1 //===-------------- PPCMIPeephole.cpp - MI Peephole Cleanups -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===---------------------------------------------------------------------===//
8 //
9 // This pass performs peephole optimizations to clean up ugly code
10 // sequences at the MachineInstruction layer. It runs at the end of
11 // the SSA phases, following VSX swap removal. A pass of dead code
12 // elimination follows this one for quick clean-up of any dead
13 // instructions introduced here. Although we could do this as callbacks
14 // from the generic peephole pass, this would have a couple of bad
15 // effects: it might remove optimization opportunities for VSX swap
16 // removal, and it would miss cleanups made possible following VSX
17 // swap removal.
18 //
19 //===---------------------------------------------------------------------===//
20
21 #include "MCTargetDesc/PPCMCTargetDesc.h"
22 #include "MCTargetDesc/PPCPredicates.h"
23 #include "PPC.h"
24 #include "PPCInstrBuilder.h"
25 #include "PPCInstrInfo.h"
26 #include "PPCMachineFunctionInfo.h"
27 #include "PPCTargetMachine.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
30 #include "llvm/CodeGen/MachineDominators.h"
31 #include "llvm/CodeGen/MachineFrameInfo.h"
32 #include "llvm/CodeGen/MachineFunctionPass.h"
33 #include "llvm/CodeGen/MachineInstrBuilder.h"
34 #include "llvm/CodeGen/MachinePostDominators.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/InitializePasses.h"
37 #include "llvm/Support/Debug.h"
38
39 using namespace llvm;
40
41 #define DEBUG_TYPE "ppc-mi-peepholes"
42
43 STATISTIC(RemoveTOCSave, "Number of TOC saves removed");
44 STATISTIC(MultiTOCSaves,
45 "Number of functions with multiple TOC saves that must be kept");
46 STATISTIC(NumTOCSavesInPrologue, "Number of TOC saves placed in the prologue");
47 STATISTIC(NumEliminatedSExt, "Number of eliminated sign-extensions");
48 STATISTIC(NumEliminatedZExt, "Number of eliminated zero-extensions");
49 STATISTIC(NumOptADDLIs, "Number of optimized ADD instruction fed by LI");
50 STATISTIC(NumConvertedToImmediateForm,
51 "Number of instructions converted to their immediate form");
52 STATISTIC(NumFunctionsEnteredInMIPeephole,
53 "Number of functions entered in PPC MI Peepholes");
54 STATISTIC(NumFixedPointIterations,
55 "Number of fixed-point iterations converting reg-reg instructions "
56 "to reg-imm ones");
57 STATISTIC(NumRotatesCollapsed,
58 "Number of pairs of rotate left, clear left/right collapsed");
59 STATISTIC(NumEXTSWAndSLDICombined,
60 "Number of pairs of EXTSW and SLDI combined as EXTSWSLI");
61 STATISTIC(NumLoadImmZeroFoldedAndRemoved,
62 "Number of LI(8) reg, 0 that are folded to r0 and removed");
63
64 static cl::opt<bool>
65 FixedPointRegToImm("ppc-reg-to-imm-fixed-point", cl::Hidden, cl::init(true),
66 cl::desc("Iterate to a fixed point when attempting to "
67 "convert reg-reg instructions to reg-imm"));
68
69 static cl::opt<bool>
70 ConvertRegReg("ppc-convert-rr-to-ri", cl::Hidden, cl::init(true),
71 cl::desc("Convert eligible reg+reg instructions to reg+imm"));
72
73 static cl::opt<bool>
74 EnableSExtElimination("ppc-eliminate-signext",
75 cl::desc("enable elimination of sign-extensions"),
76 cl::init(true), cl::Hidden);
77
78 static cl::opt<bool>
79 EnableZExtElimination("ppc-eliminate-zeroext",
80 cl::desc("enable elimination of zero-extensions"),
81 cl::init(true), cl::Hidden);
82
83 static cl::opt<bool>
84 EnableTrapOptimization("ppc-opt-conditional-trap",
85 cl::desc("enable optimization of conditional traps"),
86 cl::init(false), cl::Hidden);
87
88 namespace {
89
90 struct PPCMIPeephole : public MachineFunctionPass {
91
92 static char ID;
93 const PPCInstrInfo *TII;
94 MachineFunction *MF;
95 MachineRegisterInfo *MRI;
96
PPCMIPeephole__anonaa6700f70111::PPCMIPeephole97 PPCMIPeephole() : MachineFunctionPass(ID) {
98 initializePPCMIPeepholePass(*PassRegistry::getPassRegistry());
99 }
100
101 private:
102 MachineDominatorTree *MDT;
103 MachinePostDominatorTree *MPDT;
104 MachineBlockFrequencyInfo *MBFI;
105 uint64_t EntryFreq;
106
107 // Initialize class variables.
108 void initialize(MachineFunction &MFParm);
109
110 // Perform peepholes.
111 bool simplifyCode();
112
113 // Perform peepholes.
114 bool eliminateRedundantCompare();
115 bool eliminateRedundantTOCSaves(std::map<MachineInstr *, bool> &TOCSaves);
116 bool combineSEXTAndSHL(MachineInstr &MI, MachineInstr *&ToErase);
117 bool emitRLDICWhenLoweringJumpTables(MachineInstr &MI);
118 void UpdateTOCSaves(std::map<MachineInstr *, bool> &TOCSaves,
119 MachineInstr *MI);
120
121 public:
122
getAnalysisUsage__anonaa6700f70111::PPCMIPeephole123 void getAnalysisUsage(AnalysisUsage &AU) const override {
124 AU.addRequired<MachineDominatorTree>();
125 AU.addRequired<MachinePostDominatorTree>();
126 AU.addRequired<MachineBlockFrequencyInfo>();
127 AU.addPreserved<MachineDominatorTree>();
128 AU.addPreserved<MachinePostDominatorTree>();
129 AU.addPreserved<MachineBlockFrequencyInfo>();
130 MachineFunctionPass::getAnalysisUsage(AU);
131 }
132
133 // Main entry point for this pass.
runOnMachineFunction__anonaa6700f70111::PPCMIPeephole134 bool runOnMachineFunction(MachineFunction &MF) override {
135 initialize(MF);
136 // At this point, TOC pointer should not be used in a function that uses
137 // PC-Relative addressing.
138 assert((MF.getRegInfo().use_empty(PPC::X2) ||
139 !MF.getSubtarget<PPCSubtarget>().isUsingPCRelativeCalls()) &&
140 "TOC pointer used in a function using PC-Relative addressing!");
141 if (skipFunction(MF.getFunction()))
142 return false;
143 return simplifyCode();
144 }
145 };
146
147 // Initialize class variables.
initialize(MachineFunction & MFParm)148 void PPCMIPeephole::initialize(MachineFunction &MFParm) {
149 MF = &MFParm;
150 MRI = &MF->getRegInfo();
151 MDT = &getAnalysis<MachineDominatorTree>();
152 MPDT = &getAnalysis<MachinePostDominatorTree>();
153 MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
154 EntryFreq = MBFI->getEntryFreq();
155 TII = MF->getSubtarget<PPCSubtarget>().getInstrInfo();
156 LLVM_DEBUG(dbgs() << "*** PowerPC MI peephole pass ***\n\n");
157 LLVM_DEBUG(MF->dump());
158 }
159
getVRegDefOrNull(MachineOperand * Op,MachineRegisterInfo * MRI)160 static MachineInstr *getVRegDefOrNull(MachineOperand *Op,
161 MachineRegisterInfo *MRI) {
162 assert(Op && "Invalid Operand!");
163 if (!Op->isReg())
164 return nullptr;
165
166 Register Reg = Op->getReg();
167 if (!Reg.isVirtual())
168 return nullptr;
169
170 return MRI->getVRegDef(Reg);
171 }
172
173 // This function returns number of known zero bits in output of MI
174 // starting from the most significant bit.
getKnownLeadingZeroCount(const unsigned Reg,const PPCInstrInfo * TII,const MachineRegisterInfo * MRI)175 static unsigned getKnownLeadingZeroCount(const unsigned Reg,
176 const PPCInstrInfo *TII,
177 const MachineRegisterInfo *MRI) {
178 MachineInstr *MI = MRI->getVRegDef(Reg);
179 unsigned Opcode = MI->getOpcode();
180 if (Opcode == PPC::RLDICL || Opcode == PPC::RLDICL_rec ||
181 Opcode == PPC::RLDCL || Opcode == PPC::RLDCL_rec)
182 return MI->getOperand(3).getImm();
183
184 if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDIC_rec) &&
185 MI->getOperand(3).getImm() <= 63 - MI->getOperand(2).getImm())
186 return MI->getOperand(3).getImm();
187
188 if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec ||
189 Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec ||
190 Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) &&
191 MI->getOperand(3).getImm() <= MI->getOperand(4).getImm())
192 return 32 + MI->getOperand(3).getImm();
193
194 if (Opcode == PPC::ANDI_rec) {
195 uint16_t Imm = MI->getOperand(2).getImm();
196 return 48 + countLeadingZeros(Imm);
197 }
198
199 if (Opcode == PPC::CNTLZW || Opcode == PPC::CNTLZW_rec ||
200 Opcode == PPC::CNTTZW || Opcode == PPC::CNTTZW_rec ||
201 Opcode == PPC::CNTLZW8 || Opcode == PPC::CNTTZW8)
202 // The result ranges from 0 to 32.
203 return 58;
204
205 if (Opcode == PPC::CNTLZD || Opcode == PPC::CNTLZD_rec ||
206 Opcode == PPC::CNTTZD || Opcode == PPC::CNTTZD_rec)
207 // The result ranges from 0 to 64.
208 return 57;
209
210 if (Opcode == PPC::LHZ || Opcode == PPC::LHZX ||
211 Opcode == PPC::LHZ8 || Opcode == PPC::LHZX8 ||
212 Opcode == PPC::LHZU || Opcode == PPC::LHZUX ||
213 Opcode == PPC::LHZU8 || Opcode == PPC::LHZUX8)
214 return 48;
215
216 if (Opcode == PPC::LBZ || Opcode == PPC::LBZX ||
217 Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 ||
218 Opcode == PPC::LBZU || Opcode == PPC::LBZUX ||
219 Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8)
220 return 56;
221
222 if (TII->isZeroExtended(Reg, MRI))
223 return 32;
224
225 return 0;
226 }
227
228 // This function maintains a map for the pairs <TOC Save Instr, Keep>
229 // Each time a new TOC save is encountered, it checks if any of the existing
230 // ones are dominated by the new one. If so, it marks the existing one as
231 // redundant by setting it's entry in the map as false. It then adds the new
232 // instruction to the map with either true or false depending on if any
233 // existing instructions dominated the new one.
UpdateTOCSaves(std::map<MachineInstr *,bool> & TOCSaves,MachineInstr * MI)234 void PPCMIPeephole::UpdateTOCSaves(
235 std::map<MachineInstr *, bool> &TOCSaves, MachineInstr *MI) {
236 assert(TII->isTOCSaveMI(*MI) && "Expecting a TOC save instruction here");
237 // FIXME: Saving TOC in prologue hasn't been implemented well in AIX ABI part,
238 // here only support it under ELFv2.
239 if (MF->getSubtarget<PPCSubtarget>().isELFv2ABI()) {
240 PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>();
241
242 MachineBasicBlock *Entry = &MF->front();
243 uint64_t CurrBlockFreq = MBFI->getBlockFreq(MI->getParent()).getFrequency();
244
245 // If the block in which the TOC save resides is in a block that
246 // post-dominates Entry, or a block that is hotter than entry (keep in mind
247 // that early MachineLICM has already run so the TOC save won't be hoisted)
248 // we can just do the save in the prologue.
249 if (CurrBlockFreq > EntryFreq || MPDT->dominates(MI->getParent(), Entry))
250 FI->setMustSaveTOC(true);
251
252 // If we are saving the TOC in the prologue, all the TOC saves can be
253 // removed from the code.
254 if (FI->mustSaveTOC()) {
255 for (auto &TOCSave : TOCSaves)
256 TOCSave.second = false;
257 // Add new instruction to map.
258 TOCSaves[MI] = false;
259 return;
260 }
261 }
262
263 bool Keep = true;
264 for (auto &I : TOCSaves) {
265 MachineInstr *CurrInst = I.first;
266 // If new instruction dominates an existing one, mark existing one as
267 // redundant.
268 if (I.second && MDT->dominates(MI, CurrInst))
269 I.second = false;
270 // Check if the new instruction is redundant.
271 if (MDT->dominates(CurrInst, MI)) {
272 Keep = false;
273 break;
274 }
275 }
276 // Add new instruction to map.
277 TOCSaves[MI] = Keep;
278 }
279
280 // This function returns a list of all PHI nodes in the tree starting from
281 // the RootPHI node. We perform a BFS traversal to get an ordered list of nodes.
282 // The list initially only contains the root PHI. When we visit a PHI node, we
283 // add it to the list. We continue to look for other PHI node operands while
284 // there are nodes to visit in the list. The function returns false if the
285 // optimization cannot be applied on this tree.
collectUnprimedAccPHIs(MachineRegisterInfo * MRI,MachineInstr * RootPHI,SmallVectorImpl<MachineInstr * > & PHIs)286 static bool collectUnprimedAccPHIs(MachineRegisterInfo *MRI,
287 MachineInstr *RootPHI,
288 SmallVectorImpl<MachineInstr *> &PHIs) {
289 PHIs.push_back(RootPHI);
290 unsigned VisitedIndex = 0;
291 while (VisitedIndex < PHIs.size()) {
292 MachineInstr *VisitedPHI = PHIs[VisitedIndex];
293 for (unsigned PHIOp = 1, NumOps = VisitedPHI->getNumOperands();
294 PHIOp != NumOps; PHIOp += 2) {
295 Register RegOp = VisitedPHI->getOperand(PHIOp).getReg();
296 if (!RegOp.isVirtual())
297 return false;
298 MachineInstr *Instr = MRI->getVRegDef(RegOp);
299 // While collecting the PHI nodes, we check if they can be converted (i.e.
300 // all the operands are either copies, implicit defs or PHI nodes).
301 unsigned Opcode = Instr->getOpcode();
302 if (Opcode == PPC::COPY) {
303 Register Reg = Instr->getOperand(1).getReg();
304 if (!Reg.isVirtual() || MRI->getRegClass(Reg) != &PPC::ACCRCRegClass)
305 return false;
306 } else if (Opcode != PPC::IMPLICIT_DEF && Opcode != PPC::PHI)
307 return false;
308 // If we detect a cycle in the PHI nodes, we exit. It would be
309 // possible to change cycles as well, but that would add a lot
310 // of complexity for a case that is unlikely to occur with MMA
311 // code.
312 if (Opcode != PPC::PHI)
313 continue;
314 if (llvm::is_contained(PHIs, Instr))
315 return false;
316 PHIs.push_back(Instr);
317 }
318 VisitedIndex++;
319 }
320 return true;
321 }
322
323 // This function changes the unprimed accumulator PHI nodes in the PHIs list to
324 // primed accumulator PHI nodes. The list is traversed in reverse order to
325 // change all the PHI operands of a PHI node before changing the node itself.
326 // We keep a map to associate each changed PHI node to its non-changed form.
convertUnprimedAccPHIs(const PPCInstrInfo * TII,MachineRegisterInfo * MRI,SmallVectorImpl<MachineInstr * > & PHIs,Register Dst)327 static void convertUnprimedAccPHIs(const PPCInstrInfo *TII,
328 MachineRegisterInfo *MRI,
329 SmallVectorImpl<MachineInstr *> &PHIs,
330 Register Dst) {
331 DenseMap<MachineInstr *, MachineInstr *> ChangedPHIMap;
332 for (MachineInstr *PHI : llvm::reverse(PHIs)) {
333 SmallVector<std::pair<MachineOperand, MachineOperand>, 4> PHIOps;
334 // We check if the current PHI node can be changed by looking at its
335 // operands. If all the operands are either copies from primed
336 // accumulators, implicit definitions or other unprimed accumulator
337 // PHI nodes, we change it.
338 for (unsigned PHIOp = 1, NumOps = PHI->getNumOperands(); PHIOp != NumOps;
339 PHIOp += 2) {
340 Register RegOp = PHI->getOperand(PHIOp).getReg();
341 MachineInstr *PHIInput = MRI->getVRegDef(RegOp);
342 unsigned Opcode = PHIInput->getOpcode();
343 assert((Opcode == PPC::COPY || Opcode == PPC::IMPLICIT_DEF ||
344 Opcode == PPC::PHI) &&
345 "Unexpected instruction");
346 if (Opcode == PPC::COPY) {
347 assert(MRI->getRegClass(PHIInput->getOperand(1).getReg()) ==
348 &PPC::ACCRCRegClass &&
349 "Unexpected register class");
350 PHIOps.push_back({PHIInput->getOperand(1), PHI->getOperand(PHIOp + 1)});
351 } else if (Opcode == PPC::IMPLICIT_DEF) {
352 Register AccReg = MRI->createVirtualRegister(&PPC::ACCRCRegClass);
353 BuildMI(*PHIInput->getParent(), PHIInput, PHIInput->getDebugLoc(),
354 TII->get(PPC::IMPLICIT_DEF), AccReg);
355 PHIOps.push_back({MachineOperand::CreateReg(AccReg, false),
356 PHI->getOperand(PHIOp + 1)});
357 } else if (Opcode == PPC::PHI) {
358 // We found a PHI operand. At this point we know this operand
359 // has already been changed so we get its associated changed form
360 // from the map.
361 assert(ChangedPHIMap.count(PHIInput) == 1 &&
362 "This PHI node should have already been changed.");
363 MachineInstr *PrimedAccPHI = ChangedPHIMap.lookup(PHIInput);
364 PHIOps.push_back({MachineOperand::CreateReg(
365 PrimedAccPHI->getOperand(0).getReg(), false),
366 PHI->getOperand(PHIOp + 1)});
367 }
368 }
369 Register AccReg = Dst;
370 // If the PHI node we are changing is the root node, the register it defines
371 // will be the destination register of the original copy (of the PHI def).
372 // For all other PHI's in the list, we need to create another primed
373 // accumulator virtual register as the PHI will no longer define the
374 // unprimed accumulator.
375 if (PHI != PHIs[0])
376 AccReg = MRI->createVirtualRegister(&PPC::ACCRCRegClass);
377 MachineInstrBuilder NewPHI = BuildMI(
378 *PHI->getParent(), PHI, PHI->getDebugLoc(), TII->get(PPC::PHI), AccReg);
379 for (auto RegMBB : PHIOps)
380 NewPHI.add(RegMBB.first).add(RegMBB.second);
381 ChangedPHIMap[PHI] = NewPHI.getInstr();
382 LLVM_DEBUG(dbgs() << "Converting PHI: ");
383 LLVM_DEBUG(PHI->dump());
384 LLVM_DEBUG(dbgs() << "To: ");
385 LLVM_DEBUG(NewPHI.getInstr()->dump());
386 }
387 }
388
389 // Perform peephole optimizations.
simplifyCode()390 bool PPCMIPeephole::simplifyCode() {
391 bool Simplified = false;
392 bool TrapOpt = false;
393 MachineInstr* ToErase = nullptr;
394 std::map<MachineInstr *, bool> TOCSaves;
395 const TargetRegisterInfo *TRI = &TII->getRegisterInfo();
396 NumFunctionsEnteredInMIPeephole++;
397 if (ConvertRegReg) {
398 // Fixed-point conversion of reg/reg instructions fed by load-immediate
399 // into reg/imm instructions. FIXME: This is expensive, control it with
400 // an option.
401 bool SomethingChanged = false;
402 do {
403 NumFixedPointIterations++;
404 SomethingChanged = false;
405 for (MachineBasicBlock &MBB : *MF) {
406 for (MachineInstr &MI : MBB) {
407 if (MI.isDebugInstr())
408 continue;
409
410 if (TII->convertToImmediateForm(MI)) {
411 // We don't erase anything in case the def has other uses. Let DCE
412 // remove it if it can be removed.
413 LLVM_DEBUG(dbgs() << "Converted instruction to imm form: ");
414 LLVM_DEBUG(MI.dump());
415 NumConvertedToImmediateForm++;
416 SomethingChanged = true;
417 Simplified = true;
418 continue;
419 }
420 }
421 }
422 } while (SomethingChanged && FixedPointRegToImm);
423 }
424
425 for (MachineBasicBlock &MBB : *MF) {
426 for (MachineInstr &MI : MBB) {
427
428 // If the previous instruction was marked for elimination,
429 // remove it now.
430 if (ToErase) {
431 LLVM_DEBUG(dbgs() << "Deleting instruction: ");
432 LLVM_DEBUG(ToErase->dump());
433 ToErase->eraseFromParent();
434 ToErase = nullptr;
435 }
436 // If a conditional trap instruction got optimized to an
437 // unconditional trap, eliminate all the instructions after
438 // the trap.
439 if (EnableTrapOptimization && TrapOpt) {
440 ToErase = &MI;
441 continue;
442 }
443
444 // Ignore debug instructions.
445 if (MI.isDebugInstr())
446 continue;
447
448 // Per-opcode peepholes.
449 switch (MI.getOpcode()) {
450
451 default:
452 break;
453 case PPC::COPY: {
454 Register Src = MI.getOperand(1).getReg();
455 Register Dst = MI.getOperand(0).getReg();
456 if (!Src.isVirtual() || !Dst.isVirtual())
457 break;
458 if (MRI->getRegClass(Src) != &PPC::UACCRCRegClass ||
459 MRI->getRegClass(Dst) != &PPC::ACCRCRegClass)
460 break;
461
462 // We are copying an unprimed accumulator to a primed accumulator.
463 // If the input to the copy is a PHI that is fed only by (i) copies in
464 // the other direction (ii) implicitly defined unprimed accumulators or
465 // (iii) other PHI nodes satisfying (i) and (ii), we can change
466 // the PHI to a PHI on primed accumulators (as long as we also change
467 // its operands). To detect and change such copies, we first get a list
468 // of all the PHI nodes starting from the root PHI node in BFS order.
469 // We then visit all these PHI nodes to check if they can be changed to
470 // primed accumulator PHI nodes and if so, we change them.
471 MachineInstr *RootPHI = MRI->getVRegDef(Src);
472 if (RootPHI->getOpcode() != PPC::PHI)
473 break;
474
475 SmallVector<MachineInstr *, 4> PHIs;
476 if (!collectUnprimedAccPHIs(MRI, RootPHI, PHIs))
477 break;
478
479 convertUnprimedAccPHIs(TII, MRI, PHIs, Dst);
480
481 ToErase = &MI;
482 break;
483 }
484 case PPC::LI:
485 case PPC::LI8: {
486 // If we are materializing a zero, look for any use operands for which
487 // zero means immediate zero. All such operands can be replaced with
488 // PPC::ZERO.
489 if (!MI.getOperand(1).isImm() || MI.getOperand(1).getImm() != 0)
490 break;
491 Register MIDestReg = MI.getOperand(0).getReg();
492 for (MachineInstr& UseMI : MRI->use_instructions(MIDestReg))
493 Simplified |= TII->onlyFoldImmediate(UseMI, MI, MIDestReg);
494 if (MRI->use_nodbg_empty(MIDestReg)) {
495 ++NumLoadImmZeroFoldedAndRemoved;
496 ToErase = &MI;
497 }
498 break;
499 }
500 case PPC::STW:
501 case PPC::STD: {
502 MachineFrameInfo &MFI = MF->getFrameInfo();
503 if (MFI.hasVarSizedObjects() ||
504 (!MF->getSubtarget<PPCSubtarget>().isELFv2ABI() &&
505 !MF->getSubtarget<PPCSubtarget>().isAIXABI()))
506 break;
507 // When encountering a TOC save instruction, call UpdateTOCSaves
508 // to add it to the TOCSaves map and mark any existing TOC saves
509 // it dominates as redundant.
510 if (TII->isTOCSaveMI(MI))
511 UpdateTOCSaves(TOCSaves, &MI);
512 break;
513 }
514 case PPC::XXPERMDI: {
515 // Perform simplifications of 2x64 vector swaps and splats.
516 // A swap is identified by an immediate value of 2, and a splat
517 // is identified by an immediate value of 0 or 3.
518 int Immed = MI.getOperand(3).getImm();
519
520 if (Immed == 1)
521 break;
522
523 // For each of these simplifications, we need the two source
524 // regs to match. Unfortunately, MachineCSE ignores COPY and
525 // SUBREG_TO_REG, so for example we can see
526 // XXPERMDI t, SUBREG_TO_REG(s), SUBREG_TO_REG(s), immed.
527 // We have to look through chains of COPY and SUBREG_TO_REG
528 // to find the real source values for comparison.
529 Register TrueReg1 =
530 TRI->lookThruCopyLike(MI.getOperand(1).getReg(), MRI);
531 Register TrueReg2 =
532 TRI->lookThruCopyLike(MI.getOperand(2).getReg(), MRI);
533
534 if (!(TrueReg1 == TrueReg2 && TrueReg1.isVirtual()))
535 break;
536
537 MachineInstr *DefMI = MRI->getVRegDef(TrueReg1);
538
539 if (!DefMI)
540 break;
541
542 unsigned DefOpc = DefMI->getOpcode();
543
544 // If this is a splat fed by a splatting load, the splat is
545 // redundant. Replace with a copy. This doesn't happen directly due
546 // to code in PPCDAGToDAGISel.cpp, but it can happen when converting
547 // a load of a double to a vector of 64-bit integers.
548 auto isConversionOfLoadAndSplat = [=]() -> bool {
549 if (DefOpc != PPC::XVCVDPSXDS && DefOpc != PPC::XVCVDPUXDS)
550 return false;
551 Register FeedReg1 =
552 TRI->lookThruCopyLike(DefMI->getOperand(1).getReg(), MRI);
553 if (FeedReg1.isVirtual()) {
554 MachineInstr *LoadMI = MRI->getVRegDef(FeedReg1);
555 if (LoadMI && LoadMI->getOpcode() == PPC::LXVDSX)
556 return true;
557 }
558 return false;
559 };
560 if ((Immed == 0 || Immed == 3) &&
561 (DefOpc == PPC::LXVDSX || isConversionOfLoadAndSplat())) {
562 LLVM_DEBUG(dbgs() << "Optimizing load-and-splat/splat "
563 "to load-and-splat/copy: ");
564 LLVM_DEBUG(MI.dump());
565 BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
566 MI.getOperand(0).getReg())
567 .add(MI.getOperand(1));
568 ToErase = &MI;
569 Simplified = true;
570 }
571
572 // If this is a splat or a swap fed by another splat, we
573 // can replace it with a copy.
574 if (DefOpc == PPC::XXPERMDI) {
575 Register DefReg1 = DefMI->getOperand(1).getReg();
576 Register DefReg2 = DefMI->getOperand(2).getReg();
577 unsigned DefImmed = DefMI->getOperand(3).getImm();
578
579 // If the two inputs are not the same register, check to see if
580 // they originate from the same virtual register after only
581 // copy-like instructions.
582 if (DefReg1 != DefReg2) {
583 Register FeedReg1 = TRI->lookThruCopyLike(DefReg1, MRI);
584 Register FeedReg2 = TRI->lookThruCopyLike(DefReg2, MRI);
585
586 if (!(FeedReg1 == FeedReg2 && FeedReg1.isVirtual()))
587 break;
588 }
589
590 if (DefImmed == 0 || DefImmed == 3) {
591 LLVM_DEBUG(dbgs() << "Optimizing splat/swap or splat/splat "
592 "to splat/copy: ");
593 LLVM_DEBUG(MI.dump());
594 BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
595 MI.getOperand(0).getReg())
596 .add(MI.getOperand(1));
597 ToErase = &MI;
598 Simplified = true;
599 }
600
601 // If this is a splat fed by a swap, we can simplify modify
602 // the splat to splat the other value from the swap's input
603 // parameter.
604 else if ((Immed == 0 || Immed == 3) && DefImmed == 2) {
605 LLVM_DEBUG(dbgs() << "Optimizing swap/splat => splat: ");
606 LLVM_DEBUG(MI.dump());
607 MI.getOperand(1).setReg(DefReg1);
608 MI.getOperand(2).setReg(DefReg2);
609 MI.getOperand(3).setImm(3 - Immed);
610 Simplified = true;
611 }
612
613 // If this is a swap fed by a swap, we can replace it
614 // with a copy from the first swap's input.
615 else if (Immed == 2 && DefImmed == 2) {
616 LLVM_DEBUG(dbgs() << "Optimizing swap/swap => copy: ");
617 LLVM_DEBUG(MI.dump());
618 BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
619 MI.getOperand(0).getReg())
620 .add(DefMI->getOperand(1));
621 ToErase = &MI;
622 Simplified = true;
623 }
624 } else if ((Immed == 0 || Immed == 3 || Immed == 2) &&
625 DefOpc == PPC::XXPERMDIs &&
626 (DefMI->getOperand(2).getImm() == 0 ||
627 DefMI->getOperand(2).getImm() == 3)) {
628 ToErase = &MI;
629 Simplified = true;
630 // Swap of a splat, convert to copy.
631 if (Immed == 2) {
632 LLVM_DEBUG(dbgs() << "Optimizing swap(splat) => copy(splat): ");
633 LLVM_DEBUG(MI.dump());
634 BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
635 MI.getOperand(0).getReg())
636 .add(MI.getOperand(1));
637 break;
638 }
639 // Splat fed by another splat - switch the output of the first
640 // and remove the second.
641 DefMI->getOperand(0).setReg(MI.getOperand(0).getReg());
642 LLVM_DEBUG(dbgs() << "Removing redundant splat: ");
643 LLVM_DEBUG(MI.dump());
644 }
645 break;
646 }
647 case PPC::VSPLTB:
648 case PPC::VSPLTH:
649 case PPC::XXSPLTW: {
650 unsigned MyOpcode = MI.getOpcode();
651 unsigned OpNo = MyOpcode == PPC::XXSPLTW ? 1 : 2;
652 Register TrueReg =
653 TRI->lookThruCopyLike(MI.getOperand(OpNo).getReg(), MRI);
654 if (!TrueReg.isVirtual())
655 break;
656 MachineInstr *DefMI = MRI->getVRegDef(TrueReg);
657 if (!DefMI)
658 break;
659 unsigned DefOpcode = DefMI->getOpcode();
660 auto isConvertOfSplat = [=]() -> bool {
661 if (DefOpcode != PPC::XVCVSPSXWS && DefOpcode != PPC::XVCVSPUXWS)
662 return false;
663 Register ConvReg = DefMI->getOperand(1).getReg();
664 if (!ConvReg.isVirtual())
665 return false;
666 MachineInstr *Splt = MRI->getVRegDef(ConvReg);
667 return Splt && (Splt->getOpcode() == PPC::LXVWSX ||
668 Splt->getOpcode() == PPC::XXSPLTW);
669 };
670 bool AlreadySplat = (MyOpcode == DefOpcode) ||
671 (MyOpcode == PPC::VSPLTB && DefOpcode == PPC::VSPLTBs) ||
672 (MyOpcode == PPC::VSPLTH && DefOpcode == PPC::VSPLTHs) ||
673 (MyOpcode == PPC::XXSPLTW && DefOpcode == PPC::XXSPLTWs) ||
674 (MyOpcode == PPC::XXSPLTW && DefOpcode == PPC::LXVWSX) ||
675 (MyOpcode == PPC::XXSPLTW && DefOpcode == PPC::MTVSRWS)||
676 (MyOpcode == PPC::XXSPLTW && isConvertOfSplat());
677 // If the instruction[s] that feed this splat have already splat
678 // the value, this splat is redundant.
679 if (AlreadySplat) {
680 LLVM_DEBUG(dbgs() << "Changing redundant splat to a copy: ");
681 LLVM_DEBUG(MI.dump());
682 BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
683 MI.getOperand(0).getReg())
684 .add(MI.getOperand(OpNo));
685 ToErase = &MI;
686 Simplified = true;
687 }
688 // Splat fed by a shift. Usually when we align value to splat into
689 // vector element zero.
690 if (DefOpcode == PPC::XXSLDWI) {
691 Register ShiftRes = DefMI->getOperand(0).getReg();
692 Register ShiftOp1 = DefMI->getOperand(1).getReg();
693 Register ShiftOp2 = DefMI->getOperand(2).getReg();
694 unsigned ShiftImm = DefMI->getOperand(3).getImm();
695 unsigned SplatImm =
696 MI.getOperand(MyOpcode == PPC::XXSPLTW ? 2 : 1).getImm();
697 if (ShiftOp1 == ShiftOp2) {
698 unsigned NewElem = (SplatImm + ShiftImm) & 0x3;
699 if (MRI->hasOneNonDBGUse(ShiftRes)) {
700 LLVM_DEBUG(dbgs() << "Removing redundant shift: ");
701 LLVM_DEBUG(DefMI->dump());
702 ToErase = DefMI;
703 }
704 Simplified = true;
705 LLVM_DEBUG(dbgs() << "Changing splat immediate from " << SplatImm
706 << " to " << NewElem << " in instruction: ");
707 LLVM_DEBUG(MI.dump());
708 MI.getOperand(1).setReg(ShiftOp1);
709 MI.getOperand(2).setImm(NewElem);
710 }
711 }
712 break;
713 }
714 case PPC::XVCVDPSP: {
715 // If this is a DP->SP conversion fed by an FRSP, the FRSP is redundant.
716 Register TrueReg =
717 TRI->lookThruCopyLike(MI.getOperand(1).getReg(), MRI);
718 if (!TrueReg.isVirtual())
719 break;
720 MachineInstr *DefMI = MRI->getVRegDef(TrueReg);
721
722 // This can occur when building a vector of single precision or integer
723 // values.
724 if (DefMI && DefMI->getOpcode() == PPC::XXPERMDI) {
725 Register DefsReg1 =
726 TRI->lookThruCopyLike(DefMI->getOperand(1).getReg(), MRI);
727 Register DefsReg2 =
728 TRI->lookThruCopyLike(DefMI->getOperand(2).getReg(), MRI);
729 if (!DefsReg1.isVirtual() || !DefsReg2.isVirtual())
730 break;
731 MachineInstr *P1 = MRI->getVRegDef(DefsReg1);
732 MachineInstr *P2 = MRI->getVRegDef(DefsReg2);
733
734 if (!P1 || !P2)
735 break;
736
737 // Remove the passed FRSP/XSRSP instruction if it only feeds this MI
738 // and set any uses of that FRSP/XSRSP (in this MI) to the source of
739 // the FRSP/XSRSP.
740 auto removeFRSPIfPossible = [&](MachineInstr *RoundInstr) {
741 unsigned Opc = RoundInstr->getOpcode();
742 if ((Opc == PPC::FRSP || Opc == PPC::XSRSP) &&
743 MRI->hasOneNonDBGUse(RoundInstr->getOperand(0).getReg())) {
744 Simplified = true;
745 Register ConvReg1 = RoundInstr->getOperand(1).getReg();
746 Register FRSPDefines = RoundInstr->getOperand(0).getReg();
747 MachineInstr &Use = *(MRI->use_instr_nodbg_begin(FRSPDefines));
748 for (int i = 0, e = Use.getNumOperands(); i < e; ++i)
749 if (Use.getOperand(i).isReg() &&
750 Use.getOperand(i).getReg() == FRSPDefines)
751 Use.getOperand(i).setReg(ConvReg1);
752 LLVM_DEBUG(dbgs() << "Removing redundant FRSP/XSRSP:\n");
753 LLVM_DEBUG(RoundInstr->dump());
754 LLVM_DEBUG(dbgs() << "As it feeds instruction:\n");
755 LLVM_DEBUG(MI.dump());
756 LLVM_DEBUG(dbgs() << "Through instruction:\n");
757 LLVM_DEBUG(DefMI->dump());
758 RoundInstr->eraseFromParent();
759 }
760 };
761
762 // If the input to XVCVDPSP is a vector that was built (even
763 // partially) out of FRSP's, the FRSP(s) can safely be removed
764 // since this instruction performs the same operation.
765 if (P1 != P2) {
766 removeFRSPIfPossible(P1);
767 removeFRSPIfPossible(P2);
768 break;
769 }
770 removeFRSPIfPossible(P1);
771 }
772 break;
773 }
774 case PPC::EXTSH:
775 case PPC::EXTSH8:
776 case PPC::EXTSH8_32_64: {
777 if (!EnableSExtElimination) break;
778 Register NarrowReg = MI.getOperand(1).getReg();
779 if (!NarrowReg.isVirtual())
780 break;
781
782 MachineInstr *SrcMI = MRI->getVRegDef(NarrowReg);
783 unsigned SrcOpcode = SrcMI->getOpcode();
784 // If we've used a zero-extending load that we will sign-extend,
785 // just do a sign-extending load.
786 if (SrcOpcode == PPC::LHZ || SrcOpcode == PPC::LHZX) {
787 if (!MRI->hasOneNonDBGUse(SrcMI->getOperand(0).getReg()))
788 break;
789 // Determine the new opcode. We need to make sure that if the original
790 // instruction has a 64 bit opcode we keep using a 64 bit opcode.
791 // Likewise if the source is X-Form the new opcode should also be
792 // X-Form.
793 unsigned Opc = PPC::LHA;
794 bool SourceIsXForm = SrcOpcode == PPC::LHZX;
795 bool MIIs64Bit = MI.getOpcode() == PPC::EXTSH8 ||
796 MI.getOpcode() == PPC::EXTSH8_32_64;
797
798 if (SourceIsXForm && MIIs64Bit)
799 Opc = PPC::LHAX8;
800 else if (SourceIsXForm && !MIIs64Bit)
801 Opc = PPC::LHAX;
802 else if (MIIs64Bit)
803 Opc = PPC::LHA8;
804
805 LLVM_DEBUG(dbgs() << "Zero-extending load\n");
806 LLVM_DEBUG(SrcMI->dump());
807 LLVM_DEBUG(dbgs() << "and sign-extension\n");
808 LLVM_DEBUG(MI.dump());
809 LLVM_DEBUG(dbgs() << "are merged into sign-extending load\n");
810 SrcMI->setDesc(TII->get(Opc));
811 SrcMI->getOperand(0).setReg(MI.getOperand(0).getReg());
812 ToErase = &MI;
813 Simplified = true;
814 NumEliminatedSExt++;
815 }
816 break;
817 }
818 case PPC::EXTSW:
819 case PPC::EXTSW_32:
820 case PPC::EXTSW_32_64: {
821 if (!EnableSExtElimination) break;
822 Register NarrowReg = MI.getOperand(1).getReg();
823 if (!NarrowReg.isVirtual())
824 break;
825
826 MachineInstr *SrcMI = MRI->getVRegDef(NarrowReg);
827 unsigned SrcOpcode = SrcMI->getOpcode();
828 // If we've used a zero-extending load that we will sign-extend,
829 // just do a sign-extending load.
830 if (SrcOpcode == PPC::LWZ || SrcOpcode == PPC::LWZX) {
831 if (!MRI->hasOneNonDBGUse(SrcMI->getOperand(0).getReg()))
832 break;
833
834 // The transformation from a zero-extending load to a sign-extending
835 // load is only legal when the displacement is a multiple of 4.
836 // If the displacement is not at least 4 byte aligned, don't perform
837 // the transformation.
838 bool IsWordAligned = false;
839 if (SrcMI->getOperand(1).isGlobal()) {
840 const GlobalObject *GO =
841 dyn_cast<GlobalObject>(SrcMI->getOperand(1).getGlobal());
842 if (GO && GO->getAlign() && *GO->getAlign() >= 4)
843 IsWordAligned = true;
844 } else if (SrcMI->getOperand(1).isImm()) {
845 int64_t Value = SrcMI->getOperand(1).getImm();
846 if (Value % 4 == 0)
847 IsWordAligned = true;
848 }
849
850 // Determine the new opcode. We need to make sure that if the original
851 // instruction has a 64 bit opcode we keep using a 64 bit opcode.
852 // Likewise if the source is X-Form the new opcode should also be
853 // X-Form.
854 unsigned Opc = PPC::LWA_32;
855 bool SourceIsXForm = SrcOpcode == PPC::LWZX;
856 bool MIIs64Bit = MI.getOpcode() == PPC::EXTSW ||
857 MI.getOpcode() == PPC::EXTSW_32_64;
858
859 if (SourceIsXForm && MIIs64Bit)
860 Opc = PPC::LWAX;
861 else if (SourceIsXForm && !MIIs64Bit)
862 Opc = PPC::LWAX_32;
863 else if (MIIs64Bit)
864 Opc = PPC::LWA;
865
866 if (!IsWordAligned && (Opc == PPC::LWA || Opc == PPC::LWA_32))
867 break;
868
869 LLVM_DEBUG(dbgs() << "Zero-extending load\n");
870 LLVM_DEBUG(SrcMI->dump());
871 LLVM_DEBUG(dbgs() << "and sign-extension\n");
872 LLVM_DEBUG(MI.dump());
873 LLVM_DEBUG(dbgs() << "are merged into sign-extending load\n");
874 SrcMI->setDesc(TII->get(Opc));
875 SrcMI->getOperand(0).setReg(MI.getOperand(0).getReg());
876 ToErase = &MI;
877 Simplified = true;
878 NumEliminatedSExt++;
879 } else if (MI.getOpcode() == PPC::EXTSW_32_64 &&
880 TII->isSignExtended(NarrowReg, MRI)) {
881 // We can eliminate EXTSW if the input is known to be already
882 // sign-extended.
883 LLVM_DEBUG(dbgs() << "Removing redundant sign-extension\n");
884 Register TmpReg =
885 MF->getRegInfo().createVirtualRegister(&PPC::G8RCRegClass);
886 BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::IMPLICIT_DEF),
887 TmpReg);
888 BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::INSERT_SUBREG),
889 MI.getOperand(0).getReg())
890 .addReg(TmpReg)
891 .addReg(NarrowReg)
892 .addImm(PPC::sub_32);
893 ToErase = &MI;
894 Simplified = true;
895 NumEliminatedSExt++;
896 }
897 break;
898 }
899 case PPC::RLDICL: {
900 // We can eliminate RLDICL (e.g. for zero-extension)
901 // if all bits to clear are already zero in the input.
902 // This code assume following code sequence for zero-extension.
903 // %6 = COPY %5:sub_32; (optional)
904 // %8 = IMPLICIT_DEF;
905 // %7<def,tied1> = INSERT_SUBREG %8<tied0>, %6, sub_32;
906 if (!EnableZExtElimination) break;
907
908 if (MI.getOperand(2).getImm() != 0)
909 break;
910
911 Register SrcReg = MI.getOperand(1).getReg();
912 if (!SrcReg.isVirtual())
913 break;
914
915 MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
916 if (!(SrcMI && SrcMI->getOpcode() == PPC::INSERT_SUBREG &&
917 SrcMI->getOperand(0).isReg() && SrcMI->getOperand(1).isReg()))
918 break;
919
920 MachineInstr *ImpDefMI, *SubRegMI;
921 ImpDefMI = MRI->getVRegDef(SrcMI->getOperand(1).getReg());
922 SubRegMI = MRI->getVRegDef(SrcMI->getOperand(2).getReg());
923 if (ImpDefMI->getOpcode() != PPC::IMPLICIT_DEF) break;
924
925 SrcMI = SubRegMI;
926 if (SubRegMI->getOpcode() == PPC::COPY) {
927 Register CopyReg = SubRegMI->getOperand(1).getReg();
928 if (CopyReg.isVirtual())
929 SrcMI = MRI->getVRegDef(CopyReg);
930 }
931 if (!SrcMI->getOperand(0).isReg())
932 break;
933
934 unsigned KnownZeroCount =
935 getKnownLeadingZeroCount(SrcMI->getOperand(0).getReg(), TII, MRI);
936 if (MI.getOperand(3).getImm() <= KnownZeroCount) {
937 LLVM_DEBUG(dbgs() << "Removing redundant zero-extension\n");
938 BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
939 MI.getOperand(0).getReg())
940 .addReg(SrcReg);
941 ToErase = &MI;
942 Simplified = true;
943 NumEliminatedZExt++;
944 }
945 break;
946 }
947
948 // TODO: Any instruction that has an immediate form fed only by a PHI
949 // whose operands are all load immediate can be folded away. We currently
950 // do this for ADD instructions, but should expand it to arithmetic and
951 // binary instructions with immediate forms in the future.
952 case PPC::ADD4:
953 case PPC::ADD8: {
954 auto isSingleUsePHI = [&](MachineOperand *PhiOp) {
955 assert(PhiOp && "Invalid Operand!");
956 MachineInstr *DefPhiMI = getVRegDefOrNull(PhiOp, MRI);
957
958 return DefPhiMI && (DefPhiMI->getOpcode() == PPC::PHI) &&
959 MRI->hasOneNonDBGUse(DefPhiMI->getOperand(0).getReg());
960 };
961
962 auto dominatesAllSingleUseLIs = [&](MachineOperand *DominatorOp,
963 MachineOperand *PhiOp) {
964 assert(PhiOp && "Invalid Operand!");
965 assert(DominatorOp && "Invalid Operand!");
966 MachineInstr *DefPhiMI = getVRegDefOrNull(PhiOp, MRI);
967 MachineInstr *DefDomMI = getVRegDefOrNull(DominatorOp, MRI);
968
969 // Note: the vregs only show up at odd indices position of PHI Node,
970 // the even indices position save the BB info.
971 for (unsigned i = 1; i < DefPhiMI->getNumOperands(); i += 2) {
972 MachineInstr *LiMI =
973 getVRegDefOrNull(&DefPhiMI->getOperand(i), MRI);
974 if (!LiMI ||
975 (LiMI->getOpcode() != PPC::LI && LiMI->getOpcode() != PPC::LI8)
976 || !MRI->hasOneNonDBGUse(LiMI->getOperand(0).getReg()) ||
977 !MDT->dominates(DefDomMI, LiMI))
978 return false;
979 }
980
981 return true;
982 };
983
984 MachineOperand Op1 = MI.getOperand(1);
985 MachineOperand Op2 = MI.getOperand(2);
986 if (isSingleUsePHI(&Op2) && dominatesAllSingleUseLIs(&Op1, &Op2))
987 std::swap(Op1, Op2);
988 else if (!isSingleUsePHI(&Op1) || !dominatesAllSingleUseLIs(&Op2, &Op1))
989 break; // We don't have an ADD fed by LI's that can be transformed
990
991 // Now we know that Op1 is the PHI node and Op2 is the dominator
992 Register DominatorReg = Op2.getReg();
993
994 const TargetRegisterClass *TRC = MI.getOpcode() == PPC::ADD8
995 ? &PPC::G8RC_and_G8RC_NOX0RegClass
996 : &PPC::GPRC_and_GPRC_NOR0RegClass;
997 MRI->setRegClass(DominatorReg, TRC);
998
999 // replace LIs with ADDIs
1000 MachineInstr *DefPhiMI = getVRegDefOrNull(&Op1, MRI);
1001 for (unsigned i = 1; i < DefPhiMI->getNumOperands(); i += 2) {
1002 MachineInstr *LiMI = getVRegDefOrNull(&DefPhiMI->getOperand(i), MRI);
1003 LLVM_DEBUG(dbgs() << "Optimizing LI to ADDI: ");
1004 LLVM_DEBUG(LiMI->dump());
1005
1006 // There could be repeated registers in the PHI, e.g: %1 =
1007 // PHI %6, <%bb.2>, %8, <%bb.3>, %8, <%bb.6>; So if we've
1008 // already replaced the def instruction, skip.
1009 if (LiMI->getOpcode() == PPC::ADDI || LiMI->getOpcode() == PPC::ADDI8)
1010 continue;
1011
1012 assert((LiMI->getOpcode() == PPC::LI ||
1013 LiMI->getOpcode() == PPC::LI8) &&
1014 "Invalid Opcode!");
1015 auto LiImm = LiMI->getOperand(1).getImm(); // save the imm of LI
1016 LiMI->removeOperand(1); // remove the imm of LI
1017 LiMI->setDesc(TII->get(LiMI->getOpcode() == PPC::LI ? PPC::ADDI
1018 : PPC::ADDI8));
1019 MachineInstrBuilder(*LiMI->getParent()->getParent(), *LiMI)
1020 .addReg(DominatorReg)
1021 .addImm(LiImm); // restore the imm of LI
1022 LLVM_DEBUG(LiMI->dump());
1023 }
1024
1025 // Replace ADD with COPY
1026 LLVM_DEBUG(dbgs() << "Optimizing ADD to COPY: ");
1027 LLVM_DEBUG(MI.dump());
1028 BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
1029 MI.getOperand(0).getReg())
1030 .add(Op1);
1031 ToErase = &MI;
1032 Simplified = true;
1033 NumOptADDLIs++;
1034 break;
1035 }
1036 case PPC::RLDICR: {
1037 Simplified |= emitRLDICWhenLoweringJumpTables(MI) ||
1038 combineSEXTAndSHL(MI, ToErase);
1039 break;
1040 }
1041 case PPC::RLWINM:
1042 case PPC::RLWINM_rec:
1043 case PPC::RLWINM8:
1044 case PPC::RLWINM8_rec: {
1045 Simplified = TII->combineRLWINM(MI, &ToErase);
1046 if (Simplified)
1047 ++NumRotatesCollapsed;
1048 break;
1049 }
1050 // We will replace TD/TW/TDI/TWI with an unconditional trap if it will
1051 // always trap, we will delete the node if it will never trap.
1052 case PPC::TDI:
1053 case PPC::TWI:
1054 case PPC::TD:
1055 case PPC::TW: {
1056 if (!EnableTrapOptimization) break;
1057 MachineInstr *LiMI1 = getVRegDefOrNull(&MI.getOperand(1), MRI);
1058 MachineInstr *LiMI2 = getVRegDefOrNull(&MI.getOperand(2), MRI);
1059 bool IsOperand2Immediate = MI.getOperand(2).isImm();
1060 // We can only do the optimization if we can get immediates
1061 // from both operands
1062 if (!(LiMI1 && (LiMI1->getOpcode() == PPC::LI ||
1063 LiMI1->getOpcode() == PPC::LI8)))
1064 break;
1065 if (!IsOperand2Immediate &&
1066 !(LiMI2 && (LiMI2->getOpcode() == PPC::LI ||
1067 LiMI2->getOpcode() == PPC::LI8)))
1068 break;
1069
1070 auto ImmOperand0 = MI.getOperand(0).getImm();
1071 auto ImmOperand1 = LiMI1->getOperand(1).getImm();
1072 auto ImmOperand2 = IsOperand2Immediate ? MI.getOperand(2).getImm()
1073 : LiMI2->getOperand(1).getImm();
1074
1075 // We will replace the MI with an unconditional trap if it will always
1076 // trap.
1077 if ((ImmOperand0 == 31) ||
1078 ((ImmOperand0 & 0x10) &&
1079 ((int64_t)ImmOperand1 < (int64_t)ImmOperand2)) ||
1080 ((ImmOperand0 & 0x8) &&
1081 ((int64_t)ImmOperand1 > (int64_t)ImmOperand2)) ||
1082 ((ImmOperand0 & 0x2) &&
1083 ((uint64_t)ImmOperand1 < (uint64_t)ImmOperand2)) ||
1084 ((ImmOperand0 & 0x1) &&
1085 ((uint64_t)ImmOperand1 > (uint64_t)ImmOperand2)) ||
1086 ((ImmOperand0 & 0x4) && (ImmOperand1 == ImmOperand2))) {
1087 BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::TRAP));
1088 TrapOpt = true;
1089 }
1090 // We will delete the MI if it will never trap.
1091 ToErase = &MI;
1092 Simplified = true;
1093 break;
1094 }
1095 }
1096 }
1097
1098 // If the last instruction was marked for elimination,
1099 // remove it now.
1100 if (ToErase) {
1101 ToErase->eraseFromParent();
1102 ToErase = nullptr;
1103 }
1104 // Reset TrapOpt to false at the end of the basic block.
1105 if (EnableTrapOptimization)
1106 TrapOpt = false;
1107 }
1108
1109 // Eliminate all the TOC save instructions which are redundant.
1110 Simplified |= eliminateRedundantTOCSaves(TOCSaves);
1111 PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>();
1112 if (FI->mustSaveTOC())
1113 NumTOCSavesInPrologue++;
1114
1115 // We try to eliminate redundant compare instruction.
1116 Simplified |= eliminateRedundantCompare();
1117
1118 return Simplified;
1119 }
1120
1121 // helper functions for eliminateRedundantCompare
isEqOrNe(MachineInstr * BI)1122 static bool isEqOrNe(MachineInstr *BI) {
1123 PPC::Predicate Pred = (PPC::Predicate)BI->getOperand(0).getImm();
1124 unsigned PredCond = PPC::getPredicateCondition(Pred);
1125 return (PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE);
1126 }
1127
isSupportedCmpOp(unsigned opCode)1128 static bool isSupportedCmpOp(unsigned opCode) {
1129 return (opCode == PPC::CMPLD || opCode == PPC::CMPD ||
1130 opCode == PPC::CMPLW || opCode == PPC::CMPW ||
1131 opCode == PPC::CMPLDI || opCode == PPC::CMPDI ||
1132 opCode == PPC::CMPLWI || opCode == PPC::CMPWI);
1133 }
1134
is64bitCmpOp(unsigned opCode)1135 static bool is64bitCmpOp(unsigned opCode) {
1136 return (opCode == PPC::CMPLD || opCode == PPC::CMPD ||
1137 opCode == PPC::CMPLDI || opCode == PPC::CMPDI);
1138 }
1139
isSignedCmpOp(unsigned opCode)1140 static bool isSignedCmpOp(unsigned opCode) {
1141 return (opCode == PPC::CMPD || opCode == PPC::CMPW ||
1142 opCode == PPC::CMPDI || opCode == PPC::CMPWI);
1143 }
1144
getSignedCmpOpCode(unsigned opCode)1145 static unsigned getSignedCmpOpCode(unsigned opCode) {
1146 if (opCode == PPC::CMPLD) return PPC::CMPD;
1147 if (opCode == PPC::CMPLW) return PPC::CMPW;
1148 if (opCode == PPC::CMPLDI) return PPC::CMPDI;
1149 if (opCode == PPC::CMPLWI) return PPC::CMPWI;
1150 return opCode;
1151 }
1152
1153 // We can decrement immediate x in (GE x) by changing it to (GT x-1) or
1154 // (LT x) to (LE x-1)
getPredicateToDecImm(MachineInstr * BI,MachineInstr * CMPI)1155 static unsigned getPredicateToDecImm(MachineInstr *BI, MachineInstr *CMPI) {
1156 uint64_t Imm = CMPI->getOperand(2).getImm();
1157 bool SignedCmp = isSignedCmpOp(CMPI->getOpcode());
1158 if ((!SignedCmp && Imm == 0) || (SignedCmp && Imm == 0x8000))
1159 return 0;
1160
1161 PPC::Predicate Pred = (PPC::Predicate)BI->getOperand(0).getImm();
1162 unsigned PredCond = PPC::getPredicateCondition(Pred);
1163 unsigned PredHint = PPC::getPredicateHint(Pred);
1164 if (PredCond == PPC::PRED_GE)
1165 return PPC::getPredicate(PPC::PRED_GT, PredHint);
1166 if (PredCond == PPC::PRED_LT)
1167 return PPC::getPredicate(PPC::PRED_LE, PredHint);
1168
1169 return 0;
1170 }
1171
1172 // We can increment immediate x in (GT x) by changing it to (GE x+1) or
1173 // (LE x) to (LT x+1)
getPredicateToIncImm(MachineInstr * BI,MachineInstr * CMPI)1174 static unsigned getPredicateToIncImm(MachineInstr *BI, MachineInstr *CMPI) {
1175 uint64_t Imm = CMPI->getOperand(2).getImm();
1176 bool SignedCmp = isSignedCmpOp(CMPI->getOpcode());
1177 if ((!SignedCmp && Imm == 0xFFFF) || (SignedCmp && Imm == 0x7FFF))
1178 return 0;
1179
1180 PPC::Predicate Pred = (PPC::Predicate)BI->getOperand(0).getImm();
1181 unsigned PredCond = PPC::getPredicateCondition(Pred);
1182 unsigned PredHint = PPC::getPredicateHint(Pred);
1183 if (PredCond == PPC::PRED_GT)
1184 return PPC::getPredicate(PPC::PRED_GE, PredHint);
1185 if (PredCond == PPC::PRED_LE)
1186 return PPC::getPredicate(PPC::PRED_LT, PredHint);
1187
1188 return 0;
1189 }
1190
1191 // This takes a Phi node and returns a register value for the specified BB.
getIncomingRegForBlock(MachineInstr * Phi,MachineBasicBlock * MBB)1192 static unsigned getIncomingRegForBlock(MachineInstr *Phi,
1193 MachineBasicBlock *MBB) {
1194 for (unsigned I = 2, E = Phi->getNumOperands() + 1; I != E; I += 2) {
1195 MachineOperand &MO = Phi->getOperand(I);
1196 if (MO.getMBB() == MBB)
1197 return Phi->getOperand(I-1).getReg();
1198 }
1199 llvm_unreachable("invalid src basic block for this Phi node\n");
1200 return 0;
1201 }
1202
1203 // This function tracks the source of the register through register copy.
1204 // If BB1 and BB2 are non-NULL, we also track PHI instruction in BB2
1205 // assuming that the control comes from BB1 into BB2.
getSrcVReg(unsigned Reg,MachineBasicBlock * BB1,MachineBasicBlock * BB2,MachineRegisterInfo * MRI)1206 static unsigned getSrcVReg(unsigned Reg, MachineBasicBlock *BB1,
1207 MachineBasicBlock *BB2, MachineRegisterInfo *MRI) {
1208 unsigned SrcReg = Reg;
1209 while (true) {
1210 unsigned NextReg = SrcReg;
1211 MachineInstr *Inst = MRI->getVRegDef(SrcReg);
1212 if (BB1 && Inst->getOpcode() == PPC::PHI && Inst->getParent() == BB2) {
1213 NextReg = getIncomingRegForBlock(Inst, BB1);
1214 // We track through PHI only once to avoid infinite loop.
1215 BB1 = nullptr;
1216 }
1217 else if (Inst->isFullCopy())
1218 NextReg = Inst->getOperand(1).getReg();
1219 if (NextReg == SrcReg || !Register::isVirtualRegister(NextReg))
1220 break;
1221 SrcReg = NextReg;
1222 }
1223 return SrcReg;
1224 }
1225
eligibleForCompareElimination(MachineBasicBlock & MBB,MachineBasicBlock * & PredMBB,MachineBasicBlock * & MBBtoMoveCmp,MachineRegisterInfo * MRI)1226 static bool eligibleForCompareElimination(MachineBasicBlock &MBB,
1227 MachineBasicBlock *&PredMBB,
1228 MachineBasicBlock *&MBBtoMoveCmp,
1229 MachineRegisterInfo *MRI) {
1230
1231 auto isEligibleBB = [&](MachineBasicBlock &BB) {
1232 auto BII = BB.getFirstInstrTerminator();
1233 // We optimize BBs ending with a conditional branch.
1234 // We check only for BCC here, not BCCLR, because BCCLR
1235 // will be formed only later in the pipeline.
1236 if (BB.succ_size() == 2 &&
1237 BII != BB.instr_end() &&
1238 (*BII).getOpcode() == PPC::BCC &&
1239 (*BII).getOperand(1).isReg()) {
1240 // We optimize only if the condition code is used only by one BCC.
1241 Register CndReg = (*BII).getOperand(1).getReg();
1242 if (!CndReg.isVirtual() || !MRI->hasOneNonDBGUse(CndReg))
1243 return false;
1244
1245 MachineInstr *CMPI = MRI->getVRegDef(CndReg);
1246 // We assume compare and branch are in the same BB for ease of analysis.
1247 if (CMPI->getParent() != &BB)
1248 return false;
1249
1250 // We skip this BB if a physical register is used in comparison.
1251 for (MachineOperand &MO : CMPI->operands())
1252 if (MO.isReg() && !MO.getReg().isVirtual())
1253 return false;
1254
1255 return true;
1256 }
1257 return false;
1258 };
1259
1260 // If this BB has more than one successor, we can create a new BB and
1261 // move the compare instruction in the new BB.
1262 // So far, we do not move compare instruction to a BB having multiple
1263 // successors to avoid potentially increasing code size.
1264 auto isEligibleForMoveCmp = [](MachineBasicBlock &BB) {
1265 return BB.succ_size() == 1;
1266 };
1267
1268 if (!isEligibleBB(MBB))
1269 return false;
1270
1271 unsigned NumPredBBs = MBB.pred_size();
1272 if (NumPredBBs == 1) {
1273 MachineBasicBlock *TmpMBB = *MBB.pred_begin();
1274 if (isEligibleBB(*TmpMBB)) {
1275 PredMBB = TmpMBB;
1276 MBBtoMoveCmp = nullptr;
1277 return true;
1278 }
1279 }
1280 else if (NumPredBBs == 2) {
1281 // We check for partially redundant case.
1282 // So far, we support cases with only two predecessors
1283 // to avoid increasing the number of instructions.
1284 MachineBasicBlock::pred_iterator PI = MBB.pred_begin();
1285 MachineBasicBlock *Pred1MBB = *PI;
1286 MachineBasicBlock *Pred2MBB = *(PI+1);
1287
1288 if (isEligibleBB(*Pred1MBB) && isEligibleForMoveCmp(*Pred2MBB)) {
1289 // We assume Pred1MBB is the BB containing the compare to be merged and
1290 // Pred2MBB is the BB to which we will append a compare instruction.
1291 // Hence we can proceed as is.
1292 }
1293 else if (isEligibleBB(*Pred2MBB) && isEligibleForMoveCmp(*Pred1MBB)) {
1294 // We need to swap Pred1MBB and Pred2MBB to canonicalize.
1295 std::swap(Pred1MBB, Pred2MBB);
1296 }
1297 else return false;
1298
1299 // Here, Pred2MBB is the BB to which we need to append a compare inst.
1300 // We cannot move the compare instruction if operands are not available
1301 // in Pred2MBB (i.e. defined in MBB by an instruction other than PHI).
1302 MachineInstr *BI = &*MBB.getFirstInstrTerminator();
1303 MachineInstr *CMPI = MRI->getVRegDef(BI->getOperand(1).getReg());
1304 for (int I = 1; I <= 2; I++)
1305 if (CMPI->getOperand(I).isReg()) {
1306 MachineInstr *Inst = MRI->getVRegDef(CMPI->getOperand(I).getReg());
1307 if (Inst->getParent() == &MBB && Inst->getOpcode() != PPC::PHI)
1308 return false;
1309 }
1310
1311 PredMBB = Pred1MBB;
1312 MBBtoMoveCmp = Pred2MBB;
1313 return true;
1314 }
1315
1316 return false;
1317 }
1318
1319 // This function will iterate over the input map containing a pair of TOC save
1320 // instruction and a flag. The flag will be set to false if the TOC save is
1321 // proven redundant. This function will erase from the basic block all the TOC
1322 // saves marked as redundant.
eliminateRedundantTOCSaves(std::map<MachineInstr *,bool> & TOCSaves)1323 bool PPCMIPeephole::eliminateRedundantTOCSaves(
1324 std::map<MachineInstr *, bool> &TOCSaves) {
1325 bool Simplified = false;
1326 int NumKept = 0;
1327 for (auto TOCSave : TOCSaves) {
1328 if (!TOCSave.second) {
1329 TOCSave.first->eraseFromParent();
1330 RemoveTOCSave++;
1331 Simplified = true;
1332 } else {
1333 NumKept++;
1334 }
1335 }
1336
1337 if (NumKept > 1)
1338 MultiTOCSaves++;
1339
1340 return Simplified;
1341 }
1342
1343 // If multiple conditional branches are executed based on the (essentially)
1344 // same comparison, we merge compare instructions into one and make multiple
1345 // conditional branches on this comparison.
1346 // For example,
1347 // if (a == 0) { ... }
1348 // else if (a < 0) { ... }
1349 // can be executed by one compare and two conditional branches instead of
1350 // two pairs of a compare and a conditional branch.
1351 //
1352 // This method merges two compare instructions in two MBBs and modifies the
1353 // compare and conditional branch instructions if needed.
1354 // For the above example, the input for this pass looks like:
1355 // cmplwi r3, 0
1356 // beq 0, .LBB0_3
1357 // cmpwi r3, -1
1358 // bgt 0, .LBB0_4
1359 // So, before merging two compares, we need to modify these instructions as
1360 // cmpwi r3, 0 ; cmplwi and cmpwi yield same result for beq
1361 // beq 0, .LBB0_3
1362 // cmpwi r3, 0 ; greather than -1 means greater or equal to 0
1363 // bge 0, .LBB0_4
1364
eliminateRedundantCompare()1365 bool PPCMIPeephole::eliminateRedundantCompare() {
1366 bool Simplified = false;
1367
1368 for (MachineBasicBlock &MBB2 : *MF) {
1369 MachineBasicBlock *MBB1 = nullptr, *MBBtoMoveCmp = nullptr;
1370
1371 // For fully redundant case, we select two basic blocks MBB1 and MBB2
1372 // as an optimization target if
1373 // - both MBBs end with a conditional branch,
1374 // - MBB1 is the only predecessor of MBB2, and
1375 // - compare does not take a physical register as a operand in both MBBs.
1376 // In this case, eligibleForCompareElimination sets MBBtoMoveCmp nullptr.
1377 //
1378 // As partially redundant case, we additionally handle if MBB2 has one
1379 // additional predecessor, which has only one successor (MBB2).
1380 // In this case, we move the compare instruction originally in MBB2 into
1381 // MBBtoMoveCmp. This partially redundant case is typically appear by
1382 // compiling a while loop; here, MBBtoMoveCmp is the loop preheader.
1383 //
1384 // Overview of CFG of related basic blocks
1385 // Fully redundant case Partially redundant case
1386 // -------- ---------------- --------
1387 // | MBB1 | (w/ 2 succ) | MBBtoMoveCmp | | MBB1 | (w/ 2 succ)
1388 // -------- ---------------- --------
1389 // | \ (w/ 1 succ) \ | \
1390 // | \ \ | \
1391 // | \ |
1392 // -------- --------
1393 // | MBB2 | (w/ 1 pred | MBB2 | (w/ 2 pred
1394 // -------- and 2 succ) -------- and 2 succ)
1395 // | \ | \
1396 // | \ | \
1397 //
1398 if (!eligibleForCompareElimination(MBB2, MBB1, MBBtoMoveCmp, MRI))
1399 continue;
1400
1401 MachineInstr *BI1 = &*MBB1->getFirstInstrTerminator();
1402 MachineInstr *CMPI1 = MRI->getVRegDef(BI1->getOperand(1).getReg());
1403
1404 MachineInstr *BI2 = &*MBB2.getFirstInstrTerminator();
1405 MachineInstr *CMPI2 = MRI->getVRegDef(BI2->getOperand(1).getReg());
1406 bool IsPartiallyRedundant = (MBBtoMoveCmp != nullptr);
1407
1408 // We cannot optimize an unsupported compare opcode or
1409 // a mix of 32-bit and 64-bit comparisons
1410 if (!isSupportedCmpOp(CMPI1->getOpcode()) ||
1411 !isSupportedCmpOp(CMPI2->getOpcode()) ||
1412 is64bitCmpOp(CMPI1->getOpcode()) != is64bitCmpOp(CMPI2->getOpcode()))
1413 continue;
1414
1415 unsigned NewOpCode = 0;
1416 unsigned NewPredicate1 = 0, NewPredicate2 = 0;
1417 int16_t Imm1 = 0, NewImm1 = 0, Imm2 = 0, NewImm2 = 0;
1418 bool SwapOperands = false;
1419
1420 if (CMPI1->getOpcode() != CMPI2->getOpcode()) {
1421 // Typically, unsigned comparison is used for equality check, but
1422 // we replace it with a signed comparison if the comparison
1423 // to be merged is a signed comparison.
1424 // In other cases of opcode mismatch, we cannot optimize this.
1425
1426 // We cannot change opcode when comparing against an immediate
1427 // if the most significant bit of the immediate is one
1428 // due to the difference in sign extension.
1429 auto CmpAgainstImmWithSignBit = [](MachineInstr *I) {
1430 if (!I->getOperand(2).isImm())
1431 return false;
1432 int16_t Imm = (int16_t)I->getOperand(2).getImm();
1433 return Imm < 0;
1434 };
1435
1436 if (isEqOrNe(BI2) && !CmpAgainstImmWithSignBit(CMPI2) &&
1437 CMPI1->getOpcode() == getSignedCmpOpCode(CMPI2->getOpcode()))
1438 NewOpCode = CMPI1->getOpcode();
1439 else if (isEqOrNe(BI1) && !CmpAgainstImmWithSignBit(CMPI1) &&
1440 getSignedCmpOpCode(CMPI1->getOpcode()) == CMPI2->getOpcode())
1441 NewOpCode = CMPI2->getOpcode();
1442 else continue;
1443 }
1444
1445 if (CMPI1->getOperand(2).isReg() && CMPI2->getOperand(2).isReg()) {
1446 // In case of comparisons between two registers, these two registers
1447 // must be same to merge two comparisons.
1448 unsigned Cmp1Operand1 = getSrcVReg(CMPI1->getOperand(1).getReg(),
1449 nullptr, nullptr, MRI);
1450 unsigned Cmp1Operand2 = getSrcVReg(CMPI1->getOperand(2).getReg(),
1451 nullptr, nullptr, MRI);
1452 unsigned Cmp2Operand1 = getSrcVReg(CMPI2->getOperand(1).getReg(),
1453 MBB1, &MBB2, MRI);
1454 unsigned Cmp2Operand2 = getSrcVReg(CMPI2->getOperand(2).getReg(),
1455 MBB1, &MBB2, MRI);
1456
1457 if (Cmp1Operand1 == Cmp2Operand1 && Cmp1Operand2 == Cmp2Operand2) {
1458 // Same pair of registers in the same order; ready to merge as is.
1459 }
1460 else if (Cmp1Operand1 == Cmp2Operand2 && Cmp1Operand2 == Cmp2Operand1) {
1461 // Same pair of registers in different order.
1462 // We reverse the predicate to merge compare instructions.
1463 PPC::Predicate Pred = (PPC::Predicate)BI2->getOperand(0).getImm();
1464 NewPredicate2 = (unsigned)PPC::getSwappedPredicate(Pred);
1465 // In case of partial redundancy, we need to swap operands
1466 // in another compare instruction.
1467 SwapOperands = true;
1468 }
1469 else continue;
1470 }
1471 else if (CMPI1->getOperand(2).isImm() && CMPI2->getOperand(2).isImm()) {
1472 // In case of comparisons between a register and an immediate,
1473 // the operand register must be same for two compare instructions.
1474 unsigned Cmp1Operand1 = getSrcVReg(CMPI1->getOperand(1).getReg(),
1475 nullptr, nullptr, MRI);
1476 unsigned Cmp2Operand1 = getSrcVReg(CMPI2->getOperand(1).getReg(),
1477 MBB1, &MBB2, MRI);
1478 if (Cmp1Operand1 != Cmp2Operand1)
1479 continue;
1480
1481 NewImm1 = Imm1 = (int16_t)CMPI1->getOperand(2).getImm();
1482 NewImm2 = Imm2 = (int16_t)CMPI2->getOperand(2).getImm();
1483
1484 // If immediate are not same, we try to adjust by changing predicate;
1485 // e.g. GT imm means GE (imm+1).
1486 if (Imm1 != Imm2 && (!isEqOrNe(BI2) || !isEqOrNe(BI1))) {
1487 int Diff = Imm1 - Imm2;
1488 if (Diff < -2 || Diff > 2)
1489 continue;
1490
1491 unsigned PredToInc1 = getPredicateToIncImm(BI1, CMPI1);
1492 unsigned PredToDec1 = getPredicateToDecImm(BI1, CMPI1);
1493 unsigned PredToInc2 = getPredicateToIncImm(BI2, CMPI2);
1494 unsigned PredToDec2 = getPredicateToDecImm(BI2, CMPI2);
1495 if (Diff == 2) {
1496 if (PredToInc2 && PredToDec1) {
1497 NewPredicate2 = PredToInc2;
1498 NewPredicate1 = PredToDec1;
1499 NewImm2++;
1500 NewImm1--;
1501 }
1502 }
1503 else if (Diff == 1) {
1504 if (PredToInc2) {
1505 NewImm2++;
1506 NewPredicate2 = PredToInc2;
1507 }
1508 else if (PredToDec1) {
1509 NewImm1--;
1510 NewPredicate1 = PredToDec1;
1511 }
1512 }
1513 else if (Diff == -1) {
1514 if (PredToDec2) {
1515 NewImm2--;
1516 NewPredicate2 = PredToDec2;
1517 }
1518 else if (PredToInc1) {
1519 NewImm1++;
1520 NewPredicate1 = PredToInc1;
1521 }
1522 }
1523 else if (Diff == -2) {
1524 if (PredToDec2 && PredToInc1) {
1525 NewPredicate2 = PredToDec2;
1526 NewPredicate1 = PredToInc1;
1527 NewImm2--;
1528 NewImm1++;
1529 }
1530 }
1531 }
1532
1533 // We cannot merge two compares if the immediates are not same.
1534 if (NewImm2 != NewImm1)
1535 continue;
1536 }
1537
1538 LLVM_DEBUG(dbgs() << "Optimize two pairs of compare and branch:\n");
1539 LLVM_DEBUG(CMPI1->dump());
1540 LLVM_DEBUG(BI1->dump());
1541 LLVM_DEBUG(CMPI2->dump());
1542 LLVM_DEBUG(BI2->dump());
1543
1544 // We adjust opcode, predicates and immediate as we determined above.
1545 if (NewOpCode != 0 && NewOpCode != CMPI1->getOpcode()) {
1546 CMPI1->setDesc(TII->get(NewOpCode));
1547 }
1548 if (NewPredicate1) {
1549 BI1->getOperand(0).setImm(NewPredicate1);
1550 }
1551 if (NewPredicate2) {
1552 BI2->getOperand(0).setImm(NewPredicate2);
1553 }
1554 if (NewImm1 != Imm1) {
1555 CMPI1->getOperand(2).setImm(NewImm1);
1556 }
1557
1558 if (IsPartiallyRedundant) {
1559 // We touch up the compare instruction in MBB2 and move it to
1560 // a previous BB to handle partially redundant case.
1561 if (SwapOperands) {
1562 Register Op1 = CMPI2->getOperand(1).getReg();
1563 Register Op2 = CMPI2->getOperand(2).getReg();
1564 CMPI2->getOperand(1).setReg(Op2);
1565 CMPI2->getOperand(2).setReg(Op1);
1566 }
1567 if (NewImm2 != Imm2)
1568 CMPI2->getOperand(2).setImm(NewImm2);
1569
1570 for (int I = 1; I <= 2; I++) {
1571 if (CMPI2->getOperand(I).isReg()) {
1572 MachineInstr *Inst = MRI->getVRegDef(CMPI2->getOperand(I).getReg());
1573 if (Inst->getParent() != &MBB2)
1574 continue;
1575
1576 assert(Inst->getOpcode() == PPC::PHI &&
1577 "We cannot support if an operand comes from this BB.");
1578 unsigned SrcReg = getIncomingRegForBlock(Inst, MBBtoMoveCmp);
1579 CMPI2->getOperand(I).setReg(SrcReg);
1580 }
1581 }
1582 auto I = MachineBasicBlock::iterator(MBBtoMoveCmp->getFirstTerminator());
1583 MBBtoMoveCmp->splice(I, &MBB2, MachineBasicBlock::iterator(CMPI2));
1584
1585 DebugLoc DL = CMPI2->getDebugLoc();
1586 Register NewVReg = MRI->createVirtualRegister(&PPC::CRRCRegClass);
1587 BuildMI(MBB2, MBB2.begin(), DL,
1588 TII->get(PPC::PHI), NewVReg)
1589 .addReg(BI1->getOperand(1).getReg()).addMBB(MBB1)
1590 .addReg(BI2->getOperand(1).getReg()).addMBB(MBBtoMoveCmp);
1591 BI2->getOperand(1).setReg(NewVReg);
1592 }
1593 else {
1594 // We finally eliminate compare instruction in MBB2.
1595 BI2->getOperand(1).setReg(BI1->getOperand(1).getReg());
1596 CMPI2->eraseFromParent();
1597 }
1598 BI2->getOperand(1).setIsKill(true);
1599 BI1->getOperand(1).setIsKill(false);
1600
1601 LLVM_DEBUG(dbgs() << "into a compare and two branches:\n");
1602 LLVM_DEBUG(CMPI1->dump());
1603 LLVM_DEBUG(BI1->dump());
1604 LLVM_DEBUG(BI2->dump());
1605 if (IsPartiallyRedundant) {
1606 LLVM_DEBUG(dbgs() << "The following compare is moved into "
1607 << printMBBReference(*MBBtoMoveCmp)
1608 << " to handle partial redundancy.\n");
1609 LLVM_DEBUG(CMPI2->dump());
1610 }
1611
1612 Simplified = true;
1613 }
1614
1615 return Simplified;
1616 }
1617
1618 // We miss the opportunity to emit an RLDIC when lowering jump tables
1619 // since ISEL sees only a single basic block. When selecting, the clear
1620 // and shift left will be in different blocks.
emitRLDICWhenLoweringJumpTables(MachineInstr & MI)1621 bool PPCMIPeephole::emitRLDICWhenLoweringJumpTables(MachineInstr &MI) {
1622 if (MI.getOpcode() != PPC::RLDICR)
1623 return false;
1624
1625 Register SrcReg = MI.getOperand(1).getReg();
1626 if (!SrcReg.isVirtual())
1627 return false;
1628
1629 MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
1630 if (SrcMI->getOpcode() != PPC::RLDICL)
1631 return false;
1632
1633 MachineOperand MOpSHSrc = SrcMI->getOperand(2);
1634 MachineOperand MOpMBSrc = SrcMI->getOperand(3);
1635 MachineOperand MOpSHMI = MI.getOperand(2);
1636 MachineOperand MOpMEMI = MI.getOperand(3);
1637 if (!(MOpSHSrc.isImm() && MOpMBSrc.isImm() && MOpSHMI.isImm() &&
1638 MOpMEMI.isImm()))
1639 return false;
1640
1641 uint64_t SHSrc = MOpSHSrc.getImm();
1642 uint64_t MBSrc = MOpMBSrc.getImm();
1643 uint64_t SHMI = MOpSHMI.getImm();
1644 uint64_t MEMI = MOpMEMI.getImm();
1645 uint64_t NewSH = SHSrc + SHMI;
1646 uint64_t NewMB = MBSrc - SHMI;
1647 if (NewMB > 63 || NewSH > 63)
1648 return false;
1649
1650 // The bits cleared with RLDICL are [0, MBSrc).
1651 // The bits cleared with RLDICR are (MEMI, 63].
1652 // After the sequence, the bits cleared are:
1653 // [0, MBSrc-SHMI) and (MEMI, 63).
1654 //
1655 // The bits cleared with RLDIC are [0, NewMB) and (63-NewSH, 63].
1656 if ((63 - NewSH) != MEMI)
1657 return false;
1658
1659 LLVM_DEBUG(dbgs() << "Converting pair: ");
1660 LLVM_DEBUG(SrcMI->dump());
1661 LLVM_DEBUG(MI.dump());
1662
1663 MI.setDesc(TII->get(PPC::RLDIC));
1664 MI.getOperand(1).setReg(SrcMI->getOperand(1).getReg());
1665 MI.getOperand(2).setImm(NewSH);
1666 MI.getOperand(3).setImm(NewMB);
1667 MI.getOperand(1).setIsKill(SrcMI->getOperand(1).isKill());
1668 SrcMI->getOperand(1).setIsKill(false);
1669
1670 LLVM_DEBUG(dbgs() << "To: ");
1671 LLVM_DEBUG(MI.dump());
1672 NumRotatesCollapsed++;
1673 // If SrcReg has no non-debug use it's safe to delete its def SrcMI.
1674 if (MRI->use_nodbg_empty(SrcReg)) {
1675 assert(!SrcMI->hasImplicitDef() &&
1676 "Not expecting an implicit def with this instr.");
1677 SrcMI->eraseFromParent();
1678 }
1679 return true;
1680 }
1681
1682 // For case in LLVM IR
1683 // entry:
1684 // %iconv = sext i32 %index to i64
1685 // br i1 undef label %true, label %false
1686 // true:
1687 // %ptr = getelementptr inbounds i32, i32* null, i64 %iconv
1688 // ...
1689 // PPCISelLowering::combineSHL fails to combine, because sext and shl are in
1690 // different BBs when conducting instruction selection. We can do a peephole
1691 // optimization to combine these two instructions into extswsli after
1692 // instruction selection.
combineSEXTAndSHL(MachineInstr & MI,MachineInstr * & ToErase)1693 bool PPCMIPeephole::combineSEXTAndSHL(MachineInstr &MI,
1694 MachineInstr *&ToErase) {
1695 if (MI.getOpcode() != PPC::RLDICR)
1696 return false;
1697
1698 if (!MF->getSubtarget<PPCSubtarget>().isISA3_0())
1699 return false;
1700
1701 assert(MI.getNumOperands() == 4 && "RLDICR should have 4 operands");
1702
1703 MachineOperand MOpSHMI = MI.getOperand(2);
1704 MachineOperand MOpMEMI = MI.getOperand(3);
1705 if (!(MOpSHMI.isImm() && MOpMEMI.isImm()))
1706 return false;
1707
1708 uint64_t SHMI = MOpSHMI.getImm();
1709 uint64_t MEMI = MOpMEMI.getImm();
1710 if (SHMI + MEMI != 63)
1711 return false;
1712
1713 Register SrcReg = MI.getOperand(1).getReg();
1714 if (!SrcReg.isVirtual())
1715 return false;
1716
1717 MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
1718 if (SrcMI->getOpcode() != PPC::EXTSW &&
1719 SrcMI->getOpcode() != PPC::EXTSW_32_64)
1720 return false;
1721
1722 // If the register defined by extsw has more than one use, combination is not
1723 // needed.
1724 if (!MRI->hasOneNonDBGUse(SrcReg))
1725 return false;
1726
1727 assert(SrcMI->getNumOperands() == 2 && "EXTSW should have 2 operands");
1728 assert(SrcMI->getOperand(1).isReg() &&
1729 "EXTSW's second operand should be a register");
1730 if (!SrcMI->getOperand(1).getReg().isVirtual())
1731 return false;
1732
1733 LLVM_DEBUG(dbgs() << "Combining pair: ");
1734 LLVM_DEBUG(SrcMI->dump());
1735 LLVM_DEBUG(MI.dump());
1736
1737 MachineInstr *NewInstr =
1738 BuildMI(*MI.getParent(), &MI, MI.getDebugLoc(),
1739 SrcMI->getOpcode() == PPC::EXTSW ? TII->get(PPC::EXTSWSLI)
1740 : TII->get(PPC::EXTSWSLI_32_64),
1741 MI.getOperand(0).getReg())
1742 .add(SrcMI->getOperand(1))
1743 .add(MOpSHMI);
1744 (void)NewInstr;
1745
1746 LLVM_DEBUG(dbgs() << "TO: ");
1747 LLVM_DEBUG(NewInstr->dump());
1748 ++NumEXTSWAndSLDICombined;
1749 ToErase = &MI;
1750 // SrcMI, which is extsw, is of no use now, erase it.
1751 SrcMI->eraseFromParent();
1752 return true;
1753 }
1754
1755 } // end default namespace
1756
1757 INITIALIZE_PASS_BEGIN(PPCMIPeephole, DEBUG_TYPE,
1758 "PowerPC MI Peephole Optimization", false, false)
1759 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
1760 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
1761 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree)
1762 INITIALIZE_PASS_END(PPCMIPeephole, DEBUG_TYPE,
1763 "PowerPC MI Peephole Optimization", false, false)
1764
1765 char PPCMIPeephole::ID = 0;
1766 FunctionPass*
createPPCMIPeepholePass()1767 llvm::createPPCMIPeepholePass() { return new PPCMIPeephole(); }
1768