this trunc is in the same BB as the PHI. This is not possible if
1710 // the BB is terminated by a catchswitch.
1711 if (isa<CatchSwitchInst>(UsePhi->getParent()->getTerminator()))
1712 return nullptr;
1713
1714 PHINode *WidePhi =
1715 PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide",
1716 UsePhi);
1717 WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0));
1718 IRBuilder<> Builder(&*WidePhi->getParent()->getFirstInsertionPt());
1719 Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType());
1720 UsePhi->replaceAllUsesWith(Trunc);
1721 DeadInsts.emplace_back(UsePhi);
1722 LLVM_DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi << " to "
1723 << *WidePhi << "\n");
1724 }
1725 return nullptr;
1726 }
1727 }
1728
1729 // This narrow use can be widened by a sext if it's non-negative or its narrow
1730 // def was widended by a sext. Same for zext.
1731 auto canWidenBySExt = [&]() {
1732 return DU.NeverNegative || getExtendKind(DU.NarrowDef) == SignExtended;
1733 };
1734 auto canWidenByZExt = [&]() {
1735 return DU.NeverNegative || getExtendKind(DU.NarrowDef) == ZeroExtended;
1736 };
1737
1738 // Our raison d'etre! Eliminate sign and zero extension.
1739 if ((isa<SExtInst>(DU.NarrowUse) && canWidenBySExt()) ||
1740 (isa<ZExtInst>(DU.NarrowUse) && canWidenByZExt())) {
1741 Value *NewDef = DU.WideDef;
1742 if (DU.NarrowUse->getType() != WideType) {
1743 unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType());
1744 unsigned IVWidth = SE->getTypeSizeInBits(WideType);
1745 if (CastWidth < IVWidth) {
1746 // The cast isn't as wide as the IV, so insert a Trunc.
1747 IRBuilder<> Builder(DU.NarrowUse);
1748 NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType());
1749 }
1750 else {
1751 // A wider extend was hidden behind a narrower one. This may induce
1752 // another round of IV widening in which the intermediate IV becomes
1753 // dead. It should be very rare.
1754 LLVM_DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi
1755 << " not wide enough to subsume " << *DU.NarrowUse
1756 << "\n");
1757 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
1758 NewDef = DU.NarrowUse;
1759 }
1760 }
1761 if (NewDef != DU.NarrowUse) {
1762 LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse
1763 << " replaced by " << *DU.WideDef << "\n");
1764 ++NumElimExt;
1765 DU.NarrowUse->replaceAllUsesWith(NewDef);
1766 DeadInsts.emplace_back(DU.NarrowUse);
1767 }
1768 // Now that the extend is gone, we want to expose it's uses for potential
1769 // further simplification. We don't need to directly inform SimplifyIVUsers
1770 // of the new users, because their parent IV will be processed later as a
1771 // new loop phi. If we preserved IVUsers analysis, we would also want to
1772 // push the uses of WideDef here.
1773
1774 // No further widening is needed. The deceased [sz]ext had done it for us.
1775 return nullptr;
1776 }
1777
1778 // Does this user itself evaluate to a recurrence after widening?
1779 WidenedRecTy WideAddRec = getExtendedOperandRecurrence(DU);
1780 if (!WideAddRec.first)
1781 WideAddRec = getWideRecurrence(DU);
1782
1783 assert((WideAddRec.first == nullptr) == (WideAddRec.second == Unknown));
1784 if (!WideAddRec.first) {
1785 // If use is a loop condition, try to promote the condition instead of
1786 // truncating the IV first.
1787 if (widenLoopCompare(DU))
1788 return nullptr;
1789
1790 // We are here about to generate a truncate instruction that may hurt
1791 // performance because the scalar evolution expression computed earlier
1792 // in WideAddRec.first does not indicate a polynomial induction expression.
1793 // In that case, look at the operands of the use instruction to determine
1794 // if we can still widen the use instead of truncating its operand.
1795 if (widenWithVariantUse(DU))
1796 return nullptr;
1797
1798 // This user does not evaluate to a recurrence after widening, so don't
1799 // follow it. Instead insert a Trunc to kill off the original use,
1800 // eventually isolating the original narrow IV so it can be removed.
1801 truncateIVUse(DU, DT, LI);
1802 return nullptr;
1803 }
1804 // Assume block terminators cannot evaluate to a recurrence. We can't to
1805 // insert a Trunc after a terminator if there happens to be a critical edge.
1806 assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() &&
1807 "SCEV is not expected to evaluate a block terminator");
1808
1809 // Reuse the IV increment that SCEVExpander created as long as it dominates
1810 // NarrowUse.
1811 Instruction *WideUse = nullptr;
1812 if (WideAddRec.first == WideIncExpr &&
1813 Rewriter.hoistIVInc(WideInc, DU.NarrowUse))
1814 WideUse = WideInc;
1815 else {
1816 WideUse = cloneIVUser(DU, WideAddRec.first);
1817 if (!WideUse)
1818 return nullptr;
1819 }
1820 // Evaluation of WideAddRec ensured that the narrow expression could be
1821 // extended outside the loop without overflow. This suggests that the wide use
1822 // evaluates to the same expression as the extended narrow use, but doesn't
1823 // absolutely guarantee it. Hence the following failsafe check. In rare cases
1824 // where it fails, we simply throw away the newly created wide use.
1825 if (WideAddRec.first != SE->getSCEV(WideUse)) {
1826 LLVM_DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse << ": "
1827 << *SE->getSCEV(WideUse) << " != " << *WideAddRec.first
1828 << "\n");
1829 DeadInsts.emplace_back(WideUse);
1830 return nullptr;
1831 }
1832
1833 // if we reached this point then we are going to replace
1834 // DU.NarrowUse with WideUse. Reattach DbgValue then.
1835 replaceAllDbgUsesWith(*DU.NarrowUse, *WideUse, *WideUse, *DT);
1836
1837 ExtendKindMap[DU.NarrowUse] = WideAddRec.second;
1838 // Returning WideUse pushes it on the worklist.
1839 return WideUse;
1840 }
1841
1842 /// Add eligible users of NarrowDef to NarrowIVUsers.
pushNarrowIVUsers(Instruction * NarrowDef,Instruction * WideDef)1843 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) {
1844 const SCEV *NarrowSCEV = SE->getSCEV(NarrowDef);
1845 bool NonNegativeDef =
1846 SE->isKnownPredicate(ICmpInst::ICMP_SGE, NarrowSCEV,
1847 SE->getZero(NarrowSCEV->getType()));
1848 for (User *U : NarrowDef->users()) {
1849 Instruction *NarrowUser = cast<Instruction>(U);
1850
1851 // Handle data flow merges and bizarre phi cycles.
1852 if (!Widened.insert(NarrowUser).second)
1853 continue;
1854
1855 bool NonNegativeUse = false;
1856 if (!NonNegativeDef) {
1857 // We might have a control-dependent range information for this context.
1858 if (auto RangeInfo = getPostIncRangeInfo(NarrowDef, NarrowUser))
1859 NonNegativeUse = RangeInfo->getSignedMin().isNonNegative();
1860 }
1861
1862 NarrowIVUsers.emplace_back(NarrowDef, NarrowUser, WideDef,
1863 NonNegativeDef || NonNegativeUse);
1864 }
1865 }
1866
1867 /// Process a single induction variable. First use the SCEVExpander to create a
1868 /// wide induction variable that evaluates to the same recurrence as the
1869 /// original narrow IV. Then use a worklist to forward traverse the narrow IV's
1870 /// def-use chain. After widenIVUse has processed all interesting IV users, the
1871 /// narrow IV will be isolated for removal by DeleteDeadPHIs.
1872 ///
1873 /// It would be simpler to delete uses as they are processed, but we must avoid
1874 /// invalidating SCEV expressions.
createWideIV(SCEVExpander & Rewriter)1875 PHINode *WidenIV::createWideIV(SCEVExpander &Rewriter) {
1876 // Is this phi an induction variable?
1877 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi));
1878 if (!AddRec)
1879 return nullptr;
1880
1881 // Widen the induction variable expression.
1882 const SCEV *WideIVExpr = getExtendKind(OrigPhi) == SignExtended
1883 ? SE->getSignExtendExpr(AddRec, WideType)
1884 : SE->getZeroExtendExpr(AddRec, WideType);
1885
1886 assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType &&
1887 "Expect the new IV expression to preserve its type");
1888
1889 // Can the IV be extended outside the loop without overflow?
1890 AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr);
1891 if (!AddRec || AddRec->getLoop() != L)
1892 return nullptr;
1893
1894 // An AddRec must have loop-invariant operands. Since this AddRec is
1895 // materialized by a loop header phi, the expression cannot have any post-loop
1896 // operands, so they must dominate the loop header.
1897 assert(
1898 SE->properlyDominates(AddRec->getStart(), L->getHeader()) &&
1899 SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) &&
1900 "Loop header phi recurrence inputs do not dominate the loop");
1901
1902 // Iterate over IV uses (including transitive ones) looking for IV increments
1903 // of the form 'add nsw %iv, <const>'. For each increment and each use of
1904 // the increment calculate control-dependent range information basing on
1905 // dominating conditions inside of the loop (e.g. a range check inside of the
1906 // loop). Calculated ranges are stored in PostIncRangeInfos map.
1907 //
1908 // Control-dependent range information is later used to prove that a narrow
1909 // definition is not negative (see pushNarrowIVUsers). It's difficult to do
1910 // this on demand because when pushNarrowIVUsers needs this information some
1911 // of the dominating conditions might be already widened.
1912 if (UsePostIncrementRanges)
1913 calculatePostIncRanges(OrigPhi);
1914
1915 // The rewriter provides a value for the desired IV expression. This may
1916 // either find an existing phi or materialize a new one. Either way, we
1917 // expect a well-formed cyclic phi-with-increments. i.e. any operand not part
1918 // of the phi-SCC dominates the loop entry.
1919 Instruction *InsertPt = &*L->getHeader()->getFirstInsertionPt();
1920 Value *ExpandInst = Rewriter.expandCodeFor(AddRec, WideType, InsertPt);
1921 // If the wide phi is not a phi node, for example a cast node, like bitcast,
1922 // inttoptr, ptrtoint, just skip for now.
1923 if (!(WidePhi = dyn_cast<PHINode>(ExpandInst))) {
1924 // if the cast node is an inserted instruction without any user, we should
1925 // remove it to make sure the pass don't touch the function as we can not
1926 // wide the phi.
1927 if (ExpandInst->hasNUses(0) &&
1928 Rewriter.isInsertedInstruction(cast<Instruction>(ExpandInst)))
1929 DeadInsts.emplace_back(ExpandInst);
1930 return nullptr;
1931 }
1932
1933 // Remembering the WideIV increment generated by SCEVExpander allows
1934 // widenIVUse to reuse it when widening the narrow IV's increment. We don't
1935 // employ a general reuse mechanism because the call above is the only call to
1936 // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses.
1937 if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1938 WideInc =
1939 cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock));
1940 WideIncExpr = SE->getSCEV(WideInc);
1941 // Propagate the debug location associated with the original loop increment
1942 // to the new (widened) increment.
1943 auto *OrigInc =
1944 cast<Instruction>(OrigPhi->getIncomingValueForBlock(LatchBlock));
1945 WideInc->setDebugLoc(OrigInc->getDebugLoc());
1946 }
1947
1948 LLVM_DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n");
1949 ++NumWidened;
1950
1951 // Traverse the def-use chain using a worklist starting at the original IV.
1952 assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" );
1953
1954 Widened.insert(OrigPhi);
1955 pushNarrowIVUsers(OrigPhi, WidePhi);
1956
1957 while (!NarrowIVUsers.empty()) {
1958 WidenIV::NarrowIVDefUse DU = NarrowIVUsers.pop_back_val();
1959
1960 // Process a def-use edge. This may replace the use, so don't hold a
1961 // use_iterator across it.
1962 Instruction *WideUse = widenIVUse(DU, Rewriter);
1963
1964 // Follow all def-use edges from the previous narrow use.
1965 if (WideUse)
1966 pushNarrowIVUsers(DU.NarrowUse, WideUse);
1967
1968 // widenIVUse may have removed the def-use edge.
1969 if (DU.NarrowDef->use_empty())
1970 DeadInsts.emplace_back(DU.NarrowDef);
1971 }
1972
1973 // Attach any debug information to the new PHI.
1974 replaceAllDbgUsesWith(*OrigPhi, *WidePhi, *WidePhi, *DT);
1975
1976 return WidePhi;
1977 }
1978
1979 /// Calculates control-dependent range for the given def at the given context
1980 /// by looking at dominating conditions inside of the loop
calculatePostIncRange(Instruction * NarrowDef,Instruction * NarrowUser)1981 void WidenIV::calculatePostIncRange(Instruction *NarrowDef,
1982 Instruction *NarrowUser) {
1983 using namespace llvm::PatternMatch;
1984
1985 Value *NarrowDefLHS;
1986 const APInt *NarrowDefRHS;
1987 if (!match(NarrowDef, m_NSWAdd(m_Value(NarrowDefLHS),
1988 m_APInt(NarrowDefRHS))) ||
1989 !NarrowDefRHS->isNonNegative())
1990 return;
1991
1992 auto UpdateRangeFromCondition = [&] (Value *Condition,
1993 bool TrueDest) {
1994 CmpInst::Predicate Pred;
1995 Value *CmpRHS;
1996 if (!match(Condition, m_ICmp(Pred, m_Specific(NarrowDefLHS),
1997 m_Value(CmpRHS))))
1998 return;
1999
2000 CmpInst::Predicate P =
2001 TrueDest ? Pred : CmpInst::getInversePredicate(Pred);
2002
2003 auto CmpRHSRange = SE->getSignedRange(SE->getSCEV(CmpRHS));
2004 auto CmpConstrainedLHSRange =
2005 ConstantRange::makeAllowedICmpRegion(P, CmpRHSRange);
2006 auto NarrowDefRange = CmpConstrainedLHSRange.addWithNoWrap(
2007 *NarrowDefRHS, OverflowingBinaryOperator::NoSignedWrap);
2008
2009 updatePostIncRangeInfo(NarrowDef, NarrowUser, NarrowDefRange);
2010 };
2011
2012 auto UpdateRangeFromGuards = [&](Instruction *Ctx) {
2013 if (!HasGuards)
2014 return;
2015
2016 for (Instruction &I : make_range(Ctx->getIterator().getReverse(),
2017 Ctx->getParent()->rend())) {
2018 Value *C = nullptr;
2019 if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(C))))
2020 UpdateRangeFromCondition(C, /*TrueDest=*/true);
2021 }
2022 };
2023
2024 UpdateRangeFromGuards(NarrowUser);
2025
2026 BasicBlock *NarrowUserBB = NarrowUser->getParent();
2027 // If NarrowUserBB is statically unreachable asking dominator queries may
2028 // yield surprising results. (e.g. the block may not have a dom tree node)
2029 if (!DT->isReachableFromEntry(NarrowUserBB))
2030 return;
2031
2032 for (auto *DTB = (*DT)[NarrowUserBB]->getIDom();
2033 L->contains(DTB->getBlock());
2034 DTB = DTB->getIDom()) {
2035 auto *BB = DTB->getBlock();
2036 auto *TI = BB->getTerminator();
2037 UpdateRangeFromGuards(TI);
2038
2039 auto *BI = dyn_cast<BranchInst>(TI);
2040 if (!BI || !BI->isConditional())
2041 continue;
2042
2043 auto *TrueSuccessor = BI->getSuccessor(0);
2044 auto *FalseSuccessor = BI->getSuccessor(1);
2045
2046 auto DominatesNarrowUser = [this, NarrowUser] (BasicBlockEdge BBE) {
2047 return BBE.isSingleEdge() &&
2048 DT->dominates(BBE, NarrowUser->getParent());
2049 };
2050
2051 if (DominatesNarrowUser(BasicBlockEdge(BB, TrueSuccessor)))
2052 UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/true);
2053
2054 if (DominatesNarrowUser(BasicBlockEdge(BB, FalseSuccessor)))
2055 UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/false);
2056 }
2057 }
2058
2059 /// Calculates PostIncRangeInfos map for the given IV
calculatePostIncRanges(PHINode * OrigPhi)2060 void WidenIV::calculatePostIncRanges(PHINode *OrigPhi) {
2061 SmallPtrSet<Instruction *, 16> Visited;
2062 SmallVector<Instruction *, 6> Worklist;
2063 Worklist.push_back(OrigPhi);
2064 Visited.insert(OrigPhi);
2065
2066 while (!Worklist.empty()) {
2067 Instruction *NarrowDef = Worklist.pop_back_val();
2068
2069 for (Use &U : NarrowDef->uses()) {
2070 auto *NarrowUser = cast<Instruction>(U.getUser());
2071
2072 // Don't go looking outside the current loop.
2073 auto *NarrowUserLoop = (*LI)[NarrowUser->getParent()];
2074 if (!NarrowUserLoop || !L->contains(NarrowUserLoop))
2075 continue;
2076
2077 if (!Visited.insert(NarrowUser).second)
2078 continue;
2079
2080 Worklist.push_back(NarrowUser);
2081
2082 calculatePostIncRange(NarrowDef, NarrowUser);
2083 }
2084 }
2085 }
2086
createWideIV(const WideIVInfo & WI,LoopInfo * LI,ScalarEvolution * SE,SCEVExpander & Rewriter,DominatorTree * DT,SmallVectorImpl<WeakTrackingVH> & DeadInsts,unsigned & NumElimExt,unsigned & NumWidened,bool HasGuards,bool UsePostIncrementRanges)2087 PHINode *llvm::createWideIV(const WideIVInfo &WI,
2088 LoopInfo *LI, ScalarEvolution *SE, SCEVExpander &Rewriter,
2089 DominatorTree *DT, SmallVectorImpl<WeakTrackingVH> &DeadInsts,
2090 unsigned &NumElimExt, unsigned &NumWidened,
2091 bool HasGuards, bool UsePostIncrementRanges) {
2092 WidenIV Widener(WI, LI, SE, DT, DeadInsts, HasGuards, UsePostIncrementRanges);
2093 PHINode *WidePHI = Widener.createWideIV(Rewriter);
2094 NumElimExt = Widener.getNumElimExt();
2095 NumWidened = Widener.getNumWidened();
2096 return WidePHI;
2097 }
2098