1 //===- MachineVerifier.cpp - Machine Code Verifier ------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Pass to verify generated machine code. The following is checked: 10 // 11 // Operand counts: All explicit operands must be present. 12 // 13 // Register classes: All physical and virtual register operands must be 14 // compatible with the register class required by the instruction descriptor. 15 // 16 // Register live intervals: Registers must be defined only once, and must be 17 // defined before use. 18 // 19 // The machine code verifier is enabled with the command-line option 20 // -verify-machineinstrs. 21 //===----------------------------------------------------------------------===// 22 23 #include "llvm/CodeGen/MachineVerifier.h" 24 #include "llvm/ADT/BitVector.h" 25 #include "llvm/ADT/DenseMap.h" 26 #include "llvm/ADT/DenseSet.h" 27 #include "llvm/ADT/DepthFirstIterator.h" 28 #include "llvm/ADT/PostOrderIterator.h" 29 #include "llvm/ADT/STLExtras.h" 30 #include "llvm/ADT/SetOperations.h" 31 #include "llvm/ADT/SmallPtrSet.h" 32 #include "llvm/ADT/SmallVector.h" 33 #include "llvm/ADT/StringRef.h" 34 #include "llvm/ADT/Twine.h" 35 #include "llvm/CodeGen/CodeGenCommonISel.h" 36 #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h" 37 #include "llvm/CodeGen/LiveInterval.h" 38 #include "llvm/CodeGen/LiveIntervals.h" 39 #include "llvm/CodeGen/LiveRangeCalc.h" 40 #include "llvm/CodeGen/LiveStacks.h" 41 #include "llvm/CodeGen/LiveVariables.h" 42 #include "llvm/CodeGen/MachineBasicBlock.h" 43 #include "llvm/CodeGen/MachineConvergenceVerifier.h" 44 #include "llvm/CodeGen/MachineDominators.h" 45 #include "llvm/CodeGen/MachineFrameInfo.h" 46 #include "llvm/CodeGen/MachineFunction.h" 47 #include "llvm/CodeGen/MachineFunctionPass.h" 48 #include "llvm/CodeGen/MachineInstr.h" 49 #include "llvm/CodeGen/MachineInstrBundle.h" 50 #include "llvm/CodeGen/MachineMemOperand.h" 51 #include "llvm/CodeGen/MachineOperand.h" 52 #include "llvm/CodeGen/MachineRegisterInfo.h" 53 #include "llvm/CodeGen/PseudoSourceValue.h" 54 #include "llvm/CodeGen/RegisterBank.h" 55 #include "llvm/CodeGen/RegisterBankInfo.h" 56 #include "llvm/CodeGen/SlotIndexes.h" 57 #include "llvm/CodeGen/StackMaps.h" 58 #include "llvm/CodeGen/TargetInstrInfo.h" 59 #include "llvm/CodeGen/TargetLowering.h" 60 #include "llvm/CodeGen/TargetOpcodes.h" 61 #include "llvm/CodeGen/TargetRegisterInfo.h" 62 #include "llvm/CodeGen/TargetSubtargetInfo.h" 63 #include "llvm/CodeGenTypes/LowLevelType.h" 64 #include "llvm/IR/BasicBlock.h" 65 #include "llvm/IR/Constants.h" 66 #include "llvm/IR/EHPersonalities.h" 67 #include "llvm/IR/Function.h" 68 #include "llvm/IR/InlineAsm.h" 69 #include "llvm/IR/Instructions.h" 70 #include "llvm/InitializePasses.h" 71 #include "llvm/MC/LaneBitmask.h" 72 #include "llvm/MC/MCAsmInfo.h" 73 #include "llvm/MC/MCDwarf.h" 74 #include "llvm/MC/MCInstrDesc.h" 75 #include "llvm/MC/MCRegisterInfo.h" 76 #include "llvm/MC/MCTargetOptions.h" 77 #include "llvm/Pass.h" 78 #include "llvm/Support/Casting.h" 79 #include "llvm/Support/ErrorHandling.h" 80 #include "llvm/Support/ManagedStatic.h" 81 #include "llvm/Support/MathExtras.h" 82 #include "llvm/Support/ModRef.h" 83 #include "llvm/Support/Mutex.h" 84 #include "llvm/Support/raw_ostream.h" 85 #include "llvm/Target/TargetMachine.h" 86 #include <algorithm> 87 #include <cassert> 88 #include <cstddef> 89 #include <cstdint> 90 #include <iterator> 91 #include <string> 92 #include <utility> 93 94 using namespace llvm; 95 96 namespace { 97 98 /// Used the by the ReportedErrors class to guarantee only one error is reported 99 /// at one time. 100 static ManagedStatic<sys::SmartMutex<true>> ReportedErrorsLock; 101 102 struct MachineVerifier { 103 MachineVerifier(MachineFunctionAnalysisManager &MFAM, const char *b, 104 raw_ostream *OS, bool AbortOnError = true) 105 : MFAM(&MFAM), OS(OS ? *OS : nulls()), Banner(b), 106 ReportedErrs(AbortOnError) {} 107 108 MachineVerifier(Pass *pass, const char *b, raw_ostream *OS, 109 bool AbortOnError = true) 110 : PASS(pass), OS(OS ? *OS : nulls()), Banner(b), 111 ReportedErrs(AbortOnError) {} 112 113 MachineVerifier(const char *b, LiveVariables *LiveVars, 114 LiveIntervals *LiveInts, LiveStacks *LiveStks, 115 SlotIndexes *Indexes, raw_ostream *OS, 116 bool AbortOnError = true) 117 : OS(OS ? *OS : nulls()), Banner(b), LiveVars(LiveVars), 118 LiveInts(LiveInts), LiveStks(LiveStks), Indexes(Indexes), 119 ReportedErrs(AbortOnError) {} 120 121 /// \returns true if no problems were found. 122 bool verify(const MachineFunction &MF); 123 124 MachineFunctionAnalysisManager *MFAM = nullptr; 125 Pass *const PASS = nullptr; 126 raw_ostream &OS; 127 const char *Banner; 128 const MachineFunction *MF = nullptr; 129 const TargetMachine *TM = nullptr; 130 const TargetInstrInfo *TII = nullptr; 131 const TargetRegisterInfo *TRI = nullptr; 132 const MachineRegisterInfo *MRI = nullptr; 133 const RegisterBankInfo *RBI = nullptr; 134 135 // Avoid querying the MachineFunctionProperties for each operand. 136 bool isFunctionRegBankSelected = false; 137 bool isFunctionSelected = false; 138 bool isFunctionTracksDebugUserValues = false; 139 140 using RegVector = SmallVector<Register, 16>; 141 using RegMaskVector = SmallVector<const uint32_t *, 4>; 142 using RegSet = DenseSet<Register>; 143 using RegMap = DenseMap<Register, const MachineInstr *>; 144 using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>; 145 146 const MachineInstr *FirstNonPHI = nullptr; 147 const MachineInstr *FirstTerminator = nullptr; 148 BlockSet FunctionBlocks; 149 150 BitVector regsReserved; 151 RegSet regsLive; 152 RegVector regsDefined, regsDead, regsKilled; 153 RegMaskVector regMasks; 154 155 SlotIndex lastIndex; 156 157 // Add Reg and any sub-registers to RV 158 void addRegWithSubRegs(RegVector &RV, Register Reg) { 159 RV.push_back(Reg); 160 if (Reg.isPhysical()) 161 append_range(RV, TRI->subregs(Reg.asMCReg())); 162 } 163 164 struct BBInfo { 165 // Is this MBB reachable from the MF entry point? 166 bool reachable = false; 167 168 // Vregs that must be live in because they are used without being 169 // defined. Map value is the user. vregsLiveIn doesn't include regs 170 // that only are used by PHI nodes. 171 RegMap vregsLiveIn; 172 173 // Regs killed in MBB. They may be defined again, and will then be in both 174 // regsKilled and regsLiveOut. 175 RegSet regsKilled; 176 177 // Regs defined in MBB and live out. Note that vregs passing through may 178 // be live out without being mentioned here. 179 RegSet regsLiveOut; 180 181 // Vregs that pass through MBB untouched. This set is disjoint from 182 // regsKilled and regsLiveOut. 183 RegSet vregsPassed; 184 185 // Vregs that must pass through MBB because they are needed by a successor 186 // block. This set is disjoint from regsLiveOut. 187 RegSet vregsRequired; 188 189 // Set versions of block's predecessor and successor lists. 190 BlockSet Preds, Succs; 191 192 BBInfo() = default; 193 194 // Add register to vregsRequired if it belongs there. Return true if 195 // anything changed. 196 bool addRequired(Register Reg) { 197 if (!Reg.isVirtual()) 198 return false; 199 if (regsLiveOut.count(Reg)) 200 return false; 201 return vregsRequired.insert(Reg).second; 202 } 203 204 // Same for a full set. 205 bool addRequired(const RegSet &RS) { 206 bool Changed = false; 207 for (Register Reg : RS) 208 Changed |= addRequired(Reg); 209 return Changed; 210 } 211 212 // Same for a full map. 213 bool addRequired(const RegMap &RM) { 214 bool Changed = false; 215 for (const auto &I : RM) 216 Changed |= addRequired(I.first); 217 return Changed; 218 } 219 220 // Live-out registers are either in regsLiveOut or vregsPassed. 221 bool isLiveOut(Register Reg) const { 222 return regsLiveOut.count(Reg) || vregsPassed.count(Reg); 223 } 224 }; 225 226 // Extra register info per MBB. 227 DenseMap<const MachineBasicBlock *, BBInfo> MBBInfoMap; 228 229 bool isReserved(Register Reg) { 230 return Reg.id() < regsReserved.size() && regsReserved.test(Reg.id()); 231 } 232 233 bool isAllocatable(Register Reg) const { 234 return Reg.id() < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) && 235 !regsReserved.test(Reg.id()); 236 } 237 238 // Analysis information if available 239 LiveVariables *LiveVars = nullptr; 240 LiveIntervals *LiveInts = nullptr; 241 LiveStacks *LiveStks = nullptr; 242 SlotIndexes *Indexes = nullptr; 243 244 /// A class to track the number of reported error and to guarantee that only 245 /// one error is reported at one time. 246 class ReportedErrors { 247 unsigned NumReported = 0; 248 bool AbortOnError; 249 250 public: 251 /// \param AbortOnError -- If set, abort after printing the first error. 252 ReportedErrors(bool AbortOnError) : AbortOnError(AbortOnError) {} 253 254 ~ReportedErrors() { 255 if (!hasError()) 256 return; 257 if (AbortOnError) 258 report_fatal_error("Found " + Twine(NumReported) + 259 " machine code errors."); 260 // Since we haven't aborted, release the lock to allow other threads to 261 // report errors. 262 ReportedErrorsLock->unlock(); 263 } 264 265 /// Increment the number of reported errors. 266 /// \returns true if this is the first reported error. 267 bool increment() { 268 // If this is the first error this thread has encountered, grab the lock 269 // to prevent other threads from reporting errors at the same time. 270 // Otherwise we assume we already have the lock. 271 if (!hasError()) 272 ReportedErrorsLock->lock(); 273 ++NumReported; 274 return NumReported == 1; 275 } 276 277 /// \returns true if an error was reported. 278 bool hasError() { return NumReported; } 279 }; 280 ReportedErrors ReportedErrs; 281 282 // This is calculated only when trying to verify convergence control tokens. 283 // Similar to the LLVM IR verifier, we calculate this locally instead of 284 // relying on the pass manager. 285 MachineDominatorTree DT; 286 287 void visitMachineFunctionBefore(); 288 void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB); 289 void visitMachineBundleBefore(const MachineInstr *MI); 290 291 /// Verify that all of \p MI's virtual register operands are scalars. 292 /// \returns True if all virtual register operands are scalar. False 293 /// otherwise. 294 bool verifyAllRegOpsScalar(const MachineInstr &MI, 295 const MachineRegisterInfo &MRI); 296 bool verifyVectorElementMatch(LLT Ty0, LLT Ty1, const MachineInstr *MI); 297 298 bool verifyGIntrinsicSideEffects(const MachineInstr *MI); 299 bool verifyGIntrinsicConvergence(const MachineInstr *MI); 300 void verifyPreISelGenericInstruction(const MachineInstr *MI); 301 302 void visitMachineInstrBefore(const MachineInstr *MI); 303 void visitMachineOperand(const MachineOperand *MO, unsigned MONum); 304 void visitMachineBundleAfter(const MachineInstr *MI); 305 void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB); 306 void visitMachineFunctionAfter(); 307 308 void report(const char *msg, const MachineFunction *MF); 309 void report(const char *msg, const MachineBasicBlock *MBB); 310 void report(const char *msg, const MachineInstr *MI); 311 void report(const char *msg, const MachineOperand *MO, unsigned MONum, 312 LLT MOVRegType = LLT{}); 313 void report(const Twine &Msg, const MachineInstr *MI); 314 315 void report_context(const LiveInterval &LI) const; 316 void report_context(const LiveRange &LR, VirtRegOrUnit VRegOrUnit, 317 LaneBitmask LaneMask) const; 318 void report_context(const LiveRange::Segment &S) const; 319 void report_context(const VNInfo &VNI) const; 320 void report_context(SlotIndex Pos) const; 321 void report_context(MCPhysReg PhysReg) const; 322 void report_context_liverange(const LiveRange &LR) const; 323 void report_context_lanemask(LaneBitmask LaneMask) const; 324 void report_context_vreg(Register VReg) const; 325 void report_context_vreg_regunit(VirtRegOrUnit VRegOrUnit) const; 326 327 void verifyInlineAsm(const MachineInstr *MI); 328 329 void checkLiveness(const MachineOperand *MO, unsigned MONum); 330 void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum, 331 SlotIndex UseIdx, const LiveRange &LR, 332 VirtRegOrUnit VRegOrUnit, 333 LaneBitmask LaneMask = LaneBitmask::getNone()); 334 void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum, 335 SlotIndex DefIdx, const LiveRange &LR, 336 VirtRegOrUnit VRegOrUnit, bool SubRangeCheck = false, 337 LaneBitmask LaneMask = LaneBitmask::getNone()); 338 339 void markReachable(const MachineBasicBlock *MBB); 340 void calcRegsPassed(); 341 void checkPHIOps(const MachineBasicBlock &MBB); 342 343 void calcRegsRequired(); 344 void verifyLiveVariables(); 345 void verifyLiveIntervals(); 346 void verifyLiveInterval(const LiveInterval &); 347 void verifyLiveRangeValue(const LiveRange &, const VNInfo *, VirtRegOrUnit, 348 LaneBitmask); 349 void verifyLiveRangeSegment(const LiveRange &, 350 const LiveRange::const_iterator I, VirtRegOrUnit, 351 LaneBitmask); 352 void verifyLiveRange(const LiveRange &, VirtRegOrUnit, 353 LaneBitmask LaneMask = LaneBitmask::getNone()); 354 355 void verifyStackFrame(); 356 /// Check that the stack protector is the top-most object in the stack. 357 void verifyStackProtector(); 358 359 void verifySlotIndexes() const; 360 void verifyProperties(const MachineFunction &MF); 361 }; 362 363 struct MachineVerifierLegacyPass : public MachineFunctionPass { 364 static char ID; // Pass ID, replacement for typeid 365 366 const std::string Banner; 367 368 MachineVerifierLegacyPass(std::string banner = std::string()) 369 : MachineFunctionPass(ID), Banner(std::move(banner)) { 370 initializeMachineVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); 371 } 372 373 void getAnalysisUsage(AnalysisUsage &AU) const override { 374 AU.addUsedIfAvailable<LiveStacksWrapperLegacy>(); 375 AU.addUsedIfAvailable<LiveVariablesWrapperPass>(); 376 AU.addUsedIfAvailable<SlotIndexesWrapperPass>(); 377 AU.addUsedIfAvailable<LiveIntervalsWrapperPass>(); 378 AU.setPreservesAll(); 379 MachineFunctionPass::getAnalysisUsage(AU); 380 } 381 382 bool runOnMachineFunction(MachineFunction &MF) override { 383 // Skip functions that have known verification problems. 384 // FIXME: Remove this mechanism when all problematic passes have been 385 // fixed. 386 if (MF.getProperties().hasProperty( 387 MachineFunctionProperties::Property::FailsVerification)) 388 return false; 389 390 MachineVerifier(this, Banner.c_str(), &errs()).verify(MF); 391 return false; 392 } 393 }; 394 395 } // end anonymous namespace 396 397 PreservedAnalyses 398 MachineVerifierPass::run(MachineFunction &MF, 399 MachineFunctionAnalysisManager &MFAM) { 400 // Skip functions that have known verification problems. 401 // FIXME: Remove this mechanism when all problematic passes have been 402 // fixed. 403 if (MF.getProperties().hasProperty( 404 MachineFunctionProperties::Property::FailsVerification)) 405 return PreservedAnalyses::all(); 406 MachineVerifier(MFAM, Banner.c_str(), &errs()).verify(MF); 407 return PreservedAnalyses::all(); 408 } 409 410 char MachineVerifierLegacyPass::ID = 0; 411 412 INITIALIZE_PASS(MachineVerifierLegacyPass, "machineverifier", 413 "Verify generated machine code", false, false) 414 415 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) { 416 return new MachineVerifierLegacyPass(Banner); 417 } 418 419 void llvm::verifyMachineFunction(const std::string &Banner, 420 const MachineFunction &MF) { 421 // TODO: Use MFAM after porting below analyses. 422 // LiveVariables *LiveVars; 423 // LiveIntervals *LiveInts; 424 // LiveStacks *LiveStks; 425 // SlotIndexes *Indexes; 426 MachineVerifier(nullptr, Banner.c_str(), &errs()).verify(MF); 427 } 428 429 bool MachineFunction::verify(Pass *p, const char *Banner, raw_ostream *OS, 430 bool AbortOnError) const { 431 return MachineVerifier(p, Banner, OS, AbortOnError).verify(*this); 432 } 433 434 bool MachineFunction::verify(LiveIntervals *LiveInts, SlotIndexes *Indexes, 435 const char *Banner, raw_ostream *OS, 436 bool AbortOnError) const { 437 return MachineVerifier(Banner, /*LiveVars=*/nullptr, LiveInts, 438 /*LiveStks=*/nullptr, Indexes, OS, AbortOnError) 439 .verify(*this); 440 } 441 442 void MachineVerifier::verifySlotIndexes() const { 443 if (Indexes == nullptr) 444 return; 445 446 // Ensure the IdxMBB list is sorted by slot indexes. 447 SlotIndex Last; 448 for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(), 449 E = Indexes->MBBIndexEnd(); I != E; ++I) { 450 assert(!Last.isValid() || I->first > Last); 451 Last = I->first; 452 } 453 } 454 455 void MachineVerifier::verifyProperties(const MachineFunction &MF) { 456 // If a pass has introduced virtual registers without clearing the 457 // NoVRegs property (or set it without allocating the vregs) 458 // then report an error. 459 if (MF.getProperties().hasProperty( 460 MachineFunctionProperties::Property::NoVRegs) && 461 MRI->getNumVirtRegs()) 462 report("Function has NoVRegs property but there are VReg operands", &MF); 463 } 464 465 bool MachineVerifier::verify(const MachineFunction &MF) { 466 this->MF = &MF; 467 TM = &MF.getTarget(); 468 TII = MF.getSubtarget().getInstrInfo(); 469 TRI = MF.getSubtarget().getRegisterInfo(); 470 RBI = MF.getSubtarget().getRegBankInfo(); 471 MRI = &MF.getRegInfo(); 472 473 const bool isFunctionFailedISel = MF.getProperties().hasProperty( 474 MachineFunctionProperties::Property::FailedISel); 475 476 // If we're mid-GlobalISel and we already triggered the fallback path then 477 // it's expected that the MIR is somewhat broken but that's ok since we'll 478 // reset it and clear the FailedISel attribute in ResetMachineFunctions. 479 if (isFunctionFailedISel) 480 return true; 481 482 isFunctionRegBankSelected = MF.getProperties().hasProperty( 483 MachineFunctionProperties::Property::RegBankSelected); 484 isFunctionSelected = MF.getProperties().hasProperty( 485 MachineFunctionProperties::Property::Selected); 486 isFunctionTracksDebugUserValues = MF.getProperties().hasProperty( 487 MachineFunctionProperties::Property::TracksDebugUserValues); 488 489 if (PASS) { 490 auto *LISWrapper = PASS->getAnalysisIfAvailable<LiveIntervalsWrapperPass>(); 491 LiveInts = LISWrapper ? &LISWrapper->getLIS() : nullptr; 492 // We don't want to verify LiveVariables if LiveIntervals is available. 493 auto *LVWrapper = PASS->getAnalysisIfAvailable<LiveVariablesWrapperPass>(); 494 if (!LiveInts) 495 LiveVars = LVWrapper ? &LVWrapper->getLV() : nullptr; 496 auto *LSWrapper = PASS->getAnalysisIfAvailable<LiveStacksWrapperLegacy>(); 497 LiveStks = LSWrapper ? &LSWrapper->getLS() : nullptr; 498 auto *SIWrapper = PASS->getAnalysisIfAvailable<SlotIndexesWrapperPass>(); 499 Indexes = SIWrapper ? &SIWrapper->getSI() : nullptr; 500 } 501 if (MFAM) { 502 MachineFunction &Func = const_cast<MachineFunction &>(MF); 503 LiveInts = MFAM->getCachedResult<LiveIntervalsAnalysis>(Func); 504 if (!LiveInts) 505 LiveVars = MFAM->getCachedResult<LiveVariablesAnalysis>(Func); 506 // TODO: LiveStks = MFAM->getCachedResult<LiveStacksAnalysis>(Func); 507 Indexes = MFAM->getCachedResult<SlotIndexesAnalysis>(Func); 508 } 509 510 verifySlotIndexes(); 511 512 verifyProperties(MF); 513 514 visitMachineFunctionBefore(); 515 for (const MachineBasicBlock &MBB : MF) { 516 visitMachineBasicBlockBefore(&MBB); 517 // Keep track of the current bundle header. 518 const MachineInstr *CurBundle = nullptr; 519 // Do we expect the next instruction to be part of the same bundle? 520 bool InBundle = false; 521 522 for (const MachineInstr &MI : MBB.instrs()) { 523 if (MI.getParent() != &MBB) { 524 report("Bad instruction parent pointer", &MBB); 525 OS << "Instruction: " << MI; 526 continue; 527 } 528 529 // Check for consistent bundle flags. 530 if (InBundle && !MI.isBundledWithPred()) 531 report("Missing BundledPred flag, " 532 "BundledSucc was set on predecessor", 533 &MI); 534 if (!InBundle && MI.isBundledWithPred()) 535 report("BundledPred flag is set, " 536 "but BundledSucc not set on predecessor", 537 &MI); 538 539 // Is this a bundle header? 540 if (!MI.isInsideBundle()) { 541 if (CurBundle) 542 visitMachineBundleAfter(CurBundle); 543 CurBundle = &MI; 544 visitMachineBundleBefore(CurBundle); 545 } else if (!CurBundle) 546 report("No bundle header", &MI); 547 visitMachineInstrBefore(&MI); 548 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 549 const MachineOperand &Op = MI.getOperand(I); 550 if (Op.getParent() != &MI) { 551 // Make sure to use correct addOperand / removeOperand / ChangeTo 552 // functions when replacing operands of a MachineInstr. 553 report("Instruction has operand with wrong parent set", &MI); 554 } 555 556 visitMachineOperand(&Op, I); 557 } 558 559 // Was this the last bundled instruction? 560 InBundle = MI.isBundledWithSucc(); 561 } 562 if (CurBundle) 563 visitMachineBundleAfter(CurBundle); 564 if (InBundle) 565 report("BundledSucc flag set on last instruction in block", &MBB.back()); 566 visitMachineBasicBlockAfter(&MBB); 567 } 568 visitMachineFunctionAfter(); 569 570 // Clean up. 571 regsLive.clear(); 572 regsDefined.clear(); 573 regsDead.clear(); 574 regsKilled.clear(); 575 regMasks.clear(); 576 MBBInfoMap.clear(); 577 578 return !ReportedErrs.hasError(); 579 } 580 581 void MachineVerifier::report(const char *msg, const MachineFunction *MF) { 582 assert(MF); 583 OS << '\n'; 584 if (ReportedErrs.increment()) { 585 if (Banner) 586 OS << "# " << Banner << '\n'; 587 588 if (LiveInts != nullptr) 589 LiveInts->print(OS); 590 else 591 MF->print(OS, Indexes); 592 } 593 594 OS << "*** Bad machine code: " << msg << " ***\n" 595 << "- function: " << MF->getName() << '\n'; 596 } 597 598 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) { 599 assert(MBB); 600 report(msg, MBB->getParent()); 601 OS << "- basic block: " << printMBBReference(*MBB) << ' ' << MBB->getName() 602 << " (" << (const void *)MBB << ')'; 603 if (Indexes) 604 OS << " [" << Indexes->getMBBStartIdx(MBB) << ';' 605 << Indexes->getMBBEndIdx(MBB) << ')'; 606 OS << '\n'; 607 } 608 609 void MachineVerifier::report(const char *msg, const MachineInstr *MI) { 610 assert(MI); 611 report(msg, MI->getParent()); 612 OS << "- instruction: "; 613 if (Indexes && Indexes->hasIndex(*MI)) 614 OS << Indexes->getInstructionIndex(*MI) << '\t'; 615 MI->print(OS, /*IsStandalone=*/true); 616 } 617 618 void MachineVerifier::report(const char *msg, const MachineOperand *MO, 619 unsigned MONum, LLT MOVRegType) { 620 assert(MO); 621 report(msg, MO->getParent()); 622 OS << "- operand " << MONum << ": "; 623 MO->print(OS, MOVRegType, TRI); 624 OS << '\n'; 625 } 626 627 void MachineVerifier::report(const Twine &Msg, const MachineInstr *MI) { 628 report(Msg.str().c_str(), MI); 629 } 630 631 void MachineVerifier::report_context(SlotIndex Pos) const { 632 OS << "- at: " << Pos << '\n'; 633 } 634 635 void MachineVerifier::report_context(const LiveInterval &LI) const { 636 OS << "- interval: " << LI << '\n'; 637 } 638 639 void MachineVerifier::report_context(const LiveRange &LR, 640 VirtRegOrUnit VRegOrUnit, 641 LaneBitmask LaneMask) const { 642 report_context_liverange(LR); 643 report_context_vreg_regunit(VRegOrUnit); 644 if (LaneMask.any()) 645 report_context_lanemask(LaneMask); 646 } 647 648 void MachineVerifier::report_context(const LiveRange::Segment &S) const { 649 OS << "- segment: " << S << '\n'; 650 } 651 652 void MachineVerifier::report_context(const VNInfo &VNI) const { 653 OS << "- ValNo: " << VNI.id << " (def " << VNI.def << ")\n"; 654 } 655 656 void MachineVerifier::report_context_liverange(const LiveRange &LR) const { 657 OS << "- liverange: " << LR << '\n'; 658 } 659 660 void MachineVerifier::report_context(MCPhysReg PReg) const { 661 OS << "- p. register: " << printReg(PReg, TRI) << '\n'; 662 } 663 664 void MachineVerifier::report_context_vreg(Register VReg) const { 665 OS << "- v. register: " << printReg(VReg, TRI) << '\n'; 666 } 667 668 void MachineVerifier::report_context_vreg_regunit( 669 VirtRegOrUnit VRegOrUnit) const { 670 if (VRegOrUnit.isVirtualReg()) { 671 report_context_vreg(VRegOrUnit.asVirtualReg()); 672 } else { 673 OS << "- regunit: " << printRegUnit(VRegOrUnit.asMCRegUnit(), TRI) 674 << '\n'; 675 } 676 } 677 678 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const { 679 OS << "- lanemask: " << PrintLaneMask(LaneMask) << '\n'; 680 } 681 682 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) { 683 BBInfo &MInfo = MBBInfoMap[MBB]; 684 if (!MInfo.reachable) { 685 MInfo.reachable = true; 686 for (const MachineBasicBlock *Succ : MBB->successors()) 687 markReachable(Succ); 688 } 689 } 690 691 void MachineVerifier::visitMachineFunctionBefore() { 692 lastIndex = SlotIndex(); 693 regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs() 694 : TRI->getReservedRegs(*MF); 695 696 if (!MF->empty()) 697 markReachable(&MF->front()); 698 699 // Build a set of the basic blocks in the function. 700 FunctionBlocks.clear(); 701 for (const auto &MBB : *MF) { 702 FunctionBlocks.insert(&MBB); 703 BBInfo &MInfo = MBBInfoMap[&MBB]; 704 705 MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end()); 706 if (MInfo.Preds.size() != MBB.pred_size()) 707 report("MBB has duplicate entries in its predecessor list.", &MBB); 708 709 MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end()); 710 if (MInfo.Succs.size() != MBB.succ_size()) 711 report("MBB has duplicate entries in its successor list.", &MBB); 712 } 713 714 // Check that the register use lists are sane. 715 MRI->verifyUseLists(); 716 717 if (!MF->empty()) { 718 verifyStackFrame(); 719 verifyStackProtector(); 720 } 721 } 722 723 void 724 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) { 725 FirstTerminator = nullptr; 726 FirstNonPHI = nullptr; 727 728 if (!MF->getProperties().hasProperty( 729 MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) { 730 // If this block has allocatable physical registers live-in, check that 731 // it is an entry block or landing pad. 732 for (const auto &LI : MBB->liveins()) { 733 if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() && 734 MBB->getIterator() != MBB->getParent()->begin() && 735 !MBB->isInlineAsmBrIndirectTarget()) { 736 report("MBB has allocatable live-in, but isn't entry, landing-pad, or " 737 "inlineasm-br-indirect-target.", 738 MBB); 739 report_context(LI.PhysReg); 740 } 741 } 742 } 743 744 if (MBB->isIRBlockAddressTaken()) { 745 if (!MBB->getAddressTakenIRBlock()->hasAddressTaken()) 746 report("ir-block-address-taken is associated with basic block not used by " 747 "a blockaddress.", 748 MBB); 749 } 750 751 // Count the number of landing pad successors. 752 SmallPtrSet<const MachineBasicBlock*, 4> LandingPadSuccs; 753 for (const auto *succ : MBB->successors()) { 754 if (succ->isEHPad()) 755 LandingPadSuccs.insert(succ); 756 if (!FunctionBlocks.count(succ)) 757 report("MBB has successor that isn't part of the function.", MBB); 758 if (!MBBInfoMap[succ].Preds.count(MBB)) { 759 report("Inconsistent CFG", MBB); 760 OS << "MBB is not in the predecessor list of the successor " 761 << printMBBReference(*succ) << ".\n"; 762 } 763 } 764 765 // Check the predecessor list. 766 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 767 if (!FunctionBlocks.count(Pred)) 768 report("MBB has predecessor that isn't part of the function.", MBB); 769 if (!MBBInfoMap[Pred].Succs.count(MBB)) { 770 report("Inconsistent CFG", MBB); 771 OS << "MBB is not in the successor list of the predecessor " 772 << printMBBReference(*Pred) << ".\n"; 773 } 774 } 775 776 const MCAsmInfo *AsmInfo = TM->getMCAsmInfo(); 777 const BasicBlock *BB = MBB->getBasicBlock(); 778 const Function &F = MF->getFunction(); 779 if (LandingPadSuccs.size() > 1 && 780 !(AsmInfo && 781 AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj && 782 BB && isa<SwitchInst>(BB->getTerminator())) && 783 !isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn()))) 784 report("MBB has more than one landing pad successor", MBB); 785 786 // Call analyzeBranch. If it succeeds, there several more conditions to check. 787 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 788 SmallVector<MachineOperand, 4> Cond; 789 if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB, 790 Cond)) { 791 // Ok, analyzeBranch thinks it knows what's going on with this block. Let's 792 // check whether its answers match up with reality. 793 if (!TBB && !FBB) { 794 // Block falls through to its successor. 795 if (!MBB->empty() && MBB->back().isBarrier() && 796 !TII->isPredicated(MBB->back())) { 797 report("MBB exits via unconditional fall-through but ends with a " 798 "barrier instruction!", MBB); 799 } 800 if (!Cond.empty()) { 801 report("MBB exits via unconditional fall-through but has a condition!", 802 MBB); 803 } 804 } else if (TBB && !FBB && Cond.empty()) { 805 // Block unconditionally branches somewhere. 806 if (MBB->empty()) { 807 report("MBB exits via unconditional branch but doesn't contain " 808 "any instructions!", MBB); 809 } else if (!MBB->back().isBarrier()) { 810 report("MBB exits via unconditional branch but doesn't end with a " 811 "barrier instruction!", MBB); 812 } else if (!MBB->back().isTerminator()) { 813 report("MBB exits via unconditional branch but the branch isn't a " 814 "terminator instruction!", MBB); 815 } 816 } else if (TBB && !FBB && !Cond.empty()) { 817 // Block conditionally branches somewhere, otherwise falls through. 818 if (MBB->empty()) { 819 report("MBB exits via conditional branch/fall-through but doesn't " 820 "contain any instructions!", MBB); 821 } else if (MBB->back().isBarrier()) { 822 report("MBB exits via conditional branch/fall-through but ends with a " 823 "barrier instruction!", MBB); 824 } else if (!MBB->back().isTerminator()) { 825 report("MBB exits via conditional branch/fall-through but the branch " 826 "isn't a terminator instruction!", MBB); 827 } 828 } else if (TBB && FBB) { 829 // Block conditionally branches somewhere, otherwise branches 830 // somewhere else. 831 if (MBB->empty()) { 832 report("MBB exits via conditional branch/branch but doesn't " 833 "contain any instructions!", MBB); 834 } else if (!MBB->back().isBarrier()) { 835 report("MBB exits via conditional branch/branch but doesn't end with a " 836 "barrier instruction!", MBB); 837 } else if (!MBB->back().isTerminator()) { 838 report("MBB exits via conditional branch/branch but the branch " 839 "isn't a terminator instruction!", MBB); 840 } 841 if (Cond.empty()) { 842 report("MBB exits via conditional branch/branch but there's no " 843 "condition!", MBB); 844 } 845 } else { 846 report("analyzeBranch returned invalid data!", MBB); 847 } 848 849 // Now check that the successors match up with the answers reported by 850 // analyzeBranch. 851 if (TBB && !MBB->isSuccessor(TBB)) 852 report("MBB exits via jump or conditional branch, but its target isn't a " 853 "CFG successor!", 854 MBB); 855 if (FBB && !MBB->isSuccessor(FBB)) 856 report("MBB exits via conditional branch, but its target isn't a CFG " 857 "successor!", 858 MBB); 859 860 // There might be a fallthrough to the next block if there's either no 861 // unconditional true branch, or if there's a condition, and one of the 862 // branches is missing. 863 bool Fallthrough = !TBB || (!Cond.empty() && !FBB); 864 865 // A conditional fallthrough must be an actual CFG successor, not 866 // unreachable. (Conversely, an unconditional fallthrough might not really 867 // be a successor, because the block might end in unreachable.) 868 if (!Cond.empty() && !FBB) { 869 MachineFunction::const_iterator MBBI = std::next(MBB->getIterator()); 870 if (MBBI == MF->end()) { 871 report("MBB conditionally falls through out of function!", MBB); 872 } else if (!MBB->isSuccessor(&*MBBI)) 873 report("MBB exits via conditional branch/fall-through but the CFG " 874 "successors don't match the actual successors!", 875 MBB); 876 } 877 878 // Verify that there aren't any extra un-accounted-for successors. 879 for (const MachineBasicBlock *SuccMBB : MBB->successors()) { 880 // If this successor is one of the branch targets, it's okay. 881 if (SuccMBB == TBB || SuccMBB == FBB) 882 continue; 883 // If we might have a fallthrough, and the successor is the fallthrough 884 // block, that's also ok. 885 if (Fallthrough && SuccMBB == MBB->getNextNode()) 886 continue; 887 // Also accept successors which are for exception-handling or might be 888 // inlineasm_br targets. 889 if (SuccMBB->isEHPad() || SuccMBB->isInlineAsmBrIndirectTarget()) 890 continue; 891 report("MBB has unexpected successors which are not branch targets, " 892 "fallthrough, EHPads, or inlineasm_br targets.", 893 MBB); 894 } 895 } 896 897 regsLive.clear(); 898 if (MRI->tracksLiveness()) { 899 for (const auto &LI : MBB->liveins()) { 900 if (!LI.PhysReg.isPhysical()) { 901 report("MBB live-in list contains non-physical register", MBB); 902 continue; 903 } 904 for (const MCPhysReg &SubReg : TRI->subregs_inclusive(LI.PhysReg)) 905 regsLive.insert(SubReg); 906 } 907 } 908 909 const MachineFrameInfo &MFI = MF->getFrameInfo(); 910 BitVector PR = MFI.getPristineRegs(*MF); 911 for (unsigned I : PR.set_bits()) { 912 for (const MCPhysReg &SubReg : TRI->subregs_inclusive(I)) 913 regsLive.insert(SubReg); 914 } 915 916 regsKilled.clear(); 917 regsDefined.clear(); 918 919 if (Indexes) 920 lastIndex = Indexes->getMBBStartIdx(MBB); 921 } 922 923 // This function gets called for all bundle headers, including normal 924 // stand-alone unbundled instructions. 925 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) { 926 if (Indexes && Indexes->hasIndex(*MI)) { 927 SlotIndex idx = Indexes->getInstructionIndex(*MI); 928 if (!(idx > lastIndex)) { 929 report("Instruction index out of order", MI); 930 OS << "Last instruction was at " << lastIndex << '\n'; 931 } 932 lastIndex = idx; 933 } 934 935 // Ensure non-terminators don't follow terminators. 936 if (MI->isTerminator()) { 937 if (!FirstTerminator) 938 FirstTerminator = MI; 939 } else if (FirstTerminator) { 940 // For GlobalISel, G_INVOKE_REGION_START is a terminator that we allow to 941 // precede non-terminators. 942 if (FirstTerminator->getOpcode() != TargetOpcode::G_INVOKE_REGION_START) { 943 report("Non-terminator instruction after the first terminator", MI); 944 OS << "First terminator was:\t" << *FirstTerminator; 945 } 946 } 947 } 948 949 // The operands on an INLINEASM instruction must follow a template. 950 // Verify that the flag operands make sense. 951 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) { 952 // The first two operands on INLINEASM are the asm string and global flags. 953 if (MI->getNumOperands() < 2) { 954 report("Too few operands on inline asm", MI); 955 return; 956 } 957 if (!MI->getOperand(0).isSymbol()) 958 report("Asm string must be an external symbol", MI); 959 if (!MI->getOperand(1).isImm()) 960 report("Asm flags must be an immediate", MI); 961 // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2, 962 // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16, 963 // and Extra_IsConvergent = 32. 964 if (!isUInt<6>(MI->getOperand(1).getImm())) 965 report("Unknown asm flags", &MI->getOperand(1), 1); 966 967 static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed"); 968 969 unsigned OpNo = InlineAsm::MIOp_FirstOperand; 970 unsigned NumOps; 971 for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) { 972 const MachineOperand &MO = MI->getOperand(OpNo); 973 // There may be implicit ops after the fixed operands. 974 if (!MO.isImm()) 975 break; 976 const InlineAsm::Flag F(MO.getImm()); 977 NumOps = 1 + F.getNumOperandRegisters(); 978 } 979 980 if (OpNo > MI->getNumOperands()) 981 report("Missing operands in last group", MI); 982 983 // An optional MDNode follows the groups. 984 if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata()) 985 ++OpNo; 986 987 // All trailing operands must be implicit registers. 988 for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) { 989 const MachineOperand &MO = MI->getOperand(OpNo); 990 if (!MO.isReg() || !MO.isImplicit()) 991 report("Expected implicit register after groups", &MO, OpNo); 992 } 993 994 if (MI->getOpcode() == TargetOpcode::INLINEASM_BR) { 995 const MachineBasicBlock *MBB = MI->getParent(); 996 997 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = MI->getNumOperands(); 998 i != e; ++i) { 999 const MachineOperand &MO = MI->getOperand(i); 1000 1001 if (!MO.isMBB()) 1002 continue; 1003 1004 // Check the successor & predecessor lists look ok, assume they are 1005 // not. Find the indirect target without going through the successors. 1006 const MachineBasicBlock *IndirectTargetMBB = MO.getMBB(); 1007 if (!IndirectTargetMBB) { 1008 report("INLINEASM_BR indirect target does not exist", &MO, i); 1009 break; 1010 } 1011 1012 if (!MBB->isSuccessor(IndirectTargetMBB)) 1013 report("INLINEASM_BR indirect target missing from successor list", &MO, 1014 i); 1015 1016 if (!IndirectTargetMBB->isPredecessor(MBB)) 1017 report("INLINEASM_BR indirect target predecessor list missing parent", 1018 &MO, i); 1019 } 1020 } 1021 } 1022 1023 bool MachineVerifier::verifyAllRegOpsScalar(const MachineInstr &MI, 1024 const MachineRegisterInfo &MRI) { 1025 if (none_of(MI.explicit_operands(), [&MRI](const MachineOperand &Op) { 1026 if (!Op.isReg()) 1027 return false; 1028 const auto Reg = Op.getReg(); 1029 if (Reg.isPhysical()) 1030 return false; 1031 return !MRI.getType(Reg).isScalar(); 1032 })) 1033 return true; 1034 report("All register operands must have scalar types", &MI); 1035 return false; 1036 } 1037 1038 /// Check that types are consistent when two operands need to have the same 1039 /// number of vector elements. 1040 /// \return true if the types are valid. 1041 bool MachineVerifier::verifyVectorElementMatch(LLT Ty0, LLT Ty1, 1042 const MachineInstr *MI) { 1043 if (Ty0.isVector() != Ty1.isVector()) { 1044 report("operand types must be all-vector or all-scalar", MI); 1045 // Generally we try to report as many issues as possible at once, but in 1046 // this case it's not clear what should we be comparing the size of the 1047 // scalar with: the size of the whole vector or its lane. Instead of 1048 // making an arbitrary choice and emitting not so helpful message, let's 1049 // avoid the extra noise and stop here. 1050 return false; 1051 } 1052 1053 if (Ty0.isVector() && Ty0.getElementCount() != Ty1.getElementCount()) { 1054 report("operand types must preserve number of vector elements", MI); 1055 return false; 1056 } 1057 1058 return true; 1059 } 1060 1061 bool MachineVerifier::verifyGIntrinsicSideEffects(const MachineInstr *MI) { 1062 auto Opcode = MI->getOpcode(); 1063 bool NoSideEffects = Opcode == TargetOpcode::G_INTRINSIC || 1064 Opcode == TargetOpcode::G_INTRINSIC_CONVERGENT; 1065 unsigned IntrID = cast<GIntrinsic>(MI)->getIntrinsicID(); 1066 if (IntrID != 0 && IntrID < Intrinsic::num_intrinsics) { 1067 AttributeList Attrs = Intrinsic::getAttributes( 1068 MF->getFunction().getContext(), static_cast<Intrinsic::ID>(IntrID)); 1069 bool DeclHasSideEffects = !Attrs.getMemoryEffects().doesNotAccessMemory(); 1070 if (NoSideEffects && DeclHasSideEffects) { 1071 report(Twine(TII->getName(Opcode), 1072 " used with intrinsic that accesses memory"), 1073 MI); 1074 return false; 1075 } 1076 if (!NoSideEffects && !DeclHasSideEffects) { 1077 report(Twine(TII->getName(Opcode), " used with readnone intrinsic"), MI); 1078 return false; 1079 } 1080 } 1081 1082 return true; 1083 } 1084 1085 bool MachineVerifier::verifyGIntrinsicConvergence(const MachineInstr *MI) { 1086 auto Opcode = MI->getOpcode(); 1087 bool NotConvergent = Opcode == TargetOpcode::G_INTRINSIC || 1088 Opcode == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS; 1089 unsigned IntrID = cast<GIntrinsic>(MI)->getIntrinsicID(); 1090 if (IntrID != 0 && IntrID < Intrinsic::num_intrinsics) { 1091 AttributeList Attrs = Intrinsic::getAttributes( 1092 MF->getFunction().getContext(), static_cast<Intrinsic::ID>(IntrID)); 1093 bool DeclIsConvergent = Attrs.hasFnAttr(Attribute::Convergent); 1094 if (NotConvergent && DeclIsConvergent) { 1095 report(Twine(TII->getName(Opcode), " used with a convergent intrinsic"), 1096 MI); 1097 return false; 1098 } 1099 if (!NotConvergent && !DeclIsConvergent) { 1100 report( 1101 Twine(TII->getName(Opcode), " used with a non-convergent intrinsic"), 1102 MI); 1103 return false; 1104 } 1105 } 1106 1107 return true; 1108 } 1109 1110 void MachineVerifier::verifyPreISelGenericInstruction(const MachineInstr *MI) { 1111 if (isFunctionSelected) 1112 report("Unexpected generic instruction in a Selected function", MI); 1113 1114 const MCInstrDesc &MCID = MI->getDesc(); 1115 unsigned NumOps = MI->getNumOperands(); 1116 1117 // Branches must reference a basic block if they are not indirect 1118 if (MI->isBranch() && !MI->isIndirectBranch()) { 1119 bool HasMBB = false; 1120 for (const MachineOperand &Op : MI->operands()) { 1121 if (Op.isMBB()) { 1122 HasMBB = true; 1123 break; 1124 } 1125 } 1126 1127 if (!HasMBB) { 1128 report("Branch instruction is missing a basic block operand or " 1129 "isIndirectBranch property", 1130 MI); 1131 } 1132 } 1133 1134 // Check types. 1135 SmallVector<LLT, 4> Types; 1136 for (unsigned I = 0, E = std::min(MCID.getNumOperands(), NumOps); 1137 I != E; ++I) { 1138 if (!MCID.operands()[I].isGenericType()) 1139 continue; 1140 // Generic instructions specify type equality constraints between some of 1141 // their operands. Make sure these are consistent. 1142 size_t TypeIdx = MCID.operands()[I].getGenericTypeIndex(); 1143 Types.resize(std::max(TypeIdx + 1, Types.size())); 1144 1145 const MachineOperand *MO = &MI->getOperand(I); 1146 if (!MO->isReg()) { 1147 report("generic instruction must use register operands", MI); 1148 continue; 1149 } 1150 1151 LLT OpTy = MRI->getType(MO->getReg()); 1152 // Don't report a type mismatch if there is no actual mismatch, only a 1153 // type missing, to reduce noise: 1154 if (OpTy.isValid()) { 1155 // Only the first valid type for a type index will be printed: don't 1156 // overwrite it later so it's always clear which type was expected: 1157 if (!Types[TypeIdx].isValid()) 1158 Types[TypeIdx] = OpTy; 1159 else if (Types[TypeIdx] != OpTy) 1160 report("Type mismatch in generic instruction", MO, I, OpTy); 1161 } else { 1162 // Generic instructions must have types attached to their operands. 1163 report("Generic instruction is missing a virtual register type", MO, I); 1164 } 1165 } 1166 1167 // Generic opcodes must not have physical register operands. 1168 for (unsigned I = 0; I < MI->getNumOperands(); ++I) { 1169 const MachineOperand *MO = &MI->getOperand(I); 1170 if (MO->isReg() && MO->getReg().isPhysical()) 1171 report("Generic instruction cannot have physical register", MO, I); 1172 } 1173 1174 // Avoid out of bounds in checks below. This was already reported earlier. 1175 if (MI->getNumOperands() < MCID.getNumOperands()) 1176 return; 1177 1178 StringRef ErrorInfo; 1179 if (!TII->verifyInstruction(*MI, ErrorInfo)) 1180 report(ErrorInfo.data(), MI); 1181 1182 // Verify properties of various specific instruction types 1183 unsigned Opc = MI->getOpcode(); 1184 switch (Opc) { 1185 case TargetOpcode::G_ASSERT_SEXT: 1186 case TargetOpcode::G_ASSERT_ZEXT: { 1187 std::string OpcName = 1188 Opc == TargetOpcode::G_ASSERT_ZEXT ? "G_ASSERT_ZEXT" : "G_ASSERT_SEXT"; 1189 if (!MI->getOperand(2).isImm()) { 1190 report(Twine(OpcName, " expects an immediate operand #2"), MI); 1191 break; 1192 } 1193 1194 Register Dst = MI->getOperand(0).getReg(); 1195 Register Src = MI->getOperand(1).getReg(); 1196 LLT SrcTy = MRI->getType(Src); 1197 int64_t Imm = MI->getOperand(2).getImm(); 1198 if (Imm <= 0) { 1199 report(Twine(OpcName, " size must be >= 1"), MI); 1200 break; 1201 } 1202 1203 if (Imm >= SrcTy.getScalarSizeInBits()) { 1204 report(Twine(OpcName, " size must be less than source bit width"), MI); 1205 break; 1206 } 1207 1208 const RegisterBank *SrcRB = RBI->getRegBank(Src, *MRI, *TRI); 1209 const RegisterBank *DstRB = RBI->getRegBank(Dst, *MRI, *TRI); 1210 1211 // Allow only the source bank to be set. 1212 if ((SrcRB && DstRB && SrcRB != DstRB) || (DstRB && !SrcRB)) { 1213 report(Twine(OpcName, " cannot change register bank"), MI); 1214 break; 1215 } 1216 1217 // Don't allow a class change. Do allow member class->regbank. 1218 const TargetRegisterClass *DstRC = MRI->getRegClassOrNull(Dst); 1219 if (DstRC && DstRC != MRI->getRegClassOrNull(Src)) { 1220 report( 1221 Twine(OpcName, " source and destination register classes must match"), 1222 MI); 1223 break; 1224 } 1225 1226 break; 1227 } 1228 1229 case TargetOpcode::G_CONSTANT: 1230 case TargetOpcode::G_FCONSTANT: { 1231 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1232 if (DstTy.isVector()) 1233 report("Instruction cannot use a vector result type", MI); 1234 1235 if (MI->getOpcode() == TargetOpcode::G_CONSTANT) { 1236 if (!MI->getOperand(1).isCImm()) { 1237 report("G_CONSTANT operand must be cimm", MI); 1238 break; 1239 } 1240 1241 const ConstantInt *CI = MI->getOperand(1).getCImm(); 1242 if (CI->getBitWidth() != DstTy.getSizeInBits()) 1243 report("inconsistent constant size", MI); 1244 } else { 1245 if (!MI->getOperand(1).isFPImm()) { 1246 report("G_FCONSTANT operand must be fpimm", MI); 1247 break; 1248 } 1249 const ConstantFP *CF = MI->getOperand(1).getFPImm(); 1250 1251 if (APFloat::getSizeInBits(CF->getValueAPF().getSemantics()) != 1252 DstTy.getSizeInBits()) { 1253 report("inconsistent constant size", MI); 1254 } 1255 } 1256 1257 break; 1258 } 1259 case TargetOpcode::G_LOAD: 1260 case TargetOpcode::G_STORE: 1261 case TargetOpcode::G_ZEXTLOAD: 1262 case TargetOpcode::G_SEXTLOAD: { 1263 LLT ValTy = MRI->getType(MI->getOperand(0).getReg()); 1264 LLT PtrTy = MRI->getType(MI->getOperand(1).getReg()); 1265 if (!PtrTy.isPointer()) 1266 report("Generic memory instruction must access a pointer", MI); 1267 1268 // Generic loads and stores must have a single MachineMemOperand 1269 // describing that access. 1270 if (!MI->hasOneMemOperand()) { 1271 report("Generic instruction accessing memory must have one mem operand", 1272 MI); 1273 } else { 1274 const MachineMemOperand &MMO = **MI->memoperands_begin(); 1275 if (MI->getOpcode() == TargetOpcode::G_ZEXTLOAD || 1276 MI->getOpcode() == TargetOpcode::G_SEXTLOAD) { 1277 if (TypeSize::isKnownGE(MMO.getSizeInBits().getValue(), 1278 ValTy.getSizeInBits())) 1279 report("Generic extload must have a narrower memory type", MI); 1280 } else if (MI->getOpcode() == TargetOpcode::G_LOAD) { 1281 if (TypeSize::isKnownGT(MMO.getSize().getValue(), 1282 ValTy.getSizeInBytes())) 1283 report("load memory size cannot exceed result size", MI); 1284 1285 if (MMO.getRanges()) { 1286 ConstantInt *i = 1287 mdconst::extract<ConstantInt>(MMO.getRanges()->getOperand(0)); 1288 if (i->getIntegerType()->getBitWidth() != 1289 ValTy.getScalarType().getSizeInBits()) { 1290 report("range is incompatible with the result type", MI); 1291 } 1292 } 1293 } else if (MI->getOpcode() == TargetOpcode::G_STORE) { 1294 if (TypeSize::isKnownLT(ValTy.getSizeInBytes(), 1295 MMO.getSize().getValue())) 1296 report("store memory size cannot exceed value size", MI); 1297 } 1298 1299 const AtomicOrdering Order = MMO.getSuccessOrdering(); 1300 if (Opc == TargetOpcode::G_STORE) { 1301 if (Order == AtomicOrdering::Acquire || 1302 Order == AtomicOrdering::AcquireRelease) 1303 report("atomic store cannot use acquire ordering", MI); 1304 1305 } else { 1306 if (Order == AtomicOrdering::Release || 1307 Order == AtomicOrdering::AcquireRelease) 1308 report("atomic load cannot use release ordering", MI); 1309 } 1310 } 1311 1312 break; 1313 } 1314 case TargetOpcode::G_PHI: { 1315 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1316 if (!DstTy.isValid() || !all_of(drop_begin(MI->operands()), 1317 [this, &DstTy](const MachineOperand &MO) { 1318 if (!MO.isReg()) 1319 return true; 1320 LLT Ty = MRI->getType(MO.getReg()); 1321 if (!Ty.isValid() || (Ty != DstTy)) 1322 return false; 1323 return true; 1324 })) 1325 report("Generic Instruction G_PHI has operands with incompatible/missing " 1326 "types", 1327 MI); 1328 break; 1329 } 1330 case TargetOpcode::G_BITCAST: { 1331 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1332 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1333 if (!DstTy.isValid() || !SrcTy.isValid()) 1334 break; 1335 1336 if (SrcTy.isPointer() != DstTy.isPointer()) 1337 report("bitcast cannot convert between pointers and other types", MI); 1338 1339 if (SrcTy.getSizeInBits() != DstTy.getSizeInBits()) 1340 report("bitcast sizes must match", MI); 1341 1342 if (SrcTy == DstTy) 1343 report("bitcast must change the type", MI); 1344 1345 break; 1346 } 1347 case TargetOpcode::G_INTTOPTR: 1348 case TargetOpcode::G_PTRTOINT: 1349 case TargetOpcode::G_ADDRSPACE_CAST: { 1350 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1351 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1352 if (!DstTy.isValid() || !SrcTy.isValid()) 1353 break; 1354 1355 verifyVectorElementMatch(DstTy, SrcTy, MI); 1356 1357 DstTy = DstTy.getScalarType(); 1358 SrcTy = SrcTy.getScalarType(); 1359 1360 if (MI->getOpcode() == TargetOpcode::G_INTTOPTR) { 1361 if (!DstTy.isPointer()) 1362 report("inttoptr result type must be a pointer", MI); 1363 if (SrcTy.isPointer()) 1364 report("inttoptr source type must not be a pointer", MI); 1365 } else if (MI->getOpcode() == TargetOpcode::G_PTRTOINT) { 1366 if (!SrcTy.isPointer()) 1367 report("ptrtoint source type must be a pointer", MI); 1368 if (DstTy.isPointer()) 1369 report("ptrtoint result type must not be a pointer", MI); 1370 } else { 1371 assert(MI->getOpcode() == TargetOpcode::G_ADDRSPACE_CAST); 1372 if (!SrcTy.isPointer() || !DstTy.isPointer()) 1373 report("addrspacecast types must be pointers", MI); 1374 else { 1375 if (SrcTy.getAddressSpace() == DstTy.getAddressSpace()) 1376 report("addrspacecast must convert different address spaces", MI); 1377 } 1378 } 1379 1380 break; 1381 } 1382 case TargetOpcode::G_PTR_ADD: { 1383 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1384 LLT PtrTy = MRI->getType(MI->getOperand(1).getReg()); 1385 LLT OffsetTy = MRI->getType(MI->getOperand(2).getReg()); 1386 if (!DstTy.isValid() || !PtrTy.isValid() || !OffsetTy.isValid()) 1387 break; 1388 1389 if (!PtrTy.isPointerOrPointerVector()) 1390 report("gep first operand must be a pointer", MI); 1391 1392 if (OffsetTy.isPointerOrPointerVector()) 1393 report("gep offset operand must not be a pointer", MI); 1394 1395 if (PtrTy.isPointerOrPointerVector()) { 1396 const DataLayout &DL = MF->getDataLayout(); 1397 unsigned AS = PtrTy.getAddressSpace(); 1398 unsigned IndexSizeInBits = DL.getIndexSize(AS) * 8; 1399 if (OffsetTy.getScalarSizeInBits() != IndexSizeInBits) { 1400 report("gep offset operand must match index size for address space", 1401 MI); 1402 } 1403 } 1404 1405 // TODO: Is the offset allowed to be a scalar with a vector? 1406 break; 1407 } 1408 case TargetOpcode::G_PTRMASK: { 1409 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1410 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1411 LLT MaskTy = MRI->getType(MI->getOperand(2).getReg()); 1412 if (!DstTy.isValid() || !SrcTy.isValid() || !MaskTy.isValid()) 1413 break; 1414 1415 if (!DstTy.isPointerOrPointerVector()) 1416 report("ptrmask result type must be a pointer", MI); 1417 1418 if (!MaskTy.getScalarType().isScalar()) 1419 report("ptrmask mask type must be an integer", MI); 1420 1421 verifyVectorElementMatch(DstTy, MaskTy, MI); 1422 break; 1423 } 1424 case TargetOpcode::G_SEXT: 1425 case TargetOpcode::G_ZEXT: 1426 case TargetOpcode::G_ANYEXT: 1427 case TargetOpcode::G_TRUNC: 1428 case TargetOpcode::G_FPEXT: 1429 case TargetOpcode::G_FPTRUNC: { 1430 // Number of operands and presense of types is already checked (and 1431 // reported in case of any issues), so no need to report them again. As 1432 // we're trying to report as many issues as possible at once, however, the 1433 // instructions aren't guaranteed to have the right number of operands or 1434 // types attached to them at this point 1435 assert(MCID.getNumOperands() == 2 && "Expected 2 operands G_*{EXT,TRUNC}"); 1436 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1437 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1438 if (!DstTy.isValid() || !SrcTy.isValid()) 1439 break; 1440 1441 if (DstTy.isPointerOrPointerVector() || SrcTy.isPointerOrPointerVector()) 1442 report("Generic extend/truncate can not operate on pointers", MI); 1443 1444 verifyVectorElementMatch(DstTy, SrcTy, MI); 1445 1446 unsigned DstSize = DstTy.getScalarSizeInBits(); 1447 unsigned SrcSize = SrcTy.getScalarSizeInBits(); 1448 switch (MI->getOpcode()) { 1449 default: 1450 if (DstSize <= SrcSize) 1451 report("Generic extend has destination type no larger than source", MI); 1452 break; 1453 case TargetOpcode::G_TRUNC: 1454 case TargetOpcode::G_FPTRUNC: 1455 if (DstSize >= SrcSize) 1456 report("Generic truncate has destination type no smaller than source", 1457 MI); 1458 break; 1459 } 1460 break; 1461 } 1462 case TargetOpcode::G_SELECT: { 1463 LLT SelTy = MRI->getType(MI->getOperand(0).getReg()); 1464 LLT CondTy = MRI->getType(MI->getOperand(1).getReg()); 1465 if (!SelTy.isValid() || !CondTy.isValid()) 1466 break; 1467 1468 // Scalar condition select on a vector is valid. 1469 if (CondTy.isVector()) 1470 verifyVectorElementMatch(SelTy, CondTy, MI); 1471 break; 1472 } 1473 case TargetOpcode::G_MERGE_VALUES: { 1474 // G_MERGE_VALUES should only be used to merge scalars into a larger scalar, 1475 // e.g. s2N = MERGE sN, sN 1476 // Merging multiple scalars into a vector is not allowed, should use 1477 // G_BUILD_VECTOR for that. 1478 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1479 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1480 if (DstTy.isVector() || SrcTy.isVector()) 1481 report("G_MERGE_VALUES cannot operate on vectors", MI); 1482 1483 const unsigned NumOps = MI->getNumOperands(); 1484 if (DstTy.getSizeInBits() != SrcTy.getSizeInBits() * (NumOps - 1)) 1485 report("G_MERGE_VALUES result size is inconsistent", MI); 1486 1487 for (unsigned I = 2; I != NumOps; ++I) { 1488 if (MRI->getType(MI->getOperand(I).getReg()) != SrcTy) 1489 report("G_MERGE_VALUES source types do not match", MI); 1490 } 1491 1492 break; 1493 } 1494 case TargetOpcode::G_UNMERGE_VALUES: { 1495 unsigned NumDsts = MI->getNumOperands() - 1; 1496 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1497 for (unsigned i = 1; i < NumDsts; ++i) { 1498 if (MRI->getType(MI->getOperand(i).getReg()) != DstTy) { 1499 report("G_UNMERGE_VALUES destination types do not match", MI); 1500 break; 1501 } 1502 } 1503 1504 LLT SrcTy = MRI->getType(MI->getOperand(NumDsts).getReg()); 1505 if (DstTy.isVector()) { 1506 // This case is the converse of G_CONCAT_VECTORS. 1507 if (!SrcTy.isVector() || 1508 (SrcTy.getScalarType() != DstTy.getScalarType() && 1509 !SrcTy.isPointerVector()) || 1510 SrcTy.isScalableVector() != DstTy.isScalableVector() || 1511 SrcTy.getSizeInBits() != NumDsts * DstTy.getSizeInBits()) 1512 report("G_UNMERGE_VALUES source operand does not match vector " 1513 "destination operands", 1514 MI); 1515 } else if (SrcTy.isVector()) { 1516 // This case is the converse of G_BUILD_VECTOR, but relaxed to allow 1517 // mismatched types as long as the total size matches: 1518 // %0:_(s64), %1:_(s64) = G_UNMERGE_VALUES %2:_(<4 x s32>) 1519 if (SrcTy.getSizeInBits() != NumDsts * DstTy.getSizeInBits()) 1520 report("G_UNMERGE_VALUES vector source operand does not match scalar " 1521 "destination operands", 1522 MI); 1523 } else { 1524 // This case is the converse of G_MERGE_VALUES. 1525 if (SrcTy.getSizeInBits() != NumDsts * DstTy.getSizeInBits()) { 1526 report("G_UNMERGE_VALUES scalar source operand does not match scalar " 1527 "destination operands", 1528 MI); 1529 } 1530 } 1531 break; 1532 } 1533 case TargetOpcode::G_BUILD_VECTOR: { 1534 // Source types must be scalars, dest type a vector. Total size of scalars 1535 // must match the dest vector size. 1536 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1537 LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg()); 1538 if (!DstTy.isVector() || SrcEltTy.isVector()) { 1539 report("G_BUILD_VECTOR must produce a vector from scalar operands", MI); 1540 break; 1541 } 1542 1543 if (DstTy.getElementType() != SrcEltTy) 1544 report("G_BUILD_VECTOR result element type must match source type", MI); 1545 1546 if (DstTy.getNumElements() != MI->getNumOperands() - 1) 1547 report("G_BUILD_VECTOR must have an operand for each elemement", MI); 1548 1549 for (const MachineOperand &MO : llvm::drop_begin(MI->operands(), 2)) 1550 if (MRI->getType(MI->getOperand(1).getReg()) != MRI->getType(MO.getReg())) 1551 report("G_BUILD_VECTOR source operand types are not homogeneous", MI); 1552 1553 break; 1554 } 1555 case TargetOpcode::G_BUILD_VECTOR_TRUNC: { 1556 // Source types must be scalars, dest type a vector. Scalar types must be 1557 // larger than the dest vector elt type, as this is a truncating operation. 1558 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1559 LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg()); 1560 if (!DstTy.isVector() || SrcEltTy.isVector()) 1561 report("G_BUILD_VECTOR_TRUNC must produce a vector from scalar operands", 1562 MI); 1563 for (const MachineOperand &MO : llvm::drop_begin(MI->operands(), 2)) 1564 if (MRI->getType(MI->getOperand(1).getReg()) != MRI->getType(MO.getReg())) 1565 report("G_BUILD_VECTOR_TRUNC source operand types are not homogeneous", 1566 MI); 1567 if (SrcEltTy.getSizeInBits() <= DstTy.getElementType().getSizeInBits()) 1568 report("G_BUILD_VECTOR_TRUNC source operand types are not larger than " 1569 "dest elt type", 1570 MI); 1571 break; 1572 } 1573 case TargetOpcode::G_CONCAT_VECTORS: { 1574 // Source types should be vectors, and total size should match the dest 1575 // vector size. 1576 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1577 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1578 if (!DstTy.isVector() || !SrcTy.isVector()) 1579 report("G_CONCAT_VECTOR requires vector source and destination operands", 1580 MI); 1581 1582 if (MI->getNumOperands() < 3) 1583 report("G_CONCAT_VECTOR requires at least 2 source operands", MI); 1584 1585 for (const MachineOperand &MO : llvm::drop_begin(MI->operands(), 2)) 1586 if (MRI->getType(MI->getOperand(1).getReg()) != MRI->getType(MO.getReg())) 1587 report("G_CONCAT_VECTOR source operand types are not homogeneous", MI); 1588 if (DstTy.getElementCount() != 1589 SrcTy.getElementCount() * (MI->getNumOperands() - 1)) 1590 report("G_CONCAT_VECTOR num dest and source elements should match", MI); 1591 break; 1592 } 1593 case TargetOpcode::G_ICMP: 1594 case TargetOpcode::G_FCMP: { 1595 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1596 LLT SrcTy = MRI->getType(MI->getOperand(2).getReg()); 1597 1598 if ((DstTy.isVector() != SrcTy.isVector()) || 1599 (DstTy.isVector() && 1600 DstTy.getElementCount() != SrcTy.getElementCount())) 1601 report("Generic vector icmp/fcmp must preserve number of lanes", MI); 1602 1603 break; 1604 } 1605 case TargetOpcode::G_SCMP: 1606 case TargetOpcode::G_UCMP: { 1607 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1608 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1609 1610 if (SrcTy.isPointerOrPointerVector()) { 1611 report("Generic scmp/ucmp does not support pointers as operands", MI); 1612 break; 1613 } 1614 1615 if (DstTy.isPointerOrPointerVector()) { 1616 report("Generic scmp/ucmp does not support pointers as a result", MI); 1617 break; 1618 } 1619 1620 if (DstTy.getScalarSizeInBits() < 2) { 1621 report("Result type must be at least 2 bits wide", MI); 1622 break; 1623 } 1624 1625 if ((DstTy.isVector() != SrcTy.isVector()) || 1626 (DstTy.isVector() && 1627 DstTy.getElementCount() != SrcTy.getElementCount())) { 1628 report("Generic vector scmp/ucmp must preserve number of lanes", MI); 1629 break; 1630 } 1631 1632 break; 1633 } 1634 case TargetOpcode::G_EXTRACT: { 1635 const MachineOperand &SrcOp = MI->getOperand(1); 1636 if (!SrcOp.isReg()) { 1637 report("extract source must be a register", MI); 1638 break; 1639 } 1640 1641 const MachineOperand &OffsetOp = MI->getOperand(2); 1642 if (!OffsetOp.isImm()) { 1643 report("extract offset must be a constant", MI); 1644 break; 1645 } 1646 1647 unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits(); 1648 unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits(); 1649 if (SrcSize == DstSize) 1650 report("extract source must be larger than result", MI); 1651 1652 if (DstSize + OffsetOp.getImm() > SrcSize) 1653 report("extract reads past end of register", MI); 1654 break; 1655 } 1656 case TargetOpcode::G_INSERT: { 1657 const MachineOperand &SrcOp = MI->getOperand(2); 1658 if (!SrcOp.isReg()) { 1659 report("insert source must be a register", MI); 1660 break; 1661 } 1662 1663 const MachineOperand &OffsetOp = MI->getOperand(3); 1664 if (!OffsetOp.isImm()) { 1665 report("insert offset must be a constant", MI); 1666 break; 1667 } 1668 1669 unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits(); 1670 unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits(); 1671 1672 if (DstSize <= SrcSize) 1673 report("inserted size must be smaller than total register", MI); 1674 1675 if (SrcSize + OffsetOp.getImm() > DstSize) 1676 report("insert writes past end of register", MI); 1677 1678 break; 1679 } 1680 case TargetOpcode::G_JUMP_TABLE: { 1681 if (!MI->getOperand(1).isJTI()) 1682 report("G_JUMP_TABLE source operand must be a jump table index", MI); 1683 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1684 if (!DstTy.isPointer()) 1685 report("G_JUMP_TABLE dest operand must have a pointer type", MI); 1686 break; 1687 } 1688 case TargetOpcode::G_BRJT: { 1689 if (!MRI->getType(MI->getOperand(0).getReg()).isPointer()) 1690 report("G_BRJT src operand 0 must be a pointer type", MI); 1691 1692 if (!MI->getOperand(1).isJTI()) 1693 report("G_BRJT src operand 1 must be a jump table index", MI); 1694 1695 const auto &IdxOp = MI->getOperand(2); 1696 if (!IdxOp.isReg() || MRI->getType(IdxOp.getReg()).isPointer()) 1697 report("G_BRJT src operand 2 must be a scalar reg type", MI); 1698 break; 1699 } 1700 case TargetOpcode::G_INTRINSIC: 1701 case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS: 1702 case TargetOpcode::G_INTRINSIC_CONVERGENT: 1703 case TargetOpcode::G_INTRINSIC_CONVERGENT_W_SIDE_EFFECTS: { 1704 // TODO: Should verify number of def and use operands, but the current 1705 // interface requires passing in IR types for mangling. 1706 const MachineOperand &IntrIDOp = MI->getOperand(MI->getNumExplicitDefs()); 1707 if (!IntrIDOp.isIntrinsicID()) { 1708 report("G_INTRINSIC first src operand must be an intrinsic ID", MI); 1709 break; 1710 } 1711 1712 if (!verifyGIntrinsicSideEffects(MI)) 1713 break; 1714 if (!verifyGIntrinsicConvergence(MI)) 1715 break; 1716 1717 break; 1718 } 1719 case TargetOpcode::G_SEXT_INREG: { 1720 if (!MI->getOperand(2).isImm()) { 1721 report("G_SEXT_INREG expects an immediate operand #2", MI); 1722 break; 1723 } 1724 1725 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1726 int64_t Imm = MI->getOperand(2).getImm(); 1727 if (Imm <= 0) 1728 report("G_SEXT_INREG size must be >= 1", MI); 1729 if (Imm >= SrcTy.getScalarSizeInBits()) 1730 report("G_SEXT_INREG size must be less than source bit width", MI); 1731 break; 1732 } 1733 case TargetOpcode::G_BSWAP: { 1734 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1735 if (DstTy.getScalarSizeInBits() % 16 != 0) 1736 report("G_BSWAP size must be a multiple of 16 bits", MI); 1737 break; 1738 } 1739 case TargetOpcode::G_VSCALE: { 1740 if (!MI->getOperand(1).isCImm()) { 1741 report("G_VSCALE operand must be cimm", MI); 1742 break; 1743 } 1744 if (MI->getOperand(1).getCImm()->isZero()) { 1745 report("G_VSCALE immediate cannot be zero", MI); 1746 break; 1747 } 1748 break; 1749 } 1750 case TargetOpcode::G_STEP_VECTOR: { 1751 if (!MI->getOperand(1).isCImm()) { 1752 report("operand must be cimm", MI); 1753 break; 1754 } 1755 1756 if (!MI->getOperand(1).getCImm()->getValue().isStrictlyPositive()) { 1757 report("step must be > 0", MI); 1758 break; 1759 } 1760 1761 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1762 if (!DstTy.isScalableVector()) { 1763 report("Destination type must be a scalable vector", MI); 1764 break; 1765 } 1766 1767 // <vscale x 2 x p0> 1768 if (!DstTy.getElementType().isScalar()) { 1769 report("Destination element type must be scalar", MI); 1770 break; 1771 } 1772 1773 if (MI->getOperand(1).getCImm()->getBitWidth() != 1774 DstTy.getElementType().getScalarSizeInBits()) { 1775 report("step bitwidth differs from result type element bitwidth", MI); 1776 break; 1777 } 1778 break; 1779 } 1780 case TargetOpcode::G_INSERT_SUBVECTOR: { 1781 const MachineOperand &Src0Op = MI->getOperand(1); 1782 if (!Src0Op.isReg()) { 1783 report("G_INSERT_SUBVECTOR first source must be a register", MI); 1784 break; 1785 } 1786 1787 const MachineOperand &Src1Op = MI->getOperand(2); 1788 if (!Src1Op.isReg()) { 1789 report("G_INSERT_SUBVECTOR second source must be a register", MI); 1790 break; 1791 } 1792 1793 const MachineOperand &IndexOp = MI->getOperand(3); 1794 if (!IndexOp.isImm()) { 1795 report("G_INSERT_SUBVECTOR index must be an immediate", MI); 1796 break; 1797 } 1798 1799 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1800 LLT Src1Ty = MRI->getType(Src1Op.getReg()); 1801 1802 if (!DstTy.isVector()) { 1803 report("Destination type must be a vector", MI); 1804 break; 1805 } 1806 1807 if (!Src1Ty.isVector()) { 1808 report("Second source must be a vector", MI); 1809 break; 1810 } 1811 1812 if (DstTy.getElementType() != Src1Ty.getElementType()) { 1813 report("Element type of vectors must be the same", MI); 1814 break; 1815 } 1816 1817 if (Src1Ty.isScalable() != DstTy.isScalable()) { 1818 report("Vector types must both be fixed or both be scalable", MI); 1819 break; 1820 } 1821 1822 if (ElementCount::isKnownGT(Src1Ty.getElementCount(), 1823 DstTy.getElementCount())) { 1824 report("Second source must be smaller than destination vector", MI); 1825 break; 1826 } 1827 1828 uint64_t Idx = IndexOp.getImm(); 1829 uint64_t Src1MinLen = Src1Ty.getElementCount().getKnownMinValue(); 1830 if (IndexOp.getImm() % Src1MinLen != 0) { 1831 report("Index must be a multiple of the second source vector's " 1832 "minimum vector length", 1833 MI); 1834 break; 1835 } 1836 1837 uint64_t DstMinLen = DstTy.getElementCount().getKnownMinValue(); 1838 if (Idx >= DstMinLen || Idx + Src1MinLen > DstMinLen) { 1839 report("Subvector type and index must not cause insert to overrun the " 1840 "vector being inserted into", 1841 MI); 1842 break; 1843 } 1844 1845 break; 1846 } 1847 case TargetOpcode::G_EXTRACT_SUBVECTOR: { 1848 const MachineOperand &SrcOp = MI->getOperand(1); 1849 if (!SrcOp.isReg()) { 1850 report("G_EXTRACT_SUBVECTOR first source must be a register", MI); 1851 break; 1852 } 1853 1854 const MachineOperand &IndexOp = MI->getOperand(2); 1855 if (!IndexOp.isImm()) { 1856 report("G_EXTRACT_SUBVECTOR index must be an immediate", MI); 1857 break; 1858 } 1859 1860 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1861 LLT SrcTy = MRI->getType(SrcOp.getReg()); 1862 1863 if (!DstTy.isVector()) { 1864 report("Destination type must be a vector", MI); 1865 break; 1866 } 1867 1868 if (!SrcTy.isVector()) { 1869 report("Source must be a vector", MI); 1870 break; 1871 } 1872 1873 if (DstTy.getElementType() != SrcTy.getElementType()) { 1874 report("Element type of vectors must be the same", MI); 1875 break; 1876 } 1877 1878 if (SrcTy.isScalable() != DstTy.isScalable()) { 1879 report("Vector types must both be fixed or both be scalable", MI); 1880 break; 1881 } 1882 1883 if (ElementCount::isKnownGT(DstTy.getElementCount(), 1884 SrcTy.getElementCount())) { 1885 report("Destination vector must be smaller than source vector", MI); 1886 break; 1887 } 1888 1889 uint64_t Idx = IndexOp.getImm(); 1890 uint64_t DstMinLen = DstTy.getElementCount().getKnownMinValue(); 1891 if (Idx % DstMinLen != 0) { 1892 report("Index must be a multiple of the destination vector's minimum " 1893 "vector length", 1894 MI); 1895 break; 1896 } 1897 1898 uint64_t SrcMinLen = SrcTy.getElementCount().getKnownMinValue(); 1899 if (Idx >= SrcMinLen || Idx + DstMinLen > SrcMinLen) { 1900 report("Destination type and index must not cause extract to overrun the " 1901 "source vector", 1902 MI); 1903 break; 1904 } 1905 1906 break; 1907 } 1908 case TargetOpcode::G_SHUFFLE_VECTOR: { 1909 const MachineOperand &MaskOp = MI->getOperand(3); 1910 if (!MaskOp.isShuffleMask()) { 1911 report("Incorrect mask operand type for G_SHUFFLE_VECTOR", MI); 1912 break; 1913 } 1914 1915 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1916 LLT Src0Ty = MRI->getType(MI->getOperand(1).getReg()); 1917 LLT Src1Ty = MRI->getType(MI->getOperand(2).getReg()); 1918 1919 if (Src0Ty != Src1Ty) 1920 report("Source operands must be the same type", MI); 1921 1922 if (Src0Ty.getScalarType() != DstTy.getScalarType()) 1923 report("G_SHUFFLE_VECTOR cannot change element type", MI); 1924 1925 // Don't check that all operands are vector because scalars are used in 1926 // place of 1 element vectors. 1927 int SrcNumElts = Src0Ty.isVector() ? Src0Ty.getNumElements() : 1; 1928 int DstNumElts = DstTy.isVector() ? DstTy.getNumElements() : 1; 1929 1930 ArrayRef<int> MaskIdxes = MaskOp.getShuffleMask(); 1931 1932 if (static_cast<int>(MaskIdxes.size()) != DstNumElts) 1933 report("Wrong result type for shufflemask", MI); 1934 1935 for (int Idx : MaskIdxes) { 1936 if (Idx < 0) 1937 continue; 1938 1939 if (Idx >= 2 * SrcNumElts) 1940 report("Out of bounds shuffle index", MI); 1941 } 1942 1943 break; 1944 } 1945 1946 case TargetOpcode::G_SPLAT_VECTOR: { 1947 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1948 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1949 1950 if (!DstTy.isScalableVector()) { 1951 report("Destination type must be a scalable vector", MI); 1952 break; 1953 } 1954 1955 if (!SrcTy.isScalar() && !SrcTy.isPointer()) { 1956 report("Source type must be a scalar or pointer", MI); 1957 break; 1958 } 1959 1960 if (TypeSize::isKnownGT(DstTy.getElementType().getSizeInBits(), 1961 SrcTy.getSizeInBits())) { 1962 report("Element type of the destination must be the same size or smaller " 1963 "than the source type", 1964 MI); 1965 break; 1966 } 1967 1968 break; 1969 } 1970 case TargetOpcode::G_EXTRACT_VECTOR_ELT: { 1971 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1972 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1973 LLT IdxTy = MRI->getType(MI->getOperand(2).getReg()); 1974 1975 if (!DstTy.isScalar() && !DstTy.isPointer()) { 1976 report("Destination type must be a scalar or pointer", MI); 1977 break; 1978 } 1979 1980 if (!SrcTy.isVector()) { 1981 report("First source must be a vector", MI); 1982 break; 1983 } 1984 1985 auto TLI = MF->getSubtarget().getTargetLowering(); 1986 if (IdxTy.getSizeInBits() != 1987 TLI->getVectorIdxTy(MF->getDataLayout()).getFixedSizeInBits()) { 1988 report("Index type must match VectorIdxTy", MI); 1989 break; 1990 } 1991 1992 break; 1993 } 1994 case TargetOpcode::G_INSERT_VECTOR_ELT: { 1995 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1996 LLT VecTy = MRI->getType(MI->getOperand(1).getReg()); 1997 LLT ScaTy = MRI->getType(MI->getOperand(2).getReg()); 1998 LLT IdxTy = MRI->getType(MI->getOperand(3).getReg()); 1999 2000 if (!DstTy.isVector()) { 2001 report("Destination type must be a vector", MI); 2002 break; 2003 } 2004 2005 if (VecTy != DstTy) { 2006 report("Destination type and vector type must match", MI); 2007 break; 2008 } 2009 2010 if (!ScaTy.isScalar() && !ScaTy.isPointer()) { 2011 report("Inserted element must be a scalar or pointer", MI); 2012 break; 2013 } 2014 2015 auto TLI = MF->getSubtarget().getTargetLowering(); 2016 if (IdxTy.getSizeInBits() != 2017 TLI->getVectorIdxTy(MF->getDataLayout()).getFixedSizeInBits()) { 2018 report("Index type must match VectorIdxTy", MI); 2019 break; 2020 } 2021 2022 break; 2023 } 2024 case TargetOpcode::G_DYN_STACKALLOC: { 2025 const MachineOperand &DstOp = MI->getOperand(0); 2026 const MachineOperand &AllocOp = MI->getOperand(1); 2027 const MachineOperand &AlignOp = MI->getOperand(2); 2028 2029 if (!DstOp.isReg() || !MRI->getType(DstOp.getReg()).isPointer()) { 2030 report("dst operand 0 must be a pointer type", MI); 2031 break; 2032 } 2033 2034 if (!AllocOp.isReg() || !MRI->getType(AllocOp.getReg()).isScalar()) { 2035 report("src operand 1 must be a scalar reg type", MI); 2036 break; 2037 } 2038 2039 if (!AlignOp.isImm()) { 2040 report("src operand 2 must be an immediate type", MI); 2041 break; 2042 } 2043 break; 2044 } 2045 case TargetOpcode::G_MEMCPY_INLINE: 2046 case TargetOpcode::G_MEMCPY: 2047 case TargetOpcode::G_MEMMOVE: { 2048 ArrayRef<MachineMemOperand *> MMOs = MI->memoperands(); 2049 if (MMOs.size() != 2) { 2050 report("memcpy/memmove must have 2 memory operands", MI); 2051 break; 2052 } 2053 2054 if ((!MMOs[0]->isStore() || MMOs[0]->isLoad()) || 2055 (MMOs[1]->isStore() || !MMOs[1]->isLoad())) { 2056 report("wrong memory operand types", MI); 2057 break; 2058 } 2059 2060 if (MMOs[0]->getSize() != MMOs[1]->getSize()) 2061 report("inconsistent memory operand sizes", MI); 2062 2063 LLT DstPtrTy = MRI->getType(MI->getOperand(0).getReg()); 2064 LLT SrcPtrTy = MRI->getType(MI->getOperand(1).getReg()); 2065 2066 if (!DstPtrTy.isPointer() || !SrcPtrTy.isPointer()) { 2067 report("memory instruction operand must be a pointer", MI); 2068 break; 2069 } 2070 2071 if (DstPtrTy.getAddressSpace() != MMOs[0]->getAddrSpace()) 2072 report("inconsistent store address space", MI); 2073 if (SrcPtrTy.getAddressSpace() != MMOs[1]->getAddrSpace()) 2074 report("inconsistent load address space", MI); 2075 2076 if (Opc != TargetOpcode::G_MEMCPY_INLINE) 2077 if (!MI->getOperand(3).isImm() || (MI->getOperand(3).getImm() & ~1LL)) 2078 report("'tail' flag (operand 3) must be an immediate 0 or 1", MI); 2079 2080 break; 2081 } 2082 case TargetOpcode::G_BZERO: 2083 case TargetOpcode::G_MEMSET: { 2084 ArrayRef<MachineMemOperand *> MMOs = MI->memoperands(); 2085 std::string Name = Opc == TargetOpcode::G_MEMSET ? "memset" : "bzero"; 2086 if (MMOs.size() != 1) { 2087 report(Twine(Name, " must have 1 memory operand"), MI); 2088 break; 2089 } 2090 2091 if ((!MMOs[0]->isStore() || MMOs[0]->isLoad())) { 2092 report(Twine(Name, " memory operand must be a store"), MI); 2093 break; 2094 } 2095 2096 LLT DstPtrTy = MRI->getType(MI->getOperand(0).getReg()); 2097 if (!DstPtrTy.isPointer()) { 2098 report(Twine(Name, " operand must be a pointer"), MI); 2099 break; 2100 } 2101 2102 if (DstPtrTy.getAddressSpace() != MMOs[0]->getAddrSpace()) 2103 report("inconsistent " + Twine(Name, " address space"), MI); 2104 2105 if (!MI->getOperand(MI->getNumOperands() - 1).isImm() || 2106 (MI->getOperand(MI->getNumOperands() - 1).getImm() & ~1LL)) 2107 report("'tail' flag (last operand) must be an immediate 0 or 1", MI); 2108 2109 break; 2110 } 2111 case TargetOpcode::G_UBSANTRAP: { 2112 const MachineOperand &KindOp = MI->getOperand(0); 2113 if (!MI->getOperand(0).isImm()) { 2114 report("Crash kind must be an immediate", &KindOp, 0); 2115 break; 2116 } 2117 int64_t Kind = MI->getOperand(0).getImm(); 2118 if (!isInt<8>(Kind)) 2119 report("Crash kind must be 8 bit wide", &KindOp, 0); 2120 break; 2121 } 2122 case TargetOpcode::G_VECREDUCE_SEQ_FADD: 2123 case TargetOpcode::G_VECREDUCE_SEQ_FMUL: { 2124 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 2125 LLT Src1Ty = MRI->getType(MI->getOperand(1).getReg()); 2126 LLT Src2Ty = MRI->getType(MI->getOperand(2).getReg()); 2127 if (!DstTy.isScalar()) 2128 report("Vector reduction requires a scalar destination type", MI); 2129 if (!Src1Ty.isScalar()) 2130 report("Sequential FADD/FMUL vector reduction requires a scalar 1st operand", MI); 2131 if (!Src2Ty.isVector()) 2132 report("Sequential FADD/FMUL vector reduction must have a vector 2nd operand", MI); 2133 break; 2134 } 2135 case TargetOpcode::G_VECREDUCE_FADD: 2136 case TargetOpcode::G_VECREDUCE_FMUL: 2137 case TargetOpcode::G_VECREDUCE_FMAX: 2138 case TargetOpcode::G_VECREDUCE_FMIN: 2139 case TargetOpcode::G_VECREDUCE_FMAXIMUM: 2140 case TargetOpcode::G_VECREDUCE_FMINIMUM: 2141 case TargetOpcode::G_VECREDUCE_ADD: 2142 case TargetOpcode::G_VECREDUCE_MUL: 2143 case TargetOpcode::G_VECREDUCE_AND: 2144 case TargetOpcode::G_VECREDUCE_OR: 2145 case TargetOpcode::G_VECREDUCE_XOR: 2146 case TargetOpcode::G_VECREDUCE_SMAX: 2147 case TargetOpcode::G_VECREDUCE_SMIN: 2148 case TargetOpcode::G_VECREDUCE_UMAX: 2149 case TargetOpcode::G_VECREDUCE_UMIN: { 2150 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 2151 if (!DstTy.isScalar()) 2152 report("Vector reduction requires a scalar destination type", MI); 2153 break; 2154 } 2155 2156 case TargetOpcode::G_SBFX: 2157 case TargetOpcode::G_UBFX: { 2158 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 2159 if (DstTy.isVector()) { 2160 report("Bitfield extraction is not supported on vectors", MI); 2161 break; 2162 } 2163 break; 2164 } 2165 case TargetOpcode::G_SHL: 2166 case TargetOpcode::G_LSHR: 2167 case TargetOpcode::G_ASHR: 2168 case TargetOpcode::G_ROTR: 2169 case TargetOpcode::G_ROTL: { 2170 LLT Src1Ty = MRI->getType(MI->getOperand(1).getReg()); 2171 LLT Src2Ty = MRI->getType(MI->getOperand(2).getReg()); 2172 if (Src1Ty.isVector() != Src2Ty.isVector()) { 2173 report("Shifts and rotates require operands to be either all scalars or " 2174 "all vectors", 2175 MI); 2176 break; 2177 } 2178 break; 2179 } 2180 case TargetOpcode::G_LLROUND: 2181 case TargetOpcode::G_LROUND: { 2182 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 2183 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 2184 if (!DstTy.isValid() || !SrcTy.isValid()) 2185 break; 2186 if (SrcTy.isPointer() || DstTy.isPointer()) { 2187 StringRef Op = SrcTy.isPointer() ? "Source" : "Destination"; 2188 report(Twine(Op, " operand must not be a pointer type"), MI); 2189 } else if (SrcTy.isScalar()) { 2190 verifyAllRegOpsScalar(*MI, *MRI); 2191 break; 2192 } else if (SrcTy.isVector()) { 2193 verifyVectorElementMatch(SrcTy, DstTy, MI); 2194 break; 2195 } 2196 break; 2197 } 2198 case TargetOpcode::G_IS_FPCLASS: { 2199 LLT DestTy = MRI->getType(MI->getOperand(0).getReg()); 2200 LLT DestEltTy = DestTy.getScalarType(); 2201 if (!DestEltTy.isScalar()) { 2202 report("Destination must be a scalar or vector of scalars", MI); 2203 break; 2204 } 2205 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 2206 LLT SrcEltTy = SrcTy.getScalarType(); 2207 if (!SrcEltTy.isScalar()) { 2208 report("Source must be a scalar or vector of scalars", MI); 2209 break; 2210 } 2211 if (!verifyVectorElementMatch(DestTy, SrcTy, MI)) 2212 break; 2213 const MachineOperand &TestMO = MI->getOperand(2); 2214 if (!TestMO.isImm()) { 2215 report("floating-point class set (operand 2) must be an immediate", MI); 2216 break; 2217 } 2218 int64_t Test = TestMO.getImm(); 2219 if (Test < 0 || Test > fcAllFlags) { 2220 report("Incorrect floating-point class set (operand 2)", MI); 2221 break; 2222 } 2223 break; 2224 } 2225 case TargetOpcode::G_PREFETCH: { 2226 const MachineOperand &AddrOp = MI->getOperand(0); 2227 if (!AddrOp.isReg() || !MRI->getType(AddrOp.getReg()).isPointer()) { 2228 report("addr operand must be a pointer", &AddrOp, 0); 2229 break; 2230 } 2231 const MachineOperand &RWOp = MI->getOperand(1); 2232 if (!RWOp.isImm() || (uint64_t)RWOp.getImm() >= 2) { 2233 report("rw operand must be an immediate 0-1", &RWOp, 1); 2234 break; 2235 } 2236 const MachineOperand &LocalityOp = MI->getOperand(2); 2237 if (!LocalityOp.isImm() || (uint64_t)LocalityOp.getImm() >= 4) { 2238 report("locality operand must be an immediate 0-3", &LocalityOp, 2); 2239 break; 2240 } 2241 const MachineOperand &CacheTypeOp = MI->getOperand(3); 2242 if (!CacheTypeOp.isImm() || (uint64_t)CacheTypeOp.getImm() >= 2) { 2243 report("cache type operand must be an immediate 0-1", &CacheTypeOp, 3); 2244 break; 2245 } 2246 break; 2247 } 2248 case TargetOpcode::G_ASSERT_ALIGN: { 2249 if (MI->getOperand(2).getImm() < 1) 2250 report("alignment immediate must be >= 1", MI); 2251 break; 2252 } 2253 case TargetOpcode::G_CONSTANT_POOL: { 2254 if (!MI->getOperand(1).isCPI()) 2255 report("Src operand 1 must be a constant pool index", MI); 2256 if (!MRI->getType(MI->getOperand(0).getReg()).isPointer()) 2257 report("Dst operand 0 must be a pointer", MI); 2258 break; 2259 } 2260 case TargetOpcode::G_PTRAUTH_GLOBAL_VALUE: { 2261 const MachineOperand &AddrOp = MI->getOperand(1); 2262 if (!AddrOp.isReg() || !MRI->getType(AddrOp.getReg()).isPointer()) 2263 report("addr operand must be a pointer", &AddrOp, 1); 2264 break; 2265 } 2266 default: 2267 break; 2268 } 2269 } 2270 2271 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) { 2272 const MCInstrDesc &MCID = MI->getDesc(); 2273 if (MI->getNumOperands() < MCID.getNumOperands()) { 2274 report("Too few operands", MI); 2275 OS << MCID.getNumOperands() << " operands expected, but " 2276 << MI->getNumOperands() << " given.\n"; 2277 } 2278 2279 if (MI->getFlag(MachineInstr::NoConvergent) && !MCID.isConvergent()) 2280 report("NoConvergent flag expected only on convergent instructions.", MI); 2281 2282 if (MI->isPHI()) { 2283 if (MF->getProperties().hasProperty( 2284 MachineFunctionProperties::Property::NoPHIs)) 2285 report("Found PHI instruction with NoPHIs property set", MI); 2286 2287 if (FirstNonPHI) 2288 report("Found PHI instruction after non-PHI", MI); 2289 } else if (FirstNonPHI == nullptr) 2290 FirstNonPHI = MI; 2291 2292 // Check the tied operands. 2293 if (MI->isInlineAsm()) 2294 verifyInlineAsm(MI); 2295 2296 // Check that unspillable terminators define a reg and have at most one use. 2297 if (TII->isUnspillableTerminator(MI)) { 2298 if (!MI->getOperand(0).isReg() || !MI->getOperand(0).isDef()) 2299 report("Unspillable Terminator does not define a reg", MI); 2300 Register Def = MI->getOperand(0).getReg(); 2301 if (Def.isVirtual() && 2302 !MF->getProperties().hasProperty( 2303 MachineFunctionProperties::Property::NoPHIs) && 2304 std::distance(MRI->use_nodbg_begin(Def), MRI->use_nodbg_end()) > 1) 2305 report("Unspillable Terminator expected to have at most one use!", MI); 2306 } 2307 2308 // A fully-formed DBG_VALUE must have a location. Ignore partially formed 2309 // DBG_VALUEs: these are convenient to use in tests, but should never get 2310 // generated. 2311 if (MI->isDebugValue() && MI->getNumOperands() == 4) 2312 if (!MI->getDebugLoc()) 2313 report("Missing DebugLoc for debug instruction", MI); 2314 2315 // Meta instructions should never be the subject of debug value tracking, 2316 // they don't create a value in the output program at all. 2317 if (MI->isMetaInstruction() && MI->peekDebugInstrNum()) 2318 report("Metadata instruction should not have a value tracking number", MI); 2319 2320 // Check the MachineMemOperands for basic consistency. 2321 for (MachineMemOperand *Op : MI->memoperands()) { 2322 if (Op->isLoad() && !MI->mayLoad()) 2323 report("Missing mayLoad flag", MI); 2324 if (Op->isStore() && !MI->mayStore()) 2325 report("Missing mayStore flag", MI); 2326 } 2327 2328 // Debug values must not have a slot index. 2329 // Other instructions must have one, unless they are inside a bundle. 2330 if (LiveInts) { 2331 bool mapped = !LiveInts->isNotInMIMap(*MI); 2332 if (MI->isDebugOrPseudoInstr()) { 2333 if (mapped) 2334 report("Debug instruction has a slot index", MI); 2335 } else if (MI->isInsideBundle()) { 2336 if (mapped) 2337 report("Instruction inside bundle has a slot index", MI); 2338 } else { 2339 if (!mapped) 2340 report("Missing slot index", MI); 2341 } 2342 } 2343 2344 unsigned Opc = MCID.getOpcode(); 2345 if (isPreISelGenericOpcode(Opc) || isPreISelGenericOptimizationHint(Opc)) { 2346 verifyPreISelGenericInstruction(MI); 2347 return; 2348 } 2349 2350 StringRef ErrorInfo; 2351 if (!TII->verifyInstruction(*MI, ErrorInfo)) 2352 report(ErrorInfo.data(), MI); 2353 2354 // Verify properties of various specific instruction types 2355 switch (MI->getOpcode()) { 2356 case TargetOpcode::COPY: { 2357 const MachineOperand &DstOp = MI->getOperand(0); 2358 const MachineOperand &SrcOp = MI->getOperand(1); 2359 const Register SrcReg = SrcOp.getReg(); 2360 const Register DstReg = DstOp.getReg(); 2361 2362 LLT DstTy = MRI->getType(DstReg); 2363 LLT SrcTy = MRI->getType(SrcReg); 2364 if (SrcTy.isValid() && DstTy.isValid()) { 2365 // If both types are valid, check that the types are the same. 2366 if (SrcTy != DstTy) { 2367 report("Copy Instruction is illegal with mismatching types", MI); 2368 OS << "Def = " << DstTy << ", Src = " << SrcTy << '\n'; 2369 } 2370 2371 break; 2372 } 2373 2374 if (!SrcTy.isValid() && !DstTy.isValid()) 2375 break; 2376 2377 // If we have only one valid type, this is likely a copy between a virtual 2378 // and physical register. 2379 TypeSize SrcSize = TRI->getRegSizeInBits(SrcReg, *MRI); 2380 TypeSize DstSize = TRI->getRegSizeInBits(DstReg, *MRI); 2381 if (SrcReg.isPhysical() && DstTy.isValid()) { 2382 const TargetRegisterClass *SrcRC = 2383 TRI->getMinimalPhysRegClassLLT(SrcReg, DstTy); 2384 if (SrcRC) 2385 SrcSize = TRI->getRegSizeInBits(*SrcRC); 2386 } 2387 2388 if (DstReg.isPhysical() && SrcTy.isValid()) { 2389 const TargetRegisterClass *DstRC = 2390 TRI->getMinimalPhysRegClassLLT(DstReg, SrcTy); 2391 if (DstRC) 2392 DstSize = TRI->getRegSizeInBits(*DstRC); 2393 } 2394 2395 // The next two checks allow COPY between physical and virtual registers, 2396 // when the virtual register has a scalable size and the physical register 2397 // has a fixed size. These checks allow COPY between *potentialy* mismatched 2398 // sizes. However, once RegisterBankSelection occurs, MachineVerifier should 2399 // be able to resolve a fixed size for the scalable vector, and at that 2400 // point this function will know for sure whether the sizes are mismatched 2401 // and correctly report a size mismatch. 2402 if (SrcReg.isPhysical() && DstReg.isVirtual() && DstSize.isScalable() && 2403 !SrcSize.isScalable()) 2404 break; 2405 if (SrcReg.isVirtual() && DstReg.isPhysical() && SrcSize.isScalable() && 2406 !DstSize.isScalable()) 2407 break; 2408 2409 if (SrcSize.isNonZero() && DstSize.isNonZero() && SrcSize != DstSize) { 2410 if (!DstOp.getSubReg() && !SrcOp.getSubReg()) { 2411 report("Copy Instruction is illegal with mismatching sizes", MI); 2412 OS << "Def Size = " << DstSize << ", Src Size = " << SrcSize << '\n'; 2413 } 2414 } 2415 break; 2416 } 2417 case TargetOpcode::STATEPOINT: { 2418 StatepointOpers SO(MI); 2419 if (!MI->getOperand(SO.getIDPos()).isImm() || 2420 !MI->getOperand(SO.getNBytesPos()).isImm() || 2421 !MI->getOperand(SO.getNCallArgsPos()).isImm()) { 2422 report("meta operands to STATEPOINT not constant!", MI); 2423 break; 2424 } 2425 2426 auto VerifyStackMapConstant = [&](unsigned Offset) { 2427 if (Offset >= MI->getNumOperands()) { 2428 report("stack map constant to STATEPOINT is out of range!", MI); 2429 return; 2430 } 2431 if (!MI->getOperand(Offset - 1).isImm() || 2432 MI->getOperand(Offset - 1).getImm() != StackMaps::ConstantOp || 2433 !MI->getOperand(Offset).isImm()) 2434 report("stack map constant to STATEPOINT not well formed!", MI); 2435 }; 2436 VerifyStackMapConstant(SO.getCCIdx()); 2437 VerifyStackMapConstant(SO.getFlagsIdx()); 2438 VerifyStackMapConstant(SO.getNumDeoptArgsIdx()); 2439 VerifyStackMapConstant(SO.getNumGCPtrIdx()); 2440 VerifyStackMapConstant(SO.getNumAllocaIdx()); 2441 VerifyStackMapConstant(SO.getNumGcMapEntriesIdx()); 2442 2443 // Verify that all explicit statepoint defs are tied to gc operands as 2444 // they are expected to be a relocation of gc operands. 2445 unsigned FirstGCPtrIdx = SO.getFirstGCPtrIdx(); 2446 unsigned LastGCPtrIdx = SO.getNumAllocaIdx() - 2; 2447 for (unsigned Idx = 0; Idx < MI->getNumDefs(); Idx++) { 2448 unsigned UseOpIdx; 2449 if (!MI->isRegTiedToUseOperand(Idx, &UseOpIdx)) { 2450 report("STATEPOINT defs expected to be tied", MI); 2451 break; 2452 } 2453 if (UseOpIdx < FirstGCPtrIdx || UseOpIdx > LastGCPtrIdx) { 2454 report("STATEPOINT def tied to non-gc operand", MI); 2455 break; 2456 } 2457 } 2458 2459 // TODO: verify we have properly encoded deopt arguments 2460 } break; 2461 case TargetOpcode::INSERT_SUBREG: { 2462 unsigned InsertedSize; 2463 if (unsigned SubIdx = MI->getOperand(2).getSubReg()) 2464 InsertedSize = TRI->getSubRegIdxSize(SubIdx); 2465 else 2466 InsertedSize = TRI->getRegSizeInBits(MI->getOperand(2).getReg(), *MRI); 2467 unsigned SubRegSize = TRI->getSubRegIdxSize(MI->getOperand(3).getImm()); 2468 if (SubRegSize < InsertedSize) { 2469 report("INSERT_SUBREG expected inserted value to have equal or lesser " 2470 "size than the subreg it was inserted into", MI); 2471 break; 2472 } 2473 } break; 2474 case TargetOpcode::REG_SEQUENCE: { 2475 unsigned NumOps = MI->getNumOperands(); 2476 if (!(NumOps & 1)) { 2477 report("Invalid number of operands for REG_SEQUENCE", MI); 2478 break; 2479 } 2480 2481 for (unsigned I = 1; I != NumOps; I += 2) { 2482 const MachineOperand &RegOp = MI->getOperand(I); 2483 const MachineOperand &SubRegOp = MI->getOperand(I + 1); 2484 2485 if (!RegOp.isReg()) 2486 report("Invalid register operand for REG_SEQUENCE", &RegOp, I); 2487 2488 if (!SubRegOp.isImm() || SubRegOp.getImm() == 0 || 2489 SubRegOp.getImm() >= TRI->getNumSubRegIndices()) { 2490 report("Invalid subregister index operand for REG_SEQUENCE", 2491 &SubRegOp, I + 1); 2492 } 2493 } 2494 2495 Register DstReg = MI->getOperand(0).getReg(); 2496 if (DstReg.isPhysical()) 2497 report("REG_SEQUENCE does not support physical register results", MI); 2498 2499 if (MI->getOperand(0).getSubReg()) 2500 report("Invalid subreg result for REG_SEQUENCE", MI); 2501 2502 break; 2503 } 2504 } 2505 } 2506 2507 void 2508 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) { 2509 const MachineInstr *MI = MO->getParent(); 2510 const MCInstrDesc &MCID = MI->getDesc(); 2511 unsigned NumDefs = MCID.getNumDefs(); 2512 if (MCID.getOpcode() == TargetOpcode::PATCHPOINT) 2513 NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0; 2514 2515 // The first MCID.NumDefs operands must be explicit register defines 2516 if (MONum < NumDefs) { 2517 const MCOperandInfo &MCOI = MCID.operands()[MONum]; 2518 if (!MO->isReg()) 2519 report("Explicit definition must be a register", MO, MONum); 2520 else if (!MO->isDef() && !MCOI.isOptionalDef()) 2521 report("Explicit definition marked as use", MO, MONum); 2522 else if (MO->isImplicit()) 2523 report("Explicit definition marked as implicit", MO, MONum); 2524 } else if (MONum < MCID.getNumOperands()) { 2525 const MCOperandInfo &MCOI = MCID.operands()[MONum]; 2526 // Don't check if it's the last operand in a variadic instruction. See, 2527 // e.g., LDM_RET in the arm back end. Check non-variadic operands only. 2528 bool IsOptional = MI->isVariadic() && MONum == MCID.getNumOperands() - 1; 2529 if (!IsOptional) { 2530 if (MO->isReg()) { 2531 if (MO->isDef() && !MCOI.isOptionalDef() && !MCID.variadicOpsAreDefs()) 2532 report("Explicit operand marked as def", MO, MONum); 2533 if (MO->isImplicit()) 2534 report("Explicit operand marked as implicit", MO, MONum); 2535 } 2536 2537 // Check that an instruction has register operands only as expected. 2538 if (MCOI.OperandType == MCOI::OPERAND_REGISTER && 2539 !MO->isReg() && !MO->isFI()) 2540 report("Expected a register operand.", MO, MONum); 2541 if (MO->isReg()) { 2542 if (MCOI.OperandType == MCOI::OPERAND_IMMEDIATE || 2543 (MCOI.OperandType == MCOI::OPERAND_PCREL && 2544 !TII->isPCRelRegisterOperandLegal(*MO))) 2545 report("Expected a non-register operand.", MO, MONum); 2546 } 2547 } 2548 2549 int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO); 2550 if (TiedTo != -1) { 2551 if (!MO->isReg()) 2552 report("Tied use must be a register", MO, MONum); 2553 else if (!MO->isTied()) 2554 report("Operand should be tied", MO, MONum); 2555 else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum)) 2556 report("Tied def doesn't match MCInstrDesc", MO, MONum); 2557 else if (MO->getReg().isPhysical()) { 2558 const MachineOperand &MOTied = MI->getOperand(TiedTo); 2559 if (!MOTied.isReg()) 2560 report("Tied counterpart must be a register", &MOTied, TiedTo); 2561 else if (MOTied.getReg().isPhysical() && 2562 MO->getReg() != MOTied.getReg()) 2563 report("Tied physical registers must match.", &MOTied, TiedTo); 2564 } 2565 } else if (MO->isReg() && MO->isTied()) 2566 report("Explicit operand should not be tied", MO, MONum); 2567 } else if (!MI->isVariadic()) { 2568 // ARM adds %reg0 operands to indicate predicates. We'll allow that. 2569 if (!MO->isValidExcessOperand()) 2570 report("Extra explicit operand on non-variadic instruction", MO, MONum); 2571 } 2572 2573 switch (MO->getType()) { 2574 case MachineOperand::MO_Register: { 2575 // Verify debug flag on debug instructions. Check this first because reg0 2576 // indicates an undefined debug value. 2577 if (MI->isDebugInstr() && MO->isUse()) { 2578 if (!MO->isDebug()) 2579 report("Register operand must be marked debug", MO, MONum); 2580 } else if (MO->isDebug()) { 2581 report("Register operand must not be marked debug", MO, MONum); 2582 } 2583 2584 const Register Reg = MO->getReg(); 2585 if (!Reg) 2586 return; 2587 if (MRI->tracksLiveness() && !MI->isDebugInstr()) 2588 checkLiveness(MO, MONum); 2589 2590 if (MO->isDef() && MO->isUndef() && !MO->getSubReg() && 2591 MO->getReg().isVirtual()) // TODO: Apply to physregs too 2592 report("Undef virtual register def operands require a subregister", MO, MONum); 2593 2594 // Verify the consistency of tied operands. 2595 if (MO->isTied()) { 2596 unsigned OtherIdx = MI->findTiedOperandIdx(MONum); 2597 const MachineOperand &OtherMO = MI->getOperand(OtherIdx); 2598 if (!OtherMO.isReg()) 2599 report("Must be tied to a register", MO, MONum); 2600 if (!OtherMO.isTied()) 2601 report("Missing tie flags on tied operand", MO, MONum); 2602 if (MI->findTiedOperandIdx(OtherIdx) != MONum) 2603 report("Inconsistent tie links", MO, MONum); 2604 if (MONum < MCID.getNumDefs()) { 2605 if (OtherIdx < MCID.getNumOperands()) { 2606 if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO)) 2607 report("Explicit def tied to explicit use without tie constraint", 2608 MO, MONum); 2609 } else { 2610 if (!OtherMO.isImplicit()) 2611 report("Explicit def should be tied to implicit use", MO, MONum); 2612 } 2613 } 2614 } 2615 2616 // Verify two-address constraints after the twoaddressinstruction pass. 2617 // Both twoaddressinstruction pass and phi-node-elimination pass call 2618 // MRI->leaveSSA() to set MF as not IsSSA, we should do the verification 2619 // after twoaddressinstruction pass not after phi-node-elimination pass. So 2620 // we shouldn't use the IsSSA as the condition, we should based on 2621 // TiedOpsRewritten property to verify two-address constraints, this 2622 // property will be set in twoaddressinstruction pass. 2623 unsigned DefIdx; 2624 if (MF->getProperties().hasProperty( 2625 MachineFunctionProperties::Property::TiedOpsRewritten) && 2626 MO->isUse() && MI->isRegTiedToDefOperand(MONum, &DefIdx) && 2627 Reg != MI->getOperand(DefIdx).getReg()) 2628 report("Two-address instruction operands must be identical", MO, MONum); 2629 2630 // Check register classes. 2631 unsigned SubIdx = MO->getSubReg(); 2632 2633 if (Reg.isPhysical()) { 2634 if (SubIdx) { 2635 report("Illegal subregister index for physical register", MO, MONum); 2636 return; 2637 } 2638 if (MONum < MCID.getNumOperands()) { 2639 if (const TargetRegisterClass *DRC = 2640 TII->getRegClass(MCID, MONum, TRI, *MF)) { 2641 if (!DRC->contains(Reg)) { 2642 report("Illegal physical register for instruction", MO, MONum); 2643 OS << printReg(Reg, TRI) << " is not a " 2644 << TRI->getRegClassName(DRC) << " register.\n"; 2645 } 2646 } 2647 } 2648 if (MO->isRenamable()) { 2649 if (MRI->isReserved(Reg)) { 2650 report("isRenamable set on reserved register", MO, MONum); 2651 return; 2652 } 2653 } 2654 } else { 2655 // Virtual register. 2656 const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg); 2657 if (!RC) { 2658 // This is a generic virtual register. 2659 2660 // Do not allow undef uses for generic virtual registers. This ensures 2661 // getVRegDef can never fail and return null on a generic register. 2662 // 2663 // FIXME: This restriction should probably be broadened to all SSA 2664 // MIR. However, DetectDeadLanes/ProcessImplicitDefs technically still 2665 // run on the SSA function just before phi elimination. 2666 if (MO->isUndef()) 2667 report("Generic virtual register use cannot be undef", MO, MONum); 2668 2669 // Debug value instruction is permitted to use undefined vregs. 2670 // This is a performance measure to skip the overhead of immediately 2671 // pruning unused debug operands. The final undef substitution occurs 2672 // when debug values are allocated in LDVImpl::handleDebugValue, so 2673 // these verifications always apply after this pass. 2674 if (isFunctionTracksDebugUserValues || !MO->isUse() || 2675 !MI->isDebugValue() || !MRI->def_empty(Reg)) { 2676 // If we're post-Select, we can't have gvregs anymore. 2677 if (isFunctionSelected) { 2678 report("Generic virtual register invalid in a Selected function", 2679 MO, MONum); 2680 return; 2681 } 2682 2683 // The gvreg must have a type and it must not have a SubIdx. 2684 LLT Ty = MRI->getType(Reg); 2685 if (!Ty.isValid()) { 2686 report("Generic virtual register must have a valid type", MO, 2687 MONum); 2688 return; 2689 } 2690 2691 const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg); 2692 const RegisterBankInfo *RBI = MF->getSubtarget().getRegBankInfo(); 2693 2694 // If we're post-RegBankSelect, the gvreg must have a bank. 2695 if (!RegBank && isFunctionRegBankSelected) { 2696 report("Generic virtual register must have a bank in a " 2697 "RegBankSelected function", 2698 MO, MONum); 2699 return; 2700 } 2701 2702 // Make sure the register fits into its register bank if any. 2703 if (RegBank && Ty.isValid() && !Ty.isScalableVector() && 2704 RBI->getMaximumSize(RegBank->getID()) < Ty.getSizeInBits()) { 2705 report("Register bank is too small for virtual register", MO, 2706 MONum); 2707 OS << "Register bank " << RegBank->getName() << " too small(" 2708 << RBI->getMaximumSize(RegBank->getID()) << ") to fit " 2709 << Ty.getSizeInBits() << "-bits\n"; 2710 return; 2711 } 2712 } 2713 2714 if (SubIdx) { 2715 report("Generic virtual register does not allow subregister index", MO, 2716 MONum); 2717 return; 2718 } 2719 2720 // If this is a target specific instruction and this operand 2721 // has register class constraint, the virtual register must 2722 // comply to it. 2723 if (!isPreISelGenericOpcode(MCID.getOpcode()) && 2724 MONum < MCID.getNumOperands() && 2725 TII->getRegClass(MCID, MONum, TRI, *MF)) { 2726 report("Virtual register does not match instruction constraint", MO, 2727 MONum); 2728 OS << "Expect register class " 2729 << TRI->getRegClassName(TII->getRegClass(MCID, MONum, TRI, *MF)) 2730 << " but got nothing\n"; 2731 return; 2732 } 2733 2734 break; 2735 } 2736 if (SubIdx) { 2737 const TargetRegisterClass *SRC = 2738 TRI->getSubClassWithSubReg(RC, SubIdx); 2739 if (!SRC) { 2740 report("Invalid subregister index for virtual register", MO, MONum); 2741 OS << "Register class " << TRI->getRegClassName(RC) 2742 << " does not support subreg index " << SubIdx << '\n'; 2743 return; 2744 } 2745 if (RC != SRC) { 2746 report("Invalid register class for subregister index", MO, MONum); 2747 OS << "Register class " << TRI->getRegClassName(RC) 2748 << " does not fully support subreg index " << SubIdx << '\n'; 2749 return; 2750 } 2751 } 2752 if (MONum < MCID.getNumOperands()) { 2753 if (const TargetRegisterClass *DRC = 2754 TII->getRegClass(MCID, MONum, TRI, *MF)) { 2755 if (SubIdx) { 2756 const TargetRegisterClass *SuperRC = 2757 TRI->getLargestLegalSuperClass(RC, *MF); 2758 if (!SuperRC) { 2759 report("No largest legal super class exists.", MO, MONum); 2760 return; 2761 } 2762 DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx); 2763 if (!DRC) { 2764 report("No matching super-reg register class.", MO, MONum); 2765 return; 2766 } 2767 } 2768 if (!RC->hasSuperClassEq(DRC)) { 2769 report("Illegal virtual register for instruction", MO, MONum); 2770 OS << "Expected a " << TRI->getRegClassName(DRC) 2771 << " register, but got a " << TRI->getRegClassName(RC) 2772 << " register\n"; 2773 } 2774 } 2775 } 2776 } 2777 break; 2778 } 2779 2780 case MachineOperand::MO_RegisterMask: 2781 regMasks.push_back(MO->getRegMask()); 2782 break; 2783 2784 case MachineOperand::MO_MachineBasicBlock: 2785 if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent())) 2786 report("PHI operand is not in the CFG", MO, MONum); 2787 break; 2788 2789 case MachineOperand::MO_FrameIndex: 2790 if (LiveStks && LiveStks->hasInterval(MO->getIndex()) && 2791 LiveInts && !LiveInts->isNotInMIMap(*MI)) { 2792 int FI = MO->getIndex(); 2793 LiveInterval &LI = LiveStks->getInterval(FI); 2794 SlotIndex Idx = LiveInts->getInstructionIndex(*MI); 2795 2796 bool stores = MI->mayStore(); 2797 bool loads = MI->mayLoad(); 2798 // For a memory-to-memory move, we need to check if the frame 2799 // index is used for storing or loading, by inspecting the 2800 // memory operands. 2801 if (stores && loads) { 2802 for (auto *MMO : MI->memoperands()) { 2803 const PseudoSourceValue *PSV = MMO->getPseudoValue(); 2804 if (PSV == nullptr) continue; 2805 const FixedStackPseudoSourceValue *Value = 2806 dyn_cast<FixedStackPseudoSourceValue>(PSV); 2807 if (Value == nullptr) continue; 2808 if (Value->getFrameIndex() != FI) continue; 2809 2810 if (MMO->isStore()) 2811 loads = false; 2812 else 2813 stores = false; 2814 break; 2815 } 2816 if (loads == stores) 2817 report("Missing fixed stack memoperand.", MI); 2818 } 2819 if (loads && !LI.liveAt(Idx.getRegSlot(true))) { 2820 report("Instruction loads from dead spill slot", MO, MONum); 2821 OS << "Live stack: " << LI << '\n'; 2822 } 2823 if (stores && !LI.liveAt(Idx.getRegSlot())) { 2824 report("Instruction stores to dead spill slot", MO, MONum); 2825 OS << "Live stack: " << LI << '\n'; 2826 } 2827 } 2828 break; 2829 2830 case MachineOperand::MO_CFIIndex: 2831 if (MO->getCFIIndex() >= MF->getFrameInstructions().size()) 2832 report("CFI instruction has invalid index", MO, MONum); 2833 break; 2834 2835 default: 2836 break; 2837 } 2838 } 2839 2840 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO, 2841 unsigned MONum, SlotIndex UseIdx, 2842 const LiveRange &LR, 2843 VirtRegOrUnit VRegOrUnit, 2844 LaneBitmask LaneMask) { 2845 const MachineInstr *MI = MO->getParent(); 2846 2847 if (!LR.verify()) { 2848 report("invalid live range", MO, MONum); 2849 report_context_liverange(LR); 2850 report_context_vreg_regunit(VRegOrUnit); 2851 report_context(UseIdx); 2852 return; 2853 } 2854 2855 LiveQueryResult LRQ = LR.Query(UseIdx); 2856 bool HasValue = LRQ.valueIn() || (MI->isPHI() && LRQ.valueOut()); 2857 // Check if we have a segment at the use, note however that we only need one 2858 // live subregister range, the others may be dead. 2859 if (!HasValue && LaneMask.none()) { 2860 report("No live segment at use", MO, MONum); 2861 report_context_liverange(LR); 2862 report_context_vreg_regunit(VRegOrUnit); 2863 report_context(UseIdx); 2864 } 2865 if (MO->isKill() && !LRQ.isKill()) { 2866 report("Live range continues after kill flag", MO, MONum); 2867 report_context_liverange(LR); 2868 report_context_vreg_regunit(VRegOrUnit); 2869 if (LaneMask.any()) 2870 report_context_lanemask(LaneMask); 2871 report_context(UseIdx); 2872 } 2873 } 2874 2875 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO, 2876 unsigned MONum, SlotIndex DefIdx, 2877 const LiveRange &LR, 2878 VirtRegOrUnit VRegOrUnit, 2879 bool SubRangeCheck, 2880 LaneBitmask LaneMask) { 2881 if (!LR.verify()) { 2882 report("invalid live range", MO, MONum); 2883 report_context_liverange(LR); 2884 report_context_vreg_regunit(VRegOrUnit); 2885 if (LaneMask.any()) 2886 report_context_lanemask(LaneMask); 2887 report_context(DefIdx); 2888 } 2889 2890 if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) { 2891 // The LR can correspond to the whole reg and its def slot is not obliged 2892 // to be the same as the MO' def slot. E.g. when we check here "normal" 2893 // subreg MO but there is other EC subreg MO in the same instruction so the 2894 // whole reg has EC def slot and differs from the currently checked MO' def 2895 // slot. For example: 2896 // %0 [16e,32r:0) 0@16e L..3 [16e,32r:0) 0@16e L..C [16r,32r:0) 0@16r 2897 // Check that there is an early-clobber def of the same superregister 2898 // somewhere is performed in visitMachineFunctionAfter() 2899 if (((SubRangeCheck || MO->getSubReg() == 0) && VNI->def != DefIdx) || 2900 !SlotIndex::isSameInstr(VNI->def, DefIdx) || 2901 (VNI->def != DefIdx && 2902 (!VNI->def.isEarlyClobber() || !DefIdx.isRegister()))) { 2903 report("Inconsistent valno->def", MO, MONum); 2904 report_context_liverange(LR); 2905 report_context_vreg_regunit(VRegOrUnit); 2906 if (LaneMask.any()) 2907 report_context_lanemask(LaneMask); 2908 report_context(*VNI); 2909 report_context(DefIdx); 2910 } 2911 } else { 2912 report("No live segment at def", MO, MONum); 2913 report_context_liverange(LR); 2914 report_context_vreg_regunit(VRegOrUnit); 2915 if (LaneMask.any()) 2916 report_context_lanemask(LaneMask); 2917 report_context(DefIdx); 2918 } 2919 // Check that, if the dead def flag is present, LiveInts agree. 2920 if (MO->isDead()) { 2921 LiveQueryResult LRQ = LR.Query(DefIdx); 2922 if (!LRQ.isDeadDef()) { 2923 assert(VRegOrUnit.isVirtualReg() && "Expecting a virtual register."); 2924 // A dead subreg def only tells us that the specific subreg is dead. There 2925 // could be other non-dead defs of other subregs, or we could have other 2926 // parts of the register being live through the instruction. So unless we 2927 // are checking liveness for a subrange it is ok for the live range to 2928 // continue, given that we have a dead def of a subregister. 2929 if (SubRangeCheck || MO->getSubReg() == 0) { 2930 report("Live range continues after dead def flag", MO, MONum); 2931 report_context_liverange(LR); 2932 report_context_vreg_regunit(VRegOrUnit); 2933 if (LaneMask.any()) 2934 report_context_lanemask(LaneMask); 2935 } 2936 } 2937 } 2938 } 2939 2940 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) { 2941 const MachineInstr *MI = MO->getParent(); 2942 const Register Reg = MO->getReg(); 2943 const unsigned SubRegIdx = MO->getSubReg(); 2944 2945 const LiveInterval *LI = nullptr; 2946 if (LiveInts && Reg.isVirtual()) { 2947 if (LiveInts->hasInterval(Reg)) { 2948 LI = &LiveInts->getInterval(Reg); 2949 if (SubRegIdx != 0 && (MO->isDef() || !MO->isUndef()) && !LI->empty() && 2950 !LI->hasSubRanges() && MRI->shouldTrackSubRegLiveness(Reg)) 2951 report("Live interval for subreg operand has no subranges", MO, MONum); 2952 } else { 2953 report("Virtual register has no live interval", MO, MONum); 2954 } 2955 } 2956 2957 // Both use and def operands can read a register. 2958 if (MO->readsReg()) { 2959 if (MO->isKill()) 2960 addRegWithSubRegs(regsKilled, Reg); 2961 2962 // Check that LiveVars knows this kill (unless we are inside a bundle, in 2963 // which case we have already checked that LiveVars knows any kills on the 2964 // bundle header instead). 2965 if (LiveVars && Reg.isVirtual() && MO->isKill() && 2966 !MI->isBundledWithPred()) { 2967 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 2968 if (!is_contained(VI.Kills, MI)) 2969 report("Kill missing from LiveVariables", MO, MONum); 2970 } 2971 2972 // Check LiveInts liveness and kill. 2973 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { 2974 SlotIndex UseIdx; 2975 if (MI->isPHI()) { 2976 // PHI use occurs on the edge, so check for live out here instead. 2977 UseIdx = LiveInts->getMBBEndIdx( 2978 MI->getOperand(MONum + 1).getMBB()).getPrevSlot(); 2979 } else { 2980 UseIdx = LiveInts->getInstructionIndex(*MI); 2981 } 2982 // Check the cached regunit intervals. 2983 if (Reg.isPhysical() && !isReserved(Reg)) { 2984 for (MCRegUnit Unit : TRI->regunits(Reg.asMCReg())) { 2985 if (MRI->isReservedRegUnit(Unit)) 2986 continue; 2987 if (const LiveRange *LR = LiveInts->getCachedRegUnit(Unit)) 2988 checkLivenessAtUse(MO, MONum, UseIdx, *LR, VirtRegOrUnit(Unit)); 2989 } 2990 } 2991 2992 if (Reg.isVirtual()) { 2993 // This is a virtual register interval. 2994 checkLivenessAtUse(MO, MONum, UseIdx, *LI, VirtRegOrUnit(Reg)); 2995 2996 if (LI->hasSubRanges() && !MO->isDef()) { 2997 LaneBitmask MOMask = SubRegIdx != 0 2998 ? TRI->getSubRegIndexLaneMask(SubRegIdx) 2999 : MRI->getMaxLaneMaskForVReg(Reg); 3000 LaneBitmask LiveInMask; 3001 for (const LiveInterval::SubRange &SR : LI->subranges()) { 3002 if ((MOMask & SR.LaneMask).none()) 3003 continue; 3004 checkLivenessAtUse(MO, MONum, UseIdx, SR, VirtRegOrUnit(Reg), 3005 SR.LaneMask); 3006 LiveQueryResult LRQ = SR.Query(UseIdx); 3007 if (LRQ.valueIn() || (MI->isPHI() && LRQ.valueOut())) 3008 LiveInMask |= SR.LaneMask; 3009 } 3010 // At least parts of the register has to be live at the use. 3011 if ((LiveInMask & MOMask).none()) { 3012 report("No live subrange at use", MO, MONum); 3013 report_context(*LI); 3014 report_context(UseIdx); 3015 } 3016 // For PHIs all lanes should be live 3017 if (MI->isPHI() && LiveInMask != MOMask) { 3018 report("Not all lanes of PHI source live at use", MO, MONum); 3019 report_context(*LI); 3020 report_context(UseIdx); 3021 } 3022 } 3023 } 3024 } 3025 3026 // Use of a dead register. 3027 if (!regsLive.count(Reg)) { 3028 if (Reg.isPhysical()) { 3029 // Reserved registers may be used even when 'dead'. 3030 bool Bad = !isReserved(Reg); 3031 // We are fine if just any subregister has a defined value. 3032 if (Bad) { 3033 3034 for (const MCPhysReg &SubReg : TRI->subregs(Reg)) { 3035 if (regsLive.count(SubReg)) { 3036 Bad = false; 3037 break; 3038 } 3039 } 3040 } 3041 // If there is an additional implicit-use of a super register we stop 3042 // here. By definition we are fine if the super register is not 3043 // (completely) dead, if the complete super register is dead we will 3044 // get a report for its operand. 3045 if (Bad) { 3046 for (const MachineOperand &MOP : MI->uses()) { 3047 if (!MOP.isReg() || !MOP.isImplicit()) 3048 continue; 3049 3050 if (!MOP.getReg().isPhysical()) 3051 continue; 3052 3053 if (MOP.getReg() != Reg && 3054 all_of(TRI->regunits(Reg), [&](const MCRegUnit RegUnit) { 3055 return llvm::is_contained(TRI->regunits(MOP.getReg()), 3056 RegUnit); 3057 })) 3058 Bad = false; 3059 } 3060 } 3061 if (Bad) 3062 report("Using an undefined physical register", MO, MONum); 3063 } else if (MRI->def_empty(Reg)) { 3064 report("Reading virtual register without a def", MO, MONum); 3065 } else { 3066 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 3067 // We don't know which virtual registers are live in, so only complain 3068 // if vreg was killed in this MBB. Otherwise keep track of vregs that 3069 // must be live in. PHI instructions are handled separately. 3070 if (MInfo.regsKilled.count(Reg)) 3071 report("Using a killed virtual register", MO, MONum); 3072 else if (!MI->isPHI()) 3073 MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI)); 3074 } 3075 } 3076 } 3077 3078 if (MO->isDef()) { 3079 // Register defined. 3080 // TODO: verify that earlyclobber ops are not used. 3081 if (MO->isDead()) 3082 addRegWithSubRegs(regsDead, Reg); 3083 else 3084 addRegWithSubRegs(regsDefined, Reg); 3085 3086 // Verify SSA form. 3087 if (MRI->isSSA() && Reg.isVirtual() && 3088 std::next(MRI->def_begin(Reg)) != MRI->def_end()) 3089 report("Multiple virtual register defs in SSA form", MO, MONum); 3090 3091 // Check LiveInts for a live segment, but only for virtual registers. 3092 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { 3093 SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI); 3094 DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber()); 3095 3096 if (Reg.isVirtual()) { 3097 checkLivenessAtDef(MO, MONum, DefIdx, *LI, VirtRegOrUnit(Reg)); 3098 3099 if (LI->hasSubRanges()) { 3100 LaneBitmask MOMask = SubRegIdx != 0 3101 ? TRI->getSubRegIndexLaneMask(SubRegIdx) 3102 : MRI->getMaxLaneMaskForVReg(Reg); 3103 for (const LiveInterval::SubRange &SR : LI->subranges()) { 3104 if ((SR.LaneMask & MOMask).none()) 3105 continue; 3106 checkLivenessAtDef(MO, MONum, DefIdx, SR, VirtRegOrUnit(Reg), true, 3107 SR.LaneMask); 3108 } 3109 } 3110 } 3111 } 3112 } 3113 } 3114 3115 // This function gets called after visiting all instructions in a bundle. The 3116 // argument points to the bundle header. 3117 // Normal stand-alone instructions are also considered 'bundles', and this 3118 // function is called for all of them. 3119 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) { 3120 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 3121 set_union(MInfo.regsKilled, regsKilled); 3122 set_subtract(regsLive, regsKilled); regsKilled.clear(); 3123 // Kill any masked registers. 3124 while (!regMasks.empty()) { 3125 const uint32_t *Mask = regMasks.pop_back_val(); 3126 for (Register Reg : regsLive) 3127 if (Reg.isPhysical() && 3128 MachineOperand::clobbersPhysReg(Mask, Reg.asMCReg())) 3129 regsDead.push_back(Reg); 3130 } 3131 set_subtract(regsLive, regsDead); regsDead.clear(); 3132 set_union(regsLive, regsDefined); regsDefined.clear(); 3133 } 3134 3135 void 3136 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) { 3137 MBBInfoMap[MBB].regsLiveOut = regsLive; 3138 regsLive.clear(); 3139 3140 if (Indexes) { 3141 SlotIndex stop = Indexes->getMBBEndIdx(MBB); 3142 if (!(stop > lastIndex)) { 3143 report("Block ends before last instruction index", MBB); 3144 OS << "Block ends at " << stop << " last instruction was at " << lastIndex 3145 << '\n'; 3146 } 3147 lastIndex = stop; 3148 } 3149 } 3150 3151 namespace { 3152 // This implements a set of registers that serves as a filter: can filter other 3153 // sets by passing through elements not in the filter and blocking those that 3154 // are. Any filter implicitly includes the full set of physical registers upon 3155 // creation, thus filtering them all out. The filter itself as a set only grows, 3156 // and needs to be as efficient as possible. 3157 struct VRegFilter { 3158 // Add elements to the filter itself. \pre Input set \p FromRegSet must have 3159 // no duplicates. Both virtual and physical registers are fine. 3160 template <typename RegSetT> void add(const RegSetT &FromRegSet) { 3161 SmallVector<Register, 0> VRegsBuffer; 3162 filterAndAdd(FromRegSet, VRegsBuffer); 3163 } 3164 // Filter \p FromRegSet through the filter and append passed elements into \p 3165 // ToVRegs. All elements appended are then added to the filter itself. 3166 // \returns true if anything changed. 3167 template <typename RegSetT> 3168 bool filterAndAdd(const RegSetT &FromRegSet, 3169 SmallVectorImpl<Register> &ToVRegs) { 3170 unsigned SparseUniverse = Sparse.size(); 3171 unsigned NewSparseUniverse = SparseUniverse; 3172 unsigned NewDenseSize = Dense.size(); 3173 size_t Begin = ToVRegs.size(); 3174 for (Register Reg : FromRegSet) { 3175 if (!Reg.isVirtual()) 3176 continue; 3177 unsigned Index = Register::virtReg2Index(Reg); 3178 if (Index < SparseUniverseMax) { 3179 if (Index < SparseUniverse && Sparse.test(Index)) 3180 continue; 3181 NewSparseUniverse = std::max(NewSparseUniverse, Index + 1); 3182 } else { 3183 if (Dense.count(Reg)) 3184 continue; 3185 ++NewDenseSize; 3186 } 3187 ToVRegs.push_back(Reg); 3188 } 3189 size_t End = ToVRegs.size(); 3190 if (Begin == End) 3191 return false; 3192 // Reserving space in sets once performs better than doing so continuously 3193 // and pays easily for double look-ups (even in Dense with SparseUniverseMax 3194 // tuned all the way down) and double iteration (the second one is over a 3195 // SmallVector, which is a lot cheaper compared to DenseSet or BitVector). 3196 Sparse.resize(NewSparseUniverse); 3197 Dense.reserve(NewDenseSize); 3198 for (unsigned I = Begin; I < End; ++I) { 3199 Register Reg = ToVRegs[I]; 3200 unsigned Index = Register::virtReg2Index(Reg); 3201 if (Index < SparseUniverseMax) 3202 Sparse.set(Index); 3203 else 3204 Dense.insert(Reg); 3205 } 3206 return true; 3207 } 3208 3209 private: 3210 static constexpr unsigned SparseUniverseMax = 10 * 1024 * 8; 3211 // VRegs indexed within SparseUniverseMax are tracked by Sparse, those beyound 3212 // are tracked by Dense. The only purpose of the threashold and the Dense set 3213 // is to have a reasonably growing memory usage in pathological cases (large 3214 // number of very sparse VRegFilter instances live at the same time). In 3215 // practice even in the worst-by-execution time cases having all elements 3216 // tracked by Sparse (very large SparseUniverseMax scenario) tends to be more 3217 // space efficient than if tracked by Dense. The threashold is set to keep the 3218 // worst-case memory usage within 2x of figures determined empirically for 3219 // "all Dense" scenario in such worst-by-execution-time cases. 3220 BitVector Sparse; 3221 DenseSet<unsigned> Dense; 3222 }; 3223 3224 // Implements both a transfer function and a (binary, in-place) join operator 3225 // for a dataflow over register sets with set union join and filtering transfer 3226 // (out_b = in_b \ filter_b). filter_b is expected to be set-up ahead of time. 3227 // Maintains out_b as its state, allowing for O(n) iteration over it at any 3228 // time, where n is the size of the set (as opposed to O(U) where U is the 3229 // universe). filter_b implicitly contains all physical registers at all times. 3230 class FilteringVRegSet { 3231 VRegFilter Filter; 3232 SmallVector<Register, 0> VRegs; 3233 3234 public: 3235 // Set-up the filter_b. \pre Input register set \p RS must have no duplicates. 3236 // Both virtual and physical registers are fine. 3237 template <typename RegSetT> void addToFilter(const RegSetT &RS) { 3238 Filter.add(RS); 3239 } 3240 // Passes \p RS through the filter_b (transfer function) and adds what's left 3241 // to itself (out_b). 3242 template <typename RegSetT> bool add(const RegSetT &RS) { 3243 // Double-duty the Filter: to maintain VRegs a set (and the join operation 3244 // a set union) just add everything being added here to the Filter as well. 3245 return Filter.filterAndAdd(RS, VRegs); 3246 } 3247 using const_iterator = decltype(VRegs)::const_iterator; 3248 const_iterator begin() const { return VRegs.begin(); } 3249 const_iterator end() const { return VRegs.end(); } 3250 size_t size() const { return VRegs.size(); } 3251 }; 3252 } // namespace 3253 3254 // Calculate the largest possible vregsPassed sets. These are the registers that 3255 // can pass through an MBB live, but may not be live every time. It is assumed 3256 // that all vregsPassed sets are empty before the call. 3257 void MachineVerifier::calcRegsPassed() { 3258 if (MF->empty()) 3259 // ReversePostOrderTraversal doesn't handle empty functions. 3260 return; 3261 3262 for (const MachineBasicBlock *MB : 3263 ReversePostOrderTraversal<const MachineFunction *>(MF)) { 3264 FilteringVRegSet VRegs; 3265 BBInfo &Info = MBBInfoMap[MB]; 3266 assert(Info.reachable); 3267 3268 VRegs.addToFilter(Info.regsKilled); 3269 VRegs.addToFilter(Info.regsLiveOut); 3270 for (const MachineBasicBlock *Pred : MB->predecessors()) { 3271 const BBInfo &PredInfo = MBBInfoMap[Pred]; 3272 if (!PredInfo.reachable) 3273 continue; 3274 3275 VRegs.add(PredInfo.regsLiveOut); 3276 VRegs.add(PredInfo.vregsPassed); 3277 } 3278 Info.vregsPassed.reserve(VRegs.size()); 3279 Info.vregsPassed.insert(VRegs.begin(), VRegs.end()); 3280 } 3281 } 3282 3283 // Calculate the set of virtual registers that must be passed through each basic 3284 // block in order to satisfy the requirements of successor blocks. This is very 3285 // similar to calcRegsPassed, only backwards. 3286 void MachineVerifier::calcRegsRequired() { 3287 // First push live-in regs to predecessors' vregsRequired. 3288 SmallPtrSet<const MachineBasicBlock*, 8> todo; 3289 for (const auto &MBB : *MF) { 3290 BBInfo &MInfo = MBBInfoMap[&MBB]; 3291 for (const MachineBasicBlock *Pred : MBB.predecessors()) { 3292 BBInfo &PInfo = MBBInfoMap[Pred]; 3293 if (PInfo.addRequired(MInfo.vregsLiveIn)) 3294 todo.insert(Pred); 3295 } 3296 3297 // Handle the PHI node. 3298 for (const MachineInstr &MI : MBB.phis()) { 3299 for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) { 3300 // Skip those Operands which are undef regs or not regs. 3301 if (!MI.getOperand(i).isReg() || !MI.getOperand(i).readsReg()) 3302 continue; 3303 3304 // Get register and predecessor for one PHI edge. 3305 Register Reg = MI.getOperand(i).getReg(); 3306 const MachineBasicBlock *Pred = MI.getOperand(i + 1).getMBB(); 3307 3308 BBInfo &PInfo = MBBInfoMap[Pred]; 3309 if (PInfo.addRequired(Reg)) 3310 todo.insert(Pred); 3311 } 3312 } 3313 } 3314 3315 // Iteratively push vregsRequired to predecessors. This will converge to the 3316 // same final state regardless of DenseSet iteration order. 3317 while (!todo.empty()) { 3318 const MachineBasicBlock *MBB = *todo.begin(); 3319 todo.erase(MBB); 3320 BBInfo &MInfo = MBBInfoMap[MBB]; 3321 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 3322 if (Pred == MBB) 3323 continue; 3324 BBInfo &SInfo = MBBInfoMap[Pred]; 3325 if (SInfo.addRequired(MInfo.vregsRequired)) 3326 todo.insert(Pred); 3327 } 3328 } 3329 } 3330 3331 // Check PHI instructions at the beginning of MBB. It is assumed that 3332 // calcRegsPassed has been run so BBInfo::isLiveOut is valid. 3333 void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) { 3334 BBInfo &MInfo = MBBInfoMap[&MBB]; 3335 3336 SmallPtrSet<const MachineBasicBlock*, 8> seen; 3337 for (const MachineInstr &Phi : MBB) { 3338 if (!Phi.isPHI()) 3339 break; 3340 seen.clear(); 3341 3342 const MachineOperand &MODef = Phi.getOperand(0); 3343 if (!MODef.isReg() || !MODef.isDef()) { 3344 report("Expected first PHI operand to be a register def", &MODef, 0); 3345 continue; 3346 } 3347 if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() || 3348 MODef.isEarlyClobber() || MODef.isDebug()) 3349 report("Unexpected flag on PHI operand", &MODef, 0); 3350 Register DefReg = MODef.getReg(); 3351 if (!DefReg.isVirtual()) 3352 report("Expected first PHI operand to be a virtual register", &MODef, 0); 3353 3354 for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) { 3355 const MachineOperand &MO0 = Phi.getOperand(I); 3356 if (!MO0.isReg()) { 3357 report("Expected PHI operand to be a register", &MO0, I); 3358 continue; 3359 } 3360 if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() || 3361 MO0.isDebug() || MO0.isTied()) 3362 report("Unexpected flag on PHI operand", &MO0, I); 3363 3364 const MachineOperand &MO1 = Phi.getOperand(I + 1); 3365 if (!MO1.isMBB()) { 3366 report("Expected PHI operand to be a basic block", &MO1, I + 1); 3367 continue; 3368 } 3369 3370 const MachineBasicBlock &Pre = *MO1.getMBB(); 3371 if (!Pre.isSuccessor(&MBB)) { 3372 report("PHI input is not a predecessor block", &MO1, I + 1); 3373 continue; 3374 } 3375 3376 if (MInfo.reachable) { 3377 seen.insert(&Pre); 3378 BBInfo &PrInfo = MBBInfoMap[&Pre]; 3379 if (!MO0.isUndef() && PrInfo.reachable && 3380 !PrInfo.isLiveOut(MO0.getReg())) 3381 report("PHI operand is not live-out from predecessor", &MO0, I); 3382 } 3383 } 3384 3385 // Did we see all predecessors? 3386 if (MInfo.reachable) { 3387 for (MachineBasicBlock *Pred : MBB.predecessors()) { 3388 if (!seen.count(Pred)) { 3389 report("Missing PHI operand", &Phi); 3390 OS << printMBBReference(*Pred) 3391 << " is a predecessor according to the CFG.\n"; 3392 } 3393 } 3394 } 3395 } 3396 } 3397 3398 static void 3399 verifyConvergenceControl(const MachineFunction &MF, MachineDominatorTree &DT, 3400 std::function<void(const Twine &Message)> FailureCB, 3401 raw_ostream &OS) { 3402 MachineConvergenceVerifier CV; 3403 CV.initialize(&OS, FailureCB, MF); 3404 3405 for (const auto &MBB : MF) { 3406 CV.visit(MBB); 3407 for (const auto &MI : MBB.instrs()) 3408 CV.visit(MI); 3409 } 3410 3411 if (CV.sawTokens()) { 3412 DT.recalculate(const_cast<MachineFunction &>(MF)); 3413 CV.verify(DT); 3414 } 3415 } 3416 3417 void MachineVerifier::visitMachineFunctionAfter() { 3418 auto FailureCB = [this](const Twine &Message) { 3419 report(Message.str().c_str(), MF); 3420 }; 3421 verifyConvergenceControl(*MF, DT, FailureCB, OS); 3422 3423 calcRegsPassed(); 3424 3425 for (const MachineBasicBlock &MBB : *MF) 3426 checkPHIOps(MBB); 3427 3428 // Now check liveness info if available 3429 calcRegsRequired(); 3430 3431 // Check for killed virtual registers that should be live out. 3432 for (const auto &MBB : *MF) { 3433 BBInfo &MInfo = MBBInfoMap[&MBB]; 3434 for (Register VReg : MInfo.vregsRequired) 3435 if (MInfo.regsKilled.count(VReg)) { 3436 report("Virtual register killed in block, but needed live out.", &MBB); 3437 OS << "Virtual register " << printReg(VReg) 3438 << " is used after the block.\n"; 3439 } 3440 } 3441 3442 if (!MF->empty()) { 3443 BBInfo &MInfo = MBBInfoMap[&MF->front()]; 3444 for (Register VReg : MInfo.vregsRequired) { 3445 report("Virtual register defs don't dominate all uses.", MF); 3446 report_context_vreg(VReg); 3447 } 3448 } 3449 3450 if (LiveVars) 3451 verifyLiveVariables(); 3452 if (LiveInts) 3453 verifyLiveIntervals(); 3454 3455 // Check live-in list of each MBB. If a register is live into MBB, check 3456 // that the register is in regsLiveOut of each predecessor block. Since 3457 // this must come from a definition in the predecesssor or its live-in 3458 // list, this will catch a live-through case where the predecessor does not 3459 // have the register in its live-in list. This currently only checks 3460 // registers that have no aliases, are not allocatable and are not 3461 // reserved, which could mean a condition code register for instance. 3462 if (MRI->tracksLiveness()) 3463 for (const auto &MBB : *MF) 3464 for (MachineBasicBlock::RegisterMaskPair P : MBB.liveins()) { 3465 MCRegister LiveInReg = P.PhysReg; 3466 bool hasAliases = MCRegAliasIterator(LiveInReg, TRI, false).isValid(); 3467 if (hasAliases || isAllocatable(LiveInReg) || isReserved(LiveInReg)) 3468 continue; 3469 for (const MachineBasicBlock *Pred : MBB.predecessors()) { 3470 BBInfo &PInfo = MBBInfoMap[Pred]; 3471 if (!PInfo.regsLiveOut.count(LiveInReg)) { 3472 report("Live in register not found to be live out from predecessor.", 3473 &MBB); 3474 OS << TRI->getName(LiveInReg) << " not found to be live out from " 3475 << printMBBReference(*Pred) << '\n'; 3476 } 3477 } 3478 } 3479 3480 for (auto CSInfo : MF->getCallSitesInfo()) 3481 if (!CSInfo.first->isCall()) 3482 report("Call site info referencing instruction that is not call", MF); 3483 3484 // If there's debug-info, check that we don't have any duplicate value 3485 // tracking numbers. 3486 if (MF->getFunction().getSubprogram()) { 3487 DenseSet<unsigned> SeenNumbers; 3488 for (const auto &MBB : *MF) { 3489 for (const auto &MI : MBB) { 3490 if (auto Num = MI.peekDebugInstrNum()) { 3491 auto Result = SeenNumbers.insert((unsigned)Num); 3492 if (!Result.second) 3493 report("Instruction has a duplicated value tracking number", &MI); 3494 } 3495 } 3496 } 3497 } 3498 } 3499 3500 void MachineVerifier::verifyLiveVariables() { 3501 assert(LiveVars && "Don't call verifyLiveVariables without LiveVars"); 3502 for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) { 3503 Register Reg = Register::index2VirtReg(I); 3504 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 3505 for (const auto &MBB : *MF) { 3506 BBInfo &MInfo = MBBInfoMap[&MBB]; 3507 3508 // Our vregsRequired should be identical to LiveVariables' AliveBlocks 3509 if (MInfo.vregsRequired.count(Reg)) { 3510 if (!VI.AliveBlocks.test(MBB.getNumber())) { 3511 report("LiveVariables: Block missing from AliveBlocks", &MBB); 3512 OS << "Virtual register " << printReg(Reg) 3513 << " must be live through the block.\n"; 3514 } 3515 } else { 3516 if (VI.AliveBlocks.test(MBB.getNumber())) { 3517 report("LiveVariables: Block should not be in AliveBlocks", &MBB); 3518 OS << "Virtual register " << printReg(Reg) 3519 << " is not needed live through the block.\n"; 3520 } 3521 } 3522 } 3523 } 3524 } 3525 3526 void MachineVerifier::verifyLiveIntervals() { 3527 assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts"); 3528 for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) { 3529 Register Reg = Register::index2VirtReg(I); 3530 3531 // Spilling and splitting may leave unused registers around. Skip them. 3532 if (MRI->reg_nodbg_empty(Reg)) 3533 continue; 3534 3535 if (!LiveInts->hasInterval(Reg)) { 3536 report("Missing live interval for virtual register", MF); 3537 OS << printReg(Reg, TRI) << " still has defs or uses\n"; 3538 continue; 3539 } 3540 3541 const LiveInterval &LI = LiveInts->getInterval(Reg); 3542 assert(Reg == LI.reg() && "Invalid reg to interval mapping"); 3543 verifyLiveInterval(LI); 3544 } 3545 3546 // Verify all the cached regunit intervals. 3547 for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i) 3548 if (const LiveRange *LR = LiveInts->getCachedRegUnit(i)) 3549 verifyLiveRange(*LR, VirtRegOrUnit(i)); 3550 } 3551 3552 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR, 3553 const VNInfo *VNI, 3554 VirtRegOrUnit VRegOrUnit, 3555 LaneBitmask LaneMask) { 3556 if (VNI->isUnused()) 3557 return; 3558 3559 const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def); 3560 3561 if (!DefVNI) { 3562 report("Value not live at VNInfo def and not marked unused", MF); 3563 report_context(LR, VRegOrUnit, LaneMask); 3564 report_context(*VNI); 3565 return; 3566 } 3567 3568 if (DefVNI != VNI) { 3569 report("Live segment at def has different VNInfo", MF); 3570 report_context(LR, VRegOrUnit, LaneMask); 3571 report_context(*VNI); 3572 return; 3573 } 3574 3575 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def); 3576 if (!MBB) { 3577 report("Invalid VNInfo definition index", MF); 3578 report_context(LR, VRegOrUnit, LaneMask); 3579 report_context(*VNI); 3580 return; 3581 } 3582 3583 if (VNI->isPHIDef()) { 3584 if (VNI->def != LiveInts->getMBBStartIdx(MBB)) { 3585 report("PHIDef VNInfo is not defined at MBB start", MBB); 3586 report_context(LR, VRegOrUnit, LaneMask); 3587 report_context(*VNI); 3588 } 3589 return; 3590 } 3591 3592 // Non-PHI def. 3593 const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def); 3594 if (!MI) { 3595 report("No instruction at VNInfo def index", MBB); 3596 report_context(LR, VRegOrUnit, LaneMask); 3597 report_context(*VNI); 3598 return; 3599 } 3600 3601 bool hasDef = false; 3602 bool isEarlyClobber = false; 3603 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { 3604 if (!MOI->isReg() || !MOI->isDef()) 3605 continue; 3606 if (VRegOrUnit.isVirtualReg()) { 3607 if (MOI->getReg() != VRegOrUnit.asVirtualReg()) 3608 continue; 3609 } else { 3610 if (!MOI->getReg().isPhysical() || 3611 !TRI->hasRegUnit(MOI->getReg(), VRegOrUnit.asMCRegUnit())) 3612 continue; 3613 } 3614 if (LaneMask.any() && 3615 (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none()) 3616 continue; 3617 hasDef = true; 3618 if (MOI->isEarlyClobber()) 3619 isEarlyClobber = true; 3620 } 3621 3622 if (!hasDef) { 3623 report("Defining instruction does not modify register", MI); 3624 report_context(LR, VRegOrUnit, LaneMask); 3625 report_context(*VNI); 3626 } 3627 3628 // Early clobber defs begin at USE slots, but other defs must begin at 3629 // DEF slots. 3630 if (isEarlyClobber) { 3631 if (!VNI->def.isEarlyClobber()) { 3632 report("Early clobber def must be at an early-clobber slot", MBB); 3633 report_context(LR, VRegOrUnit, LaneMask); 3634 report_context(*VNI); 3635 } 3636 } else if (!VNI->def.isRegister()) { 3637 report("Non-PHI, non-early clobber def must be at a register slot", MBB); 3638 report_context(LR, VRegOrUnit, LaneMask); 3639 report_context(*VNI); 3640 } 3641 } 3642 3643 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR, 3644 const LiveRange::const_iterator I, 3645 VirtRegOrUnit VRegOrUnit, 3646 LaneBitmask LaneMask) { 3647 const LiveRange::Segment &S = *I; 3648 const VNInfo *VNI = S.valno; 3649 assert(VNI && "Live segment has no valno"); 3650 3651 if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) { 3652 report("Foreign valno in live segment", MF); 3653 report_context(LR, VRegOrUnit, LaneMask); 3654 report_context(S); 3655 report_context(*VNI); 3656 } 3657 3658 if (VNI->isUnused()) { 3659 report("Live segment valno is marked unused", MF); 3660 report_context(LR, VRegOrUnit, LaneMask); 3661 report_context(S); 3662 } 3663 3664 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start); 3665 if (!MBB) { 3666 report("Bad start of live segment, no basic block", MF); 3667 report_context(LR, VRegOrUnit, LaneMask); 3668 report_context(S); 3669 return; 3670 } 3671 SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB); 3672 if (S.start != MBBStartIdx && S.start != VNI->def) { 3673 report("Live segment must begin at MBB entry or valno def", MBB); 3674 report_context(LR, VRegOrUnit, LaneMask); 3675 report_context(S); 3676 } 3677 3678 const MachineBasicBlock *EndMBB = 3679 LiveInts->getMBBFromIndex(S.end.getPrevSlot()); 3680 if (!EndMBB) { 3681 report("Bad end of live segment, no basic block", MF); 3682 report_context(LR, VRegOrUnit, LaneMask); 3683 report_context(S); 3684 return; 3685 } 3686 3687 // Checks for non-live-out segments. 3688 if (S.end != LiveInts->getMBBEndIdx(EndMBB)) { 3689 // RegUnit intervals are allowed dead phis. 3690 if (!VRegOrUnit.isVirtualReg() && VNI->isPHIDef() && S.start == VNI->def && 3691 S.end == VNI->def.getDeadSlot()) 3692 return; 3693 3694 // The live segment is ending inside EndMBB 3695 const MachineInstr *MI = 3696 LiveInts->getInstructionFromIndex(S.end.getPrevSlot()); 3697 if (!MI) { 3698 report("Live segment doesn't end at a valid instruction", EndMBB); 3699 report_context(LR, VRegOrUnit, LaneMask); 3700 report_context(S); 3701 return; 3702 } 3703 3704 // The block slot must refer to a basic block boundary. 3705 if (S.end.isBlock()) { 3706 report("Live segment ends at B slot of an instruction", EndMBB); 3707 report_context(LR, VRegOrUnit, LaneMask); 3708 report_context(S); 3709 } 3710 3711 if (S.end.isDead()) { 3712 // Segment ends on the dead slot. 3713 // That means there must be a dead def. 3714 if (!SlotIndex::isSameInstr(S.start, S.end)) { 3715 report("Live segment ending at dead slot spans instructions", EndMBB); 3716 report_context(LR, VRegOrUnit, LaneMask); 3717 report_context(S); 3718 } 3719 } 3720 3721 // After tied operands are rewritten, a live segment can only end at an 3722 // early-clobber slot if it is being redefined by an early-clobber def. 3723 // TODO: Before tied operands are rewritten, a live segment can only end at 3724 // an early-clobber slot if the last use is tied to an early-clobber def. 3725 if (MF->getProperties().hasProperty( 3726 MachineFunctionProperties::Property::TiedOpsRewritten) && 3727 S.end.isEarlyClobber()) { 3728 if (I + 1 == LR.end() || (I + 1)->start != S.end) { 3729 report("Live segment ending at early clobber slot must be " 3730 "redefined by an EC def in the same instruction", 3731 EndMBB); 3732 report_context(LR, VRegOrUnit, LaneMask); 3733 report_context(S); 3734 } 3735 } 3736 3737 // The following checks only apply to virtual registers. Physreg liveness 3738 // is too weird to check. 3739 if (VRegOrUnit.isVirtualReg()) { 3740 // A live segment can end with either a redefinition, a kill flag on a 3741 // use, or a dead flag on a def. 3742 bool hasRead = false; 3743 bool hasSubRegDef = false; 3744 bool hasDeadDef = false; 3745 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { 3746 if (!MOI->isReg() || MOI->getReg() != VRegOrUnit.asVirtualReg()) 3747 continue; 3748 unsigned Sub = MOI->getSubReg(); 3749 LaneBitmask SLM = 3750 Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub) : LaneBitmask::getAll(); 3751 if (MOI->isDef()) { 3752 if (Sub != 0) { 3753 hasSubRegDef = true; 3754 // An operand %0:sub0 reads %0:sub1..n. Invert the lane 3755 // mask for subregister defs. Read-undef defs will be handled by 3756 // readsReg below. 3757 SLM = ~SLM; 3758 } 3759 if (MOI->isDead()) 3760 hasDeadDef = true; 3761 } 3762 if (LaneMask.any() && (LaneMask & SLM).none()) 3763 continue; 3764 if (MOI->readsReg()) 3765 hasRead = true; 3766 } 3767 if (S.end.isDead()) { 3768 // Make sure that the corresponding machine operand for a "dead" live 3769 // range has the dead flag. We cannot perform this check for subregister 3770 // liveranges as partially dead values are allowed. 3771 if (LaneMask.none() && !hasDeadDef) { 3772 report( 3773 "Instruction ending live segment on dead slot has no dead flag", 3774 MI); 3775 report_context(LR, VRegOrUnit, LaneMask); 3776 report_context(S); 3777 } 3778 } else { 3779 if (!hasRead) { 3780 // When tracking subregister liveness, the main range must start new 3781 // values on partial register writes, even if there is no read. 3782 if (!MRI->shouldTrackSubRegLiveness(VRegOrUnit.asVirtualReg()) || 3783 LaneMask.any() || !hasSubRegDef) { 3784 report("Instruction ending live segment doesn't read the register", 3785 MI); 3786 report_context(LR, VRegOrUnit, LaneMask); 3787 report_context(S); 3788 } 3789 } 3790 } 3791 } 3792 } 3793 3794 // Now check all the basic blocks in this live segment. 3795 MachineFunction::const_iterator MFI = MBB->getIterator(); 3796 // Is this live segment the beginning of a non-PHIDef VN? 3797 if (S.start == VNI->def && !VNI->isPHIDef()) { 3798 // Not live-in to any blocks. 3799 if (MBB == EndMBB) 3800 return; 3801 // Skip this block. 3802 ++MFI; 3803 } 3804 3805 SmallVector<SlotIndex, 4> Undefs; 3806 if (LaneMask.any()) { 3807 LiveInterval &OwnerLI = LiveInts->getInterval(VRegOrUnit.asVirtualReg()); 3808 OwnerLI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes); 3809 } 3810 3811 while (true) { 3812 assert(LiveInts->isLiveInToMBB(LR, &*MFI)); 3813 // We don't know how to track physregs into a landing pad. 3814 if (!VRegOrUnit.isVirtualReg() && MFI->isEHPad()) { 3815 if (&*MFI == EndMBB) 3816 break; 3817 ++MFI; 3818 continue; 3819 } 3820 3821 // Is VNI a PHI-def in the current block? 3822 bool IsPHI = VNI->isPHIDef() && 3823 VNI->def == LiveInts->getMBBStartIdx(&*MFI); 3824 3825 // Check that VNI is live-out of all predecessors. 3826 for (const MachineBasicBlock *Pred : MFI->predecessors()) { 3827 SlotIndex PEnd = LiveInts->getMBBEndIdx(Pred); 3828 // Predecessor of landing pad live-out on last call. 3829 if (MFI->isEHPad()) { 3830 for (const MachineInstr &MI : llvm::reverse(*Pred)) { 3831 if (MI.isCall()) { 3832 PEnd = Indexes->getInstructionIndex(MI).getBoundaryIndex(); 3833 break; 3834 } 3835 } 3836 } 3837 const VNInfo *PVNI = LR.getVNInfoBefore(PEnd); 3838 3839 // All predecessors must have a live-out value. However for a phi 3840 // instruction with subregister intervals 3841 // only one of the subregisters (not necessarily the current one) needs to 3842 // be defined. 3843 if (!PVNI && (LaneMask.none() || !IsPHI)) { 3844 if (LiveRangeCalc::isJointlyDominated(Pred, Undefs, *Indexes)) 3845 continue; 3846 report("Register not marked live out of predecessor", Pred); 3847 report_context(LR, VRegOrUnit, LaneMask); 3848 report_context(*VNI); 3849 OS << " live into " << printMBBReference(*MFI) << '@' 3850 << LiveInts->getMBBStartIdx(&*MFI) << ", not live before " << PEnd 3851 << '\n'; 3852 continue; 3853 } 3854 3855 // Only PHI-defs can take different predecessor values. 3856 if (!IsPHI && PVNI != VNI) { 3857 report("Different value live out of predecessor", Pred); 3858 report_context(LR, VRegOrUnit, LaneMask); 3859 OS << "Valno #" << PVNI->id << " live out of " 3860 << printMBBReference(*Pred) << '@' << PEnd << "\nValno #" << VNI->id 3861 << " live into " << printMBBReference(*MFI) << '@' 3862 << LiveInts->getMBBStartIdx(&*MFI) << '\n'; 3863 } 3864 } 3865 if (&*MFI == EndMBB) 3866 break; 3867 ++MFI; 3868 } 3869 } 3870 3871 void MachineVerifier::verifyLiveRange(const LiveRange &LR, 3872 VirtRegOrUnit VRegOrUnit, 3873 LaneBitmask LaneMask) { 3874 for (const VNInfo *VNI : LR.valnos) 3875 verifyLiveRangeValue(LR, VNI, VRegOrUnit, LaneMask); 3876 3877 for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I) 3878 verifyLiveRangeSegment(LR, I, VRegOrUnit, LaneMask); 3879 } 3880 3881 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) { 3882 Register Reg = LI.reg(); 3883 assert(Reg.isVirtual()); 3884 verifyLiveRange(LI, VirtRegOrUnit(Reg)); 3885 3886 if (LI.hasSubRanges()) { 3887 LaneBitmask Mask; 3888 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg); 3889 for (const LiveInterval::SubRange &SR : LI.subranges()) { 3890 if ((Mask & SR.LaneMask).any()) { 3891 report("Lane masks of sub ranges overlap in live interval", MF); 3892 report_context(LI); 3893 } 3894 if ((SR.LaneMask & ~MaxMask).any()) { 3895 report("Subrange lanemask is invalid", MF); 3896 report_context(LI); 3897 } 3898 if (SR.empty()) { 3899 report("Subrange must not be empty", MF); 3900 report_context(SR, VirtRegOrUnit(LI.reg()), SR.LaneMask); 3901 } 3902 Mask |= SR.LaneMask; 3903 verifyLiveRange(SR, VirtRegOrUnit(LI.reg()), SR.LaneMask); 3904 if (!LI.covers(SR)) { 3905 report("A Subrange is not covered by the main range", MF); 3906 report_context(LI); 3907 } 3908 } 3909 } 3910 3911 // Check the LI only has one connected component. 3912 ConnectedVNInfoEqClasses ConEQ(*LiveInts); 3913 unsigned NumComp = ConEQ.Classify(LI); 3914 if (NumComp > 1) { 3915 report("Multiple connected components in live interval", MF); 3916 report_context(LI); 3917 for (unsigned comp = 0; comp != NumComp; ++comp) { 3918 OS << comp << ": valnos"; 3919 for (const VNInfo *I : LI.valnos) 3920 if (comp == ConEQ.getEqClass(I)) 3921 OS << ' ' << I->id; 3922 OS << '\n'; 3923 } 3924 } 3925 } 3926 3927 namespace { 3928 3929 // FrameSetup and FrameDestroy can have zero adjustment, so using a single 3930 // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the 3931 // value is zero. 3932 // We use a bool plus an integer to capture the stack state. 3933 struct StackStateOfBB { 3934 StackStateOfBB() = default; 3935 StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) 3936 : EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup), 3937 ExitIsSetup(ExitSetup) {} 3938 3939 // Can be negative, which means we are setting up a frame. 3940 int EntryValue = 0; 3941 int ExitValue = 0; 3942 bool EntryIsSetup = false; 3943 bool ExitIsSetup = false; 3944 }; 3945 3946 } // end anonymous namespace 3947 3948 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed 3949 /// by a FrameDestroy <n>, stack adjustments are identical on all 3950 /// CFG edges to a merge point, and frame is destroyed at end of a return block. 3951 void MachineVerifier::verifyStackFrame() { 3952 unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode(); 3953 unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode(); 3954 if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u) 3955 return; 3956 3957 SmallVector<StackStateOfBB, 8> SPState; 3958 SPState.resize(MF->getNumBlockIDs()); 3959 df_iterator_default_set<const MachineBasicBlock*> Reachable; 3960 3961 // Visit the MBBs in DFS order. 3962 for (df_ext_iterator<const MachineFunction *, 3963 df_iterator_default_set<const MachineBasicBlock *>> 3964 DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable); 3965 DFI != DFE; ++DFI) { 3966 const MachineBasicBlock *MBB = *DFI; 3967 3968 StackStateOfBB BBState; 3969 // Check the exit state of the DFS stack predecessor. 3970 if (DFI.getPathLength() >= 2) { 3971 const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2); 3972 assert(Reachable.count(StackPred) && 3973 "DFS stack predecessor is already visited.\n"); 3974 BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue; 3975 BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup; 3976 BBState.ExitValue = BBState.EntryValue; 3977 BBState.ExitIsSetup = BBState.EntryIsSetup; 3978 } 3979 3980 if ((int)MBB->getCallFrameSize() != -BBState.EntryValue) { 3981 report("Call frame size on entry does not match value computed from " 3982 "predecessor", 3983 MBB); 3984 OS << "Call frame size on entry " << MBB->getCallFrameSize() 3985 << " does not match value computed from predecessor " 3986 << -BBState.EntryValue << '\n'; 3987 } 3988 3989 // Update stack state by checking contents of MBB. 3990 for (const auto &I : *MBB) { 3991 if (I.getOpcode() == FrameSetupOpcode) { 3992 if (BBState.ExitIsSetup) 3993 report("FrameSetup is after another FrameSetup", &I); 3994 if (!MRI->isSSA() && !MF->getFrameInfo().adjustsStack()) 3995 report("AdjustsStack not set in presence of a frame pseudo " 3996 "instruction.", &I); 3997 BBState.ExitValue -= TII->getFrameTotalSize(I); 3998 BBState.ExitIsSetup = true; 3999 } 4000 4001 if (I.getOpcode() == FrameDestroyOpcode) { 4002 int Size = TII->getFrameTotalSize(I); 4003 if (!BBState.ExitIsSetup) 4004 report("FrameDestroy is not after a FrameSetup", &I); 4005 int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue : 4006 BBState.ExitValue; 4007 if (BBState.ExitIsSetup && AbsSPAdj != Size) { 4008 report("FrameDestroy <n> is after FrameSetup <m>", &I); 4009 OS << "FrameDestroy <" << Size << "> is after FrameSetup <" 4010 << AbsSPAdj << ">.\n"; 4011 } 4012 if (!MRI->isSSA() && !MF->getFrameInfo().adjustsStack()) 4013 report("AdjustsStack not set in presence of a frame pseudo " 4014 "instruction.", &I); 4015 BBState.ExitValue += Size; 4016 BBState.ExitIsSetup = false; 4017 } 4018 } 4019 SPState[MBB->getNumber()] = BBState; 4020 4021 // Make sure the exit state of any predecessor is consistent with the entry 4022 // state. 4023 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 4024 if (Reachable.count(Pred) && 4025 (SPState[Pred->getNumber()].ExitValue != BBState.EntryValue || 4026 SPState[Pred->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) { 4027 report("The exit stack state of a predecessor is inconsistent.", MBB); 4028 OS << "Predecessor " << printMBBReference(*Pred) << " has exit state (" 4029 << SPState[Pred->getNumber()].ExitValue << ", " 4030 << SPState[Pred->getNumber()].ExitIsSetup << "), while " 4031 << printMBBReference(*MBB) << " has entry state (" 4032 << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n"; 4033 } 4034 } 4035 4036 // Make sure the entry state of any successor is consistent with the exit 4037 // state. 4038 for (const MachineBasicBlock *Succ : MBB->successors()) { 4039 if (Reachable.count(Succ) && 4040 (SPState[Succ->getNumber()].EntryValue != BBState.ExitValue || 4041 SPState[Succ->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) { 4042 report("The entry stack state of a successor is inconsistent.", MBB); 4043 OS << "Successor " << printMBBReference(*Succ) << " has entry state (" 4044 << SPState[Succ->getNumber()].EntryValue << ", " 4045 << SPState[Succ->getNumber()].EntryIsSetup << "), while " 4046 << printMBBReference(*MBB) << " has exit state (" 4047 << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n"; 4048 } 4049 } 4050 4051 // Make sure a basic block with return ends with zero stack adjustment. 4052 if (!MBB->empty() && MBB->back().isReturn()) { 4053 if (BBState.ExitIsSetup) 4054 report("A return block ends with a FrameSetup.", MBB); 4055 if (BBState.ExitValue) 4056 report("A return block ends with a nonzero stack adjustment.", MBB); 4057 } 4058 } 4059 } 4060 4061 void MachineVerifier::verifyStackProtector() { 4062 const MachineFrameInfo &MFI = MF->getFrameInfo(); 4063 if (!MFI.hasStackProtectorIndex()) 4064 return; 4065 // Only applicable when the offsets of frame objects have been determined, 4066 // which is indicated by a non-zero stack size. 4067 if (!MFI.getStackSize()) 4068 return; 4069 const TargetFrameLowering &TFI = *MF->getSubtarget().getFrameLowering(); 4070 bool StackGrowsDown = 4071 TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown; 4072 unsigned FI = MFI.getStackProtectorIndex(); 4073 int64_t SPStart = MFI.getObjectOffset(FI); 4074 int64_t SPEnd = SPStart + MFI.getObjectSize(FI); 4075 for (unsigned I = 0, E = MFI.getObjectIndexEnd(); I != E; ++I) { 4076 if (I == FI) 4077 continue; 4078 if (MFI.isDeadObjectIndex(I)) 4079 continue; 4080 // FIXME: Skip non-default stack objects, as some targets may place them 4081 // above the stack protector. This is a workaround for the fact that 4082 // backends such as AArch64 may place SVE stack objects *above* the stack 4083 // protector. 4084 if (MFI.getStackID(I) != TargetStackID::Default) 4085 continue; 4086 // Skip variable-sized objects because they do not have a fixed offset. 4087 if (MFI.isVariableSizedObjectIndex(I)) 4088 continue; 4089 // FIXME: Skip spill slots which may be allocated above the stack protector. 4090 // Ideally this would only skip callee-saved registers, but we don't have 4091 // that information here. For example, spill-slots used for scavenging are 4092 // not described in CalleeSavedInfo. 4093 if (MFI.isSpillSlotObjectIndex(I)) 4094 continue; 4095 int64_t ObjStart = MFI.getObjectOffset(I); 4096 int64_t ObjEnd = ObjStart + MFI.getObjectSize(I); 4097 if (SPStart < ObjEnd && ObjStart < SPEnd) { 4098 report("Stack protector overlaps with another stack object", MF); 4099 break; 4100 } 4101 if ((StackGrowsDown && SPStart <= ObjStart) || 4102 (!StackGrowsDown && SPStart >= ObjStart)) { 4103 report("Stack protector is not the top-most object on the stack", MF); 4104 break; 4105 } 4106 } 4107 } 4108