1 //===- MachineVerifier.cpp - Machine Code Verifier ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Pass to verify generated machine code. The following is checked:
10 //
11 // Operand counts: All explicit operands must be present.
12 //
13 // Register classes: All physical and virtual register operands must be
14 // compatible with the register class required by the instruction descriptor.
15 //
16 // Register live intervals: Registers must be defined only once, and must be
17 // defined before use.
18 //
19 // The machine code verifier is enabled with the command-line option
20 // -verify-machineinstrs.
21 //===----------------------------------------------------------------------===//
22
23 #include "llvm/ADT/BitVector.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/DenseSet.h"
26 #include "llvm/ADT/DepthFirstIterator.h"
27 #include "llvm/ADT/PostOrderIterator.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/ADT/SetOperations.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/ADT/StringRef.h"
33 #include "llvm/ADT/Twine.h"
34 #include "llvm/Analysis/EHPersonalities.h"
35 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
36 #include "llvm/CodeGen/LiveInterval.h"
37 #include "llvm/CodeGen/LiveIntervalCalc.h"
38 #include "llvm/CodeGen/LiveIntervals.h"
39 #include "llvm/CodeGen/LiveStacks.h"
40 #include "llvm/CodeGen/LiveVariables.h"
41 #include "llvm/CodeGen/MachineBasicBlock.h"
42 #include "llvm/CodeGen/MachineFrameInfo.h"
43 #include "llvm/CodeGen/MachineFunction.h"
44 #include "llvm/CodeGen/MachineFunctionPass.h"
45 #include "llvm/CodeGen/MachineInstr.h"
46 #include "llvm/CodeGen/MachineInstrBundle.h"
47 #include "llvm/CodeGen/MachineMemOperand.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/PseudoSourceValue.h"
51 #include "llvm/CodeGen/SlotIndexes.h"
52 #include "llvm/CodeGen/StackMaps.h"
53 #include "llvm/CodeGen/TargetInstrInfo.h"
54 #include "llvm/CodeGen/TargetOpcodes.h"
55 #include "llvm/CodeGen/TargetRegisterInfo.h"
56 #include "llvm/CodeGen/TargetSubtargetInfo.h"
57 #include "llvm/IR/BasicBlock.h"
58 #include "llvm/IR/Function.h"
59 #include "llvm/IR/InlineAsm.h"
60 #include "llvm/IR/Instructions.h"
61 #include "llvm/InitializePasses.h"
62 #include "llvm/MC/LaneBitmask.h"
63 #include "llvm/MC/MCAsmInfo.h"
64 #include "llvm/MC/MCInstrDesc.h"
65 #include "llvm/MC/MCRegisterInfo.h"
66 #include "llvm/MC/MCTargetOptions.h"
67 #include "llvm/Pass.h"
68 #include "llvm/Support/Casting.h"
69 #include "llvm/Support/ErrorHandling.h"
70 #include "llvm/Support/LowLevelTypeImpl.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include "llvm/Target/TargetMachine.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstddef>
77 #include <cstdint>
78 #include <iterator>
79 #include <string>
80 #include <utility>
81
82 using namespace llvm;
83
84 namespace {
85
86 struct MachineVerifier {
MachineVerifier__anon2ede09f00111::MachineVerifier87 MachineVerifier(Pass *pass, const char *b) : PASS(pass), Banner(b) {}
88
89 unsigned verify(const MachineFunction &MF);
90
91 Pass *const PASS;
92 const char *Banner;
93 const MachineFunction *MF;
94 const TargetMachine *TM;
95 const TargetInstrInfo *TII;
96 const TargetRegisterInfo *TRI;
97 const MachineRegisterInfo *MRI;
98
99 unsigned foundErrors;
100
101 // Avoid querying the MachineFunctionProperties for each operand.
102 bool isFunctionRegBankSelected;
103 bool isFunctionSelected;
104
105 using RegVector = SmallVector<Register, 16>;
106 using RegMaskVector = SmallVector<const uint32_t *, 4>;
107 using RegSet = DenseSet<Register>;
108 using RegMap = DenseMap<Register, const MachineInstr *>;
109 using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>;
110
111 const MachineInstr *FirstNonPHI;
112 const MachineInstr *FirstTerminator;
113 BlockSet FunctionBlocks;
114
115 BitVector regsReserved;
116 RegSet regsLive;
117 RegVector regsDefined, regsDead, regsKilled;
118 RegMaskVector regMasks;
119
120 SlotIndex lastIndex;
121
122 // Add Reg and any sub-registers to RV
addRegWithSubRegs__anon2ede09f00111::MachineVerifier123 void addRegWithSubRegs(RegVector &RV, Register Reg) {
124 RV.push_back(Reg);
125 if (Reg.isPhysical())
126 append_range(RV, TRI->subregs(Reg.asMCReg()));
127 }
128
129 struct BBInfo {
130 // Is this MBB reachable from the MF entry point?
131 bool reachable = false;
132
133 // Vregs that must be live in because they are used without being
134 // defined. Map value is the user. vregsLiveIn doesn't include regs
135 // that only are used by PHI nodes.
136 RegMap vregsLiveIn;
137
138 // Regs killed in MBB. They may be defined again, and will then be in both
139 // regsKilled and regsLiveOut.
140 RegSet regsKilled;
141
142 // Regs defined in MBB and live out. Note that vregs passing through may
143 // be live out without being mentioned here.
144 RegSet regsLiveOut;
145
146 // Vregs that pass through MBB untouched. This set is disjoint from
147 // regsKilled and regsLiveOut.
148 RegSet vregsPassed;
149
150 // Vregs that must pass through MBB because they are needed by a successor
151 // block. This set is disjoint from regsLiveOut.
152 RegSet vregsRequired;
153
154 // Set versions of block's predecessor and successor lists.
155 BlockSet Preds, Succs;
156
157 BBInfo() = default;
158
159 // Add register to vregsRequired if it belongs there. Return true if
160 // anything changed.
addRequired__anon2ede09f00111::MachineVerifier::BBInfo161 bool addRequired(Register Reg) {
162 if (!Reg.isVirtual())
163 return false;
164 if (regsLiveOut.count(Reg))
165 return false;
166 return vregsRequired.insert(Reg).second;
167 }
168
169 // Same for a full set.
addRequired__anon2ede09f00111::MachineVerifier::BBInfo170 bool addRequired(const RegSet &RS) {
171 bool Changed = false;
172 for (Register Reg : RS)
173 Changed |= addRequired(Reg);
174 return Changed;
175 }
176
177 // Same for a full map.
addRequired__anon2ede09f00111::MachineVerifier::BBInfo178 bool addRequired(const RegMap &RM) {
179 bool Changed = false;
180 for (const auto &I : RM)
181 Changed |= addRequired(I.first);
182 return Changed;
183 }
184
185 // Live-out registers are either in regsLiveOut or vregsPassed.
isLiveOut__anon2ede09f00111::MachineVerifier::BBInfo186 bool isLiveOut(Register Reg) const {
187 return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
188 }
189 };
190
191 // Extra register info per MBB.
192 DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;
193
isReserved__anon2ede09f00111::MachineVerifier194 bool isReserved(Register Reg) {
195 return Reg.id() < regsReserved.size() && regsReserved.test(Reg.id());
196 }
197
isAllocatable__anon2ede09f00111::MachineVerifier198 bool isAllocatable(Register Reg) const {
199 return Reg.id() < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) &&
200 !regsReserved.test(Reg.id());
201 }
202
203 // Analysis information if available
204 LiveVariables *LiveVars;
205 LiveIntervals *LiveInts;
206 LiveStacks *LiveStks;
207 SlotIndexes *Indexes;
208
209 void visitMachineFunctionBefore();
210 void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
211 void visitMachineBundleBefore(const MachineInstr *MI);
212
213 bool verifyVectorElementMatch(LLT Ty0, LLT Ty1, const MachineInstr *MI);
214 void verifyPreISelGenericInstruction(const MachineInstr *MI);
215 void visitMachineInstrBefore(const MachineInstr *MI);
216 void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
217 void visitMachineBundleAfter(const MachineInstr *MI);
218 void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
219 void visitMachineFunctionAfter();
220
221 void report(const char *msg, const MachineFunction *MF);
222 void report(const char *msg, const MachineBasicBlock *MBB);
223 void report(const char *msg, const MachineInstr *MI);
224 void report(const char *msg, const MachineOperand *MO, unsigned MONum,
225 LLT MOVRegType = LLT{});
226 void report(const Twine &Msg, const MachineInstr *MI);
227
228 void report_context(const LiveInterval &LI) const;
229 void report_context(const LiveRange &LR, Register VRegUnit,
230 LaneBitmask LaneMask) const;
231 void report_context(const LiveRange::Segment &S) const;
232 void report_context(const VNInfo &VNI) const;
233 void report_context(SlotIndex Pos) const;
234 void report_context(MCPhysReg PhysReg) const;
235 void report_context_liverange(const LiveRange &LR) const;
236 void report_context_lanemask(LaneBitmask LaneMask) const;
237 void report_context_vreg(Register VReg) const;
238 void report_context_vreg_regunit(Register VRegOrUnit) const;
239
240 void verifyInlineAsm(const MachineInstr *MI);
241
242 void checkLiveness(const MachineOperand *MO, unsigned MONum);
243 void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum,
244 SlotIndex UseIdx, const LiveRange &LR,
245 Register VRegOrUnit,
246 LaneBitmask LaneMask = LaneBitmask::getNone());
247 void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum,
248 SlotIndex DefIdx, const LiveRange &LR,
249 Register VRegOrUnit, bool SubRangeCheck = false,
250 LaneBitmask LaneMask = LaneBitmask::getNone());
251
252 void markReachable(const MachineBasicBlock *MBB);
253 void calcRegsPassed();
254 void checkPHIOps(const MachineBasicBlock &MBB);
255
256 void calcRegsRequired();
257 void verifyLiveVariables();
258 void verifyLiveIntervals();
259 void verifyLiveInterval(const LiveInterval&);
260 void verifyLiveRangeValue(const LiveRange &, const VNInfo *, Register,
261 LaneBitmask);
262 void verifyLiveRangeSegment(const LiveRange &,
263 const LiveRange::const_iterator I, Register,
264 LaneBitmask);
265 void verifyLiveRange(const LiveRange &, Register,
266 LaneBitmask LaneMask = LaneBitmask::getNone());
267
268 void verifyStackFrame();
269
270 void verifySlotIndexes() const;
271 void verifyProperties(const MachineFunction &MF);
272 };
273
274 struct MachineVerifierPass : public MachineFunctionPass {
275 static char ID; // Pass ID, replacement for typeid
276
277 const std::string Banner;
278
MachineVerifierPass__anon2ede09f00111::MachineVerifierPass279 MachineVerifierPass(std::string banner = std::string())
280 : MachineFunctionPass(ID), Banner(std::move(banner)) {
281 initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry());
282 }
283
getAnalysisUsage__anon2ede09f00111::MachineVerifierPass284 void getAnalysisUsage(AnalysisUsage &AU) const override {
285 AU.setPreservesAll();
286 MachineFunctionPass::getAnalysisUsage(AU);
287 }
288
runOnMachineFunction__anon2ede09f00111::MachineVerifierPass289 bool runOnMachineFunction(MachineFunction &MF) override {
290 unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF);
291 if (FoundErrors)
292 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
293 return false;
294 }
295 };
296
297 } // end anonymous namespace
298
299 char MachineVerifierPass::ID = 0;
300
301 INITIALIZE_PASS(MachineVerifierPass, "machineverifier",
302 "Verify generated machine code", false, false)
303
createMachineVerifierPass(const std::string & Banner)304 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) {
305 return new MachineVerifierPass(Banner);
306 }
307
verifyMachineFunction(MachineFunctionAnalysisManager *,const std::string & Banner,const MachineFunction & MF)308 void llvm::verifyMachineFunction(MachineFunctionAnalysisManager *,
309 const std::string &Banner,
310 const MachineFunction &MF) {
311 // TODO: Use MFAM after porting below analyses.
312 // LiveVariables *LiveVars;
313 // LiveIntervals *LiveInts;
314 // LiveStacks *LiveStks;
315 // SlotIndexes *Indexes;
316 unsigned FoundErrors = MachineVerifier(nullptr, Banner.c_str()).verify(MF);
317 if (FoundErrors)
318 report_fatal_error("Found " + Twine(FoundErrors) + " machine code errors.");
319 }
320
verify(Pass * p,const char * Banner,bool AbortOnErrors) const321 bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors)
322 const {
323 MachineFunction &MF = const_cast<MachineFunction&>(*this);
324 unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF);
325 if (AbortOnErrors && FoundErrors)
326 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
327 return FoundErrors == 0;
328 }
329
verifySlotIndexes() const330 void MachineVerifier::verifySlotIndexes() const {
331 if (Indexes == nullptr)
332 return;
333
334 // Ensure the IdxMBB list is sorted by slot indexes.
335 SlotIndex Last;
336 for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(),
337 E = Indexes->MBBIndexEnd(); I != E; ++I) {
338 assert(!Last.isValid() || I->first > Last);
339 Last = I->first;
340 }
341 }
342
verifyProperties(const MachineFunction & MF)343 void MachineVerifier::verifyProperties(const MachineFunction &MF) {
344 // If a pass has introduced virtual registers without clearing the
345 // NoVRegs property (or set it without allocating the vregs)
346 // then report an error.
347 if (MF.getProperties().hasProperty(
348 MachineFunctionProperties::Property::NoVRegs) &&
349 MRI->getNumVirtRegs())
350 report("Function has NoVRegs property but there are VReg operands", &MF);
351 }
352
verify(const MachineFunction & MF)353 unsigned MachineVerifier::verify(const MachineFunction &MF) {
354 foundErrors = 0;
355
356 this->MF = &MF;
357 TM = &MF.getTarget();
358 TII = MF.getSubtarget().getInstrInfo();
359 TRI = MF.getSubtarget().getRegisterInfo();
360 MRI = &MF.getRegInfo();
361
362 const bool isFunctionFailedISel = MF.getProperties().hasProperty(
363 MachineFunctionProperties::Property::FailedISel);
364
365 // If we're mid-GlobalISel and we already triggered the fallback path then
366 // it's expected that the MIR is somewhat broken but that's ok since we'll
367 // reset it and clear the FailedISel attribute in ResetMachineFunctions.
368 if (isFunctionFailedISel)
369 return foundErrors;
370
371 isFunctionRegBankSelected = MF.getProperties().hasProperty(
372 MachineFunctionProperties::Property::RegBankSelected);
373 isFunctionSelected = MF.getProperties().hasProperty(
374 MachineFunctionProperties::Property::Selected);
375
376 LiveVars = nullptr;
377 LiveInts = nullptr;
378 LiveStks = nullptr;
379 Indexes = nullptr;
380 if (PASS) {
381 LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>();
382 // We don't want to verify LiveVariables if LiveIntervals is available.
383 if (!LiveInts)
384 LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>();
385 LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>();
386 Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>();
387 }
388
389 verifySlotIndexes();
390
391 verifyProperties(MF);
392
393 visitMachineFunctionBefore();
394 for (const MachineBasicBlock &MBB : MF) {
395 visitMachineBasicBlockBefore(&MBB);
396 // Keep track of the current bundle header.
397 const MachineInstr *CurBundle = nullptr;
398 // Do we expect the next instruction to be part of the same bundle?
399 bool InBundle = false;
400
401 for (const MachineInstr &MI : MBB.instrs()) {
402 if (MI.getParent() != &MBB) {
403 report("Bad instruction parent pointer", &MBB);
404 errs() << "Instruction: " << MI;
405 continue;
406 }
407
408 // Check for consistent bundle flags.
409 if (InBundle && !MI.isBundledWithPred())
410 report("Missing BundledPred flag, "
411 "BundledSucc was set on predecessor",
412 &MI);
413 if (!InBundle && MI.isBundledWithPred())
414 report("BundledPred flag is set, "
415 "but BundledSucc not set on predecessor",
416 &MI);
417
418 // Is this a bundle header?
419 if (!MI.isInsideBundle()) {
420 if (CurBundle)
421 visitMachineBundleAfter(CurBundle);
422 CurBundle = &MI;
423 visitMachineBundleBefore(CurBundle);
424 } else if (!CurBundle)
425 report("No bundle header", &MI);
426 visitMachineInstrBefore(&MI);
427 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
428 const MachineOperand &Op = MI.getOperand(I);
429 if (Op.getParent() != &MI) {
430 // Make sure to use correct addOperand / RemoveOperand / ChangeTo
431 // functions when replacing operands of a MachineInstr.
432 report("Instruction has operand with wrong parent set", &MI);
433 }
434
435 visitMachineOperand(&Op, I);
436 }
437
438 // Was this the last bundled instruction?
439 InBundle = MI.isBundledWithSucc();
440 }
441 if (CurBundle)
442 visitMachineBundleAfter(CurBundle);
443 if (InBundle)
444 report("BundledSucc flag set on last instruction in block", &MBB.back());
445 visitMachineBasicBlockAfter(&MBB);
446 }
447 visitMachineFunctionAfter();
448
449 // Clean up.
450 regsLive.clear();
451 regsDefined.clear();
452 regsDead.clear();
453 regsKilled.clear();
454 regMasks.clear();
455 MBBInfoMap.clear();
456
457 return foundErrors;
458 }
459
report(const char * msg,const MachineFunction * MF)460 void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
461 assert(MF);
462 errs() << '\n';
463 if (!foundErrors++) {
464 if (Banner)
465 errs() << "# " << Banner << '\n';
466 if (LiveInts != nullptr)
467 LiveInts->print(errs());
468 else
469 MF->print(errs(), Indexes);
470 }
471 errs() << "*** Bad machine code: " << msg << " ***\n"
472 << "- function: " << MF->getName() << "\n";
473 }
474
report(const char * msg,const MachineBasicBlock * MBB)475 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
476 assert(MBB);
477 report(msg, MBB->getParent());
478 errs() << "- basic block: " << printMBBReference(*MBB) << ' '
479 << MBB->getName() << " (" << (const void *)MBB << ')';
480 if (Indexes)
481 errs() << " [" << Indexes->getMBBStartIdx(MBB)
482 << ';' << Indexes->getMBBEndIdx(MBB) << ')';
483 errs() << '\n';
484 }
485
report(const char * msg,const MachineInstr * MI)486 void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
487 assert(MI);
488 report(msg, MI->getParent());
489 errs() << "- instruction: ";
490 if (Indexes && Indexes->hasIndex(*MI))
491 errs() << Indexes->getInstructionIndex(*MI) << '\t';
492 MI->print(errs(), /*IsStandalone=*/true);
493 }
494
report(const char * msg,const MachineOperand * MO,unsigned MONum,LLT MOVRegType)495 void MachineVerifier::report(const char *msg, const MachineOperand *MO,
496 unsigned MONum, LLT MOVRegType) {
497 assert(MO);
498 report(msg, MO->getParent());
499 errs() << "- operand " << MONum << ": ";
500 MO->print(errs(), MOVRegType, TRI);
501 errs() << "\n";
502 }
503
report(const Twine & Msg,const MachineInstr * MI)504 void MachineVerifier::report(const Twine &Msg, const MachineInstr *MI) {
505 report(Msg.str().c_str(), MI);
506 }
507
report_context(SlotIndex Pos) const508 void MachineVerifier::report_context(SlotIndex Pos) const {
509 errs() << "- at: " << Pos << '\n';
510 }
511
report_context(const LiveInterval & LI) const512 void MachineVerifier::report_context(const LiveInterval &LI) const {
513 errs() << "- interval: " << LI << '\n';
514 }
515
report_context(const LiveRange & LR,Register VRegUnit,LaneBitmask LaneMask) const516 void MachineVerifier::report_context(const LiveRange &LR, Register VRegUnit,
517 LaneBitmask LaneMask) const {
518 report_context_liverange(LR);
519 report_context_vreg_regunit(VRegUnit);
520 if (LaneMask.any())
521 report_context_lanemask(LaneMask);
522 }
523
report_context(const LiveRange::Segment & S) const524 void MachineVerifier::report_context(const LiveRange::Segment &S) const {
525 errs() << "- segment: " << S << '\n';
526 }
527
report_context(const VNInfo & VNI) const528 void MachineVerifier::report_context(const VNInfo &VNI) const {
529 errs() << "- ValNo: " << VNI.id << " (def " << VNI.def << ")\n";
530 }
531
report_context_liverange(const LiveRange & LR) const532 void MachineVerifier::report_context_liverange(const LiveRange &LR) const {
533 errs() << "- liverange: " << LR << '\n';
534 }
535
report_context(MCPhysReg PReg) const536 void MachineVerifier::report_context(MCPhysReg PReg) const {
537 errs() << "- p. register: " << printReg(PReg, TRI) << '\n';
538 }
539
report_context_vreg(Register VReg) const540 void MachineVerifier::report_context_vreg(Register VReg) const {
541 errs() << "- v. register: " << printReg(VReg, TRI) << '\n';
542 }
543
report_context_vreg_regunit(Register VRegOrUnit) const544 void MachineVerifier::report_context_vreg_regunit(Register VRegOrUnit) const {
545 if (Register::isVirtualRegister(VRegOrUnit)) {
546 report_context_vreg(VRegOrUnit);
547 } else {
548 errs() << "- regunit: " << printRegUnit(VRegOrUnit, TRI) << '\n';
549 }
550 }
551
report_context_lanemask(LaneBitmask LaneMask) const552 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const {
553 errs() << "- lanemask: " << PrintLaneMask(LaneMask) << '\n';
554 }
555
markReachable(const MachineBasicBlock * MBB)556 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
557 BBInfo &MInfo = MBBInfoMap[MBB];
558 if (!MInfo.reachable) {
559 MInfo.reachable = true;
560 for (const MachineBasicBlock *Succ : MBB->successors())
561 markReachable(Succ);
562 }
563 }
564
visitMachineFunctionBefore()565 void MachineVerifier::visitMachineFunctionBefore() {
566 lastIndex = SlotIndex();
567 regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs()
568 : TRI->getReservedRegs(*MF);
569
570 if (!MF->empty())
571 markReachable(&MF->front());
572
573 // Build a set of the basic blocks in the function.
574 FunctionBlocks.clear();
575 for (const auto &MBB : *MF) {
576 FunctionBlocks.insert(&MBB);
577 BBInfo &MInfo = MBBInfoMap[&MBB];
578
579 MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end());
580 if (MInfo.Preds.size() != MBB.pred_size())
581 report("MBB has duplicate entries in its predecessor list.", &MBB);
582
583 MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end());
584 if (MInfo.Succs.size() != MBB.succ_size())
585 report("MBB has duplicate entries in its successor list.", &MBB);
586 }
587
588 // Check that the register use lists are sane.
589 MRI->verifyUseLists();
590
591 if (!MF->empty())
592 verifyStackFrame();
593 }
594
595 void
visitMachineBasicBlockBefore(const MachineBasicBlock * MBB)596 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
597 FirstTerminator = nullptr;
598 FirstNonPHI = nullptr;
599
600 if (!MF->getProperties().hasProperty(
601 MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) {
602 // If this block has allocatable physical registers live-in, check that
603 // it is an entry block or landing pad.
604 for (const auto &LI : MBB->liveins()) {
605 if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() &&
606 MBB->getIterator() != MBB->getParent()->begin()) {
607 report("MBB has allocatable live-in, but isn't entry or landing-pad.", MBB);
608 report_context(LI.PhysReg);
609 }
610 }
611 }
612
613 // Count the number of landing pad successors.
614 SmallPtrSet<const MachineBasicBlock*, 4> LandingPadSuccs;
615 for (const auto *succ : MBB->successors()) {
616 if (succ->isEHPad())
617 LandingPadSuccs.insert(succ);
618 if (!FunctionBlocks.count(succ))
619 report("MBB has successor that isn't part of the function.", MBB);
620 if (!MBBInfoMap[succ].Preds.count(MBB)) {
621 report("Inconsistent CFG", MBB);
622 errs() << "MBB is not in the predecessor list of the successor "
623 << printMBBReference(*succ) << ".\n";
624 }
625 }
626
627 // Check the predecessor list.
628 for (const MachineBasicBlock *Pred : MBB->predecessors()) {
629 if (!FunctionBlocks.count(Pred))
630 report("MBB has predecessor that isn't part of the function.", MBB);
631 if (!MBBInfoMap[Pred].Succs.count(MBB)) {
632 report("Inconsistent CFG", MBB);
633 errs() << "MBB is not in the successor list of the predecessor "
634 << printMBBReference(*Pred) << ".\n";
635 }
636 }
637
638 const MCAsmInfo *AsmInfo = TM->getMCAsmInfo();
639 const BasicBlock *BB = MBB->getBasicBlock();
640 const Function &F = MF->getFunction();
641 if (LandingPadSuccs.size() > 1 &&
642 !(AsmInfo &&
643 AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj &&
644 BB && isa<SwitchInst>(BB->getTerminator())) &&
645 !isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn())))
646 report("MBB has more than one landing pad successor", MBB);
647
648 // Call analyzeBranch. If it succeeds, there several more conditions to check.
649 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
650 SmallVector<MachineOperand, 4> Cond;
651 if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB,
652 Cond)) {
653 // Ok, analyzeBranch thinks it knows what's going on with this block. Let's
654 // check whether its answers match up with reality.
655 if (!TBB && !FBB) {
656 // Block falls through to its successor.
657 if (!MBB->empty() && MBB->back().isBarrier() &&
658 !TII->isPredicated(MBB->back())) {
659 report("MBB exits via unconditional fall-through but ends with a "
660 "barrier instruction!", MBB);
661 }
662 if (!Cond.empty()) {
663 report("MBB exits via unconditional fall-through but has a condition!",
664 MBB);
665 }
666 } else if (TBB && !FBB && Cond.empty()) {
667 // Block unconditionally branches somewhere.
668 if (MBB->empty()) {
669 report("MBB exits via unconditional branch but doesn't contain "
670 "any instructions!", MBB);
671 } else if (!MBB->back().isBarrier()) {
672 report("MBB exits via unconditional branch but doesn't end with a "
673 "barrier instruction!", MBB);
674 } else if (!MBB->back().isTerminator()) {
675 report("MBB exits via unconditional branch but the branch isn't a "
676 "terminator instruction!", MBB);
677 }
678 } else if (TBB && !FBB && !Cond.empty()) {
679 // Block conditionally branches somewhere, otherwise falls through.
680 if (MBB->empty()) {
681 report("MBB exits via conditional branch/fall-through but doesn't "
682 "contain any instructions!", MBB);
683 } else if (MBB->back().isBarrier()) {
684 report("MBB exits via conditional branch/fall-through but ends with a "
685 "barrier instruction!", MBB);
686 } else if (!MBB->back().isTerminator()) {
687 report("MBB exits via conditional branch/fall-through but the branch "
688 "isn't a terminator instruction!", MBB);
689 }
690 } else if (TBB && FBB) {
691 // Block conditionally branches somewhere, otherwise branches
692 // somewhere else.
693 if (MBB->empty()) {
694 report("MBB exits via conditional branch/branch but doesn't "
695 "contain any instructions!", MBB);
696 } else if (!MBB->back().isBarrier()) {
697 report("MBB exits via conditional branch/branch but doesn't end with a "
698 "barrier instruction!", MBB);
699 } else if (!MBB->back().isTerminator()) {
700 report("MBB exits via conditional branch/branch but the branch "
701 "isn't a terminator instruction!", MBB);
702 }
703 if (Cond.empty()) {
704 report("MBB exits via conditional branch/branch but there's no "
705 "condition!", MBB);
706 }
707 } else {
708 report("analyzeBranch returned invalid data!", MBB);
709 }
710
711 // Now check that the successors match up with the answers reported by
712 // analyzeBranch.
713 if (TBB && !MBB->isSuccessor(TBB))
714 report("MBB exits via jump or conditional branch, but its target isn't a "
715 "CFG successor!",
716 MBB);
717 if (FBB && !MBB->isSuccessor(FBB))
718 report("MBB exits via conditional branch, but its target isn't a CFG "
719 "successor!",
720 MBB);
721
722 // There might be a fallthrough to the next block if there's either no
723 // unconditional true branch, or if there's a condition, and one of the
724 // branches is missing.
725 bool Fallthrough = !TBB || (!Cond.empty() && !FBB);
726
727 // A conditional fallthrough must be an actual CFG successor, not
728 // unreachable. (Conversely, an unconditional fallthrough might not really
729 // be a successor, because the block might end in unreachable.)
730 if (!Cond.empty() && !FBB) {
731 MachineFunction::const_iterator MBBI = std::next(MBB->getIterator());
732 if (MBBI == MF->end()) {
733 report("MBB conditionally falls through out of function!", MBB);
734 } else if (!MBB->isSuccessor(&*MBBI))
735 report("MBB exits via conditional branch/fall-through but the CFG "
736 "successors don't match the actual successors!",
737 MBB);
738 }
739
740 // Verify that there aren't any extra un-accounted-for successors.
741 for (const MachineBasicBlock *SuccMBB : MBB->successors()) {
742 // If this successor is one of the branch targets, it's okay.
743 if (SuccMBB == TBB || SuccMBB == FBB)
744 continue;
745 // If we might have a fallthrough, and the successor is the fallthrough
746 // block, that's also ok.
747 if (Fallthrough && SuccMBB == MBB->getNextNode())
748 continue;
749 // Also accept successors which are for exception-handling or might be
750 // inlineasm_br targets.
751 if (SuccMBB->isEHPad() || SuccMBB->isInlineAsmBrIndirectTarget())
752 continue;
753 report("MBB has unexpected successors which are not branch targets, "
754 "fallthrough, EHPads, or inlineasm_br targets.",
755 MBB);
756 }
757 }
758
759 regsLive.clear();
760 if (MRI->tracksLiveness()) {
761 for (const auto &LI : MBB->liveins()) {
762 if (!Register::isPhysicalRegister(LI.PhysReg)) {
763 report("MBB live-in list contains non-physical register", MBB);
764 continue;
765 }
766 for (const MCPhysReg &SubReg : TRI->subregs_inclusive(LI.PhysReg))
767 regsLive.insert(SubReg);
768 }
769 }
770
771 const MachineFrameInfo &MFI = MF->getFrameInfo();
772 BitVector PR = MFI.getPristineRegs(*MF);
773 for (unsigned I : PR.set_bits()) {
774 for (const MCPhysReg &SubReg : TRI->subregs_inclusive(I))
775 regsLive.insert(SubReg);
776 }
777
778 regsKilled.clear();
779 regsDefined.clear();
780
781 if (Indexes)
782 lastIndex = Indexes->getMBBStartIdx(MBB);
783 }
784
785 // This function gets called for all bundle headers, including normal
786 // stand-alone unbundled instructions.
visitMachineBundleBefore(const MachineInstr * MI)787 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) {
788 if (Indexes && Indexes->hasIndex(*MI)) {
789 SlotIndex idx = Indexes->getInstructionIndex(*MI);
790 if (!(idx > lastIndex)) {
791 report("Instruction index out of order", MI);
792 errs() << "Last instruction was at " << lastIndex << '\n';
793 }
794 lastIndex = idx;
795 }
796
797 // Ensure non-terminators don't follow terminators.
798 if (MI->isTerminator()) {
799 if (!FirstTerminator)
800 FirstTerminator = MI;
801 } else if (FirstTerminator) {
802 report("Non-terminator instruction after the first terminator", MI);
803 errs() << "First terminator was:\t" << *FirstTerminator;
804 }
805 }
806
807 // The operands on an INLINEASM instruction must follow a template.
808 // Verify that the flag operands make sense.
verifyInlineAsm(const MachineInstr * MI)809 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) {
810 // The first two operands on INLINEASM are the asm string and global flags.
811 if (MI->getNumOperands() < 2) {
812 report("Too few operands on inline asm", MI);
813 return;
814 }
815 if (!MI->getOperand(0).isSymbol())
816 report("Asm string must be an external symbol", MI);
817 if (!MI->getOperand(1).isImm())
818 report("Asm flags must be an immediate", MI);
819 // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2,
820 // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16,
821 // and Extra_IsConvergent = 32.
822 if (!isUInt<6>(MI->getOperand(1).getImm()))
823 report("Unknown asm flags", &MI->getOperand(1), 1);
824
825 static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed");
826
827 unsigned OpNo = InlineAsm::MIOp_FirstOperand;
828 unsigned NumOps;
829 for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) {
830 const MachineOperand &MO = MI->getOperand(OpNo);
831 // There may be implicit ops after the fixed operands.
832 if (!MO.isImm())
833 break;
834 NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm());
835 }
836
837 if (OpNo > MI->getNumOperands())
838 report("Missing operands in last group", MI);
839
840 // An optional MDNode follows the groups.
841 if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata())
842 ++OpNo;
843
844 // All trailing operands must be implicit registers.
845 for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) {
846 const MachineOperand &MO = MI->getOperand(OpNo);
847 if (!MO.isReg() || !MO.isImplicit())
848 report("Expected implicit register after groups", &MO, OpNo);
849 }
850 }
851
852 /// Check that types are consistent when two operands need to have the same
853 /// number of vector elements.
854 /// \return true if the types are valid.
verifyVectorElementMatch(LLT Ty0,LLT Ty1,const MachineInstr * MI)855 bool MachineVerifier::verifyVectorElementMatch(LLT Ty0, LLT Ty1,
856 const MachineInstr *MI) {
857 if (Ty0.isVector() != Ty1.isVector()) {
858 report("operand types must be all-vector or all-scalar", MI);
859 // Generally we try to report as many issues as possible at once, but in
860 // this case it's not clear what should we be comparing the size of the
861 // scalar with: the size of the whole vector or its lane. Instead of
862 // making an arbitrary choice and emitting not so helpful message, let's
863 // avoid the extra noise and stop here.
864 return false;
865 }
866
867 if (Ty0.isVector() && Ty0.getNumElements() != Ty1.getNumElements()) {
868 report("operand types must preserve number of vector elements", MI);
869 return false;
870 }
871
872 return true;
873 }
874
verifyPreISelGenericInstruction(const MachineInstr * MI)875 void MachineVerifier::verifyPreISelGenericInstruction(const MachineInstr *MI) {
876 if (isFunctionSelected)
877 report("Unexpected generic instruction in a Selected function", MI);
878
879 const MCInstrDesc &MCID = MI->getDesc();
880 unsigned NumOps = MI->getNumOperands();
881
882 // Branches must reference a basic block if they are not indirect
883 if (MI->isBranch() && !MI->isIndirectBranch()) {
884 bool HasMBB = false;
885 for (const MachineOperand &Op : MI->operands()) {
886 if (Op.isMBB()) {
887 HasMBB = true;
888 break;
889 }
890 }
891
892 if (!HasMBB) {
893 report("Branch instruction is missing a basic block operand or "
894 "isIndirectBranch property",
895 MI);
896 }
897 }
898
899 // Check types.
900 SmallVector<LLT, 4> Types;
901 for (unsigned I = 0, E = std::min(MCID.getNumOperands(), NumOps);
902 I != E; ++I) {
903 if (!MCID.OpInfo[I].isGenericType())
904 continue;
905 // Generic instructions specify type equality constraints between some of
906 // their operands. Make sure these are consistent.
907 size_t TypeIdx = MCID.OpInfo[I].getGenericTypeIndex();
908 Types.resize(std::max(TypeIdx + 1, Types.size()));
909
910 const MachineOperand *MO = &MI->getOperand(I);
911 if (!MO->isReg()) {
912 report("generic instruction must use register operands", MI);
913 continue;
914 }
915
916 LLT OpTy = MRI->getType(MO->getReg());
917 // Don't report a type mismatch if there is no actual mismatch, only a
918 // type missing, to reduce noise:
919 if (OpTy.isValid()) {
920 // Only the first valid type for a type index will be printed: don't
921 // overwrite it later so it's always clear which type was expected:
922 if (!Types[TypeIdx].isValid())
923 Types[TypeIdx] = OpTy;
924 else if (Types[TypeIdx] != OpTy)
925 report("Type mismatch in generic instruction", MO, I, OpTy);
926 } else {
927 // Generic instructions must have types attached to their operands.
928 report("Generic instruction is missing a virtual register type", MO, I);
929 }
930 }
931
932 // Generic opcodes must not have physical register operands.
933 for (unsigned I = 0; I < MI->getNumOperands(); ++I) {
934 const MachineOperand *MO = &MI->getOperand(I);
935 if (MO->isReg() && Register::isPhysicalRegister(MO->getReg()))
936 report("Generic instruction cannot have physical register", MO, I);
937 }
938
939 // Avoid out of bounds in checks below. This was already reported earlier.
940 if (MI->getNumOperands() < MCID.getNumOperands())
941 return;
942
943 StringRef ErrorInfo;
944 if (!TII->verifyInstruction(*MI, ErrorInfo))
945 report(ErrorInfo.data(), MI);
946
947 // Verify properties of various specific instruction types
948 unsigned Opc = MI->getOpcode();
949 switch (Opc) {
950 case TargetOpcode::G_ASSERT_SEXT:
951 case TargetOpcode::G_ASSERT_ZEXT: {
952 std::string OpcName =
953 Opc == TargetOpcode::G_ASSERT_ZEXT ? "G_ASSERT_ZEXT" : "G_ASSERT_SEXT";
954 if (!MI->getOperand(2).isImm()) {
955 report(Twine(OpcName, " expects an immediate operand #2"), MI);
956 break;
957 }
958
959 Register Dst = MI->getOperand(0).getReg();
960 Register Src = MI->getOperand(1).getReg();
961 LLT SrcTy = MRI->getType(Src);
962 int64_t Imm = MI->getOperand(2).getImm();
963 if (Imm <= 0) {
964 report(Twine(OpcName, " size must be >= 1"), MI);
965 break;
966 }
967
968 if (Imm >= SrcTy.getScalarSizeInBits()) {
969 report(Twine(OpcName, " size must be less than source bit width"), MI);
970 break;
971 }
972
973 if (MRI->getRegBankOrNull(Src) != MRI->getRegBankOrNull(Dst)) {
974 report(
975 Twine(OpcName, " source and destination register banks must match"),
976 MI);
977 break;
978 }
979
980 if (MRI->getRegClassOrNull(Src) != MRI->getRegClassOrNull(Dst))
981 report(
982 Twine(OpcName, " source and destination register classes must match"),
983 MI);
984
985 break;
986 }
987
988 case TargetOpcode::G_CONSTANT:
989 case TargetOpcode::G_FCONSTANT: {
990 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
991 if (DstTy.isVector())
992 report("Instruction cannot use a vector result type", MI);
993
994 if (MI->getOpcode() == TargetOpcode::G_CONSTANT) {
995 if (!MI->getOperand(1).isCImm()) {
996 report("G_CONSTANT operand must be cimm", MI);
997 break;
998 }
999
1000 const ConstantInt *CI = MI->getOperand(1).getCImm();
1001 if (CI->getBitWidth() != DstTy.getSizeInBits())
1002 report("inconsistent constant size", MI);
1003 } else {
1004 if (!MI->getOperand(1).isFPImm()) {
1005 report("G_FCONSTANT operand must be fpimm", MI);
1006 break;
1007 }
1008 const ConstantFP *CF = MI->getOperand(1).getFPImm();
1009
1010 if (APFloat::getSizeInBits(CF->getValueAPF().getSemantics()) !=
1011 DstTy.getSizeInBits()) {
1012 report("inconsistent constant size", MI);
1013 }
1014 }
1015
1016 break;
1017 }
1018 case TargetOpcode::G_LOAD:
1019 case TargetOpcode::G_STORE:
1020 case TargetOpcode::G_ZEXTLOAD:
1021 case TargetOpcode::G_SEXTLOAD: {
1022 LLT ValTy = MRI->getType(MI->getOperand(0).getReg());
1023 LLT PtrTy = MRI->getType(MI->getOperand(1).getReg());
1024 if (!PtrTy.isPointer())
1025 report("Generic memory instruction must access a pointer", MI);
1026
1027 // Generic loads and stores must have a single MachineMemOperand
1028 // describing that access.
1029 if (!MI->hasOneMemOperand()) {
1030 report("Generic instruction accessing memory must have one mem operand",
1031 MI);
1032 } else {
1033 const MachineMemOperand &MMO = **MI->memoperands_begin();
1034 if (MI->getOpcode() == TargetOpcode::G_ZEXTLOAD ||
1035 MI->getOpcode() == TargetOpcode::G_SEXTLOAD) {
1036 if (MMO.getSizeInBits() >= ValTy.getSizeInBits())
1037 report("Generic extload must have a narrower memory type", MI);
1038 } else if (MI->getOpcode() == TargetOpcode::G_LOAD) {
1039 if (MMO.getSize() > ValTy.getSizeInBytes())
1040 report("load memory size cannot exceed result size", MI);
1041 } else if (MI->getOpcode() == TargetOpcode::G_STORE) {
1042 if (ValTy.getSizeInBytes() < MMO.getSize())
1043 report("store memory size cannot exceed value size", MI);
1044 }
1045 }
1046
1047 break;
1048 }
1049 case TargetOpcode::G_PHI: {
1050 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1051 if (!DstTy.isValid() || !all_of(drop_begin(MI->operands()),
1052 [this, &DstTy](const MachineOperand &MO) {
1053 if (!MO.isReg())
1054 return true;
1055 LLT Ty = MRI->getType(MO.getReg());
1056 if (!Ty.isValid() || (Ty != DstTy))
1057 return false;
1058 return true;
1059 }))
1060 report("Generic Instruction G_PHI has operands with incompatible/missing "
1061 "types",
1062 MI);
1063 break;
1064 }
1065 case TargetOpcode::G_BITCAST: {
1066 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1067 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1068 if (!DstTy.isValid() || !SrcTy.isValid())
1069 break;
1070
1071 if (SrcTy.isPointer() != DstTy.isPointer())
1072 report("bitcast cannot convert between pointers and other types", MI);
1073
1074 if (SrcTy.getSizeInBits() != DstTy.getSizeInBits())
1075 report("bitcast sizes must match", MI);
1076
1077 if (SrcTy == DstTy)
1078 report("bitcast must change the type", MI);
1079
1080 break;
1081 }
1082 case TargetOpcode::G_INTTOPTR:
1083 case TargetOpcode::G_PTRTOINT:
1084 case TargetOpcode::G_ADDRSPACE_CAST: {
1085 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1086 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1087 if (!DstTy.isValid() || !SrcTy.isValid())
1088 break;
1089
1090 verifyVectorElementMatch(DstTy, SrcTy, MI);
1091
1092 DstTy = DstTy.getScalarType();
1093 SrcTy = SrcTy.getScalarType();
1094
1095 if (MI->getOpcode() == TargetOpcode::G_INTTOPTR) {
1096 if (!DstTy.isPointer())
1097 report("inttoptr result type must be a pointer", MI);
1098 if (SrcTy.isPointer())
1099 report("inttoptr source type must not be a pointer", MI);
1100 } else if (MI->getOpcode() == TargetOpcode::G_PTRTOINT) {
1101 if (!SrcTy.isPointer())
1102 report("ptrtoint source type must be a pointer", MI);
1103 if (DstTy.isPointer())
1104 report("ptrtoint result type must not be a pointer", MI);
1105 } else {
1106 assert(MI->getOpcode() == TargetOpcode::G_ADDRSPACE_CAST);
1107 if (!SrcTy.isPointer() || !DstTy.isPointer())
1108 report("addrspacecast types must be pointers", MI);
1109 else {
1110 if (SrcTy.getAddressSpace() == DstTy.getAddressSpace())
1111 report("addrspacecast must convert different address spaces", MI);
1112 }
1113 }
1114
1115 break;
1116 }
1117 case TargetOpcode::G_PTR_ADD: {
1118 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1119 LLT PtrTy = MRI->getType(MI->getOperand(1).getReg());
1120 LLT OffsetTy = MRI->getType(MI->getOperand(2).getReg());
1121 if (!DstTy.isValid() || !PtrTy.isValid() || !OffsetTy.isValid())
1122 break;
1123
1124 if (!PtrTy.getScalarType().isPointer())
1125 report("gep first operand must be a pointer", MI);
1126
1127 if (OffsetTy.getScalarType().isPointer())
1128 report("gep offset operand must not be a pointer", MI);
1129
1130 // TODO: Is the offset allowed to be a scalar with a vector?
1131 break;
1132 }
1133 case TargetOpcode::G_PTRMASK: {
1134 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1135 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1136 LLT MaskTy = MRI->getType(MI->getOperand(2).getReg());
1137 if (!DstTy.isValid() || !SrcTy.isValid() || !MaskTy.isValid())
1138 break;
1139
1140 if (!DstTy.getScalarType().isPointer())
1141 report("ptrmask result type must be a pointer", MI);
1142
1143 if (!MaskTy.getScalarType().isScalar())
1144 report("ptrmask mask type must be an integer", MI);
1145
1146 verifyVectorElementMatch(DstTy, MaskTy, MI);
1147 break;
1148 }
1149 case TargetOpcode::G_SEXT:
1150 case TargetOpcode::G_ZEXT:
1151 case TargetOpcode::G_ANYEXT:
1152 case TargetOpcode::G_TRUNC:
1153 case TargetOpcode::G_FPEXT:
1154 case TargetOpcode::G_FPTRUNC: {
1155 // Number of operands and presense of types is already checked (and
1156 // reported in case of any issues), so no need to report them again. As
1157 // we're trying to report as many issues as possible at once, however, the
1158 // instructions aren't guaranteed to have the right number of operands or
1159 // types attached to them at this point
1160 assert(MCID.getNumOperands() == 2 && "Expected 2 operands G_*{EXT,TRUNC}");
1161 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1162 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1163 if (!DstTy.isValid() || !SrcTy.isValid())
1164 break;
1165
1166 LLT DstElTy = DstTy.getScalarType();
1167 LLT SrcElTy = SrcTy.getScalarType();
1168 if (DstElTy.isPointer() || SrcElTy.isPointer())
1169 report("Generic extend/truncate can not operate on pointers", MI);
1170
1171 verifyVectorElementMatch(DstTy, SrcTy, MI);
1172
1173 unsigned DstSize = DstElTy.getSizeInBits();
1174 unsigned SrcSize = SrcElTy.getSizeInBits();
1175 switch (MI->getOpcode()) {
1176 default:
1177 if (DstSize <= SrcSize)
1178 report("Generic extend has destination type no larger than source", MI);
1179 break;
1180 case TargetOpcode::G_TRUNC:
1181 case TargetOpcode::G_FPTRUNC:
1182 if (DstSize >= SrcSize)
1183 report("Generic truncate has destination type no smaller than source",
1184 MI);
1185 break;
1186 }
1187 break;
1188 }
1189 case TargetOpcode::G_SELECT: {
1190 LLT SelTy = MRI->getType(MI->getOperand(0).getReg());
1191 LLT CondTy = MRI->getType(MI->getOperand(1).getReg());
1192 if (!SelTy.isValid() || !CondTy.isValid())
1193 break;
1194
1195 // Scalar condition select on a vector is valid.
1196 if (CondTy.isVector())
1197 verifyVectorElementMatch(SelTy, CondTy, MI);
1198 break;
1199 }
1200 case TargetOpcode::G_MERGE_VALUES: {
1201 // G_MERGE_VALUES should only be used to merge scalars into a larger scalar,
1202 // e.g. s2N = MERGE sN, sN
1203 // Merging multiple scalars into a vector is not allowed, should use
1204 // G_BUILD_VECTOR for that.
1205 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1206 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1207 if (DstTy.isVector() || SrcTy.isVector())
1208 report("G_MERGE_VALUES cannot operate on vectors", MI);
1209
1210 const unsigned NumOps = MI->getNumOperands();
1211 if (DstTy.getSizeInBits() != SrcTy.getSizeInBits() * (NumOps - 1))
1212 report("G_MERGE_VALUES result size is inconsistent", MI);
1213
1214 for (unsigned I = 2; I != NumOps; ++I) {
1215 if (MRI->getType(MI->getOperand(I).getReg()) != SrcTy)
1216 report("G_MERGE_VALUES source types do not match", MI);
1217 }
1218
1219 break;
1220 }
1221 case TargetOpcode::G_UNMERGE_VALUES: {
1222 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1223 LLT SrcTy = MRI->getType(MI->getOperand(MI->getNumOperands()-1).getReg());
1224 // For now G_UNMERGE can split vectors.
1225 for (unsigned i = 0; i < MI->getNumOperands()-1; ++i) {
1226 if (MRI->getType(MI->getOperand(i).getReg()) != DstTy)
1227 report("G_UNMERGE_VALUES destination types do not match", MI);
1228 }
1229 if (SrcTy.getSizeInBits() !=
1230 (DstTy.getSizeInBits() * (MI->getNumOperands() - 1))) {
1231 report("G_UNMERGE_VALUES source operand does not cover dest operands",
1232 MI);
1233 }
1234 break;
1235 }
1236 case TargetOpcode::G_BUILD_VECTOR: {
1237 // Source types must be scalars, dest type a vector. Total size of scalars
1238 // must match the dest vector size.
1239 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1240 LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
1241 if (!DstTy.isVector() || SrcEltTy.isVector()) {
1242 report("G_BUILD_VECTOR must produce a vector from scalar operands", MI);
1243 break;
1244 }
1245
1246 if (DstTy.getElementType() != SrcEltTy)
1247 report("G_BUILD_VECTOR result element type must match source type", MI);
1248
1249 if (DstTy.getNumElements() != MI->getNumOperands() - 1)
1250 report("G_BUILD_VECTOR must have an operand for each elemement", MI);
1251
1252 for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1253 if (MRI->getType(MI->getOperand(1).getReg()) !=
1254 MRI->getType(MI->getOperand(i).getReg()))
1255 report("G_BUILD_VECTOR source operand types are not homogeneous", MI);
1256 }
1257
1258 break;
1259 }
1260 case TargetOpcode::G_BUILD_VECTOR_TRUNC: {
1261 // Source types must be scalars, dest type a vector. Scalar types must be
1262 // larger than the dest vector elt type, as this is a truncating operation.
1263 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1264 LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
1265 if (!DstTy.isVector() || SrcEltTy.isVector())
1266 report("G_BUILD_VECTOR_TRUNC must produce a vector from scalar operands",
1267 MI);
1268 for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1269 if (MRI->getType(MI->getOperand(1).getReg()) !=
1270 MRI->getType(MI->getOperand(i).getReg()))
1271 report("G_BUILD_VECTOR_TRUNC source operand types are not homogeneous",
1272 MI);
1273 }
1274 if (SrcEltTy.getSizeInBits() <= DstTy.getElementType().getSizeInBits())
1275 report("G_BUILD_VECTOR_TRUNC source operand types are not larger than "
1276 "dest elt type",
1277 MI);
1278 break;
1279 }
1280 case TargetOpcode::G_CONCAT_VECTORS: {
1281 // Source types should be vectors, and total size should match the dest
1282 // vector size.
1283 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1284 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1285 if (!DstTy.isVector() || !SrcTy.isVector())
1286 report("G_CONCAT_VECTOR requires vector source and destination operands",
1287 MI);
1288
1289 if (MI->getNumOperands() < 3)
1290 report("G_CONCAT_VECTOR requires at least 2 source operands", MI);
1291
1292 for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1293 if (MRI->getType(MI->getOperand(1).getReg()) !=
1294 MRI->getType(MI->getOperand(i).getReg()))
1295 report("G_CONCAT_VECTOR source operand types are not homogeneous", MI);
1296 }
1297 if (DstTy.getNumElements() !=
1298 SrcTy.getNumElements() * (MI->getNumOperands() - 1))
1299 report("G_CONCAT_VECTOR num dest and source elements should match", MI);
1300 break;
1301 }
1302 case TargetOpcode::G_ICMP:
1303 case TargetOpcode::G_FCMP: {
1304 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1305 LLT SrcTy = MRI->getType(MI->getOperand(2).getReg());
1306
1307 if ((DstTy.isVector() != SrcTy.isVector()) ||
1308 (DstTy.isVector() && DstTy.getNumElements() != SrcTy.getNumElements()))
1309 report("Generic vector icmp/fcmp must preserve number of lanes", MI);
1310
1311 break;
1312 }
1313 case TargetOpcode::G_EXTRACT: {
1314 const MachineOperand &SrcOp = MI->getOperand(1);
1315 if (!SrcOp.isReg()) {
1316 report("extract source must be a register", MI);
1317 break;
1318 }
1319
1320 const MachineOperand &OffsetOp = MI->getOperand(2);
1321 if (!OffsetOp.isImm()) {
1322 report("extract offset must be a constant", MI);
1323 break;
1324 }
1325
1326 unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits();
1327 unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits();
1328 if (SrcSize == DstSize)
1329 report("extract source must be larger than result", MI);
1330
1331 if (DstSize + OffsetOp.getImm() > SrcSize)
1332 report("extract reads past end of register", MI);
1333 break;
1334 }
1335 case TargetOpcode::G_INSERT: {
1336 const MachineOperand &SrcOp = MI->getOperand(2);
1337 if (!SrcOp.isReg()) {
1338 report("insert source must be a register", MI);
1339 break;
1340 }
1341
1342 const MachineOperand &OffsetOp = MI->getOperand(3);
1343 if (!OffsetOp.isImm()) {
1344 report("insert offset must be a constant", MI);
1345 break;
1346 }
1347
1348 unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits();
1349 unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits();
1350
1351 if (DstSize <= SrcSize)
1352 report("inserted size must be smaller than total register", MI);
1353
1354 if (SrcSize + OffsetOp.getImm() > DstSize)
1355 report("insert writes past end of register", MI);
1356
1357 break;
1358 }
1359 case TargetOpcode::G_JUMP_TABLE: {
1360 if (!MI->getOperand(1).isJTI())
1361 report("G_JUMP_TABLE source operand must be a jump table index", MI);
1362 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1363 if (!DstTy.isPointer())
1364 report("G_JUMP_TABLE dest operand must have a pointer type", MI);
1365 break;
1366 }
1367 case TargetOpcode::G_BRJT: {
1368 if (!MRI->getType(MI->getOperand(0).getReg()).isPointer())
1369 report("G_BRJT src operand 0 must be a pointer type", MI);
1370
1371 if (!MI->getOperand(1).isJTI())
1372 report("G_BRJT src operand 1 must be a jump table index", MI);
1373
1374 const auto &IdxOp = MI->getOperand(2);
1375 if (!IdxOp.isReg() || MRI->getType(IdxOp.getReg()).isPointer())
1376 report("G_BRJT src operand 2 must be a scalar reg type", MI);
1377 break;
1378 }
1379 case TargetOpcode::G_INTRINSIC:
1380 case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS: {
1381 // TODO: Should verify number of def and use operands, but the current
1382 // interface requires passing in IR types for mangling.
1383 const MachineOperand &IntrIDOp = MI->getOperand(MI->getNumExplicitDefs());
1384 if (!IntrIDOp.isIntrinsicID()) {
1385 report("G_INTRINSIC first src operand must be an intrinsic ID", MI);
1386 break;
1387 }
1388
1389 bool NoSideEffects = MI->getOpcode() == TargetOpcode::G_INTRINSIC;
1390 unsigned IntrID = IntrIDOp.getIntrinsicID();
1391 if (IntrID != 0 && IntrID < Intrinsic::num_intrinsics) {
1392 AttributeList Attrs
1393 = Intrinsic::getAttributes(MF->getFunction().getContext(),
1394 static_cast<Intrinsic::ID>(IntrID));
1395 bool DeclHasSideEffects = !Attrs.hasFnAttribute(Attribute::ReadNone);
1396 if (NoSideEffects && DeclHasSideEffects) {
1397 report("G_INTRINSIC used with intrinsic that accesses memory", MI);
1398 break;
1399 }
1400 if (!NoSideEffects && !DeclHasSideEffects) {
1401 report("G_INTRINSIC_W_SIDE_EFFECTS used with readnone intrinsic", MI);
1402 break;
1403 }
1404 }
1405
1406 break;
1407 }
1408 case TargetOpcode::G_SEXT_INREG: {
1409 if (!MI->getOperand(2).isImm()) {
1410 report("G_SEXT_INREG expects an immediate operand #2", MI);
1411 break;
1412 }
1413
1414 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1415 int64_t Imm = MI->getOperand(2).getImm();
1416 if (Imm <= 0)
1417 report("G_SEXT_INREG size must be >= 1", MI);
1418 if (Imm >= SrcTy.getScalarSizeInBits())
1419 report("G_SEXT_INREG size must be less than source bit width", MI);
1420 break;
1421 }
1422 case TargetOpcode::G_SHUFFLE_VECTOR: {
1423 const MachineOperand &MaskOp = MI->getOperand(3);
1424 if (!MaskOp.isShuffleMask()) {
1425 report("Incorrect mask operand type for G_SHUFFLE_VECTOR", MI);
1426 break;
1427 }
1428
1429 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1430 LLT Src0Ty = MRI->getType(MI->getOperand(1).getReg());
1431 LLT Src1Ty = MRI->getType(MI->getOperand(2).getReg());
1432
1433 if (Src0Ty != Src1Ty)
1434 report("Source operands must be the same type", MI);
1435
1436 if (Src0Ty.getScalarType() != DstTy.getScalarType())
1437 report("G_SHUFFLE_VECTOR cannot change element type", MI);
1438
1439 // Don't check that all operands are vector because scalars are used in
1440 // place of 1 element vectors.
1441 int SrcNumElts = Src0Ty.isVector() ? Src0Ty.getNumElements() : 1;
1442 int DstNumElts = DstTy.isVector() ? DstTy.getNumElements() : 1;
1443
1444 ArrayRef<int> MaskIdxes = MaskOp.getShuffleMask();
1445
1446 if (static_cast<int>(MaskIdxes.size()) != DstNumElts)
1447 report("Wrong result type for shufflemask", MI);
1448
1449 for (int Idx : MaskIdxes) {
1450 if (Idx < 0)
1451 continue;
1452
1453 if (Idx >= 2 * SrcNumElts)
1454 report("Out of bounds shuffle index", MI);
1455 }
1456
1457 break;
1458 }
1459 case TargetOpcode::G_DYN_STACKALLOC: {
1460 const MachineOperand &DstOp = MI->getOperand(0);
1461 const MachineOperand &AllocOp = MI->getOperand(1);
1462 const MachineOperand &AlignOp = MI->getOperand(2);
1463
1464 if (!DstOp.isReg() || !MRI->getType(DstOp.getReg()).isPointer()) {
1465 report("dst operand 0 must be a pointer type", MI);
1466 break;
1467 }
1468
1469 if (!AllocOp.isReg() || !MRI->getType(AllocOp.getReg()).isScalar()) {
1470 report("src operand 1 must be a scalar reg type", MI);
1471 break;
1472 }
1473
1474 if (!AlignOp.isImm()) {
1475 report("src operand 2 must be an immediate type", MI);
1476 break;
1477 }
1478 break;
1479 }
1480 case TargetOpcode::G_MEMCPY:
1481 case TargetOpcode::G_MEMMOVE: {
1482 ArrayRef<MachineMemOperand *> MMOs = MI->memoperands();
1483 if (MMOs.size() != 2) {
1484 report("memcpy/memmove must have 2 memory operands", MI);
1485 break;
1486 }
1487
1488 if ((!MMOs[0]->isStore() || MMOs[0]->isLoad()) ||
1489 (MMOs[1]->isStore() || !MMOs[1]->isLoad())) {
1490 report("wrong memory operand types", MI);
1491 break;
1492 }
1493
1494 if (MMOs[0]->getSize() != MMOs[1]->getSize())
1495 report("inconsistent memory operand sizes", MI);
1496
1497 LLT DstPtrTy = MRI->getType(MI->getOperand(0).getReg());
1498 LLT SrcPtrTy = MRI->getType(MI->getOperand(1).getReg());
1499
1500 if (!DstPtrTy.isPointer() || !SrcPtrTy.isPointer()) {
1501 report("memory instruction operand must be a pointer", MI);
1502 break;
1503 }
1504
1505 if (DstPtrTy.getAddressSpace() != MMOs[0]->getAddrSpace())
1506 report("inconsistent store address space", MI);
1507 if (SrcPtrTy.getAddressSpace() != MMOs[1]->getAddrSpace())
1508 report("inconsistent load address space", MI);
1509
1510 break;
1511 }
1512 case TargetOpcode::G_BZERO:
1513 case TargetOpcode::G_MEMSET: {
1514 ArrayRef<MachineMemOperand *> MMOs = MI->memoperands();
1515 std::string Name = Opc == TargetOpcode::G_MEMSET ? "memset" : "bzero";
1516 if (MMOs.size() != 1) {
1517 report(Twine(Name, " must have 1 memory operand"), MI);
1518 break;
1519 }
1520
1521 if ((!MMOs[0]->isStore() || MMOs[0]->isLoad())) {
1522 report(Twine(Name, " memory operand must be a store"), MI);
1523 break;
1524 }
1525
1526 LLT DstPtrTy = MRI->getType(MI->getOperand(0).getReg());
1527 if (!DstPtrTy.isPointer()) {
1528 report(Twine(Name, " operand must be a pointer"), MI);
1529 break;
1530 }
1531
1532 if (DstPtrTy.getAddressSpace() != MMOs[0]->getAddrSpace())
1533 report("inconsistent " + Twine(Name, " address space"), MI);
1534
1535 break;
1536 }
1537 case TargetOpcode::G_VECREDUCE_SEQ_FADD:
1538 case TargetOpcode::G_VECREDUCE_SEQ_FMUL: {
1539 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1540 LLT Src1Ty = MRI->getType(MI->getOperand(1).getReg());
1541 LLT Src2Ty = MRI->getType(MI->getOperand(2).getReg());
1542 if (!DstTy.isScalar())
1543 report("Vector reduction requires a scalar destination type", MI);
1544 if (!Src1Ty.isScalar())
1545 report("Sequential FADD/FMUL vector reduction requires a scalar 1st operand", MI);
1546 if (!Src2Ty.isVector())
1547 report("Sequential FADD/FMUL vector reduction must have a vector 2nd operand", MI);
1548 break;
1549 }
1550 case TargetOpcode::G_VECREDUCE_FADD:
1551 case TargetOpcode::G_VECREDUCE_FMUL:
1552 case TargetOpcode::G_VECREDUCE_FMAX:
1553 case TargetOpcode::G_VECREDUCE_FMIN:
1554 case TargetOpcode::G_VECREDUCE_ADD:
1555 case TargetOpcode::G_VECREDUCE_MUL:
1556 case TargetOpcode::G_VECREDUCE_AND:
1557 case TargetOpcode::G_VECREDUCE_OR:
1558 case TargetOpcode::G_VECREDUCE_XOR:
1559 case TargetOpcode::G_VECREDUCE_SMAX:
1560 case TargetOpcode::G_VECREDUCE_SMIN:
1561 case TargetOpcode::G_VECREDUCE_UMAX:
1562 case TargetOpcode::G_VECREDUCE_UMIN: {
1563 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1564 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1565 if (!DstTy.isScalar())
1566 report("Vector reduction requires a scalar destination type", MI);
1567 if (!SrcTy.isVector())
1568 report("Vector reduction requires vector source=", MI);
1569 break;
1570 }
1571
1572 case TargetOpcode::G_SBFX:
1573 case TargetOpcode::G_UBFX: {
1574 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1575 if (DstTy.isVector()) {
1576 report("Bitfield extraction is not supported on vectors", MI);
1577 break;
1578 }
1579 break;
1580 }
1581 case TargetOpcode::G_ROTR:
1582 case TargetOpcode::G_ROTL: {
1583 LLT Src1Ty = MRI->getType(MI->getOperand(1).getReg());
1584 LLT Src2Ty = MRI->getType(MI->getOperand(2).getReg());
1585 if (Src1Ty.isVector() != Src2Ty.isVector()) {
1586 report("Rotate requires operands to be either all scalars or all vectors",
1587 MI);
1588 break;
1589 }
1590 break;
1591 }
1592
1593 default:
1594 break;
1595 }
1596 }
1597
visitMachineInstrBefore(const MachineInstr * MI)1598 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
1599 const MCInstrDesc &MCID = MI->getDesc();
1600 if (MI->getNumOperands() < MCID.getNumOperands()) {
1601 report("Too few operands", MI);
1602 errs() << MCID.getNumOperands() << " operands expected, but "
1603 << MI->getNumOperands() << " given.\n";
1604 }
1605
1606 if (MI->isPHI()) {
1607 if (MF->getProperties().hasProperty(
1608 MachineFunctionProperties::Property::NoPHIs))
1609 report("Found PHI instruction with NoPHIs property set", MI);
1610
1611 if (FirstNonPHI)
1612 report("Found PHI instruction after non-PHI", MI);
1613 } else if (FirstNonPHI == nullptr)
1614 FirstNonPHI = MI;
1615
1616 // Check the tied operands.
1617 if (MI->isInlineAsm())
1618 verifyInlineAsm(MI);
1619
1620 // Check that unspillable terminators define a reg and have at most one use.
1621 if (TII->isUnspillableTerminator(MI)) {
1622 if (!MI->getOperand(0).isReg() || !MI->getOperand(0).isDef())
1623 report("Unspillable Terminator does not define a reg", MI);
1624 Register Def = MI->getOperand(0).getReg();
1625 if (Def.isVirtual() &&
1626 std::distance(MRI->use_nodbg_begin(Def), MRI->use_nodbg_end()) > 1)
1627 report("Unspillable Terminator expected to have at most one use!", MI);
1628 }
1629
1630 // A fully-formed DBG_VALUE must have a location. Ignore partially formed
1631 // DBG_VALUEs: these are convenient to use in tests, but should never get
1632 // generated.
1633 if (MI->isDebugValue() && MI->getNumOperands() == 4)
1634 if (!MI->getDebugLoc())
1635 report("Missing DebugLoc for debug instruction", MI);
1636
1637 // Meta instructions should never be the subject of debug value tracking,
1638 // they don't create a value in the output program at all.
1639 if (MI->isMetaInstruction() && MI->peekDebugInstrNum())
1640 report("Metadata instruction should not have a value tracking number", MI);
1641
1642 // Check the MachineMemOperands for basic consistency.
1643 for (MachineMemOperand *Op : MI->memoperands()) {
1644 if (Op->isLoad() && !MI->mayLoad())
1645 report("Missing mayLoad flag", MI);
1646 if (Op->isStore() && !MI->mayStore())
1647 report("Missing mayStore flag", MI);
1648 }
1649
1650 // Debug values must not have a slot index.
1651 // Other instructions must have one, unless they are inside a bundle.
1652 if (LiveInts) {
1653 bool mapped = !LiveInts->isNotInMIMap(*MI);
1654 if (MI->isDebugOrPseudoInstr()) {
1655 if (mapped)
1656 report("Debug instruction has a slot index", MI);
1657 } else if (MI->isInsideBundle()) {
1658 if (mapped)
1659 report("Instruction inside bundle has a slot index", MI);
1660 } else {
1661 if (!mapped)
1662 report("Missing slot index", MI);
1663 }
1664 }
1665
1666 unsigned Opc = MCID.getOpcode();
1667 if (isPreISelGenericOpcode(Opc) || isPreISelGenericOptimizationHint(Opc)) {
1668 verifyPreISelGenericInstruction(MI);
1669 return;
1670 }
1671
1672 StringRef ErrorInfo;
1673 if (!TII->verifyInstruction(*MI, ErrorInfo))
1674 report(ErrorInfo.data(), MI);
1675
1676 // Verify properties of various specific instruction types
1677 switch (MI->getOpcode()) {
1678 case TargetOpcode::COPY: {
1679 const MachineOperand &DstOp = MI->getOperand(0);
1680 const MachineOperand &SrcOp = MI->getOperand(1);
1681 const Register SrcReg = SrcOp.getReg();
1682 const Register DstReg = DstOp.getReg();
1683
1684 LLT DstTy = MRI->getType(DstReg);
1685 LLT SrcTy = MRI->getType(SrcReg);
1686 if (SrcTy.isValid() && DstTy.isValid()) {
1687 // If both types are valid, check that the types are the same.
1688 if (SrcTy != DstTy) {
1689 report("Copy Instruction is illegal with mismatching types", MI);
1690 errs() << "Def = " << DstTy << ", Src = " << SrcTy << "\n";
1691 }
1692
1693 break;
1694 }
1695
1696 if (!SrcTy.isValid() && !DstTy.isValid())
1697 break;
1698
1699 // If we have only one valid type, this is likely a copy between a virtual
1700 // and physical register.
1701 unsigned SrcSize = 0;
1702 unsigned DstSize = 0;
1703 if (SrcReg.isPhysical() && DstTy.isValid()) {
1704 const TargetRegisterClass *SrcRC =
1705 TRI->getMinimalPhysRegClassLLT(SrcReg, DstTy);
1706 if (SrcRC)
1707 SrcSize = TRI->getRegSizeInBits(*SrcRC);
1708 }
1709
1710 if (SrcSize == 0)
1711 SrcSize = TRI->getRegSizeInBits(SrcReg, *MRI);
1712
1713 if (DstReg.isPhysical() && SrcTy.isValid()) {
1714 const TargetRegisterClass *DstRC =
1715 TRI->getMinimalPhysRegClassLLT(DstReg, SrcTy);
1716 if (DstRC)
1717 DstSize = TRI->getRegSizeInBits(*DstRC);
1718 }
1719
1720 if (DstSize == 0)
1721 DstSize = TRI->getRegSizeInBits(DstReg, *MRI);
1722
1723 if (SrcSize != 0 && DstSize != 0 && SrcSize != DstSize) {
1724 if (!DstOp.getSubReg() && !SrcOp.getSubReg()) {
1725 report("Copy Instruction is illegal with mismatching sizes", MI);
1726 errs() << "Def Size = " << DstSize << ", Src Size = " << SrcSize
1727 << "\n";
1728 }
1729 }
1730 break;
1731 }
1732 case TargetOpcode::STATEPOINT: {
1733 StatepointOpers SO(MI);
1734 if (!MI->getOperand(SO.getIDPos()).isImm() ||
1735 !MI->getOperand(SO.getNBytesPos()).isImm() ||
1736 !MI->getOperand(SO.getNCallArgsPos()).isImm()) {
1737 report("meta operands to STATEPOINT not constant!", MI);
1738 break;
1739 }
1740
1741 auto VerifyStackMapConstant = [&](unsigned Offset) {
1742 if (Offset >= MI->getNumOperands()) {
1743 report("stack map constant to STATEPOINT is out of range!", MI);
1744 return;
1745 }
1746 if (!MI->getOperand(Offset - 1).isImm() ||
1747 MI->getOperand(Offset - 1).getImm() != StackMaps::ConstantOp ||
1748 !MI->getOperand(Offset).isImm())
1749 report("stack map constant to STATEPOINT not well formed!", MI);
1750 };
1751 VerifyStackMapConstant(SO.getCCIdx());
1752 VerifyStackMapConstant(SO.getFlagsIdx());
1753 VerifyStackMapConstant(SO.getNumDeoptArgsIdx());
1754 VerifyStackMapConstant(SO.getNumGCPtrIdx());
1755 VerifyStackMapConstant(SO.getNumAllocaIdx());
1756 VerifyStackMapConstant(SO.getNumGcMapEntriesIdx());
1757
1758 // Verify that all explicit statepoint defs are tied to gc operands as
1759 // they are expected to be a relocation of gc operands.
1760 unsigned FirstGCPtrIdx = SO.getFirstGCPtrIdx();
1761 unsigned LastGCPtrIdx = SO.getNumAllocaIdx() - 2;
1762 for (unsigned Idx = 0; Idx < MI->getNumDefs(); Idx++) {
1763 unsigned UseOpIdx;
1764 if (!MI->isRegTiedToUseOperand(Idx, &UseOpIdx)) {
1765 report("STATEPOINT defs expected to be tied", MI);
1766 break;
1767 }
1768 if (UseOpIdx < FirstGCPtrIdx || UseOpIdx > LastGCPtrIdx) {
1769 report("STATEPOINT def tied to non-gc operand", MI);
1770 break;
1771 }
1772 }
1773
1774 // TODO: verify we have properly encoded deopt arguments
1775 } break;
1776 }
1777 }
1778
1779 void
visitMachineOperand(const MachineOperand * MO,unsigned MONum)1780 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
1781 const MachineInstr *MI = MO->getParent();
1782 const MCInstrDesc &MCID = MI->getDesc();
1783 unsigned NumDefs = MCID.getNumDefs();
1784 if (MCID.getOpcode() == TargetOpcode::PATCHPOINT)
1785 NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0;
1786
1787 // The first MCID.NumDefs operands must be explicit register defines
1788 if (MONum < NumDefs) {
1789 const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
1790 if (!MO->isReg())
1791 report("Explicit definition must be a register", MO, MONum);
1792 else if (!MO->isDef() && !MCOI.isOptionalDef())
1793 report("Explicit definition marked as use", MO, MONum);
1794 else if (MO->isImplicit())
1795 report("Explicit definition marked as implicit", MO, MONum);
1796 } else if (MONum < MCID.getNumOperands()) {
1797 const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
1798 // Don't check if it's the last operand in a variadic instruction. See,
1799 // e.g., LDM_RET in the arm back end. Check non-variadic operands only.
1800 bool IsOptional = MI->isVariadic() && MONum == MCID.getNumOperands() - 1;
1801 if (!IsOptional) {
1802 if (MO->isReg()) {
1803 if (MO->isDef() && !MCOI.isOptionalDef() && !MCID.variadicOpsAreDefs())
1804 report("Explicit operand marked as def", MO, MONum);
1805 if (MO->isImplicit())
1806 report("Explicit operand marked as implicit", MO, MONum);
1807 }
1808
1809 // Check that an instruction has register operands only as expected.
1810 if (MCOI.OperandType == MCOI::OPERAND_REGISTER &&
1811 !MO->isReg() && !MO->isFI())
1812 report("Expected a register operand.", MO, MONum);
1813 if (MO->isReg()) {
1814 if (MCOI.OperandType == MCOI::OPERAND_IMMEDIATE ||
1815 (MCOI.OperandType == MCOI::OPERAND_PCREL &&
1816 !TII->isPCRelRegisterOperandLegal(*MO)))
1817 report("Expected a non-register operand.", MO, MONum);
1818 }
1819 }
1820
1821 int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO);
1822 if (TiedTo != -1) {
1823 if (!MO->isReg())
1824 report("Tied use must be a register", MO, MONum);
1825 else if (!MO->isTied())
1826 report("Operand should be tied", MO, MONum);
1827 else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum))
1828 report("Tied def doesn't match MCInstrDesc", MO, MONum);
1829 else if (Register::isPhysicalRegister(MO->getReg())) {
1830 const MachineOperand &MOTied = MI->getOperand(TiedTo);
1831 if (!MOTied.isReg())
1832 report("Tied counterpart must be a register", &MOTied, TiedTo);
1833 else if (Register::isPhysicalRegister(MOTied.getReg()) &&
1834 MO->getReg() != MOTied.getReg())
1835 report("Tied physical registers must match.", &MOTied, TiedTo);
1836 }
1837 } else if (MO->isReg() && MO->isTied())
1838 report("Explicit operand should not be tied", MO, MONum);
1839 } else {
1840 // ARM adds %reg0 operands to indicate predicates. We'll allow that.
1841 if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg())
1842 report("Extra explicit operand on non-variadic instruction", MO, MONum);
1843 }
1844
1845 switch (MO->getType()) {
1846 case MachineOperand::MO_Register: {
1847 const Register Reg = MO->getReg();
1848 if (!Reg)
1849 return;
1850 if (MRI->tracksLiveness() && !MI->isDebugValue())
1851 checkLiveness(MO, MONum);
1852
1853 // Verify the consistency of tied operands.
1854 if (MO->isTied()) {
1855 unsigned OtherIdx = MI->findTiedOperandIdx(MONum);
1856 const MachineOperand &OtherMO = MI->getOperand(OtherIdx);
1857 if (!OtherMO.isReg())
1858 report("Must be tied to a register", MO, MONum);
1859 if (!OtherMO.isTied())
1860 report("Missing tie flags on tied operand", MO, MONum);
1861 if (MI->findTiedOperandIdx(OtherIdx) != MONum)
1862 report("Inconsistent tie links", MO, MONum);
1863 if (MONum < MCID.getNumDefs()) {
1864 if (OtherIdx < MCID.getNumOperands()) {
1865 if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO))
1866 report("Explicit def tied to explicit use without tie constraint",
1867 MO, MONum);
1868 } else {
1869 if (!OtherMO.isImplicit())
1870 report("Explicit def should be tied to implicit use", MO, MONum);
1871 }
1872 }
1873 }
1874
1875 // Verify two-address constraints after the twoaddressinstruction pass.
1876 // Both twoaddressinstruction pass and phi-node-elimination pass call
1877 // MRI->leaveSSA() to set MF as NoSSA, we should do the verification after
1878 // twoaddressinstruction pass not after phi-node-elimination pass. So we
1879 // shouldn't use the NoSSA as the condition, we should based on
1880 // TiedOpsRewritten property to verify two-address constraints, this
1881 // property will be set in twoaddressinstruction pass.
1882 unsigned DefIdx;
1883 if (MF->getProperties().hasProperty(
1884 MachineFunctionProperties::Property::TiedOpsRewritten) &&
1885 MO->isUse() && MI->isRegTiedToDefOperand(MONum, &DefIdx) &&
1886 Reg != MI->getOperand(DefIdx).getReg())
1887 report("Two-address instruction operands must be identical", MO, MONum);
1888
1889 // Check register classes.
1890 unsigned SubIdx = MO->getSubReg();
1891
1892 if (Register::isPhysicalRegister(Reg)) {
1893 if (SubIdx) {
1894 report("Illegal subregister index for physical register", MO, MONum);
1895 return;
1896 }
1897 if (MONum < MCID.getNumOperands()) {
1898 if (const TargetRegisterClass *DRC =
1899 TII->getRegClass(MCID, MONum, TRI, *MF)) {
1900 if (!DRC->contains(Reg)) {
1901 report("Illegal physical register for instruction", MO, MONum);
1902 errs() << printReg(Reg, TRI) << " is not a "
1903 << TRI->getRegClassName(DRC) << " register.\n";
1904 }
1905 }
1906 }
1907 if (MO->isRenamable()) {
1908 if (MRI->isReserved(Reg)) {
1909 report("isRenamable set on reserved register", MO, MONum);
1910 return;
1911 }
1912 }
1913 if (MI->isDebugValue() && MO->isUse() && !MO->isDebug()) {
1914 report("Use-reg is not IsDebug in a DBG_VALUE", MO, MONum);
1915 return;
1916 }
1917 } else {
1918 // Virtual register.
1919 const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg);
1920 if (!RC) {
1921 // This is a generic virtual register.
1922
1923 // Do not allow undef uses for generic virtual registers. This ensures
1924 // getVRegDef can never fail and return null on a generic register.
1925 //
1926 // FIXME: This restriction should probably be broadened to all SSA
1927 // MIR. However, DetectDeadLanes/ProcessImplicitDefs technically still
1928 // run on the SSA function just before phi elimination.
1929 if (MO->isUndef())
1930 report("Generic virtual register use cannot be undef", MO, MONum);
1931
1932 // If we're post-Select, we can't have gvregs anymore.
1933 if (isFunctionSelected) {
1934 report("Generic virtual register invalid in a Selected function",
1935 MO, MONum);
1936 return;
1937 }
1938
1939 // The gvreg must have a type and it must not have a SubIdx.
1940 LLT Ty = MRI->getType(Reg);
1941 if (!Ty.isValid()) {
1942 report("Generic virtual register must have a valid type", MO,
1943 MONum);
1944 return;
1945 }
1946
1947 const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg);
1948
1949 // If we're post-RegBankSelect, the gvreg must have a bank.
1950 if (!RegBank && isFunctionRegBankSelected) {
1951 report("Generic virtual register must have a bank in a "
1952 "RegBankSelected function",
1953 MO, MONum);
1954 return;
1955 }
1956
1957 // Make sure the register fits into its register bank if any.
1958 if (RegBank && Ty.isValid() &&
1959 RegBank->getSize() < Ty.getSizeInBits()) {
1960 report("Register bank is too small for virtual register", MO,
1961 MONum);
1962 errs() << "Register bank " << RegBank->getName() << " too small("
1963 << RegBank->getSize() << ") to fit " << Ty.getSizeInBits()
1964 << "-bits\n";
1965 return;
1966 }
1967 if (SubIdx) {
1968 report("Generic virtual register does not allow subregister index", MO,
1969 MONum);
1970 return;
1971 }
1972
1973 // If this is a target specific instruction and this operand
1974 // has register class constraint, the virtual register must
1975 // comply to it.
1976 if (!isPreISelGenericOpcode(MCID.getOpcode()) &&
1977 MONum < MCID.getNumOperands() &&
1978 TII->getRegClass(MCID, MONum, TRI, *MF)) {
1979 report("Virtual register does not match instruction constraint", MO,
1980 MONum);
1981 errs() << "Expect register class "
1982 << TRI->getRegClassName(
1983 TII->getRegClass(MCID, MONum, TRI, *MF))
1984 << " but got nothing\n";
1985 return;
1986 }
1987
1988 break;
1989 }
1990 if (SubIdx) {
1991 const TargetRegisterClass *SRC =
1992 TRI->getSubClassWithSubReg(RC, SubIdx);
1993 if (!SRC) {
1994 report("Invalid subregister index for virtual register", MO, MONum);
1995 errs() << "Register class " << TRI->getRegClassName(RC)
1996 << " does not support subreg index " << SubIdx << "\n";
1997 return;
1998 }
1999 if (RC != SRC) {
2000 report("Invalid register class for subregister index", MO, MONum);
2001 errs() << "Register class " << TRI->getRegClassName(RC)
2002 << " does not fully support subreg index " << SubIdx << "\n";
2003 return;
2004 }
2005 }
2006 if (MONum < MCID.getNumOperands()) {
2007 if (const TargetRegisterClass *DRC =
2008 TII->getRegClass(MCID, MONum, TRI, *MF)) {
2009 if (SubIdx) {
2010 const TargetRegisterClass *SuperRC =
2011 TRI->getLargestLegalSuperClass(RC, *MF);
2012 if (!SuperRC) {
2013 report("No largest legal super class exists.", MO, MONum);
2014 return;
2015 }
2016 DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx);
2017 if (!DRC) {
2018 report("No matching super-reg register class.", MO, MONum);
2019 return;
2020 }
2021 }
2022 if (!RC->hasSuperClassEq(DRC)) {
2023 report("Illegal virtual register for instruction", MO, MONum);
2024 errs() << "Expected a " << TRI->getRegClassName(DRC)
2025 << " register, but got a " << TRI->getRegClassName(RC)
2026 << " register\n";
2027 }
2028 }
2029 }
2030 }
2031 break;
2032 }
2033
2034 case MachineOperand::MO_RegisterMask:
2035 regMasks.push_back(MO->getRegMask());
2036 break;
2037
2038 case MachineOperand::MO_MachineBasicBlock:
2039 if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent()))
2040 report("PHI operand is not in the CFG", MO, MONum);
2041 break;
2042
2043 case MachineOperand::MO_FrameIndex:
2044 if (LiveStks && LiveStks->hasInterval(MO->getIndex()) &&
2045 LiveInts && !LiveInts->isNotInMIMap(*MI)) {
2046 int FI = MO->getIndex();
2047 LiveInterval &LI = LiveStks->getInterval(FI);
2048 SlotIndex Idx = LiveInts->getInstructionIndex(*MI);
2049
2050 bool stores = MI->mayStore();
2051 bool loads = MI->mayLoad();
2052 // For a memory-to-memory move, we need to check if the frame
2053 // index is used for storing or loading, by inspecting the
2054 // memory operands.
2055 if (stores && loads) {
2056 for (auto *MMO : MI->memoperands()) {
2057 const PseudoSourceValue *PSV = MMO->getPseudoValue();
2058 if (PSV == nullptr) continue;
2059 const FixedStackPseudoSourceValue *Value =
2060 dyn_cast<FixedStackPseudoSourceValue>(PSV);
2061 if (Value == nullptr) continue;
2062 if (Value->getFrameIndex() != FI) continue;
2063
2064 if (MMO->isStore())
2065 loads = false;
2066 else
2067 stores = false;
2068 break;
2069 }
2070 if (loads == stores)
2071 report("Missing fixed stack memoperand.", MI);
2072 }
2073 if (loads && !LI.liveAt(Idx.getRegSlot(true))) {
2074 report("Instruction loads from dead spill slot", MO, MONum);
2075 errs() << "Live stack: " << LI << '\n';
2076 }
2077 if (stores && !LI.liveAt(Idx.getRegSlot())) {
2078 report("Instruction stores to dead spill slot", MO, MONum);
2079 errs() << "Live stack: " << LI << '\n';
2080 }
2081 }
2082 break;
2083
2084 default:
2085 break;
2086 }
2087 }
2088
checkLivenessAtUse(const MachineOperand * MO,unsigned MONum,SlotIndex UseIdx,const LiveRange & LR,Register VRegOrUnit,LaneBitmask LaneMask)2089 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO,
2090 unsigned MONum, SlotIndex UseIdx,
2091 const LiveRange &LR,
2092 Register VRegOrUnit,
2093 LaneBitmask LaneMask) {
2094 LiveQueryResult LRQ = LR.Query(UseIdx);
2095 // Check if we have a segment at the use, note however that we only need one
2096 // live subregister range, the others may be dead.
2097 if (!LRQ.valueIn() && LaneMask.none()) {
2098 report("No live segment at use", MO, MONum);
2099 report_context_liverange(LR);
2100 report_context_vreg_regunit(VRegOrUnit);
2101 report_context(UseIdx);
2102 }
2103 if (MO->isKill() && !LRQ.isKill()) {
2104 report("Live range continues after kill flag", MO, MONum);
2105 report_context_liverange(LR);
2106 report_context_vreg_regunit(VRegOrUnit);
2107 if (LaneMask.any())
2108 report_context_lanemask(LaneMask);
2109 report_context(UseIdx);
2110 }
2111 }
2112
checkLivenessAtDef(const MachineOperand * MO,unsigned MONum,SlotIndex DefIdx,const LiveRange & LR,Register VRegOrUnit,bool SubRangeCheck,LaneBitmask LaneMask)2113 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO,
2114 unsigned MONum, SlotIndex DefIdx,
2115 const LiveRange &LR,
2116 Register VRegOrUnit,
2117 bool SubRangeCheck,
2118 LaneBitmask LaneMask) {
2119 if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) {
2120 assert(VNI && "NULL valno is not allowed");
2121 if (VNI->def != DefIdx) {
2122 report("Inconsistent valno->def", MO, MONum);
2123 report_context_liverange(LR);
2124 report_context_vreg_regunit(VRegOrUnit);
2125 if (LaneMask.any())
2126 report_context_lanemask(LaneMask);
2127 report_context(*VNI);
2128 report_context(DefIdx);
2129 }
2130 } else {
2131 report("No live segment at def", MO, MONum);
2132 report_context_liverange(LR);
2133 report_context_vreg_regunit(VRegOrUnit);
2134 if (LaneMask.any())
2135 report_context_lanemask(LaneMask);
2136 report_context(DefIdx);
2137 }
2138 // Check that, if the dead def flag is present, LiveInts agree.
2139 if (MO->isDead()) {
2140 LiveQueryResult LRQ = LR.Query(DefIdx);
2141 if (!LRQ.isDeadDef()) {
2142 assert(Register::isVirtualRegister(VRegOrUnit) &&
2143 "Expecting a virtual register.");
2144 // A dead subreg def only tells us that the specific subreg is dead. There
2145 // could be other non-dead defs of other subregs, or we could have other
2146 // parts of the register being live through the instruction. So unless we
2147 // are checking liveness for a subrange it is ok for the live range to
2148 // continue, given that we have a dead def of a subregister.
2149 if (SubRangeCheck || MO->getSubReg() == 0) {
2150 report("Live range continues after dead def flag", MO, MONum);
2151 report_context_liverange(LR);
2152 report_context_vreg_regunit(VRegOrUnit);
2153 if (LaneMask.any())
2154 report_context_lanemask(LaneMask);
2155 }
2156 }
2157 }
2158 }
2159
checkLiveness(const MachineOperand * MO,unsigned MONum)2160 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) {
2161 const MachineInstr *MI = MO->getParent();
2162 const Register Reg = MO->getReg();
2163
2164 // Both use and def operands can read a register.
2165 if (MO->readsReg()) {
2166 if (MO->isKill())
2167 addRegWithSubRegs(regsKilled, Reg);
2168
2169 // Check that LiveVars knows this kill.
2170 if (LiveVars && Register::isVirtualRegister(Reg) && MO->isKill()) {
2171 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
2172 if (!is_contained(VI.Kills, MI))
2173 report("Kill missing from LiveVariables", MO, MONum);
2174 }
2175
2176 // Check LiveInts liveness and kill.
2177 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
2178 SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI);
2179 // Check the cached regunit intervals.
2180 if (Reg.isPhysical() && !isReserved(Reg)) {
2181 for (MCRegUnitIterator Units(Reg.asMCReg(), TRI); Units.isValid();
2182 ++Units) {
2183 if (MRI->isReservedRegUnit(*Units))
2184 continue;
2185 if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units))
2186 checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units);
2187 }
2188 }
2189
2190 if (Register::isVirtualRegister(Reg)) {
2191 if (LiveInts->hasInterval(Reg)) {
2192 // This is a virtual register interval.
2193 const LiveInterval &LI = LiveInts->getInterval(Reg);
2194 checkLivenessAtUse(MO, MONum, UseIdx, LI, Reg);
2195
2196 if (LI.hasSubRanges() && !MO->isDef()) {
2197 unsigned SubRegIdx = MO->getSubReg();
2198 LaneBitmask MOMask = SubRegIdx != 0
2199 ? TRI->getSubRegIndexLaneMask(SubRegIdx)
2200 : MRI->getMaxLaneMaskForVReg(Reg);
2201 LaneBitmask LiveInMask;
2202 for (const LiveInterval::SubRange &SR : LI.subranges()) {
2203 if ((MOMask & SR.LaneMask).none())
2204 continue;
2205 checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask);
2206 LiveQueryResult LRQ = SR.Query(UseIdx);
2207 if (LRQ.valueIn())
2208 LiveInMask |= SR.LaneMask;
2209 }
2210 // At least parts of the register has to be live at the use.
2211 if ((LiveInMask & MOMask).none()) {
2212 report("No live subrange at use", MO, MONum);
2213 report_context(LI);
2214 report_context(UseIdx);
2215 }
2216 }
2217 } else {
2218 report("Virtual register has no live interval", MO, MONum);
2219 }
2220 }
2221 }
2222
2223 // Use of a dead register.
2224 if (!regsLive.count(Reg)) {
2225 if (Register::isPhysicalRegister(Reg)) {
2226 // Reserved registers may be used even when 'dead'.
2227 bool Bad = !isReserved(Reg);
2228 // We are fine if just any subregister has a defined value.
2229 if (Bad) {
2230
2231 for (const MCPhysReg &SubReg : TRI->subregs(Reg)) {
2232 if (regsLive.count(SubReg)) {
2233 Bad = false;
2234 break;
2235 }
2236 }
2237 }
2238 // If there is an additional implicit-use of a super register we stop
2239 // here. By definition we are fine if the super register is not
2240 // (completely) dead, if the complete super register is dead we will
2241 // get a report for its operand.
2242 if (Bad) {
2243 for (const MachineOperand &MOP : MI->uses()) {
2244 if (!MOP.isReg() || !MOP.isImplicit())
2245 continue;
2246
2247 if (!Register::isPhysicalRegister(MOP.getReg()))
2248 continue;
2249
2250 if (llvm::is_contained(TRI->subregs(MOP.getReg()), Reg))
2251 Bad = false;
2252 }
2253 }
2254 if (Bad)
2255 report("Using an undefined physical register", MO, MONum);
2256 } else if (MRI->def_empty(Reg)) {
2257 report("Reading virtual register without a def", MO, MONum);
2258 } else {
2259 BBInfo &MInfo = MBBInfoMap[MI->getParent()];
2260 // We don't know which virtual registers are live in, so only complain
2261 // if vreg was killed in this MBB. Otherwise keep track of vregs that
2262 // must be live in. PHI instructions are handled separately.
2263 if (MInfo.regsKilled.count(Reg))
2264 report("Using a killed virtual register", MO, MONum);
2265 else if (!MI->isPHI())
2266 MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
2267 }
2268 }
2269 }
2270
2271 if (MO->isDef()) {
2272 // Register defined.
2273 // TODO: verify that earlyclobber ops are not used.
2274 if (MO->isDead())
2275 addRegWithSubRegs(regsDead, Reg);
2276 else
2277 addRegWithSubRegs(regsDefined, Reg);
2278
2279 // Verify SSA form.
2280 if (MRI->isSSA() && Register::isVirtualRegister(Reg) &&
2281 std::next(MRI->def_begin(Reg)) != MRI->def_end())
2282 report("Multiple virtual register defs in SSA form", MO, MONum);
2283
2284 // Check LiveInts for a live segment, but only for virtual registers.
2285 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
2286 SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI);
2287 DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber());
2288
2289 if (Register::isVirtualRegister(Reg)) {
2290 if (LiveInts->hasInterval(Reg)) {
2291 const LiveInterval &LI = LiveInts->getInterval(Reg);
2292 checkLivenessAtDef(MO, MONum, DefIdx, LI, Reg);
2293
2294 if (LI.hasSubRanges()) {
2295 unsigned SubRegIdx = MO->getSubReg();
2296 LaneBitmask MOMask = SubRegIdx != 0
2297 ? TRI->getSubRegIndexLaneMask(SubRegIdx)
2298 : MRI->getMaxLaneMaskForVReg(Reg);
2299 for (const LiveInterval::SubRange &SR : LI.subranges()) {
2300 if ((SR.LaneMask & MOMask).none())
2301 continue;
2302 checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, true, SR.LaneMask);
2303 }
2304 }
2305 } else {
2306 report("Virtual register has no Live interval", MO, MONum);
2307 }
2308 }
2309 }
2310 }
2311 }
2312
2313 // This function gets called after visiting all instructions in a bundle. The
2314 // argument points to the bundle header.
2315 // Normal stand-alone instructions are also considered 'bundles', and this
2316 // function is called for all of them.
visitMachineBundleAfter(const MachineInstr * MI)2317 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) {
2318 BBInfo &MInfo = MBBInfoMap[MI->getParent()];
2319 set_union(MInfo.regsKilled, regsKilled);
2320 set_subtract(regsLive, regsKilled); regsKilled.clear();
2321 // Kill any masked registers.
2322 while (!regMasks.empty()) {
2323 const uint32_t *Mask = regMasks.pop_back_val();
2324 for (Register Reg : regsLive)
2325 if (Reg.isPhysical() &&
2326 MachineOperand::clobbersPhysReg(Mask, Reg.asMCReg()))
2327 regsDead.push_back(Reg);
2328 }
2329 set_subtract(regsLive, regsDead); regsDead.clear();
2330 set_union(regsLive, regsDefined); regsDefined.clear();
2331 }
2332
2333 void
visitMachineBasicBlockAfter(const MachineBasicBlock * MBB)2334 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
2335 MBBInfoMap[MBB].regsLiveOut = regsLive;
2336 regsLive.clear();
2337
2338 if (Indexes) {
2339 SlotIndex stop = Indexes->getMBBEndIdx(MBB);
2340 if (!(stop > lastIndex)) {
2341 report("Block ends before last instruction index", MBB);
2342 errs() << "Block ends at " << stop
2343 << " last instruction was at " << lastIndex << '\n';
2344 }
2345 lastIndex = stop;
2346 }
2347 }
2348
2349 namespace {
2350 // This implements a set of registers that serves as a filter: can filter other
2351 // sets by passing through elements not in the filter and blocking those that
2352 // are. Any filter implicitly includes the full set of physical registers upon
2353 // creation, thus filtering them all out. The filter itself as a set only grows,
2354 // and needs to be as efficient as possible.
2355 struct VRegFilter {
2356 // Add elements to the filter itself. \pre Input set \p FromRegSet must have
2357 // no duplicates. Both virtual and physical registers are fine.
add__anon2ede09f00411::VRegFilter2358 template <typename RegSetT> void add(const RegSetT &FromRegSet) {
2359 SmallVector<Register, 0> VRegsBuffer;
2360 filterAndAdd(FromRegSet, VRegsBuffer);
2361 }
2362 // Filter \p FromRegSet through the filter and append passed elements into \p
2363 // ToVRegs. All elements appended are then added to the filter itself.
2364 // \returns true if anything changed.
2365 template <typename RegSetT>
filterAndAdd__anon2ede09f00411::VRegFilter2366 bool filterAndAdd(const RegSetT &FromRegSet,
2367 SmallVectorImpl<Register> &ToVRegs) {
2368 unsigned SparseUniverse = Sparse.size();
2369 unsigned NewSparseUniverse = SparseUniverse;
2370 unsigned NewDenseSize = Dense.size();
2371 size_t Begin = ToVRegs.size();
2372 for (Register Reg : FromRegSet) {
2373 if (!Reg.isVirtual())
2374 continue;
2375 unsigned Index = Register::virtReg2Index(Reg);
2376 if (Index < SparseUniverseMax) {
2377 if (Index < SparseUniverse && Sparse.test(Index))
2378 continue;
2379 NewSparseUniverse = std::max(NewSparseUniverse, Index + 1);
2380 } else {
2381 if (Dense.count(Reg))
2382 continue;
2383 ++NewDenseSize;
2384 }
2385 ToVRegs.push_back(Reg);
2386 }
2387 size_t End = ToVRegs.size();
2388 if (Begin == End)
2389 return false;
2390 // Reserving space in sets once performs better than doing so continuously
2391 // and pays easily for double look-ups (even in Dense with SparseUniverseMax
2392 // tuned all the way down) and double iteration (the second one is over a
2393 // SmallVector, which is a lot cheaper compared to DenseSet or BitVector).
2394 Sparse.resize(NewSparseUniverse);
2395 Dense.reserve(NewDenseSize);
2396 for (unsigned I = Begin; I < End; ++I) {
2397 Register Reg = ToVRegs[I];
2398 unsigned Index = Register::virtReg2Index(Reg);
2399 if (Index < SparseUniverseMax)
2400 Sparse.set(Index);
2401 else
2402 Dense.insert(Reg);
2403 }
2404 return true;
2405 }
2406
2407 private:
2408 static constexpr unsigned SparseUniverseMax = 10 * 1024 * 8;
2409 // VRegs indexed within SparseUniverseMax are tracked by Sparse, those beyound
2410 // are tracked by Dense. The only purpose of the threashold and the Dense set
2411 // is to have a reasonably growing memory usage in pathological cases (large
2412 // number of very sparse VRegFilter instances live at the same time). In
2413 // practice even in the worst-by-execution time cases having all elements
2414 // tracked by Sparse (very large SparseUniverseMax scenario) tends to be more
2415 // space efficient than if tracked by Dense. The threashold is set to keep the
2416 // worst-case memory usage within 2x of figures determined empirically for
2417 // "all Dense" scenario in such worst-by-execution-time cases.
2418 BitVector Sparse;
2419 DenseSet<unsigned> Dense;
2420 };
2421
2422 // Implements both a transfer function and a (binary, in-place) join operator
2423 // for a dataflow over register sets with set union join and filtering transfer
2424 // (out_b = in_b \ filter_b). filter_b is expected to be set-up ahead of time.
2425 // Maintains out_b as its state, allowing for O(n) iteration over it at any
2426 // time, where n is the size of the set (as opposed to O(U) where U is the
2427 // universe). filter_b implicitly contains all physical registers at all times.
2428 class FilteringVRegSet {
2429 VRegFilter Filter;
2430 SmallVector<Register, 0> VRegs;
2431
2432 public:
2433 // Set-up the filter_b. \pre Input register set \p RS must have no duplicates.
2434 // Both virtual and physical registers are fine.
addToFilter(const RegSetT & RS)2435 template <typename RegSetT> void addToFilter(const RegSetT &RS) {
2436 Filter.add(RS);
2437 }
2438 // Passes \p RS through the filter_b (transfer function) and adds what's left
2439 // to itself (out_b).
add(const RegSetT & RS)2440 template <typename RegSetT> bool add(const RegSetT &RS) {
2441 // Double-duty the Filter: to maintain VRegs a set (and the join operation
2442 // a set union) just add everything being added here to the Filter as well.
2443 return Filter.filterAndAdd(RS, VRegs);
2444 }
2445 using const_iterator = decltype(VRegs)::const_iterator;
begin() const2446 const_iterator begin() const { return VRegs.begin(); }
end() const2447 const_iterator end() const { return VRegs.end(); }
size() const2448 size_t size() const { return VRegs.size(); }
2449 };
2450 } // namespace
2451
2452 // Calculate the largest possible vregsPassed sets. These are the registers that
2453 // can pass through an MBB live, but may not be live every time. It is assumed
2454 // that all vregsPassed sets are empty before the call.
calcRegsPassed()2455 void MachineVerifier::calcRegsPassed() {
2456 if (MF->empty())
2457 // ReversePostOrderTraversal doesn't handle empty functions.
2458 return;
2459
2460 for (const MachineBasicBlock *MB :
2461 ReversePostOrderTraversal<const MachineFunction *>(MF)) {
2462 FilteringVRegSet VRegs;
2463 BBInfo &Info = MBBInfoMap[MB];
2464 assert(Info.reachable);
2465
2466 VRegs.addToFilter(Info.regsKilled);
2467 VRegs.addToFilter(Info.regsLiveOut);
2468 for (const MachineBasicBlock *Pred : MB->predecessors()) {
2469 const BBInfo &PredInfo = MBBInfoMap[Pred];
2470 if (!PredInfo.reachable)
2471 continue;
2472
2473 VRegs.add(PredInfo.regsLiveOut);
2474 VRegs.add(PredInfo.vregsPassed);
2475 }
2476 Info.vregsPassed.reserve(VRegs.size());
2477 Info.vregsPassed.insert(VRegs.begin(), VRegs.end());
2478 }
2479 }
2480
2481 // Calculate the set of virtual registers that must be passed through each basic
2482 // block in order to satisfy the requirements of successor blocks. This is very
2483 // similar to calcRegsPassed, only backwards.
calcRegsRequired()2484 void MachineVerifier::calcRegsRequired() {
2485 // First push live-in regs to predecessors' vregsRequired.
2486 SmallPtrSet<const MachineBasicBlock*, 8> todo;
2487 for (const auto &MBB : *MF) {
2488 BBInfo &MInfo = MBBInfoMap[&MBB];
2489 for (const MachineBasicBlock *Pred : MBB.predecessors()) {
2490 BBInfo &PInfo = MBBInfoMap[Pred];
2491 if (PInfo.addRequired(MInfo.vregsLiveIn))
2492 todo.insert(Pred);
2493 }
2494
2495 // Handle the PHI node.
2496 for (const MachineInstr &MI : MBB.phis()) {
2497 for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) {
2498 // Skip those Operands which are undef regs or not regs.
2499 if (!MI.getOperand(i).isReg() || !MI.getOperand(i).readsReg())
2500 continue;
2501
2502 // Get register and predecessor for one PHI edge.
2503 Register Reg = MI.getOperand(i).getReg();
2504 const MachineBasicBlock *Pred = MI.getOperand(i + 1).getMBB();
2505
2506 BBInfo &PInfo = MBBInfoMap[Pred];
2507 if (PInfo.addRequired(Reg))
2508 todo.insert(Pred);
2509 }
2510 }
2511 }
2512
2513 // Iteratively push vregsRequired to predecessors. This will converge to the
2514 // same final state regardless of DenseSet iteration order.
2515 while (!todo.empty()) {
2516 const MachineBasicBlock *MBB = *todo.begin();
2517 todo.erase(MBB);
2518 BBInfo &MInfo = MBBInfoMap[MBB];
2519 for (const MachineBasicBlock *Pred : MBB->predecessors()) {
2520 if (Pred == MBB)
2521 continue;
2522 BBInfo &SInfo = MBBInfoMap[Pred];
2523 if (SInfo.addRequired(MInfo.vregsRequired))
2524 todo.insert(Pred);
2525 }
2526 }
2527 }
2528
2529 // Check PHI instructions at the beginning of MBB. It is assumed that
2530 // calcRegsPassed has been run so BBInfo::isLiveOut is valid.
checkPHIOps(const MachineBasicBlock & MBB)2531 void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) {
2532 BBInfo &MInfo = MBBInfoMap[&MBB];
2533
2534 SmallPtrSet<const MachineBasicBlock*, 8> seen;
2535 for (const MachineInstr &Phi : MBB) {
2536 if (!Phi.isPHI())
2537 break;
2538 seen.clear();
2539
2540 const MachineOperand &MODef = Phi.getOperand(0);
2541 if (!MODef.isReg() || !MODef.isDef()) {
2542 report("Expected first PHI operand to be a register def", &MODef, 0);
2543 continue;
2544 }
2545 if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() ||
2546 MODef.isEarlyClobber() || MODef.isDebug())
2547 report("Unexpected flag on PHI operand", &MODef, 0);
2548 Register DefReg = MODef.getReg();
2549 if (!Register::isVirtualRegister(DefReg))
2550 report("Expected first PHI operand to be a virtual register", &MODef, 0);
2551
2552 for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) {
2553 const MachineOperand &MO0 = Phi.getOperand(I);
2554 if (!MO0.isReg()) {
2555 report("Expected PHI operand to be a register", &MO0, I);
2556 continue;
2557 }
2558 if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() ||
2559 MO0.isDebug() || MO0.isTied())
2560 report("Unexpected flag on PHI operand", &MO0, I);
2561
2562 const MachineOperand &MO1 = Phi.getOperand(I + 1);
2563 if (!MO1.isMBB()) {
2564 report("Expected PHI operand to be a basic block", &MO1, I + 1);
2565 continue;
2566 }
2567
2568 const MachineBasicBlock &Pre = *MO1.getMBB();
2569 if (!Pre.isSuccessor(&MBB)) {
2570 report("PHI input is not a predecessor block", &MO1, I + 1);
2571 continue;
2572 }
2573
2574 if (MInfo.reachable) {
2575 seen.insert(&Pre);
2576 BBInfo &PrInfo = MBBInfoMap[&Pre];
2577 if (!MO0.isUndef() && PrInfo.reachable &&
2578 !PrInfo.isLiveOut(MO0.getReg()))
2579 report("PHI operand is not live-out from predecessor", &MO0, I);
2580 }
2581 }
2582
2583 // Did we see all predecessors?
2584 if (MInfo.reachable) {
2585 for (MachineBasicBlock *Pred : MBB.predecessors()) {
2586 if (!seen.count(Pred)) {
2587 report("Missing PHI operand", &Phi);
2588 errs() << printMBBReference(*Pred)
2589 << " is a predecessor according to the CFG.\n";
2590 }
2591 }
2592 }
2593 }
2594 }
2595
visitMachineFunctionAfter()2596 void MachineVerifier::visitMachineFunctionAfter() {
2597 calcRegsPassed();
2598
2599 for (const MachineBasicBlock &MBB : *MF)
2600 checkPHIOps(MBB);
2601
2602 // Now check liveness info if available
2603 calcRegsRequired();
2604
2605 // Check for killed virtual registers that should be live out.
2606 for (const auto &MBB : *MF) {
2607 BBInfo &MInfo = MBBInfoMap[&MBB];
2608 for (Register VReg : MInfo.vregsRequired)
2609 if (MInfo.regsKilled.count(VReg)) {
2610 report("Virtual register killed in block, but needed live out.", &MBB);
2611 errs() << "Virtual register " << printReg(VReg)
2612 << " is used after the block.\n";
2613 }
2614 }
2615
2616 if (!MF->empty()) {
2617 BBInfo &MInfo = MBBInfoMap[&MF->front()];
2618 for (Register VReg : MInfo.vregsRequired) {
2619 report("Virtual register defs don't dominate all uses.", MF);
2620 report_context_vreg(VReg);
2621 }
2622 }
2623
2624 if (LiveVars)
2625 verifyLiveVariables();
2626 if (LiveInts)
2627 verifyLiveIntervals();
2628
2629 // Check live-in list of each MBB. If a register is live into MBB, check
2630 // that the register is in regsLiveOut of each predecessor block. Since
2631 // this must come from a definition in the predecesssor or its live-in
2632 // list, this will catch a live-through case where the predecessor does not
2633 // have the register in its live-in list. This currently only checks
2634 // registers that have no aliases, are not allocatable and are not
2635 // reserved, which could mean a condition code register for instance.
2636 if (MRI->tracksLiveness())
2637 for (const auto &MBB : *MF)
2638 for (MachineBasicBlock::RegisterMaskPair P : MBB.liveins()) {
2639 MCPhysReg LiveInReg = P.PhysReg;
2640 bool hasAliases = MCRegAliasIterator(LiveInReg, TRI, false).isValid();
2641 if (hasAliases || isAllocatable(LiveInReg) || isReserved(LiveInReg))
2642 continue;
2643 for (const MachineBasicBlock *Pred : MBB.predecessors()) {
2644 BBInfo &PInfo = MBBInfoMap[Pred];
2645 if (!PInfo.regsLiveOut.count(LiveInReg)) {
2646 report("Live in register not found to be live out from predecessor.",
2647 &MBB);
2648 errs() << TRI->getName(LiveInReg)
2649 << " not found to be live out from "
2650 << printMBBReference(*Pred) << "\n";
2651 }
2652 }
2653 }
2654
2655 for (auto CSInfo : MF->getCallSitesInfo())
2656 if (!CSInfo.first->isCall())
2657 report("Call site info referencing instruction that is not call", MF);
2658
2659 // If there's debug-info, check that we don't have any duplicate value
2660 // tracking numbers.
2661 if (MF->getFunction().getSubprogram()) {
2662 DenseSet<unsigned> SeenNumbers;
2663 for (auto &MBB : *MF) {
2664 for (auto &MI : MBB) {
2665 if (auto Num = MI.peekDebugInstrNum()) {
2666 auto Result = SeenNumbers.insert((unsigned)Num);
2667 if (!Result.second)
2668 report("Instruction has a duplicated value tracking number", &MI);
2669 }
2670 }
2671 }
2672 }
2673 }
2674
verifyLiveVariables()2675 void MachineVerifier::verifyLiveVariables() {
2676 assert(LiveVars && "Don't call verifyLiveVariables without LiveVars");
2677 for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) {
2678 Register Reg = Register::index2VirtReg(I);
2679 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
2680 for (const auto &MBB : *MF) {
2681 BBInfo &MInfo = MBBInfoMap[&MBB];
2682
2683 // Our vregsRequired should be identical to LiveVariables' AliveBlocks
2684 if (MInfo.vregsRequired.count(Reg)) {
2685 if (!VI.AliveBlocks.test(MBB.getNumber())) {
2686 report("LiveVariables: Block missing from AliveBlocks", &MBB);
2687 errs() << "Virtual register " << printReg(Reg)
2688 << " must be live through the block.\n";
2689 }
2690 } else {
2691 if (VI.AliveBlocks.test(MBB.getNumber())) {
2692 report("LiveVariables: Block should not be in AliveBlocks", &MBB);
2693 errs() << "Virtual register " << printReg(Reg)
2694 << " is not needed live through the block.\n";
2695 }
2696 }
2697 }
2698 }
2699 }
2700
verifyLiveIntervals()2701 void MachineVerifier::verifyLiveIntervals() {
2702 assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts");
2703 for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) {
2704 Register Reg = Register::index2VirtReg(I);
2705
2706 // Spilling and splitting may leave unused registers around. Skip them.
2707 if (MRI->reg_nodbg_empty(Reg))
2708 continue;
2709
2710 if (!LiveInts->hasInterval(Reg)) {
2711 report("Missing live interval for virtual register", MF);
2712 errs() << printReg(Reg, TRI) << " still has defs or uses\n";
2713 continue;
2714 }
2715
2716 const LiveInterval &LI = LiveInts->getInterval(Reg);
2717 assert(Reg == LI.reg() && "Invalid reg to interval mapping");
2718 verifyLiveInterval(LI);
2719 }
2720
2721 // Verify all the cached regunit intervals.
2722 for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
2723 if (const LiveRange *LR = LiveInts->getCachedRegUnit(i))
2724 verifyLiveRange(*LR, i);
2725 }
2726
verifyLiveRangeValue(const LiveRange & LR,const VNInfo * VNI,Register Reg,LaneBitmask LaneMask)2727 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR,
2728 const VNInfo *VNI, Register Reg,
2729 LaneBitmask LaneMask) {
2730 if (VNI->isUnused())
2731 return;
2732
2733 const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def);
2734
2735 if (!DefVNI) {
2736 report("Value not live at VNInfo def and not marked unused", MF);
2737 report_context(LR, Reg, LaneMask);
2738 report_context(*VNI);
2739 return;
2740 }
2741
2742 if (DefVNI != VNI) {
2743 report("Live segment at def has different VNInfo", MF);
2744 report_context(LR, Reg, LaneMask);
2745 report_context(*VNI);
2746 return;
2747 }
2748
2749 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def);
2750 if (!MBB) {
2751 report("Invalid VNInfo definition index", MF);
2752 report_context(LR, Reg, LaneMask);
2753 report_context(*VNI);
2754 return;
2755 }
2756
2757 if (VNI->isPHIDef()) {
2758 if (VNI->def != LiveInts->getMBBStartIdx(MBB)) {
2759 report("PHIDef VNInfo is not defined at MBB start", MBB);
2760 report_context(LR, Reg, LaneMask);
2761 report_context(*VNI);
2762 }
2763 return;
2764 }
2765
2766 // Non-PHI def.
2767 const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def);
2768 if (!MI) {
2769 report("No instruction at VNInfo def index", MBB);
2770 report_context(LR, Reg, LaneMask);
2771 report_context(*VNI);
2772 return;
2773 }
2774
2775 if (Reg != 0) {
2776 bool hasDef = false;
2777 bool isEarlyClobber = false;
2778 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
2779 if (!MOI->isReg() || !MOI->isDef())
2780 continue;
2781 if (Register::isVirtualRegister(Reg)) {
2782 if (MOI->getReg() != Reg)
2783 continue;
2784 } else {
2785 if (!Register::isPhysicalRegister(MOI->getReg()) ||
2786 !TRI->hasRegUnit(MOI->getReg(), Reg))
2787 continue;
2788 }
2789 if (LaneMask.any() &&
2790 (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none())
2791 continue;
2792 hasDef = true;
2793 if (MOI->isEarlyClobber())
2794 isEarlyClobber = true;
2795 }
2796
2797 if (!hasDef) {
2798 report("Defining instruction does not modify register", MI);
2799 report_context(LR, Reg, LaneMask);
2800 report_context(*VNI);
2801 }
2802
2803 // Early clobber defs begin at USE slots, but other defs must begin at
2804 // DEF slots.
2805 if (isEarlyClobber) {
2806 if (!VNI->def.isEarlyClobber()) {
2807 report("Early clobber def must be at an early-clobber slot", MBB);
2808 report_context(LR, Reg, LaneMask);
2809 report_context(*VNI);
2810 }
2811 } else if (!VNI->def.isRegister()) {
2812 report("Non-PHI, non-early clobber def must be at a register slot", MBB);
2813 report_context(LR, Reg, LaneMask);
2814 report_context(*VNI);
2815 }
2816 }
2817 }
2818
verifyLiveRangeSegment(const LiveRange & LR,const LiveRange::const_iterator I,Register Reg,LaneBitmask LaneMask)2819 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR,
2820 const LiveRange::const_iterator I,
2821 Register Reg,
2822 LaneBitmask LaneMask) {
2823 const LiveRange::Segment &S = *I;
2824 const VNInfo *VNI = S.valno;
2825 assert(VNI && "Live segment has no valno");
2826
2827 if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) {
2828 report("Foreign valno in live segment", MF);
2829 report_context(LR, Reg, LaneMask);
2830 report_context(S);
2831 report_context(*VNI);
2832 }
2833
2834 if (VNI->isUnused()) {
2835 report("Live segment valno is marked unused", MF);
2836 report_context(LR, Reg, LaneMask);
2837 report_context(S);
2838 }
2839
2840 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start);
2841 if (!MBB) {
2842 report("Bad start of live segment, no basic block", MF);
2843 report_context(LR, Reg, LaneMask);
2844 report_context(S);
2845 return;
2846 }
2847 SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB);
2848 if (S.start != MBBStartIdx && S.start != VNI->def) {
2849 report("Live segment must begin at MBB entry or valno def", MBB);
2850 report_context(LR, Reg, LaneMask);
2851 report_context(S);
2852 }
2853
2854 const MachineBasicBlock *EndMBB =
2855 LiveInts->getMBBFromIndex(S.end.getPrevSlot());
2856 if (!EndMBB) {
2857 report("Bad end of live segment, no basic block", MF);
2858 report_context(LR, Reg, LaneMask);
2859 report_context(S);
2860 return;
2861 }
2862
2863 // No more checks for live-out segments.
2864 if (S.end == LiveInts->getMBBEndIdx(EndMBB))
2865 return;
2866
2867 // RegUnit intervals are allowed dead phis.
2868 if (!Register::isVirtualRegister(Reg) && VNI->isPHIDef() &&
2869 S.start == VNI->def && S.end == VNI->def.getDeadSlot())
2870 return;
2871
2872 // The live segment is ending inside EndMBB
2873 const MachineInstr *MI =
2874 LiveInts->getInstructionFromIndex(S.end.getPrevSlot());
2875 if (!MI) {
2876 report("Live segment doesn't end at a valid instruction", EndMBB);
2877 report_context(LR, Reg, LaneMask);
2878 report_context(S);
2879 return;
2880 }
2881
2882 // The block slot must refer to a basic block boundary.
2883 if (S.end.isBlock()) {
2884 report("Live segment ends at B slot of an instruction", EndMBB);
2885 report_context(LR, Reg, LaneMask);
2886 report_context(S);
2887 }
2888
2889 if (S.end.isDead()) {
2890 // Segment ends on the dead slot.
2891 // That means there must be a dead def.
2892 if (!SlotIndex::isSameInstr(S.start, S.end)) {
2893 report("Live segment ending at dead slot spans instructions", EndMBB);
2894 report_context(LR, Reg, LaneMask);
2895 report_context(S);
2896 }
2897 }
2898
2899 // A live segment can only end at an early-clobber slot if it is being
2900 // redefined by an early-clobber def.
2901 if (S.end.isEarlyClobber()) {
2902 if (I+1 == LR.end() || (I+1)->start != S.end) {
2903 report("Live segment ending at early clobber slot must be "
2904 "redefined by an EC def in the same instruction", EndMBB);
2905 report_context(LR, Reg, LaneMask);
2906 report_context(S);
2907 }
2908 }
2909
2910 // The following checks only apply to virtual registers. Physreg liveness
2911 // is too weird to check.
2912 if (Register::isVirtualRegister(Reg)) {
2913 // A live segment can end with either a redefinition, a kill flag on a
2914 // use, or a dead flag on a def.
2915 bool hasRead = false;
2916 bool hasSubRegDef = false;
2917 bool hasDeadDef = false;
2918 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
2919 if (!MOI->isReg() || MOI->getReg() != Reg)
2920 continue;
2921 unsigned Sub = MOI->getSubReg();
2922 LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub)
2923 : LaneBitmask::getAll();
2924 if (MOI->isDef()) {
2925 if (Sub != 0) {
2926 hasSubRegDef = true;
2927 // An operand %0:sub0 reads %0:sub1..n. Invert the lane
2928 // mask for subregister defs. Read-undef defs will be handled by
2929 // readsReg below.
2930 SLM = ~SLM;
2931 }
2932 if (MOI->isDead())
2933 hasDeadDef = true;
2934 }
2935 if (LaneMask.any() && (LaneMask & SLM).none())
2936 continue;
2937 if (MOI->readsReg())
2938 hasRead = true;
2939 }
2940 if (S.end.isDead()) {
2941 // Make sure that the corresponding machine operand for a "dead" live
2942 // range has the dead flag. We cannot perform this check for subregister
2943 // liveranges as partially dead values are allowed.
2944 if (LaneMask.none() && !hasDeadDef) {
2945 report("Instruction ending live segment on dead slot has no dead flag",
2946 MI);
2947 report_context(LR, Reg, LaneMask);
2948 report_context(S);
2949 }
2950 } else {
2951 if (!hasRead) {
2952 // When tracking subregister liveness, the main range must start new
2953 // values on partial register writes, even if there is no read.
2954 if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() ||
2955 !hasSubRegDef) {
2956 report("Instruction ending live segment doesn't read the register",
2957 MI);
2958 report_context(LR, Reg, LaneMask);
2959 report_context(S);
2960 }
2961 }
2962 }
2963 }
2964
2965 // Now check all the basic blocks in this live segment.
2966 MachineFunction::const_iterator MFI = MBB->getIterator();
2967 // Is this live segment the beginning of a non-PHIDef VN?
2968 if (S.start == VNI->def && !VNI->isPHIDef()) {
2969 // Not live-in to any blocks.
2970 if (MBB == EndMBB)
2971 return;
2972 // Skip this block.
2973 ++MFI;
2974 }
2975
2976 SmallVector<SlotIndex, 4> Undefs;
2977 if (LaneMask.any()) {
2978 LiveInterval &OwnerLI = LiveInts->getInterval(Reg);
2979 OwnerLI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes);
2980 }
2981
2982 while (true) {
2983 assert(LiveInts->isLiveInToMBB(LR, &*MFI));
2984 // We don't know how to track physregs into a landing pad.
2985 if (!Register::isVirtualRegister(Reg) && MFI->isEHPad()) {
2986 if (&*MFI == EndMBB)
2987 break;
2988 ++MFI;
2989 continue;
2990 }
2991
2992 // Is VNI a PHI-def in the current block?
2993 bool IsPHI = VNI->isPHIDef() &&
2994 VNI->def == LiveInts->getMBBStartIdx(&*MFI);
2995
2996 // Check that VNI is live-out of all predecessors.
2997 for (const MachineBasicBlock *Pred : MFI->predecessors()) {
2998 SlotIndex PEnd = LiveInts->getMBBEndIdx(Pred);
2999 // Predecessor of landing pad live-out on last call.
3000 if (MFI->isEHPad()) {
3001 for (auto I = Pred->rbegin(), E = Pred->rend(); I != E; ++I) {
3002 if (I->isCall()) {
3003 PEnd = Indexes->getInstructionIndex(*I).getBoundaryIndex();
3004 break;
3005 }
3006 }
3007 }
3008 const VNInfo *PVNI = LR.getVNInfoBefore(PEnd);
3009
3010 // All predecessors must have a live-out value. However for a phi
3011 // instruction with subregister intervals
3012 // only one of the subregisters (not necessarily the current one) needs to
3013 // be defined.
3014 if (!PVNI && (LaneMask.none() || !IsPHI)) {
3015 if (LiveRangeCalc::isJointlyDominated(Pred, Undefs, *Indexes))
3016 continue;
3017 report("Register not marked live out of predecessor", Pred);
3018 report_context(LR, Reg, LaneMask);
3019 report_context(*VNI);
3020 errs() << " live into " << printMBBReference(*MFI) << '@'
3021 << LiveInts->getMBBStartIdx(&*MFI) << ", not live before "
3022 << PEnd << '\n';
3023 continue;
3024 }
3025
3026 // Only PHI-defs can take different predecessor values.
3027 if (!IsPHI && PVNI != VNI) {
3028 report("Different value live out of predecessor", Pred);
3029 report_context(LR, Reg, LaneMask);
3030 errs() << "Valno #" << PVNI->id << " live out of "
3031 << printMBBReference(*Pred) << '@' << PEnd << "\nValno #"
3032 << VNI->id << " live into " << printMBBReference(*MFI) << '@'
3033 << LiveInts->getMBBStartIdx(&*MFI) << '\n';
3034 }
3035 }
3036 if (&*MFI == EndMBB)
3037 break;
3038 ++MFI;
3039 }
3040 }
3041
verifyLiveRange(const LiveRange & LR,Register Reg,LaneBitmask LaneMask)3042 void MachineVerifier::verifyLiveRange(const LiveRange &LR, Register Reg,
3043 LaneBitmask LaneMask) {
3044 for (const VNInfo *VNI : LR.valnos)
3045 verifyLiveRangeValue(LR, VNI, Reg, LaneMask);
3046
3047 for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I)
3048 verifyLiveRangeSegment(LR, I, Reg, LaneMask);
3049 }
3050
verifyLiveInterval(const LiveInterval & LI)3051 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) {
3052 Register Reg = LI.reg();
3053 assert(Register::isVirtualRegister(Reg));
3054 verifyLiveRange(LI, Reg);
3055
3056 LaneBitmask Mask;
3057 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
3058 for (const LiveInterval::SubRange &SR : LI.subranges()) {
3059 if ((Mask & SR.LaneMask).any()) {
3060 report("Lane masks of sub ranges overlap in live interval", MF);
3061 report_context(LI);
3062 }
3063 if ((SR.LaneMask & ~MaxMask).any()) {
3064 report("Subrange lanemask is invalid", MF);
3065 report_context(LI);
3066 }
3067 if (SR.empty()) {
3068 report("Subrange must not be empty", MF);
3069 report_context(SR, LI.reg(), SR.LaneMask);
3070 }
3071 Mask |= SR.LaneMask;
3072 verifyLiveRange(SR, LI.reg(), SR.LaneMask);
3073 if (!LI.covers(SR)) {
3074 report("A Subrange is not covered by the main range", MF);
3075 report_context(LI);
3076 }
3077 }
3078
3079 // Check the LI only has one connected component.
3080 ConnectedVNInfoEqClasses ConEQ(*LiveInts);
3081 unsigned NumComp = ConEQ.Classify(LI);
3082 if (NumComp > 1) {
3083 report("Multiple connected components in live interval", MF);
3084 report_context(LI);
3085 for (unsigned comp = 0; comp != NumComp; ++comp) {
3086 errs() << comp << ": valnos";
3087 for (const VNInfo *I : LI.valnos)
3088 if (comp == ConEQ.getEqClass(I))
3089 errs() << ' ' << I->id;
3090 errs() << '\n';
3091 }
3092 }
3093 }
3094
3095 namespace {
3096
3097 // FrameSetup and FrameDestroy can have zero adjustment, so using a single
3098 // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the
3099 // value is zero.
3100 // We use a bool plus an integer to capture the stack state.
3101 struct StackStateOfBB {
3102 StackStateOfBB() = default;
StackStateOfBB__anon2ede09f00511::StackStateOfBB3103 StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) :
3104 EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup),
3105 ExitIsSetup(ExitSetup) {}
3106
3107 // Can be negative, which means we are setting up a frame.
3108 int EntryValue = 0;
3109 int ExitValue = 0;
3110 bool EntryIsSetup = false;
3111 bool ExitIsSetup = false;
3112 };
3113
3114 } // end anonymous namespace
3115
3116 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed
3117 /// by a FrameDestroy <n>, stack adjustments are identical on all
3118 /// CFG edges to a merge point, and frame is destroyed at end of a return block.
verifyStackFrame()3119 void MachineVerifier::verifyStackFrame() {
3120 unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode();
3121 unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
3122 if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u)
3123 return;
3124
3125 SmallVector<StackStateOfBB, 8> SPState;
3126 SPState.resize(MF->getNumBlockIDs());
3127 df_iterator_default_set<const MachineBasicBlock*> Reachable;
3128
3129 // Visit the MBBs in DFS order.
3130 for (df_ext_iterator<const MachineFunction *,
3131 df_iterator_default_set<const MachineBasicBlock *>>
3132 DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable);
3133 DFI != DFE; ++DFI) {
3134 const MachineBasicBlock *MBB = *DFI;
3135
3136 StackStateOfBB BBState;
3137 // Check the exit state of the DFS stack predecessor.
3138 if (DFI.getPathLength() >= 2) {
3139 const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2);
3140 assert(Reachable.count(StackPred) &&
3141 "DFS stack predecessor is already visited.\n");
3142 BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue;
3143 BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup;
3144 BBState.ExitValue = BBState.EntryValue;
3145 BBState.ExitIsSetup = BBState.EntryIsSetup;
3146 }
3147
3148 // Update stack state by checking contents of MBB.
3149 for (const auto &I : *MBB) {
3150 if (I.getOpcode() == FrameSetupOpcode) {
3151 if (BBState.ExitIsSetup)
3152 report("FrameSetup is after another FrameSetup", &I);
3153 BBState.ExitValue -= TII->getFrameTotalSize(I);
3154 BBState.ExitIsSetup = true;
3155 }
3156
3157 if (I.getOpcode() == FrameDestroyOpcode) {
3158 int Size = TII->getFrameTotalSize(I);
3159 if (!BBState.ExitIsSetup)
3160 report("FrameDestroy is not after a FrameSetup", &I);
3161 int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue :
3162 BBState.ExitValue;
3163 if (BBState.ExitIsSetup && AbsSPAdj != Size) {
3164 report("FrameDestroy <n> is after FrameSetup <m>", &I);
3165 errs() << "FrameDestroy <" << Size << "> is after FrameSetup <"
3166 << AbsSPAdj << ">.\n";
3167 }
3168 BBState.ExitValue += Size;
3169 BBState.ExitIsSetup = false;
3170 }
3171 }
3172 SPState[MBB->getNumber()] = BBState;
3173
3174 // Make sure the exit state of any predecessor is consistent with the entry
3175 // state.
3176 for (const MachineBasicBlock *Pred : MBB->predecessors()) {
3177 if (Reachable.count(Pred) &&
3178 (SPState[Pred->getNumber()].ExitValue != BBState.EntryValue ||
3179 SPState[Pred->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) {
3180 report("The exit stack state of a predecessor is inconsistent.", MBB);
3181 errs() << "Predecessor " << printMBBReference(*Pred)
3182 << " has exit state (" << SPState[Pred->getNumber()].ExitValue
3183 << ", " << SPState[Pred->getNumber()].ExitIsSetup << "), while "
3184 << printMBBReference(*MBB) << " has entry state ("
3185 << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n";
3186 }
3187 }
3188
3189 // Make sure the entry state of any successor is consistent with the exit
3190 // state.
3191 for (const MachineBasicBlock *Succ : MBB->successors()) {
3192 if (Reachable.count(Succ) &&
3193 (SPState[Succ->getNumber()].EntryValue != BBState.ExitValue ||
3194 SPState[Succ->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) {
3195 report("The entry stack state of a successor is inconsistent.", MBB);
3196 errs() << "Successor " << printMBBReference(*Succ)
3197 << " has entry state (" << SPState[Succ->getNumber()].EntryValue
3198 << ", " << SPState[Succ->getNumber()].EntryIsSetup << "), while "
3199 << printMBBReference(*MBB) << " has exit state ("
3200 << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n";
3201 }
3202 }
3203
3204 // Make sure a basic block with return ends with zero stack adjustment.
3205 if (!MBB->empty() && MBB->back().isReturn()) {
3206 if (BBState.ExitIsSetup)
3207 report("A return block ends with a FrameSetup.", MBB);
3208 if (BBState.ExitValue)
3209 report("A return block ends with a nonzero stack adjustment.", MBB);
3210 }
3211 }
3212 }
3213