1 //===-- llvm/Support/MathExtras.h - Useful math functions -------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains some functions that are useful for math stuff. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #ifndef LLVM_SUPPORT_MATHEXTRAS_H 14 #define LLVM_SUPPORT_MATHEXTRAS_H 15 16 #include "llvm/ADT/bit.h" 17 #include "llvm/Support/Compiler.h" 18 #include <cassert> 19 #include <climits> 20 #include <cstdint> 21 #include <cstring> 22 #include <limits> 23 #include <type_traits> 24 25 namespace llvm { 26 /// Some template parameter helpers to optimize for bitwidth, for functions that 27 /// take multiple arguments. 28 29 // We can't verify signedness, since callers rely on implicit coercions to 30 // signed/unsigned. 31 template <typename T, typename U> 32 using enableif_int = 33 std::enable_if_t<std::is_integral_v<T> && std::is_integral_v<U>>; 34 35 // Use std::common_type_t to widen only up to the widest argument. 36 template <typename T, typename U, typename = enableif_int<T, U>> 37 using common_uint = 38 std::common_type_t<std::make_unsigned_t<T>, std::make_unsigned_t<U>>; 39 template <typename T, typename U, typename = enableif_int<T, U>> 40 using common_sint = 41 std::common_type_t<std::make_signed_t<T>, std::make_signed_t<U>>; 42 43 /// Mathematical constants. 44 namespace numbers { 45 // TODO: Track C++20 std::numbers. 46 // clang-format off 47 constexpr double e = 0x1.5bf0a8b145769P+1, // (2.7182818284590452354) https://oeis.org/A001113 48 egamma = 0x1.2788cfc6fb619P-1, // (.57721566490153286061) https://oeis.org/A001620 49 ln2 = 0x1.62e42fefa39efP-1, // (.69314718055994530942) https://oeis.org/A002162 50 ln10 = 0x1.26bb1bbb55516P+1, // (2.3025850929940456840) https://oeis.org/A002392 51 log2e = 0x1.71547652b82feP+0, // (1.4426950408889634074) 52 log10e = 0x1.bcb7b1526e50eP-2, // (.43429448190325182765) 53 pi = 0x1.921fb54442d18P+1, // (3.1415926535897932385) https://oeis.org/A000796 54 inv_pi = 0x1.45f306dc9c883P-2, // (.31830988618379067154) https://oeis.org/A049541 55 sqrtpi = 0x1.c5bf891b4ef6bP+0, // (1.7724538509055160273) https://oeis.org/A002161 56 inv_sqrtpi = 0x1.20dd750429b6dP-1, // (.56418958354775628695) https://oeis.org/A087197 57 sqrt2 = 0x1.6a09e667f3bcdP+0, // (1.4142135623730950488) https://oeis.org/A00219 58 inv_sqrt2 = 0x1.6a09e667f3bcdP-1, // (.70710678118654752440) 59 sqrt3 = 0x1.bb67ae8584caaP+0, // (1.7320508075688772935) https://oeis.org/A002194 60 inv_sqrt3 = 0x1.279a74590331cP-1, // (.57735026918962576451) 61 phi = 0x1.9e3779b97f4a8P+0; // (1.6180339887498948482) https://oeis.org/A001622 62 constexpr float ef = 0x1.5bf0a8P+1F, // (2.71828183) https://oeis.org/A001113 63 egammaf = 0x1.2788d0P-1F, // (.577215665) https://oeis.org/A001620 64 ln2f = 0x1.62e430P-1F, // (.693147181) https://oeis.org/A002162 65 ln10f = 0x1.26bb1cP+1F, // (2.30258509) https://oeis.org/A002392 66 log2ef = 0x1.715476P+0F, // (1.44269504) 67 log10ef = 0x1.bcb7b2P-2F, // (.434294482) 68 pif = 0x1.921fb6P+1F, // (3.14159265) https://oeis.org/A000796 69 inv_pif = 0x1.45f306P-2F, // (.318309886) https://oeis.org/A049541 70 sqrtpif = 0x1.c5bf8aP+0F, // (1.77245385) https://oeis.org/A002161 71 inv_sqrtpif = 0x1.20dd76P-1F, // (.564189584) https://oeis.org/A087197 72 sqrt2f = 0x1.6a09e6P+0F, // (1.41421356) https://oeis.org/A002193 73 inv_sqrt2f = 0x1.6a09e6P-1F, // (.707106781) 74 sqrt3f = 0x1.bb67aeP+0F, // (1.73205081) https://oeis.org/A002194 75 inv_sqrt3f = 0x1.279a74P-1F, // (.577350269) 76 phif = 0x1.9e377aP+0F; // (1.61803399) https://oeis.org/A001622 77 // clang-format on 78 } // namespace numbers 79 80 /// Create a bitmask with the N right-most bits set to 1, and all other 81 /// bits set to 0. Only unsigned types are allowed. 82 template <typename T> T maskTrailingOnes(unsigned N) { 83 static_assert(std::is_unsigned_v<T>, "Invalid type!"); 84 const unsigned Bits = CHAR_BIT * sizeof(T); 85 assert(N <= Bits && "Invalid bit index"); 86 if (N == 0) 87 return 0; 88 return T(-1) >> (Bits - N); 89 } 90 91 /// Create a bitmask with the N left-most bits set to 1, and all other 92 /// bits set to 0. Only unsigned types are allowed. 93 template <typename T> T maskLeadingOnes(unsigned N) { 94 return ~maskTrailingOnes<T>(CHAR_BIT * sizeof(T) - N); 95 } 96 97 /// Create a bitmask with the N right-most bits set to 0, and all other 98 /// bits set to 1. Only unsigned types are allowed. 99 template <typename T> T maskTrailingZeros(unsigned N) { 100 return maskLeadingOnes<T>(CHAR_BIT * sizeof(T) - N); 101 } 102 103 /// Create a bitmask with the N left-most bits set to 0, and all other 104 /// bits set to 1. Only unsigned types are allowed. 105 template <typename T> T maskLeadingZeros(unsigned N) { 106 return maskTrailingOnes<T>(CHAR_BIT * sizeof(T) - N); 107 } 108 109 /// Macro compressed bit reversal table for 256 bits. 110 /// 111 /// http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable 112 static const unsigned char BitReverseTable256[256] = { 113 #define R2(n) n, n + 2 * 64, n + 1 * 64, n + 3 * 64 114 #define R4(n) R2(n), R2(n + 2 * 16), R2(n + 1 * 16), R2(n + 3 * 16) 115 #define R6(n) R4(n), R4(n + 2 * 4), R4(n + 1 * 4), R4(n + 3 * 4) 116 R6(0), R6(2), R6(1), R6(3) 117 #undef R2 118 #undef R4 119 #undef R6 120 }; 121 122 /// Reverse the bits in \p Val. 123 template <typename T> T reverseBits(T Val) { 124 #if __has_builtin(__builtin_bitreverse8) 125 if constexpr (std::is_same_v<T, uint8_t>) 126 return __builtin_bitreverse8(Val); 127 #endif 128 #if __has_builtin(__builtin_bitreverse16) 129 if constexpr (std::is_same_v<T, uint16_t>) 130 return __builtin_bitreverse16(Val); 131 #endif 132 #if __has_builtin(__builtin_bitreverse32) 133 if constexpr (std::is_same_v<T, uint32_t>) 134 return __builtin_bitreverse32(Val); 135 #endif 136 #if __has_builtin(__builtin_bitreverse64) 137 if constexpr (std::is_same_v<T, uint64_t>) 138 return __builtin_bitreverse64(Val); 139 #endif 140 141 unsigned char in[sizeof(Val)]; 142 unsigned char out[sizeof(Val)]; 143 std::memcpy(in, &Val, sizeof(Val)); 144 for (unsigned i = 0; i < sizeof(Val); ++i) 145 out[(sizeof(Val) - i) - 1] = BitReverseTable256[in[i]]; 146 std::memcpy(&Val, out, sizeof(Val)); 147 return Val; 148 } 149 150 // NOTE: The following support functions use the _32/_64 extensions instead of 151 // type overloading so that signed and unsigned integers can be used without 152 // ambiguity. 153 154 /// Return the high 32 bits of a 64 bit value. 155 constexpr uint32_t Hi_32(uint64_t Value) { 156 return static_cast<uint32_t>(Value >> 32); 157 } 158 159 /// Return the low 32 bits of a 64 bit value. 160 constexpr uint32_t Lo_32(uint64_t Value) { 161 return static_cast<uint32_t>(Value); 162 } 163 164 /// Make a 64-bit integer from a high / low pair of 32-bit integers. 165 constexpr uint64_t Make_64(uint32_t High, uint32_t Low) { 166 return ((uint64_t)High << 32) | (uint64_t)Low; 167 } 168 169 /// Checks if an integer fits into the given bit width. 170 template <unsigned N> constexpr bool isInt(int64_t x) { 171 if constexpr (N == 0) 172 return 0 == x; 173 if constexpr (N == 8) 174 return static_cast<int8_t>(x) == x; 175 if constexpr (N == 16) 176 return static_cast<int16_t>(x) == x; 177 if constexpr (N == 32) 178 return static_cast<int32_t>(x) == x; 179 if constexpr (N < 64) 180 return -(INT64_C(1) << (N - 1)) <= x && x < (INT64_C(1) << (N - 1)); 181 (void)x; // MSVC v19.25 warns that x is unused. 182 return true; 183 } 184 185 /// Checks if a signed integer is an N bit number shifted left by S. 186 template <unsigned N, unsigned S> 187 constexpr bool isShiftedInt(int64_t x) { 188 static_assert(S < 64, "isShiftedInt<N, S> with S >= 64 is too much."); 189 static_assert(N + S <= 64, "isShiftedInt<N, S> with N + S > 64 is too wide."); 190 return isInt<N + S>(x) && (x % (UINT64_C(1) << S) == 0); 191 } 192 193 /// Checks if an unsigned integer fits into the given bit width. 194 template <unsigned N> constexpr bool isUInt(uint64_t x) { 195 if constexpr (N == 0) 196 return 0 == x; 197 if constexpr (N == 8) 198 return static_cast<uint8_t>(x) == x; 199 if constexpr (N == 16) 200 return static_cast<uint16_t>(x) == x; 201 if constexpr (N == 32) 202 return static_cast<uint32_t>(x) == x; 203 if constexpr (N < 64) 204 return x < (UINT64_C(1) << (N)); 205 (void)x; // MSVC v19.25 warns that x is unused. 206 return true; 207 } 208 209 /// Checks if a unsigned integer is an N bit number shifted left by S. 210 template <unsigned N, unsigned S> 211 constexpr bool isShiftedUInt(uint64_t x) { 212 static_assert(S < 64, "isShiftedUInt<N, S> with S >= 64 is too much."); 213 static_assert(N + S <= 64, 214 "isShiftedUInt<N, S> with N + S > 64 is too wide."); 215 // S must be strictly less than 64. So 1 << S is not undefined behavior. 216 return isUInt<N + S>(x) && (x % (UINT64_C(1) << S) == 0); 217 } 218 219 /// Gets the maximum value for a N-bit unsigned integer. 220 inline uint64_t maxUIntN(uint64_t N) { 221 assert(N <= 64 && "integer width out of range"); 222 223 // uint64_t(1) << 64 is undefined behavior, so we can't do 224 // (uint64_t(1) << N) - 1 225 // without checking first that N != 64. But this works and doesn't have a 226 // branch for N != 0. 227 // Unfortunately, shifting a uint64_t right by 64 bit is undefined 228 // behavior, so the condition on N == 0 is necessary. Fortunately, most 229 // optimizers do not emit branches for this check. 230 if (N == 0) 231 return 0; 232 return UINT64_MAX >> (64 - N); 233 } 234 235 /// Gets the minimum value for a N-bit signed integer. 236 inline int64_t minIntN(int64_t N) { 237 assert(N <= 64 && "integer width out of range"); 238 239 if (N == 0) 240 return 0; 241 return UINT64_C(1) + ~(UINT64_C(1) << (N - 1)); 242 } 243 244 /// Gets the maximum value for a N-bit signed integer. 245 inline int64_t maxIntN(int64_t N) { 246 assert(N <= 64 && "integer width out of range"); 247 248 // This relies on two's complement wraparound when N == 64, so we convert to 249 // int64_t only at the very end to avoid UB. 250 if (N == 0) 251 return 0; 252 return (UINT64_C(1) << (N - 1)) - 1; 253 } 254 255 /// Checks if an unsigned integer fits into the given (dynamic) bit width. 256 inline bool isUIntN(unsigned N, uint64_t x) { 257 return N >= 64 || x <= maxUIntN(N); 258 } 259 260 /// Checks if an signed integer fits into the given (dynamic) bit width. 261 inline bool isIntN(unsigned N, int64_t x) { 262 return N >= 64 || (minIntN(N) <= x && x <= maxIntN(N)); 263 } 264 265 /// Return true if the argument is a non-empty sequence of ones starting at the 266 /// least significant bit with the remainder zero (32 bit version). 267 /// Ex. isMask_32(0x0000FFFFU) == true. 268 constexpr bool isMask_32(uint32_t Value) { 269 return Value && ((Value + 1) & Value) == 0; 270 } 271 272 /// Return true if the argument is a non-empty sequence of ones starting at the 273 /// least significant bit with the remainder zero (64 bit version). 274 constexpr bool isMask_64(uint64_t Value) { 275 return Value && ((Value + 1) & Value) == 0; 276 } 277 278 /// Return true if the argument contains a non-empty sequence of ones with the 279 /// remainder zero (32 bit version.) Ex. isShiftedMask_32(0x0000FF00U) == true. 280 constexpr bool isShiftedMask_32(uint32_t Value) { 281 return Value && isMask_32((Value - 1) | Value); 282 } 283 284 /// Return true if the argument contains a non-empty sequence of ones with the 285 /// remainder zero (64 bit version.) 286 constexpr bool isShiftedMask_64(uint64_t Value) { 287 return Value && isMask_64((Value - 1) | Value); 288 } 289 290 /// Return true if the argument is a power of two > 0. 291 /// Ex. isPowerOf2_32(0x00100000U) == true (32 bit edition.) 292 constexpr bool isPowerOf2_32(uint32_t Value) { 293 return llvm::has_single_bit(Value); 294 } 295 296 /// Return true if the argument is a power of two > 0 (64 bit edition.) 297 constexpr bool isPowerOf2_64(uint64_t Value) { 298 return llvm::has_single_bit(Value); 299 } 300 301 /// Return true if the argument contains a non-empty sequence of ones with the 302 /// remainder zero (32 bit version.) Ex. isShiftedMask_32(0x0000FF00U) == true. 303 /// If true, \p MaskIdx will specify the index of the lowest set bit and \p 304 /// MaskLen is updated to specify the length of the mask, else neither are 305 /// updated. 306 inline bool isShiftedMask_32(uint32_t Value, unsigned &MaskIdx, 307 unsigned &MaskLen) { 308 if (!isShiftedMask_32(Value)) 309 return false; 310 MaskIdx = llvm::countr_zero(Value); 311 MaskLen = llvm::popcount(Value); 312 return true; 313 } 314 315 /// Return true if the argument contains a non-empty sequence of ones with the 316 /// remainder zero (64 bit version.) If true, \p MaskIdx will specify the index 317 /// of the lowest set bit and \p MaskLen is updated to specify the length of the 318 /// mask, else neither are updated. 319 inline bool isShiftedMask_64(uint64_t Value, unsigned &MaskIdx, 320 unsigned &MaskLen) { 321 if (!isShiftedMask_64(Value)) 322 return false; 323 MaskIdx = llvm::countr_zero(Value); 324 MaskLen = llvm::popcount(Value); 325 return true; 326 } 327 328 /// Compile time Log2. 329 /// Valid only for positive powers of two. 330 template <size_t kValue> constexpr size_t CTLog2() { 331 static_assert(kValue > 0 && llvm::isPowerOf2_64(kValue), 332 "Value is not a valid power of 2"); 333 return 1 + CTLog2<kValue / 2>(); 334 } 335 336 template <> constexpr size_t CTLog2<1>() { return 0; } 337 338 /// Return the floor log base 2 of the specified value, -1 if the value is zero. 339 /// (32 bit edition.) 340 /// Ex. Log2_32(32) == 5, Log2_32(1) == 0, Log2_32(0) == -1, Log2_32(6) == 2 341 inline unsigned Log2_32(uint32_t Value) { 342 return 31 - llvm::countl_zero(Value); 343 } 344 345 /// Return the floor log base 2 of the specified value, -1 if the value is zero. 346 /// (64 bit edition.) 347 inline unsigned Log2_64(uint64_t Value) { 348 return 63 - llvm::countl_zero(Value); 349 } 350 351 /// Return the ceil log base 2 of the specified value, 32 if the value is zero. 352 /// (32 bit edition). 353 /// Ex. Log2_32_Ceil(32) == 5, Log2_32_Ceil(1) == 0, Log2_32_Ceil(6) == 3 354 inline unsigned Log2_32_Ceil(uint32_t Value) { 355 return 32 - llvm::countl_zero(Value - 1); 356 } 357 358 /// Return the ceil log base 2 of the specified value, 64 if the value is zero. 359 /// (64 bit edition.) 360 inline unsigned Log2_64_Ceil(uint64_t Value) { 361 return 64 - llvm::countl_zero(Value - 1); 362 } 363 364 /// A and B are either alignments or offsets. Return the minimum alignment that 365 /// may be assumed after adding the two together. 366 template <typename U, typename V, typename T = common_uint<U, V>> 367 constexpr T MinAlign(U A, V B) { 368 // The largest power of 2 that divides both A and B. 369 // 370 // Replace "-Value" by "1+~Value" in the following commented code to avoid 371 // MSVC warning C4146 372 // return (A | B) & -(A | B); 373 return (A | B) & (1 + ~(A | B)); 374 } 375 376 /// Fallback when arguments aren't integral. 377 constexpr uint64_t MinAlign(uint64_t A, uint64_t B) { 378 return (A | B) & (1 + ~(A | B)); 379 } 380 381 /// Returns the next power of two (in 64-bits) that is strictly greater than A. 382 /// Returns zero on overflow. 383 constexpr uint64_t NextPowerOf2(uint64_t A) { 384 A |= (A >> 1); 385 A |= (A >> 2); 386 A |= (A >> 4); 387 A |= (A >> 8); 388 A |= (A >> 16); 389 A |= (A >> 32); 390 return A + 1; 391 } 392 393 /// Returns the power of two which is greater than or equal to the given value. 394 /// Essentially, it is a ceil operation across the domain of powers of two. 395 inline uint64_t PowerOf2Ceil(uint64_t A) { 396 if (!A || A > UINT64_MAX / 2) 397 return 0; 398 return UINT64_C(1) << Log2_64_Ceil(A); 399 } 400 401 /// Returns the integer ceil(Numerator / Denominator). Unsigned version. 402 /// Guaranteed to never overflow. 403 template <typename U, typename V, typename T = common_uint<U, V>> 404 constexpr T divideCeil(U Numerator, V Denominator) { 405 assert(Denominator && "Division by zero"); 406 T Bias = (Numerator != 0); 407 return (Numerator - Bias) / Denominator + Bias; 408 } 409 410 /// Fallback when arguments aren't integral. 411 constexpr uint64_t divideCeil(uint64_t Numerator, uint64_t Denominator) { 412 assert(Denominator && "Division by zero"); 413 uint64_t Bias = (Numerator != 0); 414 return (Numerator - Bias) / Denominator + Bias; 415 } 416 417 // Check whether divideCeilSigned or divideFloorSigned would overflow. This 418 // happens only when Numerator = INT_MIN and Denominator = -1. 419 template <typename U, typename V> 420 constexpr bool divideSignedWouldOverflow(U Numerator, V Denominator) { 421 return Numerator == std::numeric_limits<U>::min() && Denominator == -1; 422 } 423 424 /// Returns the integer ceil(Numerator / Denominator). Signed version. 425 /// Overflow is explicitly forbidden with an assert. 426 template <typename U, typename V, typename T = common_sint<U, V>> 427 constexpr T divideCeilSigned(U Numerator, V Denominator) { 428 assert(Denominator && "Division by zero"); 429 assert(!divideSignedWouldOverflow(Numerator, Denominator) && 430 "Divide would overflow"); 431 if (!Numerator) 432 return 0; 433 // C's integer division rounds towards 0. 434 T Bias = Denominator >= 0 ? 1 : -1; 435 bool SameSign = (Numerator >= 0) == (Denominator >= 0); 436 return SameSign ? (Numerator - Bias) / Denominator + 1 437 : Numerator / Denominator; 438 } 439 440 /// Returns the integer floor(Numerator / Denominator). Signed version. 441 /// Overflow is explicitly forbidden with an assert. 442 template <typename U, typename V, typename T = common_sint<U, V>> 443 constexpr T divideFloorSigned(U Numerator, V Denominator) { 444 assert(Denominator && "Division by zero"); 445 assert(!divideSignedWouldOverflow(Numerator, Denominator) && 446 "Divide would overflow"); 447 if (!Numerator) 448 return 0; 449 // C's integer division rounds towards 0. 450 T Bias = Denominator >= 0 ? -1 : 1; 451 bool SameSign = (Numerator >= 0) == (Denominator >= 0); 452 return SameSign ? Numerator / Denominator 453 : (Numerator - Bias) / Denominator - 1; 454 } 455 456 /// Returns the remainder of the Euclidean division of LHS by RHS. Result is 457 /// always non-negative. 458 template <typename U, typename V, typename T = common_sint<U, V>> 459 constexpr T mod(U Numerator, V Denominator) { 460 assert(Denominator >= 1 && "Mod by non-positive number"); 461 T Mod = Numerator % Denominator; 462 return Mod < 0 ? Mod + Denominator : Mod; 463 } 464 465 /// Returns (Numerator / Denominator) rounded by round-half-up. Guaranteed to 466 /// never overflow. 467 template <typename U, typename V, typename T = common_uint<U, V>> 468 constexpr T divideNearest(U Numerator, V Denominator) { 469 assert(Denominator && "Division by zero"); 470 T Mod = Numerator % Denominator; 471 return (Numerator / Denominator) + 472 (Mod > (static_cast<T>(Denominator) - 1) / 2); 473 } 474 475 /// Returns the next integer (mod 2**nbits) that is greater than or equal to 476 /// \p Value and is a multiple of \p Align. \p Align must be non-zero. 477 /// 478 /// Examples: 479 /// \code 480 /// alignTo(5, 8) = 8 481 /// alignTo(17, 8) = 24 482 /// alignTo(~0LL, 8) = 0 483 /// alignTo(321, 255) = 510 484 /// \endcode 485 /// 486 /// Will overflow only if result is not representable in T. 487 template <typename U, typename V, typename T = common_uint<U, V>> 488 constexpr T alignTo(U Value, V Align) { 489 assert(Align != 0u && "Align can't be 0."); 490 T CeilDiv = divideCeil(Value, Align); 491 return CeilDiv * Align; 492 } 493 494 /// Fallback when arguments aren't integral. 495 constexpr uint64_t alignTo(uint64_t Value, uint64_t Align) { 496 assert(Align != 0u && "Align can't be 0."); 497 uint64_t CeilDiv = divideCeil(Value, Align); 498 return CeilDiv * Align; 499 } 500 501 /// Will overflow only if result is not representable in T. 502 template <typename U, typename V, typename T = common_uint<U, V>> 503 constexpr T alignToPowerOf2(U Value, V Align) { 504 assert(Align != 0 && (Align & (Align - 1)) == 0 && 505 "Align must be a power of 2"); 506 T NegAlign = static_cast<T>(0) - Align; 507 return (Value + (Align - 1)) & NegAlign; 508 } 509 510 /// Fallback when arguments aren't integral. 511 constexpr uint64_t alignToPowerOf2(uint64_t Value, uint64_t Align) { 512 assert(Align != 0 && (Align & (Align - 1)) == 0 && 513 "Align must be a power of 2"); 514 uint64_t NegAlign = 0 - Align; 515 return (Value + (Align - 1)) & NegAlign; 516 } 517 518 /// If non-zero \p Skew is specified, the return value will be a minimal integer 519 /// that is greater than or equal to \p Size and equal to \p A * N + \p Skew for 520 /// some integer N. If \p Skew is larger than \p A, its value is adjusted to '\p 521 /// Skew mod \p A'. \p Align must be non-zero. 522 /// 523 /// Examples: 524 /// \code 525 /// alignTo(5, 8, 7) = 7 526 /// alignTo(17, 8, 1) = 17 527 /// alignTo(~0LL, 8, 3) = 3 528 /// alignTo(321, 255, 42) = 552 529 /// \endcode 530 /// 531 /// May overflow. 532 template <typename U, typename V, typename W, 533 typename T = common_uint<common_uint<U, V>, W>> 534 constexpr T alignTo(U Value, V Align, W Skew) { 535 assert(Align != 0u && "Align can't be 0."); 536 Skew %= Align; 537 return alignTo(Value - Skew, Align) + Skew; 538 } 539 540 /// Returns the next integer (mod 2**nbits) that is greater than or equal to 541 /// \p Value and is a multiple of \c Align. \c Align must be non-zero. 542 /// 543 /// Will overflow only if result is not representable in T. 544 template <auto Align, typename V, typename T = common_uint<decltype(Align), V>> 545 constexpr T alignTo(V Value) { 546 static_assert(Align != 0u, "Align must be non-zero"); 547 T CeilDiv = divideCeil(Value, Align); 548 return CeilDiv * Align; 549 } 550 551 /// Returns the largest unsigned integer less than or equal to \p Value and is 552 /// \p Skew mod \p Align. \p Align must be non-zero. Guaranteed to never 553 /// overflow. 554 template <typename U, typename V, typename W = uint8_t, 555 typename T = common_uint<common_uint<U, V>, W>> 556 constexpr T alignDown(U Value, V Align, W Skew = 0) { 557 assert(Align != 0u && "Align can't be 0."); 558 Skew %= Align; 559 return (Value - Skew) / Align * Align + Skew; 560 } 561 562 /// Sign-extend the number in the bottom B bits of X to a 32-bit integer. 563 /// Requires B <= 32. 564 template <unsigned B> constexpr int32_t SignExtend32(uint32_t X) { 565 static_assert(B <= 32, "Bit width out of range."); 566 if constexpr (B == 0) 567 return 0; 568 return int32_t(X << (32 - B)) >> (32 - B); 569 } 570 571 /// Sign-extend the number in the bottom B bits of X to a 32-bit integer. 572 /// Requires B <= 32. 573 inline int32_t SignExtend32(uint32_t X, unsigned B) { 574 assert(B <= 32 && "Bit width out of range."); 575 if (B == 0) 576 return 0; 577 return int32_t(X << (32 - B)) >> (32 - B); 578 } 579 580 /// Sign-extend the number in the bottom B bits of X to a 64-bit integer. 581 /// Requires B <= 64. 582 template <unsigned B> constexpr int64_t SignExtend64(uint64_t x) { 583 static_assert(B <= 64, "Bit width out of range."); 584 if constexpr (B == 0) 585 return 0; 586 return int64_t(x << (64 - B)) >> (64 - B); 587 } 588 589 /// Sign-extend the number in the bottom B bits of X to a 64-bit integer. 590 /// Requires B <= 64. 591 inline int64_t SignExtend64(uint64_t X, unsigned B) { 592 assert(B <= 64 && "Bit width out of range."); 593 if (B == 0) 594 return 0; 595 return int64_t(X << (64 - B)) >> (64 - B); 596 } 597 598 /// Subtract two unsigned integers, X and Y, of type T and return the absolute 599 /// value of the result. 600 template <typename U, typename V, typename T = common_uint<U, V>> 601 constexpr T AbsoluteDifference(U X, V Y) { 602 return X > Y ? (X - Y) : (Y - X); 603 } 604 605 /// Add two unsigned integers, X and Y, of type T. Clamp the result to the 606 /// maximum representable value of T on overflow. ResultOverflowed indicates if 607 /// the result is larger than the maximum representable value of type T. 608 template <typename T> 609 std::enable_if_t<std::is_unsigned_v<T>, T> 610 SaturatingAdd(T X, T Y, bool *ResultOverflowed = nullptr) { 611 bool Dummy; 612 bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy; 613 // Hacker's Delight, p. 29 614 T Z = X + Y; 615 Overflowed = (Z < X || Z < Y); 616 if (Overflowed) 617 return std::numeric_limits<T>::max(); 618 else 619 return Z; 620 } 621 622 /// Add multiple unsigned integers of type T. Clamp the result to the 623 /// maximum representable value of T on overflow. 624 template <class T, class... Ts> 625 std::enable_if_t<std::is_unsigned_v<T>, T> SaturatingAdd(T X, T Y, T Z, 626 Ts... Args) { 627 bool Overflowed = false; 628 T XY = SaturatingAdd(X, Y, &Overflowed); 629 if (Overflowed) 630 return SaturatingAdd(std::numeric_limits<T>::max(), T(1), Args...); 631 return SaturatingAdd(XY, Z, Args...); 632 } 633 634 /// Multiply two unsigned integers, X and Y, of type T. Clamp the result to the 635 /// maximum representable value of T on overflow. ResultOverflowed indicates if 636 /// the result is larger than the maximum representable value of type T. 637 template <typename T> 638 std::enable_if_t<std::is_unsigned_v<T>, T> 639 SaturatingMultiply(T X, T Y, bool *ResultOverflowed = nullptr) { 640 bool Dummy; 641 bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy; 642 643 // Hacker's Delight, p. 30 has a different algorithm, but we don't use that 644 // because it fails for uint16_t (where multiplication can have undefined 645 // behavior due to promotion to int), and requires a division in addition 646 // to the multiplication. 647 648 Overflowed = false; 649 650 // Log2(Z) would be either Log2Z or Log2Z + 1. 651 // Special case: if X or Y is 0, Log2_64 gives -1, and Log2Z 652 // will necessarily be less than Log2Max as desired. 653 int Log2Z = Log2_64(X) + Log2_64(Y); 654 const T Max = std::numeric_limits<T>::max(); 655 int Log2Max = Log2_64(Max); 656 if (Log2Z < Log2Max) { 657 return X * Y; 658 } 659 if (Log2Z > Log2Max) { 660 Overflowed = true; 661 return Max; 662 } 663 664 // We're going to use the top bit, and maybe overflow one 665 // bit past it. Multiply all but the bottom bit then add 666 // that on at the end. 667 T Z = (X >> 1) * Y; 668 if (Z & ~(Max >> 1)) { 669 Overflowed = true; 670 return Max; 671 } 672 Z <<= 1; 673 if (X & 1) 674 return SaturatingAdd(Z, Y, ResultOverflowed); 675 676 return Z; 677 } 678 679 /// Multiply two unsigned integers, X and Y, and add the unsigned integer, A to 680 /// the product. Clamp the result to the maximum representable value of T on 681 /// overflow. ResultOverflowed indicates if the result is larger than the 682 /// maximum representable value of type T. 683 template <typename T> 684 std::enable_if_t<std::is_unsigned_v<T>, T> 685 SaturatingMultiplyAdd(T X, T Y, T A, bool *ResultOverflowed = nullptr) { 686 bool Dummy; 687 bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy; 688 689 T Product = SaturatingMultiply(X, Y, &Overflowed); 690 if (Overflowed) 691 return Product; 692 693 return SaturatingAdd(A, Product, &Overflowed); 694 } 695 696 /// Use this rather than HUGE_VALF; the latter causes warnings on MSVC. 697 extern const float huge_valf; 698 699 /// Add two signed integers, computing the two's complement truncated result, 700 /// returning true if overflow occurred. 701 template <typename T> 702 std::enable_if_t<std::is_signed_v<T>, T> AddOverflow(T X, T Y, T &Result) { 703 #if __has_builtin(__builtin_add_overflow) 704 return __builtin_add_overflow(X, Y, &Result); 705 #else 706 // Perform the unsigned addition. 707 using U = std::make_unsigned_t<T>; 708 const U UX = static_cast<U>(X); 709 const U UY = static_cast<U>(Y); 710 const U UResult = UX + UY; 711 712 // Convert to signed. 713 Result = static_cast<T>(UResult); 714 715 // Adding two positive numbers should result in a positive number. 716 if (X > 0 && Y > 0) 717 return Result <= 0; 718 // Adding two negatives should result in a negative number. 719 if (X < 0 && Y < 0) 720 return Result >= 0; 721 return false; 722 #endif 723 } 724 725 /// Subtract two signed integers, computing the two's complement truncated 726 /// result, returning true if an overflow ocurred. 727 template <typename T> 728 std::enable_if_t<std::is_signed_v<T>, T> SubOverflow(T X, T Y, T &Result) { 729 #if __has_builtin(__builtin_sub_overflow) 730 return __builtin_sub_overflow(X, Y, &Result); 731 #else 732 // Perform the unsigned addition. 733 using U = std::make_unsigned_t<T>; 734 const U UX = static_cast<U>(X); 735 const U UY = static_cast<U>(Y); 736 const U UResult = UX - UY; 737 738 // Convert to signed. 739 Result = static_cast<T>(UResult); 740 741 // Subtracting a positive number from a negative results in a negative number. 742 if (X <= 0 && Y > 0) 743 return Result >= 0; 744 // Subtracting a negative number from a positive results in a positive number. 745 if (X >= 0 && Y < 0) 746 return Result <= 0; 747 return false; 748 #endif 749 } 750 751 /// Multiply two signed integers, computing the two's complement truncated 752 /// result, returning true if an overflow ocurred. 753 template <typename T> 754 std::enable_if_t<std::is_signed_v<T>, T> MulOverflow(T X, T Y, T &Result) { 755 #if __has_builtin(__builtin_mul_overflow) 756 return __builtin_mul_overflow(X, Y, &Result); 757 #else 758 // Perform the unsigned multiplication on absolute values. 759 using U = std::make_unsigned_t<T>; 760 const U UX = X < 0 ? (0 - static_cast<U>(X)) : static_cast<U>(X); 761 const U UY = Y < 0 ? (0 - static_cast<U>(Y)) : static_cast<U>(Y); 762 const U UResult = UX * UY; 763 764 // Convert to signed. 765 const bool IsNegative = (X < 0) ^ (Y < 0); 766 Result = IsNegative ? (0 - UResult) : UResult; 767 768 // If any of the args was 0, result is 0 and no overflow occurs. 769 if (UX == 0 || UY == 0) 770 return false; 771 772 // UX and UY are in [1, 2^n], where n is the number of digits. 773 // Check how the max allowed absolute value (2^n for negative, 2^(n-1) for 774 // positive) divided by an argument compares to the other. 775 if (IsNegative) 776 return UX > (static_cast<U>(std::numeric_limits<T>::max()) + U(1)) / UY; 777 else 778 return UX > (static_cast<U>(std::numeric_limits<T>::max())) / UY; 779 #endif 780 } 781 782 /// Type to force float point values onto the stack, so that x86 doesn't add 783 /// hidden precision, avoiding rounding differences on various platforms. 784 #if defined(__i386__) || defined(_M_IX86) 785 using stack_float_t = volatile float; 786 #else 787 using stack_float_t = float; 788 #endif 789 790 } // namespace llvm 791 792 #endif 793