xref: /openbsd-src/gnu/llvm/lldb/source/Plugins/ObjectFile/Mach-O/ObjectFileMachO.cpp (revision f6aab3d83b51b91c24247ad2c2573574de475a82)
1 //===-- ObjectFileMachO.cpp -----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/ADT/ScopeExit.h"
10 #include "llvm/ADT/StringRef.h"
11 
12 #include "Plugins/Process/Utility/RegisterContextDarwin_arm.h"
13 #include "Plugins/Process/Utility/RegisterContextDarwin_arm64.h"
14 #include "Plugins/Process/Utility/RegisterContextDarwin_i386.h"
15 #include "Plugins/Process/Utility/RegisterContextDarwin_x86_64.h"
16 #include "lldb/Core/Debugger.h"
17 #include "lldb/Core/FileSpecList.h"
18 #include "lldb/Core/Module.h"
19 #include "lldb/Core/ModuleSpec.h"
20 #include "lldb/Core/PluginManager.h"
21 #include "lldb/Core/Progress.h"
22 #include "lldb/Core/Section.h"
23 #include "lldb/Core/StreamFile.h"
24 #include "lldb/Host/Host.h"
25 #include "lldb/Symbol/DWARFCallFrameInfo.h"
26 #include "lldb/Symbol/LocateSymbolFile.h"
27 #include "lldb/Symbol/ObjectFile.h"
28 #include "lldb/Target/DynamicLoader.h"
29 #include "lldb/Target/MemoryRegionInfo.h"
30 #include "lldb/Target/Platform.h"
31 #include "lldb/Target/Process.h"
32 #include "lldb/Target/SectionLoadList.h"
33 #include "lldb/Target/Target.h"
34 #include "lldb/Target/Thread.h"
35 #include "lldb/Target/ThreadList.h"
36 #include "lldb/Utility/ArchSpec.h"
37 #include "lldb/Utility/DataBuffer.h"
38 #include "lldb/Utility/FileSpec.h"
39 #include "lldb/Utility/LLDBLog.h"
40 #include "lldb/Utility/Log.h"
41 #include "lldb/Utility/RangeMap.h"
42 #include "lldb/Utility/RegisterValue.h"
43 #include "lldb/Utility/Status.h"
44 #include "lldb/Utility/StreamString.h"
45 #include "lldb/Utility/Timer.h"
46 #include "lldb/Utility/UUID.h"
47 
48 #include "lldb/Host/SafeMachO.h"
49 
50 #include "llvm/ADT/DenseSet.h"
51 #include "llvm/Support/FormatVariadic.h"
52 #include "llvm/Support/MemoryBuffer.h"
53 
54 #include "ObjectFileMachO.h"
55 
56 #if defined(__APPLE__)
57 #include <TargetConditionals.h>
58 // GetLLDBSharedCacheUUID() needs to call dlsym()
59 #include <dlfcn.h>
60 #include <mach/mach_init.h>
61 #include <mach/vm_map.h>
62 #include <lldb/Host/SafeMachO.h>
63 #endif
64 
65 #ifndef __APPLE__
66 #include "Utility/UuidCompatibility.h"
67 #else
68 #include <uuid/uuid.h>
69 #endif
70 
71 #include <bitset>
72 #include <memory>
73 #include <optional>
74 
75 // Unfortunately the signpost header pulls in the system MachO header, too.
76 #ifdef CPU_TYPE_ARM
77 #undef CPU_TYPE_ARM
78 #endif
79 #ifdef CPU_TYPE_ARM64
80 #undef CPU_TYPE_ARM64
81 #endif
82 #ifdef CPU_TYPE_ARM64_32
83 #undef CPU_TYPE_ARM64_32
84 #endif
85 #ifdef CPU_TYPE_I386
86 #undef CPU_TYPE_I386
87 #endif
88 #ifdef CPU_TYPE_X86_64
89 #undef CPU_TYPE_X86_64
90 #endif
91 #ifdef MH_DYLINKER
92 #undef MH_DYLINKER
93 #endif
94 #ifdef MH_OBJECT
95 #undef MH_OBJECT
96 #endif
97 #ifdef LC_VERSION_MIN_MACOSX
98 #undef LC_VERSION_MIN_MACOSX
99 #endif
100 #ifdef LC_VERSION_MIN_IPHONEOS
101 #undef LC_VERSION_MIN_IPHONEOS
102 #endif
103 #ifdef LC_VERSION_MIN_TVOS
104 #undef LC_VERSION_MIN_TVOS
105 #endif
106 #ifdef LC_VERSION_MIN_WATCHOS
107 #undef LC_VERSION_MIN_WATCHOS
108 #endif
109 #ifdef LC_BUILD_VERSION
110 #undef LC_BUILD_VERSION
111 #endif
112 #ifdef PLATFORM_MACOS
113 #undef PLATFORM_MACOS
114 #endif
115 #ifdef PLATFORM_MACCATALYST
116 #undef PLATFORM_MACCATALYST
117 #endif
118 #ifdef PLATFORM_IOS
119 #undef PLATFORM_IOS
120 #endif
121 #ifdef PLATFORM_IOSSIMULATOR
122 #undef PLATFORM_IOSSIMULATOR
123 #endif
124 #ifdef PLATFORM_TVOS
125 #undef PLATFORM_TVOS
126 #endif
127 #ifdef PLATFORM_TVOSSIMULATOR
128 #undef PLATFORM_TVOSSIMULATOR
129 #endif
130 #ifdef PLATFORM_WATCHOS
131 #undef PLATFORM_WATCHOS
132 #endif
133 #ifdef PLATFORM_WATCHOSSIMULATOR
134 #undef PLATFORM_WATCHOSSIMULATOR
135 #endif
136 
137 #define THUMB_ADDRESS_BIT_MASK 0xfffffffffffffffeull
138 using namespace lldb;
139 using namespace lldb_private;
140 using namespace llvm::MachO;
141 
142 LLDB_PLUGIN_DEFINE(ObjectFileMachO)
143 
144 // Some structure definitions needed for parsing the dyld shared cache files
145 // found on iOS devices.
146 
147 struct lldb_copy_dyld_cache_header_v1 {
148   char magic[16];         // e.g. "dyld_v0    i386", "dyld_v1   armv7", etc.
149   uint32_t mappingOffset; // file offset to first dyld_cache_mapping_info
150   uint32_t mappingCount;  // number of dyld_cache_mapping_info entries
151   uint32_t imagesOffset;
152   uint32_t imagesCount;
153   uint64_t dyldBaseAddress;
154   uint64_t codeSignatureOffset;
155   uint64_t codeSignatureSize;
156   uint64_t slideInfoOffset;
157   uint64_t slideInfoSize;
158   uint64_t localSymbolsOffset;
159   uint64_t localSymbolsSize;
160   uint8_t uuid[16]; // v1 and above, also recorded in dyld_all_image_infos v13
161                     // and later
162 };
163 
PrintRegisterValue(RegisterContext * reg_ctx,const char * name,const char * alt_name,size_t reg_byte_size,Stream & data)164 static void PrintRegisterValue(RegisterContext *reg_ctx, const char *name,
165                                const char *alt_name, size_t reg_byte_size,
166                                Stream &data) {
167   const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(name);
168   if (reg_info == nullptr)
169     reg_info = reg_ctx->GetRegisterInfoByName(alt_name);
170   if (reg_info) {
171     lldb_private::RegisterValue reg_value;
172     if (reg_ctx->ReadRegister(reg_info, reg_value)) {
173       if (reg_info->byte_size >= reg_byte_size)
174         data.Write(reg_value.GetBytes(), reg_byte_size);
175       else {
176         data.Write(reg_value.GetBytes(), reg_info->byte_size);
177         for (size_t i = 0, n = reg_byte_size - reg_info->byte_size; i < n; ++i)
178           data.PutChar(0);
179       }
180       return;
181     }
182   }
183   // Just write zeros if all else fails
184   for (size_t i = 0; i < reg_byte_size; ++i)
185     data.PutChar(0);
186 }
187 
188 class RegisterContextDarwin_x86_64_Mach : public RegisterContextDarwin_x86_64 {
189 public:
RegisterContextDarwin_x86_64_Mach(lldb_private::Thread & thread,const DataExtractor & data)190   RegisterContextDarwin_x86_64_Mach(lldb_private::Thread &thread,
191                                     const DataExtractor &data)
192       : RegisterContextDarwin_x86_64(thread, 0) {
193     SetRegisterDataFrom_LC_THREAD(data);
194   }
195 
InvalidateAllRegisters()196   void InvalidateAllRegisters() override {
197     // Do nothing... registers are always valid...
198   }
199 
SetRegisterDataFrom_LC_THREAD(const DataExtractor & data)200   void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
201     lldb::offset_t offset = 0;
202     SetError(GPRRegSet, Read, -1);
203     SetError(FPURegSet, Read, -1);
204     SetError(EXCRegSet, Read, -1);
205     bool done = false;
206 
207     while (!done) {
208       int flavor = data.GetU32(&offset);
209       if (flavor == 0)
210         done = true;
211       else {
212         uint32_t i;
213         uint32_t count = data.GetU32(&offset);
214         switch (flavor) {
215         case GPRRegSet:
216           for (i = 0; i < count; ++i)
217             (&gpr.rax)[i] = data.GetU64(&offset);
218           SetError(GPRRegSet, Read, 0);
219           done = true;
220 
221           break;
222         case FPURegSet:
223           // TODO: fill in FPU regs....
224           // SetError (FPURegSet, Read, -1);
225           done = true;
226 
227           break;
228         case EXCRegSet:
229           exc.trapno = data.GetU32(&offset);
230           exc.err = data.GetU32(&offset);
231           exc.faultvaddr = data.GetU64(&offset);
232           SetError(EXCRegSet, Read, 0);
233           done = true;
234           break;
235         case 7:
236         case 8:
237         case 9:
238           // fancy flavors that encapsulate of the above flavors...
239           break;
240 
241         default:
242           done = true;
243           break;
244         }
245       }
246     }
247   }
248 
Create_LC_THREAD(Thread * thread,Stream & data)249   static bool Create_LC_THREAD(Thread *thread, Stream &data) {
250     RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
251     if (reg_ctx_sp) {
252       RegisterContext *reg_ctx = reg_ctx_sp.get();
253 
254       data.PutHex32(GPRRegSet); // Flavor
255       data.PutHex32(GPRWordCount);
256       PrintRegisterValue(reg_ctx, "rax", nullptr, 8, data);
257       PrintRegisterValue(reg_ctx, "rbx", nullptr, 8, data);
258       PrintRegisterValue(reg_ctx, "rcx", nullptr, 8, data);
259       PrintRegisterValue(reg_ctx, "rdx", nullptr, 8, data);
260       PrintRegisterValue(reg_ctx, "rdi", nullptr, 8, data);
261       PrintRegisterValue(reg_ctx, "rsi", nullptr, 8, data);
262       PrintRegisterValue(reg_ctx, "rbp", nullptr, 8, data);
263       PrintRegisterValue(reg_ctx, "rsp", nullptr, 8, data);
264       PrintRegisterValue(reg_ctx, "r8", nullptr, 8, data);
265       PrintRegisterValue(reg_ctx, "r9", nullptr, 8, data);
266       PrintRegisterValue(reg_ctx, "r10", nullptr, 8, data);
267       PrintRegisterValue(reg_ctx, "r11", nullptr, 8, data);
268       PrintRegisterValue(reg_ctx, "r12", nullptr, 8, data);
269       PrintRegisterValue(reg_ctx, "r13", nullptr, 8, data);
270       PrintRegisterValue(reg_ctx, "r14", nullptr, 8, data);
271       PrintRegisterValue(reg_ctx, "r15", nullptr, 8, data);
272       PrintRegisterValue(reg_ctx, "rip", nullptr, 8, data);
273       PrintRegisterValue(reg_ctx, "rflags", nullptr, 8, data);
274       PrintRegisterValue(reg_ctx, "cs", nullptr, 8, data);
275       PrintRegisterValue(reg_ctx, "fs", nullptr, 8, data);
276       PrintRegisterValue(reg_ctx, "gs", nullptr, 8, data);
277 
278       //            // Write out the FPU registers
279       //            const size_t fpu_byte_size = sizeof(FPU);
280       //            size_t bytes_written = 0;
281       //            data.PutHex32 (FPURegSet);
282       //            data.PutHex32 (fpu_byte_size/sizeof(uint64_t));
283       //            bytes_written += data.PutHex32(0); // uint32_t pad[0]
284       //            bytes_written += data.PutHex32(0); // uint32_t pad[1]
285       //            bytes_written += WriteRegister (reg_ctx, "fcw", "fctrl", 2,
286       //            data);   // uint16_t    fcw;    // "fctrl"
287       //            bytes_written += WriteRegister (reg_ctx, "fsw" , "fstat", 2,
288       //            data);  // uint16_t    fsw;    // "fstat"
289       //            bytes_written += WriteRegister (reg_ctx, "ftw" , "ftag", 1,
290       //            data);   // uint8_t     ftw;    // "ftag"
291       //            bytes_written += data.PutHex8  (0); // uint8_t pad1;
292       //            bytes_written += WriteRegister (reg_ctx, "fop" , NULL, 2,
293       //            data);     // uint16_t    fop;    // "fop"
294       //            bytes_written += WriteRegister (reg_ctx, "fioff", "ip", 4,
295       //            data);    // uint32_t    ip;     // "fioff"
296       //            bytes_written += WriteRegister (reg_ctx, "fiseg", NULL, 2,
297       //            data);    // uint16_t    cs;     // "fiseg"
298       //            bytes_written += data.PutHex16 (0); // uint16_t    pad2;
299       //            bytes_written += WriteRegister (reg_ctx, "dp", "fooff" , 4,
300       //            data);   // uint32_t    dp;     // "fooff"
301       //            bytes_written += WriteRegister (reg_ctx, "foseg", NULL, 2,
302       //            data);    // uint16_t    ds;     // "foseg"
303       //            bytes_written += data.PutHex16 (0); // uint16_t    pad3;
304       //            bytes_written += WriteRegister (reg_ctx, "mxcsr", NULL, 4,
305       //            data);    // uint32_t    mxcsr;
306       //            bytes_written += WriteRegister (reg_ctx, "mxcsrmask", NULL,
307       //            4, data);// uint32_t    mxcsrmask;
308       //            bytes_written += WriteRegister (reg_ctx, "stmm0", NULL,
309       //            sizeof(MMSReg), data);
310       //            bytes_written += WriteRegister (reg_ctx, "stmm1", NULL,
311       //            sizeof(MMSReg), data);
312       //            bytes_written += WriteRegister (reg_ctx, "stmm2", NULL,
313       //            sizeof(MMSReg), data);
314       //            bytes_written += WriteRegister (reg_ctx, "stmm3", NULL,
315       //            sizeof(MMSReg), data);
316       //            bytes_written += WriteRegister (reg_ctx, "stmm4", NULL,
317       //            sizeof(MMSReg), data);
318       //            bytes_written += WriteRegister (reg_ctx, "stmm5", NULL,
319       //            sizeof(MMSReg), data);
320       //            bytes_written += WriteRegister (reg_ctx, "stmm6", NULL,
321       //            sizeof(MMSReg), data);
322       //            bytes_written += WriteRegister (reg_ctx, "stmm7", NULL,
323       //            sizeof(MMSReg), data);
324       //            bytes_written += WriteRegister (reg_ctx, "xmm0" , NULL,
325       //            sizeof(XMMReg), data);
326       //            bytes_written += WriteRegister (reg_ctx, "xmm1" , NULL,
327       //            sizeof(XMMReg), data);
328       //            bytes_written += WriteRegister (reg_ctx, "xmm2" , NULL,
329       //            sizeof(XMMReg), data);
330       //            bytes_written += WriteRegister (reg_ctx, "xmm3" , NULL,
331       //            sizeof(XMMReg), data);
332       //            bytes_written += WriteRegister (reg_ctx, "xmm4" , NULL,
333       //            sizeof(XMMReg), data);
334       //            bytes_written += WriteRegister (reg_ctx, "xmm5" , NULL,
335       //            sizeof(XMMReg), data);
336       //            bytes_written += WriteRegister (reg_ctx, "xmm6" , NULL,
337       //            sizeof(XMMReg), data);
338       //            bytes_written += WriteRegister (reg_ctx, "xmm7" , NULL,
339       //            sizeof(XMMReg), data);
340       //            bytes_written += WriteRegister (reg_ctx, "xmm8" , NULL,
341       //            sizeof(XMMReg), data);
342       //            bytes_written += WriteRegister (reg_ctx, "xmm9" , NULL,
343       //            sizeof(XMMReg), data);
344       //            bytes_written += WriteRegister (reg_ctx, "xmm10", NULL,
345       //            sizeof(XMMReg), data);
346       //            bytes_written += WriteRegister (reg_ctx, "xmm11", NULL,
347       //            sizeof(XMMReg), data);
348       //            bytes_written += WriteRegister (reg_ctx, "xmm12", NULL,
349       //            sizeof(XMMReg), data);
350       //            bytes_written += WriteRegister (reg_ctx, "xmm13", NULL,
351       //            sizeof(XMMReg), data);
352       //            bytes_written += WriteRegister (reg_ctx, "xmm14", NULL,
353       //            sizeof(XMMReg), data);
354       //            bytes_written += WriteRegister (reg_ctx, "xmm15", NULL,
355       //            sizeof(XMMReg), data);
356       //
357       //            // Fill rest with zeros
358       //            for (size_t i=0, n = fpu_byte_size - bytes_written; i<n; ++
359       //            i)
360       //                data.PutChar(0);
361 
362       // Write out the EXC registers
363       data.PutHex32(EXCRegSet);
364       data.PutHex32(EXCWordCount);
365       PrintRegisterValue(reg_ctx, "trapno", nullptr, 4, data);
366       PrintRegisterValue(reg_ctx, "err", nullptr, 4, data);
367       PrintRegisterValue(reg_ctx, "faultvaddr", nullptr, 8, data);
368       return true;
369     }
370     return false;
371   }
372 
373 protected:
DoReadGPR(lldb::tid_t tid,int flavor,GPR & gpr)374   int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return 0; }
375 
DoReadFPU(lldb::tid_t tid,int flavor,FPU & fpu)376   int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return 0; }
377 
DoReadEXC(lldb::tid_t tid,int flavor,EXC & exc)378   int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return 0; }
379 
DoWriteGPR(lldb::tid_t tid,int flavor,const GPR & gpr)380   int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
381     return 0;
382   }
383 
DoWriteFPU(lldb::tid_t tid,int flavor,const FPU & fpu)384   int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
385     return 0;
386   }
387 
DoWriteEXC(lldb::tid_t tid,int flavor,const EXC & exc)388   int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
389     return 0;
390   }
391 };
392 
393 class RegisterContextDarwin_i386_Mach : public RegisterContextDarwin_i386 {
394 public:
RegisterContextDarwin_i386_Mach(lldb_private::Thread & thread,const DataExtractor & data)395   RegisterContextDarwin_i386_Mach(lldb_private::Thread &thread,
396                                   const DataExtractor &data)
397       : RegisterContextDarwin_i386(thread, 0) {
398     SetRegisterDataFrom_LC_THREAD(data);
399   }
400 
InvalidateAllRegisters()401   void InvalidateAllRegisters() override {
402     // Do nothing... registers are always valid...
403   }
404 
SetRegisterDataFrom_LC_THREAD(const DataExtractor & data)405   void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
406     lldb::offset_t offset = 0;
407     SetError(GPRRegSet, Read, -1);
408     SetError(FPURegSet, Read, -1);
409     SetError(EXCRegSet, Read, -1);
410     bool done = false;
411 
412     while (!done) {
413       int flavor = data.GetU32(&offset);
414       if (flavor == 0)
415         done = true;
416       else {
417         uint32_t i;
418         uint32_t count = data.GetU32(&offset);
419         switch (flavor) {
420         case GPRRegSet:
421           for (i = 0; i < count; ++i)
422             (&gpr.eax)[i] = data.GetU32(&offset);
423           SetError(GPRRegSet, Read, 0);
424           done = true;
425 
426           break;
427         case FPURegSet:
428           // TODO: fill in FPU regs....
429           // SetError (FPURegSet, Read, -1);
430           done = true;
431 
432           break;
433         case EXCRegSet:
434           exc.trapno = data.GetU32(&offset);
435           exc.err = data.GetU32(&offset);
436           exc.faultvaddr = data.GetU32(&offset);
437           SetError(EXCRegSet, Read, 0);
438           done = true;
439           break;
440         case 7:
441         case 8:
442         case 9:
443           // fancy flavors that encapsulate of the above flavors...
444           break;
445 
446         default:
447           done = true;
448           break;
449         }
450       }
451     }
452   }
453 
Create_LC_THREAD(Thread * thread,Stream & data)454   static bool Create_LC_THREAD(Thread *thread, Stream &data) {
455     RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
456     if (reg_ctx_sp) {
457       RegisterContext *reg_ctx = reg_ctx_sp.get();
458 
459       data.PutHex32(GPRRegSet); // Flavor
460       data.PutHex32(GPRWordCount);
461       PrintRegisterValue(reg_ctx, "eax", nullptr, 4, data);
462       PrintRegisterValue(reg_ctx, "ebx", nullptr, 4, data);
463       PrintRegisterValue(reg_ctx, "ecx", nullptr, 4, data);
464       PrintRegisterValue(reg_ctx, "edx", nullptr, 4, data);
465       PrintRegisterValue(reg_ctx, "edi", nullptr, 4, data);
466       PrintRegisterValue(reg_ctx, "esi", nullptr, 4, data);
467       PrintRegisterValue(reg_ctx, "ebp", nullptr, 4, data);
468       PrintRegisterValue(reg_ctx, "esp", nullptr, 4, data);
469       PrintRegisterValue(reg_ctx, "ss", nullptr, 4, data);
470       PrintRegisterValue(reg_ctx, "eflags", nullptr, 4, data);
471       PrintRegisterValue(reg_ctx, "eip", nullptr, 4, data);
472       PrintRegisterValue(reg_ctx, "cs", nullptr, 4, data);
473       PrintRegisterValue(reg_ctx, "ds", nullptr, 4, data);
474       PrintRegisterValue(reg_ctx, "es", nullptr, 4, data);
475       PrintRegisterValue(reg_ctx, "fs", nullptr, 4, data);
476       PrintRegisterValue(reg_ctx, "gs", nullptr, 4, data);
477 
478       // Write out the EXC registers
479       data.PutHex32(EXCRegSet);
480       data.PutHex32(EXCWordCount);
481       PrintRegisterValue(reg_ctx, "trapno", nullptr, 4, data);
482       PrintRegisterValue(reg_ctx, "err", nullptr, 4, data);
483       PrintRegisterValue(reg_ctx, "faultvaddr", nullptr, 4, data);
484       return true;
485     }
486     return false;
487   }
488 
489 protected:
DoReadGPR(lldb::tid_t tid,int flavor,GPR & gpr)490   int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return 0; }
491 
DoReadFPU(lldb::tid_t tid,int flavor,FPU & fpu)492   int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return 0; }
493 
DoReadEXC(lldb::tid_t tid,int flavor,EXC & exc)494   int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return 0; }
495 
DoWriteGPR(lldb::tid_t tid,int flavor,const GPR & gpr)496   int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
497     return 0;
498   }
499 
DoWriteFPU(lldb::tid_t tid,int flavor,const FPU & fpu)500   int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
501     return 0;
502   }
503 
DoWriteEXC(lldb::tid_t tid,int flavor,const EXC & exc)504   int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
505     return 0;
506   }
507 };
508 
509 class RegisterContextDarwin_arm_Mach : public RegisterContextDarwin_arm {
510 public:
RegisterContextDarwin_arm_Mach(lldb_private::Thread & thread,const DataExtractor & data)511   RegisterContextDarwin_arm_Mach(lldb_private::Thread &thread,
512                                  const DataExtractor &data)
513       : RegisterContextDarwin_arm(thread, 0) {
514     SetRegisterDataFrom_LC_THREAD(data);
515   }
516 
InvalidateAllRegisters()517   void InvalidateAllRegisters() override {
518     // Do nothing... registers are always valid...
519   }
520 
SetRegisterDataFrom_LC_THREAD(const DataExtractor & data)521   void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
522     lldb::offset_t offset = 0;
523     SetError(GPRRegSet, Read, -1);
524     SetError(FPURegSet, Read, -1);
525     SetError(EXCRegSet, Read, -1);
526     bool done = false;
527 
528     while (!done) {
529       int flavor = data.GetU32(&offset);
530       uint32_t count = data.GetU32(&offset);
531       lldb::offset_t next_thread_state = offset + (count * 4);
532       switch (flavor) {
533       case GPRAltRegSet:
534       case GPRRegSet:
535         // On ARM, the CPSR register is also included in the count but it is
536         // not included in gpr.r so loop until (count-1).
537 
538         // Prevent static analysis warnings by explicitly contstraining 'count'
539         // to acceptable range. Handle possible underflow of count-1
540         if (count > 0 && count <= sizeof(gpr.r) / sizeof(gpr.r[0])) {
541           for (uint32_t i = 0; i < (count - 1); ++i) {
542             gpr.r[i] = data.GetU32(&offset);
543           }
544         }
545         // Save cpsr explicitly.
546         gpr.cpsr = data.GetU32(&offset);
547 
548         SetError(GPRRegSet, Read, 0);
549         offset = next_thread_state;
550         break;
551 
552       case FPURegSet: {
553         uint8_t *fpu_reg_buf = (uint8_t *)&fpu.floats;
554         const int fpu_reg_buf_size = sizeof(fpu.floats);
555         if (data.ExtractBytes(offset, fpu_reg_buf_size, eByteOrderLittle,
556                               fpu_reg_buf) == fpu_reg_buf_size) {
557           offset += fpu_reg_buf_size;
558           fpu.fpscr = data.GetU32(&offset);
559           SetError(FPURegSet, Read, 0);
560         } else {
561           done = true;
562         }
563       }
564         offset = next_thread_state;
565         break;
566 
567       case EXCRegSet:
568         if (count == 3) {
569           exc.exception = data.GetU32(&offset);
570           exc.fsr = data.GetU32(&offset);
571           exc.far = data.GetU32(&offset);
572           SetError(EXCRegSet, Read, 0);
573         }
574         done = true;
575         offset = next_thread_state;
576         break;
577 
578       // Unknown register set flavor, stop trying to parse.
579       default:
580         done = true;
581       }
582     }
583   }
584 
Create_LC_THREAD(Thread * thread,Stream & data)585   static bool Create_LC_THREAD(Thread *thread, Stream &data) {
586     RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
587     if (reg_ctx_sp) {
588       RegisterContext *reg_ctx = reg_ctx_sp.get();
589 
590       data.PutHex32(GPRRegSet); // Flavor
591       data.PutHex32(GPRWordCount);
592       PrintRegisterValue(reg_ctx, "r0", nullptr, 4, data);
593       PrintRegisterValue(reg_ctx, "r1", nullptr, 4, data);
594       PrintRegisterValue(reg_ctx, "r2", nullptr, 4, data);
595       PrintRegisterValue(reg_ctx, "r3", nullptr, 4, data);
596       PrintRegisterValue(reg_ctx, "r4", nullptr, 4, data);
597       PrintRegisterValue(reg_ctx, "r5", nullptr, 4, data);
598       PrintRegisterValue(reg_ctx, "r6", nullptr, 4, data);
599       PrintRegisterValue(reg_ctx, "r7", nullptr, 4, data);
600       PrintRegisterValue(reg_ctx, "r8", nullptr, 4, data);
601       PrintRegisterValue(reg_ctx, "r9", nullptr, 4, data);
602       PrintRegisterValue(reg_ctx, "r10", nullptr, 4, data);
603       PrintRegisterValue(reg_ctx, "r11", nullptr, 4, data);
604       PrintRegisterValue(reg_ctx, "r12", nullptr, 4, data);
605       PrintRegisterValue(reg_ctx, "sp", nullptr, 4, data);
606       PrintRegisterValue(reg_ctx, "lr", nullptr, 4, data);
607       PrintRegisterValue(reg_ctx, "pc", nullptr, 4, data);
608       PrintRegisterValue(reg_ctx, "cpsr", nullptr, 4, data);
609 
610       // Write out the EXC registers
611       //            data.PutHex32 (EXCRegSet);
612       //            data.PutHex32 (EXCWordCount);
613       //            WriteRegister (reg_ctx, "exception", NULL, 4, data);
614       //            WriteRegister (reg_ctx, "fsr", NULL, 4, data);
615       //            WriteRegister (reg_ctx, "far", NULL, 4, data);
616       return true;
617     }
618     return false;
619   }
620 
621 protected:
DoReadGPR(lldb::tid_t tid,int flavor,GPR & gpr)622   int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return -1; }
623 
DoReadFPU(lldb::tid_t tid,int flavor,FPU & fpu)624   int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return -1; }
625 
DoReadEXC(lldb::tid_t tid,int flavor,EXC & exc)626   int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return -1; }
627 
DoReadDBG(lldb::tid_t tid,int flavor,DBG & dbg)628   int DoReadDBG(lldb::tid_t tid, int flavor, DBG &dbg) override { return -1; }
629 
DoWriteGPR(lldb::tid_t tid,int flavor,const GPR & gpr)630   int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
631     return 0;
632   }
633 
DoWriteFPU(lldb::tid_t tid,int flavor,const FPU & fpu)634   int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
635     return 0;
636   }
637 
DoWriteEXC(lldb::tid_t tid,int flavor,const EXC & exc)638   int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
639     return 0;
640   }
641 
DoWriteDBG(lldb::tid_t tid,int flavor,const DBG & dbg)642   int DoWriteDBG(lldb::tid_t tid, int flavor, const DBG &dbg) override {
643     return -1;
644   }
645 };
646 
647 class RegisterContextDarwin_arm64_Mach : public RegisterContextDarwin_arm64 {
648 public:
RegisterContextDarwin_arm64_Mach(lldb_private::Thread & thread,const DataExtractor & data)649   RegisterContextDarwin_arm64_Mach(lldb_private::Thread &thread,
650                                    const DataExtractor &data)
651       : RegisterContextDarwin_arm64(thread, 0) {
652     SetRegisterDataFrom_LC_THREAD(data);
653   }
654 
InvalidateAllRegisters()655   void InvalidateAllRegisters() override {
656     // Do nothing... registers are always valid...
657   }
658 
SetRegisterDataFrom_LC_THREAD(const DataExtractor & data)659   void SetRegisterDataFrom_LC_THREAD(const DataExtractor &data) {
660     lldb::offset_t offset = 0;
661     SetError(GPRRegSet, Read, -1);
662     SetError(FPURegSet, Read, -1);
663     SetError(EXCRegSet, Read, -1);
664     bool done = false;
665     while (!done) {
666       int flavor = data.GetU32(&offset);
667       uint32_t count = data.GetU32(&offset);
668       lldb::offset_t next_thread_state = offset + (count * 4);
669       switch (flavor) {
670       case GPRRegSet:
671         // x0-x29 + fp + lr + sp + pc (== 33 64-bit registers) plus cpsr (1
672         // 32-bit register)
673         if (count >= (33 * 2) + 1) {
674           for (uint32_t i = 0; i < 29; ++i)
675             gpr.x[i] = data.GetU64(&offset);
676           gpr.fp = data.GetU64(&offset);
677           gpr.lr = data.GetU64(&offset);
678           gpr.sp = data.GetU64(&offset);
679           gpr.pc = data.GetU64(&offset);
680           gpr.cpsr = data.GetU32(&offset);
681           SetError(GPRRegSet, Read, 0);
682         }
683         offset = next_thread_state;
684         break;
685       case FPURegSet: {
686         uint8_t *fpu_reg_buf = (uint8_t *)&fpu.v[0];
687         const int fpu_reg_buf_size = sizeof(fpu);
688         if (fpu_reg_buf_size == count * sizeof(uint32_t) &&
689             data.ExtractBytes(offset, fpu_reg_buf_size, eByteOrderLittle,
690                               fpu_reg_buf) == fpu_reg_buf_size) {
691           SetError(FPURegSet, Read, 0);
692         } else {
693           done = true;
694         }
695       }
696         offset = next_thread_state;
697         break;
698       case EXCRegSet:
699         if (count == 4) {
700           exc.far = data.GetU64(&offset);
701           exc.esr = data.GetU32(&offset);
702           exc.exception = data.GetU32(&offset);
703           SetError(EXCRegSet, Read, 0);
704         }
705         offset = next_thread_state;
706         break;
707       default:
708         done = true;
709         break;
710       }
711     }
712   }
713 
Create_LC_THREAD(Thread * thread,Stream & data)714   static bool Create_LC_THREAD(Thread *thread, Stream &data) {
715     RegisterContextSP reg_ctx_sp(thread->GetRegisterContext());
716     if (reg_ctx_sp) {
717       RegisterContext *reg_ctx = reg_ctx_sp.get();
718 
719       data.PutHex32(GPRRegSet); // Flavor
720       data.PutHex32(GPRWordCount);
721       PrintRegisterValue(reg_ctx, "x0", nullptr, 8, data);
722       PrintRegisterValue(reg_ctx, "x1", nullptr, 8, data);
723       PrintRegisterValue(reg_ctx, "x2", nullptr, 8, data);
724       PrintRegisterValue(reg_ctx, "x3", nullptr, 8, data);
725       PrintRegisterValue(reg_ctx, "x4", nullptr, 8, data);
726       PrintRegisterValue(reg_ctx, "x5", nullptr, 8, data);
727       PrintRegisterValue(reg_ctx, "x6", nullptr, 8, data);
728       PrintRegisterValue(reg_ctx, "x7", nullptr, 8, data);
729       PrintRegisterValue(reg_ctx, "x8", nullptr, 8, data);
730       PrintRegisterValue(reg_ctx, "x9", nullptr, 8, data);
731       PrintRegisterValue(reg_ctx, "x10", nullptr, 8, data);
732       PrintRegisterValue(reg_ctx, "x11", nullptr, 8, data);
733       PrintRegisterValue(reg_ctx, "x12", nullptr, 8, data);
734       PrintRegisterValue(reg_ctx, "x13", nullptr, 8, data);
735       PrintRegisterValue(reg_ctx, "x14", nullptr, 8, data);
736       PrintRegisterValue(reg_ctx, "x15", nullptr, 8, data);
737       PrintRegisterValue(reg_ctx, "x16", nullptr, 8, data);
738       PrintRegisterValue(reg_ctx, "x17", nullptr, 8, data);
739       PrintRegisterValue(reg_ctx, "x18", nullptr, 8, data);
740       PrintRegisterValue(reg_ctx, "x19", nullptr, 8, data);
741       PrintRegisterValue(reg_ctx, "x20", nullptr, 8, data);
742       PrintRegisterValue(reg_ctx, "x21", nullptr, 8, data);
743       PrintRegisterValue(reg_ctx, "x22", nullptr, 8, data);
744       PrintRegisterValue(reg_ctx, "x23", nullptr, 8, data);
745       PrintRegisterValue(reg_ctx, "x24", nullptr, 8, data);
746       PrintRegisterValue(reg_ctx, "x25", nullptr, 8, data);
747       PrintRegisterValue(reg_ctx, "x26", nullptr, 8, data);
748       PrintRegisterValue(reg_ctx, "x27", nullptr, 8, data);
749       PrintRegisterValue(reg_ctx, "x28", nullptr, 8, data);
750       PrintRegisterValue(reg_ctx, "fp", nullptr, 8, data);
751       PrintRegisterValue(reg_ctx, "lr", nullptr, 8, data);
752       PrintRegisterValue(reg_ctx, "sp", nullptr, 8, data);
753       PrintRegisterValue(reg_ctx, "pc", nullptr, 8, data);
754       PrintRegisterValue(reg_ctx, "cpsr", nullptr, 4, data);
755       data.PutHex32(0); // uint32_t pad at the end
756 
757       // Write out the EXC registers
758       data.PutHex32(EXCRegSet);
759       data.PutHex32(EXCWordCount);
760       PrintRegisterValue(reg_ctx, "far", nullptr, 8, data);
761       PrintRegisterValue(reg_ctx, "esr", nullptr, 4, data);
762       PrintRegisterValue(reg_ctx, "exception", nullptr, 4, data);
763       return true;
764     }
765     return false;
766   }
767 
768 protected:
DoReadGPR(lldb::tid_t tid,int flavor,GPR & gpr)769   int DoReadGPR(lldb::tid_t tid, int flavor, GPR &gpr) override { return -1; }
770 
DoReadFPU(lldb::tid_t tid,int flavor,FPU & fpu)771   int DoReadFPU(lldb::tid_t tid, int flavor, FPU &fpu) override { return -1; }
772 
DoReadEXC(lldb::tid_t tid,int flavor,EXC & exc)773   int DoReadEXC(lldb::tid_t tid, int flavor, EXC &exc) override { return -1; }
774 
DoReadDBG(lldb::tid_t tid,int flavor,DBG & dbg)775   int DoReadDBG(lldb::tid_t tid, int flavor, DBG &dbg) override { return -1; }
776 
DoWriteGPR(lldb::tid_t tid,int flavor,const GPR & gpr)777   int DoWriteGPR(lldb::tid_t tid, int flavor, const GPR &gpr) override {
778     return 0;
779   }
780 
DoWriteFPU(lldb::tid_t tid,int flavor,const FPU & fpu)781   int DoWriteFPU(lldb::tid_t tid, int flavor, const FPU &fpu) override {
782     return 0;
783   }
784 
DoWriteEXC(lldb::tid_t tid,int flavor,const EXC & exc)785   int DoWriteEXC(lldb::tid_t tid, int flavor, const EXC &exc) override {
786     return 0;
787   }
788 
DoWriteDBG(lldb::tid_t tid,int flavor,const DBG & dbg)789   int DoWriteDBG(lldb::tid_t tid, int flavor, const DBG &dbg) override {
790     return -1;
791   }
792 };
793 
MachHeaderSizeFromMagic(uint32_t magic)794 static uint32_t MachHeaderSizeFromMagic(uint32_t magic) {
795   switch (magic) {
796   case MH_MAGIC:
797   case MH_CIGAM:
798     return sizeof(struct llvm::MachO::mach_header);
799 
800   case MH_MAGIC_64:
801   case MH_CIGAM_64:
802     return sizeof(struct llvm::MachO::mach_header_64);
803     break;
804 
805   default:
806     break;
807   }
808   return 0;
809 }
810 
811 #define MACHO_NLIST_ARM_SYMBOL_IS_THUMB 0x0008
812 
813 char ObjectFileMachO::ID;
814 
Initialize()815 void ObjectFileMachO::Initialize() {
816   PluginManager::RegisterPlugin(
817       GetPluginNameStatic(), GetPluginDescriptionStatic(), CreateInstance,
818       CreateMemoryInstance, GetModuleSpecifications, SaveCore);
819 }
820 
Terminate()821 void ObjectFileMachO::Terminate() {
822   PluginManager::UnregisterPlugin(CreateInstance);
823 }
824 
CreateInstance(const lldb::ModuleSP & module_sp,DataBufferSP data_sp,lldb::offset_t data_offset,const FileSpec * file,lldb::offset_t file_offset,lldb::offset_t length)825 ObjectFile *ObjectFileMachO::CreateInstance(const lldb::ModuleSP &module_sp,
826                                             DataBufferSP data_sp,
827                                             lldb::offset_t data_offset,
828                                             const FileSpec *file,
829                                             lldb::offset_t file_offset,
830                                             lldb::offset_t length) {
831   if (!data_sp) {
832     data_sp = MapFileData(*file, length, file_offset);
833     if (!data_sp)
834       return nullptr;
835     data_offset = 0;
836   }
837 
838   if (!ObjectFileMachO::MagicBytesMatch(data_sp, data_offset, length))
839     return nullptr;
840 
841   // Update the data to contain the entire file if it doesn't already
842   if (data_sp->GetByteSize() < length) {
843     data_sp = MapFileData(*file, length, file_offset);
844     if (!data_sp)
845       return nullptr;
846     data_offset = 0;
847   }
848   auto objfile_up = std::make_unique<ObjectFileMachO>(
849       module_sp, data_sp, data_offset, file, file_offset, length);
850   if (!objfile_up || !objfile_up->ParseHeader())
851     return nullptr;
852 
853   return objfile_up.release();
854 }
855 
CreateMemoryInstance(const lldb::ModuleSP & module_sp,WritableDataBufferSP data_sp,const ProcessSP & process_sp,lldb::addr_t header_addr)856 ObjectFile *ObjectFileMachO::CreateMemoryInstance(
857     const lldb::ModuleSP &module_sp, WritableDataBufferSP data_sp,
858     const ProcessSP &process_sp, lldb::addr_t header_addr) {
859   if (ObjectFileMachO::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) {
860     std::unique_ptr<ObjectFile> objfile_up(
861         new ObjectFileMachO(module_sp, data_sp, process_sp, header_addr));
862     if (objfile_up.get() && objfile_up->ParseHeader())
863       return objfile_up.release();
864   }
865   return nullptr;
866 }
867 
GetModuleSpecifications(const lldb_private::FileSpec & file,lldb::DataBufferSP & data_sp,lldb::offset_t data_offset,lldb::offset_t file_offset,lldb::offset_t length,lldb_private::ModuleSpecList & specs)868 size_t ObjectFileMachO::GetModuleSpecifications(
869     const lldb_private::FileSpec &file, lldb::DataBufferSP &data_sp,
870     lldb::offset_t data_offset, lldb::offset_t file_offset,
871     lldb::offset_t length, lldb_private::ModuleSpecList &specs) {
872   const size_t initial_count = specs.GetSize();
873 
874   if (ObjectFileMachO::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) {
875     DataExtractor data;
876     data.SetData(data_sp);
877     llvm::MachO::mach_header header;
878     if (ParseHeader(data, &data_offset, header)) {
879       size_t header_and_load_cmds =
880           header.sizeofcmds + MachHeaderSizeFromMagic(header.magic);
881       if (header_and_load_cmds >= data_sp->GetByteSize()) {
882         data_sp = MapFileData(file, header_and_load_cmds, file_offset);
883         data.SetData(data_sp);
884         data_offset = MachHeaderSizeFromMagic(header.magic);
885       }
886       if (data_sp) {
887         ModuleSpec base_spec;
888         base_spec.GetFileSpec() = file;
889         base_spec.SetObjectOffset(file_offset);
890         base_spec.SetObjectSize(length);
891         GetAllArchSpecs(header, data, data_offset, base_spec, specs);
892       }
893     }
894   }
895   return specs.GetSize() - initial_count;
896 }
897 
GetSegmentNameTEXT()898 ConstString ObjectFileMachO::GetSegmentNameTEXT() {
899   static ConstString g_segment_name_TEXT("__TEXT");
900   return g_segment_name_TEXT;
901 }
902 
GetSegmentNameDATA()903 ConstString ObjectFileMachO::GetSegmentNameDATA() {
904   static ConstString g_segment_name_DATA("__DATA");
905   return g_segment_name_DATA;
906 }
907 
GetSegmentNameDATA_DIRTY()908 ConstString ObjectFileMachO::GetSegmentNameDATA_DIRTY() {
909   static ConstString g_segment_name("__DATA_DIRTY");
910   return g_segment_name;
911 }
912 
GetSegmentNameDATA_CONST()913 ConstString ObjectFileMachO::GetSegmentNameDATA_CONST() {
914   static ConstString g_segment_name("__DATA_CONST");
915   return g_segment_name;
916 }
917 
GetSegmentNameOBJC()918 ConstString ObjectFileMachO::GetSegmentNameOBJC() {
919   static ConstString g_segment_name_OBJC("__OBJC");
920   return g_segment_name_OBJC;
921 }
922 
GetSegmentNameLINKEDIT()923 ConstString ObjectFileMachO::GetSegmentNameLINKEDIT() {
924   static ConstString g_section_name_LINKEDIT("__LINKEDIT");
925   return g_section_name_LINKEDIT;
926 }
927 
GetSegmentNameDWARF()928 ConstString ObjectFileMachO::GetSegmentNameDWARF() {
929   static ConstString g_section_name("__DWARF");
930   return g_section_name;
931 }
932 
GetSectionNameEHFrame()933 ConstString ObjectFileMachO::GetSectionNameEHFrame() {
934   static ConstString g_section_name_eh_frame("__eh_frame");
935   return g_section_name_eh_frame;
936 }
937 
MagicBytesMatch(DataBufferSP data_sp,lldb::addr_t data_offset,lldb::addr_t data_length)938 bool ObjectFileMachO::MagicBytesMatch(DataBufferSP data_sp,
939                                       lldb::addr_t data_offset,
940                                       lldb::addr_t data_length) {
941   DataExtractor data;
942   data.SetData(data_sp, data_offset, data_length);
943   lldb::offset_t offset = 0;
944   uint32_t magic = data.GetU32(&offset);
945 
946   offset += 4; // cputype
947   offset += 4; // cpusubtype
948   uint32_t filetype = data.GetU32(&offset);
949 
950   // A fileset has a Mach-O header but is not an
951   // individual file and must be handled via an
952   // ObjectContainer plugin.
953   if (filetype == llvm::MachO::MH_FILESET)
954     return false;
955 
956   return MachHeaderSizeFromMagic(magic) != 0;
957 }
958 
ObjectFileMachO(const lldb::ModuleSP & module_sp,DataBufferSP data_sp,lldb::offset_t data_offset,const FileSpec * file,lldb::offset_t file_offset,lldb::offset_t length)959 ObjectFileMachO::ObjectFileMachO(const lldb::ModuleSP &module_sp,
960                                  DataBufferSP data_sp,
961                                  lldb::offset_t data_offset,
962                                  const FileSpec *file,
963                                  lldb::offset_t file_offset,
964                                  lldb::offset_t length)
965     : ObjectFile(module_sp, file, file_offset, length, data_sp, data_offset),
966       m_mach_segments(), m_mach_sections(), m_entry_point_address(),
967       m_thread_context_offsets(), m_thread_context_offsets_valid(false),
968       m_reexported_dylibs(), m_allow_assembly_emulation_unwind_plans(true) {
969   ::memset(&m_header, 0, sizeof(m_header));
970   ::memset(&m_dysymtab, 0, sizeof(m_dysymtab));
971 }
972 
ObjectFileMachO(const lldb::ModuleSP & module_sp,lldb::WritableDataBufferSP header_data_sp,const lldb::ProcessSP & process_sp,lldb::addr_t header_addr)973 ObjectFileMachO::ObjectFileMachO(const lldb::ModuleSP &module_sp,
974                                  lldb::WritableDataBufferSP header_data_sp,
975                                  const lldb::ProcessSP &process_sp,
976                                  lldb::addr_t header_addr)
977     : ObjectFile(module_sp, process_sp, header_addr, header_data_sp),
978       m_mach_segments(), m_mach_sections(), m_entry_point_address(),
979       m_thread_context_offsets(), m_thread_context_offsets_valid(false),
980       m_reexported_dylibs(), m_allow_assembly_emulation_unwind_plans(true) {
981   ::memset(&m_header, 0, sizeof(m_header));
982   ::memset(&m_dysymtab, 0, sizeof(m_dysymtab));
983 }
984 
ParseHeader(DataExtractor & data,lldb::offset_t * data_offset_ptr,llvm::MachO::mach_header & header)985 bool ObjectFileMachO::ParseHeader(DataExtractor &data,
986                                   lldb::offset_t *data_offset_ptr,
987                                   llvm::MachO::mach_header &header) {
988   data.SetByteOrder(endian::InlHostByteOrder());
989   // Leave magic in the original byte order
990   header.magic = data.GetU32(data_offset_ptr);
991   bool can_parse = false;
992   bool is_64_bit = false;
993   switch (header.magic) {
994   case MH_MAGIC:
995     data.SetByteOrder(endian::InlHostByteOrder());
996     data.SetAddressByteSize(4);
997     can_parse = true;
998     break;
999 
1000   case MH_MAGIC_64:
1001     data.SetByteOrder(endian::InlHostByteOrder());
1002     data.SetAddressByteSize(8);
1003     can_parse = true;
1004     is_64_bit = true;
1005     break;
1006 
1007   case MH_CIGAM:
1008     data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
1009                           ? eByteOrderLittle
1010                           : eByteOrderBig);
1011     data.SetAddressByteSize(4);
1012     can_parse = true;
1013     break;
1014 
1015   case MH_CIGAM_64:
1016     data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
1017                           ? eByteOrderLittle
1018                           : eByteOrderBig);
1019     data.SetAddressByteSize(8);
1020     is_64_bit = true;
1021     can_parse = true;
1022     break;
1023 
1024   default:
1025     break;
1026   }
1027 
1028   if (can_parse) {
1029     data.GetU32(data_offset_ptr, &header.cputype, 6);
1030     if (is_64_bit)
1031       *data_offset_ptr += 4;
1032     return true;
1033   } else {
1034     memset(&header, 0, sizeof(header));
1035   }
1036   return false;
1037 }
1038 
ParseHeader()1039 bool ObjectFileMachO::ParseHeader() {
1040   ModuleSP module_sp(GetModule());
1041   if (!module_sp)
1042     return false;
1043 
1044   std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
1045   bool can_parse = false;
1046   lldb::offset_t offset = 0;
1047   m_data.SetByteOrder(endian::InlHostByteOrder());
1048   // Leave magic in the original byte order
1049   m_header.magic = m_data.GetU32(&offset);
1050   switch (m_header.magic) {
1051   case MH_MAGIC:
1052     m_data.SetByteOrder(endian::InlHostByteOrder());
1053     m_data.SetAddressByteSize(4);
1054     can_parse = true;
1055     break;
1056 
1057   case MH_MAGIC_64:
1058     m_data.SetByteOrder(endian::InlHostByteOrder());
1059     m_data.SetAddressByteSize(8);
1060     can_parse = true;
1061     break;
1062 
1063   case MH_CIGAM:
1064     m_data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
1065                             ? eByteOrderLittle
1066                             : eByteOrderBig);
1067     m_data.SetAddressByteSize(4);
1068     can_parse = true;
1069     break;
1070 
1071   case MH_CIGAM_64:
1072     m_data.SetByteOrder(endian::InlHostByteOrder() == eByteOrderBig
1073                             ? eByteOrderLittle
1074                             : eByteOrderBig);
1075     m_data.SetAddressByteSize(8);
1076     can_parse = true;
1077     break;
1078 
1079   default:
1080     break;
1081   }
1082 
1083   if (can_parse) {
1084     m_data.GetU32(&offset, &m_header.cputype, 6);
1085 
1086     ModuleSpecList all_specs;
1087     ModuleSpec base_spec;
1088     GetAllArchSpecs(m_header, m_data, MachHeaderSizeFromMagic(m_header.magic),
1089                     base_spec, all_specs);
1090 
1091     for (unsigned i = 0, e = all_specs.GetSize(); i != e; ++i) {
1092       ArchSpec mach_arch =
1093           all_specs.GetModuleSpecRefAtIndex(i).GetArchitecture();
1094 
1095       // Check if the module has a required architecture
1096       const ArchSpec &module_arch = module_sp->GetArchitecture();
1097       if (module_arch.IsValid() && !module_arch.IsCompatibleMatch(mach_arch))
1098         continue;
1099 
1100       if (SetModulesArchitecture(mach_arch)) {
1101         const size_t header_and_lc_size =
1102             m_header.sizeofcmds + MachHeaderSizeFromMagic(m_header.magic);
1103         if (m_data.GetByteSize() < header_and_lc_size) {
1104           DataBufferSP data_sp;
1105           ProcessSP process_sp(m_process_wp.lock());
1106           if (process_sp) {
1107             data_sp = ReadMemory(process_sp, m_memory_addr, header_and_lc_size);
1108           } else {
1109             // Read in all only the load command data from the file on disk
1110             data_sp = MapFileData(m_file, header_and_lc_size, m_file_offset);
1111             if (data_sp->GetByteSize() != header_and_lc_size)
1112               continue;
1113           }
1114           if (data_sp)
1115             m_data.SetData(data_sp);
1116         }
1117       }
1118       return true;
1119     }
1120     // None found.
1121     return false;
1122   } else {
1123     memset(&m_header, 0, sizeof(struct llvm::MachO::mach_header));
1124   }
1125   return false;
1126 }
1127 
GetByteOrder() const1128 ByteOrder ObjectFileMachO::GetByteOrder() const {
1129   return m_data.GetByteOrder();
1130 }
1131 
IsExecutable() const1132 bool ObjectFileMachO::IsExecutable() const {
1133   return m_header.filetype == MH_EXECUTE;
1134 }
1135 
IsDynamicLoader() const1136 bool ObjectFileMachO::IsDynamicLoader() const {
1137   return m_header.filetype == MH_DYLINKER;
1138 }
1139 
IsSharedCacheBinary() const1140 bool ObjectFileMachO::IsSharedCacheBinary() const {
1141   return m_header.flags & MH_DYLIB_IN_CACHE;
1142 }
1143 
GetAddressByteSize() const1144 uint32_t ObjectFileMachO::GetAddressByteSize() const {
1145   return m_data.GetAddressByteSize();
1146 }
1147 
GetAddressClass(lldb::addr_t file_addr)1148 AddressClass ObjectFileMachO::GetAddressClass(lldb::addr_t file_addr) {
1149   Symtab *symtab = GetSymtab();
1150   if (!symtab)
1151     return AddressClass::eUnknown;
1152 
1153   Symbol *symbol = symtab->FindSymbolContainingFileAddress(file_addr);
1154   if (symbol) {
1155     if (symbol->ValueIsAddress()) {
1156       SectionSP section_sp(symbol->GetAddressRef().GetSection());
1157       if (section_sp) {
1158         const lldb::SectionType section_type = section_sp->GetType();
1159         switch (section_type) {
1160         case eSectionTypeInvalid:
1161           return AddressClass::eUnknown;
1162 
1163         case eSectionTypeCode:
1164           if (m_header.cputype == llvm::MachO::CPU_TYPE_ARM) {
1165             // For ARM we have a bit in the n_desc field of the symbol that
1166             // tells us ARM/Thumb which is bit 0x0008.
1167             if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB)
1168               return AddressClass::eCodeAlternateISA;
1169           }
1170           return AddressClass::eCode;
1171 
1172         case eSectionTypeContainer:
1173           return AddressClass::eUnknown;
1174 
1175         case eSectionTypeData:
1176         case eSectionTypeDataCString:
1177         case eSectionTypeDataCStringPointers:
1178         case eSectionTypeDataSymbolAddress:
1179         case eSectionTypeData4:
1180         case eSectionTypeData8:
1181         case eSectionTypeData16:
1182         case eSectionTypeDataPointers:
1183         case eSectionTypeZeroFill:
1184         case eSectionTypeDataObjCMessageRefs:
1185         case eSectionTypeDataObjCCFStrings:
1186         case eSectionTypeGoSymtab:
1187           return AddressClass::eData;
1188 
1189         case eSectionTypeDebug:
1190         case eSectionTypeDWARFDebugAbbrev:
1191         case eSectionTypeDWARFDebugAbbrevDwo:
1192         case eSectionTypeDWARFDebugAddr:
1193         case eSectionTypeDWARFDebugAranges:
1194         case eSectionTypeDWARFDebugCuIndex:
1195         case eSectionTypeDWARFDebugFrame:
1196         case eSectionTypeDWARFDebugInfo:
1197         case eSectionTypeDWARFDebugInfoDwo:
1198         case eSectionTypeDWARFDebugLine:
1199         case eSectionTypeDWARFDebugLineStr:
1200         case eSectionTypeDWARFDebugLoc:
1201         case eSectionTypeDWARFDebugLocDwo:
1202         case eSectionTypeDWARFDebugLocLists:
1203         case eSectionTypeDWARFDebugLocListsDwo:
1204         case eSectionTypeDWARFDebugMacInfo:
1205         case eSectionTypeDWARFDebugMacro:
1206         case eSectionTypeDWARFDebugNames:
1207         case eSectionTypeDWARFDebugPubNames:
1208         case eSectionTypeDWARFDebugPubTypes:
1209         case eSectionTypeDWARFDebugRanges:
1210         case eSectionTypeDWARFDebugRngLists:
1211         case eSectionTypeDWARFDebugRngListsDwo:
1212         case eSectionTypeDWARFDebugStr:
1213         case eSectionTypeDWARFDebugStrDwo:
1214         case eSectionTypeDWARFDebugStrOffsets:
1215         case eSectionTypeDWARFDebugStrOffsetsDwo:
1216         case eSectionTypeDWARFDebugTuIndex:
1217         case eSectionTypeDWARFDebugTypes:
1218         case eSectionTypeDWARFDebugTypesDwo:
1219         case eSectionTypeDWARFAppleNames:
1220         case eSectionTypeDWARFAppleTypes:
1221         case eSectionTypeDWARFAppleNamespaces:
1222         case eSectionTypeDWARFAppleObjC:
1223         case eSectionTypeDWARFGNUDebugAltLink:
1224           return AddressClass::eDebug;
1225 
1226         case eSectionTypeEHFrame:
1227         case eSectionTypeARMexidx:
1228         case eSectionTypeARMextab:
1229         case eSectionTypeCompactUnwind:
1230           return AddressClass::eRuntime;
1231 
1232         case eSectionTypeAbsoluteAddress:
1233         case eSectionTypeELFSymbolTable:
1234         case eSectionTypeELFDynamicSymbols:
1235         case eSectionTypeELFRelocationEntries:
1236         case eSectionTypeELFDynamicLinkInfo:
1237         case eSectionTypeOther:
1238           return AddressClass::eUnknown;
1239         }
1240       }
1241     }
1242 
1243     const SymbolType symbol_type = symbol->GetType();
1244     switch (symbol_type) {
1245     case eSymbolTypeAny:
1246       return AddressClass::eUnknown;
1247     case eSymbolTypeAbsolute:
1248       return AddressClass::eUnknown;
1249 
1250     case eSymbolTypeCode:
1251     case eSymbolTypeTrampoline:
1252     case eSymbolTypeResolver:
1253       if (m_header.cputype == llvm::MachO::CPU_TYPE_ARM) {
1254         // For ARM we have a bit in the n_desc field of the symbol that tells
1255         // us ARM/Thumb which is bit 0x0008.
1256         if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB)
1257           return AddressClass::eCodeAlternateISA;
1258       }
1259       return AddressClass::eCode;
1260 
1261     case eSymbolTypeData:
1262       return AddressClass::eData;
1263     case eSymbolTypeRuntime:
1264       return AddressClass::eRuntime;
1265     case eSymbolTypeException:
1266       return AddressClass::eRuntime;
1267     case eSymbolTypeSourceFile:
1268       return AddressClass::eDebug;
1269     case eSymbolTypeHeaderFile:
1270       return AddressClass::eDebug;
1271     case eSymbolTypeObjectFile:
1272       return AddressClass::eDebug;
1273     case eSymbolTypeCommonBlock:
1274       return AddressClass::eDebug;
1275     case eSymbolTypeBlock:
1276       return AddressClass::eDebug;
1277     case eSymbolTypeLocal:
1278       return AddressClass::eData;
1279     case eSymbolTypeParam:
1280       return AddressClass::eData;
1281     case eSymbolTypeVariable:
1282       return AddressClass::eData;
1283     case eSymbolTypeVariableType:
1284       return AddressClass::eDebug;
1285     case eSymbolTypeLineEntry:
1286       return AddressClass::eDebug;
1287     case eSymbolTypeLineHeader:
1288       return AddressClass::eDebug;
1289     case eSymbolTypeScopeBegin:
1290       return AddressClass::eDebug;
1291     case eSymbolTypeScopeEnd:
1292       return AddressClass::eDebug;
1293     case eSymbolTypeAdditional:
1294       return AddressClass::eUnknown;
1295     case eSymbolTypeCompiler:
1296       return AddressClass::eDebug;
1297     case eSymbolTypeInstrumentation:
1298       return AddressClass::eDebug;
1299     case eSymbolTypeUndefined:
1300       return AddressClass::eUnknown;
1301     case eSymbolTypeObjCClass:
1302       return AddressClass::eRuntime;
1303     case eSymbolTypeObjCMetaClass:
1304       return AddressClass::eRuntime;
1305     case eSymbolTypeObjCIVar:
1306       return AddressClass::eRuntime;
1307     case eSymbolTypeReExported:
1308       return AddressClass::eRuntime;
1309     }
1310   }
1311   return AddressClass::eUnknown;
1312 }
1313 
IsStripped()1314 bool ObjectFileMachO::IsStripped() {
1315   if (m_dysymtab.cmd == 0) {
1316     ModuleSP module_sp(GetModule());
1317     if (module_sp) {
1318       lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
1319       for (uint32_t i = 0; i < m_header.ncmds; ++i) {
1320         const lldb::offset_t load_cmd_offset = offset;
1321 
1322         llvm::MachO::load_command lc = {};
1323         if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
1324           break;
1325         if (lc.cmd == LC_DYSYMTAB) {
1326           m_dysymtab.cmd = lc.cmd;
1327           m_dysymtab.cmdsize = lc.cmdsize;
1328           if (m_data.GetU32(&offset, &m_dysymtab.ilocalsym,
1329                             (sizeof(m_dysymtab) / sizeof(uint32_t)) - 2) ==
1330               nullptr) {
1331             // Clear m_dysymtab if we were unable to read all items from the
1332             // load command
1333             ::memset(&m_dysymtab, 0, sizeof(m_dysymtab));
1334           }
1335         }
1336         offset = load_cmd_offset + lc.cmdsize;
1337       }
1338     }
1339   }
1340   if (m_dysymtab.cmd)
1341     return m_dysymtab.nlocalsym <= 1;
1342   return false;
1343 }
1344 
GetEncryptedFileRanges()1345 ObjectFileMachO::EncryptedFileRanges ObjectFileMachO::GetEncryptedFileRanges() {
1346   EncryptedFileRanges result;
1347   lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
1348 
1349   llvm::MachO::encryption_info_command encryption_cmd;
1350   for (uint32_t i = 0; i < m_header.ncmds; ++i) {
1351     const lldb::offset_t load_cmd_offset = offset;
1352     if (m_data.GetU32(&offset, &encryption_cmd, 2) == nullptr)
1353       break;
1354 
1355     // LC_ENCRYPTION_INFO and LC_ENCRYPTION_INFO_64 have the same sizes for the
1356     // 3 fields we care about, so treat them the same.
1357     if (encryption_cmd.cmd == LC_ENCRYPTION_INFO ||
1358         encryption_cmd.cmd == LC_ENCRYPTION_INFO_64) {
1359       if (m_data.GetU32(&offset, &encryption_cmd.cryptoff, 3)) {
1360         if (encryption_cmd.cryptid != 0) {
1361           EncryptedFileRanges::Entry entry;
1362           entry.SetRangeBase(encryption_cmd.cryptoff);
1363           entry.SetByteSize(encryption_cmd.cryptsize);
1364           result.Append(entry);
1365         }
1366       }
1367     }
1368     offset = load_cmd_offset + encryption_cmd.cmdsize;
1369   }
1370 
1371   return result;
1372 }
1373 
SanitizeSegmentCommand(llvm::MachO::segment_command_64 & seg_cmd,uint32_t cmd_idx)1374 void ObjectFileMachO::SanitizeSegmentCommand(
1375     llvm::MachO::segment_command_64 &seg_cmd, uint32_t cmd_idx) {
1376   if (m_length == 0 || seg_cmd.filesize == 0)
1377     return;
1378 
1379   if (IsSharedCacheBinary() && !IsInMemory()) {
1380     // In shared cache images, the load commands are relative to the
1381     // shared cache file, and not the specific image we are
1382     // examining. Let's fix this up so that it looks like a normal
1383     // image.
1384     if (strncmp(seg_cmd.segname, "__TEXT", sizeof(seg_cmd.segname)) == 0)
1385       m_text_address = seg_cmd.vmaddr;
1386     if (strncmp(seg_cmd.segname, "__LINKEDIT", sizeof(seg_cmd.segname)) == 0)
1387       m_linkedit_original_offset = seg_cmd.fileoff;
1388 
1389     seg_cmd.fileoff = seg_cmd.vmaddr - m_text_address;
1390   }
1391 
1392   if (seg_cmd.fileoff > m_length) {
1393     // We have a load command that says it extends past the end of the file.
1394     // This is likely a corrupt file.  We don't have any way to return an error
1395     // condition here (this method was likely invoked from something like
1396     // ObjectFile::GetSectionList()), so we just null out the section contents,
1397     // and dump a message to stdout.  The most common case here is core file
1398     // debugging with a truncated file.
1399     const char *lc_segment_name =
1400         seg_cmd.cmd == LC_SEGMENT_64 ? "LC_SEGMENT_64" : "LC_SEGMENT";
1401     GetModule()->ReportWarning(
1402         "load command {0} {1} has a fileoff ({2:x16}) that extends beyond "
1403         "the end of the file ({3:x16}), ignoring this section",
1404         cmd_idx, lc_segment_name, seg_cmd.fileoff, m_length);
1405 
1406     seg_cmd.fileoff = 0;
1407     seg_cmd.filesize = 0;
1408   }
1409 
1410   if (seg_cmd.fileoff + seg_cmd.filesize > m_length) {
1411     // We have a load command that says it extends past the end of the file.
1412     // This is likely a corrupt file.  We don't have any way to return an error
1413     // condition here (this method was likely invoked from something like
1414     // ObjectFile::GetSectionList()), so we just null out the section contents,
1415     // and dump a message to stdout.  The most common case here is core file
1416     // debugging with a truncated file.
1417     const char *lc_segment_name =
1418         seg_cmd.cmd == LC_SEGMENT_64 ? "LC_SEGMENT_64" : "LC_SEGMENT";
1419     GetModule()->ReportWarning(
1420         "load command {0} {1} has a fileoff + filesize ({2:x16}) that "
1421         "extends beyond the end of the file ({4:x16}), the segment will be "
1422         "truncated to match",
1423         cmd_idx, lc_segment_name, seg_cmd.fileoff + seg_cmd.filesize, m_length);
1424 
1425     // Truncate the length
1426     seg_cmd.filesize = m_length - seg_cmd.fileoff;
1427   }
1428 }
1429 
1430 static uint32_t
GetSegmentPermissions(const llvm::MachO::segment_command_64 & seg_cmd)1431 GetSegmentPermissions(const llvm::MachO::segment_command_64 &seg_cmd) {
1432   uint32_t result = 0;
1433   if (seg_cmd.initprot & VM_PROT_READ)
1434     result |= ePermissionsReadable;
1435   if (seg_cmd.initprot & VM_PROT_WRITE)
1436     result |= ePermissionsWritable;
1437   if (seg_cmd.initprot & VM_PROT_EXECUTE)
1438     result |= ePermissionsExecutable;
1439   return result;
1440 }
1441 
GetSectionType(uint32_t flags,ConstString section_name)1442 static lldb::SectionType GetSectionType(uint32_t flags,
1443                                         ConstString section_name) {
1444 
1445   if (flags & (S_ATTR_PURE_INSTRUCTIONS | S_ATTR_SOME_INSTRUCTIONS))
1446     return eSectionTypeCode;
1447 
1448   uint32_t mach_sect_type = flags & SECTION_TYPE;
1449   static ConstString g_sect_name_objc_data("__objc_data");
1450   static ConstString g_sect_name_objc_msgrefs("__objc_msgrefs");
1451   static ConstString g_sect_name_objc_selrefs("__objc_selrefs");
1452   static ConstString g_sect_name_objc_classrefs("__objc_classrefs");
1453   static ConstString g_sect_name_objc_superrefs("__objc_superrefs");
1454   static ConstString g_sect_name_objc_const("__objc_const");
1455   static ConstString g_sect_name_objc_classlist("__objc_classlist");
1456   static ConstString g_sect_name_cfstring("__cfstring");
1457 
1458   static ConstString g_sect_name_dwarf_debug_abbrev("__debug_abbrev");
1459   static ConstString g_sect_name_dwarf_debug_aranges("__debug_aranges");
1460   static ConstString g_sect_name_dwarf_debug_frame("__debug_frame");
1461   static ConstString g_sect_name_dwarf_debug_info("__debug_info");
1462   static ConstString g_sect_name_dwarf_debug_line("__debug_line");
1463   static ConstString g_sect_name_dwarf_debug_loc("__debug_loc");
1464   static ConstString g_sect_name_dwarf_debug_loclists("__debug_loclists");
1465   static ConstString g_sect_name_dwarf_debug_macinfo("__debug_macinfo");
1466   static ConstString g_sect_name_dwarf_debug_names("__debug_names");
1467   static ConstString g_sect_name_dwarf_debug_pubnames("__debug_pubnames");
1468   static ConstString g_sect_name_dwarf_debug_pubtypes("__debug_pubtypes");
1469   static ConstString g_sect_name_dwarf_debug_ranges("__debug_ranges");
1470   static ConstString g_sect_name_dwarf_debug_str("__debug_str");
1471   static ConstString g_sect_name_dwarf_debug_types("__debug_types");
1472   static ConstString g_sect_name_dwarf_apple_names("__apple_names");
1473   static ConstString g_sect_name_dwarf_apple_types("__apple_types");
1474   static ConstString g_sect_name_dwarf_apple_namespaces("__apple_namespac");
1475   static ConstString g_sect_name_dwarf_apple_objc("__apple_objc");
1476   static ConstString g_sect_name_eh_frame("__eh_frame");
1477   static ConstString g_sect_name_compact_unwind("__unwind_info");
1478   static ConstString g_sect_name_text("__text");
1479   static ConstString g_sect_name_data("__data");
1480   static ConstString g_sect_name_go_symtab("__gosymtab");
1481 
1482   if (section_name == g_sect_name_dwarf_debug_abbrev)
1483     return eSectionTypeDWARFDebugAbbrev;
1484   if (section_name == g_sect_name_dwarf_debug_aranges)
1485     return eSectionTypeDWARFDebugAranges;
1486   if (section_name == g_sect_name_dwarf_debug_frame)
1487     return eSectionTypeDWARFDebugFrame;
1488   if (section_name == g_sect_name_dwarf_debug_info)
1489     return eSectionTypeDWARFDebugInfo;
1490   if (section_name == g_sect_name_dwarf_debug_line)
1491     return eSectionTypeDWARFDebugLine;
1492   if (section_name == g_sect_name_dwarf_debug_loc)
1493     return eSectionTypeDWARFDebugLoc;
1494   if (section_name == g_sect_name_dwarf_debug_loclists)
1495     return eSectionTypeDWARFDebugLocLists;
1496   if (section_name == g_sect_name_dwarf_debug_macinfo)
1497     return eSectionTypeDWARFDebugMacInfo;
1498   if (section_name == g_sect_name_dwarf_debug_names)
1499     return eSectionTypeDWARFDebugNames;
1500   if (section_name == g_sect_name_dwarf_debug_pubnames)
1501     return eSectionTypeDWARFDebugPubNames;
1502   if (section_name == g_sect_name_dwarf_debug_pubtypes)
1503     return eSectionTypeDWARFDebugPubTypes;
1504   if (section_name == g_sect_name_dwarf_debug_ranges)
1505     return eSectionTypeDWARFDebugRanges;
1506   if (section_name == g_sect_name_dwarf_debug_str)
1507     return eSectionTypeDWARFDebugStr;
1508   if (section_name == g_sect_name_dwarf_debug_types)
1509     return eSectionTypeDWARFDebugTypes;
1510   if (section_name == g_sect_name_dwarf_apple_names)
1511     return eSectionTypeDWARFAppleNames;
1512   if (section_name == g_sect_name_dwarf_apple_types)
1513     return eSectionTypeDWARFAppleTypes;
1514   if (section_name == g_sect_name_dwarf_apple_namespaces)
1515     return eSectionTypeDWARFAppleNamespaces;
1516   if (section_name == g_sect_name_dwarf_apple_objc)
1517     return eSectionTypeDWARFAppleObjC;
1518   if (section_name == g_sect_name_objc_selrefs)
1519     return eSectionTypeDataCStringPointers;
1520   if (section_name == g_sect_name_objc_msgrefs)
1521     return eSectionTypeDataObjCMessageRefs;
1522   if (section_name == g_sect_name_eh_frame)
1523     return eSectionTypeEHFrame;
1524   if (section_name == g_sect_name_compact_unwind)
1525     return eSectionTypeCompactUnwind;
1526   if (section_name == g_sect_name_cfstring)
1527     return eSectionTypeDataObjCCFStrings;
1528   if (section_name == g_sect_name_go_symtab)
1529     return eSectionTypeGoSymtab;
1530   if (section_name == g_sect_name_objc_data ||
1531       section_name == g_sect_name_objc_classrefs ||
1532       section_name == g_sect_name_objc_superrefs ||
1533       section_name == g_sect_name_objc_const ||
1534       section_name == g_sect_name_objc_classlist) {
1535     return eSectionTypeDataPointers;
1536   }
1537 
1538   switch (mach_sect_type) {
1539   // TODO: categorize sections by other flags for regular sections
1540   case S_REGULAR:
1541     if (section_name == g_sect_name_text)
1542       return eSectionTypeCode;
1543     if (section_name == g_sect_name_data)
1544       return eSectionTypeData;
1545     return eSectionTypeOther;
1546   case S_ZEROFILL:
1547     return eSectionTypeZeroFill;
1548   case S_CSTRING_LITERALS: // section with only literal C strings
1549     return eSectionTypeDataCString;
1550   case S_4BYTE_LITERALS: // section with only 4 byte literals
1551     return eSectionTypeData4;
1552   case S_8BYTE_LITERALS: // section with only 8 byte literals
1553     return eSectionTypeData8;
1554   case S_LITERAL_POINTERS: // section with only pointers to literals
1555     return eSectionTypeDataPointers;
1556   case S_NON_LAZY_SYMBOL_POINTERS: // section with only non-lazy symbol pointers
1557     return eSectionTypeDataPointers;
1558   case S_LAZY_SYMBOL_POINTERS: // section with only lazy symbol pointers
1559     return eSectionTypeDataPointers;
1560   case S_SYMBOL_STUBS: // section with only symbol stubs, byte size of stub in
1561                        // the reserved2 field
1562     return eSectionTypeCode;
1563   case S_MOD_INIT_FUNC_POINTERS: // section with only function pointers for
1564                                  // initialization
1565     return eSectionTypeDataPointers;
1566   case S_MOD_TERM_FUNC_POINTERS: // section with only function pointers for
1567                                  // termination
1568     return eSectionTypeDataPointers;
1569   case S_COALESCED:
1570     return eSectionTypeOther;
1571   case S_GB_ZEROFILL:
1572     return eSectionTypeZeroFill;
1573   case S_INTERPOSING: // section with only pairs of function pointers for
1574                       // interposing
1575     return eSectionTypeCode;
1576   case S_16BYTE_LITERALS: // section with only 16 byte literals
1577     return eSectionTypeData16;
1578   case S_DTRACE_DOF:
1579     return eSectionTypeDebug;
1580   case S_LAZY_DYLIB_SYMBOL_POINTERS:
1581     return eSectionTypeDataPointers;
1582   default:
1583     return eSectionTypeOther;
1584   }
1585 }
1586 
1587 struct ObjectFileMachO::SegmentParsingContext {
1588   const EncryptedFileRanges EncryptedRanges;
1589   lldb_private::SectionList &UnifiedList;
1590   uint32_t NextSegmentIdx = 0;
1591   uint32_t NextSectionIdx = 0;
1592   bool FileAddressesChanged = false;
1593 
SegmentParsingContextObjectFileMachO::SegmentParsingContext1594   SegmentParsingContext(EncryptedFileRanges EncryptedRanges,
1595                         lldb_private::SectionList &UnifiedList)
1596       : EncryptedRanges(std::move(EncryptedRanges)), UnifiedList(UnifiedList) {}
1597 };
1598 
ProcessSegmentCommand(const llvm::MachO::load_command & load_cmd_,lldb::offset_t offset,uint32_t cmd_idx,SegmentParsingContext & context)1599 void ObjectFileMachO::ProcessSegmentCommand(
1600     const llvm::MachO::load_command &load_cmd_, lldb::offset_t offset,
1601     uint32_t cmd_idx, SegmentParsingContext &context) {
1602   llvm::MachO::segment_command_64 load_cmd;
1603   memcpy(&load_cmd, &load_cmd_, sizeof(load_cmd_));
1604 
1605   if (!m_data.GetU8(&offset, (uint8_t *)load_cmd.segname, 16))
1606     return;
1607 
1608   ModuleSP module_sp = GetModule();
1609   const bool is_core = GetType() == eTypeCoreFile;
1610   const bool is_dsym = (m_header.filetype == MH_DSYM);
1611   bool add_section = true;
1612   bool add_to_unified = true;
1613   ConstString const_segname(
1614       load_cmd.segname, strnlen(load_cmd.segname, sizeof(load_cmd.segname)));
1615 
1616   SectionSP unified_section_sp(
1617       context.UnifiedList.FindSectionByName(const_segname));
1618   if (is_dsym && unified_section_sp) {
1619     if (const_segname == GetSegmentNameLINKEDIT()) {
1620       // We need to keep the __LINKEDIT segment private to this object file
1621       // only
1622       add_to_unified = false;
1623     } else {
1624       // This is the dSYM file and this section has already been created by the
1625       // object file, no need to create it.
1626       add_section = false;
1627     }
1628   }
1629   load_cmd.vmaddr = m_data.GetAddress(&offset);
1630   load_cmd.vmsize = m_data.GetAddress(&offset);
1631   load_cmd.fileoff = m_data.GetAddress(&offset);
1632   load_cmd.filesize = m_data.GetAddress(&offset);
1633   if (!m_data.GetU32(&offset, &load_cmd.maxprot, 4))
1634     return;
1635 
1636   SanitizeSegmentCommand(load_cmd, cmd_idx);
1637 
1638   const uint32_t segment_permissions = GetSegmentPermissions(load_cmd);
1639   const bool segment_is_encrypted =
1640       (load_cmd.flags & SG_PROTECTED_VERSION_1) != 0;
1641 
1642   // Keep a list of mach segments around in case we need to get at data that
1643   // isn't stored in the abstracted Sections.
1644   m_mach_segments.push_back(load_cmd);
1645 
1646   // Use a segment ID of the segment index shifted left by 8 so they never
1647   // conflict with any of the sections.
1648   SectionSP segment_sp;
1649   if (add_section && (const_segname || is_core)) {
1650     segment_sp = std::make_shared<Section>(
1651         module_sp, // Module to which this section belongs
1652         this,      // Object file to which this sections belongs
1653         ++context.NextSegmentIdx
1654             << 8, // Section ID is the 1 based segment index
1655         // shifted right by 8 bits as not to collide with any of the 256
1656         // section IDs that are possible
1657         const_segname,         // Name of this section
1658         eSectionTypeContainer, // This section is a container of other
1659         // sections.
1660         load_cmd.vmaddr, // File VM address == addresses as they are
1661         // found in the object file
1662         load_cmd.vmsize,  // VM size in bytes of this section
1663         load_cmd.fileoff, // Offset to the data for this section in
1664         // the file
1665         load_cmd.filesize, // Size in bytes of this section as found
1666         // in the file
1667         0,               // Segments have no alignment information
1668         load_cmd.flags); // Flags for this section
1669 
1670     segment_sp->SetIsEncrypted(segment_is_encrypted);
1671     m_sections_up->AddSection(segment_sp);
1672     segment_sp->SetPermissions(segment_permissions);
1673     if (add_to_unified)
1674       context.UnifiedList.AddSection(segment_sp);
1675   } else if (unified_section_sp) {
1676     // If this is a dSYM and the file addresses in the dSYM differ from the
1677     // file addresses in the ObjectFile, we must use the file base address for
1678     // the Section from the dSYM for the DWARF to resolve correctly.
1679     // This only happens with binaries in the shared cache in practice;
1680     // normally a mismatch like this would give a binary & dSYM that do not
1681     // match UUIDs. When a binary is included in the shared cache, its
1682     // segments are rearranged to optimize the shared cache, so its file
1683     // addresses will differ from what the ObjectFile had originally,
1684     // and what the dSYM has.
1685     if (is_dsym && unified_section_sp->GetFileAddress() != load_cmd.vmaddr) {
1686       Log *log = GetLog(LLDBLog::Symbols);
1687       if (log) {
1688         log->Printf(
1689             "Installing dSYM's %s segment file address over ObjectFile's "
1690             "so symbol table/debug info resolves correctly for %s",
1691             const_segname.AsCString(),
1692             module_sp->GetFileSpec().GetFilename().AsCString());
1693       }
1694 
1695       // Make sure we've parsed the symbol table from the ObjectFile before
1696       // we go around changing its Sections.
1697       module_sp->GetObjectFile()->GetSymtab();
1698       // eh_frame would present the same problems but we parse that on a per-
1699       // function basis as-needed so it's more difficult to remove its use of
1700       // the Sections.  Realistically, the environments where this code path
1701       // will be taken will not have eh_frame sections.
1702 
1703       unified_section_sp->SetFileAddress(load_cmd.vmaddr);
1704 
1705       // Notify the module that the section addresses have been changed once
1706       // we're done so any file-address caches can be updated.
1707       context.FileAddressesChanged = true;
1708     }
1709     m_sections_up->AddSection(unified_section_sp);
1710   }
1711 
1712   llvm::MachO::section_64 sect64;
1713   ::memset(&sect64, 0, sizeof(sect64));
1714   // Push a section into our mach sections for the section at index zero
1715   // (NO_SECT) if we don't have any mach sections yet...
1716   if (m_mach_sections.empty())
1717     m_mach_sections.push_back(sect64);
1718   uint32_t segment_sect_idx;
1719   const lldb::user_id_t first_segment_sectID = context.NextSectionIdx + 1;
1720 
1721   const uint32_t num_u32s = load_cmd.cmd == LC_SEGMENT ? 7 : 8;
1722   for (segment_sect_idx = 0; segment_sect_idx < load_cmd.nsects;
1723        ++segment_sect_idx) {
1724     if (m_data.GetU8(&offset, (uint8_t *)sect64.sectname,
1725                      sizeof(sect64.sectname)) == nullptr)
1726       break;
1727     if (m_data.GetU8(&offset, (uint8_t *)sect64.segname,
1728                      sizeof(sect64.segname)) == nullptr)
1729       break;
1730     sect64.addr = m_data.GetAddress(&offset);
1731     sect64.size = m_data.GetAddress(&offset);
1732 
1733     if (m_data.GetU32(&offset, &sect64.offset, num_u32s) == nullptr)
1734       break;
1735 
1736     if (IsSharedCacheBinary() && !IsInMemory()) {
1737       sect64.offset = sect64.addr - m_text_address;
1738     }
1739 
1740     // Keep a list of mach sections around in case we need to get at data that
1741     // isn't stored in the abstracted Sections.
1742     m_mach_sections.push_back(sect64);
1743 
1744     if (add_section) {
1745       ConstString section_name(
1746           sect64.sectname, strnlen(sect64.sectname, sizeof(sect64.sectname)));
1747       if (!const_segname) {
1748         // We have a segment with no name so we need to conjure up segments
1749         // that correspond to the section's segname if there isn't already such
1750         // a section. If there is such a section, we resize the section so that
1751         // it spans all sections.  We also mark these sections as fake so
1752         // address matches don't hit if they land in the gaps between the child
1753         // sections.
1754         const_segname.SetTrimmedCStringWithLength(sect64.segname,
1755                                                   sizeof(sect64.segname));
1756         segment_sp = context.UnifiedList.FindSectionByName(const_segname);
1757         if (segment_sp.get()) {
1758           Section *segment = segment_sp.get();
1759           // Grow the section size as needed.
1760           const lldb::addr_t sect64_min_addr = sect64.addr;
1761           const lldb::addr_t sect64_max_addr = sect64_min_addr + sect64.size;
1762           const lldb::addr_t curr_seg_byte_size = segment->GetByteSize();
1763           const lldb::addr_t curr_seg_min_addr = segment->GetFileAddress();
1764           const lldb::addr_t curr_seg_max_addr =
1765               curr_seg_min_addr + curr_seg_byte_size;
1766           if (sect64_min_addr >= curr_seg_min_addr) {
1767             const lldb::addr_t new_seg_byte_size =
1768                 sect64_max_addr - curr_seg_min_addr;
1769             // Only grow the section size if needed
1770             if (new_seg_byte_size > curr_seg_byte_size)
1771               segment->SetByteSize(new_seg_byte_size);
1772           } else {
1773             // We need to change the base address of the segment and adjust the
1774             // child section offsets for all existing children.
1775             const lldb::addr_t slide_amount =
1776                 sect64_min_addr - curr_seg_min_addr;
1777             segment->Slide(slide_amount, false);
1778             segment->GetChildren().Slide(-slide_amount, false);
1779             segment->SetByteSize(curr_seg_max_addr - sect64_min_addr);
1780           }
1781 
1782           // Grow the section size as needed.
1783           if (sect64.offset) {
1784             const lldb::addr_t segment_min_file_offset =
1785                 segment->GetFileOffset();
1786             const lldb::addr_t segment_max_file_offset =
1787                 segment_min_file_offset + segment->GetFileSize();
1788 
1789             const lldb::addr_t section_min_file_offset = sect64.offset;
1790             const lldb::addr_t section_max_file_offset =
1791                 section_min_file_offset + sect64.size;
1792             const lldb::addr_t new_file_offset =
1793                 std::min(section_min_file_offset, segment_min_file_offset);
1794             const lldb::addr_t new_file_size =
1795                 std::max(section_max_file_offset, segment_max_file_offset) -
1796                 new_file_offset;
1797             segment->SetFileOffset(new_file_offset);
1798             segment->SetFileSize(new_file_size);
1799           }
1800         } else {
1801           // Create a fake section for the section's named segment
1802           segment_sp = std::make_shared<Section>(
1803               segment_sp, // Parent section
1804               module_sp,  // Module to which this section belongs
1805               this,       // Object file to which this section belongs
1806               ++context.NextSegmentIdx
1807                   << 8, // Section ID is the 1 based segment index
1808               // shifted right by 8 bits as not to
1809               // collide with any of the 256 section IDs
1810               // that are possible
1811               const_segname,         // Name of this section
1812               eSectionTypeContainer, // This section is a container of
1813               // other sections.
1814               sect64.addr, // File VM address == addresses as they are
1815               // found in the object file
1816               sect64.size,   // VM size in bytes of this section
1817               sect64.offset, // Offset to the data for this section in
1818               // the file
1819               sect64.offset ? sect64.size : 0, // Size in bytes of
1820               // this section as
1821               // found in the file
1822               sect64.align,
1823               load_cmd.flags); // Flags for this section
1824           segment_sp->SetIsFake(true);
1825           segment_sp->SetPermissions(segment_permissions);
1826           m_sections_up->AddSection(segment_sp);
1827           if (add_to_unified)
1828             context.UnifiedList.AddSection(segment_sp);
1829           segment_sp->SetIsEncrypted(segment_is_encrypted);
1830         }
1831       }
1832       assert(segment_sp.get());
1833 
1834       lldb::SectionType sect_type = GetSectionType(sect64.flags, section_name);
1835 
1836       SectionSP section_sp(new Section(
1837           segment_sp, module_sp, this, ++context.NextSectionIdx, section_name,
1838           sect_type, sect64.addr - segment_sp->GetFileAddress(), sect64.size,
1839           sect64.offset, sect64.offset == 0 ? 0 : sect64.size, sect64.align,
1840           sect64.flags));
1841       // Set the section to be encrypted to match the segment
1842 
1843       bool section_is_encrypted = false;
1844       if (!segment_is_encrypted && load_cmd.filesize != 0)
1845         section_is_encrypted = context.EncryptedRanges.FindEntryThatContains(
1846                                    sect64.offset) != nullptr;
1847 
1848       section_sp->SetIsEncrypted(segment_is_encrypted || section_is_encrypted);
1849       section_sp->SetPermissions(segment_permissions);
1850       segment_sp->GetChildren().AddSection(section_sp);
1851 
1852       if (segment_sp->IsFake()) {
1853         segment_sp.reset();
1854         const_segname.Clear();
1855       }
1856     }
1857   }
1858   if (segment_sp && is_dsym) {
1859     if (first_segment_sectID <= context.NextSectionIdx) {
1860       lldb::user_id_t sect_uid;
1861       for (sect_uid = first_segment_sectID; sect_uid <= context.NextSectionIdx;
1862            ++sect_uid) {
1863         SectionSP curr_section_sp(
1864             segment_sp->GetChildren().FindSectionByID(sect_uid));
1865         SectionSP next_section_sp;
1866         if (sect_uid + 1 <= context.NextSectionIdx)
1867           next_section_sp =
1868               segment_sp->GetChildren().FindSectionByID(sect_uid + 1);
1869 
1870         if (curr_section_sp.get()) {
1871           if (curr_section_sp->GetByteSize() == 0) {
1872             if (next_section_sp.get() != nullptr)
1873               curr_section_sp->SetByteSize(next_section_sp->GetFileAddress() -
1874                                            curr_section_sp->GetFileAddress());
1875             else
1876               curr_section_sp->SetByteSize(load_cmd.vmsize);
1877           }
1878         }
1879       }
1880     }
1881   }
1882 }
1883 
ProcessDysymtabCommand(const llvm::MachO::load_command & load_cmd,lldb::offset_t offset)1884 void ObjectFileMachO::ProcessDysymtabCommand(
1885     const llvm::MachO::load_command &load_cmd, lldb::offset_t offset) {
1886   m_dysymtab.cmd = load_cmd.cmd;
1887   m_dysymtab.cmdsize = load_cmd.cmdsize;
1888   m_data.GetU32(&offset, &m_dysymtab.ilocalsym,
1889                 (sizeof(m_dysymtab) / sizeof(uint32_t)) - 2);
1890 }
1891 
CreateSections(SectionList & unified_section_list)1892 void ObjectFileMachO::CreateSections(SectionList &unified_section_list) {
1893   if (m_sections_up)
1894     return;
1895 
1896   m_sections_up = std::make_unique<SectionList>();
1897 
1898   lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
1899   // bool dump_sections = false;
1900   ModuleSP module_sp(GetModule());
1901 
1902   offset = MachHeaderSizeFromMagic(m_header.magic);
1903 
1904   SegmentParsingContext context(GetEncryptedFileRanges(), unified_section_list);
1905   llvm::MachO::load_command load_cmd;
1906   for (uint32_t i = 0; i < m_header.ncmds; ++i) {
1907     const lldb::offset_t load_cmd_offset = offset;
1908     if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr)
1909       break;
1910 
1911     if (load_cmd.cmd == LC_SEGMENT || load_cmd.cmd == LC_SEGMENT_64)
1912       ProcessSegmentCommand(load_cmd, offset, i, context);
1913     else if (load_cmd.cmd == LC_DYSYMTAB)
1914       ProcessDysymtabCommand(load_cmd, offset);
1915 
1916     offset = load_cmd_offset + load_cmd.cmdsize;
1917   }
1918 
1919   if (context.FileAddressesChanged && module_sp)
1920     module_sp->SectionFileAddressesChanged();
1921 }
1922 
1923 class MachSymtabSectionInfo {
1924 public:
MachSymtabSectionInfo(SectionList * section_list)1925   MachSymtabSectionInfo(SectionList *section_list)
1926       : m_section_list(section_list), m_section_infos() {
1927     // Get the number of sections down to a depth of 1 to include all segments
1928     // and their sections, but no other sections that may be added for debug
1929     // map or
1930     m_section_infos.resize(section_list->GetNumSections(1));
1931   }
1932 
GetSection(uint8_t n_sect,addr_t file_addr)1933   SectionSP GetSection(uint8_t n_sect, addr_t file_addr) {
1934     if (n_sect == 0)
1935       return SectionSP();
1936     if (n_sect < m_section_infos.size()) {
1937       if (!m_section_infos[n_sect].section_sp) {
1938         SectionSP section_sp(m_section_list->FindSectionByID(n_sect));
1939         m_section_infos[n_sect].section_sp = section_sp;
1940         if (section_sp) {
1941           m_section_infos[n_sect].vm_range.SetBaseAddress(
1942               section_sp->GetFileAddress());
1943           m_section_infos[n_sect].vm_range.SetByteSize(
1944               section_sp->GetByteSize());
1945         } else {
1946           std::string filename = "<unknown>";
1947           SectionSP first_section_sp(m_section_list->GetSectionAtIndex(0));
1948           if (first_section_sp)
1949             filename = first_section_sp->GetObjectFile()->GetFileSpec().GetPath();
1950 
1951           Debugger::ReportError(
1952               llvm::formatv("unable to find section {0} for a symbol in "
1953                             "{1}, corrupt file?",
1954                             n_sect, filename));
1955         }
1956       }
1957       if (m_section_infos[n_sect].vm_range.Contains(file_addr)) {
1958         // Symbol is in section.
1959         return m_section_infos[n_sect].section_sp;
1960       } else if (m_section_infos[n_sect].vm_range.GetByteSize() == 0 &&
1961                  m_section_infos[n_sect].vm_range.GetBaseAddress() ==
1962                      file_addr) {
1963         // Symbol is in section with zero size, but has the same start address
1964         // as the section. This can happen with linker symbols (symbols that
1965         // start with the letter 'l' or 'L'.
1966         return m_section_infos[n_sect].section_sp;
1967       }
1968     }
1969     return m_section_list->FindSectionContainingFileAddress(file_addr);
1970   }
1971 
1972 protected:
1973   struct SectionInfo {
SectionInfoMachSymtabSectionInfo::SectionInfo1974     SectionInfo() : vm_range(), section_sp() {}
1975 
1976     VMRange vm_range;
1977     SectionSP section_sp;
1978   };
1979   SectionList *m_section_list;
1980   std::vector<SectionInfo> m_section_infos;
1981 };
1982 
1983 #define TRIE_SYMBOL_IS_THUMB (1ULL << 63)
1984 struct TrieEntry {
DumpTrieEntry1985   void Dump() const {
1986     printf("0x%16.16llx 0x%16.16llx 0x%16.16llx \"%s\"",
1987            static_cast<unsigned long long>(address),
1988            static_cast<unsigned long long>(flags),
1989            static_cast<unsigned long long>(other), name.GetCString());
1990     if (import_name)
1991       printf(" -> \"%s\"\n", import_name.GetCString());
1992     else
1993       printf("\n");
1994   }
1995   ConstString name;
1996   uint64_t address = LLDB_INVALID_ADDRESS;
1997   uint64_t flags =
1998       0; // EXPORT_SYMBOL_FLAGS_REEXPORT, EXPORT_SYMBOL_FLAGS_STUB_AND_RESOLVER,
1999          // TRIE_SYMBOL_IS_THUMB
2000   uint64_t other = 0;
2001   ConstString import_name;
2002 };
2003 
2004 struct TrieEntryWithOffset {
2005   lldb::offset_t nodeOffset;
2006   TrieEntry entry;
2007 
TrieEntryWithOffsetTrieEntryWithOffset2008   TrieEntryWithOffset(lldb::offset_t offset) : nodeOffset(offset), entry() {}
2009 
DumpTrieEntryWithOffset2010   void Dump(uint32_t idx) const {
2011     printf("[%3u] 0x%16.16llx: ", idx,
2012            static_cast<unsigned long long>(nodeOffset));
2013     entry.Dump();
2014   }
2015 
operator <TrieEntryWithOffset2016   bool operator<(const TrieEntryWithOffset &other) const {
2017     return (nodeOffset < other.nodeOffset);
2018   }
2019 };
2020 
ParseTrieEntries(DataExtractor & data,lldb::offset_t offset,const bool is_arm,addr_t text_seg_base_addr,std::vector<llvm::StringRef> & nameSlices,std::set<lldb::addr_t> & resolver_addresses,std::vector<TrieEntryWithOffset> & reexports,std::vector<TrieEntryWithOffset> & ext_symbols)2021 static bool ParseTrieEntries(DataExtractor &data, lldb::offset_t offset,
2022                              const bool is_arm, addr_t text_seg_base_addr,
2023                              std::vector<llvm::StringRef> &nameSlices,
2024                              std::set<lldb::addr_t> &resolver_addresses,
2025                              std::vector<TrieEntryWithOffset> &reexports,
2026                              std::vector<TrieEntryWithOffset> &ext_symbols) {
2027   if (!data.ValidOffset(offset))
2028     return true;
2029 
2030   // Terminal node -- end of a branch, possibly add this to
2031   // the symbol table or resolver table.
2032   const uint64_t terminalSize = data.GetULEB128(&offset);
2033   lldb::offset_t children_offset = offset + terminalSize;
2034   if (terminalSize != 0) {
2035     TrieEntryWithOffset e(offset);
2036     e.entry.flags = data.GetULEB128(&offset);
2037     const char *import_name = nullptr;
2038     if (e.entry.flags & EXPORT_SYMBOL_FLAGS_REEXPORT) {
2039       e.entry.address = 0;
2040       e.entry.other = data.GetULEB128(&offset); // dylib ordinal
2041       import_name = data.GetCStr(&offset);
2042     } else {
2043       e.entry.address = data.GetULEB128(&offset);
2044       if (text_seg_base_addr != LLDB_INVALID_ADDRESS)
2045         e.entry.address += text_seg_base_addr;
2046       if (e.entry.flags & EXPORT_SYMBOL_FLAGS_STUB_AND_RESOLVER) {
2047         e.entry.other = data.GetULEB128(&offset);
2048         uint64_t resolver_addr = e.entry.other;
2049         if (text_seg_base_addr != LLDB_INVALID_ADDRESS)
2050           resolver_addr += text_seg_base_addr;
2051         if (is_arm)
2052           resolver_addr &= THUMB_ADDRESS_BIT_MASK;
2053         resolver_addresses.insert(resolver_addr);
2054       } else
2055         e.entry.other = 0;
2056     }
2057     bool add_this_entry = false;
2058     if (Flags(e.entry.flags).Test(EXPORT_SYMBOL_FLAGS_REEXPORT) &&
2059         import_name && import_name[0]) {
2060       // add symbols that are reexport symbols with a valid import name.
2061       add_this_entry = true;
2062     } else if (e.entry.flags == 0 &&
2063                (import_name == nullptr || import_name[0] == '\0')) {
2064       // add externally visible symbols, in case the nlist record has
2065       // been stripped/omitted.
2066       add_this_entry = true;
2067     }
2068     if (add_this_entry) {
2069       std::string name;
2070       if (!nameSlices.empty()) {
2071         for (auto name_slice : nameSlices)
2072           name.append(name_slice.data(), name_slice.size());
2073       }
2074       if (name.size() > 1) {
2075         // Skip the leading '_'
2076         e.entry.name.SetCStringWithLength(name.c_str() + 1, name.size() - 1);
2077       }
2078       if (import_name) {
2079         // Skip the leading '_'
2080         e.entry.import_name.SetCString(import_name + 1);
2081       }
2082       if (Flags(e.entry.flags).Test(EXPORT_SYMBOL_FLAGS_REEXPORT)) {
2083         reexports.push_back(e);
2084       } else {
2085         if (is_arm && (e.entry.address & 1)) {
2086           e.entry.flags |= TRIE_SYMBOL_IS_THUMB;
2087           e.entry.address &= THUMB_ADDRESS_BIT_MASK;
2088         }
2089         ext_symbols.push_back(e);
2090       }
2091     }
2092   }
2093 
2094   const uint8_t childrenCount = data.GetU8(&children_offset);
2095   for (uint8_t i = 0; i < childrenCount; ++i) {
2096     const char *cstr = data.GetCStr(&children_offset);
2097     if (cstr)
2098       nameSlices.push_back(llvm::StringRef(cstr));
2099     else
2100       return false; // Corrupt data
2101     lldb::offset_t childNodeOffset = data.GetULEB128(&children_offset);
2102     if (childNodeOffset) {
2103       if (!ParseTrieEntries(data, childNodeOffset, is_arm, text_seg_base_addr,
2104                             nameSlices, resolver_addresses, reexports,
2105                             ext_symbols)) {
2106         return false;
2107       }
2108     }
2109     nameSlices.pop_back();
2110   }
2111   return true;
2112 }
2113 
GetSymbolType(const char * & symbol_name,bool & demangled_is_synthesized,const SectionSP & text_section_sp,const SectionSP & data_section_sp,const SectionSP & data_dirty_section_sp,const SectionSP & data_const_section_sp,const SectionSP & symbol_section)2114 static SymbolType GetSymbolType(const char *&symbol_name,
2115                                 bool &demangled_is_synthesized,
2116                                 const SectionSP &text_section_sp,
2117                                 const SectionSP &data_section_sp,
2118                                 const SectionSP &data_dirty_section_sp,
2119                                 const SectionSP &data_const_section_sp,
2120                                 const SectionSP &symbol_section) {
2121   SymbolType type = eSymbolTypeInvalid;
2122 
2123   const char *symbol_sect_name = symbol_section->GetName().AsCString();
2124   if (symbol_section->IsDescendant(text_section_sp.get())) {
2125     if (symbol_section->IsClear(S_ATTR_PURE_INSTRUCTIONS |
2126                                 S_ATTR_SELF_MODIFYING_CODE |
2127                                 S_ATTR_SOME_INSTRUCTIONS))
2128       type = eSymbolTypeData;
2129     else
2130       type = eSymbolTypeCode;
2131   } else if (symbol_section->IsDescendant(data_section_sp.get()) ||
2132              symbol_section->IsDescendant(data_dirty_section_sp.get()) ||
2133              symbol_section->IsDescendant(data_const_section_sp.get())) {
2134     if (symbol_sect_name &&
2135         ::strstr(symbol_sect_name, "__objc") == symbol_sect_name) {
2136       type = eSymbolTypeRuntime;
2137 
2138       if (symbol_name) {
2139         llvm::StringRef symbol_name_ref(symbol_name);
2140         if (symbol_name_ref.startswith("OBJC_")) {
2141           static const llvm::StringRef g_objc_v2_prefix_class("OBJC_CLASS_$_");
2142           static const llvm::StringRef g_objc_v2_prefix_metaclass(
2143               "OBJC_METACLASS_$_");
2144           static const llvm::StringRef g_objc_v2_prefix_ivar("OBJC_IVAR_$_");
2145           if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) {
2146             symbol_name = symbol_name + g_objc_v2_prefix_class.size();
2147             type = eSymbolTypeObjCClass;
2148             demangled_is_synthesized = true;
2149           } else if (symbol_name_ref.startswith(g_objc_v2_prefix_metaclass)) {
2150             symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size();
2151             type = eSymbolTypeObjCMetaClass;
2152             demangled_is_synthesized = true;
2153           } else if (symbol_name_ref.startswith(g_objc_v2_prefix_ivar)) {
2154             symbol_name = symbol_name + g_objc_v2_prefix_ivar.size();
2155             type = eSymbolTypeObjCIVar;
2156             demangled_is_synthesized = true;
2157           }
2158         }
2159       }
2160     } else if (symbol_sect_name &&
2161                ::strstr(symbol_sect_name, "__gcc_except_tab") ==
2162                    symbol_sect_name) {
2163       type = eSymbolTypeException;
2164     } else {
2165       type = eSymbolTypeData;
2166     }
2167   } else if (symbol_sect_name &&
2168              ::strstr(symbol_sect_name, "__IMPORT") == symbol_sect_name) {
2169     type = eSymbolTypeTrampoline;
2170   }
2171   return type;
2172 }
2173 
2174 // Read the UUID out of a dyld_shared_cache file on-disk.
GetSharedCacheUUID(FileSpec dyld_shared_cache,const ByteOrder byte_order,const uint32_t addr_byte_size)2175 UUID ObjectFileMachO::GetSharedCacheUUID(FileSpec dyld_shared_cache,
2176                                          const ByteOrder byte_order,
2177                                          const uint32_t addr_byte_size) {
2178   UUID dsc_uuid;
2179   DataBufferSP DscData = MapFileData(
2180       dyld_shared_cache, sizeof(struct lldb_copy_dyld_cache_header_v1), 0);
2181   if (!DscData)
2182     return dsc_uuid;
2183   DataExtractor dsc_header_data(DscData, byte_order, addr_byte_size);
2184 
2185   char version_str[7];
2186   lldb::offset_t offset = 0;
2187   memcpy(version_str, dsc_header_data.GetData(&offset, 6), 6);
2188   version_str[6] = '\0';
2189   if (strcmp(version_str, "dyld_v") == 0) {
2190     offset = offsetof(struct lldb_copy_dyld_cache_header_v1, uuid);
2191     dsc_uuid =
2192         UUID(dsc_header_data.GetData(&offset, sizeof(uuid_t)), sizeof(uuid_t));
2193   }
2194   Log *log = GetLog(LLDBLog::Symbols);
2195   if (log && dsc_uuid.IsValid()) {
2196     LLDB_LOGF(log, "Shared cache %s has UUID %s",
2197               dyld_shared_cache.GetPath().c_str(),
2198               dsc_uuid.GetAsString().c_str());
2199   }
2200   return dsc_uuid;
2201 }
2202 
2203 static std::optional<struct nlist_64>
ParseNList(DataExtractor & nlist_data,lldb::offset_t & nlist_data_offset,size_t nlist_byte_size)2204 ParseNList(DataExtractor &nlist_data, lldb::offset_t &nlist_data_offset,
2205            size_t nlist_byte_size) {
2206   struct nlist_64 nlist;
2207   if (!nlist_data.ValidOffsetForDataOfSize(nlist_data_offset, nlist_byte_size))
2208     return {};
2209   nlist.n_strx = nlist_data.GetU32_unchecked(&nlist_data_offset);
2210   nlist.n_type = nlist_data.GetU8_unchecked(&nlist_data_offset);
2211   nlist.n_sect = nlist_data.GetU8_unchecked(&nlist_data_offset);
2212   nlist.n_desc = nlist_data.GetU16_unchecked(&nlist_data_offset);
2213   nlist.n_value = nlist_data.GetAddress_unchecked(&nlist_data_offset);
2214   return nlist;
2215 }
2216 
2217 enum { DebugSymbols = true, NonDebugSymbols = false };
2218 
ParseSymtab(Symtab & symtab)2219 void ObjectFileMachO::ParseSymtab(Symtab &symtab) {
2220   ModuleSP module_sp(GetModule());
2221   if (!module_sp)
2222     return;
2223 
2224   const FileSpec &file = m_file ? m_file : module_sp->GetFileSpec();
2225   const char *file_name = file.GetFilename().AsCString("<Unknown>");
2226   LLDB_SCOPED_TIMERF("ObjectFileMachO::ParseSymtab () module = %s", file_name);
2227   Progress progress(llvm::formatv("Parsing symbol table for {0}", file_name));
2228 
2229   llvm::MachO::symtab_command symtab_load_command = {0, 0, 0, 0, 0, 0};
2230   llvm::MachO::linkedit_data_command function_starts_load_command = {0, 0, 0, 0};
2231   llvm::MachO::linkedit_data_command exports_trie_load_command = {0, 0, 0, 0};
2232   llvm::MachO::dyld_info_command dyld_info = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
2233   llvm::MachO::dysymtab_command dysymtab = m_dysymtab;
2234   // The data element of type bool indicates that this entry is thumb
2235   // code.
2236   typedef AddressDataArray<lldb::addr_t, bool, 100> FunctionStarts;
2237 
2238   // Record the address of every function/data that we add to the symtab.
2239   // We add symbols to the table in the order of most information (nlist
2240   // records) to least (function starts), and avoid duplicating symbols
2241   // via this set.
2242   llvm::DenseSet<addr_t> symbols_added;
2243 
2244   // We are using a llvm::DenseSet for "symbols_added" so we must be sure we
2245   // do not add the tombstone or empty keys to the set.
2246   auto add_symbol_addr = [&symbols_added](lldb::addr_t file_addr) {
2247     // Don't add the tombstone or empty keys.
2248     if (file_addr == UINT64_MAX || file_addr == UINT64_MAX - 1)
2249       return;
2250     symbols_added.insert(file_addr);
2251   };
2252   FunctionStarts function_starts;
2253   lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
2254   uint32_t i;
2255   FileSpecList dylib_files;
2256   Log *log = GetLog(LLDBLog::Symbols);
2257   llvm::StringRef g_objc_v2_prefix_class("_OBJC_CLASS_$_");
2258   llvm::StringRef g_objc_v2_prefix_metaclass("_OBJC_METACLASS_$_");
2259   llvm::StringRef g_objc_v2_prefix_ivar("_OBJC_IVAR_$_");
2260   UUID image_uuid;
2261 
2262   for (i = 0; i < m_header.ncmds; ++i) {
2263     const lldb::offset_t cmd_offset = offset;
2264     // Read in the load command and load command size
2265     llvm::MachO::load_command lc;
2266     if (m_data.GetU32(&offset, &lc, 2) == nullptr)
2267       break;
2268     // Watch for the symbol table load command
2269     switch (lc.cmd) {
2270     case LC_SYMTAB:
2271       symtab_load_command.cmd = lc.cmd;
2272       symtab_load_command.cmdsize = lc.cmdsize;
2273       // Read in the rest of the symtab load command
2274       if (m_data.GetU32(&offset, &symtab_load_command.symoff, 4) ==
2275           nullptr) // fill in symoff, nsyms, stroff, strsize fields
2276         return;
2277       break;
2278 
2279     case LC_DYLD_INFO:
2280     case LC_DYLD_INFO_ONLY:
2281       if (m_data.GetU32(&offset, &dyld_info.rebase_off, 10)) {
2282         dyld_info.cmd = lc.cmd;
2283         dyld_info.cmdsize = lc.cmdsize;
2284       } else {
2285         memset(&dyld_info, 0, sizeof(dyld_info));
2286       }
2287       break;
2288 
2289     case LC_LOAD_DYLIB:
2290     case LC_LOAD_WEAK_DYLIB:
2291     case LC_REEXPORT_DYLIB:
2292     case LC_LOADFVMLIB:
2293     case LC_LOAD_UPWARD_DYLIB: {
2294       uint32_t name_offset = cmd_offset + m_data.GetU32(&offset);
2295       const char *path = m_data.PeekCStr(name_offset);
2296       if (path) {
2297         FileSpec file_spec(path);
2298         // Strip the path if there is @rpath, @executable, etc so we just use
2299         // the basename
2300         if (path[0] == '@')
2301           file_spec.ClearDirectory();
2302 
2303         if (lc.cmd == LC_REEXPORT_DYLIB) {
2304           m_reexported_dylibs.AppendIfUnique(file_spec);
2305         }
2306 
2307         dylib_files.Append(file_spec);
2308       }
2309     } break;
2310 
2311     case LC_DYLD_EXPORTS_TRIE:
2312       exports_trie_load_command.cmd = lc.cmd;
2313       exports_trie_load_command.cmdsize = lc.cmdsize;
2314       if (m_data.GetU32(&offset, &exports_trie_load_command.dataoff, 2) ==
2315           nullptr) // fill in offset and size fields
2316         memset(&exports_trie_load_command, 0,
2317                sizeof(exports_trie_load_command));
2318       break;
2319     case LC_FUNCTION_STARTS:
2320       function_starts_load_command.cmd = lc.cmd;
2321       function_starts_load_command.cmdsize = lc.cmdsize;
2322       if (m_data.GetU32(&offset, &function_starts_load_command.dataoff, 2) ==
2323           nullptr) // fill in data offset and size fields
2324         memset(&function_starts_load_command, 0,
2325                sizeof(function_starts_load_command));
2326       break;
2327 
2328     case LC_UUID: {
2329       const uint8_t *uuid_bytes = m_data.PeekData(offset, 16);
2330 
2331       if (uuid_bytes)
2332         image_uuid = UUID(uuid_bytes, 16);
2333       break;
2334     }
2335 
2336     default:
2337       break;
2338     }
2339     offset = cmd_offset + lc.cmdsize;
2340   }
2341 
2342   if (!symtab_load_command.cmd)
2343     return;
2344 
2345   SectionList *section_list = GetSectionList();
2346   if (section_list == nullptr)
2347     return;
2348 
2349   const uint32_t addr_byte_size = m_data.GetAddressByteSize();
2350   const ByteOrder byte_order = m_data.GetByteOrder();
2351   bool bit_width_32 = addr_byte_size == 4;
2352   const size_t nlist_byte_size =
2353       bit_width_32 ? sizeof(struct nlist) : sizeof(struct nlist_64);
2354 
2355   DataExtractor nlist_data(nullptr, 0, byte_order, addr_byte_size);
2356   DataExtractor strtab_data(nullptr, 0, byte_order, addr_byte_size);
2357   DataExtractor function_starts_data(nullptr, 0, byte_order, addr_byte_size);
2358   DataExtractor indirect_symbol_index_data(nullptr, 0, byte_order,
2359                                            addr_byte_size);
2360   DataExtractor dyld_trie_data(nullptr, 0, byte_order, addr_byte_size);
2361 
2362   const addr_t nlist_data_byte_size =
2363       symtab_load_command.nsyms * nlist_byte_size;
2364   const addr_t strtab_data_byte_size = symtab_load_command.strsize;
2365   addr_t strtab_addr = LLDB_INVALID_ADDRESS;
2366 
2367   ProcessSP process_sp(m_process_wp.lock());
2368   Process *process = process_sp.get();
2369 
2370   uint32_t memory_module_load_level = eMemoryModuleLoadLevelComplete;
2371   bool is_shared_cache_image = IsSharedCacheBinary();
2372   bool is_local_shared_cache_image = is_shared_cache_image && !IsInMemory();
2373   SectionSP linkedit_section_sp(
2374       section_list->FindSectionByName(GetSegmentNameLINKEDIT()));
2375 
2376   if (process && m_header.filetype != llvm::MachO::MH_OBJECT &&
2377       !is_local_shared_cache_image) {
2378     Target &target = process->GetTarget();
2379 
2380     memory_module_load_level = target.GetMemoryModuleLoadLevel();
2381 
2382     // Reading mach file from memory in a process or core file...
2383 
2384     if (linkedit_section_sp) {
2385       addr_t linkedit_load_addr =
2386           linkedit_section_sp->GetLoadBaseAddress(&target);
2387       if (linkedit_load_addr == LLDB_INVALID_ADDRESS) {
2388         // We might be trying to access the symbol table before the
2389         // __LINKEDIT's load address has been set in the target. We can't
2390         // fail to read the symbol table, so calculate the right address
2391         // manually
2392         linkedit_load_addr = CalculateSectionLoadAddressForMemoryImage(
2393             m_memory_addr, GetMachHeaderSection(), linkedit_section_sp.get());
2394       }
2395 
2396       const addr_t linkedit_file_offset = linkedit_section_sp->GetFileOffset();
2397       const addr_t symoff_addr = linkedit_load_addr +
2398                                  symtab_load_command.symoff -
2399                                  linkedit_file_offset;
2400       strtab_addr = linkedit_load_addr + symtab_load_command.stroff -
2401                     linkedit_file_offset;
2402 
2403         // Always load dyld - the dynamic linker - from memory if we didn't
2404         // find a binary anywhere else. lldb will not register
2405         // dylib/framework/bundle loads/unloads if we don't have the dyld
2406         // symbols, we force dyld to load from memory despite the user's
2407         // target.memory-module-load-level setting.
2408         if (memory_module_load_level == eMemoryModuleLoadLevelComplete ||
2409             m_header.filetype == llvm::MachO::MH_DYLINKER) {
2410           DataBufferSP nlist_data_sp(
2411               ReadMemory(process_sp, symoff_addr, nlist_data_byte_size));
2412           if (nlist_data_sp)
2413             nlist_data.SetData(nlist_data_sp, 0, nlist_data_sp->GetByteSize());
2414           if (dysymtab.nindirectsyms != 0) {
2415             const addr_t indirect_syms_addr = linkedit_load_addr +
2416                                               dysymtab.indirectsymoff -
2417                                               linkedit_file_offset;
2418             DataBufferSP indirect_syms_data_sp(ReadMemory(
2419                 process_sp, indirect_syms_addr, dysymtab.nindirectsyms * 4));
2420             if (indirect_syms_data_sp)
2421               indirect_symbol_index_data.SetData(
2422                   indirect_syms_data_sp, 0,
2423                   indirect_syms_data_sp->GetByteSize());
2424             // If this binary is outside the shared cache,
2425             // cache the string table.
2426             // Binaries in the shared cache all share a giant string table,
2427             // and we can't share the string tables across multiple
2428             // ObjectFileMachO's, so we'd end up re-reading this mega-strtab
2429             // for every binary in the shared cache - it would be a big perf
2430             // problem. For binaries outside the shared cache, it's faster to
2431             // read the entire strtab at once instead of piece-by-piece as we
2432             // process the nlist records.
2433             if (!is_shared_cache_image) {
2434               DataBufferSP strtab_data_sp(
2435                   ReadMemory(process_sp, strtab_addr, strtab_data_byte_size));
2436               if (strtab_data_sp) {
2437                 strtab_data.SetData(strtab_data_sp, 0,
2438                                     strtab_data_sp->GetByteSize());
2439               }
2440             }
2441           }
2442         if (memory_module_load_level >= eMemoryModuleLoadLevelPartial) {
2443           if (function_starts_load_command.cmd) {
2444             const addr_t func_start_addr =
2445                 linkedit_load_addr + function_starts_load_command.dataoff -
2446                 linkedit_file_offset;
2447             DataBufferSP func_start_data_sp(
2448                 ReadMemory(process_sp, func_start_addr,
2449                            function_starts_load_command.datasize));
2450             if (func_start_data_sp)
2451               function_starts_data.SetData(func_start_data_sp, 0,
2452                                            func_start_data_sp->GetByteSize());
2453           }
2454         }
2455       }
2456     }
2457   } else {
2458     if (is_local_shared_cache_image) {
2459       // The load commands in shared cache images are relative to the
2460       // beginning of the shared cache, not the library image. The
2461       // data we get handed when creating the ObjectFileMachO starts
2462       // at the beginning of a specific library and spans to the end
2463       // of the cache to be able to reach the shared LINKEDIT
2464       // segments. We need to convert the load command offsets to be
2465       // relative to the beginning of our specific image.
2466       lldb::addr_t linkedit_offset = linkedit_section_sp->GetFileOffset();
2467       lldb::offset_t linkedit_slide =
2468           linkedit_offset - m_linkedit_original_offset;
2469       symtab_load_command.symoff += linkedit_slide;
2470       symtab_load_command.stroff += linkedit_slide;
2471       dyld_info.export_off += linkedit_slide;
2472       dysymtab.indirectsymoff += linkedit_slide;
2473       function_starts_load_command.dataoff += linkedit_slide;
2474       exports_trie_load_command.dataoff += linkedit_slide;
2475     }
2476 
2477     nlist_data.SetData(m_data, symtab_load_command.symoff,
2478                        nlist_data_byte_size);
2479     strtab_data.SetData(m_data, symtab_load_command.stroff,
2480                         strtab_data_byte_size);
2481 
2482     // We shouldn't have exports data from both the LC_DYLD_INFO command
2483     // AND the LC_DYLD_EXPORTS_TRIE command in the same binary:
2484     lldbassert(!((dyld_info.export_size > 0)
2485                  && (exports_trie_load_command.datasize > 0)));
2486     if (dyld_info.export_size > 0) {
2487       dyld_trie_data.SetData(m_data, dyld_info.export_off,
2488                              dyld_info.export_size);
2489     } else if (exports_trie_load_command.datasize > 0) {
2490       dyld_trie_data.SetData(m_data, exports_trie_load_command.dataoff,
2491                              exports_trie_load_command.datasize);
2492     }
2493 
2494     if (dysymtab.nindirectsyms != 0) {
2495       indirect_symbol_index_data.SetData(m_data, dysymtab.indirectsymoff,
2496                                          dysymtab.nindirectsyms * 4);
2497     }
2498     if (function_starts_load_command.cmd) {
2499       function_starts_data.SetData(m_data, function_starts_load_command.dataoff,
2500                                    function_starts_load_command.datasize);
2501     }
2502   }
2503 
2504   const bool have_strtab_data = strtab_data.GetByteSize() > 0;
2505 
2506   ConstString g_segment_name_TEXT = GetSegmentNameTEXT();
2507   ConstString g_segment_name_DATA = GetSegmentNameDATA();
2508   ConstString g_segment_name_DATA_DIRTY = GetSegmentNameDATA_DIRTY();
2509   ConstString g_segment_name_DATA_CONST = GetSegmentNameDATA_CONST();
2510   ConstString g_segment_name_OBJC = GetSegmentNameOBJC();
2511   ConstString g_section_name_eh_frame = GetSectionNameEHFrame();
2512   SectionSP text_section_sp(
2513       section_list->FindSectionByName(g_segment_name_TEXT));
2514   SectionSP data_section_sp(
2515       section_list->FindSectionByName(g_segment_name_DATA));
2516   SectionSP data_dirty_section_sp(
2517       section_list->FindSectionByName(g_segment_name_DATA_DIRTY));
2518   SectionSP data_const_section_sp(
2519       section_list->FindSectionByName(g_segment_name_DATA_CONST));
2520   SectionSP objc_section_sp(
2521       section_list->FindSectionByName(g_segment_name_OBJC));
2522   SectionSP eh_frame_section_sp;
2523   if (text_section_sp.get())
2524     eh_frame_section_sp = text_section_sp->GetChildren().FindSectionByName(
2525         g_section_name_eh_frame);
2526   else
2527     eh_frame_section_sp =
2528         section_list->FindSectionByName(g_section_name_eh_frame);
2529 
2530   const bool is_arm = (m_header.cputype == llvm::MachO::CPU_TYPE_ARM);
2531   const bool always_thumb = GetArchitecture().IsAlwaysThumbInstructions();
2532 
2533   // lldb works best if it knows the start address of all functions in a
2534   // module. Linker symbols or debug info are normally the best source of
2535   // information for start addr / size but they may be stripped in a released
2536   // binary. Two additional sources of information exist in Mach-O binaries:
2537   //    LC_FUNCTION_STARTS - a list of ULEB128 encoded offsets of each
2538   //    function's start address in the
2539   //                         binary, relative to the text section.
2540   //    eh_frame           - the eh_frame FDEs have the start addr & size of
2541   //    each function
2542   //  LC_FUNCTION_STARTS is the fastest source to read in, and is present on
2543   //  all modern binaries.
2544   //  Binaries built to run on older releases may need to use eh_frame
2545   //  information.
2546 
2547   if (text_section_sp && function_starts_data.GetByteSize()) {
2548     FunctionStarts::Entry function_start_entry;
2549     function_start_entry.data = false;
2550     lldb::offset_t function_start_offset = 0;
2551     function_start_entry.addr = text_section_sp->GetFileAddress();
2552     uint64_t delta;
2553     while ((delta = function_starts_data.GetULEB128(&function_start_offset)) >
2554            0) {
2555       // Now append the current entry
2556       function_start_entry.addr += delta;
2557       if (is_arm) {
2558         if (function_start_entry.addr & 1) {
2559           function_start_entry.addr &= THUMB_ADDRESS_BIT_MASK;
2560           function_start_entry.data = true;
2561         } else if (always_thumb) {
2562           function_start_entry.data = true;
2563         }
2564       }
2565       function_starts.Append(function_start_entry);
2566     }
2567   } else {
2568     // If m_type is eTypeDebugInfo, then this is a dSYM - it will have the
2569     // load command claiming an eh_frame but it doesn't actually have the
2570     // eh_frame content.  And if we have a dSYM, we don't need to do any of
2571     // this fill-in-the-missing-symbols works anyway - the debug info should
2572     // give us all the functions in the module.
2573     if (text_section_sp.get() && eh_frame_section_sp.get() &&
2574         m_type != eTypeDebugInfo) {
2575       DWARFCallFrameInfo eh_frame(*this, eh_frame_section_sp,
2576                                   DWARFCallFrameInfo::EH);
2577       DWARFCallFrameInfo::FunctionAddressAndSizeVector functions;
2578       eh_frame.GetFunctionAddressAndSizeVector(functions);
2579       addr_t text_base_addr = text_section_sp->GetFileAddress();
2580       size_t count = functions.GetSize();
2581       for (size_t i = 0; i < count; ++i) {
2582         const DWARFCallFrameInfo::FunctionAddressAndSizeVector::Entry *func =
2583             functions.GetEntryAtIndex(i);
2584         if (func) {
2585           FunctionStarts::Entry function_start_entry;
2586           function_start_entry.addr = func->base - text_base_addr;
2587           if (is_arm) {
2588             if (function_start_entry.addr & 1) {
2589               function_start_entry.addr &= THUMB_ADDRESS_BIT_MASK;
2590               function_start_entry.data = true;
2591             } else if (always_thumb) {
2592               function_start_entry.data = true;
2593             }
2594           }
2595           function_starts.Append(function_start_entry);
2596         }
2597       }
2598     }
2599   }
2600 
2601   const size_t function_starts_count = function_starts.GetSize();
2602 
2603   // For user process binaries (executables, dylibs, frameworks, bundles), if
2604   // we don't have LC_FUNCTION_STARTS/eh_frame section in this binary, we're
2605   // going to assume the binary has been stripped.  Don't allow assembly
2606   // language instruction emulation because we don't know proper function
2607   // start boundaries.
2608   //
2609   // For all other types of binaries (kernels, stand-alone bare board
2610   // binaries, kexts), they may not have LC_FUNCTION_STARTS / eh_frame
2611   // sections - we should not make any assumptions about them based on that.
2612   if (function_starts_count == 0 && CalculateStrata() == eStrataUser) {
2613     m_allow_assembly_emulation_unwind_plans = false;
2614     Log *unwind_or_symbol_log(GetLog(LLDBLog::Symbols | LLDBLog::Unwind));
2615 
2616     if (unwind_or_symbol_log)
2617       module_sp->LogMessage(
2618           unwind_or_symbol_log,
2619           "no LC_FUNCTION_STARTS, will not allow assembly profiled unwinds");
2620   }
2621 
2622   const user_id_t TEXT_eh_frame_sectID = eh_frame_section_sp.get()
2623                                              ? eh_frame_section_sp->GetID()
2624                                              : static_cast<user_id_t>(NO_SECT);
2625 
2626   uint32_t N_SO_index = UINT32_MAX;
2627 
2628   MachSymtabSectionInfo section_info(section_list);
2629   std::vector<uint32_t> N_FUN_indexes;
2630   std::vector<uint32_t> N_NSYM_indexes;
2631   std::vector<uint32_t> N_INCL_indexes;
2632   std::vector<uint32_t> N_BRAC_indexes;
2633   std::vector<uint32_t> N_COMM_indexes;
2634   typedef std::multimap<uint64_t, uint32_t> ValueToSymbolIndexMap;
2635   typedef llvm::DenseMap<uint32_t, uint32_t> NListIndexToSymbolIndexMap;
2636   typedef llvm::DenseMap<const char *, uint32_t> ConstNameToSymbolIndexMap;
2637   ValueToSymbolIndexMap N_FUN_addr_to_sym_idx;
2638   ValueToSymbolIndexMap N_STSYM_addr_to_sym_idx;
2639   ConstNameToSymbolIndexMap N_GSYM_name_to_sym_idx;
2640   // Any symbols that get merged into another will get an entry in this map
2641   // so we know
2642   NListIndexToSymbolIndexMap m_nlist_idx_to_sym_idx;
2643   uint32_t nlist_idx = 0;
2644   Symbol *symbol_ptr = nullptr;
2645 
2646   uint32_t sym_idx = 0;
2647   Symbol *sym = nullptr;
2648   size_t num_syms = 0;
2649   std::string memory_symbol_name;
2650   uint32_t unmapped_local_symbols_found = 0;
2651 
2652   std::vector<TrieEntryWithOffset> reexport_trie_entries;
2653   std::vector<TrieEntryWithOffset> external_sym_trie_entries;
2654   std::set<lldb::addr_t> resolver_addresses;
2655 
2656   if (dyld_trie_data.GetByteSize() > 0) {
2657     ConstString text_segment_name("__TEXT");
2658     SectionSP text_segment_sp =
2659         GetSectionList()->FindSectionByName(text_segment_name);
2660     lldb::addr_t text_segment_file_addr = LLDB_INVALID_ADDRESS;
2661     if (text_segment_sp)
2662       text_segment_file_addr = text_segment_sp->GetFileAddress();
2663     std::vector<llvm::StringRef> nameSlices;
2664     ParseTrieEntries(dyld_trie_data, 0, is_arm, text_segment_file_addr,
2665                      nameSlices, resolver_addresses, reexport_trie_entries,
2666                      external_sym_trie_entries);
2667   }
2668 
2669   typedef std::set<ConstString> IndirectSymbols;
2670   IndirectSymbols indirect_symbol_names;
2671 
2672 #if TARGET_OS_IPHONE
2673 
2674   // Some recent builds of the dyld_shared_cache (hereafter: DSC) have been
2675   // optimized by moving LOCAL symbols out of the memory mapped portion of
2676   // the DSC. The symbol information has all been retained, but it isn't
2677   // available in the normal nlist data. However, there *are* duplicate
2678   // entries of *some*
2679   // LOCAL symbols in the normal nlist data. To handle this situation
2680   // correctly, we must first attempt
2681   // to parse any DSC unmapped symbol information. If we find any, we set a
2682   // flag that tells the normal nlist parser to ignore all LOCAL symbols.
2683 
2684   if (IsSharedCacheBinary()) {
2685     // Before we can start mapping the DSC, we need to make certain the
2686     // target process is actually using the cache we can find.
2687 
2688     // Next we need to determine the correct path for the dyld shared cache.
2689 
2690     ArchSpec header_arch = GetArchitecture();
2691 
2692     UUID dsc_uuid;
2693     UUID process_shared_cache_uuid;
2694     addr_t process_shared_cache_base_addr;
2695 
2696     if (process) {
2697       GetProcessSharedCacheUUID(process, process_shared_cache_base_addr,
2698                                 process_shared_cache_uuid);
2699     }
2700 
2701     __block bool found_image = false;
2702     __block void *nlist_buffer = nullptr;
2703     __block unsigned nlist_count = 0;
2704     __block char *string_table = nullptr;
2705     __block vm_offset_t vm_nlist_memory = 0;
2706     __block mach_msg_type_number_t vm_nlist_bytes_read = 0;
2707     __block vm_offset_t vm_string_memory = 0;
2708     __block mach_msg_type_number_t vm_string_bytes_read = 0;
2709 
2710     auto _ = llvm::make_scope_exit(^{
2711       if (vm_nlist_memory)
2712         vm_deallocate(mach_task_self(), vm_nlist_memory, vm_nlist_bytes_read);
2713       if (vm_string_memory)
2714         vm_deallocate(mach_task_self(), vm_string_memory, vm_string_bytes_read);
2715     });
2716 
2717     typedef llvm::DenseMap<ConstString, uint16_t> UndefinedNameToDescMap;
2718     typedef llvm::DenseMap<uint32_t, ConstString> SymbolIndexToName;
2719     UndefinedNameToDescMap undefined_name_to_desc;
2720     SymbolIndexToName reexport_shlib_needs_fixup;
2721 
2722     dyld_for_each_installed_shared_cache(^(dyld_shared_cache_t shared_cache) {
2723       uuid_t cache_uuid;
2724       dyld_shared_cache_copy_uuid(shared_cache, &cache_uuid);
2725       if (found_image)
2726         return;
2727 
2728         if (process_shared_cache_uuid.IsValid() &&
2729           process_shared_cache_uuid != UUID::fromData(&cache_uuid, 16))
2730         return;
2731 
2732       dyld_shared_cache_for_each_image(shared_cache, ^(dyld_image_t image) {
2733         uuid_t dsc_image_uuid;
2734         if (found_image)
2735           return;
2736 
2737         dyld_image_copy_uuid(image, &dsc_image_uuid);
2738         if (image_uuid != UUID::fromData(dsc_image_uuid, 16))
2739           return;
2740 
2741         found_image = true;
2742 
2743         // Compute the size of the string table. We need to ask dyld for a
2744         // new SPI to avoid this step.
2745         dyld_image_local_nlist_content_4Symbolication(
2746             image, ^(const void *nlistStart, uint64_t nlistCount,
2747                      const char *stringTable) {
2748               if (!nlistStart || !nlistCount)
2749                 return;
2750 
2751               // The buffers passed here are valid only inside the block.
2752               // Use vm_read to make a cheap copy of them available for our
2753               // processing later.
2754               kern_return_t ret =
2755                   vm_read(mach_task_self(), (vm_address_t)nlistStart,
2756                           nlist_byte_size * nlistCount, &vm_nlist_memory,
2757                           &vm_nlist_bytes_read);
2758               if (ret != KERN_SUCCESS)
2759                 return;
2760               assert(vm_nlist_bytes_read == nlist_byte_size * nlistCount);
2761 
2762               // We don't know the size of the string table. It's cheaper
2763               // to map the whol VM region than to determine the size by
2764               // parsing all teh nlist entries.
2765               vm_address_t string_address = (vm_address_t)stringTable;
2766               vm_size_t region_size;
2767               mach_msg_type_number_t info_count = VM_REGION_BASIC_INFO_COUNT_64;
2768               vm_region_basic_info_data_t info;
2769               memory_object_name_t object;
2770               ret = vm_region_64(mach_task_self(), &string_address,
2771                                  &region_size, VM_REGION_BASIC_INFO_64,
2772                                  (vm_region_info_t)&info, &info_count, &object);
2773               if (ret != KERN_SUCCESS)
2774                 return;
2775 
2776               ret = vm_read(mach_task_self(), (vm_address_t)stringTable,
2777                             region_size -
2778                                 ((vm_address_t)stringTable - string_address),
2779                             &vm_string_memory, &vm_string_bytes_read);
2780               if (ret != KERN_SUCCESS)
2781                 return;
2782 
2783               nlist_buffer = (void *)vm_nlist_memory;
2784               string_table = (char *)vm_string_memory;
2785               nlist_count = nlistCount;
2786             });
2787       });
2788     });
2789     if (nlist_buffer) {
2790       DataExtractor dsc_local_symbols_data(nlist_buffer,
2791                                            nlist_count * nlist_byte_size,
2792                                            byte_order, addr_byte_size);
2793       unmapped_local_symbols_found = nlist_count;
2794 
2795                 // The normal nlist code cannot correctly size the Symbols
2796                 // array, we need to allocate it here.
2797                 sym = symtab.Resize(
2798                     symtab_load_command.nsyms + m_dysymtab.nindirectsyms +
2799                     unmapped_local_symbols_found - m_dysymtab.nlocalsym);
2800                 num_syms = symtab.GetNumSymbols();
2801 
2802       lldb::offset_t nlist_data_offset = 0;
2803 
2804                 for (uint32_t nlist_index = 0;
2805                      nlist_index < nlist_count;
2806                      nlist_index++) {
2807                   /////////////////////////////
2808                   {
2809                     std::optional<struct nlist_64> nlist_maybe =
2810                         ParseNList(dsc_local_symbols_data, nlist_data_offset,
2811                                    nlist_byte_size);
2812                     if (!nlist_maybe)
2813                       break;
2814                     struct nlist_64 nlist = *nlist_maybe;
2815 
2816                     SymbolType type = eSymbolTypeInvalid;
2817           const char *symbol_name = string_table + nlist.n_strx;
2818 
2819                     if (symbol_name == NULL) {
2820                       // No symbol should be NULL, even the symbols with no
2821                       // string values should have an offset zero which
2822                       // points to an empty C-string
2823                       Debugger::ReportError(llvm::formatv(
2824                           "DSC unmapped local symbol[{0}] has invalid "
2825                           "string table offset {1:x} in {2}, ignoring symbol",
2826                           nlist_index, nlist.n_strx,
2827                           module_sp->GetFileSpec().GetPath());
2828                       continue;
2829                     }
2830                     if (symbol_name[0] == '\0')
2831                       symbol_name = NULL;
2832 
2833                     const char *symbol_name_non_abi_mangled = NULL;
2834 
2835                     SectionSP symbol_section;
2836                     uint32_t symbol_byte_size = 0;
2837                     bool add_nlist = true;
2838                     bool is_debug = ((nlist.n_type & N_STAB) != 0);
2839                     bool demangled_is_synthesized = false;
2840                     bool is_gsym = false;
2841                     bool set_value = true;
2842 
2843                     assert(sym_idx < num_syms);
2844 
2845                     sym[sym_idx].SetDebug(is_debug);
2846 
2847                     if (is_debug) {
2848                       switch (nlist.n_type) {
2849                       case N_GSYM:
2850                         // global symbol: name,,NO_SECT,type,0
2851                         // Sometimes the N_GSYM value contains the address.
2852 
2853                         // FIXME: In the .o files, we have a GSYM and a debug
2854                         // symbol for all the ObjC data.  They
2855                         // have the same address, but we want to ensure that
2856                         // we always find only the real symbol, 'cause we
2857                         // don't currently correctly attribute the
2858                         // GSYM one to the ObjCClass/Ivar/MetaClass
2859                         // symbol type.  This is a temporary hack to make
2860                         // sure the ObjectiveC symbols get treated correctly.
2861                         // To do this right, we should coalesce all the GSYM
2862                         // & global symbols that have the same address.
2863 
2864                         is_gsym = true;
2865                         sym[sym_idx].SetExternal(true);
2866 
2867                         if (symbol_name && symbol_name[0] == '_' &&
2868                             symbol_name[1] == 'O') {
2869                           llvm::StringRef symbol_name_ref(symbol_name);
2870                           if (symbol_name_ref.startswith(
2871                                   g_objc_v2_prefix_class)) {
2872                             symbol_name_non_abi_mangled = symbol_name + 1;
2873                             symbol_name =
2874                                 symbol_name + g_objc_v2_prefix_class.size();
2875                             type = eSymbolTypeObjCClass;
2876                             demangled_is_synthesized = true;
2877 
2878                           } else if (symbol_name_ref.startswith(
2879                                          g_objc_v2_prefix_metaclass)) {
2880                             symbol_name_non_abi_mangled = symbol_name + 1;
2881                             symbol_name =
2882                                 symbol_name + g_objc_v2_prefix_metaclass.size();
2883                             type = eSymbolTypeObjCMetaClass;
2884                             demangled_is_synthesized = true;
2885                           } else if (symbol_name_ref.startswith(
2886                                          g_objc_v2_prefix_ivar)) {
2887                             symbol_name_non_abi_mangled = symbol_name + 1;
2888                             symbol_name =
2889                                 symbol_name + g_objc_v2_prefix_ivar.size();
2890                             type = eSymbolTypeObjCIVar;
2891                             demangled_is_synthesized = true;
2892                           }
2893                         } else {
2894                           if (nlist.n_value != 0)
2895                             symbol_section = section_info.GetSection(
2896                                 nlist.n_sect, nlist.n_value);
2897                           type = eSymbolTypeData;
2898                         }
2899                         break;
2900 
2901                       case N_FNAME:
2902                         // procedure name (f77 kludge): name,,NO_SECT,0,0
2903                         type = eSymbolTypeCompiler;
2904                         break;
2905 
2906                       case N_FUN:
2907                         // procedure: name,,n_sect,linenumber,address
2908                         if (symbol_name) {
2909                           type = eSymbolTypeCode;
2910                           symbol_section = section_info.GetSection(
2911                               nlist.n_sect, nlist.n_value);
2912 
2913                           N_FUN_addr_to_sym_idx.insert(
2914                               std::make_pair(nlist.n_value, sym_idx));
2915                           // We use the current number of symbols in the
2916                           // symbol table in lieu of using nlist_idx in case
2917                           // we ever start trimming entries out
2918                           N_FUN_indexes.push_back(sym_idx);
2919                         } else {
2920                           type = eSymbolTypeCompiler;
2921 
2922                           if (!N_FUN_indexes.empty()) {
2923                             // Copy the size of the function into the
2924                             // original
2925                             // STAB entry so we don't have
2926                             // to hunt for it later
2927                             symtab.SymbolAtIndex(N_FUN_indexes.back())
2928                                 ->SetByteSize(nlist.n_value);
2929                             N_FUN_indexes.pop_back();
2930                             // We don't really need the end function STAB as
2931                             // it contains the size which we already placed
2932                             // with the original symbol, so don't add it if
2933                             // we want a minimal symbol table
2934                             add_nlist = false;
2935                           }
2936                         }
2937                         break;
2938 
2939                       case N_STSYM:
2940                         // static symbol: name,,n_sect,type,address
2941                         N_STSYM_addr_to_sym_idx.insert(
2942                             std::make_pair(nlist.n_value, sym_idx));
2943                         symbol_section = section_info.GetSection(nlist.n_sect,
2944                                                                  nlist.n_value);
2945                         if (symbol_name && symbol_name[0]) {
2946                           type = ObjectFile::GetSymbolTypeFromName(
2947                               symbol_name + 1, eSymbolTypeData);
2948                         }
2949                         break;
2950 
2951                       case N_LCSYM:
2952                         // .lcomm symbol: name,,n_sect,type,address
2953                         symbol_section = section_info.GetSection(nlist.n_sect,
2954                                                                  nlist.n_value);
2955                         type = eSymbolTypeCommonBlock;
2956                         break;
2957 
2958                       case N_BNSYM:
2959                         // We use the current number of symbols in the symbol
2960                         // table in lieu of using nlist_idx in case we ever
2961                         // start trimming entries out Skip these if we want
2962                         // minimal symbol tables
2963                         add_nlist = false;
2964                         break;
2965 
2966                       case N_ENSYM:
2967                         // Set the size of the N_BNSYM to the terminating
2968                         // index of this N_ENSYM so that we can always skip
2969                         // the entire symbol if we need to navigate more
2970                         // quickly at the source level when parsing STABS
2971                         // Skip these if we want minimal symbol tables
2972                         add_nlist = false;
2973                         break;
2974 
2975                       case N_OPT:
2976                         // emitted with gcc2_compiled and in gcc source
2977                         type = eSymbolTypeCompiler;
2978                         break;
2979 
2980                       case N_RSYM:
2981                         // register sym: name,,NO_SECT,type,register
2982                         type = eSymbolTypeVariable;
2983                         break;
2984 
2985                       case N_SLINE:
2986                         // src line: 0,,n_sect,linenumber,address
2987                         symbol_section = section_info.GetSection(nlist.n_sect,
2988                                                                  nlist.n_value);
2989                         type = eSymbolTypeLineEntry;
2990                         break;
2991 
2992                       case N_SSYM:
2993                         // structure elt: name,,NO_SECT,type,struct_offset
2994                         type = eSymbolTypeVariableType;
2995                         break;
2996 
2997                       case N_SO:
2998                         // source file name
2999                         type = eSymbolTypeSourceFile;
3000                         if (symbol_name == NULL) {
3001                           add_nlist = false;
3002                           if (N_SO_index != UINT32_MAX) {
3003                             // Set the size of the N_SO to the terminating
3004                             // index of this N_SO so that we can always skip
3005                             // the entire N_SO if we need to navigate more
3006                             // quickly at the source level when parsing STABS
3007                             symbol_ptr = symtab.SymbolAtIndex(N_SO_index);
3008                             symbol_ptr->SetByteSize(sym_idx);
3009                             symbol_ptr->SetSizeIsSibling(true);
3010                           }
3011                           N_NSYM_indexes.clear();
3012                           N_INCL_indexes.clear();
3013                           N_BRAC_indexes.clear();
3014                           N_COMM_indexes.clear();
3015                           N_FUN_indexes.clear();
3016                           N_SO_index = UINT32_MAX;
3017                         } else {
3018                           // We use the current number of symbols in the
3019                           // symbol table in lieu of using nlist_idx in case
3020                           // we ever start trimming entries out
3021                           const bool N_SO_has_full_path = symbol_name[0] == '/';
3022                           if (N_SO_has_full_path) {
3023                             if ((N_SO_index == sym_idx - 1) &&
3024                                 ((sym_idx - 1) < num_syms)) {
3025                               // We have two consecutive N_SO entries where
3026                               // the first contains a directory and the
3027                               // second contains a full path.
3028                               sym[sym_idx - 1].GetMangled().SetValue(
3029                                   ConstString(symbol_name), false);
3030                               m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
3031                               add_nlist = false;
3032                             } else {
3033                               // This is the first entry in a N_SO that
3034                               // contains a directory or
3035                               // a full path to the source file
3036                               N_SO_index = sym_idx;
3037                             }
3038                           } else if ((N_SO_index == sym_idx - 1) &&
3039                                      ((sym_idx - 1) < num_syms)) {
3040                             // This is usually the second N_SO entry that
3041                             // contains just the filename, so here we combine
3042                             // it with the first one if we are minimizing the
3043                             // symbol table
3044                             const char *so_path = sym[sym_idx - 1]
3045                                                       .GetMangled()
3046                                                       .GetDemangledName()
3047                                                       .AsCString();
3048                             if (so_path && so_path[0]) {
3049                               std::string full_so_path(so_path);
3050                               const size_t double_slash_pos =
3051                                   full_so_path.find("//");
3052                               if (double_slash_pos != std::string::npos) {
3053                                 // The linker has been generating bad N_SO
3054                                 // entries with doubled up paths
3055                                 // in the format "%s%s" where the first
3056                                 // string in the DW_AT_comp_dir, and the
3057                                 // second is the directory for the source
3058                                 // file so you end up with a path that looks
3059                                 // like "/tmp/src//tmp/src/"
3060                                 FileSpec so_dir(so_path);
3061                                 if (!FileSystem::Instance().Exists(so_dir)) {
3062                                   so_dir.SetFile(
3063                                       &full_so_path[double_slash_pos + 1],
3064                                       FileSpec::Style::native);
3065                                   if (FileSystem::Instance().Exists(so_dir)) {
3066                                     // Trim off the incorrect path
3067                                     full_so_path.erase(0, double_slash_pos + 1);
3068                                   }
3069                                 }
3070                               }
3071                               if (*full_so_path.rbegin() != '/')
3072                                 full_so_path += '/';
3073                               full_so_path += symbol_name;
3074                               sym[sym_idx - 1].GetMangled().SetValue(
3075                                   ConstString(full_so_path.c_str()), false);
3076                               add_nlist = false;
3077                               m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
3078                             }
3079                           } else {
3080                             // This could be a relative path to a N_SO
3081                             N_SO_index = sym_idx;
3082                           }
3083                         }
3084                         break;
3085 
3086                       case N_OSO:
3087                         // object file name: name,,0,0,st_mtime
3088                         type = eSymbolTypeObjectFile;
3089                         break;
3090 
3091                       case N_LSYM:
3092                         // local sym: name,,NO_SECT,type,offset
3093                         type = eSymbolTypeLocal;
3094                         break;
3095 
3096                       // INCL scopes
3097                       case N_BINCL:
3098                         // include file beginning: name,,NO_SECT,0,sum We use
3099                         // the current number of symbols in the symbol table
3100                         // in lieu of using nlist_idx in case we ever start
3101                         // trimming entries out
3102                         N_INCL_indexes.push_back(sym_idx);
3103                         type = eSymbolTypeScopeBegin;
3104                         break;
3105 
3106                       case N_EINCL:
3107                         // include file end: name,,NO_SECT,0,0
3108                         // Set the size of the N_BINCL to the terminating
3109                         // index of this N_EINCL so that we can always skip
3110                         // the entire symbol if we need to navigate more
3111                         // quickly at the source level when parsing STABS
3112                         if (!N_INCL_indexes.empty()) {
3113                           symbol_ptr =
3114                               symtab.SymbolAtIndex(N_INCL_indexes.back());
3115                           symbol_ptr->SetByteSize(sym_idx + 1);
3116                           symbol_ptr->SetSizeIsSibling(true);
3117                           N_INCL_indexes.pop_back();
3118                         }
3119                         type = eSymbolTypeScopeEnd;
3120                         break;
3121 
3122                       case N_SOL:
3123                         // #included file name: name,,n_sect,0,address
3124                         type = eSymbolTypeHeaderFile;
3125 
3126                         // We currently don't use the header files on darwin
3127                         add_nlist = false;
3128                         break;
3129 
3130                       case N_PARAMS:
3131                         // compiler parameters: name,,NO_SECT,0,0
3132                         type = eSymbolTypeCompiler;
3133                         break;
3134 
3135                       case N_VERSION:
3136                         // compiler version: name,,NO_SECT,0,0
3137                         type = eSymbolTypeCompiler;
3138                         break;
3139 
3140                       case N_OLEVEL:
3141                         // compiler -O level: name,,NO_SECT,0,0
3142                         type = eSymbolTypeCompiler;
3143                         break;
3144 
3145                       case N_PSYM:
3146                         // parameter: name,,NO_SECT,type,offset
3147                         type = eSymbolTypeVariable;
3148                         break;
3149 
3150                       case N_ENTRY:
3151                         // alternate entry: name,,n_sect,linenumber,address
3152                         symbol_section = section_info.GetSection(nlist.n_sect,
3153                                                                  nlist.n_value);
3154                         type = eSymbolTypeLineEntry;
3155                         break;
3156 
3157                       // Left and Right Braces
3158                       case N_LBRAC:
3159                         // left bracket: 0,,NO_SECT,nesting level,address We
3160                         // use the current number of symbols in the symbol
3161                         // table in lieu of using nlist_idx in case we ever
3162                         // start trimming entries out
3163                         symbol_section = section_info.GetSection(nlist.n_sect,
3164                                                                  nlist.n_value);
3165                         N_BRAC_indexes.push_back(sym_idx);
3166                         type = eSymbolTypeScopeBegin;
3167                         break;
3168 
3169                       case N_RBRAC:
3170                         // right bracket: 0,,NO_SECT,nesting level,address
3171                         // Set the size of the N_LBRAC to the terminating
3172                         // index of this N_RBRAC so that we can always skip
3173                         // the entire symbol if we need to navigate more
3174                         // quickly at the source level when parsing STABS
3175                         symbol_section = section_info.GetSection(nlist.n_sect,
3176                                                                  nlist.n_value);
3177                         if (!N_BRAC_indexes.empty()) {
3178                           symbol_ptr =
3179                               symtab.SymbolAtIndex(N_BRAC_indexes.back());
3180                           symbol_ptr->SetByteSize(sym_idx + 1);
3181                           symbol_ptr->SetSizeIsSibling(true);
3182                           N_BRAC_indexes.pop_back();
3183                         }
3184                         type = eSymbolTypeScopeEnd;
3185                         break;
3186 
3187                       case N_EXCL:
3188                         // deleted include file: name,,NO_SECT,0,sum
3189                         type = eSymbolTypeHeaderFile;
3190                         break;
3191 
3192                       // COMM scopes
3193                       case N_BCOMM:
3194                         // begin common: name,,NO_SECT,0,0
3195                         // We use the current number of symbols in the symbol
3196                         // table in lieu of using nlist_idx in case we ever
3197                         // start trimming entries out
3198                         type = eSymbolTypeScopeBegin;
3199                         N_COMM_indexes.push_back(sym_idx);
3200                         break;
3201 
3202                       case N_ECOML:
3203                         // end common (local name): 0,,n_sect,0,address
3204                         symbol_section = section_info.GetSection(nlist.n_sect,
3205                                                                  nlist.n_value);
3206                         // Fall through
3207 
3208                       case N_ECOMM:
3209                         // end common: name,,n_sect,0,0
3210                         // Set the size of the N_BCOMM to the terminating
3211                         // index of this N_ECOMM/N_ECOML so that we can
3212                         // always skip the entire symbol if we need to
3213                         // navigate more quickly at the source level when
3214                         // parsing STABS
3215                         if (!N_COMM_indexes.empty()) {
3216                           symbol_ptr =
3217                               symtab.SymbolAtIndex(N_COMM_indexes.back());
3218                           symbol_ptr->SetByteSize(sym_idx + 1);
3219                           symbol_ptr->SetSizeIsSibling(true);
3220                           N_COMM_indexes.pop_back();
3221                         }
3222                         type = eSymbolTypeScopeEnd;
3223                         break;
3224 
3225                       case N_LENG:
3226                         // second stab entry with length information
3227                         type = eSymbolTypeAdditional;
3228                         break;
3229 
3230                       default:
3231                         break;
3232                       }
3233                     } else {
3234                       // uint8_t n_pext    = N_PEXT & nlist.n_type;
3235                       uint8_t n_type = N_TYPE & nlist.n_type;
3236                       sym[sym_idx].SetExternal((N_EXT & nlist.n_type) != 0);
3237 
3238                       switch (n_type) {
3239                       case N_INDR: {
3240                         const char *reexport_name_cstr =
3241                             strtab_data.PeekCStr(nlist.n_value);
3242                         if (reexport_name_cstr && reexport_name_cstr[0]) {
3243                           type = eSymbolTypeReExported;
3244                           ConstString reexport_name(
3245                               reexport_name_cstr +
3246                               ((reexport_name_cstr[0] == '_') ? 1 : 0));
3247                           sym[sym_idx].SetReExportedSymbolName(reexport_name);
3248                           set_value = false;
3249                           reexport_shlib_needs_fixup[sym_idx] = reexport_name;
3250                           indirect_symbol_names.insert(ConstString(
3251                               symbol_name + ((symbol_name[0] == '_') ? 1 : 0)));
3252                         } else
3253                           type = eSymbolTypeUndefined;
3254                       } break;
3255 
3256                       case N_UNDF:
3257                         if (symbol_name && symbol_name[0]) {
3258                           ConstString undefined_name(
3259                               symbol_name + ((symbol_name[0] == '_') ? 1 : 0));
3260                           undefined_name_to_desc[undefined_name] = nlist.n_desc;
3261                         }
3262                       // Fall through
3263                       case N_PBUD:
3264                         type = eSymbolTypeUndefined;
3265                         break;
3266 
3267                       case N_ABS:
3268                         type = eSymbolTypeAbsolute;
3269                         break;
3270 
3271                       case N_SECT: {
3272                         symbol_section = section_info.GetSection(nlist.n_sect,
3273                                                                  nlist.n_value);
3274 
3275                         if (symbol_section == NULL) {
3276                           // TODO: warn about this?
3277                           add_nlist = false;
3278                           break;
3279                         }
3280 
3281                         if (TEXT_eh_frame_sectID == nlist.n_sect) {
3282                           type = eSymbolTypeException;
3283                         } else {
3284                           uint32_t section_type =
3285                               symbol_section->Get() & SECTION_TYPE;
3286 
3287                           switch (section_type) {
3288                           case S_CSTRING_LITERALS:
3289                             type = eSymbolTypeData;
3290                             break; // section with only literal C strings
3291                           case S_4BYTE_LITERALS:
3292                             type = eSymbolTypeData;
3293                             break; // section with only 4 byte literals
3294                           case S_8BYTE_LITERALS:
3295                             type = eSymbolTypeData;
3296                             break; // section with only 8 byte literals
3297                           case S_LITERAL_POINTERS:
3298                             type = eSymbolTypeTrampoline;
3299                             break; // section with only pointers to literals
3300                           case S_NON_LAZY_SYMBOL_POINTERS:
3301                             type = eSymbolTypeTrampoline;
3302                             break; // section with only non-lazy symbol
3303                                    // pointers
3304                           case S_LAZY_SYMBOL_POINTERS:
3305                             type = eSymbolTypeTrampoline;
3306                             break; // section with only lazy symbol pointers
3307                           case S_SYMBOL_STUBS:
3308                             type = eSymbolTypeTrampoline;
3309                             break; // section with only symbol stubs, byte
3310                                    // size of stub in the reserved2 field
3311                           case S_MOD_INIT_FUNC_POINTERS:
3312                             type = eSymbolTypeCode;
3313                             break; // section with only function pointers for
3314                                    // initialization
3315                           case S_MOD_TERM_FUNC_POINTERS:
3316                             type = eSymbolTypeCode;
3317                             break; // section with only function pointers for
3318                                    // termination
3319                           case S_INTERPOSING:
3320                             type = eSymbolTypeTrampoline;
3321                             break; // section with only pairs of function
3322                                    // pointers for interposing
3323                           case S_16BYTE_LITERALS:
3324                             type = eSymbolTypeData;
3325                             break; // section with only 16 byte literals
3326                           case S_DTRACE_DOF:
3327                             type = eSymbolTypeInstrumentation;
3328                             break;
3329                           case S_LAZY_DYLIB_SYMBOL_POINTERS:
3330                             type = eSymbolTypeTrampoline;
3331                             break;
3332                           default:
3333                             switch (symbol_section->GetType()) {
3334                             case lldb::eSectionTypeCode:
3335                               type = eSymbolTypeCode;
3336                               break;
3337                             case eSectionTypeData:
3338                             case eSectionTypeDataCString: // Inlined C string
3339                                                           // data
3340                             case eSectionTypeDataCStringPointers: // Pointers
3341                                                                   // to C
3342                                                                   // string
3343                                                                   // data
3344                             case eSectionTypeDataSymbolAddress:   // Address of
3345                                                                   // a symbol in
3346                                                                   // the symbol
3347                                                                   // table
3348                             case eSectionTypeData4:
3349                             case eSectionTypeData8:
3350                             case eSectionTypeData16:
3351                               type = eSymbolTypeData;
3352                               break;
3353                             default:
3354                               break;
3355                             }
3356                             break;
3357                           }
3358 
3359                           if (type == eSymbolTypeInvalid) {
3360                             const char *symbol_sect_name =
3361                                 symbol_section->GetName().AsCString();
3362                             if (symbol_section->IsDescendant(
3363                                     text_section_sp.get())) {
3364                               if (symbol_section->IsClear(
3365                                       S_ATTR_PURE_INSTRUCTIONS |
3366                                       S_ATTR_SELF_MODIFYING_CODE |
3367                                       S_ATTR_SOME_INSTRUCTIONS))
3368                                 type = eSymbolTypeData;
3369                               else
3370                                 type = eSymbolTypeCode;
3371                             } else if (symbol_section->IsDescendant(
3372                                            data_section_sp.get()) ||
3373                                        symbol_section->IsDescendant(
3374                                            data_dirty_section_sp.get()) ||
3375                                        symbol_section->IsDescendant(
3376                                            data_const_section_sp.get())) {
3377                               if (symbol_sect_name &&
3378                                   ::strstr(symbol_sect_name, "__objc") ==
3379                                       symbol_sect_name) {
3380                                 type = eSymbolTypeRuntime;
3381 
3382                                 if (symbol_name) {
3383                                   llvm::StringRef symbol_name_ref(symbol_name);
3384                                   if (symbol_name_ref.startswith("_OBJC_")) {
3385                                     llvm::StringRef
3386                                         g_objc_v2_prefix_class(
3387                                             "_OBJC_CLASS_$_");
3388                                     llvm::StringRef
3389                                         g_objc_v2_prefix_metaclass(
3390                                             "_OBJC_METACLASS_$_");
3391                                     llvm::StringRef
3392                                         g_objc_v2_prefix_ivar("_OBJC_IVAR_$_");
3393                                     if (symbol_name_ref.startswith(
3394                                             g_objc_v2_prefix_class)) {
3395                                       symbol_name_non_abi_mangled =
3396                                           symbol_name + 1;
3397                                       symbol_name =
3398                                           symbol_name +
3399                                           g_objc_v2_prefix_class.size();
3400                                       type = eSymbolTypeObjCClass;
3401                                       demangled_is_synthesized = true;
3402                                     } else if (
3403                                         symbol_name_ref.startswith(
3404                                             g_objc_v2_prefix_metaclass)) {
3405                                       symbol_name_non_abi_mangled =
3406                                           symbol_name + 1;
3407                                       symbol_name =
3408                                           symbol_name +
3409                                           g_objc_v2_prefix_metaclass.size();
3410                                       type = eSymbolTypeObjCMetaClass;
3411                                       demangled_is_synthesized = true;
3412                                     } else if (symbol_name_ref.startswith(
3413                                                    g_objc_v2_prefix_ivar)) {
3414                                       symbol_name_non_abi_mangled =
3415                                           symbol_name + 1;
3416                                       symbol_name =
3417                                           symbol_name +
3418                                           g_objc_v2_prefix_ivar.size();
3419                                       type = eSymbolTypeObjCIVar;
3420                                       demangled_is_synthesized = true;
3421                                     }
3422                                   }
3423                                 }
3424                               } else if (symbol_sect_name &&
3425                                          ::strstr(symbol_sect_name,
3426                                                   "__gcc_except_tab") ==
3427                                              symbol_sect_name) {
3428                                 type = eSymbolTypeException;
3429                               } else {
3430                                 type = eSymbolTypeData;
3431                               }
3432                             } else if (symbol_sect_name &&
3433                                        ::strstr(symbol_sect_name, "__IMPORT") ==
3434                                            symbol_sect_name) {
3435                               type = eSymbolTypeTrampoline;
3436                             } else if (symbol_section->IsDescendant(
3437                                            objc_section_sp.get())) {
3438                               type = eSymbolTypeRuntime;
3439                               if (symbol_name && symbol_name[0] == '.') {
3440                                 llvm::StringRef symbol_name_ref(symbol_name);
3441                                 llvm::StringRef
3442                                     g_objc_v1_prefix_class(".objc_class_name_");
3443                                 if (symbol_name_ref.startswith(
3444                                         g_objc_v1_prefix_class)) {
3445                                   symbol_name_non_abi_mangled = symbol_name;
3446                                   symbol_name = symbol_name +
3447                                                 g_objc_v1_prefix_class.size();
3448                                   type = eSymbolTypeObjCClass;
3449                                   demangled_is_synthesized = true;
3450                                 }
3451                               }
3452                             }
3453                           }
3454                         }
3455                       } break;
3456                       }
3457                     }
3458 
3459                     if (add_nlist) {
3460                       uint64_t symbol_value = nlist.n_value;
3461                       if (symbol_name_non_abi_mangled) {
3462                         sym[sym_idx].GetMangled().SetMangledName(
3463                             ConstString(symbol_name_non_abi_mangled));
3464                         sym[sym_idx].GetMangled().SetDemangledName(
3465                             ConstString(symbol_name));
3466                       } else {
3467                         bool symbol_name_is_mangled = false;
3468 
3469                         if (symbol_name && symbol_name[0] == '_') {
3470                           symbol_name_is_mangled = symbol_name[1] == '_';
3471                           symbol_name++; // Skip the leading underscore
3472                         }
3473 
3474                         if (symbol_name) {
3475                           ConstString const_symbol_name(symbol_name);
3476                           sym[sym_idx].GetMangled().SetValue(
3477                               const_symbol_name, symbol_name_is_mangled);
3478                           if (is_gsym && is_debug) {
3479                             const char *gsym_name =
3480                                 sym[sym_idx]
3481                                     .GetMangled()
3482                                     .GetName(Mangled::ePreferMangled)
3483                                     .GetCString();
3484                             if (gsym_name)
3485                               N_GSYM_name_to_sym_idx[gsym_name] = sym_idx;
3486                           }
3487                         }
3488                       }
3489                       if (symbol_section) {
3490                         const addr_t section_file_addr =
3491                             symbol_section->GetFileAddress();
3492                         if (symbol_byte_size == 0 &&
3493                             function_starts_count > 0) {
3494                           addr_t symbol_lookup_file_addr = nlist.n_value;
3495                           // Do an exact address match for non-ARM addresses,
3496                           // else get the closest since the symbol might be a
3497                           // thumb symbol which has an address with bit zero
3498                           // set
3499                           FunctionStarts::Entry *func_start_entry =
3500                               function_starts.FindEntry(symbol_lookup_file_addr,
3501                                                         !is_arm);
3502                           if (is_arm && func_start_entry) {
3503                             // Verify that the function start address is the
3504                             // symbol address (ARM) or the symbol address + 1
3505                             // (thumb)
3506                             if (func_start_entry->addr !=
3507                                     symbol_lookup_file_addr &&
3508                                 func_start_entry->addr !=
3509                                     (symbol_lookup_file_addr + 1)) {
3510                               // Not the right entry, NULL it out...
3511                               func_start_entry = NULL;
3512                             }
3513                           }
3514                           if (func_start_entry) {
3515                             func_start_entry->data = true;
3516 
3517                             addr_t symbol_file_addr = func_start_entry->addr;
3518                             uint32_t symbol_flags = 0;
3519                             if (is_arm) {
3520                               if (symbol_file_addr & 1)
3521                                 symbol_flags = MACHO_NLIST_ARM_SYMBOL_IS_THUMB;
3522                               symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
3523                             }
3524 
3525                             const FunctionStarts::Entry *next_func_start_entry =
3526                                 function_starts.FindNextEntry(func_start_entry);
3527                             const addr_t section_end_file_addr =
3528                                 section_file_addr +
3529                                 symbol_section->GetByteSize();
3530                             if (next_func_start_entry) {
3531                               addr_t next_symbol_file_addr =
3532                                   next_func_start_entry->addr;
3533                               // Be sure the clear the Thumb address bit when
3534                               // we calculate the size from the current and
3535                               // next address
3536                               if (is_arm)
3537                                 next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
3538                               symbol_byte_size = std::min<lldb::addr_t>(
3539                                   next_symbol_file_addr - symbol_file_addr,
3540                                   section_end_file_addr - symbol_file_addr);
3541                             } else {
3542                               symbol_byte_size =
3543                                   section_end_file_addr - symbol_file_addr;
3544                             }
3545                           }
3546                         }
3547                         symbol_value -= section_file_addr;
3548                       }
3549 
3550                       if (is_debug == false) {
3551                         if (type == eSymbolTypeCode) {
3552                           // See if we can find a N_FUN entry for any code
3553                           // symbols. If we do find a match, and the name
3554                           // matches, then we can merge the two into just the
3555                           // function symbol to avoid duplicate entries in
3556                           // the symbol table
3557                           auto range =
3558                               N_FUN_addr_to_sym_idx.equal_range(nlist.n_value);
3559                           if (range.first != range.second) {
3560                             bool found_it = false;
3561                             for (auto pos = range.first; pos != range.second;
3562                                  ++pos) {
3563                               if (sym[sym_idx].GetMangled().GetName(
3564                                       Mangled::ePreferMangled) ==
3565                                   sym[pos->second].GetMangled().GetName(
3566                                       Mangled::ePreferMangled)) {
3567                                 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
3568                                 // We just need the flags from the linker
3569                                 // symbol, so put these flags
3570                                 // into the N_FUN flags to avoid duplicate
3571                                 // symbols in the symbol table
3572                                 sym[pos->second].SetExternal(
3573                                     sym[sym_idx].IsExternal());
3574                                 sym[pos->second].SetFlags(nlist.n_type << 16 |
3575                                                           nlist.n_desc);
3576                                 if (resolver_addresses.find(nlist.n_value) !=
3577                                     resolver_addresses.end())
3578                                   sym[pos->second].SetType(eSymbolTypeResolver);
3579                                 sym[sym_idx].Clear();
3580                                 found_it = true;
3581                                 break;
3582                               }
3583                             }
3584                             if (found_it)
3585                               continue;
3586                           } else {
3587                             if (resolver_addresses.find(nlist.n_value) !=
3588                                 resolver_addresses.end())
3589                               type = eSymbolTypeResolver;
3590                           }
3591                         } else if (type == eSymbolTypeData ||
3592                                    type == eSymbolTypeObjCClass ||
3593                                    type == eSymbolTypeObjCMetaClass ||
3594                                    type == eSymbolTypeObjCIVar) {
3595                           // See if we can find a N_STSYM entry for any data
3596                           // symbols. If we do find a match, and the name
3597                           // matches, then we can merge the two into just the
3598                           // Static symbol to avoid duplicate entries in the
3599                           // symbol table
3600                           auto range = N_STSYM_addr_to_sym_idx.equal_range(
3601                               nlist.n_value);
3602                           if (range.first != range.second) {
3603                             bool found_it = false;
3604                             for (auto pos = range.first; pos != range.second;
3605                                  ++pos) {
3606                               if (sym[sym_idx].GetMangled().GetName(
3607                                       Mangled::ePreferMangled) ==
3608                                   sym[pos->second].GetMangled().GetName(
3609                                       Mangled::ePreferMangled)) {
3610                                 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
3611                                 // We just need the flags from the linker
3612                                 // symbol, so put these flags
3613                                 // into the N_STSYM flags to avoid duplicate
3614                                 // symbols in the symbol table
3615                                 sym[pos->second].SetExternal(
3616                                     sym[sym_idx].IsExternal());
3617                                 sym[pos->second].SetFlags(nlist.n_type << 16 |
3618                                                           nlist.n_desc);
3619                                 sym[sym_idx].Clear();
3620                                 found_it = true;
3621                                 break;
3622                               }
3623                             }
3624                             if (found_it)
3625                               continue;
3626                           } else {
3627                             const char *gsym_name =
3628                                 sym[sym_idx]
3629                                     .GetMangled()
3630                                     .GetName(Mangled::ePreferMangled)
3631                                     .GetCString();
3632                             if (gsym_name) {
3633                               // Combine N_GSYM stab entries with the non
3634                               // stab symbol
3635                               ConstNameToSymbolIndexMap::const_iterator pos =
3636                                   N_GSYM_name_to_sym_idx.find(gsym_name);
3637                               if (pos != N_GSYM_name_to_sym_idx.end()) {
3638                                 const uint32_t GSYM_sym_idx = pos->second;
3639                                 m_nlist_idx_to_sym_idx[nlist_idx] =
3640                                     GSYM_sym_idx;
3641                                 // Copy the address, because often the N_GSYM
3642                                 // address has an invalid address of zero
3643                                 // when the global is a common symbol
3644                                 sym[GSYM_sym_idx].GetAddressRef().SetSection(
3645                                     symbol_section);
3646                                 sym[GSYM_sym_idx].GetAddressRef().SetOffset(
3647                                     symbol_value);
3648                                 add_symbol_addr(sym[GSYM_sym_idx]
3649                                                     .GetAddress()
3650                                                     .GetFileAddress());
3651                                 // We just need the flags from the linker
3652                                 // symbol, so put these flags
3653                                 // into the N_GSYM flags to avoid duplicate
3654                                 // symbols in the symbol table
3655                                 sym[GSYM_sym_idx].SetFlags(nlist.n_type << 16 |
3656                                                            nlist.n_desc);
3657                                 sym[sym_idx].Clear();
3658                                 continue;
3659                               }
3660                             }
3661                           }
3662                         }
3663                       }
3664 
3665                       sym[sym_idx].SetID(nlist_idx);
3666                       sym[sym_idx].SetType(type);
3667                       if (set_value) {
3668                         sym[sym_idx].GetAddressRef().SetSection(symbol_section);
3669                         sym[sym_idx].GetAddressRef().SetOffset(symbol_value);
3670                         add_symbol_addr(
3671                             sym[sym_idx].GetAddress().GetFileAddress());
3672                       }
3673                       sym[sym_idx].SetFlags(nlist.n_type << 16 | nlist.n_desc);
3674 
3675                       if (symbol_byte_size > 0)
3676                         sym[sym_idx].SetByteSize(symbol_byte_size);
3677 
3678                       if (demangled_is_synthesized)
3679                         sym[sym_idx].SetDemangledNameIsSynthesized(true);
3680                       ++sym_idx;
3681                     } else {
3682                       sym[sym_idx].Clear();
3683                     }
3684                   }
3685                   /////////////////////////////
3686                 }
3687             }
3688 
3689             for (const auto &pos : reexport_shlib_needs_fixup) {
3690               const auto undef_pos = undefined_name_to_desc.find(pos.second);
3691               if (undef_pos != undefined_name_to_desc.end()) {
3692                 const uint8_t dylib_ordinal =
3693                     llvm::MachO::GET_LIBRARY_ORDINAL(undef_pos->second);
3694                 if (dylib_ordinal > 0 && dylib_ordinal < dylib_files.GetSize())
3695                   sym[pos.first].SetReExportedSymbolSharedLibrary(
3696                       dylib_files.GetFileSpecAtIndex(dylib_ordinal - 1));
3697               }
3698             }
3699           }
3700 
3701 #endif
3702   lldb::offset_t nlist_data_offset = 0;
3703 
3704   if (nlist_data.GetByteSize() > 0) {
3705 
3706     // If the sym array was not created while parsing the DSC unmapped
3707     // symbols, create it now.
3708     if (sym == nullptr) {
3709       sym =
3710           symtab.Resize(symtab_load_command.nsyms + m_dysymtab.nindirectsyms);
3711       num_syms = symtab.GetNumSymbols();
3712     }
3713 
3714     if (unmapped_local_symbols_found) {
3715       assert(m_dysymtab.ilocalsym == 0);
3716       nlist_data_offset += (m_dysymtab.nlocalsym * nlist_byte_size);
3717       nlist_idx = m_dysymtab.nlocalsym;
3718     } else {
3719       nlist_idx = 0;
3720     }
3721 
3722     typedef llvm::DenseMap<ConstString, uint16_t> UndefinedNameToDescMap;
3723     typedef llvm::DenseMap<uint32_t, ConstString> SymbolIndexToName;
3724     UndefinedNameToDescMap undefined_name_to_desc;
3725     SymbolIndexToName reexport_shlib_needs_fixup;
3726 
3727     // Symtab parsing is a huge mess. Everything is entangled and the code
3728     // requires access to a ridiculous amount of variables. LLDB depends
3729     // heavily on the proper merging of symbols and to get that right we need
3730     // to make sure we have parsed all the debug symbols first. Therefore we
3731     // invoke the lambda twice, once to parse only the debug symbols and then
3732     // once more to parse the remaining symbols.
3733     auto ParseSymbolLambda = [&](struct nlist_64 &nlist, uint32_t nlist_idx,
3734                                  bool debug_only) {
3735       const bool is_debug = ((nlist.n_type & N_STAB) != 0);
3736       if (is_debug != debug_only)
3737         return true;
3738 
3739       const char *symbol_name_non_abi_mangled = nullptr;
3740       const char *symbol_name = nullptr;
3741 
3742       if (have_strtab_data) {
3743         symbol_name = strtab_data.PeekCStr(nlist.n_strx);
3744 
3745         if (symbol_name == nullptr) {
3746           // No symbol should be NULL, even the symbols with no string values
3747           // should have an offset zero which points to an empty C-string
3748           Debugger::ReportError(llvm::formatv(
3749               "symbol[{0}] has invalid string table offset {1:x} in {2}, "
3750               "ignoring symbol",
3751               nlist_idx, nlist.n_strx, module_sp->GetFileSpec().GetPath()));
3752           return true;
3753         }
3754         if (symbol_name[0] == '\0')
3755           symbol_name = nullptr;
3756       } else {
3757         const addr_t str_addr = strtab_addr + nlist.n_strx;
3758         Status str_error;
3759         if (process->ReadCStringFromMemory(str_addr, memory_symbol_name,
3760                                            str_error))
3761           symbol_name = memory_symbol_name.c_str();
3762       }
3763 
3764       SymbolType type = eSymbolTypeInvalid;
3765       SectionSP symbol_section;
3766       lldb::addr_t symbol_byte_size = 0;
3767       bool add_nlist = true;
3768       bool is_gsym = false;
3769       bool demangled_is_synthesized = false;
3770       bool set_value = true;
3771 
3772       assert(sym_idx < num_syms);
3773       sym[sym_idx].SetDebug(is_debug);
3774 
3775       if (is_debug) {
3776         switch (nlist.n_type) {
3777         case N_GSYM:
3778           // global symbol: name,,NO_SECT,type,0
3779           // Sometimes the N_GSYM value contains the address.
3780 
3781           // FIXME: In the .o files, we have a GSYM and a debug symbol for all
3782           // the ObjC data.  They
3783           // have the same address, but we want to ensure that we always find
3784           // only the real symbol, 'cause we don't currently correctly
3785           // attribute the GSYM one to the ObjCClass/Ivar/MetaClass symbol
3786           // type.  This is a temporary hack to make sure the ObjectiveC
3787           // symbols get treated correctly.  To do this right, we should
3788           // coalesce all the GSYM & global symbols that have the same
3789           // address.
3790           is_gsym = true;
3791           sym[sym_idx].SetExternal(true);
3792 
3793           if (symbol_name && symbol_name[0] == '_' && symbol_name[1] == 'O') {
3794             llvm::StringRef symbol_name_ref(symbol_name);
3795             if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) {
3796               symbol_name_non_abi_mangled = symbol_name + 1;
3797               symbol_name = symbol_name + g_objc_v2_prefix_class.size();
3798               type = eSymbolTypeObjCClass;
3799               demangled_is_synthesized = true;
3800 
3801             } else if (symbol_name_ref.startswith(g_objc_v2_prefix_metaclass)) {
3802               symbol_name_non_abi_mangled = symbol_name + 1;
3803               symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size();
3804               type = eSymbolTypeObjCMetaClass;
3805               demangled_is_synthesized = true;
3806             } else if (symbol_name_ref.startswith(g_objc_v2_prefix_ivar)) {
3807               symbol_name_non_abi_mangled = symbol_name + 1;
3808               symbol_name = symbol_name + g_objc_v2_prefix_ivar.size();
3809               type = eSymbolTypeObjCIVar;
3810               demangled_is_synthesized = true;
3811             }
3812           } else {
3813             if (nlist.n_value != 0)
3814               symbol_section =
3815                   section_info.GetSection(nlist.n_sect, nlist.n_value);
3816             type = eSymbolTypeData;
3817           }
3818           break;
3819 
3820         case N_FNAME:
3821           // procedure name (f77 kludge): name,,NO_SECT,0,0
3822           type = eSymbolTypeCompiler;
3823           break;
3824 
3825         case N_FUN:
3826           // procedure: name,,n_sect,linenumber,address
3827           if (symbol_name) {
3828             type = eSymbolTypeCode;
3829             symbol_section =
3830                 section_info.GetSection(nlist.n_sect, nlist.n_value);
3831 
3832             N_FUN_addr_to_sym_idx.insert(
3833                 std::make_pair(nlist.n_value, sym_idx));
3834             // We use the current number of symbols in the symbol table in
3835             // lieu of using nlist_idx in case we ever start trimming entries
3836             // out
3837             N_FUN_indexes.push_back(sym_idx);
3838           } else {
3839             type = eSymbolTypeCompiler;
3840 
3841             if (!N_FUN_indexes.empty()) {
3842               // Copy the size of the function into the original STAB entry
3843               // so we don't have to hunt for it later
3844               symtab.SymbolAtIndex(N_FUN_indexes.back())
3845                   ->SetByteSize(nlist.n_value);
3846               N_FUN_indexes.pop_back();
3847               // We don't really need the end function STAB as it contains
3848               // the size which we already placed with the original symbol,
3849               // so don't add it if we want a minimal symbol table
3850               add_nlist = false;
3851             }
3852           }
3853           break;
3854 
3855         case N_STSYM:
3856           // static symbol: name,,n_sect,type,address
3857           N_STSYM_addr_to_sym_idx.insert(
3858               std::make_pair(nlist.n_value, sym_idx));
3859           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
3860           if (symbol_name && symbol_name[0]) {
3861             type = ObjectFile::GetSymbolTypeFromName(symbol_name + 1,
3862                                                      eSymbolTypeData);
3863           }
3864           break;
3865 
3866         case N_LCSYM:
3867           // .lcomm symbol: name,,n_sect,type,address
3868           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
3869           type = eSymbolTypeCommonBlock;
3870           break;
3871 
3872         case N_BNSYM:
3873           // We use the current number of symbols in the symbol table in lieu
3874           // of using nlist_idx in case we ever start trimming entries out
3875           // Skip these if we want minimal symbol tables
3876           add_nlist = false;
3877           break;
3878 
3879         case N_ENSYM:
3880           // Set the size of the N_BNSYM to the terminating index of this
3881           // N_ENSYM so that we can always skip the entire symbol if we need
3882           // to navigate more quickly at the source level when parsing STABS
3883           // Skip these if we want minimal symbol tables
3884           add_nlist = false;
3885           break;
3886 
3887         case N_OPT:
3888           // emitted with gcc2_compiled and in gcc source
3889           type = eSymbolTypeCompiler;
3890           break;
3891 
3892         case N_RSYM:
3893           // register sym: name,,NO_SECT,type,register
3894           type = eSymbolTypeVariable;
3895           break;
3896 
3897         case N_SLINE:
3898           // src line: 0,,n_sect,linenumber,address
3899           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
3900           type = eSymbolTypeLineEntry;
3901           break;
3902 
3903         case N_SSYM:
3904           // structure elt: name,,NO_SECT,type,struct_offset
3905           type = eSymbolTypeVariableType;
3906           break;
3907 
3908         case N_SO:
3909           // source file name
3910           type = eSymbolTypeSourceFile;
3911           if (symbol_name == nullptr) {
3912             add_nlist = false;
3913             if (N_SO_index != UINT32_MAX) {
3914               // Set the size of the N_SO to the terminating index of this
3915               // N_SO so that we can always skip the entire N_SO if we need
3916               // to navigate more quickly at the source level when parsing
3917               // STABS
3918               symbol_ptr = symtab.SymbolAtIndex(N_SO_index);
3919               symbol_ptr->SetByteSize(sym_idx);
3920               symbol_ptr->SetSizeIsSibling(true);
3921             }
3922             N_NSYM_indexes.clear();
3923             N_INCL_indexes.clear();
3924             N_BRAC_indexes.clear();
3925             N_COMM_indexes.clear();
3926             N_FUN_indexes.clear();
3927             N_SO_index = UINT32_MAX;
3928           } else {
3929             // We use the current number of symbols in the symbol table in
3930             // lieu of using nlist_idx in case we ever start trimming entries
3931             // out
3932             const bool N_SO_has_full_path = symbol_name[0] == '/';
3933             if (N_SO_has_full_path) {
3934               if ((N_SO_index == sym_idx - 1) && ((sym_idx - 1) < num_syms)) {
3935                 // We have two consecutive N_SO entries where the first
3936                 // contains a directory and the second contains a full path.
3937                 sym[sym_idx - 1].GetMangled().SetValue(ConstString(symbol_name),
3938                                                        false);
3939                 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
3940                 add_nlist = false;
3941               } else {
3942                 // This is the first entry in a N_SO that contains a
3943                 // directory or a full path to the source file
3944                 N_SO_index = sym_idx;
3945               }
3946             } else if ((N_SO_index == sym_idx - 1) &&
3947                        ((sym_idx - 1) < num_syms)) {
3948               // This is usually the second N_SO entry that contains just the
3949               // filename, so here we combine it with the first one if we are
3950               // minimizing the symbol table
3951               const char *so_path =
3952                   sym[sym_idx - 1].GetMangled().GetDemangledName().AsCString();
3953               if (so_path && so_path[0]) {
3954                 std::string full_so_path(so_path);
3955                 const size_t double_slash_pos = full_so_path.find("//");
3956                 if (double_slash_pos != std::string::npos) {
3957                   // The linker has been generating bad N_SO entries with
3958                   // doubled up paths in the format "%s%s" where the first
3959                   // string in the DW_AT_comp_dir, and the second is the
3960                   // directory for the source file so you end up with a path
3961                   // that looks like "/tmp/src//tmp/src/"
3962                   FileSpec so_dir(so_path);
3963                   if (!FileSystem::Instance().Exists(so_dir)) {
3964                     so_dir.SetFile(&full_so_path[double_slash_pos + 1],
3965                                    FileSpec::Style::native);
3966                     if (FileSystem::Instance().Exists(so_dir)) {
3967                       // Trim off the incorrect path
3968                       full_so_path.erase(0, double_slash_pos + 1);
3969                     }
3970                   }
3971                 }
3972                 if (*full_so_path.rbegin() != '/')
3973                   full_so_path += '/';
3974                 full_so_path += symbol_name;
3975                 sym[sym_idx - 1].GetMangled().SetValue(
3976                     ConstString(full_so_path.c_str()), false);
3977                 add_nlist = false;
3978                 m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
3979               }
3980             } else {
3981               // This could be a relative path to a N_SO
3982               N_SO_index = sym_idx;
3983             }
3984           }
3985           break;
3986 
3987         case N_OSO:
3988           // object file name: name,,0,0,st_mtime
3989           type = eSymbolTypeObjectFile;
3990           break;
3991 
3992         case N_LSYM:
3993           // local sym: name,,NO_SECT,type,offset
3994           type = eSymbolTypeLocal;
3995           break;
3996 
3997         // INCL scopes
3998         case N_BINCL:
3999           // include file beginning: name,,NO_SECT,0,sum We use the current
4000           // number of symbols in the symbol table in lieu of using nlist_idx
4001           // in case we ever start trimming entries out
4002           N_INCL_indexes.push_back(sym_idx);
4003           type = eSymbolTypeScopeBegin;
4004           break;
4005 
4006         case N_EINCL:
4007           // include file end: name,,NO_SECT,0,0
4008           // Set the size of the N_BINCL to the terminating index of this
4009           // N_EINCL so that we can always skip the entire symbol if we need
4010           // to navigate more quickly at the source level when parsing STABS
4011           if (!N_INCL_indexes.empty()) {
4012             symbol_ptr = symtab.SymbolAtIndex(N_INCL_indexes.back());
4013             symbol_ptr->SetByteSize(sym_idx + 1);
4014             symbol_ptr->SetSizeIsSibling(true);
4015             N_INCL_indexes.pop_back();
4016           }
4017           type = eSymbolTypeScopeEnd;
4018           break;
4019 
4020         case N_SOL:
4021           // #included file name: name,,n_sect,0,address
4022           type = eSymbolTypeHeaderFile;
4023 
4024           // We currently don't use the header files on darwin
4025           add_nlist = false;
4026           break;
4027 
4028         case N_PARAMS:
4029           // compiler parameters: name,,NO_SECT,0,0
4030           type = eSymbolTypeCompiler;
4031           break;
4032 
4033         case N_VERSION:
4034           // compiler version: name,,NO_SECT,0,0
4035           type = eSymbolTypeCompiler;
4036           break;
4037 
4038         case N_OLEVEL:
4039           // compiler -O level: name,,NO_SECT,0,0
4040           type = eSymbolTypeCompiler;
4041           break;
4042 
4043         case N_PSYM:
4044           // parameter: name,,NO_SECT,type,offset
4045           type = eSymbolTypeVariable;
4046           break;
4047 
4048         case N_ENTRY:
4049           // alternate entry: name,,n_sect,linenumber,address
4050           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
4051           type = eSymbolTypeLineEntry;
4052           break;
4053 
4054         // Left and Right Braces
4055         case N_LBRAC:
4056           // left bracket: 0,,NO_SECT,nesting level,address We use the
4057           // current number of symbols in the symbol table in lieu of using
4058           // nlist_idx in case we ever start trimming entries out
4059           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
4060           N_BRAC_indexes.push_back(sym_idx);
4061           type = eSymbolTypeScopeBegin;
4062           break;
4063 
4064         case N_RBRAC:
4065           // right bracket: 0,,NO_SECT,nesting level,address Set the size of
4066           // the N_LBRAC to the terminating index of this N_RBRAC so that we
4067           // can always skip the entire symbol if we need to navigate more
4068           // quickly at the source level when parsing STABS
4069           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
4070           if (!N_BRAC_indexes.empty()) {
4071             symbol_ptr = symtab.SymbolAtIndex(N_BRAC_indexes.back());
4072             symbol_ptr->SetByteSize(sym_idx + 1);
4073             symbol_ptr->SetSizeIsSibling(true);
4074             N_BRAC_indexes.pop_back();
4075           }
4076           type = eSymbolTypeScopeEnd;
4077           break;
4078 
4079         case N_EXCL:
4080           // deleted include file: name,,NO_SECT,0,sum
4081           type = eSymbolTypeHeaderFile;
4082           break;
4083 
4084         // COMM scopes
4085         case N_BCOMM:
4086           // begin common: name,,NO_SECT,0,0
4087           // We use the current number of symbols in the symbol table in lieu
4088           // of using nlist_idx in case we ever start trimming entries out
4089           type = eSymbolTypeScopeBegin;
4090           N_COMM_indexes.push_back(sym_idx);
4091           break;
4092 
4093         case N_ECOML:
4094           // end common (local name): 0,,n_sect,0,address
4095           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
4096           [[fallthrough]];
4097 
4098         case N_ECOMM:
4099           // end common: name,,n_sect,0,0
4100           // Set the size of the N_BCOMM to the terminating index of this
4101           // N_ECOMM/N_ECOML so that we can always skip the entire symbol if
4102           // we need to navigate more quickly at the source level when
4103           // parsing STABS
4104           if (!N_COMM_indexes.empty()) {
4105             symbol_ptr = symtab.SymbolAtIndex(N_COMM_indexes.back());
4106             symbol_ptr->SetByteSize(sym_idx + 1);
4107             symbol_ptr->SetSizeIsSibling(true);
4108             N_COMM_indexes.pop_back();
4109           }
4110           type = eSymbolTypeScopeEnd;
4111           break;
4112 
4113         case N_LENG:
4114           // second stab entry with length information
4115           type = eSymbolTypeAdditional;
4116           break;
4117 
4118         default:
4119           break;
4120         }
4121       } else {
4122         uint8_t n_type = N_TYPE & nlist.n_type;
4123         sym[sym_idx].SetExternal((N_EXT & nlist.n_type) != 0);
4124 
4125         switch (n_type) {
4126         case N_INDR: {
4127           const char *reexport_name_cstr = strtab_data.PeekCStr(nlist.n_value);
4128           if (reexport_name_cstr && reexport_name_cstr[0] && symbol_name) {
4129             type = eSymbolTypeReExported;
4130             ConstString reexport_name(reexport_name_cstr +
4131                                       ((reexport_name_cstr[0] == '_') ? 1 : 0));
4132             sym[sym_idx].SetReExportedSymbolName(reexport_name);
4133             set_value = false;
4134             reexport_shlib_needs_fixup[sym_idx] = reexport_name;
4135             indirect_symbol_names.insert(
4136                 ConstString(symbol_name + ((symbol_name[0] == '_') ? 1 : 0)));
4137           } else
4138             type = eSymbolTypeUndefined;
4139         } break;
4140 
4141         case N_UNDF:
4142           if (symbol_name && symbol_name[0]) {
4143             ConstString undefined_name(symbol_name +
4144                                        ((symbol_name[0] == '_') ? 1 : 0));
4145             undefined_name_to_desc[undefined_name] = nlist.n_desc;
4146           }
4147           [[fallthrough]];
4148 
4149         case N_PBUD:
4150           type = eSymbolTypeUndefined;
4151           break;
4152 
4153         case N_ABS:
4154           type = eSymbolTypeAbsolute;
4155           break;
4156 
4157         case N_SECT: {
4158           symbol_section = section_info.GetSection(nlist.n_sect, nlist.n_value);
4159 
4160           if (!symbol_section) {
4161             // TODO: warn about this?
4162             add_nlist = false;
4163             break;
4164           }
4165 
4166           if (TEXT_eh_frame_sectID == nlist.n_sect) {
4167             type = eSymbolTypeException;
4168           } else {
4169             uint32_t section_type = symbol_section->Get() & SECTION_TYPE;
4170 
4171             switch (section_type) {
4172             case S_CSTRING_LITERALS:
4173               type = eSymbolTypeData;
4174               break; // section with only literal C strings
4175             case S_4BYTE_LITERALS:
4176               type = eSymbolTypeData;
4177               break; // section with only 4 byte literals
4178             case S_8BYTE_LITERALS:
4179               type = eSymbolTypeData;
4180               break; // section with only 8 byte literals
4181             case S_LITERAL_POINTERS:
4182               type = eSymbolTypeTrampoline;
4183               break; // section with only pointers to literals
4184             case S_NON_LAZY_SYMBOL_POINTERS:
4185               type = eSymbolTypeTrampoline;
4186               break; // section with only non-lazy symbol pointers
4187             case S_LAZY_SYMBOL_POINTERS:
4188               type = eSymbolTypeTrampoline;
4189               break; // section with only lazy symbol pointers
4190             case S_SYMBOL_STUBS:
4191               type = eSymbolTypeTrampoline;
4192               break; // section with only symbol stubs, byte size of stub in
4193                      // the reserved2 field
4194             case S_MOD_INIT_FUNC_POINTERS:
4195               type = eSymbolTypeCode;
4196               break; // section with only function pointers for initialization
4197             case S_MOD_TERM_FUNC_POINTERS:
4198               type = eSymbolTypeCode;
4199               break; // section with only function pointers for termination
4200             case S_INTERPOSING:
4201               type = eSymbolTypeTrampoline;
4202               break; // section with only pairs of function pointers for
4203                      // interposing
4204             case S_16BYTE_LITERALS:
4205               type = eSymbolTypeData;
4206               break; // section with only 16 byte literals
4207             case S_DTRACE_DOF:
4208               type = eSymbolTypeInstrumentation;
4209               break;
4210             case S_LAZY_DYLIB_SYMBOL_POINTERS:
4211               type = eSymbolTypeTrampoline;
4212               break;
4213             default:
4214               switch (symbol_section->GetType()) {
4215               case lldb::eSectionTypeCode:
4216                 type = eSymbolTypeCode;
4217                 break;
4218               case eSectionTypeData:
4219               case eSectionTypeDataCString:         // Inlined C string data
4220               case eSectionTypeDataCStringPointers: // Pointers to C string
4221                                                     // data
4222               case eSectionTypeDataSymbolAddress:   // Address of a symbol in
4223                                                     // the symbol table
4224               case eSectionTypeData4:
4225               case eSectionTypeData8:
4226               case eSectionTypeData16:
4227                 type = eSymbolTypeData;
4228                 break;
4229               default:
4230                 break;
4231               }
4232               break;
4233             }
4234 
4235             if (type == eSymbolTypeInvalid) {
4236               const char *symbol_sect_name =
4237                   symbol_section->GetName().AsCString();
4238               if (symbol_section->IsDescendant(text_section_sp.get())) {
4239                 if (symbol_section->IsClear(S_ATTR_PURE_INSTRUCTIONS |
4240                                             S_ATTR_SELF_MODIFYING_CODE |
4241                                             S_ATTR_SOME_INSTRUCTIONS))
4242                   type = eSymbolTypeData;
4243                 else
4244                   type = eSymbolTypeCode;
4245               } else if (symbol_section->IsDescendant(data_section_sp.get()) ||
4246                          symbol_section->IsDescendant(
4247                              data_dirty_section_sp.get()) ||
4248                          symbol_section->IsDescendant(
4249                              data_const_section_sp.get())) {
4250                 if (symbol_sect_name &&
4251                     ::strstr(symbol_sect_name, "__objc") == symbol_sect_name) {
4252                   type = eSymbolTypeRuntime;
4253 
4254                   if (symbol_name) {
4255                     llvm::StringRef symbol_name_ref(symbol_name);
4256                     if (symbol_name_ref.startswith("_OBJC_")) {
4257                       llvm::StringRef g_objc_v2_prefix_class(
4258                           "_OBJC_CLASS_$_");
4259                       llvm::StringRef g_objc_v2_prefix_metaclass(
4260                           "_OBJC_METACLASS_$_");
4261                       llvm::StringRef g_objc_v2_prefix_ivar(
4262                           "_OBJC_IVAR_$_");
4263                       if (symbol_name_ref.startswith(g_objc_v2_prefix_class)) {
4264                         symbol_name_non_abi_mangled = symbol_name + 1;
4265                         symbol_name =
4266                             symbol_name + g_objc_v2_prefix_class.size();
4267                         type = eSymbolTypeObjCClass;
4268                         demangled_is_synthesized = true;
4269                       } else if (symbol_name_ref.startswith(
4270                                      g_objc_v2_prefix_metaclass)) {
4271                         symbol_name_non_abi_mangled = symbol_name + 1;
4272                         symbol_name =
4273                             symbol_name + g_objc_v2_prefix_metaclass.size();
4274                         type = eSymbolTypeObjCMetaClass;
4275                         demangled_is_synthesized = true;
4276                       } else if (symbol_name_ref.startswith(
4277                                      g_objc_v2_prefix_ivar)) {
4278                         symbol_name_non_abi_mangled = symbol_name + 1;
4279                         symbol_name =
4280                             symbol_name + g_objc_v2_prefix_ivar.size();
4281                         type = eSymbolTypeObjCIVar;
4282                         demangled_is_synthesized = true;
4283                       }
4284                     }
4285                   }
4286                 } else if (symbol_sect_name &&
4287                            ::strstr(symbol_sect_name, "__gcc_except_tab") ==
4288                                symbol_sect_name) {
4289                   type = eSymbolTypeException;
4290                 } else {
4291                   type = eSymbolTypeData;
4292                 }
4293               } else if (symbol_sect_name &&
4294                          ::strstr(symbol_sect_name, "__IMPORT") ==
4295                              symbol_sect_name) {
4296                 type = eSymbolTypeTrampoline;
4297               } else if (symbol_section->IsDescendant(objc_section_sp.get())) {
4298                 type = eSymbolTypeRuntime;
4299                 if (symbol_name && symbol_name[0] == '.') {
4300                   llvm::StringRef symbol_name_ref(symbol_name);
4301                   llvm::StringRef g_objc_v1_prefix_class(
4302                       ".objc_class_name_");
4303                   if (symbol_name_ref.startswith(g_objc_v1_prefix_class)) {
4304                     symbol_name_non_abi_mangled = symbol_name;
4305                     symbol_name = symbol_name + g_objc_v1_prefix_class.size();
4306                     type = eSymbolTypeObjCClass;
4307                     demangled_is_synthesized = true;
4308                   }
4309                 }
4310               }
4311             }
4312           }
4313         } break;
4314         }
4315       }
4316 
4317       if (!add_nlist) {
4318         sym[sym_idx].Clear();
4319         return true;
4320       }
4321 
4322       uint64_t symbol_value = nlist.n_value;
4323 
4324       if (symbol_name_non_abi_mangled) {
4325         sym[sym_idx].GetMangled().SetMangledName(
4326             ConstString(symbol_name_non_abi_mangled));
4327         sym[sym_idx].GetMangled().SetDemangledName(ConstString(symbol_name));
4328       } else {
4329         bool symbol_name_is_mangled = false;
4330 
4331         if (symbol_name && symbol_name[0] == '_') {
4332           symbol_name_is_mangled = symbol_name[1] == '_';
4333           symbol_name++; // Skip the leading underscore
4334         }
4335 
4336         if (symbol_name) {
4337           ConstString const_symbol_name(symbol_name);
4338           sym[sym_idx].GetMangled().SetValue(const_symbol_name,
4339                                              symbol_name_is_mangled);
4340         }
4341       }
4342 
4343       if (is_gsym) {
4344         const char *gsym_name = sym[sym_idx]
4345                                     .GetMangled()
4346                                     .GetName(Mangled::ePreferMangled)
4347                                     .GetCString();
4348         if (gsym_name)
4349           N_GSYM_name_to_sym_idx[gsym_name] = sym_idx;
4350       }
4351 
4352       if (symbol_section) {
4353         const addr_t section_file_addr = symbol_section->GetFileAddress();
4354         if (symbol_byte_size == 0 && function_starts_count > 0) {
4355           addr_t symbol_lookup_file_addr = nlist.n_value;
4356           // Do an exact address match for non-ARM addresses, else get the
4357           // closest since the symbol might be a thumb symbol which has an
4358           // address with bit zero set.
4359           FunctionStarts::Entry *func_start_entry =
4360               function_starts.FindEntry(symbol_lookup_file_addr, !is_arm);
4361           if (is_arm && func_start_entry) {
4362             // Verify that the function start address is the symbol address
4363             // (ARM) or the symbol address + 1 (thumb).
4364             if (func_start_entry->addr != symbol_lookup_file_addr &&
4365                 func_start_entry->addr != (symbol_lookup_file_addr + 1)) {
4366               // Not the right entry, NULL it out...
4367               func_start_entry = nullptr;
4368             }
4369           }
4370           if (func_start_entry) {
4371             func_start_entry->data = true;
4372 
4373             addr_t symbol_file_addr = func_start_entry->addr;
4374             if (is_arm)
4375               symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
4376 
4377             const FunctionStarts::Entry *next_func_start_entry =
4378                 function_starts.FindNextEntry(func_start_entry);
4379             const addr_t section_end_file_addr =
4380                 section_file_addr + symbol_section->GetByteSize();
4381             if (next_func_start_entry) {
4382               addr_t next_symbol_file_addr = next_func_start_entry->addr;
4383               // Be sure the clear the Thumb address bit when we calculate the
4384               // size from the current and next address
4385               if (is_arm)
4386                 next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
4387               symbol_byte_size = std::min<lldb::addr_t>(
4388                   next_symbol_file_addr - symbol_file_addr,
4389                   section_end_file_addr - symbol_file_addr);
4390             } else {
4391               symbol_byte_size = section_end_file_addr - symbol_file_addr;
4392             }
4393           }
4394         }
4395         symbol_value -= section_file_addr;
4396       }
4397 
4398       if (!is_debug) {
4399         if (type == eSymbolTypeCode) {
4400           // See if we can find a N_FUN entry for any code symbols. If we do
4401           // find a match, and the name matches, then we can merge the two into
4402           // just the function symbol to avoid duplicate entries in the symbol
4403           // table.
4404           std::pair<ValueToSymbolIndexMap::const_iterator,
4405                     ValueToSymbolIndexMap::const_iterator>
4406               range;
4407           range = N_FUN_addr_to_sym_idx.equal_range(nlist.n_value);
4408           if (range.first != range.second) {
4409             for (ValueToSymbolIndexMap::const_iterator pos = range.first;
4410                  pos != range.second; ++pos) {
4411               if (sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled) ==
4412                   sym[pos->second].GetMangled().GetName(
4413                       Mangled::ePreferMangled)) {
4414                 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
4415                 // We just need the flags from the linker symbol, so put these
4416                 // flags into the N_FUN flags to avoid duplicate symbols in the
4417                 // symbol table.
4418                 sym[pos->second].SetExternal(sym[sym_idx].IsExternal());
4419                 sym[pos->second].SetFlags(nlist.n_type << 16 | nlist.n_desc);
4420                 if (resolver_addresses.find(nlist.n_value) !=
4421                     resolver_addresses.end())
4422                   sym[pos->second].SetType(eSymbolTypeResolver);
4423                 sym[sym_idx].Clear();
4424                 return true;
4425               }
4426             }
4427           } else {
4428             if (resolver_addresses.find(nlist.n_value) !=
4429                 resolver_addresses.end())
4430               type = eSymbolTypeResolver;
4431           }
4432         } else if (type == eSymbolTypeData || type == eSymbolTypeObjCClass ||
4433                    type == eSymbolTypeObjCMetaClass ||
4434                    type == eSymbolTypeObjCIVar) {
4435           // See if we can find a N_STSYM entry for any data symbols. If we do
4436           // find a match, and the name matches, then we can merge the two into
4437           // just the Static symbol to avoid duplicate entries in the symbol
4438           // table.
4439           std::pair<ValueToSymbolIndexMap::const_iterator,
4440                     ValueToSymbolIndexMap::const_iterator>
4441               range;
4442           range = N_STSYM_addr_to_sym_idx.equal_range(nlist.n_value);
4443           if (range.first != range.second) {
4444             for (ValueToSymbolIndexMap::const_iterator pos = range.first;
4445                  pos != range.second; ++pos) {
4446               if (sym[sym_idx].GetMangled().GetName(Mangled::ePreferMangled) ==
4447                   sym[pos->second].GetMangled().GetName(
4448                       Mangled::ePreferMangled)) {
4449                 m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
4450                 // We just need the flags from the linker symbol, so put these
4451                 // flags into the N_STSYM flags to avoid duplicate symbols in
4452                 // the symbol table.
4453                 sym[pos->second].SetExternal(sym[sym_idx].IsExternal());
4454                 sym[pos->second].SetFlags(nlist.n_type << 16 | nlist.n_desc);
4455                 sym[sym_idx].Clear();
4456                 return true;
4457               }
4458             }
4459           } else {
4460             // Combine N_GSYM stab entries with the non stab symbol.
4461             const char *gsym_name = sym[sym_idx]
4462                                         .GetMangled()
4463                                         .GetName(Mangled::ePreferMangled)
4464                                         .GetCString();
4465             if (gsym_name) {
4466               ConstNameToSymbolIndexMap::const_iterator pos =
4467                   N_GSYM_name_to_sym_idx.find(gsym_name);
4468               if (pos != N_GSYM_name_to_sym_idx.end()) {
4469                 const uint32_t GSYM_sym_idx = pos->second;
4470                 m_nlist_idx_to_sym_idx[nlist_idx] = GSYM_sym_idx;
4471                 // Copy the address, because often the N_GSYM address has an
4472                 // invalid address of zero when the global is a common symbol.
4473                 sym[GSYM_sym_idx].GetAddressRef().SetSection(symbol_section);
4474                 sym[GSYM_sym_idx].GetAddressRef().SetOffset(symbol_value);
4475                 add_symbol_addr(
4476                     sym[GSYM_sym_idx].GetAddress().GetFileAddress());
4477                 // We just need the flags from the linker symbol, so put these
4478                 // flags into the N_GSYM flags to avoid duplicate symbols in
4479                 // the symbol table.
4480                 sym[GSYM_sym_idx].SetFlags(nlist.n_type << 16 | nlist.n_desc);
4481                 sym[sym_idx].Clear();
4482                 return true;
4483               }
4484             }
4485           }
4486         }
4487       }
4488 
4489       sym[sym_idx].SetID(nlist_idx);
4490       sym[sym_idx].SetType(type);
4491       if (set_value) {
4492         sym[sym_idx].GetAddressRef().SetSection(symbol_section);
4493         sym[sym_idx].GetAddressRef().SetOffset(symbol_value);
4494         if (symbol_section)
4495           add_symbol_addr(sym[sym_idx].GetAddress().GetFileAddress());
4496       }
4497       sym[sym_idx].SetFlags(nlist.n_type << 16 | nlist.n_desc);
4498       if (nlist.n_desc & N_WEAK_REF)
4499         sym[sym_idx].SetIsWeak(true);
4500 
4501       if (symbol_byte_size > 0)
4502         sym[sym_idx].SetByteSize(symbol_byte_size);
4503 
4504       if (demangled_is_synthesized)
4505         sym[sym_idx].SetDemangledNameIsSynthesized(true);
4506 
4507       ++sym_idx;
4508       return true;
4509     };
4510 
4511     // First parse all the nlists but don't process them yet. See the next
4512     // comment for an explanation why.
4513     std::vector<struct nlist_64> nlists;
4514     nlists.reserve(symtab_load_command.nsyms);
4515     for (; nlist_idx < symtab_load_command.nsyms; ++nlist_idx) {
4516       if (auto nlist =
4517               ParseNList(nlist_data, nlist_data_offset, nlist_byte_size))
4518         nlists.push_back(*nlist);
4519       else
4520         break;
4521     }
4522 
4523     // Now parse all the debug symbols. This is needed to merge non-debug
4524     // symbols in the next step. Non-debug symbols are always coalesced into
4525     // the debug symbol. Doing this in one step would mean that some symbols
4526     // won't be merged.
4527     nlist_idx = 0;
4528     for (auto &nlist : nlists) {
4529       if (!ParseSymbolLambda(nlist, nlist_idx++, DebugSymbols))
4530         break;
4531     }
4532 
4533     // Finally parse all the non debug symbols.
4534     nlist_idx = 0;
4535     for (auto &nlist : nlists) {
4536       if (!ParseSymbolLambda(nlist, nlist_idx++, NonDebugSymbols))
4537         break;
4538     }
4539 
4540     for (const auto &pos : reexport_shlib_needs_fixup) {
4541       const auto undef_pos = undefined_name_to_desc.find(pos.second);
4542       if (undef_pos != undefined_name_to_desc.end()) {
4543         const uint8_t dylib_ordinal =
4544             llvm::MachO::GET_LIBRARY_ORDINAL(undef_pos->second);
4545         if (dylib_ordinal > 0 && dylib_ordinal < dylib_files.GetSize())
4546           sym[pos.first].SetReExportedSymbolSharedLibrary(
4547               dylib_files.GetFileSpecAtIndex(dylib_ordinal - 1));
4548       }
4549     }
4550   }
4551 
4552   // Count how many trie symbols we'll add to the symbol table
4553   int trie_symbol_table_augment_count = 0;
4554   for (auto &e : external_sym_trie_entries) {
4555     if (symbols_added.find(e.entry.address) == symbols_added.end())
4556       trie_symbol_table_augment_count++;
4557   }
4558 
4559   if (num_syms < sym_idx + trie_symbol_table_augment_count) {
4560     num_syms = sym_idx + trie_symbol_table_augment_count;
4561     sym = symtab.Resize(num_syms);
4562   }
4563   uint32_t synthetic_sym_id = symtab_load_command.nsyms;
4564 
4565   // Add symbols from the trie to the symbol table.
4566   for (auto &e : external_sym_trie_entries) {
4567     if (symbols_added.contains(e.entry.address))
4568       continue;
4569 
4570     // Find the section that this trie address is in, use that to annotate
4571     // symbol type as we add the trie address and name to the symbol table.
4572     Address symbol_addr;
4573     if (module_sp->ResolveFileAddress(e.entry.address, symbol_addr)) {
4574       SectionSP symbol_section(symbol_addr.GetSection());
4575       const char *symbol_name = e.entry.name.GetCString();
4576       bool demangled_is_synthesized = false;
4577       SymbolType type =
4578           GetSymbolType(symbol_name, demangled_is_synthesized, text_section_sp,
4579                         data_section_sp, data_dirty_section_sp,
4580                         data_const_section_sp, symbol_section);
4581 
4582       sym[sym_idx].SetType(type);
4583       if (symbol_section) {
4584         sym[sym_idx].SetID(synthetic_sym_id++);
4585         sym[sym_idx].GetMangled().SetMangledName(ConstString(symbol_name));
4586         if (demangled_is_synthesized)
4587           sym[sym_idx].SetDemangledNameIsSynthesized(true);
4588         sym[sym_idx].SetIsSynthetic(true);
4589         sym[sym_idx].SetExternal(true);
4590         sym[sym_idx].GetAddressRef() = symbol_addr;
4591         add_symbol_addr(symbol_addr.GetFileAddress());
4592         if (e.entry.flags & TRIE_SYMBOL_IS_THUMB)
4593           sym[sym_idx].SetFlags(MACHO_NLIST_ARM_SYMBOL_IS_THUMB);
4594         ++sym_idx;
4595       }
4596     }
4597   }
4598 
4599   if (function_starts_count > 0) {
4600     uint32_t num_synthetic_function_symbols = 0;
4601     for (i = 0; i < function_starts_count; ++i) {
4602       if (symbols_added.find(function_starts.GetEntryRef(i).addr) ==
4603           symbols_added.end())
4604         ++num_synthetic_function_symbols;
4605     }
4606 
4607     if (num_synthetic_function_symbols > 0) {
4608       if (num_syms < sym_idx + num_synthetic_function_symbols) {
4609         num_syms = sym_idx + num_synthetic_function_symbols;
4610         sym = symtab.Resize(num_syms);
4611       }
4612       for (i = 0; i < function_starts_count; ++i) {
4613         const FunctionStarts::Entry *func_start_entry =
4614             function_starts.GetEntryAtIndex(i);
4615         if (symbols_added.find(func_start_entry->addr) == symbols_added.end()) {
4616           addr_t symbol_file_addr = func_start_entry->addr;
4617           uint32_t symbol_flags = 0;
4618           if (func_start_entry->data)
4619             symbol_flags = MACHO_NLIST_ARM_SYMBOL_IS_THUMB;
4620           Address symbol_addr;
4621           if (module_sp->ResolveFileAddress(symbol_file_addr, symbol_addr)) {
4622             SectionSP symbol_section(symbol_addr.GetSection());
4623             uint32_t symbol_byte_size = 0;
4624             if (symbol_section) {
4625               const addr_t section_file_addr = symbol_section->GetFileAddress();
4626               const FunctionStarts::Entry *next_func_start_entry =
4627                   function_starts.FindNextEntry(func_start_entry);
4628               const addr_t section_end_file_addr =
4629                   section_file_addr + symbol_section->GetByteSize();
4630               if (next_func_start_entry) {
4631                 addr_t next_symbol_file_addr = next_func_start_entry->addr;
4632                 if (is_arm)
4633                   next_symbol_file_addr &= THUMB_ADDRESS_BIT_MASK;
4634                 symbol_byte_size = std::min<lldb::addr_t>(
4635                     next_symbol_file_addr - symbol_file_addr,
4636                     section_end_file_addr - symbol_file_addr);
4637               } else {
4638                 symbol_byte_size = section_end_file_addr - symbol_file_addr;
4639               }
4640               sym[sym_idx].SetID(synthetic_sym_id++);
4641               // Don't set the name for any synthetic symbols, the Symbol
4642               // object will generate one if needed when the name is accessed
4643               // via accessors.
4644               sym[sym_idx].GetMangled().SetDemangledName(ConstString());
4645               sym[sym_idx].SetType(eSymbolTypeCode);
4646               sym[sym_idx].SetIsSynthetic(true);
4647               sym[sym_idx].GetAddressRef() = symbol_addr;
4648               add_symbol_addr(symbol_addr.GetFileAddress());
4649               if (symbol_flags)
4650                 sym[sym_idx].SetFlags(symbol_flags);
4651               if (symbol_byte_size)
4652                 sym[sym_idx].SetByteSize(symbol_byte_size);
4653               ++sym_idx;
4654             }
4655           }
4656         }
4657       }
4658     }
4659   }
4660 
4661   // Trim our symbols down to just what we ended up with after removing any
4662   // symbols.
4663   if (sym_idx < num_syms) {
4664     num_syms = sym_idx;
4665     sym = symtab.Resize(num_syms);
4666   }
4667 
4668   // Now synthesize indirect symbols
4669   if (m_dysymtab.nindirectsyms != 0) {
4670     if (indirect_symbol_index_data.GetByteSize()) {
4671       NListIndexToSymbolIndexMap::const_iterator end_index_pos =
4672           m_nlist_idx_to_sym_idx.end();
4673 
4674       for (uint32_t sect_idx = 1; sect_idx < m_mach_sections.size();
4675            ++sect_idx) {
4676         if ((m_mach_sections[sect_idx].flags & SECTION_TYPE) ==
4677             S_SYMBOL_STUBS) {
4678           uint32_t symbol_stub_byte_size = m_mach_sections[sect_idx].reserved2;
4679           if (symbol_stub_byte_size == 0)
4680             continue;
4681 
4682           const uint32_t num_symbol_stubs =
4683               m_mach_sections[sect_idx].size / symbol_stub_byte_size;
4684 
4685           if (num_symbol_stubs == 0)
4686             continue;
4687 
4688           const uint32_t symbol_stub_index_offset =
4689               m_mach_sections[sect_idx].reserved1;
4690           for (uint32_t stub_idx = 0; stub_idx < num_symbol_stubs; ++stub_idx) {
4691             const uint32_t symbol_stub_index =
4692                 symbol_stub_index_offset + stub_idx;
4693             const lldb::addr_t symbol_stub_addr =
4694                 m_mach_sections[sect_idx].addr +
4695                 (stub_idx * symbol_stub_byte_size);
4696             lldb::offset_t symbol_stub_offset = symbol_stub_index * 4;
4697             if (indirect_symbol_index_data.ValidOffsetForDataOfSize(
4698                     symbol_stub_offset, 4)) {
4699               const uint32_t stub_sym_id =
4700                   indirect_symbol_index_data.GetU32(&symbol_stub_offset);
4701               if (stub_sym_id & (INDIRECT_SYMBOL_ABS | INDIRECT_SYMBOL_LOCAL))
4702                 continue;
4703 
4704               NListIndexToSymbolIndexMap::const_iterator index_pos =
4705                   m_nlist_idx_to_sym_idx.find(stub_sym_id);
4706               Symbol *stub_symbol = nullptr;
4707               if (index_pos != end_index_pos) {
4708                 // We have a remapping from the original nlist index to a
4709                 // current symbol index, so just look this up by index
4710                 stub_symbol = symtab.SymbolAtIndex(index_pos->second);
4711               } else {
4712                 // We need to lookup a symbol using the original nlist symbol
4713                 // index since this index is coming from the S_SYMBOL_STUBS
4714                 stub_symbol = symtab.FindSymbolByID(stub_sym_id);
4715               }
4716 
4717               if (stub_symbol) {
4718                 Address so_addr(symbol_stub_addr, section_list);
4719 
4720                 if (stub_symbol->GetType() == eSymbolTypeUndefined) {
4721                   // Change the external symbol into a trampoline that makes
4722                   // sense These symbols were N_UNDF N_EXT, and are useless
4723                   // to us, so we can re-use them so we don't have to make up
4724                   // a synthetic symbol for no good reason.
4725                   if (resolver_addresses.find(symbol_stub_addr) ==
4726                       resolver_addresses.end())
4727                     stub_symbol->SetType(eSymbolTypeTrampoline);
4728                   else
4729                     stub_symbol->SetType(eSymbolTypeResolver);
4730                   stub_symbol->SetExternal(false);
4731                   stub_symbol->GetAddressRef() = so_addr;
4732                   stub_symbol->SetByteSize(symbol_stub_byte_size);
4733                 } else {
4734                   // Make a synthetic symbol to describe the trampoline stub
4735                   Mangled stub_symbol_mangled_name(stub_symbol->GetMangled());
4736                   if (sym_idx >= num_syms) {
4737                     sym = symtab.Resize(++num_syms);
4738                     stub_symbol = nullptr; // this pointer no longer valid
4739                   }
4740                   sym[sym_idx].SetID(synthetic_sym_id++);
4741                   sym[sym_idx].GetMangled() = stub_symbol_mangled_name;
4742                   if (resolver_addresses.find(symbol_stub_addr) ==
4743                       resolver_addresses.end())
4744                     sym[sym_idx].SetType(eSymbolTypeTrampoline);
4745                   else
4746                     sym[sym_idx].SetType(eSymbolTypeResolver);
4747                   sym[sym_idx].SetIsSynthetic(true);
4748                   sym[sym_idx].GetAddressRef() = so_addr;
4749                   add_symbol_addr(so_addr.GetFileAddress());
4750                   sym[sym_idx].SetByteSize(symbol_stub_byte_size);
4751                   ++sym_idx;
4752                 }
4753               } else {
4754                 if (log)
4755                   log->Warning("symbol stub referencing symbol table symbol "
4756                                "%u that isn't in our minimal symbol table, "
4757                                "fix this!!!",
4758                                stub_sym_id);
4759               }
4760             }
4761           }
4762         }
4763       }
4764     }
4765   }
4766 
4767   if (!reexport_trie_entries.empty()) {
4768     for (const auto &e : reexport_trie_entries) {
4769       if (e.entry.import_name) {
4770         // Only add indirect symbols from the Trie entries if we didn't have
4771         // a N_INDR nlist entry for this already
4772         if (indirect_symbol_names.find(e.entry.name) ==
4773             indirect_symbol_names.end()) {
4774           // Make a synthetic symbol to describe re-exported symbol.
4775           if (sym_idx >= num_syms)
4776             sym = symtab.Resize(++num_syms);
4777           sym[sym_idx].SetID(synthetic_sym_id++);
4778           sym[sym_idx].GetMangled() = Mangled(e.entry.name);
4779           sym[sym_idx].SetType(eSymbolTypeReExported);
4780           sym[sym_idx].SetIsSynthetic(true);
4781           sym[sym_idx].SetReExportedSymbolName(e.entry.import_name);
4782           if (e.entry.other > 0 && e.entry.other <= dylib_files.GetSize()) {
4783             sym[sym_idx].SetReExportedSymbolSharedLibrary(
4784                 dylib_files.GetFileSpecAtIndex(e.entry.other - 1));
4785           }
4786           ++sym_idx;
4787         }
4788       }
4789     }
4790   }
4791 }
4792 
4793 void ObjectFileMachO::Dump(Stream *s) {
4794   ModuleSP module_sp(GetModule());
4795   if (module_sp) {
4796     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
4797     s->Printf("%p: ", static_cast<void *>(this));
4798     s->Indent();
4799     if (m_header.magic == MH_MAGIC_64 || m_header.magic == MH_CIGAM_64)
4800       s->PutCString("ObjectFileMachO64");
4801     else
4802       s->PutCString("ObjectFileMachO32");
4803 
4804     *s << ", file = '" << m_file;
4805     ModuleSpecList all_specs;
4806     ModuleSpec base_spec;
4807     GetAllArchSpecs(m_header, m_data, MachHeaderSizeFromMagic(m_header.magic),
4808                     base_spec, all_specs);
4809     for (unsigned i = 0, e = all_specs.GetSize(); i != e; ++i) {
4810       *s << "', triple";
4811       if (e)
4812         s->Printf("[%d]", i);
4813       *s << " = ";
4814       *s << all_specs.GetModuleSpecRefAtIndex(i)
4815                 .GetArchitecture()
4816                 .GetTriple()
4817                 .getTriple();
4818     }
4819     *s << "\n";
4820     SectionList *sections = GetSectionList();
4821     if (sections)
4822       sections->Dump(s->AsRawOstream(), s->GetIndentLevel(), nullptr, true,
4823                      UINT32_MAX);
4824 
4825     if (m_symtab_up)
4826       m_symtab_up->Dump(s, nullptr, eSortOrderNone);
4827   }
4828 }
4829 
4830 UUID ObjectFileMachO::GetUUID(const llvm::MachO::mach_header &header,
4831                               const lldb_private::DataExtractor &data,
4832                               lldb::offset_t lc_offset) {
4833   uint32_t i;
4834   llvm::MachO::uuid_command load_cmd;
4835 
4836   lldb::offset_t offset = lc_offset;
4837   for (i = 0; i < header.ncmds; ++i) {
4838     const lldb::offset_t cmd_offset = offset;
4839     if (data.GetU32(&offset, &load_cmd, 2) == nullptr)
4840       break;
4841 
4842     if (load_cmd.cmd == LC_UUID) {
4843       const uint8_t *uuid_bytes = data.PeekData(offset, 16);
4844 
4845       if (uuid_bytes) {
4846         // OpenCL on Mac OS X uses the same UUID for each of its object files.
4847         // We pretend these object files have no UUID to prevent crashing.
4848 
4849         const uint8_t opencl_uuid[] = {0x8c, 0x8e, 0xb3, 0x9b, 0x3b, 0xa8,
4850                                        0x4b, 0x16, 0xb6, 0xa4, 0x27, 0x63,
4851                                        0xbb, 0x14, 0xf0, 0x0d};
4852 
4853         if (!memcmp(uuid_bytes, opencl_uuid, 16))
4854           return UUID();
4855 
4856         return UUID(uuid_bytes, 16);
4857       }
4858       return UUID();
4859     }
4860     offset = cmd_offset + load_cmd.cmdsize;
4861   }
4862   return UUID();
4863 }
4864 
4865 static llvm::StringRef GetOSName(uint32_t cmd) {
4866   switch (cmd) {
4867   case llvm::MachO::LC_VERSION_MIN_IPHONEOS:
4868     return llvm::Triple::getOSTypeName(llvm::Triple::IOS);
4869   case llvm::MachO::LC_VERSION_MIN_MACOSX:
4870     return llvm::Triple::getOSTypeName(llvm::Triple::MacOSX);
4871   case llvm::MachO::LC_VERSION_MIN_TVOS:
4872     return llvm::Triple::getOSTypeName(llvm::Triple::TvOS);
4873   case llvm::MachO::LC_VERSION_MIN_WATCHOS:
4874     return llvm::Triple::getOSTypeName(llvm::Triple::WatchOS);
4875   default:
4876     llvm_unreachable("unexpected LC_VERSION load command");
4877   }
4878 }
4879 
4880 namespace {
4881 struct OSEnv {
4882   llvm::StringRef os_type;
4883   llvm::StringRef environment;
4884   OSEnv(uint32_t cmd) {
4885     switch (cmd) {
4886     case llvm::MachO::PLATFORM_MACOS:
4887       os_type = llvm::Triple::getOSTypeName(llvm::Triple::MacOSX);
4888       return;
4889     case llvm::MachO::PLATFORM_IOS:
4890       os_type = llvm::Triple::getOSTypeName(llvm::Triple::IOS);
4891       return;
4892     case llvm::MachO::PLATFORM_TVOS:
4893       os_type = llvm::Triple::getOSTypeName(llvm::Triple::TvOS);
4894       return;
4895     case llvm::MachO::PLATFORM_WATCHOS:
4896       os_type = llvm::Triple::getOSTypeName(llvm::Triple::WatchOS);
4897       return;
4898     // TODO: add BridgeOS & DriverKit once in llvm/lib/Support/Triple.cpp
4899     // NEED_BRIDGEOS_TRIPLE
4900     // case llvm::MachO::PLATFORM_BRIDGEOS:
4901     //   os_type = llvm::Triple::getOSTypeName(llvm::Triple::BridgeOS);
4902     //   return;
4903     // case llvm::MachO::PLATFORM_DRIVERKIT:
4904     //   os_type = llvm::Triple::getOSTypeName(llvm::Triple::DriverKit);
4905     //   return;
4906     case llvm::MachO::PLATFORM_MACCATALYST:
4907       os_type = llvm::Triple::getOSTypeName(llvm::Triple::IOS);
4908       environment = llvm::Triple::getEnvironmentTypeName(llvm::Triple::MacABI);
4909       return;
4910     case llvm::MachO::PLATFORM_IOSSIMULATOR:
4911       os_type = llvm::Triple::getOSTypeName(llvm::Triple::IOS);
4912       environment =
4913           llvm::Triple::getEnvironmentTypeName(llvm::Triple::Simulator);
4914       return;
4915     case llvm::MachO::PLATFORM_TVOSSIMULATOR:
4916       os_type = llvm::Triple::getOSTypeName(llvm::Triple::TvOS);
4917       environment =
4918           llvm::Triple::getEnvironmentTypeName(llvm::Triple::Simulator);
4919       return;
4920     case llvm::MachO::PLATFORM_WATCHOSSIMULATOR:
4921       os_type = llvm::Triple::getOSTypeName(llvm::Triple::WatchOS);
4922       environment =
4923           llvm::Triple::getEnvironmentTypeName(llvm::Triple::Simulator);
4924       return;
4925     default: {
4926       Log *log(GetLog(LLDBLog::Symbols | LLDBLog::Process));
4927       LLDB_LOGF(log, "unsupported platform in LC_BUILD_VERSION");
4928     }
4929     }
4930   }
4931 };
4932 
4933 struct MinOS {
4934   uint32_t major_version, minor_version, patch_version;
4935   MinOS(uint32_t version)
4936       : major_version(version >> 16), minor_version((version >> 8) & 0xffu),
4937         patch_version(version & 0xffu) {}
4938 };
4939 } // namespace
4940 
4941 void ObjectFileMachO::GetAllArchSpecs(const llvm::MachO::mach_header &header,
4942                                       const lldb_private::DataExtractor &data,
4943                                       lldb::offset_t lc_offset,
4944                                       ModuleSpec &base_spec,
4945                                       lldb_private::ModuleSpecList &all_specs) {
4946   auto &base_arch = base_spec.GetArchitecture();
4947   base_arch.SetArchitecture(eArchTypeMachO, header.cputype, header.cpusubtype);
4948   if (!base_arch.IsValid())
4949     return;
4950 
4951   bool found_any = false;
4952   auto add_triple = [&](const llvm::Triple &triple) {
4953     auto spec = base_spec;
4954     spec.GetArchitecture().GetTriple() = triple;
4955     if (spec.GetArchitecture().IsValid()) {
4956       spec.GetUUID() = ObjectFileMachO::GetUUID(header, data, lc_offset);
4957       all_specs.Append(spec);
4958       found_any = true;
4959     }
4960   };
4961 
4962   // Set OS to an unspecified unknown or a "*" so it can match any OS
4963   llvm::Triple base_triple = base_arch.GetTriple();
4964   base_triple.setOS(llvm::Triple::UnknownOS);
4965   base_triple.setOSName(llvm::StringRef());
4966 
4967   if (header.filetype == MH_PRELOAD) {
4968     if (header.cputype == CPU_TYPE_ARM) {
4969       // If this is a 32-bit arm binary, and it's a standalone binary, force
4970       // the Vendor to Apple so we don't accidentally pick up the generic
4971       // armv7 ABI at runtime.  Apple's armv7 ABI always uses r7 for the
4972       // frame pointer register; most other armv7 ABIs use a combination of
4973       // r7 and r11.
4974       base_triple.setVendor(llvm::Triple::Apple);
4975     } else {
4976       // Set vendor to an unspecified unknown or a "*" so it can match any
4977       // vendor This is required for correct behavior of EFI debugging on
4978       // x86_64
4979       base_triple.setVendor(llvm::Triple::UnknownVendor);
4980       base_triple.setVendorName(llvm::StringRef());
4981     }
4982     return add_triple(base_triple);
4983   }
4984 
4985   llvm::MachO::load_command load_cmd;
4986 
4987   // See if there is an LC_VERSION_MIN_* load command that can give
4988   // us the OS type.
4989   lldb::offset_t offset = lc_offset;
4990   for (uint32_t i = 0; i < header.ncmds; ++i) {
4991     const lldb::offset_t cmd_offset = offset;
4992     if (data.GetU32(&offset, &load_cmd, 2) == nullptr)
4993       break;
4994 
4995     llvm::MachO::version_min_command version_min;
4996     switch (load_cmd.cmd) {
4997     case llvm::MachO::LC_VERSION_MIN_MACOSX:
4998     case llvm::MachO::LC_VERSION_MIN_IPHONEOS:
4999     case llvm::MachO::LC_VERSION_MIN_TVOS:
5000     case llvm::MachO::LC_VERSION_MIN_WATCHOS: {
5001       if (load_cmd.cmdsize != sizeof(version_min))
5002         break;
5003       if (data.ExtractBytes(cmd_offset, sizeof(version_min),
5004                             data.GetByteOrder(), &version_min) == 0)
5005         break;
5006       MinOS min_os(version_min.version);
5007       llvm::SmallString<32> os_name;
5008       llvm::raw_svector_ostream os(os_name);
5009       os << GetOSName(load_cmd.cmd) << min_os.major_version << '.'
5010          << min_os.minor_version << '.' << min_os.patch_version;
5011 
5012       auto triple = base_triple;
5013       triple.setOSName(os.str());
5014 
5015       // Disambiguate legacy simulator platforms.
5016       if (load_cmd.cmd != llvm::MachO::LC_VERSION_MIN_MACOSX &&
5017           (base_triple.getArch() == llvm::Triple::x86_64 ||
5018            base_triple.getArch() == llvm::Triple::x86)) {
5019         // The combination of legacy LC_VERSION_MIN load command and
5020         // x86 architecture always indicates a simulator environment.
5021         // The combination of LC_VERSION_MIN and arm architecture only
5022         // appears for native binaries. Back-deploying simulator
5023         // binaries on Apple Silicon Macs use the modern unambigous
5024         // LC_BUILD_VERSION load commands; no special handling required.
5025         triple.setEnvironment(llvm::Triple::Simulator);
5026       }
5027       add_triple(triple);
5028       break;
5029     }
5030     default:
5031       break;
5032     }
5033 
5034     offset = cmd_offset + load_cmd.cmdsize;
5035   }
5036 
5037   // See if there are LC_BUILD_VERSION load commands that can give
5038   // us the OS type.
5039   offset = lc_offset;
5040   for (uint32_t i = 0; i < header.ncmds; ++i) {
5041     const lldb::offset_t cmd_offset = offset;
5042     if (data.GetU32(&offset, &load_cmd, 2) == nullptr)
5043       break;
5044 
5045     do {
5046       if (load_cmd.cmd == llvm::MachO::LC_BUILD_VERSION) {
5047         llvm::MachO::build_version_command build_version;
5048         if (load_cmd.cmdsize < sizeof(build_version)) {
5049           // Malformed load command.
5050           break;
5051         }
5052         if (data.ExtractBytes(cmd_offset, sizeof(build_version),
5053                               data.GetByteOrder(), &build_version) == 0)
5054           break;
5055         MinOS min_os(build_version.minos);
5056         OSEnv os_env(build_version.platform);
5057         llvm::SmallString<16> os_name;
5058         llvm::raw_svector_ostream os(os_name);
5059         os << os_env.os_type << min_os.major_version << '.'
5060            << min_os.minor_version << '.' << min_os.patch_version;
5061         auto triple = base_triple;
5062         triple.setOSName(os.str());
5063         os_name.clear();
5064         if (!os_env.environment.empty())
5065           triple.setEnvironmentName(os_env.environment);
5066         add_triple(triple);
5067       }
5068     } while (false);
5069     offset = cmd_offset + load_cmd.cmdsize;
5070   }
5071 
5072   if (!found_any) {
5073     add_triple(base_triple);
5074   }
5075 }
5076 
5077 ArchSpec ObjectFileMachO::GetArchitecture(
5078     ModuleSP module_sp, const llvm::MachO::mach_header &header,
5079     const lldb_private::DataExtractor &data, lldb::offset_t lc_offset) {
5080   ModuleSpecList all_specs;
5081   ModuleSpec base_spec;
5082   GetAllArchSpecs(header, data, MachHeaderSizeFromMagic(header.magic),
5083                   base_spec, all_specs);
5084 
5085   // If the object file offers multiple alternative load commands,
5086   // pick the one that matches the module.
5087   if (module_sp) {
5088     const ArchSpec &module_arch = module_sp->GetArchitecture();
5089     for (unsigned i = 0, e = all_specs.GetSize(); i != e; ++i) {
5090       ArchSpec mach_arch =
5091           all_specs.GetModuleSpecRefAtIndex(i).GetArchitecture();
5092       if (module_arch.IsCompatibleMatch(mach_arch))
5093         return mach_arch;
5094     }
5095   }
5096 
5097   // Return the first arch we found.
5098   if (all_specs.GetSize() == 0)
5099     return {};
5100   return all_specs.GetModuleSpecRefAtIndex(0).GetArchitecture();
5101 }
5102 
5103 UUID ObjectFileMachO::GetUUID() {
5104   ModuleSP module_sp(GetModule());
5105   if (module_sp) {
5106     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5107     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5108     return GetUUID(m_header, m_data, offset);
5109   }
5110   return UUID();
5111 }
5112 
5113 uint32_t ObjectFileMachO::GetDependentModules(FileSpecList &files) {
5114   uint32_t count = 0;
5115   ModuleSP module_sp(GetModule());
5116   if (module_sp) {
5117     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5118     llvm::MachO::load_command load_cmd;
5119     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5120     std::vector<std::string> rpath_paths;
5121     std::vector<std::string> rpath_relative_paths;
5122     std::vector<std::string> at_exec_relative_paths;
5123     uint32_t i;
5124     for (i = 0; i < m_header.ncmds; ++i) {
5125       const uint32_t cmd_offset = offset;
5126       if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr)
5127         break;
5128 
5129       switch (load_cmd.cmd) {
5130       case LC_RPATH:
5131       case LC_LOAD_DYLIB:
5132       case LC_LOAD_WEAK_DYLIB:
5133       case LC_REEXPORT_DYLIB:
5134       case LC_LOAD_DYLINKER:
5135       case LC_LOADFVMLIB:
5136       case LC_LOAD_UPWARD_DYLIB: {
5137         uint32_t name_offset = cmd_offset + m_data.GetU32(&offset);
5138         const char *path = m_data.PeekCStr(name_offset);
5139         if (path) {
5140           if (load_cmd.cmd == LC_RPATH)
5141             rpath_paths.push_back(path);
5142           else {
5143             if (path[0] == '@') {
5144               if (strncmp(path, "@rpath", strlen("@rpath")) == 0)
5145                 rpath_relative_paths.push_back(path + strlen("@rpath"));
5146               else if (strncmp(path, "@executable_path",
5147                                strlen("@executable_path")) == 0)
5148                 at_exec_relative_paths.push_back(path +
5149                                                  strlen("@executable_path"));
5150             } else {
5151               FileSpec file_spec(path);
5152               if (files.AppendIfUnique(file_spec))
5153                 count++;
5154             }
5155           }
5156         }
5157       } break;
5158 
5159       default:
5160         break;
5161       }
5162       offset = cmd_offset + load_cmd.cmdsize;
5163     }
5164 
5165     FileSpec this_file_spec(m_file);
5166     FileSystem::Instance().Resolve(this_file_spec);
5167 
5168     if (!rpath_paths.empty()) {
5169       // Fixup all LC_RPATH values to be absolute paths
5170       std::string loader_path("@loader_path");
5171       std::string executable_path("@executable_path");
5172       for (auto &rpath : rpath_paths) {
5173         if (llvm::StringRef(rpath).startswith(loader_path)) {
5174           rpath.erase(0, loader_path.size());
5175           rpath.insert(0, this_file_spec.GetDirectory().GetCString());
5176         } else if (llvm::StringRef(rpath).startswith(executable_path)) {
5177           rpath.erase(0, executable_path.size());
5178           rpath.insert(0, this_file_spec.GetDirectory().GetCString());
5179         }
5180       }
5181 
5182       for (const auto &rpath_relative_path : rpath_relative_paths) {
5183         for (const auto &rpath : rpath_paths) {
5184           std::string path = rpath;
5185           path += rpath_relative_path;
5186           // It is OK to resolve this path because we must find a file on disk
5187           // for us to accept it anyway if it is rpath relative.
5188           FileSpec file_spec(path);
5189           FileSystem::Instance().Resolve(file_spec);
5190           if (FileSystem::Instance().Exists(file_spec) &&
5191               files.AppendIfUnique(file_spec)) {
5192             count++;
5193             break;
5194           }
5195         }
5196       }
5197     }
5198 
5199     // We may have @executable_paths but no RPATHS.  Figure those out here.
5200     // Only do this if this object file is the executable.  We have no way to
5201     // get back to the actual executable otherwise, so we won't get the right
5202     // path.
5203     if (!at_exec_relative_paths.empty() && CalculateType() == eTypeExecutable) {
5204       FileSpec exec_dir = this_file_spec.CopyByRemovingLastPathComponent();
5205       for (const auto &at_exec_relative_path : at_exec_relative_paths) {
5206         FileSpec file_spec =
5207             exec_dir.CopyByAppendingPathComponent(at_exec_relative_path);
5208         if (FileSystem::Instance().Exists(file_spec) &&
5209             files.AppendIfUnique(file_spec))
5210           count++;
5211       }
5212     }
5213   }
5214   return count;
5215 }
5216 
5217 lldb_private::Address ObjectFileMachO::GetEntryPointAddress() {
5218   // If the object file is not an executable it can't hold the entry point.
5219   // m_entry_point_address is initialized to an invalid address, so we can just
5220   // return that. If m_entry_point_address is valid it means we've found it
5221   // already, so return the cached value.
5222 
5223   if ((!IsExecutable() && !IsDynamicLoader()) ||
5224       m_entry_point_address.IsValid()) {
5225     return m_entry_point_address;
5226   }
5227 
5228   // Otherwise, look for the UnixThread or Thread command.  The data for the
5229   // Thread command is given in /usr/include/mach-o.h, but it is basically:
5230   //
5231   //  uint32_t flavor  - this is the flavor argument you would pass to
5232   //  thread_get_state
5233   //  uint32_t count   - this is the count of longs in the thread state data
5234   //  struct XXX_thread_state state - this is the structure from
5235   //  <machine/thread_status.h> corresponding to the flavor.
5236   //  <repeat this trio>
5237   //
5238   // So we just keep reading the various register flavors till we find the GPR
5239   // one, then read the PC out of there.
5240   // FIXME: We will need to have a "RegisterContext data provider" class at some
5241   // point that can get all the registers
5242   // out of data in this form & attach them to a given thread.  That should
5243   // underlie the MacOS X User process plugin, and we'll also need it for the
5244   // MacOS X Core File process plugin.  When we have that we can also use it
5245   // here.
5246   //
5247   // For now we hard-code the offsets and flavors we need:
5248   //
5249   //
5250 
5251   ModuleSP module_sp(GetModule());
5252   if (module_sp) {
5253     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5254     llvm::MachO::load_command load_cmd;
5255     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5256     uint32_t i;
5257     lldb::addr_t start_address = LLDB_INVALID_ADDRESS;
5258     bool done = false;
5259 
5260     for (i = 0; i < m_header.ncmds; ++i) {
5261       const lldb::offset_t cmd_offset = offset;
5262       if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr)
5263         break;
5264 
5265       switch (load_cmd.cmd) {
5266       case LC_UNIXTHREAD:
5267       case LC_THREAD: {
5268         while (offset < cmd_offset + load_cmd.cmdsize) {
5269           uint32_t flavor = m_data.GetU32(&offset);
5270           uint32_t count = m_data.GetU32(&offset);
5271           if (count == 0) {
5272             // We've gotten off somehow, log and exit;
5273             return m_entry_point_address;
5274           }
5275 
5276           switch (m_header.cputype) {
5277           case llvm::MachO::CPU_TYPE_ARM:
5278             if (flavor == 1 ||
5279                 flavor == 9) // ARM_THREAD_STATE/ARM_THREAD_STATE32
5280                              // from mach/arm/thread_status.h
5281             {
5282               offset += 60; // This is the offset of pc in the GPR thread state
5283                             // data structure.
5284               start_address = m_data.GetU32(&offset);
5285               done = true;
5286             }
5287             break;
5288           case llvm::MachO::CPU_TYPE_ARM64:
5289           case llvm::MachO::CPU_TYPE_ARM64_32:
5290             if (flavor == 6) // ARM_THREAD_STATE64 from mach/arm/thread_status.h
5291             {
5292               offset += 256; // This is the offset of pc in the GPR thread state
5293                              // data structure.
5294               start_address = m_data.GetU64(&offset);
5295               done = true;
5296             }
5297             break;
5298           case llvm::MachO::CPU_TYPE_I386:
5299             if (flavor ==
5300                 1) // x86_THREAD_STATE32 from mach/i386/thread_status.h
5301             {
5302               offset += 40; // This is the offset of eip in the GPR thread state
5303                             // data structure.
5304               start_address = m_data.GetU32(&offset);
5305               done = true;
5306             }
5307             break;
5308           case llvm::MachO::CPU_TYPE_X86_64:
5309             if (flavor ==
5310                 4) // x86_THREAD_STATE64 from mach/i386/thread_status.h
5311             {
5312               offset += 16 * 8; // This is the offset of rip in the GPR thread
5313                                 // state data structure.
5314               start_address = m_data.GetU64(&offset);
5315               done = true;
5316             }
5317             break;
5318           default:
5319             return m_entry_point_address;
5320           }
5321           // Haven't found the GPR flavor yet, skip over the data for this
5322           // flavor:
5323           if (done)
5324             break;
5325           offset += count * 4;
5326         }
5327       } break;
5328       case LC_MAIN: {
5329         ConstString text_segment_name("__TEXT");
5330         uint64_t entryoffset = m_data.GetU64(&offset);
5331         SectionSP text_segment_sp =
5332             GetSectionList()->FindSectionByName(text_segment_name);
5333         if (text_segment_sp) {
5334           done = true;
5335           start_address = text_segment_sp->GetFileAddress() + entryoffset;
5336         }
5337       } break;
5338 
5339       default:
5340         break;
5341       }
5342       if (done)
5343         break;
5344 
5345       // Go to the next load command:
5346       offset = cmd_offset + load_cmd.cmdsize;
5347     }
5348 
5349     if (start_address == LLDB_INVALID_ADDRESS && IsDynamicLoader()) {
5350       if (GetSymtab()) {
5351         Symbol *dyld_start_sym = GetSymtab()->FindFirstSymbolWithNameAndType(
5352             ConstString("_dyld_start"), SymbolType::eSymbolTypeCode,
5353             Symtab::eDebugAny, Symtab::eVisibilityAny);
5354         if (dyld_start_sym && dyld_start_sym->GetAddress().IsValid()) {
5355           start_address = dyld_start_sym->GetAddress().GetFileAddress();
5356         }
5357       }
5358     }
5359 
5360     if (start_address != LLDB_INVALID_ADDRESS) {
5361       // We got the start address from the load commands, so now resolve that
5362       // address in the sections of this ObjectFile:
5363       if (!m_entry_point_address.ResolveAddressUsingFileSections(
5364               start_address, GetSectionList())) {
5365         m_entry_point_address.Clear();
5366       }
5367     } else {
5368       // We couldn't read the UnixThread load command - maybe it wasn't there.
5369       // As a fallback look for the "start" symbol in the main executable.
5370 
5371       ModuleSP module_sp(GetModule());
5372 
5373       if (module_sp) {
5374         SymbolContextList contexts;
5375         SymbolContext context;
5376         module_sp->FindSymbolsWithNameAndType(ConstString("start"),
5377                                               eSymbolTypeCode, contexts);
5378         if (contexts.GetSize()) {
5379           if (contexts.GetContextAtIndex(0, context))
5380             m_entry_point_address = context.symbol->GetAddress();
5381         }
5382       }
5383     }
5384   }
5385 
5386   return m_entry_point_address;
5387 }
5388 
5389 lldb_private::Address ObjectFileMachO::GetBaseAddress() {
5390   lldb_private::Address header_addr;
5391   SectionList *section_list = GetSectionList();
5392   if (section_list) {
5393     SectionSP text_segment_sp(
5394         section_list->FindSectionByName(GetSegmentNameTEXT()));
5395     if (text_segment_sp) {
5396       header_addr.SetSection(text_segment_sp);
5397       header_addr.SetOffset(0);
5398     }
5399   }
5400   return header_addr;
5401 }
5402 
5403 uint32_t ObjectFileMachO::GetNumThreadContexts() {
5404   ModuleSP module_sp(GetModule());
5405   if (module_sp) {
5406     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5407     if (!m_thread_context_offsets_valid) {
5408       m_thread_context_offsets_valid = true;
5409       lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5410       FileRangeArray::Entry file_range;
5411       llvm::MachO::thread_command thread_cmd;
5412       for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5413         const uint32_t cmd_offset = offset;
5414         if (m_data.GetU32(&offset, &thread_cmd, 2) == nullptr)
5415           break;
5416 
5417         if (thread_cmd.cmd == LC_THREAD) {
5418           file_range.SetRangeBase(offset);
5419           file_range.SetByteSize(thread_cmd.cmdsize - 8);
5420           m_thread_context_offsets.Append(file_range);
5421         }
5422         offset = cmd_offset + thread_cmd.cmdsize;
5423       }
5424     }
5425   }
5426   return m_thread_context_offsets.GetSize();
5427 }
5428 
5429 std::string ObjectFileMachO::GetIdentifierString() {
5430   std::string result;
5431   ModuleSP module_sp(GetModule());
5432   if (module_sp) {
5433     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5434 
5435     // First, look over the load commands for an LC_NOTE load command with
5436     // data_owner string "kern ver str" & use that if found.
5437     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5438     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5439       const uint32_t cmd_offset = offset;
5440       llvm::MachO::load_command lc = {};
5441       if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
5442         break;
5443       if (lc.cmd == LC_NOTE) {
5444         char data_owner[17];
5445         m_data.CopyData(offset, 16, data_owner);
5446         data_owner[16] = '\0';
5447         offset += 16;
5448         uint64_t fileoff = m_data.GetU64_unchecked(&offset);
5449         uint64_t size = m_data.GetU64_unchecked(&offset);
5450 
5451         // "kern ver str" has a uint32_t version and then a nul terminated
5452         // c-string.
5453         if (strcmp("kern ver str", data_owner) == 0) {
5454           offset = fileoff;
5455           uint32_t version;
5456           if (m_data.GetU32(&offset, &version, 1) != nullptr) {
5457             if (version == 1) {
5458               uint32_t strsize = size - sizeof(uint32_t);
5459               char *buf = (char *)malloc(strsize);
5460               if (buf) {
5461                 m_data.CopyData(offset, strsize, buf);
5462                 buf[strsize - 1] = '\0';
5463                 result = buf;
5464                 if (buf)
5465                   free(buf);
5466                 return result;
5467               }
5468             }
5469           }
5470         }
5471       }
5472       offset = cmd_offset + lc.cmdsize;
5473     }
5474 
5475     // Second, make a pass over the load commands looking for an obsolete
5476     // LC_IDENT load command.
5477     offset = MachHeaderSizeFromMagic(m_header.magic);
5478     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5479       const uint32_t cmd_offset = offset;
5480       llvm::MachO::ident_command ident_command;
5481       if (m_data.GetU32(&offset, &ident_command, 2) == nullptr)
5482         break;
5483       if (ident_command.cmd == LC_IDENT && ident_command.cmdsize != 0) {
5484         char *buf = (char *)malloc(ident_command.cmdsize);
5485         if (buf != nullptr && m_data.CopyData(offset, ident_command.cmdsize,
5486                                               buf) == ident_command.cmdsize) {
5487           buf[ident_command.cmdsize - 1] = '\0';
5488           result = buf;
5489         }
5490         if (buf)
5491           free(buf);
5492       }
5493       offset = cmd_offset + ident_command.cmdsize;
5494     }
5495   }
5496   return result;
5497 }
5498 
5499 addr_t ObjectFileMachO::GetAddressMask() {
5500   addr_t mask = 0;
5501   ModuleSP module_sp(GetModule());
5502   if (module_sp) {
5503     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5504     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5505     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5506       const uint32_t cmd_offset = offset;
5507       llvm::MachO::load_command lc = {};
5508       if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
5509         break;
5510       if (lc.cmd == LC_NOTE) {
5511         char data_owner[17];
5512         m_data.CopyData(offset, 16, data_owner);
5513         data_owner[16] = '\0';
5514         offset += 16;
5515         uint64_t fileoff = m_data.GetU64_unchecked(&offset);
5516 
5517         // "addrable bits" has a uint32_t version and a uint32_t
5518         // number of bits used in addressing.
5519         if (strcmp("addrable bits", data_owner) == 0) {
5520           offset = fileoff;
5521           uint32_t version;
5522           if (m_data.GetU32(&offset, &version, 1) != nullptr) {
5523             if (version == 3) {
5524               uint32_t num_addr_bits = m_data.GetU32_unchecked(&offset);
5525               if (num_addr_bits != 0) {
5526                 mask = ~((1ULL << num_addr_bits) - 1);
5527               }
5528               break;
5529             }
5530           }
5531         }
5532       }
5533       offset = cmd_offset + lc.cmdsize;
5534     }
5535   }
5536   return mask;
5537 }
5538 
5539 bool ObjectFileMachO::GetCorefileMainBinaryInfo(addr_t &value,
5540                                                 bool &value_is_offset,
5541                                                 UUID &uuid,
5542                                                 ObjectFile::BinaryType &type) {
5543   value = LLDB_INVALID_ADDRESS;
5544   value_is_offset = false;
5545   uuid.Clear();
5546   uint32_t log2_pagesize = 0; // not currently passed up to caller
5547   uint32_t platform = 0;      // not currently passed up to caller
5548   ModuleSP module_sp(GetModule());
5549   if (module_sp) {
5550     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5551     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5552     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5553       const uint32_t cmd_offset = offset;
5554       llvm::MachO::load_command lc = {};
5555       if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
5556         break;
5557       if (lc.cmd == LC_NOTE) {
5558         char data_owner[17];
5559         memset(data_owner, 0, sizeof(data_owner));
5560         m_data.CopyData(offset, 16, data_owner);
5561         offset += 16;
5562         uint64_t fileoff = m_data.GetU64_unchecked(&offset);
5563         uint64_t size = m_data.GetU64_unchecked(&offset);
5564 
5565         // struct main_bin_spec
5566         // {
5567         //     uint32_t version;       // currently 2
5568         //     uint32_t type;          // 0 == unspecified, 1 == kernel,
5569         //                             // 2 == user process,
5570         //                             // 3 == standalone binary
5571         //     uint64_t address;       // UINT64_MAX if address not specified
5572         //     uint64_t slide;         // slide, UINT64_MAX if unspecified
5573         //                             // 0 if no slide needs to be applied to
5574         //                             // file address
5575         //     uuid_t   uuid;          // all zero's if uuid not specified
5576         //     uint32_t log2_pagesize; // process page size in log base 2,
5577         //                             // e.g. 4k pages are 12.
5578         //                             // 0 for unspecified
5579         //     uint32_t platform;      // The Mach-O platform for this corefile.
5580         //                             // 0 for unspecified.
5581         //                             // The values are defined in
5582         //                             // <mach-o/loader.h>, PLATFORM_*.
5583         // } __attribute((packed));
5584 
5585         // "main bin spec" (main binary specification) data payload is
5586         // formatted:
5587         //    uint32_t version       [currently 1]
5588         //    uint32_t type          [0 == unspecified, 1 == kernel,
5589         //                            2 == user process, 3 == firmware ]
5590         //    uint64_t address       [ UINT64_MAX if address not specified ]
5591         //    uuid_t   uuid          [ all zero's if uuid not specified ]
5592         //    uint32_t log2_pagesize [ process page size in log base
5593         //                             2, e.g. 4k pages are 12.
5594         //                             0 for unspecified ]
5595         //    uint32_t unused        [ for alignment ]
5596 
5597         if (strcmp("main bin spec", data_owner) == 0 && size >= 32) {
5598           offset = fileoff;
5599           uint32_t version;
5600           if (m_data.GetU32(&offset, &version, 1) != nullptr && version <= 2) {
5601             uint32_t binspec_type = 0;
5602             uuid_t raw_uuid;
5603             memset(raw_uuid, 0, sizeof(uuid_t));
5604 
5605             if (!m_data.GetU32(&offset, &binspec_type, 1))
5606               return false;
5607             if (!m_data.GetU64(&offset, &value, 1))
5608               return false;
5609             uint64_t slide = LLDB_INVALID_ADDRESS;
5610             if (version > 1 && !m_data.GetU64(&offset, &slide, 1))
5611               return false;
5612             if (value == LLDB_INVALID_ADDRESS &&
5613                 slide != LLDB_INVALID_ADDRESS) {
5614               value = slide;
5615               value_is_offset = true;
5616             }
5617 
5618             if (m_data.CopyData(offset, sizeof(uuid_t), raw_uuid) != 0) {
5619               uuid = UUID(raw_uuid, sizeof(uuid_t));
5620               // convert the "main bin spec" type into our
5621               // ObjectFile::BinaryType enum
5622               switch (binspec_type) {
5623               case 0:
5624                 type = eBinaryTypeUnknown;
5625                 break;
5626               case 1:
5627                 type = eBinaryTypeKernel;
5628                 break;
5629               case 2:
5630                 type = eBinaryTypeUser;
5631                 break;
5632               case 3:
5633                 type = eBinaryTypeStandalone;
5634                 break;
5635               }
5636               if (!m_data.GetU32(&offset, &log2_pagesize, 1))
5637                 return false;
5638               if (version > 1 && !m_data.GetU32(&offset, &platform, 1))
5639                 return false;
5640               return true;
5641             }
5642           }
5643         }
5644       }
5645       offset = cmd_offset + lc.cmdsize;
5646     }
5647   }
5648   return false;
5649 }
5650 
5651 lldb::RegisterContextSP
5652 ObjectFileMachO::GetThreadContextAtIndex(uint32_t idx,
5653                                          lldb_private::Thread &thread) {
5654   lldb::RegisterContextSP reg_ctx_sp;
5655 
5656   ModuleSP module_sp(GetModule());
5657   if (module_sp) {
5658     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5659     if (!m_thread_context_offsets_valid)
5660       GetNumThreadContexts();
5661 
5662     const FileRangeArray::Entry *thread_context_file_range =
5663         m_thread_context_offsets.GetEntryAtIndex(idx);
5664     if (thread_context_file_range) {
5665 
5666       DataExtractor data(m_data, thread_context_file_range->GetRangeBase(),
5667                          thread_context_file_range->GetByteSize());
5668 
5669       switch (m_header.cputype) {
5670       case llvm::MachO::CPU_TYPE_ARM64:
5671       case llvm::MachO::CPU_TYPE_ARM64_32:
5672         reg_ctx_sp =
5673             std::make_shared<RegisterContextDarwin_arm64_Mach>(thread, data);
5674         break;
5675 
5676       case llvm::MachO::CPU_TYPE_ARM:
5677         reg_ctx_sp =
5678             std::make_shared<RegisterContextDarwin_arm_Mach>(thread, data);
5679         break;
5680 
5681       case llvm::MachO::CPU_TYPE_I386:
5682         reg_ctx_sp =
5683             std::make_shared<RegisterContextDarwin_i386_Mach>(thread, data);
5684         break;
5685 
5686       case llvm::MachO::CPU_TYPE_X86_64:
5687         reg_ctx_sp =
5688             std::make_shared<RegisterContextDarwin_x86_64_Mach>(thread, data);
5689         break;
5690       }
5691     }
5692   }
5693   return reg_ctx_sp;
5694 }
5695 
5696 ObjectFile::Type ObjectFileMachO::CalculateType() {
5697   switch (m_header.filetype) {
5698   case MH_OBJECT: // 0x1u
5699     if (GetAddressByteSize() == 4) {
5700       // 32 bit kexts are just object files, but they do have a valid
5701       // UUID load command.
5702       if (GetUUID()) {
5703         // this checking for the UUID load command is not enough we could
5704         // eventually look for the symbol named "OSKextGetCurrentIdentifier" as
5705         // this is required of kexts
5706         if (m_strata == eStrataInvalid)
5707           m_strata = eStrataKernel;
5708         return eTypeSharedLibrary;
5709       }
5710     }
5711     return eTypeObjectFile;
5712 
5713   case MH_EXECUTE:
5714     return eTypeExecutable; // 0x2u
5715   case MH_FVMLIB:
5716     return eTypeSharedLibrary; // 0x3u
5717   case MH_CORE:
5718     return eTypeCoreFile; // 0x4u
5719   case MH_PRELOAD:
5720     return eTypeSharedLibrary; // 0x5u
5721   case MH_DYLIB:
5722     return eTypeSharedLibrary; // 0x6u
5723   case MH_DYLINKER:
5724     return eTypeDynamicLinker; // 0x7u
5725   case MH_BUNDLE:
5726     return eTypeSharedLibrary; // 0x8u
5727   case MH_DYLIB_STUB:
5728     return eTypeStubLibrary; // 0x9u
5729   case MH_DSYM:
5730     return eTypeDebugInfo; // 0xAu
5731   case MH_KEXT_BUNDLE:
5732     return eTypeSharedLibrary; // 0xBu
5733   default:
5734     break;
5735   }
5736   return eTypeUnknown;
5737 }
5738 
5739 ObjectFile::Strata ObjectFileMachO::CalculateStrata() {
5740   switch (m_header.filetype) {
5741   case MH_OBJECT: // 0x1u
5742   {
5743     // 32 bit kexts are just object files, but they do have a valid
5744     // UUID load command.
5745     if (GetUUID()) {
5746       // this checking for the UUID load command is not enough we could
5747       // eventually look for the symbol named "OSKextGetCurrentIdentifier" as
5748       // this is required of kexts
5749       if (m_type == eTypeInvalid)
5750         m_type = eTypeSharedLibrary;
5751 
5752       return eStrataKernel;
5753     }
5754   }
5755     return eStrataUnknown;
5756 
5757   case MH_EXECUTE: // 0x2u
5758     // Check for the MH_DYLDLINK bit in the flags
5759     if (m_header.flags & MH_DYLDLINK) {
5760       return eStrataUser;
5761     } else {
5762       SectionList *section_list = GetSectionList();
5763       if (section_list) {
5764         static ConstString g_kld_section_name("__KLD");
5765         if (section_list->FindSectionByName(g_kld_section_name))
5766           return eStrataKernel;
5767       }
5768     }
5769     return eStrataRawImage;
5770 
5771   case MH_FVMLIB:
5772     return eStrataUser; // 0x3u
5773   case MH_CORE:
5774     return eStrataUnknown; // 0x4u
5775   case MH_PRELOAD:
5776     return eStrataRawImage; // 0x5u
5777   case MH_DYLIB:
5778     return eStrataUser; // 0x6u
5779   case MH_DYLINKER:
5780     return eStrataUser; // 0x7u
5781   case MH_BUNDLE:
5782     return eStrataUser; // 0x8u
5783   case MH_DYLIB_STUB:
5784     return eStrataUser; // 0x9u
5785   case MH_DSYM:
5786     return eStrataUnknown; // 0xAu
5787   case MH_KEXT_BUNDLE:
5788     return eStrataKernel; // 0xBu
5789   default:
5790     break;
5791   }
5792   return eStrataUnknown;
5793 }
5794 
5795 llvm::VersionTuple ObjectFileMachO::GetVersion() {
5796   ModuleSP module_sp(GetModule());
5797   if (module_sp) {
5798     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5799     llvm::MachO::dylib_command load_cmd;
5800     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5801     uint32_t version_cmd = 0;
5802     uint64_t version = 0;
5803     uint32_t i;
5804     for (i = 0; i < m_header.ncmds; ++i) {
5805       const lldb::offset_t cmd_offset = offset;
5806       if (m_data.GetU32(&offset, &load_cmd, 2) == nullptr)
5807         break;
5808 
5809       if (load_cmd.cmd == LC_ID_DYLIB) {
5810         if (version_cmd == 0) {
5811           version_cmd = load_cmd.cmd;
5812           if (m_data.GetU32(&offset, &load_cmd.dylib, 4) == nullptr)
5813             break;
5814           version = load_cmd.dylib.current_version;
5815         }
5816         break; // Break for now unless there is another more complete version
5817                // number load command in the future.
5818       }
5819       offset = cmd_offset + load_cmd.cmdsize;
5820     }
5821 
5822     if (version_cmd == LC_ID_DYLIB) {
5823       unsigned major = (version & 0xFFFF0000ull) >> 16;
5824       unsigned minor = (version & 0x0000FF00ull) >> 8;
5825       unsigned subminor = (version & 0x000000FFull);
5826       return llvm::VersionTuple(major, minor, subminor);
5827     }
5828   }
5829   return llvm::VersionTuple();
5830 }
5831 
5832 ArchSpec ObjectFileMachO::GetArchitecture() {
5833   ModuleSP module_sp(GetModule());
5834   ArchSpec arch;
5835   if (module_sp) {
5836     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
5837 
5838     return GetArchitecture(module_sp, m_header, m_data,
5839                            MachHeaderSizeFromMagic(m_header.magic));
5840   }
5841   return arch;
5842 }
5843 
5844 void ObjectFileMachO::GetProcessSharedCacheUUID(Process *process,
5845                                                 addr_t &base_addr, UUID &uuid) {
5846   uuid.Clear();
5847   base_addr = LLDB_INVALID_ADDRESS;
5848   if (process && process->GetDynamicLoader()) {
5849     DynamicLoader *dl = process->GetDynamicLoader();
5850     LazyBool using_shared_cache;
5851     LazyBool private_shared_cache;
5852     dl->GetSharedCacheInformation(base_addr, uuid, using_shared_cache,
5853                                   private_shared_cache);
5854   }
5855   Log *log(GetLog(LLDBLog::Symbols | LLDBLog::Process));
5856   LLDB_LOGF(
5857       log,
5858       "inferior process shared cache has a UUID of %s, base address 0x%" PRIx64,
5859       uuid.GetAsString().c_str(), base_addr);
5860 }
5861 
5862 // From dyld SPI header dyld_process_info.h
5863 typedef void *dyld_process_info;
5864 struct lldb_copy__dyld_process_cache_info {
5865   uuid_t cacheUUID;          // UUID of cache used by process
5866   uint64_t cacheBaseAddress; // load address of dyld shared cache
5867   bool noCache;              // process is running without a dyld cache
5868   bool privateCache; // process is using a private copy of its dyld cache
5869 };
5870 
5871 // #including mach/mach.h pulls in machine.h & CPU_TYPE_ARM etc conflicts with
5872 // llvm enum definitions llvm::MachO::CPU_TYPE_ARM turning them into compile
5873 // errors. So we need to use the actual underlying types of task_t and
5874 // kern_return_t below.
5875 extern "C" unsigned int /*task_t*/ mach_task_self();
5876 
5877 void ObjectFileMachO::GetLLDBSharedCacheUUID(addr_t &base_addr, UUID &uuid) {
5878   uuid.Clear();
5879   base_addr = LLDB_INVALID_ADDRESS;
5880 
5881 #if defined(__APPLE__)
5882   uint8_t *(*dyld_get_all_image_infos)(void);
5883   dyld_get_all_image_infos =
5884       (uint8_t * (*)()) dlsym(RTLD_DEFAULT, "_dyld_get_all_image_infos");
5885   if (dyld_get_all_image_infos) {
5886     uint8_t *dyld_all_image_infos_address = dyld_get_all_image_infos();
5887     if (dyld_all_image_infos_address) {
5888       uint32_t *version = (uint32_t *)
5889           dyld_all_image_infos_address; // version <mach-o/dyld_images.h>
5890       if (*version >= 13) {
5891         uuid_t *sharedCacheUUID_address = 0;
5892         int wordsize = sizeof(uint8_t *);
5893         if (wordsize == 8) {
5894           sharedCacheUUID_address =
5895               (uuid_t *)((uint8_t *)dyld_all_image_infos_address +
5896                          160); // sharedCacheUUID <mach-o/dyld_images.h>
5897           if (*version >= 15)
5898             base_addr =
5899                 *(uint64_t
5900                       *)((uint8_t *)dyld_all_image_infos_address +
5901                          176); // sharedCacheBaseAddress <mach-o/dyld_images.h>
5902         } else {
5903           sharedCacheUUID_address =
5904               (uuid_t *)((uint8_t *)dyld_all_image_infos_address +
5905                          84); // sharedCacheUUID <mach-o/dyld_images.h>
5906           if (*version >= 15) {
5907             base_addr = 0;
5908             base_addr =
5909                 *(uint32_t
5910                       *)((uint8_t *)dyld_all_image_infos_address +
5911                          100); // sharedCacheBaseAddress <mach-o/dyld_images.h>
5912           }
5913         }
5914         uuid = UUID(sharedCacheUUID_address, sizeof(uuid_t));
5915       }
5916     }
5917   } else {
5918     // Exists in macOS 10.12 and later, iOS 10.0 and later - dyld SPI
5919     dyld_process_info (*dyld_process_info_create)(
5920         unsigned int /* task_t */ task, uint64_t timestamp,
5921         unsigned int /*kern_return_t*/ *kernelError);
5922     void (*dyld_process_info_get_cache)(void *info, void *cacheInfo);
5923     void (*dyld_process_info_release)(dyld_process_info info);
5924 
5925     dyld_process_info_create = (void *(*)(unsigned int /* task_t */, uint64_t,
5926                                           unsigned int /*kern_return_t*/ *))
5927         dlsym(RTLD_DEFAULT, "_dyld_process_info_create");
5928     dyld_process_info_get_cache = (void (*)(void *, void *))dlsym(
5929         RTLD_DEFAULT, "_dyld_process_info_get_cache");
5930     dyld_process_info_release =
5931         (void (*)(void *))dlsym(RTLD_DEFAULT, "_dyld_process_info_release");
5932 
5933     if (dyld_process_info_create && dyld_process_info_get_cache) {
5934       unsigned int /*kern_return_t */ kern_ret;
5935       dyld_process_info process_info =
5936           dyld_process_info_create(::mach_task_self(), 0, &kern_ret);
5937       if (process_info) {
5938         struct lldb_copy__dyld_process_cache_info sc_info;
5939         memset(&sc_info, 0, sizeof(struct lldb_copy__dyld_process_cache_info));
5940         dyld_process_info_get_cache(process_info, &sc_info);
5941         if (sc_info.cacheBaseAddress != 0) {
5942           base_addr = sc_info.cacheBaseAddress;
5943           uuid = UUID(sc_info.cacheUUID, sizeof(uuid_t));
5944         }
5945         dyld_process_info_release(process_info);
5946       }
5947     }
5948   }
5949   Log *log(GetLog(LLDBLog::Symbols | LLDBLog::Process));
5950   if (log && uuid.IsValid())
5951     LLDB_LOGF(log,
5952               "lldb's in-memory shared cache has a UUID of %s base address of "
5953               "0x%" PRIx64,
5954               uuid.GetAsString().c_str(), base_addr);
5955 #endif
5956 }
5957 
5958 llvm::VersionTuple ObjectFileMachO::GetMinimumOSVersion() {
5959   if (!m_min_os_version) {
5960     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
5961     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
5962       const lldb::offset_t load_cmd_offset = offset;
5963 
5964       llvm::MachO::version_min_command lc = {};
5965       if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
5966         break;
5967       if (lc.cmd == llvm::MachO::LC_VERSION_MIN_MACOSX ||
5968           lc.cmd == llvm::MachO::LC_VERSION_MIN_IPHONEOS ||
5969           lc.cmd == llvm::MachO::LC_VERSION_MIN_TVOS ||
5970           lc.cmd == llvm::MachO::LC_VERSION_MIN_WATCHOS) {
5971         if (m_data.GetU32(&offset, &lc.version,
5972                           (sizeof(lc) / sizeof(uint32_t)) - 2)) {
5973           const uint32_t xxxx = lc.version >> 16;
5974           const uint32_t yy = (lc.version >> 8) & 0xffu;
5975           const uint32_t zz = lc.version & 0xffu;
5976           if (xxxx) {
5977             m_min_os_version = llvm::VersionTuple(xxxx, yy, zz);
5978             break;
5979           }
5980         }
5981       } else if (lc.cmd == llvm::MachO::LC_BUILD_VERSION) {
5982         // struct build_version_command {
5983         //     uint32_t    cmd;            /* LC_BUILD_VERSION */
5984         //     uint32_t    cmdsize;        /* sizeof(struct
5985         //     build_version_command) plus */
5986         //                                 /* ntools * sizeof(struct
5987         //                                 build_tool_version) */
5988         //     uint32_t    platform;       /* platform */
5989         //     uint32_t    minos;          /* X.Y.Z is encoded in nibbles
5990         //     xxxx.yy.zz */ uint32_t    sdk;            /* X.Y.Z is encoded in
5991         //     nibbles xxxx.yy.zz */ uint32_t    ntools;         /* number of
5992         //     tool entries following this */
5993         // };
5994 
5995         offset += 4; // skip platform
5996         uint32_t minos = m_data.GetU32(&offset);
5997 
5998         const uint32_t xxxx = minos >> 16;
5999         const uint32_t yy = (minos >> 8) & 0xffu;
6000         const uint32_t zz = minos & 0xffu;
6001         if (xxxx) {
6002           m_min_os_version = llvm::VersionTuple(xxxx, yy, zz);
6003           break;
6004         }
6005       }
6006 
6007       offset = load_cmd_offset + lc.cmdsize;
6008     }
6009 
6010     if (!m_min_os_version) {
6011       // Set version to an empty value so we don't keep trying to
6012       m_min_os_version = llvm::VersionTuple();
6013     }
6014   }
6015 
6016   return *m_min_os_version;
6017 }
6018 
6019 llvm::VersionTuple ObjectFileMachO::GetSDKVersion() {
6020   if (!m_sdk_versions) {
6021     lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
6022     for (uint32_t i = 0; i < m_header.ncmds; ++i) {
6023       const lldb::offset_t load_cmd_offset = offset;
6024 
6025       llvm::MachO::version_min_command lc = {};
6026       if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
6027         break;
6028       if (lc.cmd == llvm::MachO::LC_VERSION_MIN_MACOSX ||
6029           lc.cmd == llvm::MachO::LC_VERSION_MIN_IPHONEOS ||
6030           lc.cmd == llvm::MachO::LC_VERSION_MIN_TVOS ||
6031           lc.cmd == llvm::MachO::LC_VERSION_MIN_WATCHOS) {
6032         if (m_data.GetU32(&offset, &lc.version,
6033                           (sizeof(lc) / sizeof(uint32_t)) - 2)) {
6034           const uint32_t xxxx = lc.sdk >> 16;
6035           const uint32_t yy = (lc.sdk >> 8) & 0xffu;
6036           const uint32_t zz = lc.sdk & 0xffu;
6037           if (xxxx) {
6038             m_sdk_versions = llvm::VersionTuple(xxxx, yy, zz);
6039             break;
6040           } else {
6041             GetModule()->ReportWarning("minimum OS version load command with "
6042                                        "invalid (0) version found.");
6043           }
6044         }
6045       }
6046       offset = load_cmd_offset + lc.cmdsize;
6047     }
6048 
6049     if (!m_sdk_versions) {
6050       offset = MachHeaderSizeFromMagic(m_header.magic);
6051       for (uint32_t i = 0; i < m_header.ncmds; ++i) {
6052         const lldb::offset_t load_cmd_offset = offset;
6053 
6054         llvm::MachO::version_min_command lc = {};
6055         if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
6056           break;
6057         if (lc.cmd == llvm::MachO::LC_BUILD_VERSION) {
6058           // struct build_version_command {
6059           //     uint32_t    cmd;            /* LC_BUILD_VERSION */
6060           //     uint32_t    cmdsize;        /* sizeof(struct
6061           //     build_version_command) plus */
6062           //                                 /* ntools * sizeof(struct
6063           //                                 build_tool_version) */
6064           //     uint32_t    platform;       /* platform */
6065           //     uint32_t    minos;          /* X.Y.Z is encoded in nibbles
6066           //     xxxx.yy.zz */ uint32_t    sdk;            /* X.Y.Z is encoded
6067           //     in nibbles xxxx.yy.zz */ uint32_t    ntools;         /* number
6068           //     of tool entries following this */
6069           // };
6070 
6071           offset += 4; // skip platform
6072           uint32_t minos = m_data.GetU32(&offset);
6073 
6074           const uint32_t xxxx = minos >> 16;
6075           const uint32_t yy = (minos >> 8) & 0xffu;
6076           const uint32_t zz = minos & 0xffu;
6077           if (xxxx) {
6078             m_sdk_versions = llvm::VersionTuple(xxxx, yy, zz);
6079             break;
6080           }
6081         }
6082         offset = load_cmd_offset + lc.cmdsize;
6083       }
6084     }
6085 
6086     if (!m_sdk_versions)
6087       m_sdk_versions = llvm::VersionTuple();
6088   }
6089 
6090   return *m_sdk_versions;
6091 }
6092 
6093 bool ObjectFileMachO::GetIsDynamicLinkEditor() {
6094   return m_header.filetype == llvm::MachO::MH_DYLINKER;
6095 }
6096 
6097 bool ObjectFileMachO::CanTrustAddressRanges() {
6098   // Dsymutil guarantees that the .debug_aranges accelerator is complete and can
6099   // be trusted by LLDB.
6100   return m_header.filetype == llvm::MachO::MH_DSYM;
6101 }
6102 
6103 bool ObjectFileMachO::AllowAssemblyEmulationUnwindPlans() {
6104   return m_allow_assembly_emulation_unwind_plans;
6105 }
6106 
6107 Section *ObjectFileMachO::GetMachHeaderSection() {
6108   // Find the first address of the mach header which is the first non-zero file
6109   // sized section whose file offset is zero. This is the base file address of
6110   // the mach-o file which can be subtracted from the vmaddr of the other
6111   // segments found in memory and added to the load address
6112   ModuleSP module_sp = GetModule();
6113   if (!module_sp)
6114     return nullptr;
6115   SectionList *section_list = GetSectionList();
6116   if (!section_list)
6117     return nullptr;
6118   const size_t num_sections = section_list->GetSize();
6119   for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) {
6120     Section *section = section_list->GetSectionAtIndex(sect_idx).get();
6121     if (section->GetFileOffset() == 0 && SectionIsLoadable(section))
6122       return section;
6123   }
6124 
6125   // We may have a binary in the shared cache that has a non-zero
6126   // file address for its first segment, traditionally the __TEXT segment.
6127   // Search for it by name and return it as our next best guess.
6128   SectionSP text_segment_sp =
6129       GetSectionList()->FindSectionByName(GetSegmentNameTEXT());
6130   if (text_segment_sp.get() && SectionIsLoadable(text_segment_sp.get()))
6131     return text_segment_sp.get();
6132 
6133   return nullptr;
6134 }
6135 
6136 bool ObjectFileMachO::SectionIsLoadable(const Section *section) {
6137   if (!section)
6138     return false;
6139   const bool is_dsym = (m_header.filetype == MH_DSYM);
6140   if (section->GetFileSize() == 0 && !is_dsym)
6141     return false;
6142   if (section->IsThreadSpecific())
6143     return false;
6144   if (GetModule().get() != section->GetModule().get())
6145     return false;
6146   // Be careful with __LINKEDIT and __DWARF segments
6147   if (section->GetName() == GetSegmentNameLINKEDIT() ||
6148       section->GetName() == GetSegmentNameDWARF()) {
6149     // Only map __LINKEDIT and __DWARF if we have an in memory image and
6150     // this isn't a kernel binary like a kext or mach_kernel.
6151     const bool is_memory_image = (bool)m_process_wp.lock();
6152     const Strata strata = GetStrata();
6153     if (is_memory_image == false || strata == eStrataKernel)
6154       return false;
6155   }
6156   return true;
6157 }
6158 
6159 lldb::addr_t ObjectFileMachO::CalculateSectionLoadAddressForMemoryImage(
6160     lldb::addr_t header_load_address, const Section *header_section,
6161     const Section *section) {
6162   ModuleSP module_sp = GetModule();
6163   if (module_sp && header_section && section &&
6164       header_load_address != LLDB_INVALID_ADDRESS) {
6165     lldb::addr_t file_addr = header_section->GetFileAddress();
6166     if (file_addr != LLDB_INVALID_ADDRESS && SectionIsLoadable(section))
6167       return section->GetFileAddress() - file_addr + header_load_address;
6168   }
6169   return LLDB_INVALID_ADDRESS;
6170 }
6171 
6172 bool ObjectFileMachO::SetLoadAddress(Target &target, lldb::addr_t value,
6173                                      bool value_is_offset) {
6174   ModuleSP module_sp = GetModule();
6175   if (!module_sp)
6176     return false;
6177 
6178   SectionList *section_list = GetSectionList();
6179   if (!section_list)
6180     return false;
6181 
6182   size_t num_loaded_sections = 0;
6183   const size_t num_sections = section_list->GetSize();
6184 
6185   if (value_is_offset) {
6186     // "value" is an offset to apply to each top level segment
6187     for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) {
6188       // Iterate through the object file sections to find all of the
6189       // sections that size on disk (to avoid __PAGEZERO) and load them
6190       SectionSP section_sp(section_list->GetSectionAtIndex(sect_idx));
6191       if (SectionIsLoadable(section_sp.get()))
6192         if (target.GetSectionLoadList().SetSectionLoadAddress(
6193                 section_sp, section_sp->GetFileAddress() + value))
6194           ++num_loaded_sections;
6195     }
6196   } else {
6197     // "value" is the new base address of the mach_header, adjust each
6198     // section accordingly
6199 
6200     Section *mach_header_section = GetMachHeaderSection();
6201     if (mach_header_section) {
6202       for (size_t sect_idx = 0; sect_idx < num_sections; ++sect_idx) {
6203         SectionSP section_sp(section_list->GetSectionAtIndex(sect_idx));
6204 
6205         lldb::addr_t section_load_addr =
6206             CalculateSectionLoadAddressForMemoryImage(
6207                 value, mach_header_section, section_sp.get());
6208         if (section_load_addr != LLDB_INVALID_ADDRESS) {
6209           if (target.GetSectionLoadList().SetSectionLoadAddress(
6210                   section_sp, section_load_addr))
6211             ++num_loaded_sections;
6212         }
6213       }
6214     }
6215   }
6216   return num_loaded_sections > 0;
6217 }
6218 
6219 struct all_image_infos_header {
6220   uint32_t version;         // currently 1
6221   uint32_t imgcount;        // number of binary images
6222   uint64_t entries_fileoff; // file offset in the corefile of where the array of
6223                             // struct entry's begin.
6224   uint32_t entries_size;    // size of 'struct entry'.
6225   uint32_t unused;
6226 };
6227 
6228 struct image_entry {
6229   uint64_t filepath_offset;  // offset in corefile to c-string of the file path,
6230                              // UINT64_MAX if unavailable.
6231   uuid_t uuid;               // uint8_t[16].  should be set to all zeroes if
6232                              // uuid is unknown.
6233   uint64_t load_address;     // UINT64_MAX if unknown.
6234   uint64_t seg_addrs_offset; // offset to the array of struct segment_vmaddr's.
6235   uint32_t segment_count;    // The number of segments for this binary.
6236   uint32_t unused;
6237 
6238   image_entry() {
6239     filepath_offset = UINT64_MAX;
6240     memset(&uuid, 0, sizeof(uuid_t));
6241     segment_count = 0;
6242     load_address = UINT64_MAX;
6243     seg_addrs_offset = UINT64_MAX;
6244     unused = 0;
6245   }
6246   image_entry(const image_entry &rhs) {
6247     filepath_offset = rhs.filepath_offset;
6248     memcpy(&uuid, &rhs.uuid, sizeof(uuid_t));
6249     segment_count = rhs.segment_count;
6250     seg_addrs_offset = rhs.seg_addrs_offset;
6251     load_address = rhs.load_address;
6252     unused = rhs.unused;
6253   }
6254 };
6255 
6256 struct segment_vmaddr {
6257   char segname[16];
6258   uint64_t vmaddr;
6259   uint64_t unused;
6260 
6261   segment_vmaddr() {
6262     memset(&segname, 0, 16);
6263     vmaddr = UINT64_MAX;
6264     unused = 0;
6265   }
6266   segment_vmaddr(const segment_vmaddr &rhs) {
6267     memcpy(&segname, &rhs.segname, 16);
6268     vmaddr = rhs.vmaddr;
6269     unused = rhs.unused;
6270   }
6271 };
6272 
6273 // Write the payload for the "all image infos" LC_NOTE into
6274 // the supplied all_image_infos_payload, assuming that this
6275 // will be written into the corefile starting at
6276 // initial_file_offset.
6277 //
6278 // The placement of this payload is a little tricky.  We're
6279 // laying this out as
6280 //
6281 // 1. header (struct all_image_info_header)
6282 // 2. Array of fixed-size (struct image_entry)'s, one
6283 //    per binary image present in the process.
6284 // 3. Arrays of (struct segment_vmaddr)'s, a varying number
6285 //    for each binary image.
6286 // 4. Variable length c-strings of binary image filepaths,
6287 //    one per binary.
6288 //
6289 // To compute where everything will be laid out in the
6290 // payload, we need to iterate over the images and calculate
6291 // how many segment_vmaddr structures each image will need,
6292 // and how long each image's filepath c-string is. There
6293 // are some multiple passes over the image list while calculating
6294 // everything.
6295 
6296 static offset_t CreateAllImageInfosPayload(
6297     const lldb::ProcessSP &process_sp, offset_t initial_file_offset,
6298     StreamString &all_image_infos_payload, SaveCoreStyle core_style) {
6299   Target &target = process_sp->GetTarget();
6300   ModuleList modules = target.GetImages();
6301 
6302   // stack-only corefiles have no reason to include binaries that
6303   // are not executing; we're trying to make the smallest corefile
6304   // we can, so leave the rest out.
6305   if (core_style == SaveCoreStyle::eSaveCoreStackOnly)
6306     modules.Clear();
6307 
6308   std::set<std::string> executing_uuids;
6309   ThreadList &thread_list(process_sp->GetThreadList());
6310   for (uint32_t i = 0; i < thread_list.GetSize(); i++) {
6311     ThreadSP thread_sp = thread_list.GetThreadAtIndex(i);
6312     uint32_t stack_frame_count = thread_sp->GetStackFrameCount();
6313     for (uint32_t j = 0; j < stack_frame_count; j++) {
6314       StackFrameSP stack_frame_sp = thread_sp->GetStackFrameAtIndex(j);
6315       Address pc = stack_frame_sp->GetFrameCodeAddress();
6316       ModuleSP module_sp = pc.GetModule();
6317       if (module_sp) {
6318         UUID uuid = module_sp->GetUUID();
6319         if (uuid.IsValid()) {
6320           executing_uuids.insert(uuid.GetAsString());
6321           modules.AppendIfNeeded(module_sp);
6322         }
6323       }
6324     }
6325   }
6326   size_t modules_count = modules.GetSize();
6327 
6328   struct all_image_infos_header infos;
6329   infos.version = 1;
6330   infos.imgcount = modules_count;
6331   infos.entries_size = sizeof(image_entry);
6332   infos.entries_fileoff = initial_file_offset + sizeof(all_image_infos_header);
6333   infos.unused = 0;
6334 
6335   all_image_infos_payload.PutHex32(infos.version);
6336   all_image_infos_payload.PutHex32(infos.imgcount);
6337   all_image_infos_payload.PutHex64(infos.entries_fileoff);
6338   all_image_infos_payload.PutHex32(infos.entries_size);
6339   all_image_infos_payload.PutHex32(infos.unused);
6340 
6341   // First create the structures for all of the segment name+vmaddr vectors
6342   // for each module, so we will know the size of them as we add the
6343   // module entries.
6344   std::vector<std::vector<segment_vmaddr>> modules_segment_vmaddrs;
6345   for (size_t i = 0; i < modules_count; i++) {
6346     ModuleSP module = modules.GetModuleAtIndex(i);
6347 
6348     SectionList *sections = module->GetSectionList();
6349     size_t sections_count = sections->GetSize();
6350     std::vector<segment_vmaddr> segment_vmaddrs;
6351     for (size_t j = 0; j < sections_count; j++) {
6352       SectionSP section = sections->GetSectionAtIndex(j);
6353       if (!section->GetParent().get()) {
6354         addr_t vmaddr = section->GetLoadBaseAddress(&target);
6355         if (vmaddr == LLDB_INVALID_ADDRESS)
6356           continue;
6357         ConstString name = section->GetName();
6358         segment_vmaddr seg_vmaddr;
6359         // This is the uncommon case where strncpy is exactly
6360         // the right one, doesn't need to be nul terminated.
6361         // The segment name in a Mach-O LC_SEGMENT/LC_SEGMENT_64 is char[16] and
6362         // is not guaranteed to be nul-terminated if all 16 characters are
6363         // used.
6364         // coverity[buffer_size_warning]
6365         strncpy(seg_vmaddr.segname, name.AsCString(),
6366                 sizeof(seg_vmaddr.segname));
6367         seg_vmaddr.vmaddr = vmaddr;
6368         seg_vmaddr.unused = 0;
6369         segment_vmaddrs.push_back(seg_vmaddr);
6370       }
6371     }
6372     modules_segment_vmaddrs.push_back(segment_vmaddrs);
6373   }
6374 
6375   offset_t size_of_vmaddr_structs = 0;
6376   for (size_t i = 0; i < modules_segment_vmaddrs.size(); i++) {
6377     size_of_vmaddr_structs +=
6378         modules_segment_vmaddrs[i].size() * sizeof(segment_vmaddr);
6379   }
6380 
6381   offset_t size_of_filepath_cstrings = 0;
6382   for (size_t i = 0; i < modules_count; i++) {
6383     ModuleSP module_sp = modules.GetModuleAtIndex(i);
6384     size_of_filepath_cstrings += module_sp->GetFileSpec().GetPath().size() + 1;
6385   }
6386 
6387   // Calculate the file offsets of our "all image infos" payload in the
6388   // corefile. initial_file_offset the original value passed in to this method.
6389 
6390   offset_t start_of_entries =
6391       initial_file_offset + sizeof(all_image_infos_header);
6392   offset_t start_of_seg_vmaddrs =
6393       start_of_entries + sizeof(image_entry) * modules_count;
6394   offset_t start_of_filenames = start_of_seg_vmaddrs + size_of_vmaddr_structs;
6395 
6396   offset_t final_file_offset = start_of_filenames + size_of_filepath_cstrings;
6397 
6398   // Now write the one-per-module 'struct image_entry' into the
6399   // StringStream; keep track of where the struct segment_vmaddr
6400   // entries for each module will end up in the corefile.
6401 
6402   offset_t current_string_offset = start_of_filenames;
6403   offset_t current_segaddrs_offset = start_of_seg_vmaddrs;
6404   std::vector<struct image_entry> image_entries;
6405   for (size_t i = 0; i < modules_count; i++) {
6406     ModuleSP module_sp = modules.GetModuleAtIndex(i);
6407 
6408     struct image_entry ent;
6409     memcpy(&ent.uuid, module_sp->GetUUID().GetBytes().data(), sizeof(ent.uuid));
6410     if (modules_segment_vmaddrs[i].size() > 0) {
6411       ent.segment_count = modules_segment_vmaddrs[i].size();
6412       ent.seg_addrs_offset = current_segaddrs_offset;
6413     }
6414     ent.filepath_offset = current_string_offset;
6415     ObjectFile *objfile = module_sp->GetObjectFile();
6416     if (objfile) {
6417       Address base_addr(objfile->GetBaseAddress());
6418       if (base_addr.IsValid()) {
6419         ent.load_address = base_addr.GetLoadAddress(&target);
6420       }
6421     }
6422 
6423     all_image_infos_payload.PutHex64(ent.filepath_offset);
6424     all_image_infos_payload.PutRawBytes(ent.uuid, sizeof(ent.uuid));
6425     all_image_infos_payload.PutHex64(ent.load_address);
6426     all_image_infos_payload.PutHex64(ent.seg_addrs_offset);
6427     all_image_infos_payload.PutHex32(ent.segment_count);
6428 
6429     if (executing_uuids.find(module_sp->GetUUID().GetAsString()) !=
6430         executing_uuids.end())
6431       all_image_infos_payload.PutHex32(1);
6432     else
6433       all_image_infos_payload.PutHex32(0);
6434 
6435     current_segaddrs_offset += ent.segment_count * sizeof(segment_vmaddr);
6436     current_string_offset += module_sp->GetFileSpec().GetPath().size() + 1;
6437   }
6438 
6439   // Now write the struct segment_vmaddr entries into the StringStream.
6440 
6441   for (size_t i = 0; i < modules_segment_vmaddrs.size(); i++) {
6442     if (modules_segment_vmaddrs[i].size() == 0)
6443       continue;
6444     for (struct segment_vmaddr segvm : modules_segment_vmaddrs[i]) {
6445       all_image_infos_payload.PutRawBytes(segvm.segname, sizeof(segvm.segname));
6446       all_image_infos_payload.PutHex64(segvm.vmaddr);
6447       all_image_infos_payload.PutHex64(segvm.unused);
6448     }
6449   }
6450 
6451   for (size_t i = 0; i < modules_count; i++) {
6452     ModuleSP module_sp = modules.GetModuleAtIndex(i);
6453     std::string filepath = module_sp->GetFileSpec().GetPath();
6454     all_image_infos_payload.PutRawBytes(filepath.data(), filepath.size() + 1);
6455   }
6456 
6457   return final_file_offset;
6458 }
6459 
6460 // Temp struct used to combine contiguous memory regions with
6461 // identical permissions.
6462 struct page_object {
6463   addr_t addr;
6464   addr_t size;
6465   uint32_t prot;
6466 };
6467 
6468 bool ObjectFileMachO::SaveCore(const lldb::ProcessSP &process_sp,
6469                                const FileSpec &outfile,
6470                                lldb::SaveCoreStyle &core_style, Status &error) {
6471   if (!process_sp)
6472     return false;
6473 
6474   // Default on macOS is to create a dirty-memory-only corefile.
6475   if (core_style == SaveCoreStyle::eSaveCoreUnspecified) {
6476     core_style = SaveCoreStyle::eSaveCoreDirtyOnly;
6477   }
6478 
6479   Target &target = process_sp->GetTarget();
6480   const ArchSpec target_arch = target.GetArchitecture();
6481   const llvm::Triple &target_triple = target_arch.GetTriple();
6482   if (target_triple.getVendor() == llvm::Triple::Apple &&
6483       (target_triple.getOS() == llvm::Triple::MacOSX ||
6484        target_triple.getOS() == llvm::Triple::IOS ||
6485        target_triple.getOS() == llvm::Triple::WatchOS ||
6486        target_triple.getOS() == llvm::Triple::TvOS)) {
6487     // NEED_BRIDGEOS_TRIPLE target_triple.getOS() == llvm::Triple::BridgeOS))
6488     // {
6489     bool make_core = false;
6490     switch (target_arch.GetMachine()) {
6491     case llvm::Triple::aarch64:
6492     case llvm::Triple::aarch64_32:
6493     case llvm::Triple::arm:
6494     case llvm::Triple::thumb:
6495     case llvm::Triple::x86:
6496     case llvm::Triple::x86_64:
6497       make_core = true;
6498       break;
6499     default:
6500       error.SetErrorStringWithFormat("unsupported core architecture: %s",
6501                                      target_triple.str().c_str());
6502       break;
6503     }
6504 
6505     if (make_core) {
6506       std::vector<llvm::MachO::segment_command_64> segment_load_commands;
6507       //                uint32_t range_info_idx = 0;
6508       MemoryRegionInfo range_info;
6509       Status range_error = process_sp->GetMemoryRegionInfo(0, range_info);
6510       const uint32_t addr_byte_size = target_arch.GetAddressByteSize();
6511       const ByteOrder byte_order = target_arch.GetByteOrder();
6512       std::vector<page_object> pages_to_copy;
6513 
6514       if (range_error.Success()) {
6515         while (range_info.GetRange().GetRangeBase() != LLDB_INVALID_ADDRESS) {
6516           // Calculate correct protections
6517           uint32_t prot = 0;
6518           if (range_info.GetReadable() == MemoryRegionInfo::eYes)
6519             prot |= VM_PROT_READ;
6520           if (range_info.GetWritable() == MemoryRegionInfo::eYes)
6521             prot |= VM_PROT_WRITE;
6522           if (range_info.GetExecutable() == MemoryRegionInfo::eYes)
6523             prot |= VM_PROT_EXECUTE;
6524 
6525           const addr_t addr = range_info.GetRange().GetRangeBase();
6526           const addr_t size = range_info.GetRange().GetByteSize();
6527 
6528           if (size == 0)
6529             break;
6530 
6531           bool include_this_region = true;
6532           bool dirty_pages_only = false;
6533           if (core_style == SaveCoreStyle::eSaveCoreStackOnly) {
6534             dirty_pages_only = true;
6535             if (range_info.IsStackMemory() != MemoryRegionInfo::eYes) {
6536               include_this_region = false;
6537             }
6538           }
6539           if (core_style == SaveCoreStyle::eSaveCoreDirtyOnly) {
6540             dirty_pages_only = true;
6541           }
6542 
6543           if (prot != 0 && include_this_region) {
6544             addr_t pagesize = range_info.GetPageSize();
6545             const std::optional<std::vector<addr_t>> &dirty_page_list =
6546                 range_info.GetDirtyPageList();
6547             if (dirty_pages_only && dirty_page_list) {
6548               for (addr_t dirtypage : *dirty_page_list) {
6549                 page_object obj;
6550                 obj.addr = dirtypage;
6551                 obj.size = pagesize;
6552                 obj.prot = prot;
6553                 pages_to_copy.push_back(obj);
6554               }
6555             } else {
6556               page_object obj;
6557               obj.addr = addr;
6558               obj.size = size;
6559               obj.prot = prot;
6560               pages_to_copy.push_back(obj);
6561             }
6562           }
6563 
6564           range_error = process_sp->GetMemoryRegionInfo(
6565               range_info.GetRange().GetRangeEnd(), range_info);
6566           if (range_error.Fail())
6567             break;
6568         }
6569 
6570         // Combine contiguous entries that have the same
6571         // protections so we don't have an excess of
6572         // load commands.
6573         std::vector<page_object> combined_page_objects;
6574         page_object last_obj;
6575         last_obj.addr = LLDB_INVALID_ADDRESS;
6576         last_obj.size = 0;
6577         for (page_object obj : pages_to_copy) {
6578           if (last_obj.addr == LLDB_INVALID_ADDRESS) {
6579             last_obj = obj;
6580             continue;
6581           }
6582           if (last_obj.addr + last_obj.size == obj.addr &&
6583               last_obj.prot == obj.prot) {
6584             last_obj.size += obj.size;
6585             continue;
6586           }
6587           combined_page_objects.push_back(last_obj);
6588           last_obj = obj;
6589         }
6590         // Add the last entry we were looking to combine
6591         // on to the array.
6592         if (last_obj.addr != LLDB_INVALID_ADDRESS && last_obj.size != 0)
6593           combined_page_objects.push_back(last_obj);
6594 
6595         for (page_object obj : combined_page_objects) {
6596           uint32_t cmd_type = LC_SEGMENT_64;
6597           uint32_t segment_size = sizeof(llvm::MachO::segment_command_64);
6598           if (addr_byte_size == 4) {
6599             cmd_type = LC_SEGMENT;
6600             segment_size = sizeof(llvm::MachO::segment_command);
6601           }
6602           llvm::MachO::segment_command_64 segment = {
6603               cmd_type,     // uint32_t cmd;
6604               segment_size, // uint32_t cmdsize;
6605               {0},          // char segname[16];
6606               obj.addr,     // uint64_t vmaddr;    // uint32_t for 32-bit
6607                             // Mach-O
6608               obj.size,     // uint64_t vmsize;    // uint32_t for 32-bit
6609                             // Mach-O
6610               0,            // uint64_t fileoff;   // uint32_t for 32-bit Mach-O
6611               obj.size,     // uint64_t filesize;  // uint32_t for 32-bit
6612                             // Mach-O
6613               obj.prot,     // uint32_t maxprot;
6614               obj.prot,     // uint32_t initprot;
6615               0,            // uint32_t nsects;
6616               0};           // uint32_t flags;
6617           segment_load_commands.push_back(segment);
6618         }
6619 
6620         StreamString buffer(Stream::eBinary, addr_byte_size, byte_order);
6621 
6622         llvm::MachO::mach_header_64 mach_header;
6623         if (addr_byte_size == 8) {
6624           mach_header.magic = MH_MAGIC_64;
6625         } else {
6626           mach_header.magic = MH_MAGIC;
6627         }
6628         mach_header.cputype = target_arch.GetMachOCPUType();
6629         mach_header.cpusubtype = target_arch.GetMachOCPUSubType();
6630         mach_header.filetype = MH_CORE;
6631         mach_header.ncmds = segment_load_commands.size();
6632         mach_header.flags = 0;
6633         mach_header.reserved = 0;
6634         ThreadList &thread_list = process_sp->GetThreadList();
6635         const uint32_t num_threads = thread_list.GetSize();
6636 
6637         // Make an array of LC_THREAD data items. Each one contains the
6638         // contents of the LC_THREAD load command. The data doesn't contain
6639         // the load command + load command size, we will add the load command
6640         // and load command size as we emit the data.
6641         std::vector<StreamString> LC_THREAD_datas(num_threads);
6642         for (auto &LC_THREAD_data : LC_THREAD_datas) {
6643           LC_THREAD_data.GetFlags().Set(Stream::eBinary);
6644           LC_THREAD_data.SetAddressByteSize(addr_byte_size);
6645           LC_THREAD_data.SetByteOrder(byte_order);
6646         }
6647         for (uint32_t thread_idx = 0; thread_idx < num_threads; ++thread_idx) {
6648           ThreadSP thread_sp(thread_list.GetThreadAtIndex(thread_idx));
6649           if (thread_sp) {
6650             switch (mach_header.cputype) {
6651             case llvm::MachO::CPU_TYPE_ARM64:
6652             case llvm::MachO::CPU_TYPE_ARM64_32:
6653               RegisterContextDarwin_arm64_Mach::Create_LC_THREAD(
6654                   thread_sp.get(), LC_THREAD_datas[thread_idx]);
6655               break;
6656 
6657             case llvm::MachO::CPU_TYPE_ARM:
6658               RegisterContextDarwin_arm_Mach::Create_LC_THREAD(
6659                   thread_sp.get(), LC_THREAD_datas[thread_idx]);
6660               break;
6661 
6662             case llvm::MachO::CPU_TYPE_I386:
6663               RegisterContextDarwin_i386_Mach::Create_LC_THREAD(
6664                   thread_sp.get(), LC_THREAD_datas[thread_idx]);
6665               break;
6666 
6667             case llvm::MachO::CPU_TYPE_X86_64:
6668               RegisterContextDarwin_x86_64_Mach::Create_LC_THREAD(
6669                   thread_sp.get(), LC_THREAD_datas[thread_idx]);
6670               break;
6671             }
6672           }
6673         }
6674 
6675         // The size of the load command is the size of the segments...
6676         if (addr_byte_size == 8) {
6677           mach_header.sizeofcmds = segment_load_commands.size() *
6678                                    sizeof(llvm::MachO::segment_command_64);
6679         } else {
6680           mach_header.sizeofcmds = segment_load_commands.size() *
6681                                    sizeof(llvm::MachO::segment_command);
6682         }
6683 
6684         // and the size of all LC_THREAD load command
6685         for (const auto &LC_THREAD_data : LC_THREAD_datas) {
6686           ++mach_header.ncmds;
6687           mach_header.sizeofcmds += 8 + LC_THREAD_data.GetSize();
6688         }
6689 
6690         // Bits will be set to indicate which bits are NOT used in
6691         // addressing in this process or 0 for unknown.
6692         uint64_t address_mask = process_sp->GetCodeAddressMask();
6693         if (address_mask != 0) {
6694           // LC_NOTE "addrable bits"
6695           mach_header.ncmds++;
6696           mach_header.sizeofcmds += sizeof(llvm::MachO::note_command);
6697         }
6698 
6699         // LC_NOTE "all image infos"
6700         mach_header.ncmds++;
6701         mach_header.sizeofcmds += sizeof(llvm::MachO::note_command);
6702 
6703         // Write the mach header
6704         buffer.PutHex32(mach_header.magic);
6705         buffer.PutHex32(mach_header.cputype);
6706         buffer.PutHex32(mach_header.cpusubtype);
6707         buffer.PutHex32(mach_header.filetype);
6708         buffer.PutHex32(mach_header.ncmds);
6709         buffer.PutHex32(mach_header.sizeofcmds);
6710         buffer.PutHex32(mach_header.flags);
6711         if (addr_byte_size == 8) {
6712           buffer.PutHex32(mach_header.reserved);
6713         }
6714 
6715         // Skip the mach header and all load commands and align to the next
6716         // 0x1000 byte boundary
6717         addr_t file_offset = buffer.GetSize() + mach_header.sizeofcmds;
6718 
6719         file_offset = llvm::alignTo(file_offset, 16);
6720         std::vector<std::unique_ptr<LCNoteEntry>> lc_notes;
6721 
6722         // Add "addrable bits" LC_NOTE when an address mask is available
6723         if (address_mask != 0) {
6724           std::unique_ptr<LCNoteEntry> addrable_bits_lcnote_up(
6725               new LCNoteEntry(addr_byte_size, byte_order));
6726           addrable_bits_lcnote_up->name = "addrable bits";
6727           addrable_bits_lcnote_up->payload_file_offset = file_offset;
6728           int bits = std::bitset<64>(~address_mask).count();
6729           addrable_bits_lcnote_up->payload.PutHex32(3); // version
6730           addrable_bits_lcnote_up->payload.PutHex32(
6731               bits); // # of bits used for addressing
6732           addrable_bits_lcnote_up->payload.PutHex64(0); // unused
6733 
6734           file_offset += addrable_bits_lcnote_up->payload.GetSize();
6735 
6736           lc_notes.push_back(std::move(addrable_bits_lcnote_up));
6737         }
6738 
6739         // Add "all image infos" LC_NOTE
6740         std::unique_ptr<LCNoteEntry> all_image_infos_lcnote_up(
6741             new LCNoteEntry(addr_byte_size, byte_order));
6742         all_image_infos_lcnote_up->name = "all image infos";
6743         all_image_infos_lcnote_up->payload_file_offset = file_offset;
6744         file_offset = CreateAllImageInfosPayload(
6745             process_sp, file_offset, all_image_infos_lcnote_up->payload,
6746             core_style);
6747         lc_notes.push_back(std::move(all_image_infos_lcnote_up));
6748 
6749         // Add LC_NOTE load commands
6750         for (auto &lcnote : lc_notes) {
6751           // Add the LC_NOTE load command to the file.
6752           buffer.PutHex32(LC_NOTE);
6753           buffer.PutHex32(sizeof(llvm::MachO::note_command));
6754           char namebuf[16];
6755           memset(namebuf, 0, sizeof(namebuf));
6756           // This is the uncommon case where strncpy is exactly
6757           // the right one, doesn't need to be nul terminated.
6758           // LC_NOTE name field is char[16] and is not guaranteed to be
6759           // nul-terminated.
6760           // coverity[buffer_size_warning]
6761           strncpy(namebuf, lcnote->name.c_str(), sizeof(namebuf));
6762           buffer.PutRawBytes(namebuf, sizeof(namebuf));
6763           buffer.PutHex64(lcnote->payload_file_offset);
6764           buffer.PutHex64(lcnote->payload.GetSize());
6765         }
6766 
6767         // Align to 4096-byte page boundary for the LC_SEGMENTs.
6768         file_offset = llvm::alignTo(file_offset, 4096);
6769 
6770         for (auto &segment : segment_load_commands) {
6771           segment.fileoff = file_offset;
6772           file_offset += segment.filesize;
6773         }
6774 
6775         // Write out all of the LC_THREAD load commands
6776         for (const auto &LC_THREAD_data : LC_THREAD_datas) {
6777           const size_t LC_THREAD_data_size = LC_THREAD_data.GetSize();
6778           buffer.PutHex32(LC_THREAD);
6779           buffer.PutHex32(8 + LC_THREAD_data_size); // cmd + cmdsize + data
6780           buffer.Write(LC_THREAD_data.GetString().data(), LC_THREAD_data_size);
6781         }
6782 
6783         // Write out all of the segment load commands
6784         for (const auto &segment : segment_load_commands) {
6785           buffer.PutHex32(segment.cmd);
6786           buffer.PutHex32(segment.cmdsize);
6787           buffer.PutRawBytes(segment.segname, sizeof(segment.segname));
6788           if (addr_byte_size == 8) {
6789             buffer.PutHex64(segment.vmaddr);
6790             buffer.PutHex64(segment.vmsize);
6791             buffer.PutHex64(segment.fileoff);
6792             buffer.PutHex64(segment.filesize);
6793           } else {
6794             buffer.PutHex32(static_cast<uint32_t>(segment.vmaddr));
6795             buffer.PutHex32(static_cast<uint32_t>(segment.vmsize));
6796             buffer.PutHex32(static_cast<uint32_t>(segment.fileoff));
6797             buffer.PutHex32(static_cast<uint32_t>(segment.filesize));
6798           }
6799           buffer.PutHex32(segment.maxprot);
6800           buffer.PutHex32(segment.initprot);
6801           buffer.PutHex32(segment.nsects);
6802           buffer.PutHex32(segment.flags);
6803         }
6804 
6805         std::string core_file_path(outfile.GetPath());
6806         auto core_file = FileSystem::Instance().Open(
6807             outfile, File::eOpenOptionWriteOnly | File::eOpenOptionTruncate |
6808                          File::eOpenOptionCanCreate);
6809         if (!core_file) {
6810           error = core_file.takeError();
6811         } else {
6812           // Read 1 page at a time
6813           uint8_t bytes[0x1000];
6814           // Write the mach header and load commands out to the core file
6815           size_t bytes_written = buffer.GetString().size();
6816           error =
6817               core_file.get()->Write(buffer.GetString().data(), bytes_written);
6818           if (error.Success()) {
6819 
6820             for (auto &lcnote : lc_notes) {
6821               if (core_file.get()->SeekFromStart(lcnote->payload_file_offset) ==
6822                   -1) {
6823                 error.SetErrorStringWithFormat("Unable to seek to corefile pos "
6824                                                "to write '%s' LC_NOTE payload",
6825                                                lcnote->name.c_str());
6826                 return false;
6827               }
6828               bytes_written = lcnote->payload.GetSize();
6829               error = core_file.get()->Write(lcnote->payload.GetData(),
6830                                              bytes_written);
6831               if (!error.Success())
6832                 return false;
6833             }
6834 
6835             // Now write the file data for all memory segments in the process
6836             for (const auto &segment : segment_load_commands) {
6837               if (core_file.get()->SeekFromStart(segment.fileoff) == -1) {
6838                 error.SetErrorStringWithFormat(
6839                     "unable to seek to offset 0x%" PRIx64 " in '%s'",
6840                     segment.fileoff, core_file_path.c_str());
6841                 break;
6842               }
6843 
6844               target.GetDebugger().GetAsyncOutputStream()->Printf(
6845                   "Saving %" PRId64
6846                   " bytes of data for memory region at 0x%" PRIx64 "\n",
6847                   segment.vmsize, segment.vmaddr);
6848               addr_t bytes_left = segment.vmsize;
6849               addr_t addr = segment.vmaddr;
6850               Status memory_read_error;
6851               while (bytes_left > 0 && error.Success()) {
6852                 const size_t bytes_to_read =
6853                     bytes_left > sizeof(bytes) ? sizeof(bytes) : bytes_left;
6854 
6855                 // In a savecore setting, we don't really care about caching,
6856                 // as the data is dumped and very likely never read again,
6857                 // so we call ReadMemoryFromInferior to bypass it.
6858                 const size_t bytes_read = process_sp->ReadMemoryFromInferior(
6859                     addr, bytes, bytes_to_read, memory_read_error);
6860 
6861                 if (bytes_read == bytes_to_read) {
6862                   size_t bytes_written = bytes_read;
6863                   error = core_file.get()->Write(bytes, bytes_written);
6864                   bytes_left -= bytes_read;
6865                   addr += bytes_read;
6866                 } else {
6867                   // Some pages within regions are not readable, those should
6868                   // be zero filled
6869                   memset(bytes, 0, bytes_to_read);
6870                   size_t bytes_written = bytes_to_read;
6871                   error = core_file.get()->Write(bytes, bytes_written);
6872                   bytes_left -= bytes_to_read;
6873                   addr += bytes_to_read;
6874                 }
6875               }
6876             }
6877           }
6878         }
6879       } else {
6880         error.SetErrorString(
6881             "process doesn't support getting memory region info");
6882       }
6883     }
6884     return true; // This is the right plug to handle saving core files for
6885                  // this process
6886   }
6887   return false;
6888 }
6889 
6890 ObjectFileMachO::MachOCorefileAllImageInfos
6891 ObjectFileMachO::GetCorefileAllImageInfos() {
6892   MachOCorefileAllImageInfos image_infos;
6893 
6894   // Look for an "all image infos" LC_NOTE.
6895   lldb::offset_t offset = MachHeaderSizeFromMagic(m_header.magic);
6896   for (uint32_t i = 0; i < m_header.ncmds; ++i) {
6897     const uint32_t cmd_offset = offset;
6898     llvm::MachO::load_command lc = {};
6899     if (m_data.GetU32(&offset, &lc.cmd, 2) == nullptr)
6900       break;
6901     if (lc.cmd == LC_NOTE) {
6902       char data_owner[17];
6903       m_data.CopyData(offset, 16, data_owner);
6904       data_owner[16] = '\0';
6905       offset += 16;
6906       uint64_t fileoff = m_data.GetU64_unchecked(&offset);
6907       offset += 4; /* size unused */
6908 
6909       if (strcmp("all image infos", data_owner) == 0) {
6910         offset = fileoff;
6911         // Read the struct all_image_infos_header.
6912         uint32_t version = m_data.GetU32(&offset);
6913         if (version != 1) {
6914           return image_infos;
6915         }
6916         uint32_t imgcount = m_data.GetU32(&offset);
6917         uint64_t entries_fileoff = m_data.GetU64(&offset);
6918         // 'entries_size' is not used, nor is the 'unused' entry.
6919         //  offset += 4; // uint32_t entries_size;
6920         //  offset += 4; // uint32_t unused;
6921 
6922         offset = entries_fileoff;
6923         for (uint32_t i = 0; i < imgcount; i++) {
6924           // Read the struct image_entry.
6925           offset_t filepath_offset = m_data.GetU64(&offset);
6926           uuid_t uuid;
6927           memcpy(&uuid, m_data.GetData(&offset, sizeof(uuid_t)),
6928                  sizeof(uuid_t));
6929           uint64_t load_address = m_data.GetU64(&offset);
6930           offset_t seg_addrs_offset = m_data.GetU64(&offset);
6931           uint32_t segment_count = m_data.GetU32(&offset);
6932           uint32_t currently_executing = m_data.GetU32(&offset);
6933 
6934           MachOCorefileImageEntry image_entry;
6935           image_entry.filename = (const char *)m_data.GetCStr(&filepath_offset);
6936           image_entry.uuid = UUID(uuid, sizeof(uuid_t));
6937           image_entry.load_address = load_address;
6938           image_entry.currently_executing = currently_executing;
6939 
6940           offset_t seg_vmaddrs_offset = seg_addrs_offset;
6941           for (uint32_t j = 0; j < segment_count; j++) {
6942             char segname[17];
6943             m_data.CopyData(seg_vmaddrs_offset, 16, segname);
6944             segname[16] = '\0';
6945             seg_vmaddrs_offset += 16;
6946             uint64_t vmaddr = m_data.GetU64(&seg_vmaddrs_offset);
6947             seg_vmaddrs_offset += 8; /* unused */
6948 
6949             std::tuple<ConstString, addr_t> new_seg{ConstString(segname),
6950                                                     vmaddr};
6951             image_entry.segment_load_addresses.push_back(new_seg);
6952           }
6953           image_infos.all_image_infos.push_back(image_entry);
6954         }
6955       } else if (strcmp("load binary", data_owner) == 0) {
6956         uint32_t version = m_data.GetU32(&fileoff);
6957         if (version == 1) {
6958           uuid_t uuid;
6959           memcpy(&uuid, m_data.GetData(&fileoff, sizeof(uuid_t)),
6960                  sizeof(uuid_t));
6961           uint64_t load_address = m_data.GetU64(&fileoff);
6962           uint64_t slide = m_data.GetU64(&fileoff);
6963           std::string filename = m_data.GetCStr(&fileoff);
6964 
6965           MachOCorefileImageEntry image_entry;
6966           image_entry.filename = filename;
6967           image_entry.uuid = UUID(uuid, sizeof(uuid_t));
6968           image_entry.load_address = load_address;
6969           image_entry.slide = slide;
6970           image_entry.currently_executing = true;
6971           image_infos.all_image_infos.push_back(image_entry);
6972         }
6973       }
6974     }
6975     offset = cmd_offset + lc.cmdsize;
6976   }
6977 
6978   return image_infos;
6979 }
6980 
6981 bool ObjectFileMachO::LoadCoreFileImages(lldb_private::Process &process) {
6982   MachOCorefileAllImageInfos image_infos = GetCorefileAllImageInfos();
6983   Log *log = GetLog(LLDBLog::DynamicLoader);
6984   Status error;
6985 
6986   bool found_platform_binary = false;
6987   ModuleList added_modules;
6988   for (MachOCorefileImageEntry &image : image_infos.all_image_infos) {
6989     ModuleSP module_sp, local_filesystem_module_sp;
6990 
6991     // If this is a platform binary, it has been loaded (or registered with
6992     // the DynamicLoader to be loaded), we don't need to do any further
6993     // processing.  We're not going to call ModulesDidLoad on this in this
6994     // method, so notify==true.
6995     if (process.GetTarget()
6996             .GetDebugger()
6997             .GetPlatformList()
6998             .LoadPlatformBinaryAndSetup(&process, image.load_address,
6999                                         true /* notify */)) {
7000       LLDB_LOGF(log,
7001                 "ObjectFileMachO::%s binary at 0x%" PRIx64
7002                 " is a platform binary, has been handled by a Platform plugin.",
7003                 __FUNCTION__, image.load_address);
7004       continue;
7005     }
7006 
7007     // If this binary is currently executing, we want to force a
7008     // possibly expensive search for the binary and its dSYM.
7009     if (image.currently_executing && image.uuid.IsValid()) {
7010       ModuleSpec module_spec;
7011       module_spec.GetUUID() = image.uuid;
7012       Symbols::DownloadObjectAndSymbolFile(module_spec, error, true);
7013       if (FileSystem::Instance().Exists(module_spec.GetFileSpec())) {
7014         module_sp = process.GetTarget().GetOrCreateModule(module_spec, false);
7015         process.GetTarget().GetImages().AppendIfNeeded(module_sp,
7016                                                        false /* notify */);
7017       }
7018     }
7019 
7020     // We have an address, that's the best way to discover the binary.
7021     if (!module_sp && image.load_address != LLDB_INVALID_ADDRESS) {
7022       module_sp = DynamicLoader::LoadBinaryWithUUIDAndAddress(
7023           &process, image.filename, image.uuid, image.load_address,
7024           false /* value_is_offset */, image.currently_executing,
7025           false /* notify */);
7026     }
7027 
7028     // If we have a slide, we need to find the original binary
7029     // by UUID, then we can apply the slide value.
7030     if (!module_sp && image.uuid.IsValid() &&
7031         image.slide != LLDB_INVALID_ADDRESS) {
7032       module_sp = DynamicLoader::LoadBinaryWithUUIDAndAddress(
7033           &process, image.filename, image.uuid, image.slide,
7034           true /* value_is_offset */, image.currently_executing,
7035           false /* notify */);
7036     }
7037 
7038     // Try to find the binary by UUID or filename on the local
7039     // filesystem or in lldb's global module cache.
7040     if (!module_sp) {
7041       Status error;
7042       ModuleSpec module_spec;
7043       if (image.uuid.IsValid())
7044         module_spec.GetUUID() = image.uuid;
7045       if (!image.filename.empty())
7046         module_spec.GetFileSpec() = FileSpec(image.filename.c_str());
7047       module_sp =
7048           process.GetTarget().GetOrCreateModule(module_spec, false, &error);
7049       process.GetTarget().GetImages().AppendIfNeeded(module_sp,
7050                                                      false /* notify */);
7051     }
7052 
7053     // We have a ModuleSP to load in the Target.  Load it at the
7054     // correct address/slide and notify/load scripting resources.
7055     if (module_sp) {
7056       added_modules.Append(module_sp, false /* notify */);
7057 
7058       // We have a list of segment load address
7059       if (image.segment_load_addresses.size() > 0) {
7060         if (log) {
7061           std::string uuidstr = image.uuid.GetAsString();
7062           log->Printf("ObjectFileMachO::LoadCoreFileImages adding binary '%s' "
7063                       "UUID %s with section load addresses",
7064                       image.filename.c_str(), uuidstr.c_str());
7065         }
7066         for (auto name_vmaddr_tuple : image.segment_load_addresses) {
7067           SectionList *sectlist = module_sp->GetObjectFile()->GetSectionList();
7068           if (sectlist) {
7069             SectionSP sect_sp =
7070                 sectlist->FindSectionByName(std::get<0>(name_vmaddr_tuple));
7071             if (sect_sp) {
7072               process.GetTarget().SetSectionLoadAddress(
7073                   sect_sp, std::get<1>(name_vmaddr_tuple));
7074             }
7075           }
7076         }
7077       } else if (image.load_address != LLDB_INVALID_ADDRESS) {
7078         if (log) {
7079           std::string uuidstr = image.uuid.GetAsString();
7080           log->Printf("ObjectFileMachO::LoadCoreFileImages adding binary '%s' "
7081                       "UUID %s with load address 0x%" PRIx64,
7082                       image.filename.c_str(), uuidstr.c_str(),
7083                       image.load_address);
7084         }
7085         const bool address_is_slide = false;
7086         bool changed = false;
7087         module_sp->SetLoadAddress(process.GetTarget(), image.load_address,
7088                                   address_is_slide, changed);
7089       } else if (image.slide != 0) {
7090         if (log) {
7091           std::string uuidstr = image.uuid.GetAsString();
7092           log->Printf("ObjectFileMachO::LoadCoreFileImages adding binary '%s' "
7093                       "UUID %s with slide amount 0x%" PRIx64,
7094                       image.filename.c_str(), uuidstr.c_str(), image.slide);
7095         }
7096         const bool address_is_slide = true;
7097         bool changed = false;
7098         module_sp->SetLoadAddress(process.GetTarget(), image.slide,
7099                                   address_is_slide, changed);
7100       } else {
7101         if (log) {
7102           std::string uuidstr = image.uuid.GetAsString();
7103           log->Printf("ObjectFileMachO::LoadCoreFileImages adding binary '%s' "
7104                       "UUID %s at its file address, no slide applied",
7105                       image.filename.c_str(), uuidstr.c_str());
7106         }
7107         const bool address_is_slide = true;
7108         bool changed = false;
7109         module_sp->SetLoadAddress(process.GetTarget(), 0, address_is_slide,
7110                                   changed);
7111       }
7112     }
7113   }
7114   if (added_modules.GetSize() > 0) {
7115     process.GetTarget().ModulesDidLoad(added_modules);
7116     process.Flush();
7117     return true;
7118   }
7119   // Return true if the only binary we found was the platform binary,
7120   // and it was loaded outside the scope of this method.
7121   if (found_platform_binary)
7122     return true;
7123 
7124   // No binaries.
7125   return false;
7126 }
7127